
Type Spoofin' For

Dummies
or How To Get VEE To Pass Nearly Anything Over The

CFI

What Is Type Spoofin'?

Well, we saw in Windows Programming 101 how Windows does nearly everything it

does (with a window anyway) by passing messages to window objects. Then we saw in C

Programming 101 how the all important consideration for the CFI is data size – not

necessarily data type. We also saw how Windows defines a whole slew of goofy types

that are actually just aliases for far more familiar C types. Which, in turn, are just

different names for very familiar VEE types. Then we saw how there are "extended"

types, or Record types. That which C calls a structure. These types are also called

compound types because they are compounded of collections of familiar or intrinsic

types.

Type Spoofing is passing one type over the CFI when Windows is expecting something

totally different. As long as the size of the data is the same, VEE is plenty happy calling it

one type and Windows is equally happy calling it some other type. We've already seen

this in action. I've been calling a pointer an int. This is a simple type spoof. There are of

course others. On a 32-bit platform, an int can also be a long. I mentioned how this can

also break down and turn into a gotcha. When the bit width of the platform changes, so

does the size of two types: int and pointer.

These simple spoofs are handy for passing pointers to objects over the CFI, but using a

pointer in VEE involves other operations that we're not quite ready for yet, so lets

concentrate on a far more interesting and useful spoof, the compound type spoof.

A Closer Look At Compound Types.

Consider a simple VEE record. Let's say it contains an Int32 that will be a record number

(lRecNo), a Real64 that is a time stamp (tTime), and an array of Real32 values that are

each some measurement or other (pfData). This can be a useful structure for a data

acquisition application. We can collect a number of these records into an array and

permanently store them in a VEE Data Set — though to satisfy VEE's requirements on

arrays of records the data arrays must all be the same size. There can be an exact

duplicate of this record defined in C, and it's declaration is this:

struct _DATARECORD {

 long lRecNo;

 double tTime;

http://www.vrfarchive.com/vrf_archive/WindowsProgramming101.htm
http://www.vrfarchive.com/vrf_archive/CProgramming101.htm
http://www.vrfarchive.com/vrf_archive/CProgramming101.htm

 float *pfData;

};

The name of this structure is _DATARECORD. It's usually useful to define a new alias

for this type when it's declared, and in that case you'll see something like this:

typedef struct _DATARECORD {

 long lRecNo;

 double tTime;

 float *pfData;

} DATARECORD, *PDATARECORD;

It looks nearly the same only that now there are two new types available to the compiler.

They're called DATARECORD and PDATARECORD, and when the C pre-processor

replaces those strings before the file is compiled they are replaced with "struct

_DATARECORD" (meaning "a variable is of type struct _DATARECORD) and

"struct *_DATARECORD" (meaning "a variable of type struct _DATARECORD

pointer") respectively. Now, the interesting thing is that doing this (typedef-ing a

compound type along with declaring it's composition) is precisely the same as declaring a

Record Type variable in VEE. These two variables are laid out exactly the same in VEE

and in C. That's an important point. Also, it helps you get used to seeing how record vars

are declared in C. You'll see a lot of that type of thing in the Windows header files.

The problem with this is that, as I've already mentioned, VEE Record type variables are

not allowed to cross the CFI. So this knowledge doesn't seem to be of much importance.

The reason it is important is because we now know that both of these record types are

exactly the same in VEE and in C. Before we get into passing compound types across the

CFI, take a moment to reflect back on the definition of an array: an array is a pointer to a

chunk of memory whose contents are successive data entities, all of the same type. Now

you can begin to see why this is so important. A single variable of type DATARECORD

can't be passed across the CFI, but a pointer to an array of them can. And the array

doesn't have to contain any more than one record either.

Now hold it! HOLD EVERYTHING. Before you go dashing off and create an array of

Record in VEE and try to pass it over the CFI you should know that it won't work. VEE

will flag the attempt as a type mismatch. Why? Because there is no way to tell VEE that

it's an array of DATARECORD that you want to pass. You can't call it a

DATARECORD array, so you call it an int array instead. Well when you try to pass an

array of DATARECORD VEE knows you're trying to spoof the type and it says no way.

We're still not all the way through the complete explanation.

A Small Excursion Into Reality

Ok, so far all this has been theory. Rather boring theory at that. Why not show a practical

example that's simply bursting with type spoofs of all kinds? We are going to write a

small VEE program to convert a network computer name into an IP address. And we're

going to do it all in VEE, without writing anything at all in C or any ActiveX control or

library. This operation is called a "DNS Lookup". And why not go the other way too?

The program will also lookup a network computer name given an IP address.

The first thing we need to know about this is that there is a Windows Sockets function

(taken directly from the original BSD Sockets spec) called "gethostbyname" that

accomplishes looking up a host address given it's name. When you look up

"gethostbyname" in the Windows SDK you find the following declaration:

struct hostent FAR * gethostbyname(const char FAR * name);

Now, I'm aware that many of you do not have access to a Windows SDK and would like

to follow along. The thing is, see, you don't need an SDK because there's one on line and

it's called the MSDN Library or Microsoft Developer Network Library. Just click over to

the MSDN Library and use the "search for" box at the upper left of the page to search for

gethostbyname. The MSDN Library is a really huge place and you're going to get a lot of

results. We're interested in the Winsock call, so scroll down in the results list until you

find [Winsock] at the end of the function name. This is the page you should have found.

At any rate, there are a couple of things you need to notice about this. First, the function

returns a pointer to a "hostent" structure. Second, under Return Values in the error table,

you see that the return value WSANOTINITIALIZED means that you have not called

WSAStartup. So make a mental note of that. We must first call WSAStartup. Third,

there's the declaration of the "hostent" structure itself. If you click on the "hostent" link

(either here or there), you see the following declaration:

typedef struct hostent {

 char FAR *h_name;

 char FAR FAR **h_aliases;

 short h_addrtype;

 short h_length;

 char FAR FAR **h_addr_list;

} hostent;

I've cleaned this one up a bit so it's easier to read. The first thing you should know about

this is that you can forget about "FAR". It used to mean "far pointer", which meant

"32:32 segment address". But in a 32-bit world there are no 16:32 segments any more

(except in a thunk) so "FAR" is meaningless. So much for that. Next you notice "char

*h_name". If you look back at the Type Table in C Programming 101, you'll see that type

"char *" basically means "Text" in VEE. Also, if you read below the Type Table you'll

see that "char **" means "Text array" in VEE. So that's what these types are: a string and

string arrays (though this one is not quite a string array, it's convenient to think of it as

such. It's actually a pointer to an array of in_addr structures, but when we get to that I'll

explain). We'll see how to deal with them as we build the VEE program that will

accomplish this hearty feat. The other types in this structure are "short", which the Type

Table tells us means "Int16" in VEE.

http://msdn.microsoft.com/library
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/gethostbyname_2.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/hostent_2.asp
http://www.vrfarchive.com/vrf_archive/CProgramming101.htm#refTypeTable
http://www.vrfarchive.com/vrf_archive/CProgramming101.htm

So much for the types contained in the "hostent" structure. Now, look up WSAStartup.

