
HP VEE: A Dataflow Architecture 
HP VEE is an object-oriented implementation. Its architecture strictly 
separates views from the underlying models. There are two types of 
models: data models and device models. Special devices allow users to 
construct composite devices. 

by Douglas C. Beethe 

The HP VEE dataflow programming environment was devel 
oped that the specific objective of providing an interface that 
would allow users to express a problem in block diagram 
form on the screen and then execute it directly. Dataflow 
programming was chosen because of its direct correlation 
to the block diagram models we wished to emulate. 

Previous efforts in industry and academia related to data 
flow programming had yielded some interesting results, but 
general applicability had not yet been established. Thus our 
early research efforts were directed primarily at the question 
of whether we could solve some of the problems that had 
plagued earlier attempts and prove general applicability. 

The design and construction of HP VEE used object-oriented 
technology from the beginning. We had enough experience 
with procedural coding technology to realize that a project 
like HP VEE would be too complex to achieve with proce 
dural technology. The architecture that evolved from this 
development is the subject of this article. The design of vari 
ous elements of the underlying HP VEE architecture will be 
discussed as will the manner in which they work together to 
produce the executable block diagram as a dataflow model. 

The Model- View Paradigm 
One of the characteristics of the HP VEE architecture that is 
common to most object-oriented implementations is the 
strict separation between models and views. Most users are 
familiar with the world of views, and indeed often make no 
distinction between the view of an object and its underlying 
model. 

From a functional point of view the model is the essence of 
an object, incorporating both the data (state variables) that 
gives the object its uniqueness, and the algorithms that oper 
ate on that data. In HP VEE, by definition, the model oper 
ates independently of the view, and does not even know of 
the existence of any graphical renderings of itself , except as 
anonymous dependents that are alerted when the state of 
the model changes (see Fig. 1). 

There are many examples of applications that have views 
possessing no underlying functional models. Consider the 
various draw and paint programs, which allow the user to 
create very sophisticated views that, once created, are inca 
pable of performing any function other than displaying 
themselves. Likewise, there are numerous examples of ap 
plications that support very sophisticated functional models 
but lack any ability to display a view of those models, be it 
for passive display of state or for active control. 

Most of the scientific visualization software appearing today 
is used to create views of the data output of functional mod 
els that have little or no display capability. Most of the views 
that are seen by the HP VEE user are actually graphical ren 
derings of the states of underlying models. In the interactive 
mode, access to the models is by means of these views, 
which communicate with their respective models to change 
their the initiate execution, and so forth. For example, the 
view of the ForCount iterator has a field in which the user can 
enter the number of times the iterator should fire at run 
time. Upon entry, this value is sent to the underlying device 
model, where it is kept as a state variable. When this state 
variable is changed, the model sends out a signal to anyone 
registered as a dependent (e.g., the view) that its state has 
changed, and the view then queries the model to determine 
the appropriate state information and display it accordingly 
(see Fig. 2). 

This strict separation between model and view might seem 
excessive at first, but it results in a partitioning that makes 
the task of generating the two different kinds of code (very 
different kinds of code!) much easier from the standpoint of 
initial development, portability, and long-term code mainte 
nance. It also eases the job of dealing with noninteractive 
operations in which HP VEE is running without any views at 
all, either by itself or as the slave of another application. 
And finally, this separation eases the task of developing ap 
plications that must operate in a distributed environment 
where the models live in one process while the views are 

State Variables 

â€¢ Array Size 

â€¢ Array Data 

Operations 

â€¢ Set/Get Array Size 
â€¢ Set/Get Value at <index> 

â€¢ Sort Array Values 
â€¢ Get Mm/Max Value 

Fig. 1. Two different views of the same underlying model. 
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Display: Get Count 
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Text (for Display! 

