
 378 Chapter 12

User-Defined Functions/Libraries
About Compiled Functions

About Compiled Functions
A Compiled Function is created by dynamically linking a library written in
C, C++, FORTRAN, or Pascal, to the VEE process. A library of compiled
functions is called a shared library in UNIX and a dynamic link library
(DLL) in Microsoft Windows.

Creating a Compiled Function is considerably more difficult than creating a
UserFunction. Once you have written a library of functions in C or another
language, you will need to compile the functions into a DLL or shared
library. You will also have to create a definition file that will provide VEE
with information it needs to call your function.

Using a Compiled Function
To use a Compiled Function, you:

1. Write the external program.

2. Create the DLL (Windows) or shared library (UNIX) and a definition
file.

3. Import the library and call the function from VEE.

4. Delete the library from VEE memory when you are done.

Note Pascal shared libraries are supported only for HP 9000 Series 700
computers.

The methods for importing a Compiled Function library and for calling the
function are very similar to those for UserFunction libraries. The Import
Library object attaches the DLL to the VEE process and parses the
definition file declarations.

The definition file defines the type of data passed between the external
library and VEE. (This file is discussed later in this section.) The Compiled
Function can then be called with the Call object or from such objects as
Formula and If/Then/Else.

Chapter 12 379

User-Defined Functions/Libraries
About Compiled Functions

Design Considerations for Compiled Functions
Using Compiled Functions, you can develop time-sensitive routines in
another language and integrate them directly into your VEE program. You
can also use Compiled Functions to keep proprietary routines secure.

Because Compiled Functions do not timeslice (i.e., they execute until they
are done without interruption) they are only useful for specific purposes that
are not otherwise available in VEE.

You can extend the capabilities of your VEE program by using Compiled
Functions, but it adds complexity to the VEE process. The key design goals
should be:

Keep the purpose of the external routine highly focused on a specific task

Use Compiled Functions only when the capability or performance you
need is not available using a VEE UserFunction or an Execute
Program escape to the operating system.

You can use any operating system facilities available in the program to be
linked, including math routines, instrument I/O, etc. However, you cannot
access any VEE internal functions from within the external program to be
linked.

Although the use of Compiled Functions provides enhanced VEE
capabilities, some problems can occur. A few key ones are:

VEE cannot trap errors originating in the external routine. Because your
external routine becomes part of the VEE process, any errors in that
routine propagate back to VEE. A failure in the external routine may
cause VEE to "hang" or otherwise fail. You need to be sure of what you
want the external routine to do and provide for error checking in the
routine. If your external routine exits so will VEE.

Your routine must manage all memory that it needs. Be sure to deallocate
any memory that you may have allocated when the routine was running.

 380 Chapter 12

User-Defined Functions/Libraries
About Compiled Functions

Your external routine cannot convert data types the way VEE does. You
should configure the data input terminals of the Call object to accept
only the type and shape of data that is compatible with the external
routine.

If your external routine accepts arrays, it must have a valid pointer for the
type of data it will examine. The routine also must check the size of the
array on which it is working. The best way to do this is to pass the size
of the array from VEE as an input to the routine, separate from the array
itself. If your routine overwrites values of an array passed to it, use the
return value of the function to indicate how many of the array elements
are valid.

System I/O resources may become locked. Your external routine is
responsible for timeout provisions, etc.

If your external routine performs an invalid operation, such as
overwriting memory beyond the end of an array or dereferencing a null
or bad pointer, this can cause VEE to exit or error with a General
Protection Fault (MS Windows) or a Segmentation Violation (UNIX).

If your external routine has arrays or char* parameters, the memory
passed to these routines must be allocated in VEE. You should allocate
this memory by doing the following:

For an array input, use an Alloc Array object of the appropriate
type, and set the size appropriately.

For a string input, use a Formula object. Delete the data input
terminal from the Formula object and enter an expression like
256*"a". This creates a string that is 256 characters long (plus a null
byte) filled with a’s. Most VXIplug&play functions will not write
more than 256 characters into a Text parameter. However, it is best to
check the Help on each function panel that requires a Text input to be
sure.

