
HP VEE: A Dataflow Architecture
HP VEE is an object-oriented implementation. Its architecture strictly
separates views from the underlying models. There are two types of
models: data models and device models. Special devices allow users to
construct composite devices.

by Douglas C. Beethe

The HP VEE dataflow programming environment was devel
oped that the specific objective of providing an interface that
would allow users to express a problem in block diagram
form on the screen and then execute it directly. Dataflow
programming was chosen because of its direct correlation
to the block diagram models we wished to emulate.

Previous efforts in industry and academia related to data
flow programming had yielded some interesting results, but
general applicability had not yet been established. Thus our
early research efforts were directed primarily at the question
of whether we could solve some of the problems that had
plagued earlier attempts and prove general applicability.

The design and construction of HP VEE used object-oriented
technology from the beginning. We had enough experience
with procedural coding technology to realize that a project
like HP VEE would be too complex to achieve with proce
dural technology. The architecture that evolved from this
development is the subject of this article. The design of vari
ous elements of the underlying HP VEE architecture will be
discussed as will the manner in which they work together to
produce the executable block diagram as a dataflow model.

The Model- View Paradigm
One of the characteristics of the HP VEE architecture that is
common to most object-oriented implementations is the
strict separation between models and views. Most users are
familiar with the world of views, and indeed often make no
distinction between the view of an object and its underlying
model.

From a functional point of view the model is the essence of
an object, incorporating both the data (state variables) that
gives the object its uniqueness, and the algorithms that oper
ate on that data. In HP VEE, by definition, the model oper
ates independently of the view, and does not even know of
the existence of any graphical renderings of itself , except as
anonymous dependents that are alerted when the state of
the model changes (see Fig. 1).

There are many examples of applications that have views
possessing no underlying functional models. Consider the
various draw and paint programs, which allow the user to
create very sophisticated views that, once created, are inca
pable of performing any function other than displaying
themselves. Likewise, there are numerous examples of ap
plications that support very sophisticated functional models
but lack any ability to display a view of those models, be it
for passive display of state or for active control.

Most of the scientific visualization software appearing today
is used to create views of the data output of functional mod
els that have little or no display capability. Most of the views
that are seen by the HP VEE user are actually graphical ren
derings of the states of underlying models. In the interactive
mode, access to the models is by means of these views,
which communicate with their respective models to change
their the initiate execution, and so forth. For example, the
view of the ForCount iterator has a field in which the user can
enter the number of times the iterator should fire at run
time. Upon entry, this value is sent to the underlying device
model, where it is kept as a state variable. When this state
variable is changed, the model sends out a signal to anyone
registered as a dependent (e.g., the view) that its state has
changed, and the view then queries the model to determine
the appropriate state information and display it accordingly
(see Fig. 2).

This strict separation between model and view might seem
excessive at first, but it results in a partitioning that makes
the task of generating the two different kinds of code (very
different kinds of code!) much easier from the standpoint of
initial development, portability, and long-term code mainte
nance. It also eases the job of dealing with noninteractive
operations in which HP VEE is running without any views at
all, either by itself or as the slave of another application.
And finally, this separation eases the task of developing ap
plications that must operate in a distributed environment
where the models live in one process while the views are

State Variables

â€¢ Array Size

â€¢ Array Data

Operations

â€¢ Set/Get Array Size
â€¢ Set/Get Value at <index>

â€¢ Sort Array Values
â€¢ Get Mm/Max Value

Fig. 1. Two different views of the same underlying model.

84 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Edi t Set Count (l
Tel l Al l Dependents (Views)

that Count Has Changed

Display: Get Count
Value as Formatted '
Text (for Display!

ForCount Model
State Variables

Operations

â€¢â€¢ Set Count <value>
â€¢ Get Count Text

Fig. time. Interaction of a view and the underlying model at edit time.

displayed by another process, possibly on an entirely differ
ent system. This last aspect is becoming more and more
important in an application world that is taking increasing
advantage of networked systems.

HP VEE itself is composed of two kinds of models. The first
is the device model, which acts like a black box having in
puts, outputs, and some operational characteristic that
transforms the data at the inputs to the result at the outputs.
The second is the data model (container), which handles the
transport of information along the data lines, which inter
connect devices. The data model also provides mathemati
cal functions, which can be invoked to operate on the data,
and formatting and deformatting functions, which change
the representation of the data when required for display or
for communication with some other application that requires
the data in a different form. Both types of models will be
discussed in some detail.