ForCount  Model  
State Variables 

Operations 

â€¢â€¢ Set Count <value> 
â€¢ Get Count Text 

Fig. time. Interaction of a view and the underlying model at edit time. 

displayed by another process, possibly on an entirely differ 
ent system. This last aspect is becoming more and more 
important in an application world that is taking increasing 
advantage of networked systems. 

HP VEE itself is composed of two kinds of models. The first 
is the device model, which acts like a black box having in 
puts, outputs, and some operational characteristic that 
transforms the data at the inputs to the result at the outputs. 
The second is the data model (container), which handles the 
transport of information along the data lines, which inter 
connect devices. The data model also provides mathemati 
cal functions, which can be invoked to operate on the data, 
and formatting and deformatting functions, which change 
the representation of the data when required for display or 
for communication with some other application that requires 
the data in a different form. Both types of models will be 
discussed in some detail. 

Data Models 
The fundamental abstraction for information in HP VEE is 
the container object (Fig. 3). Containers can hold data for 
any of the supported data types: text, enumerated, integer, 
real, complex, polar complex, coordinate, waveform, spec 
trum, and record. Both scalars (zero dimensions) and arrays 
from one to ten dimensions are supported. In addition, the 
dimensions of array containers can be mapped in either lin 
ear or logarithmic fashion from a minimum value at the first 
cell of a dimension to a maximum value at the last cell of 
that dimension. This allows an array of values to have some 
physical or logical relationship associated with the data. For 
example, a one-dimensional array of eleven measurements 

Container Model  

State Variables 

â€¢ Name 
â€¢ Data Type 
â€¢ Number of Dimensions: 0 10. 

â€¢ Dimension Sizes 

â€¢ Dimension Mappings [from, through] 

Operations 

â€¢ Configuration 
â€¢ Value Assignment/Access 
â€¢ Type Conversion 

â€¢ Mathematics 
â€¢ Text Generation 

Fig. 3. Container model attributes. 

Supported Data Types 
â€¢ Text 
â€¢ Enum 
â€¢ Integer, Real, Time 
â€¢ Complex, Polar Complex 

â€¢ Coord, Waveform, Spectrum 
â€¢ Record 

can be mapped from 0 to 32 cm to indicate the physical rela 
tionship of the values in each position in the array to some 
real-world phenomenon. The first value would be at 0 cm, 
the next at 3.2 cm. the next at 6.4 cm. and so on. 

One of the properties of containers that is used extensively 
in HP YEE is the knowledge of how to transform to another 
type on demand. The automatic form of this transform is 
allowed only for transforms that incur no loss of informa 
tion. This has the effect of allowing most promotions, but 
disallows any automatic demotions. For example, integer 
can be promoted to real, and real to complex or polar com 
plex, but complex cannot be demoted automatically to real. 
To do so would likely cause the loss of information that 
would not reappear in the promotion of that real value back 
to complex. An interesting special case of this is the revers 
ible transformation between waveform and spectrum (time 
and frequency domains). While these data types seem to 
have the same irreversible relationship to each other as the 
real and complex types just discussed, it is a well-known 
fact that a reversible transformation exists between these 
two special types by means of the Fourier transform. For 
example, a 256-point waveform is transformed to a 129-point 
spectrum (ignoring the symmetrical values with negative 
frequency), and the same spectrum regenerates the original 
256-point waveform by means of the inverse Fourier 
transformation (Fig. 4). 

Another powerful property of containers is their inherent 
knowledge of data structure as it applies to mathematical 
operations. At first glance, operations such as addition and 
subtraction seem relatively simple, but only from the stand 
point of two scalar operands. For other structural combina 
tions (scalar + array, array + scalar, or array + array) the task 
requires some form of iteration in typical third-generation 
languages (3GLs) like C that has always been the responsi 
bility of the user-programmer. Containers encapsulate these 
well-understood rules so that the user deals with, say, A and 
B simply as variables independent of structure. When any of 
the nontrivial combinations is encountered, the containers 
decide among themselves if there is an appropriate struc 
tural match (scalar with any array, or array with conforma! 
array) and execute the appropriate operations to generate 
the result. 