Here we find this declaration:

int WSAStartup(WORD wVersionRequested, LPWSADATA

lpWSAData);

Ok, so the Type Table tells us that a WORD is actually an Int16, but LPWSADATA isn't

anywhere. This is a pointer to another structure. If you look up WSADATA, you'll find:

typedef struct WSAData {

 WORD wVersion;

 WORD wHighVersion;

 char szDescription[WSADESCRIPTION_LEN + 1];

 char szSystemStatus[WSASYS_STATUS_LEN + 1];

 unsigned short iMaxSockets;

 unsigned short iMaxUpdDg;

 char FAR *lpVendorInfo;

} WSADATA, FAR *LPWSADATA;

Here's a slightly different twist on a string. The members "szDescription" and

"szSystemStatus" are character arrays that are embedded in the structure. Further down in

the declaration we see that "lpVendorInfo" is what we're use to seeing as a string. All

three of these members are strings, but there are two different techniques for handling

them (as we'll see later). And then there's "unsigned short". Well, VEE doesn't do

unsigned so we're just going to ignore that.

Another little detail you might notice is that the documentation for WSAStartup says that

a matching call to WSACleanup should be made. Fortunately that is a straightforward

call:

int WSACleanup(void);

We won't need any special tricks to call this function. Astute readers also might have

noticed that the WSADATA structure documentation says that much of this information

should be ignored anyway if we're using the Windows Sockets version 2 or higher

specification. Since we will be doing so, just be aware that the information returned in

these members is not even supposed to be real — we'll simply be handling it to

demonstrate how to do so.

Taking Stock Of All This Stuff

That's an awful lot to go through, so let's just sit back a minute and think. There's this

WSADATA structure that contains embedded strings as well as a pointer to a string.

Then there's this "hostent" structure that contains not only a string pointer but two string

pointer pointers or string arrays! Combine this with the fact that you can't pass a structure

over the CFI and it looks like this experiment is doomed to fail. Apparently there's just no

way to handle all this data. The fact is that all of this can be done using nothing but VEE

and some clever type spoofing. I chose this example because it looks totally impossible.

It's possible because as long as we know the members of these structures and how large

they are, we don't need to tell VEE anything at all about them! Remember that: as long

as you know what you're doing, VEE doesn't have to.

Planning The Example Program

The example will first call WSAStartup requesting Windows Sockets version 2.0 support.

We'll have to check the return value from this call to make sure that WS 2.0 is supported

on the system. As a side note, I should say that WS 2.0 is not required for this simple

example. WS 2.0 is considered the minimum standard supported on all Windows

platforms except Windows 95 however, and if you're running Windows 95 I strongly

suggest you upgrade to at least Windows 98, if not Windows 2000 or XP. You can add

WS 2.0 support to Windows 95 but you're much better off just replacing Windows.

At any rate, provided the call to WSAStartup works the next thing we'll do is decode and

display the information returned in the WSADATA structure. This will require some

tricky programming! Next, we'll enter an infinite loop that pops up a dialog asking for the

name of the computer to look up an IP for, or the IP of the computer to look up a name

for. Naturally it's easiest to use the local machine, but that's only a little fun. You can

look up the IP or name of any computer on your network, or any network your computer

is connected to (i.e., the internet). And privileges don't really come into play here.

Looking up an IP or a name happens long, long before any given computer is contacted

for any kind of access. Any machine no matter what it's privilege level can always look

up IPs. This operation is one of the hallmarks of many different types of networks, not

just TCP/IP — if it's disallowed then your network becomes non-functional.

But getting back to this dialog box, it will have three buttons: Lookup IP, Lookup Name

and Cancel. If the Cancel button is clicked then the loop will exit, cleanup code will be

run and the program will exit. If Lookup IP is clicked, we'll call "gethostbyname" with

the name entered and decode and display the results of the call located in the returned

"hostent" structure. This also is going to take some tricky programming. Trust me: this

example has a little bit of everything in it. You won't often find a task that needs this

many spoofing techniques. If the Lookup Name button is clicked we'll call

"gethostbyaddress" with the IP entered and decode and display the results of the call

located in the returned "hostent" structrue.

As for why do any of this stuff at all, well that's harder to explain. There are much, much

easier ways to look up a computer's IP or name on a network. The trouble is that all of

those ways require something else. What we're doing here, and what we're going to be

doing throughout this entire series and in most of the examples, is using what's available

on every single Windows computer in the world. There are plenty of ActiveX controls

and libraries that will do all this for you, but unless you have one of those controls or

libraries you won't have a clue how to Git 'R Done.

Using any of the various Windows APIs at their basic level always implies a lot of work.

But it also implies that the techniques you use are absolutely universal, and that means a

lot when you're trying to sell self-contained software and don't want to give up a portion

of your profits to somebody else. Remember that a great many libraries and controls

generate royalties for their authors. If you want to use them, you have to pay. And very

often you have to pay per use. If you sell 10 copies of your program that uses library X,

then you pay X's author 10 times.

Actually, I like to look at it the other way around. Or sideways, as it were. Yes, there is a

widely available ActiveX library you can use to get the IP of any computer on a network.

It isn't a royalty generating library, and you don't have to pay anybody to get it either. But

you won't know anything about how it does what it does — this is how it does it. And this

isn't even the lowest level we can go to. There are lower-level ways to get network names

and addresses, but that's for another article.

The Black Cat's VEE App Framework For

Windows

Years ago when Samantha was learning to work with VEE, she found herself always

importing from one Windows dll or another and defining a lot of constants to work with

Windows. She had to do spoofed versions of memory and string copy functions and all

sorts of things. One day she got totally fed up with duplicating all this work for several

VEE applications. She raked the mouse, threw it against the wall and faced me with

flaring nostrils and a deep growl in her throat. "Make me a standard library for working

with Windows" she said. With that, she jumped down from the computer desk and went

out in the back yard. I didn't see her again for a few days, but I did find the remains of

several species of small furry animals gathered together in a cave down by the creek. The

basic point of the story is that if a pissed off Black Cat tells you to do something you

really should just shut up and do it. I did, and she never uttered another word about for

the rest of her life.