Chapter 12 381

User-Defined Functions/Libraries
About Compiled Functions

Importing and Calling a Compiled Function
You can import a DLL into your VEE program with the Import Library
object, then call the Compiled Function with the Call object. The process is
very much like importing a library of UserFunctions and calling the
functions, as described at the beginning of this chapter.

To import a Compiled Function library, select Compiled Function in the
Library Type field.

Just as for a UserFunction, the Library Name field attaches a name to
identify the library within the program, and the File Name field specifies
the file from which to import the library. For a Compiled Function, there is a
fourth field, which specifies the name of the Definition File, shown in
Figure 12-4.

Figure 12-4. Using Import Library for Compiled Functions

The definition file defines the type of data passed between the external
routine and VEE. It contains prototypes for the functions.

After importing the library with Import Library, you can call the
Compiled Function by specifying the function name in the Call object. For
example, the Call object in Figure 12-5 calls the Compiled Function named
myFunction.

 382 Chapter 12

User-Defined Functions/Libraries
About Compiled Functions

Figure 12-5. Using Call for Compiled Functions

Select the desired function using Select Function from the Call object
menu or from the Function & Object Browser (under Device ⇒
Function & Object Browser), or type the name in the Call object.

If VEE recognizes the function, the input and output terminals of the Call
object are configured automatically for the function. (The necessary
information is supplied by the definition file.) You can reconfigure the Call
input and output terminals by selecting Configure Pinout in the object
menu.

VEE configures the Call object with the input terminals required by the
function and with a Ret Value output terminal for the return value of the
function. There also will be an output terminal corresponding to each input
that is passed by reference.

You can also call the Compiled Function by name from an expression in a
Formula object or from other expressions evaluated at run time. For
example, you could call a Compiled Function by including its name in an
expression in a Sequencer or ToFile transaction.

However, only the Compiled Function's return value (Ret Value in the
Call object) can be obtained from within an expression. If you want to
obtain other parameters from the function, you have to use the Call object.

Chapter 12 383

User-Defined Functions/Libraries
About Compiled Functions

The Definition File The Call object or Formula expression determines the type of data it should
pass to the function based on the contents of the definition file. The
definition file defines the type of data the function returns, the function
name, and the arguments the function accepts. The data has the following
form:

<return type> <function name> (<type> <paramname>, <type>
<paramname>, ...) ;

Where:

<return type> can be: int, short, long, float, double, char*,
or void.

<function name> can be a string consisting of an alpha character
followed by alphanumeric characters, up to a total of 512 characters.

<type> can be: int, short, long, float, double, int*, char*,
short*, long*, float*, double*, char**, or void.

<paramname> can be a string consisting of an alpha character followed
by alphanumeric characters, up to a total of 512 characters. The
parameter names are optional, but recommended. If a parameter is to be
passed by reference, the parameter name must be preceded by the
indirection symbol (*).

The valid return types are:

character strings (char*, corresponding to the VEE Text data type)

integers (short, int, long, corresponding to the VEE Int16 and
Int32 data types)

single and double precision floating point real numbers (float and
double corresponding to the VEE Real32 and Real64 data types).

If you specify "pass by reference" for a parameter by preceding the
parameter name with *, VEE will pass the address of the information to your
function. If you specify "pass by value" for a parameter by leaving out the *,
VEE will copy the value (rather than the address of the value) to your
function. You will want to pass the data by reference if your external routine

 384 Chapter 12

User-Defined Functions/Libraries
About Compiled Functions

changes that data for propagation back to VEE. All arrays must be passed by
reference.

Any parameter passed to a Compiled Function by reference is available as an
output terminal on the Call object. The output terminals will be Ret
Value for the function's return value, plus an output for each input
parameter that was passed by reference.

VEE pushes 144 bytes on the stack. This allows up to 36 parameters to be
passed by reference to a Compiled Function. Up to 36 long integer
parameters or 18 double-precision floating-point parameters may be passed
by value.