Other more complicated operations with more robust con 
straints (e.g., matrix multiplication) are handled just as easily 
since the appropriate structural rules are well-understood 
and easily encapsulated in the containers. These properties 
aid the user in two ways. First, the user can express power 
ful mathematical relationships either in fields that accept 

Waveform Display 

_n_n_n 
0  m s  2 0  m s  

Fig. 4. Automatic transformation of a time-domain waveform 
(e.g., 256 real values, 0 to 20 ms) to a frequency-domain spectrum 
(129 complex values, 0 to 6400 Hz). 

October 1992 Hewlett-Packard Journal 85 
© Copr. 1949-1998 Hewlett-Packard Co.



Device  Mode l  

State Variables 

â€¢ Name and Description 

â€¢ Input/Output Configuration 

â€¢ Device-Specific Properties 

Operations 

â€¢ Add/Delete Inputs and Outputs 
â€¢ Run-Time Validation 
â€¢ Device-Specific Execution 

â€¢ Propagation 

Fig. 5. Attributes of a simple device model. 

constant expressions or in any of several delayed-evaluation 
fields the Formula, If/Then, ...) without having to deal with the 
cumbersome iteration syntax of 3GL programming. This by 
itself has the pleasant side effect of eliminating much if not 
most of the iteration in many applications, compared to their 
3GL equivalents. Second, the interconnection of the various 
objects that make up a model in HP VEE is much simpler 
when any of the inputs is constrained to a specific data type. 
Since the containers know how to respond to most requests 
for type change, the user is freed from the cumbersome task 
of explicitly changing (casting) the original type to the re 
quired type. For example, the inputs to a spectral display 
that requires a spectrum input will not disallow connection 
to a waveform (time-series data) because the output supply 
ing the waveform will transform it to a spectrum on demand 
at run time. This same capability is used during the evalua 
tion of any mathematical expression, thus allowing the user 
to intermix types of operands without explicit type casting. 

Device Models 
Fig. 5 shows the attributes of a simple device model. Each 
device can have its own inputs and outputs. Many have user- 
controllable parameters that are accessed as constants 
through the panel view of the device or as optionally added 
inputs. In general, the device will execute only when each of 
the data inputs has been given new data (including nil data). 
Thus the data inputs to any given device define a system of 
constraints that control when that device can execute. This 
turns out to be quite natural for most users since the data 
relationships that are depicted by the data lines that inter 
connect devices generally map directly from the block dia 
gram of the system in question, and often are the only form 
of constraint required for the successful execution of a 
model. 

There are numerous cases, however, where an execution 
sequence must be specified when no such data dependen 
cies exist. Such cases typically fall into two categories: 
those where there is some external side effect to consider 
(communications with the real world outside my process) 
and those that deal explicitly with real time. To deal with 
this situation we developed the sequence input and output 
for each device (on the top and bottom of the device, re 
spectively), as shown in Fig. 6. The sequence output be 
haves like any other data output by firing after successful 
execution of the device except that the signal that is propa 
gated to the next device is a always a nil signal. Likewise, 
the sequence input behaves like any other data input with 
one exception. When connected it must be updated (any data 
will do, even nil) along with any other data inputs before the 

Sequence Output 
Sequence Input 

Fig. 6. While B and C both need the data from A, the sequence 
connection between B and C will cause C to execute after B. 

device will be allowed to execute, but unlike other data in 
puts, connection is not required. Thus any time it is required 
that A must execute before B where no other data dependen 
cies exist between the two devices, it is sufficient to connect 
the sequence output of A to the sequence input of B. 

