CRC
Calculate Cyclic Redundancy Check

Format

opcode tbl.ab, inicrc.rl, strlen.rw, stream.ab

Condition Codes

	N|| <--- R0 LSS 0;
	

	Z|| <--- R0 EQL 0;
	

	V|| <--- 0;
	

	C|| <--- 0;
	

Exceptions

None.

Opcodes

	0B
	CRC
	Calculate Cyclic Redundancy Check

Description

The CRC of the data stream described by the string descriptor is calculated. The initial CRC is given by inicrc; it is normally zero or -1, unless the CRC is calculated in several steps. The result is left in R0. If the polynomial is less than order 32, the result must be extracted from the low-order bits of R0. The CRC polynomial is expressed by the contents of the 16-longword table. See the notes for the calculation of the table.

Notes

1. After execution:

	R0 =
	Result of CRC

	R1 =
	0

	R2 =
	0

	R3 =
	Address 1 byte beyond the end of the source string

2. If the data stream is not a multiple of 8 bits, it must be right-adjusted with leading zero fill.
3. If the CRC polynomial is less than order 32, the result must be extracted from the low-order bits of R0.

4. Use the following algorithm to calculate the CRC table given a polynomial expressed:

	polyn<n> <- {coefficient of x**{order -1-n}}

5.
The following routine is system library routine LIB$CRC_TABLE (poly.r1, table.ab). The table is the location of the 64-byte (16-longword) table into which the result will be written.

	 SUBROUTINE LIB$CRC_TABLE (POLY, TABLE)

 INTEGER*4 POLY, TABLE(0:15), TMP, X

 DO 190 INDEX = 0, 15

 TMP = INDEX

 DO 150 I = 1, 4

 X = TMP .AND. 1

 TMP = ISHFT(TMP,-1) !logical shift right one bit

 IF (X .EQ. 1) TMP = TMP .XOR. POLY

150 CONTINUE

 TABLE(INDEX) = TMP

190 CONTINUE

 RETURN

 END

6. The following are descriptions of some commonly used CRC polynomials:

	CRC-16 (used in DDCMP and Bisync)

 polynomial: x^16 + x^15 + x^2 + 1

 poly: 120001 (octal)

 initialize: 0

 result: R0<15:0>

CCITT (used in ADCCP, HDLC, SDLC)

 polynomial: x^16 + x^12 + x^5 + 1

 poly: 102010 (octal)

 initialize: -1<15:0>

 result: one's complement of R0<15:0>

AUTODIN-II

 polynomial: x^32+x^26+x^23+x^22+x^16+x^12

 +x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1

 poly: EDB88320 (hex)

 initialize: -1<31:0>

 result: one's complement of R0<31:0>

7. The CRC instruction produces an UNPREDICTABLE result unless the table is well-formed, like the one produced in note 3. Note that for any well-formed table, entry[0] is always zero and entry[8] is always the polynomial expressed as in note 3. The operation can be implemented using shifts of 1, 2, or 4 bits at a time, as follows:

	Shift (s)
	Steps per Byte (limit)
	Table Index
	Table Index Multiplier (i)
	Use Table Entries

	1
	8
	tmp3<0>
	8
	[0]=0,[8]

	2
	4
	tmp3<1:0>
	4
	[0]=0,[4],[8],[12]

	4
	2
	tmp3<3:0>
	1
	all

8. If the stream has zero length, R0 receives the initial CRC.