Data Models
The fundamental abstraction for information in HP VEE is
the container object (Fig. 3). Containers can hold data for
any of the supported data types: text, enumerated, integer,
real, complex, polar complex, coordinate, waveform, spec
trum, and record. Both scalars (zero dimensions) and arrays
from one to ten dimensions are supported. In addition, the
dimensions of array containers can be mapped in either lin
ear or logarithmic fashion from a minimum value at the first
cell of a dimension to a maximum value at the last cell of
that dimension. This allows an array of values to have some
physical or logical relationship associated with the data. For
example, a one-dimensional array of eleven measurements

Container Model

State Variables

â€¢ Name
â€¢ Data Type
â€¢ Number of Dimensions: 0 10.

â€¢ Dimension Sizes

â€¢ Dimension Mappings [from, through]

Operations

â€¢ Configuration
â€¢ Value Assignment/Access
â€¢ Type Conversion

â€¢ Mathematics
â€¢ Text Generation

Fig. 3. Container model attributes.

Supported Data Types
â€¢ Text
â€¢ Enum
â€¢ Integer, Real, Time
â€¢ Complex, Polar Complex

â€¢ Coord, Waveform, Spectrum
â€¢ Record

can be mapped from 0 to 32 cm to indicate the physical rela
tionship of the values in each position in the array to some
real-world phenomenon. The first value would be at 0 cm,
the next at 3.2 cm. the next at 6.4 cm. and so on.

One of the properties of containers that is used extensively
in HP YEE is the knowledge of how to transform to another
type on demand. The automatic form of this transform is
allowed only for transforms that incur no loss of informa
tion. This has the effect of allowing most promotions, but
disallows any automatic demotions. For example, integer
can be promoted to real, and real to complex or polar com
plex, but complex cannot be demoted automatically to real.
To do so would likely cause the loss of information that
would not reappear in the promotion of that real value back
to complex. An interesting special case of this is the revers
ible transformation between waveform and spectrum (time
and frequency domains). While these data types seem to
have the same irreversible relationship to each other as the
real and complex types just discussed, it is a well-known
fact that a reversible transformation exists between these
two special types by means of the Fourier transform. For
example, a 256-point waveform is transformed to a 129-point
spectrum (ignoring the symmetrical values with negative
frequency), and the same spectrum regenerates the original
256-point waveform by means of the inverse Fourier
transformation (Fig. 4).

Another powerful property of containers is their inherent
knowledge of data structure as it applies to mathematical
operations. At first glance, operations such as addition and
subtraction seem relatively simple, but only from the stand
point of two scalar operands. For other structural combina
tions (scalar + array, array + scalar, or array + array) the task
requires some form of iteration in typical third-generation
languages (3GLs) like C that has always been the responsi
bility of the user-programmer. Containers encapsulate these
well-understood rules so that the user deals with, say, A and
B simply as variables independent of structure. When any of
the nontrivial combinations is encountered, the containers
decide among themselves if there is an appropriate struc
tural match (scalar with any array, or array with conforma!
array) and execute the appropriate operations to generate
the result.

Other more complicated operations with more robust con
straints (e.g., matrix multiplication) are handled just as easily
since the appropriate structural rules are well-understood
and easily encapsulated in the containers. These properties
aid the user in two ways. First, the user can express power
ful mathematical relationships either in fields that accept

Waveform Display

_n_n_n
0 m s 2 0 m s

Fig. 4. Automatic transformation of a time-domain waveform
(e.g., 256 real values, 0 to 20 ms) to a frequency-domain spectrum
(129 complex values, 0 to 6400 Hz).

October 1992 Hewlett-Packard Journal 85
© Copr. 1949-1998 Hewlett-Packard Co.

Device Mode l

State Variables

â€¢ Name and Description

â€¢ Input/Output Configuration

â€¢ Device-Specific Properties

Operations

â€¢ Add/Delete Inputs and Outputs
â€¢ Run-Time Validation
â€¢ Device-Specific Execution

â€¢ Propagation

Fig. 5. Attributes of a simple device model.

constant expressions or in any of several delayed-evaluation
fields the Formula, If/Then, ...) without having to deal with the
cumbersome iteration syntax of 3GL programming. This by
itself has the pleasant side effect of eliminating much if not
most of the iteration in many applications, compared to their
3GL equivalents. Second, the interconnection of the various
objects that make up a model in HP VEE is much simpler
when any of the inputs is constrained to a specific data type.
Since the containers know how to respond to most requests
for type change, the user is freed from the cumbersome task
of explicitly changing (casting) the original type to the re
quired type. For example, the inputs to a spectral display
that requires a spectrum input will not disallow connection
to a waveform (time-series data) because the output supply
ing the waveform will transform it to a spectrum on demand
at run time. This same capability is used during the evalua
tion of any mathematical expression, thus allowing the user
to intermix types of operands without explicit type casting.

Device Models
Fig. 5 shows the attributes of a simple device model. Each
device can have its own inputs and outputs. Many have user-
controllable parameters that are accessed as constants
through the panel view of the device or as optionally added
inputs. In general, the device will execute only when each of
the data inputs has been given new data (including nil data).
Thus the data inputs to any given device define a system of
constraints that control when that device can execute. This
turns out to be quite natural for most users since the data
relationships that are depicted by the data lines that inter
connect devices generally map directly from the block dia
gram of the system in question, and often are the only form
of constraint required for the successful execution of a
model.