For users who have already been introduced to program 
ming in third-generation languages such as Pascal, C, or 
BASIC this can require a paradigm shift. Experience with 
such users has shown that they are often preoccupied with 
sequencing (since 3GLs almost universally use control-flow 
paradigms) and have a difficult time at first believing that 
the data constraints represented by the lines that intercon 
nect the devices are sufficient to define a robust sequence of 
execution. It is only after using the system for a time that 
they are weaned away from this need to sequence each and 
every device explicitly and begin to feel comfortable with 
the dataflow paradigm. 

Contexts 
Several types of devices are supplied as primitives with HP 
VEE, including those used for flow control, data entry and 
display, general data management, mathematical expressions, 
device, file, and interprocess I/O, virtual signal sources, and 
others. There is also a mechanism that allows users to con 
struct special devices with their own panels and a specific 
functional capability. This device is known as a UserObject 
and is essentially a graphical subprogram. 

UserObjects (Fig. 7) encapsulate networks of other devices 
(including other UserObjects) and have their own input/output 
pins and custom panel displays. Viewed as a single collec 
tive object with its own panel, each UserObject operates un 
der the same rules as any primitive device: all data inputs 
must be updated before the UserObject will execute its inter 
nal subnet. Each UserObject will contain one or more threads, 
which in in parallel at run time. In addition, threads in 
subcontexts (hierarchically nested contexts) may well be 

Fig. into a UserObject encapsulates a subnetwork of other objects into a 
single larger object with its own inputs and outputs. 
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running in parallel with their host threads in their parent 
contexts. 

UserObjects can be secured such that the user of the de\ice 
can access only the panel and not the internals. In this form 
the UserObject is almost indistinguishable from any primitive 
device. This capability allows developers to create arbitrary 
devices that can be archived in a libran,- for later access by 
users, who can treat these devices as true primitives in their 
application. 

Threads 
Devices that are connected to each other within the same 
context form a single thread of execution. One of the in 
herent advantages of dataflow programming is the ability to 
support multiple independent threads of execution with 
relative ease (see Fig. 8). This becomes particularly useful 
when interacting with the rest of the world, since indepen 
dent monitoring operations ("Has that message arrived 
yet?") can proceed in parallel with related operations. In 
typical 3GLs such operations require elaborate schemes for 
enabling interrupts and related interrupt service routines. 
Most who have dealt with such code as inline text can attest 
to the difficulty of maintaining that code because of the diffi 
culty of easily recreating the relationship between parallel 
operations once the code has been written. 

Several devices were developed especially for thread-related 
activities. One of these is the Exit Thread device, which termi 
nates all execution for devices on that same thread when 
encountered. Another is the Exit UserObject device, which ter 
minates all execution on all threads within the context in 
which it is encountered. 

Certain devices have the ability to elevate a thread's priority 
above the base level to guarantee that thread all execution 
cycles until completion. One such device is the Wait For SRQ 
device (SRQ = service request), which watches a specified 
hardware I/O bus in anticipation of a service request. If and 
when such a request is detected, this device automatically 
elevates the priority of the subthread attached to its output 
so that all devices connected to that subthread will execute 
before devices on any other thread (within this context or 
any other context) until that subthread completes. 

Virtual Context 

Fig. 8. Any context (e.g., a UserObject) can contain one or more 
threads, each of which executes independently of all others within 
that context. 

Fig. 9. Objects A and B and the XV display will execute 10 times 
each at side) time as the iterator fires its only data output (right side) 
10 times before firing its sequence output (bottom). The data from 
the output of X is reused for the last 9 of the 10 executions of A 
(active data rule). 

Although it is not specifically thread related, a similar capa 
bility exists for exception service. At the time an exception 
is raised (e.g., an error occurs), all other devices on all other 
threads are suspended until an exception handler is found 
(discussed later). 

Propagation: Flow of Execution 
From an external point of view, the determination of which 
devices can execute is a simple problem of finding out 
which devices have had all of their inputs updated. From an 
internal point of view, the problem is a bit more difficult. To 
prevent infinite feedback the general rule for dataflow pro 
grams is that each device can execute only once per activa 
tion of the context in which the device resides. On the other 
hand, it was felt from our earliest prototypes that having 
iteration occur within some subgroup of devices in a con 
text was superior to dropping down into a subcontext multi 
ple times to accomplish the same thing, especially for 
nested iteration. 

