[image: image1.png]Agilent Technologies
Innovating the HP Way

Advanced AGILENT VEE

H7218A+300 Version 6.0 2000

Agilent VEE Pro Version 6

Introduction

This four day advanced Agilent VEE course illustrates how to implement some of the more sophisticated aspects of VEE programming and move beyond simple instrument control. The first two days of the course focus on advanced control of instrument test systems. Agilent VEE event driven objects that respond to asynchronous interrupts from test instrumentation systems are introduced so that fast, efficient programs can be developed. Issues relating to program design, layout and organisation are explored on day two, helping delegates develop more efficient and compact modules. Program functionality and efficiency can be increased through the use of custom, compiled programs. Delegates will learn how to write and integrate such programs into Agilent VEE using MS Visual C/C++. The course then examines how ActiveX technology (automation and control) can be exploited within Agilent VEE. In addition, the use of the VEE Automation Server is discussed and how VEE functionality can be accessed from other programming platforms via the ActiveX interface. Accessing and using the MATLAB engine is presented on Day 4 and several examples are used to illustrate signal processing and graphing capabilities of this powerful feature. The course concludes with how VEE may be used with remote instruments both via LAN servers and socket processes.

Course attendees are expected to be proficient with the use of UserFunctions, understand threads and data propagation, be proficient in the use of file and string I/O objects, understand record and dataset concepts and be able to create operator interfaces. These prerequisites are generally satisfied if the attendee has either; attended the Introduction to Agilert VEE Course or had recent experience with VEE program development using the majority of the VEE objects. Note, this course is also applicable to users of HP VEE.

Course Objectives

· Development of VEE programs beyond simple instrument control

· Instrument control over local area networks

· Design of efficient and well-structured VEE programmes

· Integration of C/C++ compiled programmes within the VEE environment

· Expansion of VEE capabilities with the use of ActiveX technology

· Introduce and use the MATLAB script engine.

Course Outline

VEE Basics Review (Day 1)

This first session reviews the key features of Agilent VEE program development to ensure all attendees have a common knowledge base.

· Review of VEE terminology: containers, ping, threads

· Review of VEE fundamentals: object operation, propagation rules, tools

· Review of the four VEE instrument control techniques

· User objects and user functions

· Panel views

· Overview of records and datasets

Advanced Instrument Control (Day 1)
This session examines how instrument I/O works and how the programmatic I/O properties can solve binding issues.

· Advantages & disadvantages of using Panel, Component and VXI p&p Drivers

· How Direct I/O works

· IEEE 488.2 and SCPI

· The vee.io file and solving binding issues

· Programmatic I/O properties

· LAB 1:
Experimenting with control inputs and re-writing the vee.io file

· LAB 2:
Instrument address scanning

Interrupts (Day 1)
Interrupts are seldom used in instrument control programs, due to the level of specialised knowledge that is required. However, interrupts can lead to large improvements in program performance. This session explains the principles behind instrument interrupts and how they can be accessed from within Agilent VEE Pro. The SCPI status model for the 34401A DMM is presented and analyzed. The concepts presented in this session can be readily extended to other instruments supporting interrupts.

· Interface operations (CLEAR, TRIGGER, LOCK etc)

· Interface event objects: SRQ, SPOLL

· Understanding interrupts

· Using interrupts in Agilent VEE Pro

· 34401A DMM SCPI status model

· Enabling event registers

· Service request (SRQ) for single and multiple instruments

· Performance enhancement

· LAB 1:
Working with interrupts

· LAB 2:
Using the OPC feature

Creating an I/O Library (Day 2)
In certain cases, instrument drivers are not available for an instrument or are unsuitable due to performance constraints. This session examines the issues associated with creating a library of I/O functions to implement a high performance driver for an instrument. In addition to top-down design considerations, error handling, state tracking and multiple instances of an instrument are addressed.