The entire framework has never been publicly published but bits of it have been seen on

the VRF at times. For importing libraries from various Windows dlls there's LoadLibs,

and it depends on LoadLib. For common type spoofing tasks there's LoadMemLibs. For

defining constants there's LoadConstants. In fact, LoadConstants isn't mine. It's adapted

from an example provided by Georg Neid of GN Software. I picked this up from the

VRF. See, that's one of the things that the VRF is all about: sharing experience. Basically

I'm going to skip a lot of explanations I should and concentrate on the spoofing aspects of

what's going on with the "hostent" structure. One further point: Whenever you do

anything, always use the earliest revision of whatever you're using that's necessary to get

the job done. This example needs to use an array of Int16, so we're going to have to use

VEE 6. The reason you use the earliest version possible is because you make your

software accessible to a wider audience. Sure, it's nice to use the latest and greatest, but if

you don't need to it's a bad move. Most of the examples that will eventually be published

here are VEE 5 compatible. Most of the Windows functions we'll be using are Win32

functions.

ftp://ftp.oswegosw.com/pub/indy/pics/Sam3.jpg

Calling WSAStartup

The first thing we have to do is initialize the Windows Sockets library by calling

WSAStartup. BTW, the WSA stands for "Windows Sockets Architecture". This function

takes an Int16 that defines the requested Windows Sockets version and a pointer to a

WSADATA structure. The version request is formatted with the high order byte

specifying the minor version number and the low order byte specifying the major version

number. Since we're asking for Windows Sockets 2.0 functionality, this is fortunately not

a big deal. The number "2" works fine. I'm sure some of you who are familiar with byte

ordering are scratching your heads now and saying, "but wait! Isn't that stored in memory

as 0x0200?" Yes it is. But remember: VEE is storing an Int16 and Windows is reading an

unsigned short and besides the fact that one is unsigned and the other isn't, those two

types are exactly the same. When Windows gets the passed variable, it's still 0x0002 and

everything works out.

This WSADATA structure is another thing entirely. Provided the function works, It is

filled out by Windows and returned to the caller to give you information on what's up

with sockets for the calling thread. The first two members are WORDs (Int16 values) that

specify the version of the Windows Sockets specification that the dll expects the caller to

use and the highest version the dll can support, respectively. Next is an embedded zero-

terminated character string of length WSADESCRIPTION_LEN + 1. Well we need to

know how large this is. This is where we come to it: you have to have the Windows

header files to look this up. As far as I know it's not documented on the MSDN Library

web site. You can download the Windows SDK at the Windows SDK Update Site, but

it's really huge. Such is the price of cheap computing. You always pay the price

somehow.

At any rate, the value we're looking for is 257. And the other string,

WSASYS_STATUS_LEN + 1, is 129. Then we have two Int16 and a pointer to a string

— 32 bits. Now, if we add all of these data sizes up we find that the WSADATA

structure is: 2 + 2 + 257 + 129 + 2 + 2 + 4 bytes long, or 398 bytes long. If we divide that

by two (because one Int16 is 2 bytes) we find that it's exactly equivalent to 199 Int16s.

Well, a pointer to a WSADATA structure is exactly equivalent to an array of 199 Int16s,

and it just so happens that's what we're going to use instead of a WSADATA structure.

You heard right: an array can successfully substitute for a pointer to a C compound

data structure and that is the secret to passing almost anything at all over the CFI.

The type of the data entity doesn't matter at all. It's the type of the members that we have

to keep in mind. All we need is a pointer to a chunk of memory that's large enough to

contain the target type, and in this case an array of Int16 of size 199 will do it. Magic,

huh? Of course accessing the data returned in the WSADATA structure is going to be a

hassle but hey! At least it will work. An Int32 array will work as well, but it's not as

suitable as an Int16 array. First of all, some of the members themselves are Int16. Second

of all, we are closer to being able to divide the embedded string members by 2 rather than

4. And we'll have to deal with that little point too.

http://www.microsoft.com/msdownload/platformsdk/sdkupdate/

Defining Member Offsets

There is one thing that must be done first of all. Before we go calling any of these

functions, we first have to define offsets to the members of the structures. These are

labels that equal the value of the array index where the members start. You can try to

remember what array index these members start at, but if you do try you won't succeed

(well, ok. I bet some of you could. Not me though!). You're far better off never using

magic numbers. Where ever a number must appear, define a constant and name the

constant something meaningful. This isn't just a good idea, it's the way almost all

successful commercial programming is done. The number 10 doesn't mean much, but the

label LF means Line Feed. See?

So lets take these structures in the order that they are going to be used. First is

WSADATA:

Member Type Label Byte Offset Array Index

wVersion WORD m_wd_wVersion 0 0

wHighVersion WORD m_wd_wHighVersion 2 1

szDescription char[257] m_wd_szDescription 4 2

szSystemStatus char[129] m_wd_szSystemStatus 261 130.5

iMaxSockets short m_wd_iMaxSockets 390 195

iMaxUdpDg short m_wd_iMaxUdpDg 392 196

lpVendorInfo char* m_wd_lpVendorInfo 394 197

Notice we have a problem with szSystemStatus. The offset of the beginning of the

member isn't evenly divisible by two so one of the Int16 array values is split! Half of it

belongs to one member and the other half belongs to another member. There's a simple

way around this problem that we'll see when we get to it. In the program, we'll simply let

m_wd_szSystemStatus equal 130. Oh! What's with the m_wd_? Well, these are members

so that's where the "m_" comes from, and they're members of the WsaData structure, so

that's where the "wd_" comes from. For such a small program it really doesn't matter, but

when you get a whole lot of structures with member offsets that have to be defined, it

helps to give them some kind of "pseudo name-space" name. Now lets do the hostent

structure:

Member Type Label Byte Offset Array Index

h_name char* m_he_h_name 0 0

h_aliases char** m_he_h_aliases 4 2

h_addrtype short m_he_h_addrtype 8 4

h_length short m_he_h_length 10 5

h_addr_list char** m_he_h_addr_list 12 6

If you add these up, you'll see that this structure is 4 + 4 + 2 + 2 + 4 = 16 bytes long.

Remember, a pointer is always four bytes. We'll use an Int16 array of size 8 to handle this

structure. But wait! Isn't that wrong? I mean, there are pointers! And we'll only be getting

16 bits per array index. Yes, that's right. Here's something else we have to be aware of

and provide for. And in this particular case we'll see how the fact that VEE doesn't do

unsigned types is going to be a real pain. See? I told you this example had a little of

everything!