Note For HP-UX, you must have the ANSI C compiler in order to generate the
position independent code needed to build a shared library for a Compiled
Function.

VEE allows both "enclosed" comments and "to-end-of-line" comments in
the definition file.

"Enclosed" comments use the delimiter sequence /*comments*/, where /*
and */ mark the beginning and end of the comment, respectively.

"To-end-of-line" comments use the delimiting characters // to indicate the
beginning of a comment that runs to the end of the current line.

Building a C
Function

The following C function accepts a real array and adds 1 to each element in
the array. The modified array is returned to VEE on the Array terminal,
while the size of the array is returned on the Ret Value terminal. This
function, once linked into VEE, becomes the Compiled Function called in
the VEE program shown in Figure 12-6.

Chapter 12 385

User-Defined Functions/Libraries
About Compiled Functions

/*
C code from manual49.c file

*/

#include <stdlib.h>

#ifdef WIN32
define DLLEXPORT __declspec(dllexport)
#else
define DLLEXPORT
#endif

/* The description will show up on the Program Explorer when you select
"Show Description" from the object menu and the Function Selection
dialog box in the small window on the bottom of the box.
*/
DLLEXPORT char myFunc_desc[] = "This function adds 1.0 to the array
passed in";

DLLEXPORT long myFunc(long arraySize, double *array) {
 long i;

for (i = 0; i < arraySize; i++, array++) { *array += 1.0; }

return(arraySize);
}

The definition file for this function is as follows:

/*
definition file for manual49.c
*/

long myFunc(long arraySize, double *array);

(This definition is the same as the ANSI C prototype definition in the C file.)

You must include any header files on which the routine depends. The library
should link against any other system libraries needed to resolve the system
functions it calls.

 386 Chapter 12

User-Defined Functions/Libraries
About Compiled Functions

The example program uses the ANSI C function prototype. The function
prototype declares the data types that VEE should pass into the function.

The array has been declared as a pointer variable. VEE will put the addresses
of the information appearing on the Call data in terminals into this variable.
The array size has been declared as a long integer. VEE will put the value
(not the address) of the size of the array into this variable. The positions of
both the data input terminals and the variable declarations are important. The
addresses of the data items (or their values) supplied to the data input pins
(from top to bottom) are placed in the variables in the function prototype
from left to right.

One variable in the C function (and correspondingly, one data input terminal
in the Call object) is used to indicate the size of the array. The arraySize
variable is used to prevent data from being written beyond the end of the
array. If you overwrite the bounds of an array, the result depends on the
language you are using. In Pascal, which performs bounds checking, a run-
time error will result, stopping VEE. In languages like C, where there is no
bounds checking, the result will be unpredictable, but intermittent data
corruption is probable.

This example has passed a pointer to the array so it is necessary to
dereference the data before the information can be used.

The arraySize variable has been passed by value so it will not show
up as a data output terminal. However, here we have used the function's
return value to return the size of the output array to VEE. This technique is
useful when you need to return an array that has fewer elements than the
input array.

Chapter 12 387

User-Defined Functions/Libraries
About Compiled Functions

The program in Figure 12-6 calls the Compiled Function created from the
example C program:

Figure 12-6. Program Calling a Compiled Function

The example in Figure 12-6 is saved in the file manual49.vee in the
examples directory. The C file is saved as manual49.c, the definition file
as manual49.h and the shared library as manual49.sl.

Creating a Compiled Function (UNIX)
To create a Compiled Function you must write a program in C, C++,
FORTRAN, or Pascal (HP 9000 Series 700 only) and write a definition file
for the function. Then you must create a shared library containing the
Compiled Function and bind the shared library into the VEE process.

 388 Chapter 12

User-Defined Functions/Libraries
About Compiled Functions

Creating a Shared
Library

To create a shared library, your function must be compiled as position-
independent code. This means that, instead of having entry points to your
routines exist as absolute addresses, your routine's symbol table will hold a
symbolic reference to your function's name.