There are numerous cases, however, where an execution
sequence must be specified when no such data dependen
cies exist. Such cases typically fall into two categories:
those where there is some external side effect to consider
(communications with the real world outside my process)
and those that deal explicitly with real time. To deal with
this situation we developed the sequence input and output
for each device (on the top and bottom of the device, re
spectively), as shown in Fig. 6. The sequence output be
haves like any other data output by firing after successful
execution of the device except that the signal that is propa
gated to the next device is a always a nil signal. Likewise,
the sequence input behaves like any other data input with
one exception. When connected it must be updated (any data
will do, even nil) along with any other data inputs before the

Sequence Output
Sequence Input

Fig. 6. While B and C both need the data from A, the sequence
connection between B and C will cause C to execute after B.

device will be allowed to execute, but unlike other data in
puts, connection is not required. Thus any time it is required
that A must execute before B where no other data dependen
cies exist between the two devices, it is sufficient to connect
the sequence output of A to the sequence input of B.

For users who have already been introduced to program
ming in third-generation languages such as Pascal, C, or
BASIC this can require a paradigm shift. Experience with
such users has shown that they are often preoccupied with
sequencing (since 3GLs almost universally use control-flow
paradigms) and have a difficult time at first believing that
the data constraints represented by the lines that intercon
nect the devices are sufficient to define a robust sequence of
execution. It is only after using the system for a time that
they are weaned away from this need to sequence each and
every device explicitly and begin to feel comfortable with
the dataflow paradigm.

Contexts
Several types of devices are supplied as primitives with HP
VEE, including those used for flow control, data entry and
display, general data management, mathematical expressions,
device, file, and interprocess I/O, virtual signal sources, and
others. There is also a mechanism that allows users to con
struct special devices with their own panels and a specific
functional capability. This device is known as a UserObject
and is essentially a graphical subprogram.

UserObjects (Fig. 7) encapsulate networks of other devices
(including other UserObjects) and have their own input/output
pins and custom panel displays. Viewed as a single collec
tive object with its own panel, each UserObject operates un
der the same rules as any primitive device: all data inputs
must be updated before the UserObject will execute its inter
nal subnet. Each UserObject will contain one or more threads,
which in in parallel at run time. In addition, threads in
subcontexts (hierarchically nested contexts) may well be

Fig. into a UserObject encapsulates a subnetwork of other objects into a
single larger object with its own inputs and outputs.

86 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

running in parallel with their host threads in their parent
contexts.

UserObjects can be secured such that the user of the de\ice
can access only the panel and not the internals. In this form
the UserObject is almost indistinguishable from any primitive
device. This capability allows developers to create arbitrary
devices that can be archived in a libran,- for later access by
users, who can treat these devices as true primitives in their
application.

Threads
Devices that are connected to each other within the same
context form a single thread of execution. One of the in
herent advantages of dataflow programming is the ability to
support multiple independent threads of execution with
relative ease (see Fig. 8). This becomes particularly useful
when interacting with the rest of the world, since indepen
dent monitoring operations ("Has that message arrived
yet?") can proceed in parallel with related operations. In
typical 3GLs such operations require elaborate schemes for
enabling interrupts and related interrupt service routines.
Most who have dealt with such code as inline text can attest
to the difficulty of maintaining that code because of the diffi
culty of easily recreating the relationship between parallel
operations once the code has been written.

Several devices were developed especially for thread-related
activities. One of these is the Exit Thread device, which termi
nates all execution for devices on that same thread when
encountered. Another is the Exit UserObject device, which ter
minates all execution on all threads within the context in
which it is encountered.

Certain devices have the ability to elevate a thread's priority
above the base level to guarantee that thread all execution
cycles until completion. One such device is the Wait For SRQ
device (SRQ = service request), which watches a specified
hardware I/O bus in anticipation of a service request. If and
when such a request is detected, this device automatically
elevates the priority of the subthread attached to its output
so that all devices connected to that subthread will execute
before devices on any other thread (within this context or
any other context) until that subthread completes.

Virtual Context

Fig. 8. Any context (e.g., a UserObject) can contain one or more
threads, each of which executes independently of all others within
that context.

Fig. 9. Objects A and B and the XV display will execute 10 times
each at side) time as the iterator fires its only data output (right side)
10 times before firing its sequence output (bottom). The data from
the output of X is reused for the last 9 of the 10 executions of A
(active data rule).

Although it is not specifically thread related, a similar capa
bility exists for exception service. At the time an exception
is raised (e.g., an error occurs), all other devices on all other
threads are suspended until an exception handler is found
(discussed later).