Dealing With String Pointers

Ok. We're finally getting some stuff done. Before we start writing the program though,

we have to think about how to handle a few of these things. First of all there's char*

(text), then there's char** (text array), and finally there's char[] (embedded string). How

are we going to deal with these different string declarations? Let's take char* first because

that's the easiest. The value that we're going to pick out of the hostent array is going to be

a pointer to a string. We want to copy it to a VEE Text variable. It just so happens that

there's a function that's specifically made for doing this, and it's called "lstrcpy". It's

declaration looks like this:

LPTSTR lstrcpy(LPTSTR lpString1, LPCTSTR lpString2);

Substituting familiar types for Windows self-documenting types, and renaming things to

make it a little clearer, we get:

char* lstrcpy(char *pDst, char *pSrc);

Here, I have differentiated the source and destination strings. Well, for one I don't like the

fact that this function returns a string pointer so we're going to take care of that when we

write the import definition for VEE. Also, you may have noticed that from VEE's point of

view the second argument, the source string to copy, is a Text var, but we have a number

in an array! The fact that it is a string pointer is lost on VEE, because we used an Int16

array to get it. We're just going to have to spoof VEE into passing the number. We

already know it's a pointer, and that's why it works. As long as you know what you're

doing, VEE doesn't have to. Think of it as a little white lie. Marketing wants to know

when the program will be done. Development says "soon". Well, every programmer in

existence knows that "soon" means "sometime between now and when I die." Just like

when will the archive search page be functional or when will this article be finished

[hmmm... apparently both have come to pass. Astounding]? Well, the answer is soon.

That is, some time between now and when I die.

Here we get to see our first spoofed function declaration:

http://www.vrfarchive.com/vrf_archive/SearchVRF.htm

int lstrcpy(char *pDst, int pSrc);

I know it looks completely insane, but trust me: it works! In fact, this is a common spoof

and it's included in Sam's library. Now, on to char[]. This one is easy. Something may be

itching at the back of your head... No? Back in C Programming 101 I said that an array is

a chunk of memory filled with data entities all of the same type. I also said that what

VEE passes when it passes an array is a pointer. If you think about it, that means that as

far as the CFI is concerned an array is a pointer. I keep saying this, and this is one of the

reasons why. As far as C is concerned an array is a pointer also. In fact, if you take C

classes at some point you learn about array / pointer duality. Arrays are a compiler

construct. They are bogus. They are false, tricksy. They are implemented as a pointer.

The compiler simply arranges it so that the pointer points to a chunk of memory (all

together now) filled with data entities all of the same type.

So how does that help with copying a string that's been embedded in our array? Simple.

Remember that VEE kicks royal butt when it comes to arrays. We will simply pass a

subarray to the lstrcpy function and VEE takes care of the rest. I'm not kidding. It's that

simple. VEE builds a new array containing just the characters we're after (because it's a

char array, and that means string) and passes a pointer to that array to the lstrcpy

function. Unfortunately however, we're going to need a different declaration of lstrcpy to

do it. This version needs to look like this:

int lstrcpy(char *pDst, short *pSrc);

Because as far as VEE is concerned the source is an Int16 array. This is also a pretty

common spoof and it's included in Sam's library. Confused yet? Just wait. There's plenty

more. There's this char** for instance. What do we do about that? Well, what this

notation means is "pointer to pointer to string". It means string array. The data entities in

this array are string pointers. Those are the buggers we need to get at so we can call

lstrcpy. What we're going to do with this one is basically implement the pointer array

ourselves and get the individual pointers with a very handy function known as

RtlMoveMemory. I'm afraid I have some bad news. Those of you who downloaded SDKs

so that you could look all this up are not going to find RtlMoveMemory in it. Now you

need to download the Driver Development Kit, or DDK. This function is in kernel32.dll

for use by user code, but it's also in ntdll.dll. In fact, I wouldn't be surprised if it's all over

the place. The "Rtl" indicates that this function is actually implemented in the C Run-

Time Library. It's really nothing more than a renamed "movemem". If you have any C

compiler documentation, you can look that up and you'll find something very similar to

the declaration of RtlMoveMemory: You can also look it up in the SDK documentation

as MemMove. MemMove is a C macro that resolves to RtlMoveMemory.

VOID RtlMoveMemory(IN VOID UNALIGNED *Destination, IN CONST

VOID UNALIGNED *Source, IN SIZE_T Length);

Whoa! You really don't need to pay attention to any of those silly words. Driver writers

are in the habit of prefixing parameters with the words IN and OUT to indicate whether

they are input or output parameters. Unaligned simply means that the source and

destination blocks of memory do not need to be aligned in any special way, as is

sometimes a concern. The CONST is simply there to tell the compiler that the source may

not be modified. It helps when you forget that all these move and copy functions take a

destination first, just as the assembly language mnemonics for the move and load

instructions for x86 do. If you get the parameters turned around the C compiler will catch

it. We don't have that luxury in VEE so you have to be careful when using move or copy

functions. The spoofed declaration for this function is:

void RtlMoveMemory(long *pDst, int pSrc, long lLen);

This version of the declaration is made specifically for getting a 32-bit value into a VEE

Int32 variable and lLen will always be 4. This is a very useful function. Member I said

something about copy? There is an RtlCopyMemory function too. It actually runs faster

so it would seem a better choice for this operation. In fact, it is. The reason I use Move

instead of Copy is because Move will handle cases where the destination block of

memory overlaps the source block and Copy does not. This doesn't happen often, but

every once in a while it will so I always use Move to avoid the problem entirely. In most

general purpose programming this won't be the case however, so you can go ahead and

use Copy if you want to. There is one good reason for doing so: If you're copying a whole

lot of memory in loops, then Copy beats Move every time. Just make sure that the

destination will not overlap the source!

Multiple Libraries, Similar Functions

There's just one little detail left to talk about: as you can see, we need to declare different

parameters to the same functions — lstrcpy and RtlMoveMemory specifically. Not to

mention the fact that this will be done quite a bit. So how's that going to work? Most

languages have some concept of namespace and VEE is no exception. A namespace is a

space wherein names are unique, and separate from other namespaces. So as long as the

different declarations of the same function are kept in different namespaces everything is

fine. The namespace of a VEE compiled function import is the library name, and that's

what we'll use to keep these different declarations separate. I use two main conventions:

when copying stuff from VEE to Windows, I use the namespace prefix V2W. When

copying stuff from Windows to VEE, I use W2V. Other characters are added to indicate

the type of the value being copied and the number of bytes in the type but you get the

general idea. All this can be seen when the program is run. Samantha's VEE memory

libraries create a whole slew of namespaces with all sorts of declarations for copying

various data to and from Windows.

Are We There Yet?

Now see? There's a reason for all this too. VEE lulls you into a false sense of security. It's

very easy to throw something together and make it work quickly. Programming in general

isn't like that. The more planning and forethought you put into any given project the

better it's going to turn out to be. When you start whipping around huge structures and

fake them with arrays and start passing pointers to API functions... well, you're not really

programming in VEE any more and you have to be careful. Mistakes will always be

made. After 30 years of programming in all kinds of languages I can count on one hand

the number of times that everything worked the first time I ran something. It's much more

rare than once in a Blue Moon. You agro and astro enthusiasts know what that means, but

for everybody else it means it almost never happens and when it does you should mark it

on the calendar, write about it in your journal and celebrate with a hearty Guinness Stout

(HINT: get the pint bottles. Avoid the stupid spritzer. It does nothing but ruin the beer).