The symbol table is updated to reflect the absolute address of your named
function when the function is bound into the VEE environment. It must be
linked with a special option to create a shared library.

Suppose the example C routine is in the file named dLink.c. To compile
the file to be position independent, use the +z compiler option. You also
need to prevent the compiler from performing the link phase by using the -c
option. The compile command would look like this:

cc -Aa -c +z dLink.c

This produces an output file named dLink.o, which you can then link as a
shared library with the following command:

ld -b dLink.o

The -b option tells the linker to generate a shared library from position-
independent code. This produces a shared library named a.out.
Alternatively, you could use the command:

ld -b -o dLink.sl dLink.o

to obtain an output file (using the -o option) called dLink.sl.

Binding the Shared
Library

VEE binds the shared library into the VEE process. All you need to do is
include an Import Library object in your program, specifying the library
to import, then call the function by name (i.e., with a Call object). When
Import Library executes, VEE binds the shared library and makes the
appropriate input and output terminals available to the Call object.

Use the object menu choices from the Call object (Configure Pinout
and Select Function) to configure the Call object correctly. The shared
library remains bound to the VEE process until VEE terminates or until the
library is expressly deleted.

Delete the shared library from VEE either by selecting Delete Lib from
the Import Library object menu, or by including the Delete Library
object in your program. You may have more than one library name pointing
to the same shared library file. If so, use the Delete Library object to

Chapter 12 389

User-Defined Functions/Libraries
About Compiled Functions

delete each library. The shared library remains bound until the last library
pointing to it is deleted.

The Delete Lib selection in the Import Library object menu unbinds
the shared library without regard to other Import Library objects.

When VEE binds a shared library, it defines the input and output terminals
needed for each Compiled Function. When you select a Compiled Function
for a Call object, or when you execute a Configure Pinout, VEE
automatically configures Call with the appropriate terminals. The
algorithm is as follows:

The appropriate input terminals are created for each input parameter to be
passed to the function (by reference or by value).

An output terminal labeled Ret Value is configured to output the return
value of the Compiled Function. This is always the top-most output pin.

An output terminal is created for every input that is passed by reference.

The names of the input and output terminals (except for Ret Value) are
determined by the parameter names in the definition file. However, the
values output on the output terminals are a function of position, not name.
The first (top-most) output pin is always the return value.

The second output pin returns the value of the first parameter passed by
reference, etc. This is normally not a problem unless you add terminals after
the automatic pin configuration.

Creating a Dynamic Link Library (MS Windows)
VEE for Windows provides access to DLLs through the Call object and
through formula objects.

Note This section describes how to call a DLL, not how to write a DLL. VEE
Version 3.2 and greater only calls 32-bit DLLs, not 16-bit DLLs.

 390 Chapter 12

User-Defined Functions/Libraries
About Compiled Functions

Creating the DLL Create the DLL before writing the VEE program. Create the DLL as you
would any other DLL, except that only a subset of C types are allowed. (See
“Creating the Definition File” on page 390.)

Declaring DLL Functions. If you are using Microsoft Visual C++ Version
2.0 or greater, the function definition should be:

__declspec(dllexport) long myFunc (...);

This definition eliminates the need for a .DEF file to export the function
from the DLL. Use the following command line to compile and link the
DLL:

cl /DWIN32 $file.c /LD

/LD creates a DLL. Use /Zi to generate debug information.

The MS linker links to the C multi-threaded Runtime Library by default. If
you use functions like GetComputerName(), you need to link against
Kernel32.lib. The compile/link line would look like:

cl /DWIN32 file.c /LD /link Kernel32.lib

Declaring DLL Functions. To work with VEE, DLL functions can be
declared as __declspec(dllexport) using Microsoft C++ version 2.0 or
greater. This eliminates the need for a .DEF file. For example,
a generic function could be created as follows:

__declspec(dllexport) long genericFunc(long a) {return (a*2); }

If you are not using Microsoft Visual C++, the .DEF file contains:

EXPORTS genericFunc

And the function definition looks like:

long genericFunc(long a);

Creating the Definition File. The definition file contains a list of
prototypes of the imported functions. VEE uses this file to configure the
Call objects and to determine how to pass parameters to the DLL function.
The format for these prototypes is:

<return type> <modifier> <function name> (<type> <paramname>, <type>
<paramname>, ...) ;

Chapter 12 391

User-Defined Functions/Libraries
About Compiled Functions

where:

<return type> can be: int, short, long, float, double, char*,
or void.