Thus we were faced with the problem of allowing groups of 
devices to execute multiple times within a single activation 
of a context. Identification of these devices could only occur 
at run time as they appeared on the subthread hosted by the 
primary output of an iterator. To deal with this we devel 
oped the virtual context, which is defined not by the user 
but by the system (see Fig. 9). At run time, the devices that 
are executed on the subthread hosted by an iterator are re 
membered. Then, just before the next firing of the iterator 
(since an iterator generally fires its output more than once 
for each execution of that iterator), the devices in this 
virtual context are selectively deactivated separately from 
the other devices in the context. This allows them to be re- 
executed when the iterator fires again by the normal rules of 
propagation. 

One other side effect of such iteration is that any data being 
supplied to a device within the virtual context by a device 
that is outside that virtual context is going to be delivered 
only once to the device within the virtual context. Thus new 
data is supplied to the inputs as required on the first itera 
tion, but on all subsequent iterations no new data arrives. 
One could solve this by using a special intermediary 
Sample&Hold device, but a simple extension to the rules of 
propagation turned out to be much easier. The extension, 
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Fig. output The special error output will fire in lieu of the data output if 
any error is encountered while evaluating the formula. The value 
posted at the error output is the error code number. This allows the 
user to decide how to handle the situation. 

known as the "active data rule," says that data from any ac 
tive but of a device that is currently active (executed, but 
not yet deactivated) can be reused. This has essentially the 
same effect as the Sample&Hold but is much less error-prone. 

The goal in all of this is to create a scheme of execution that 
does not require the user to specify a sequence of execution 
with explicit device-by-device triggering as is common in the 
world of digital design. In addition, we wanted execution to 
proceed as if the entire network were running on a multipro 
cessor architecture with true parallelism. On a typical uni 
processor machine only one primitive device is actually 
drawing cycles from the processor at any one instant, but 
the overall effect is as if all devices both within the same con 
text level and across other levels of the network hierarchy 
are running in parallel. 

Asynchronous Operations 
For some devices we found a need to invoke certain opera 
tions programmatically that were peripheral to the general 
operation of the device, such as AutoScale or Clear for an XY 
graph. While the primary function of the graph is to con 
struct a graph from the data present at the synchronous data 
inputs, operations such as AutoScale could happen at any 
time. A different class of inputs that were not incorporated 
into the general scheme of propagation was needed to initi 
ate these asynchronous operations. Thus we developed the 
control input, which when updated at run time will perform 
its assigned function within the associated device regardless 
of the state of any other input on the device. 

Exception Management 
Exception (error) management could have been approached 
from a number of different points of view, but it proved most 
effective to implement a strategy based on an optional out 
put that fires if and only if an untrapped exception is raised 
from within the scope of that device (Fig. 10). For primitive 
devices this allows the user to trap common errors such as 
division by zero and deal with possibly errant input data 
accordingly. In each case a number (an error code) is fired 
from the error pin and can be used by the ensuing devices to 
determine just which error has occurred. If the decision is 
not to handle the error locally, the error can be propagated 
upward with the Escape device, either as the same error that 
could not be handled locally or as a new user-defined code 
and message text, which may be more informative to the 
handler that eventually owns the exception. 

Hierarchical exception handling is possible because an error 
pin can be added to any context object (UserObject) to trap 
errors that have occurred within its scope and that have not 
been serviced by any other interior handler. If the exception 
pops all the way to the root context without being serviced, 
it generates a dialog box informing the user of the condition 
and stops execution of the model. To enable the user to lo 
cate the exception source, the entire chain of nested devices 
is highlighted with a red outline from the root context down 
to the primitive device that last raised the exception. 
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