Steak & potatoes is optional but always a good choice too.

There is such a thing as planning a project to death and that's bad too. You don't want to

worry about every little detail, but you should at least have a very good idea of what data

structures you'll be using and how you're going to handle them. You might want to

scribble down what BCS libraries will be used to copy structure members to and from

Windows when those members can't be directly manipulated by VEE. Parameters going

IN will use V2W functions if VEE can't directly write their values into the arrays used to

spoof their type. Parameters coming OUT will use W2V. Parameters that are defined as

IN / OUT (i.e. they both pass data to the function and receive output from the function)

will use V2W before the call and W2V after the call. Gather all your constants together

and look up their values. Get them all typed into the BC's Constants text array.

Can We PLEASE Just Do The Program

Now?

Yes. It is time. Figure 1 shows the constants I'm defining for this example. Oh, the

program? You want the program you say? Well, ok. You can download it from here. It's

got a VEE 6.2 header but it only needs VEE 6.0 compatibility.

http://www.guinness.com/
ftp://ftp.oswegosw.com/pub/vrf_archive/DNSLookup.zip

Now if you look up these

errors, you'll find that I

tinkered with the names.

Normally one should never

do this, but I don't like it

when names are all run

together with no separating

cues, so I stuck a few

underscores in here and

there. The comments after

the error labels are the text

of the error message that

applications should display

when they encounter these

errors. They're all easy to

get from the system and

there's no excuse for not

displaying them. Except

that one is lazy. We'll be

lazy. If an error occurs, the

example program will tell

you the code but you'll

have to return to the

LoadConstants function to

look it up.

The comments after the

array index labels are the

data type of the member. I

do this because I'm

extremely stupid and

constantly forget what type

I'm trying to deal with.

That's part of the reason

that self documentation is

so important. Oh! The

name! I forgot to say

anything about the name.

The name of this example

is "DNSLookup" because

the operation of looking up

an IP address for a

computer name is called a

"DNS Lookup" (clever,

huh?). That of looking up a

computer name given it's

Figure 1: Constants for DNSLookup.

IP is called a Reverse DNS

Lookup. A DNS is a

"Domain Name Server".

Everything in IP land is

based on an IP address...

the dotted quartet of

numbers between 0 and

255. There is no such thing

as a computer called

"oswegosw.com". It's just

that the world's DNSs have

been told that

"oswegosw.com" means IP

address <whatever it

happens to be now>. It's

not always that simple.

Sometimes a site will have

a web server on one

computer, an ftp server on

another computer and so

on. In this case, the

different prefixes (like

www or ftp for instance)

will lead to different IPs

and so different computers.

Sometimes the routing is

done internally by protocol

request.. There are a lot of

different ways to do it. But

here at Black Cat Software,

all servers run on one

computer and so anything

at all that you type in your

browser's address bar with

"oswegosw.com" in it

comes to this IP.

The Spoofed Functions

Figure 2 shows how the main functions I'm using in this example have been spoofed.

Since we're

using Int16

arrays to

substitute for the

Figure 2: Spoofed Function Definitions.

structures,

anywhere a

structure is

mentioned in the

prototypes

they're replaced

with short

pointers. Note

that the

gethostbyname

call itself is

interesting in

that it returns a

pointer to a

hostent

structure. Well,

VEE won't

handle that so

what we're

going to do is

copy the hostent

structure to an

Int16 array

when it returns.

We'll get to just

how to do that

shortly. For the

CFI definition,

we're going to

tell VEE this

function returns

an "int". And in

order to copy

this structure to

an array, we

need

RtlMoveMemor

y in it's W2VI2

form. This form

is specifically

used to copy

individual Int16

values and Int16

arrays to VEE

from Windows.

Note also that

gethostbyname

is sort of special

in that it doesn't

have "A" and

"W" versions.

This is an

ancient leftover

from long, long

ago that doesn't

take wide

characters into

account.

Wrapper Functions

The very next thing I always do is stick a formula in main that calls LoadConstants(True)

and LoadLibs(LL_LOAD) and run it. This will go through all the code and imports and

make sure there are no mistakes. It also imports the libraries so that VEE knows about the

functions I'm calling and I can create call objects from them. This is important because

the next thing I'm going to do is build wrapper functions that handle the calls to the dlls.

Calling a dll is usually something of a big deal. There are sometimes return buffers to set

up, input parameters to prep and all kinds of stuff. These details are subordinate to the

main point of simply calling the function and getting some kind of useful return value, so

what I usually do is put all the prep work along with the actual function call in a wrapper

function. A wrapper function is a function that you call that hides all the tedious details of

the prep work. It does the prep, calls the actual target function, then cleans up after the

call (if necessary) and returns some useful information. Notice that in the case of the

WSAStartup call, we're interested not only in the return value of the call, but what

Windows filled out the WSADATA structure with. So I want the function to return not

only the return value, but the return array as well.

Many API calls are like this. What I do is consider the two different pieces of information

the function returns separately: there's a success / failure indicator and a piece of data. I'm

actually more interested in the data, so I make that the primary return from the wrapper

function. The success / failure indicator I send off to a global variable that I can test in

any context. In general global variables are a bad idea, but this is a legitimate use so I'm

not worried about it. And while I'm at it I should say something about GetLastError too.

GetLastError?

Yeah. See, one of the more primitive error reporting facilities is SetLastError. Many

(very many, like most) API functions will call SetLastError when they complete. If there

was an error they set the last error to whatever the error was. This is great when you're

executing compiled code because you get a general purpose success / failure value from

the function, but it's usually a boolean value indicating whether or not the function

succeeded. You call GetLastError to find out what the error actually was. Now, when you

call dll functions from VEE, there is a whole lot of stuff that goes on behind the scenes

that you don't see. And when a dll function returns to VEE there are again a whole lot of

things that go on that you don't see. So, by the time VEE is ready to execute the very next

object or statement in a Formula there are probably hundreds (if not thousands) of things

that have gone on in the mean time. Unfortunately this means that by the time you realize

there has been an error the specific error information has probably been overwritten with

other error information. So calling GetLastError usually doesn't get you the information

you want. You want to know why your call failed, and GetLastError is reporting some

other error that the VEE runtime has run into in the mean time.