<function name> can be a string consisting of an alpha character
followed by alphanumeric characters, up to a total of 512 characters.

<modifier> can be _cdecl, _pascal, or _stdcall.

<type> can be: int, short, long, float double, int*, char*,
short*, long*, float*, double*, char**, or void.

<paramname> can be a string consisting of an alpha character followed
by alphanumeric characters, up to a total of 512 characters. The
parameter names are optional, but recommended. If a parameter is to be
passed by reference, the parameter name must be preceded by the
indirection symbol (*).

For example:

Pass in four parameters, return a long:

long aFunc(double *,long param2,long *param3, char *);

No input parameters, return a double:

double aFunc();

Pass in a string, return a long:

long aFunc(char *aString);

Pass in an array of strings, return a long:

long aFunc(char **aString);

Parameter
Limitations

A DLL function called from VEE pushes a maximum of 144 bytes on the
stack. This limits the number of parameters used by the function. Any
combination of parameters may be used as long as the 144-byte limit is not
exceeded. A long uses four bytes, a double uses eight bytes and a pointer
uses four bytes. For example, a function could have 36 longs, or 18 doubles,
or 20 pointers and 8 doubles.

 392 Chapter 12

User-Defined Functions/Libraries
About Compiled Functions

The Import Library
Object

Before you can use a Call object or Formula box to execute a DLL
function you must import the function into the VEE environment via the
Import Library object. On the Import Library object, select
Compiled Function under Library Type. Enter the correct definition
file name using the Definition File button. Finally, select the correct
file using the File Name button. The Library Name button assigns a
logical name to a set of functions and does not need to be changed.

The Call Object Before using a DLL function with the Call object you must configure the
Call object. The easiest way to do this is to select Load Lib on the
Import Library object menu to load the DLL file into the VEE
environment. Then, select Select Function on the Call object menu.

VEE will bring up a dialog box with a list of all the functions listed in the
definitions file. When you select a function, VEE automatically configures
the Call object with the correct input and output terminals and function
name.

You can also configure the Call object manually by modifying the function
name and adding the appropriate input and output terminals:

1. Configure the same number of input terminals as there are parameters
passed to the function. The top input terminal is the first parameter
passed to the function. The next terminal down from the top is the second
parameter, etc.

2. Configure the output terminals so the parameters passed by reference
appear as output terminals on the Call object. Parameters passed by
value cannot be assigned as output terminals. The top output terminal is
the value returned by the function. The next terminal down is the first
parameter passed by reference, etc.

3. Enter the correct DLL function name in the Function Name field.

For example, for a DLL function defined as

long foo(double *x, double y, long *z);

you need three input terminals for x, y, and z and three output terminals,
one for the return value and two for x and z. The Function Name field
would contain foo. If the number of input and output terminals does not

Chapter 12 393

User-Defined Functions/Libraries
About Compiled Functions

exactly match the number of parameters in the function, VEE generates an
error.

If the DLL library has already been loaded and you enter the function name
in the Function Name field, you can also use the Configure Pinout
selection on the Call object menu to configure the terminals.

The Delete Library
Object

If you have very large programs you may want to delete libraries after you
use them. The Delete Library object deletes libraries from memory just
as the Delete Lib selection on the Import Library object menu does.

Using DLL Functions in Formula Objects
You can also use DLL functions in formula objects. With formula objects,
only the return value is used in the formula. The parameters passed by
reference cannot be accessed. For example, the DLL function defined above
is a formula:

4.5 + foo(a, b, c) * 10

where a is the top input terminal on the formula object, b is next, and c is
last. The call to foo must have the correct number of parameters or VEE
generates an error.