· Reasons to create an I/O library

· Design considerations, re-use and granularity issues

· Error handling strategies: communication errors, instrument programming errors

· Tracking of the instrument state

· Coping with multiple instances of an instrument

· Creating the custom instrument driver as a library

· Use of debug flags

· LAB 1:
Create a library of UserFunctions for 34401A DMM

· LAB 2:
Enhancing voltage measurements with the use of interrupts

· LAB 3:
Adding additional functionality to the driver library

Programming Practices (Day 2)
Whilst simple instrument control can meet many of the requirements encountered in a development lab environment, Agilent VEE can also be used effectively to implement large scale test systems. This session looks at how Agilent VEE can be used as a tool for top down program design. In addition, a great deal of attention is paid to the development of effective user interfaces, including modal and non-modal issues, the use of the built-in dialog objects and how to develop custom dialogs. Program error handling strategies, code optimisation and cross-platform compatibility issues are also discussed.

· Using Agilent VEE for top down design: work breakdown structure (WBS), flow charting and determining interface requirements

· User interfaces: Style considerations, Implementation ideas, Pitfalls, Modal/non-modal issues, built in and custom dialogs

· Error handling and trapping errors

· Code optimization

· VEE execution modes and cross platform compatibility issues

· LAB 1:
Creating a WBS and program flow control

· LAB 2:
Building operator interfaces

· LAB 3:
Program optimization using the Profiler

Integrating C Language Programs (Day 2/3)
Agilent VEE has the capability to access compiled C/C++ functions, thus allowing the performance of critical functions to be optimised and leverage existing code. This session shows how to develop VEE programs that access compiled functions, error handling issues and how parameters are passed to and returned from the function. Simple code development using MS Visual C/C++ is undertaken in the lab sessions to reinforce the concepts.

· Introduction

· Importing libraries of compiled functions (.dlls)

· Error handling a library import

· Error handling a function call

· Issues associated with developing compiled functions

· Passing parameters to and returning from the compiled function (scalar and array inputs)

· Debugging process: debug from within the C development environment

· Memory allocation and sharing techniques

· LAB 1:
Using compiled functions in VEE

· LAB 2:
Developing a compiled function for VEE

· LAB 3:
Creating and debugging compiled functions for VEE

Active X (Day 3)
The functionality of Agilent VEE can be increased though the use of ActiveX technology. This final session examines how VEE can be configured to act as an ActiveX client for software packages supporting ActiveX automation. In addition, the use of ActiveX controls within the VEE environment is presented.
· Explanation of ActiveX technology and examples

· Case study: ActiveX automation of MS Excel 97

· MS Excel Object model

· Objects, classes and notation

· Properties, methods and events

· Configuring VEE for ActiveX automation

· Creating, getting and deleting automation objects

· Callable VEE (the VEE automation server)

· Introduction to ActiveX controls

· Configuring AGILENT VEE to use ActiveX controls

· Creating event handlers

· Licensing and installation issues

· LAB 1:
ActiveX Familiarisation using MS Excel97

· LAB 2:
Using ActiveX controls within VEE programs

MATLAB Script (Day 4)
The functionality of Agilent VEE can be increased though the bult-in MATLAB script engine. This powerful new feature has increased mathematical and signal processing functionality and enhanced the graphing capabilities associated with VEE. In this session, delegates are shown how to access the MATLAB script engine, typical capabilities and data conversion issues.

· Explanation of MATLAB script

· MATLAB data types, shapes and data type conversion issues

· MATLAB/VEE arrays

· MATLAB processing: matrix operations

· Handling MATLAB variables

· MATLAB graphics

LAB 7-1: Interpolation of measurement data using MATLAB functionality

LAB 7-2: Generation of 3-D graphics to display measurement data using MATLAB

Networks And VEE (Day 4)
Agilent VEE includes network support so that instruments may be controlled over a LAN. This session shows how to configure instruments for remote operation via the LAN, programming considerations and how UserFunctions on another machine may be called remotely over the LAN

· Configuring LAN clients

· Configuring VEE for instrument access via a network

· Handling multiple VEE users on networked equipment

· Remote UserFunctions: configuration, accessing, loading and calling

· Interprocess communications: To/From socket

· Web monitoring: accessing the built-in VEE web-server

· LAB 1:
Controlling instruments over the LAN

· LAB 2:
Calling remote user functions

1 of 4