In order for GetLastError to work, VEE would have to call GetLastError immediately

after it executes the call requested from your program and make that information

available to your program somehow. This it does not do (at least it doesn't make that

information available. I think. I don't know if it calls GetLastError immediately after

executing a call from a user program). Sometimes GetLastError will work, but most of

the time it won't. Whenever I call GetLastError I get information that a function was not

found. That doesn't have anything to do with the error I committed. It has to do with the

VEE runtime calling GetProcAddress for a function that wasn't found in the particular dll

it was trying to find that function in. Realize that this is a normal and acceptable

programming technique: retry on error. Sometimes it's the best way to get something

done. In these cases, the error is expected behavior and is used to sequence a loop or

some other control structure.

The best example I can think of at the moment is the implementation of what we think of

as Virtual Memory. Here I'm talking about VM in the paging context. When memory is

allocated for a process, it's allocated in pages. On Intel hardware Windows NT allocates

memory in 8K pages. In order to save time when setting up the process, the memory

requirement is simply noted - memory from the pool is not actually mapped at any

specific address. The first time a process tries to physically touch that memory a page

fault is generated. The Virtual Memory Manager (VMM) handles the exception and

requests the MMU of the CPU to map memory at that address. This way, processes don't

actually consume memory unless they need it. It's a much more efficient way of doling

out memory.

Back To The Wrapper Functions

Getting back to the wrapper functions, we need at least three of them. One for

WSAStartup, one for gethostbyname and one for gethostbyaddress. I just usually name

the wrapper function the same as the original call. The original calls are in a library (VEE

namespace "Winsock" in this example) so there's no name conflict. I define the inputs

and outputs that are convenient for VEE. Then I build the wrapper function around a

VEE call object to the actual function in the dll. WSAStartup is shown in Figure 3,

gethostbyname is shown in Figure 4 and gethostbyaddress is shown in Figure 6. Figure 5

is the wrapper function used to get an Int16 array. WSACleanup doesn't need a wrapper

because it doesn't have any parameters and it's very simple to call in-line.

Figure 3: The WSAStartup Wrapper Function

You know, take a look at

Figure 3 (click the pic to

see the full size function).

It's very simple. All we do

is allocate an Int16 array of

size 199 and pass it to

WSAStartup. The version

requested is a parameter to

the wrapper function but it

could have easily been

supplied inside the

wrapper. The input to the

function by the way is not

only named properly, but

it's also constrained to take

only an Int16 scalar value.

When doing Windows

Programming in VEE, it's

important to constrain

inputs to dll functions like

this. This will save you

endless hours of

troubleshooting only to

find that you've mistakenly

passed an array to a

function that was expecting

a scalar. VEE itself will

catch the error when you

try to execute the call

object, but remember that

not all of your inputs will

always be going directly to

the call object.

There's a subtle problem here that could turn into something ugly at some point in time.

Remember how I said I hated magic numbers? Well, there's a magic number, right there

in the Dim Size 1 of the Allocate Array object. This should be taken from a label. See, if

the size of the WSADATA structure ever changes then this won't work anymore. There's

one specifically set up for it, and it's called SIZEOF_WD. Of course SIZEOF_WD is in

bytes, and we want to calculate the size of the array in elements, so it's SIZEOF_WD /

sizeof(short), or sizeof(Int16), which happens to be 2 bytes. The trouble is you can't put a

formula in the Dim Size. You have to add a control input. But then that requires another

object to calculate the size, and then you have to constrain the sequence input of the

Allocate Array object to wait until after the formula executes... it gets very messy.

Fortunately there's another way to do it. You can use a formula to calculate the size of the

array and allocate the array all at once. It's "asInt16(ramp(SIZEOF_WD / 2, 0, 0));". But

isn't 2 a magic number also? No. The size of an Int16 will never ever change. The size of

the WSADATA structure will probably never change either, but never count on that.

Several structures that are sometimes (improperly) considered immutable have indeed

changed. BITMAP is one of them. It has changed several times.

But anyway what I wanted to say was look at the size of it! Yes, these three objects can

be closed and they take up much less room, but it's still got wires running around and

three interconnected objects. This is another purpose of Wrapper Functions. They not

only hide unnecessary details that get in the way of your main thought process, but they

compact all that stuff into one neat little package. There are no interconnected objects.

Just one, nice neat line of code that executes all of this stuff. One of the goals of any kind

of programming is clarity of purpose. When you look at any one function, it's nature and

purpose should be immediately obvious. Or at least after only a few moments study. If it's

not obvious then it's not done well. VEE excels at self-documentation — to a point. Once

you get a ton of objects on the screen and wires running all over the place, it totally

breaks down into a raw mess. That is to be avoided at all costs. I have a lot more to say

about Wrapper Functions but that's another article.

Showing WSAStartup Results

This is where things start to get interesting. The task now is to show the results of the

WSAStartup call, provided it worked. The results of the call are shown in Figure 4.

Probably most of you will get exactly the same result. The first line of the report states

that we should ignore Max Sockets, Max DG Size and Vendor Info. This is because we

are using the version of Windows Sockets that is capable of multi-vendor service

providers (>= 2.0). The Expected version is 2.0, meaning that any calls made to any

ws2_32.dll function from this thread must conform to Windows Sockets 2.0

specifications. Next, just as a point of information, it says that the highest version of the

Windows Sockets specification that this version of ws2_32.dll can support is 2.2. This

may well vary on y'alls systems because I ran this on a Windows 2000 system and it's

getting old and tired now. The description string shows up as WinSock 2.0. The status

string shows up as Running. The interesting thing is how those strings got there.

Figure 4: Showing the results of the call to WSAStartup.

REWRITE FROM HERE

The code is in one of my famous gigantic MoFOs in the user function ReportStartup. You

can almost see all the code in the screen shot (Figure 5), but we'll take it a section at a

time so you can see what's going on. First, we get the version numbers returned from the

call and pass them to a function called MkVerStr. This function is shown in Figure 6. It

breaks the passed WORD into hi and lo bytes, then assembles the numeric representation

of the value of the bytes with a period between them. The function itself is quite bizarre

actually. Theoretically it shouldn't be this big a deal except that the value 0xff00 (the hi-

byte mask) "cannot be converted to Int16" so the original WORD has to be converted to

Int32 so that the bitAnd function will operate on Int32 values instead of Int16. Believe it

or not this is not all that uncommon. No matter what the language, sometimes the

operand promotion rules do not allow you to do what seems obvious, so you wind up

explicitly converting types back and forth.