Propagation: Flow of Execution
From an external point of view, the determination of which
devices can execute is a simple problem of finding out
which devices have had all of their inputs updated. From an
internal point of view, the problem is a bit more difficult. To
prevent infinite feedback the general rule for dataflow pro
grams is that each device can execute only once per activa
tion of the context in which the device resides. On the other
hand, it was felt from our earliest prototypes that having
iteration occur within some subgroup of devices in a con
text was superior to dropping down into a subcontext multi
ple times to accomplish the same thing, especially for
nested iteration.

Thus we were faced with the problem of allowing groups of
devices to execute multiple times within a single activation
of a context. Identification of these devices could only occur
at run time as they appeared on the subthread hosted by the
primary output of an iterator. To deal with this we devel
oped the virtual context, which is defined not by the user
but by the system (see Fig. 9). At run time, the devices that
are executed on the subthread hosted by an iterator are re
membered. Then, just before the next firing of the iterator
(since an iterator generally fires its output more than once
for each execution of that iterator), the devices in this
virtual context are selectively deactivated separately from
the other devices in the context. This allows them to be re-
executed when the iterator fires again by the normal rules of
propagation.

One other side effect of such iteration is that any data being
supplied to a device within the virtual context by a device
that is outside that virtual context is going to be delivered
only once to the device within the virtual context. Thus new
data is supplied to the inputs as required on the first itera
tion, but on all subsequent iterations no new data arrives.
One could solve this by using a special intermediary
Sample&Hold device, but a simple extension to the rules of
propagation turned out to be much easier. The extension,

October 1992 Hewlett-Packard Journal 87

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. output The special error output will fire in lieu of the data output if
any error is encountered while evaluating the formula. The value
posted at the error output is the error code number. This allows the
user to decide how to handle the situation.

known as the "active data rule," says that data from any ac
tive but of a device that is currently active (executed, but
not yet deactivated) can be reused. This has essentially the
same effect as the Sample&Hold but is much less error-prone.

The goal in all of this is to create a scheme of execution that
does not require the user to specify a sequence of execution
with explicit device-by-device triggering as is common in the
world of digital design. In addition, we wanted execution to
proceed as if the entire network were running on a multipro
cessor architecture with true parallelism. On a typical uni
processor machine only one primitive device is actually
drawing cycles from the processor at any one instant, but
the overall effect is as if all devices both within the same con
text level and across other levels of the network hierarchy
are running in parallel.

Asynchronous Operations
For some devices we found a need to invoke certain opera
tions programmatically that were peripheral to the general
operation of the device, such as AutoScale or Clear for an XY
graph. While the primary function of the graph is to con
struct a graph from the data present at the synchronous data
inputs, operations such as AutoScale could happen at any
time. A different class of inputs that were not incorporated
into the general scheme of propagation was needed to initi
ate these asynchronous operations. Thus we developed the
control input, which when updated at run time will perform
its assigned function within the associated device regardless
of the state of any other input on the device.

Exception Management
Exception (error) management could have been approached
from a number of different points of view, but it proved most
effective to implement a strategy based on an optional out
put that fires if and only if an untrapped exception is raised
from within the scope of that device (Fig. 10). For primitive
devices this allows the user to trap common errors such as
division by zero and deal with possibly errant input data
accordingly. In each case a number (an error code) is fired
from the error pin and can be used by the ensuing devices to
determine just which error has occurred. If the decision is
not to handle the error locally, the error can be propagated
upward with the Escape device, either as the same error that
could not be handled locally or as a new user-defined code
and message text, which may be more informative to the
handler that eventually owns the exception.

Hierarchical exception handling is possible because an error
pin can be added to any context object (UserObject) to trap
errors that have occurred within its scope and that have not
been serviced by any other interior handler. If the exception
pops all the way to the root context without being serviced,
it generates a dialog box informing the user of the condition
and stops execution of the model. To enable the user to lo
cate the exception source, the entire chain of nested devices
is highlighted with a red outline from the root context down
to the primitive device that last raised the exception.

Acknowledgments
Much of the conceptual framework for HP VEE in the early
stages came from lengthy discussions with John Uebbing at
HP Labs in Palo Alto. His insights and questions contributed
significantly to many elements of the underlying structure
which eventually matured into the HP VEE product. John's
vision and imagination were invaluable. I would also like to
thank several members of the design and test teams whose
continued feedback concerning the functional aspects of the
product proved equally invaluable: Sue Wolber, Randy Bailey,
Ken Colasuonno, Bill Heinzman, John Friemen, and Jerry
Schneider. Finally, I would like to thank David Palermo who
in his position as lab manager provided the resources and
direction to see this project make it from the first conceptual
sketches to the real world. No project of this nature can
succeed without such a sponsor.

88 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