Now, in case you're wondering why this seems to be an "illegal value", consider that the

constant 0xff00, when typed into a formula, is automatically promoted to Int32. So it's

actually 0x0000ff00. This is a positive number. OTOH, 0xff00 as Int16 is negative. VEE

realizes it cannot represent 0x0000ff00 as Int16 and says so. Outside the wrapper

functions, the code is very neat and clean and so obvious that you can't help but

understand exactly what it does immediately:

1111 1111 0000 0000

sExpVer = MkVerStr(wd[m_wd_wVersion]);

sMaxVer = MkVerStr(wd[m_wd_wHighVersion]);

Next we have to get the description. What we have here is a sequence of 257 characters

beginning at wd[m_wd_szDescription] and ending in the low order byte of

wd[m_wd_szSystemStatus]. Since these members names begin with sz, we are

guaranteed that they will be zero terminated so we can safely use the C Run Time string

functions to manipulate them. The Black Cat's standard VEE library has several functions

explicitly for dealing with strings stored in numerical arrays. The one we need is pI22Str.

This reads as "convert pointer to two byte int to string". The "pointer" part means that the

input is an array. The "two byte int" part means that the input array is an Int16 array, and

the output will be a VEE Text string. A wrapper function called GetAryI2Str contains all

the allocation prep work, and it's shown in Figure 6. First, a buffer is allocated with "sDst

= "*" * pI22Str.lstrlenA(pi2)". This will make a string of asterisks the same length as the

string stored in the array. Then all we have to do is call lstrcpyA with the source as the

array and the destination as the buffer and it's done.

sDesc = GetAryI2Str(wd[m_wd_szDescription :

m_wd_szSystemStatus]);

Now the fun part. Remember how the last byte of the description is actually stored at the

lsb of the system status? Well, that last byte is going to be a zero character and if we try

to pass the status string directly to GetAryI2Str it will return a zero-length string. So, first

we have to copy the array members that contain the status and then set the lsb to

something other than 0. I chose the space character, because then I can run the output of

GetAryI2Str directly through strTrim and the space will go away. Oh, why is it the first

character and not the second? Well, these are Intel machines you see. They store the lsb

of a multibyte value first, and the msb second. We're dealing with two different types

here, one with byte ordering and one without (string). So when VEE operates on the

string it's operating on it with every pair of characters reversed. Confusing, huh?

pi2SysStat = wd[m_wd_szSystemStatus : m_wd_iMaxSockets -

1];

pi2sysStat[0] = bitOr(pi2SysStat[0], 0x0020);

sSysStat = strTrim(GetAryI2Str(pi2SysStat));

This sequence isn't so obvious. And actually I broke one of my own rules about not using

magic numbers. 0x0020 should be called ASCII_SPACE or something. I didn't notice it

until just now and I'm not going to go back and fix it.

Then there's more of really easy stuff:

iMaxSockets = wd[m_wd_iMaxSockets]);

iMaxUdpDg = wd[m_wd_iMaxUdpDg]);

And finally some not so easy stuff. For vendor info, we have to deal with a string pointer.

As you might expect, the Black Cat has a library function for that called GetAryI2Ptr. It's

job is to get a 32-bit pointer from two successive Int16 array elements. This wouldn't be

such a big deal except that this time we can not ignore the fact that VEE does not do

unsigned values. If the most significant bit of the least significant word of the pointer is 1

(and it very well may be), then it becomes impossible to convert it to a UInt16 and

combine with the msw to form the complete 32-bit pointer. The library has a function

called WORD that takes care of converting signed 16 bit numbers to their unsigned 32-bit

equivalents. The WORD function itself is very simple. If the input is negative it adds

32768 to the value to make it positive, then explicitly converts the result to a long

(Int32). The GetAryI2Ptr function uses WORD to get the least significant word and most

significant word of the pointer, then multiplies the msw by 65536 and adds it to the lsw.

And that's that. The result is the original pointer.

That's not all though. If the pointer is zero, as it will be for sockets 2.0 & higher

specification, we do not dare try to dereference that pointer. Doing so will cause an

access violation. A simple test for the value 0 selects the action to take. Either

dereference the pointer with GetStr or return a harmless string such as (None reported):

pVendinfo = GetAryI2Ptr(wd, m_wd_lpVendorInfo);

sVendInfo = (pVendInfo ? GetStr(pVendInfo) : "(None

reported)");

Figure 4: The gethostbyname Wrapper Function

Then there's Figure 4. The

gethostbyname wrapper.

Calling the winsock

function is only the first

thing to do here. Provided

the call worked, we have to

copy the result to an Int16

array. If the call didn't

work, we call

WSAGetLastError and

return the error as element

0 of the array. If you take a

look at all the errors that

can occur, you see that

none are over 12,000. That

number will fit nicely in an

Int16 (which ranges from -

32,768 to 32,767) so we're

ok with doing this. Wait?

Didn't I just say that

GetLastError was useless?

Yes. But this isn't

GetLastError, it's

WSAGetLastError. They're

two different functions and

the VEE runtime won't be

overwriting this error

value, so it makes sense to

go ahead and have the

wrapper function take care

of getting it for us.

The return value from this call, which hopefully is a pointer to a hostent struct, is fed to

the input of a formula with one purpose: if the call worked, get the resulting array. If it

didn't work, get the error and return it as a single element array. We could use an

If/Then/Else object to test the value and then wire over to separate objects that do the post

processing, but that involves more objects and that means less speed. We're not

concerned about speed here, but why waste time if you don't have to? This single formula

tests the value of phe. If it's anything but 0, then we call another wrapper function,

GetAryI2, with the address of the returned hostent struct and the number of bytes of data

to copy. Naturally, since we want to do this so that nothing will ever get out of whack, we

use the SIZEOF_HE label. So if the size of the hostent struct ever changes all we have to

do is change it in LoadConstants and everything still works.

If the function did fail, it

returns 0 and in that case,

we call

WSAGetLastError,

convert it's return to an

Int16, and return it in a

single element array. The

GetAryI2 function

(Figure 5) allocates an

Int16 array large enough

to contain the number of

bytes being copied

(using asInt16 with

ramp) and calls

RtlMoveMemory to copy

the "array" to the VEE

variable that we just

generated.. Remember,

the "phe" input to the

function will actually be

a pointer to a hostent

struct. The

RtlMoveMemory spoof

takes an Int16 pointer

(array) and an int that

points to the source

(which the

gethostbyname function

got for us). So far we've

been spoofing the 'nads

off VEE and it hasn't

complained one bit. And

everything has actually

worked too. Really! We'll

see it after some more

very impressive spoofing.

Figure 5: The GetAryI2 Wrapper Function

The gethostbyaddr user function

(Figure 6) is quite different

looking. There's some prep work to

do, in addition to all the same post-

processing as gethostbyname. The

main thing is that the string

Figure 6: The gethostbyaddr Wrapper
Function.

containing the dotted internet

address has to be converted to an

in_addr struct. The inet_addr

function accomplishes this, and

returns a pointer to the converted

structure. Then we tell

gethostbyaddr that the address is 4

bytes long and that it's an

AF_INET type address and make

the call. The post processing is the

same as for gethostbyname.

Interpreting The Returned hostent

Structure.

Ok, here it is. This, finally, is the main point of this example.

The LookupHost User

Function (Figure 7)

waits for input in the

"Host Name" text box.

When OK is clicked,

the name goes to the

"Get hostent" Formula.

The first thing we do is

attempt to get the

hostent structure

corresponding to the

name. If that operation

works, then the

returned array will

have more than one

value in it so we check

to make sure this is so.

Meanwhile, a function

local variable, he, has

been set to the returned

value (which we hope

is a pointer to a hostent

structure). The test is

done with totSize

testing the size of the

returned array, and the

return value of the

formula is True if we

Figure 7: The LookupHost Function.

got a valid hostent

struct. If not, the return

value of the formula is

False.

If the returned value is valid, next we check is to make sure that the address type (in

member h_addrtype) returned is AF_INET. The value of this constant is 2. We're only

interested in getting IP addresses. If we get an identifier for a different network then we

don't really want to know about it. And you know what? This version of the function

doesn't say anything about that! That's not real nice, so why don't you go ahead and

modify it so that if we get a different Address Family it says so. One thing about the

structure of the If/Then/Else objects that are used to check these conditions is that you

might be tempted to combine both checks in one If/Then/Else, but you can't do that. First,

we have to know that the h_addrtype member exists before we try to access it. If the

returned hostent is not valid, then we report the error number in the "Host IP" display. I

used a Text Constant here because it's entirely possible that you may want to paste the

returned value into your browser just to confirm that all this works. Using an

Alphanumeric Display precludes copying anything out of it, so I opted for a Text

Constant with a default value control input instead.

Provided we do have a valid hostent structure, next we want to get the IP address of the

host. This is the first entry in the h_addr_list member. We really should check all

addresses returned, but we're not going to. You can figure out how to do so if you want

to. It's a worthwhile exercise. There is often major confusion about the h_addr_list

member though and we have to talk about that.

The type of h_addr_list is char**. That usually means string array but not quite this time.

What we have here is a pointer to a list of pointers that point to a block of bytes, and each

block is h_length bytes long. We are going to assume that this length will always be 4

bytes, and for a while yet it will be. This is called being IPv4 compatible. The new IP

address specification, IPv6, is different. We're using library routines that can only deal

with IPv4, so that's what we're going to use. Each of the four bytes pointed to is one of

the numbers of the IP address. What we have to do is get each one of those bytes, convert

it to a decimal string and stick periods between them. Fortunately there's a function that

does this and it's called inet_ntoa. This function takes a pointer to an "in_addr" structure

and returns a pointer to the converted string IP address. Well, I didn't say anything about

in_addr until now because an in_addr structure is simply four consecutive bytes, each one

denoting one quarter of an IPv4 IP address. And gee, that pointer is in the list pointed to

by h_addr_list. Slick, huh?

So all we have to do is get the first pointer pointed to by h_addr_list, pass it to inet_ntoa

and then get the string that the returned pointer points to and we're all set! As you might

imagine, there are intermediate steps so it's not really that straightforward.

Dealing With A Pointer To A Pointer List

The big challenge here is dereferencing all these pointers correctly. The member,

h_addr_list, is a pointer to a list of pointers, each 4 bytes long. Our first problem is to get

the pointer (a 4 byte quantity) from the Int16 array that is substituting for the hostent

structure.

Figure 7: GetPtrFromInt16Ary

There's a User Function called

GetPtrFromInt16Ary (Figure 7) that does this. As

parameters, it takes the array and the index of the

member that you want to get. Since this all runs on

Intel machines, the pointer will be stored in LSB

MSB order, so basically we get the number at the

index of the pointer member and add it to the

number at the index of the pointer member + 1

multiplied by 65536 (or 2^16). The result is the

address of the first of the pointers to IP addresses

(which are each a block of 4 bytes).

Figure 8: WORD.

Wait though. This is one of those situations where

you can't ignore the fact that VEE doesn't do

unsigned arithmetic. It's entirely possible the the

most significant bit of the least significant word of

any of these addresses is set, so we must convert at

least this number to an unsigned Int32 before we add

it to anything. This is handled by the User Function

WORD (Figure 8). It's name is somewhat deceptive.

If the input number is negative, it adds 65536 to

make it positive. If the input is not negative, no

adjustment is necessary. The last thing it does is

explicitly convert the 16-bit value to a 32-bit value.

This is solely to provide for consistent output. If the

number is negative when it comes in, then it will be

an Int32 when it leaves. If it's not negative however,

the result would be an Int16 unless explicitly

converted to Int32.

So we've called GetPtrFromInt16Ary and we

now have a pointer that points to a list of

pointers. It seems logical that since this

pointer we have points to a list of pointers,

Figure 9: GetPtrFromPtrList.

we should construct a User Function that is

capable of returning any one of the pointers

in the list. This is the job of the User

Function GetPtrFromPtrList (Figure 9). As

input parameters, it takes the pointer to the

pointer list and the number of the pointer that

you want to get. 0 is the first, 1 is the second

and so on. This is a hard ride, so hang on.

First we get the address of the list by calling

GetInt32 with the pointer to the pointer list.

The return from GetInt32 is a pointer to the

first pointer in the pointer list. Next, we add

to that to four multiplied by the desired

pointer offset (because each pointer is 4

bytes) to get the address of that pointer

(a.k.a. the pointer to the pointer we

ultimately want). Now all we have to do is

call GetInt32 again with that address and the

result is the address of the four bytes that

describe the network IPv4 IP address. Wow.

Read that as many times as necessary.

Double dereferencing is hard to explain but

once you see how it works in memory it

comes naturally and you almost never think

about it.

At the end of all these machinations we have the desired address of the four bytes we're

looking for. The reason this all looks so goobered up is because all this came from a very

long time ago when Stupid C Tricks were highly valued. Well, I guess I really shouldn't

say that. It's all very difficult to explain, but this actually is an excellent way to do this. If

this were being written now-a-days, h_addr_list would be called ppcAdrList and it would

be typed BYTE**. Checking with the Type Table, we see that BYTE is just a synonym

for "unsigned char" so it actually works out to almost the same thing, but it looks

confusing here. If you want to see some real Stupid C Tricks in action, here is the

function that I use to convert plus signs to spaces in the search page CGI client. I

absolutely refuse to write anything more cryptic than this:

VOID DecodeSpaces(PTSTR p)

{

 TCHAR c;

 if(p) { <-- Stupid C Trick

 while(c = *p) { <-- Stupid C Trick

 if(c == '+') *p = ' ';

 p++;

 }

 }

}

Shawn Fessenden

Copyright © 2005 [Black Cat Software]. All rights reserved.

Revised:

