
Developing an Advanced User
Interface for HP VEE
Simplicity and flexibility were the primary attributes that guided the user
interface development. Test programs generated with HP VEE can have
the same advanced user interface as HP VEE itself.

by William L. Hunt

HP VEE, Hewlett-Packard's visual engineering environment,
was developed as a programming tool for nonprogrammers.
In the past, computer users were required to move into the
computer's domain. Our goal for HP VEE was to bring the
computer into the user's domain. This meant developing a
system that operates in the way that our target users expect.

To accomplish this goal, ease of use was of critical impor
tance. However, because most target users of HP VEE are
highly educated technical professionals, simple-minded ap
proaches to user interface design were not appropriate. For
this audience, the system must be powerful and flexible, but
must not become an obstacle because of overprotection.

With these constraints in mind, we decided that the primary
attributes of HP VEE should be simplicity and flexibility.
Learnability was also considered to be important, but we
felt that no one would bother to learn the system unless it
were a truly useful and powerful tool. Therefore, we felt that
we could compromise some learnability in situations where
a great deal of the power of the system would be lost if
learnability were our primary goal. Our overall approach,
therefore, was to design a system that is as natural to learn
and use as possible and powerful enough that our customers
would be excited about learning how to use it.

Development Guidelines
In general, simplicity is very important in a user interface
because it frees the user from having to worry about unnec
essary details or rules. The underlying goal of a good user
interface is to increase the communication bandwidth be
tween the computer and the user. However, this does not
mean that there should be a myriad of displays and indica
tors. In fact, quite the opposite is true. The more things there
are for the user to comprehend, the greater the chance that
something will be missed. The goal, therefore, should be to
reduce the amount of data that the user must be aware of
and present the essential data in the simplest and most com
pact way possible. Similarly, any piece of data presented to
the user should always be presented in a consistent way be
cause this is known to increase comprehension dramatically.

An example of a simple way to present information to the
user is the 3D look used in the OSF/Motif graphical user
interface and more recently in other systems such as Micro
softÂ® Windows. When used properly, the 3D borders can be
used to communicate information about the state of indhid-
ual fields without consuming any additional display space.

Fig. 1 shows how HP VEE uses the 3D look to identify how
fields will respond to user input. Fields that are editable are
displayed as recessed or concave. Buttons and other fields
that respond to mouse clicks are shown as convex. Fields
that are only used as displays and do not respond to input
are shown as flat. These states are very simple to compre
hend because the three states are unique in the way that
they look and operate. Without realizing it, users will natu
rally learn how to identify which fields are editable, which
fields can be activated, and which fields will not respond to
input. This 3D display technique allows these states to be
displayed without any additional display area.

Fundamentally, HP VEE was designed around the concept
of direct manipulation. This means that wherever possible, a
setting can be changed by operating directly on the display
of that setting. This results in a significant simplification for
the user since special operations or commands are not gen
erally required to make changes to settings. For example,
the scale of a strip chart is shown near the edges of the
graph display (Fig. 2). If the user wants to change the graph
scaling, the limit fields themselves can be edited. It is not
necessary to make a menu choice to bring up a pop-up dia
log box for editing the scale. In many other systems, making
any change requires a menu pick. This effectively reduces a
system to a command-line interface that happens to use a
mouse and menus instead of the keyboard. Such a system is
no easier to use than the command line interface systems of
the past.

Flexibility is more important for an easy-to-use system than
for more traditional systems because there is a perception
that power and ease of use cannot be combined in the same
system. In the past, powerful systems have generally been

Ampl i t ude

S PitÃ³se Â¡Dtg
Time Span

Fig. some A view containing a noneditable field, two buttons, and some
editable fields.

78 October 1392 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 2. Direct manipulation is useful for settings such as graph
limits.

hard to use, and easy-to-use systems have generally not
been very flexible or powerful. To overcome this perception,
therefore, an easy-to-use system must be very powerful so
that potential customers' fears can be overcome. When de
signing HP VEE, we were very careful to avoid limiting flexi
bility wherever possible. It often seemed as if we were faced
with a choice between ease of use and flexibility. However,
with careful consideration of the alternatives, we usually
found that the more flexible approach could be implemented
with an easy-to-use interface.

Flexible and powerful systems are naturally very complex
because there are so many features and capabilities to re
member. In these systems, it is extremely important that each
area of the system operate in a way that is consistent with
the rest of the system because even the most advanced users
are rarely familiar with all aspects of the system. Users must
be able to rely on their experience with other parts of the
system to help guide them through the unfamiliar areas.
For this reason, consistency was an important guideline
throughout the development of HP VEE.

High performance for interactive operations is critical be
cause users will become frustrated using a product that is
too slow. Very few users will be happy if they must wait an
inordinate amount of time before a particular operation is
complete. The allowable time for the system to complete a
task depends on the nature of the task and what the user is
likely to be doing at the time. For example, a key press
should be echoed back to the user within about 100 ms or
so. If it takes longer, the user may press the key again think
ing that the system didn't get the first one. A pop-up dialog
hriY nr menu should appear within ahnnt 500 ms. Other

tasks such as loading a file can take many seconds before
the user will become annoyed because of sluggish perfor
mance. We created a list of about ten different interactive
operations for which we felt that performance was an im
portant goal. On all supported platforms, many of the opera
tions in this list such as the pop-up menus and dialog boxes
are completed within the required time. Unfortunately, there
are still a few operations that are completed within the spe
cified time limits only on the very fast HP 9000 Series 700
workstations. On the other hand, we have received very few
complaints about interactive performance, so our time limits
may have been overly stringent.

In some situations, such as saving a file to the disk, perfor
mance1 simply cannot be guaranteed. In these cases, continu
ous feedback indicating progress being made is important.

Otherwise, it isn't easy to tell whether something is happen
ing or not. In HP VEE. all user-invoked operations that could
take more than about 200 ms will result in a change to the
mouse cursor. Some of these cursors represent specific ac
tivities such as reading from or writing to the disk. For other
situations, a general hourglass cursor is used. Any action
that is expected to take longer than one or two seconds is
also accompanied by a pop-up message box that indicates
that the operation is in progress.

Reducing the total number of mouse clicks, menu choices,
and various other adjustments required of the user was a
major challenge. Each adjustment required of the user, no
matter how easy, will reduce the user's overall effectiveness.
For this reason, HP VEE is designed to do as much as pos
sible with default settings while allowing adjustments if
more control is desired. Other systems often require that the
user fill out a form each time a new object is selected from
the menu. In most cases, HP VEE will insert default values
for all settings and then allow the user to change them later
if it becomes necessary.

System messages for errors and other reasons are an espe
cially important source of difficulty or frustration for users.
Most software developers seem to take the attitude of a hos
tile enemy when presenting the user with an error message.
However, errors are seldom true user mistakes, but instead
are usually triggered by failings in the system either because
it misled the user or because it did not adequately protect
the user from making the mistake in the first place. In many
cases in HP VEE, we were able to avoid generating errors
simply by restricting available choices to those that would
not result in an error. For example, if a certain combination
of selections will cause an error, we show them as mutually
exclusive choices. In cases where such restrictions could
not be used to avoid the potential for an error, we worked to
simplify the interface so that users would be less likely to
make mistakes in the first place. In cases where errors were
unavoidable, we kept the attitude that error messages should
help the user complete a task. We tried to remember that
the user generally has a valid reason for performing the
operation that resulted in an error.

Two kinds of messages that are common in many systems
are not present in HP VEE. The first is the message "Please
wait." It is irritating to users because they don't want to wait
and they are being instructed to do so. The message is also
unnecessary since more descriptive messages can be used
instead. Messages such as "Reading from file program!" are
much more informative and are nut-nearly so annoying. Theâ€”
other common message is a confirmation box that asks "Are
you sure?" This is also very annoying because the user sel
dom initiates any operation without being pretty sure about
wanting to perform that operation. There are really two rea
sons for asking "Are you sure?" One is to caution the user
about data loss and the other is to protect against accidental
requests.

In HP VEE, we solve the first situation by asking a question
such as "Save changes before clearing workspace?" This has
the same result as "Are you sure?", but does not sound as if
the user's choice (or sanity) is being questioned.

In the second situation, accidental requests are better solved
by making the input mechanisms easier to operate without
error or by making corrections easy to perform. For example,

October 1992 Hewlett-Packard Journal 79

© Copr. 1949-1998 Hewlett-Packard Co.

instead of asking "Are you sure?" to find out if the user really
wants to delete an object, HP VEE puts the deleted object
into the cut buffer so that if the user decides that a mistake
was made, the paste operation can be used to restore the
deleted object.

Attention to detail is very important to a user. Most systems
available today lack the small details that make a system
more convenient and easier to use. In HP VEE, we have at
tempted to pay attention to as many of these small details as
possible. For example, when connecting a line to a box, an
outline is displayed around the pin that would be connected
if the line were released at that point. Another example of a
very small detail is that HP VEE allows objects to be resized
as they are being placed on the workspace for the first time.
These seemingly minor details help reduce the amount of
frustration that users often feel.

Program Visualization Features
In a traditional programming environment, the programmer
must spend a large fraction of the development time think
ing about details of the programming process including the
language syntax, debuggers, and so on. Since HP VEE allows
the user to think almost exclusively in terms of the problem
domain, most of the development time and effort is spent on
solving the problem instead of the programming details.
This is the primary source of the productivity gains that
many users of HP VEE have experienced. However, even
though HP VEE allows programs to be expressed directly in
terms of the problem, not all user-written programs will run
correctly the first time. Although the so-called accidental
complexities1 of program development such as language
syntax and semantics have been reduced or even eliminated,
the fundamental complexities of the problem itself still re
main. Therefore, once an HP VEE program is developed, it is
likely that some aspect of it will not quite work as expected.
For this reason, we developed several tools that can be used
to visualize the execution of a program to help identify the
source of any problems.

Show Execution Flow animates the execution of the program by
outlining each object as it begins to execute and then eras
ing that outline when execution is complete. Besides helping
to visualize how the program executes, this is useful when
trying to understand performance issues, since an object in
the program that consumes a lot of time will be highlighted
for more time than other objects. HP VEE also has a timer
object, which allows a more objective way to measure
performance.

Show Data Flow animates the movement of data as it travels
between objects in the program by displaying an icon mov
ing rapidly along each line as data flows across it. This helps
the user visualize the relationships between the data and the
execution of the objects of a dataflow program. Both Show
Execution Flow and Show Data Flow slow the execution of HP
VEE programs so much that they are designed to be turned
on and off separately.

All data in HP VEE has additional information such as size
and shape associated with it. This information is maintained
so that one operation can work with a variety of different
data types and shapes. For example, math functions such as
sin() can operate on either an individual number or an array
of numbers with any number of elements. This is possible
because the size and number of dimensions are packaged
with the data. Other information such as the name of the
data and mappings (the implied domain of the data) can also
be associated with the data. The line probe feature allows
the user to examine the data and this associated information
at any time.

The execution of a program can be halted when execution
reaches a particular object simply by setting that object's
breakpoint flag. Breakpoints can be set on any number of
objects at any time. When execution reaches an object with
its breakpoint flag set, the program will pause and an arrow
pointing to that object will appear. At that point the step
button can be used to single-step the program one object at
a time or the line probe can be used to examine data.

If an error occurs during execution of the program and no
error recovery mechanism has been attached, a message
will be displayed and an outline will highlight the source of
the error visually. This allows the user to locate the source
of the error more quickly.

User Interface for HP VEE Programs
Since a user of HP VEE should be able to generate programs
with the same advanced user interface as HP VEE itself,
several important capabilities have been incorporated into
HP VEE to make the task of building impressive-looking
programs simple.

For example, data can be entered using a variety of data
entry objects. The simplest of these is a text field that accepts
a single line of textual data. Numeric fields of various types
such as integer, real, complex, or polar complex accept the
appropriate numeric data. In addition, these numeric fields
can accept constant expressions such as "SQRT(45)" or
system-defined constants such as "PI." When typed, these
constant expressions are immediately evaluated and the
result is converted to the expected type by the input field.
Since all editable fields in HP VEE share the same editing
code internally, any numeric field in the system that requires
a numeric entry can also accept a constant expression.

There are other more advanced mechanisms for entering
data or specifying selections to an HP VEE program. Integer
or real numeric input can be generated within a predefined
range by using the mouse to drag the handle of a slider ob
ject. Selections from a list of acceptable values can be made
using an enumerated list box, which can be displayed as
radio buttons, as a single button that cycles through the list
of values, or as a button that accesses a pop-up list box of
choices. An HP VEE program can be designed to pause until
the user is ready to continue by using the Confirm button.

80 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Data can be displayed in a variety of ways. In addition to
textual displays, real or integer numbers can be displayed
on a meter object, which can show \isually where a number
falls within a range. Graphical displays such as XY graphs
and polar plots show two-dimensional plots of data and
can be interactively scrolled or zoomed. Stripcharts graph
a continuous scrolling history of the input data.

All of these input and output types would have limited value
if they could only be displayed when the rest of the HP VEE
program with all of its lines and boxes is also visible. For
this reason, HP VEE is designed with a feature called user
panels, which allows an advanced user interface to be at
tached to a user-written HP VEE program. The user panel is
built using an approach similar to many of the available user
interface builders. Elements to be placed on the user panel
are selected from the HP VEE program and added to the
panel. The user can then move and resize these elements as
appropriate for the design of the panel. Other layout options
such as whether a title bar appears can also be adjusted.
Since the elements on the user panel are selected from the
user's program, no external code is required and the finished
program is easier to build than with most user interface
builder tools.

Another important aspect of an advanced human interface is
the ability to hide data until the user has asked to examine
it. HP VEE is designed with a feature called Show On Execute
which allows HP VEE programs to use pop-up windows to
hide data until a user request is received. This works by
associating a user panel with a user object (similar to a sub
routine in traditional programming languages) and enabling
the Show On Execute feature. When the user object begins
executing, the associated user panel is automatically dis
played. When execution of the object is complete, the user
panel is erased. Messages such as "Writing test results to file"
can be displayed using this mechanism simply by putting the
appropriate message on the associated user panel. If it is
desirable to pause the program until the user has finished
examining the displayed panel, a confirm object can be used.

Programs developed in HP VEE are highly malleable; they
can be changed and adjusted as much as desired. However,
in many situations it is desirable to protect the program
from being changed. The secure feature in IIP VEE accom
plishes this by displaying only the user panel and making it
impossible to alter the program or even look at it after the
program has been secured.

Object
V i e w

View3d
ConView

DevCarrier
SubProg

IPEdilor
DispDriver

Container
Real
Inl
Complex

Device
Context

Fig. 3. Simplified class hierarchy of HP VEE.

Using all of these features allows users to generate complete
application programs with professional appearances without
having to work outside of the simple dataflow environment.

Internal Architecture
Fig. 3 shows a simplified class hierarchy for HP VEE show
ing some of the key classes in the system and how they re
late to each other in the inheritance hierarchy. The Object
class is at the root of this hierarchy and implements the fun
damental protocol for all objects in the system. This includes
creating, freeing, and copying objects. The key subclasses of
Object include View, which maintains a rectangle on the dis
play, Container, which holds a unit of data, and Device, which
represents the inner workings of an element in an HP VEE
block diagram.

The fundamental visible element in HP VEE is implemented
with the class called View. It maintains a single rectangular
region on the display and can be transparent or a composite
of other views. The ViewSd class adds a solid background
color and a 3D border to View.

Views are organized into a hierarchy tree based on the dis
play stacking order. The root of this tree is called DispDriver.
II is always mapped to overlay the system window allocated
to HP VEE. It performs all low-level screen display opera
tions such as drawing lines and filling regions. It also han
dles the window system interface functions such as repaint
requests and dispatching of input events. Fig. 4 shows a
composite of views in a view hierarchy with some of the
views labeled with the name of their associated class. Fig. 5
shows the complete hierarchy tree of the views in Fig. 4.

GenField

Fig. 4. A composite view with
sonic of l he component views

lain l< 'I

October l!l!)2 Hewlett-Packard JournaJ 81
© Copr. 1949-1998 Hewlett-Packard Co.

IPEdJtor
HScrol lBar
VScrol lBar
StretchBox
ContextView

DevCarr ier
IFromThru

St r ingView
CXField
St r ingView
CXField
S t r ingView
CXField

Ti t leBar
GenField

M e n u B a r
T i t leBar

GenField
P i x m a p V i e w
Button
Button
Button
Button

Fig. 5. Display hierarchy tree.

Subviews are views that are attached to another view called
the superview in the display hierarchy tree. Subviews are
clipped at the edges of their superview. In this way, each
level of the view hierarchy tree limits the visual boundaries
of all views below it. This view hierarchy indirectly de
scribes the view stacking order, which ultimately controls
which views appear to be on top and which ones are hidden.

Each view maintains a description of the region on which it
is allowed to display itself. This clip region is calculated by
taking its own bounds, subtracting any region that falls out
side the bounds of any view in its superview hierarchy, and
then subtracting any views that partially or completely
cover it or any view in its superview hierarchy.

Repainting
When repainting an area that it is maintaining, a view may
either use the clip region to limit the areas it actually changes
on the display, or it may paint any area that it owns and then
paint every view that appears closer to the user in the view
stack. The full view stack repaint method has nothing to
calculate or check before it begins painting itself completely
and then painting anything that might be on top of it. If noth
ing is on top of it, then the complete stack repaint is very
efficient because it is so simple. However, if there are many
other views covering the view to be repainted, the full stack
repaint will be very slow because of all of the unnecessary
repainting that must be done. The clip region repaint method
is much more efficient in this situation since only those
areas that are directly visible to the user will be repainted.
This means that no unnecessary repainting must be done.

Unfortunately, the clip region is at best an approximation
since views are allowed to display images of arbitrary com
plexity (such as text) and be transparent in other areas. This
gives the user the illusion that views can have any shape
without incurring the performance penalties associated with
nonrectangular views. It would be very costly to calculate
these regions accurately, so only the approximation based
on the rectangular view bounds is actually calculated. This
means that repaints using the clip region method will not
correctly update regions behind transparent areas of other
views. Therefore, the clip region repaint method is used in
only a few special cases.

Input events such as mouse clicks are dispatched to individ
ual views in the system using a two-phase search mecha
nism. In the first phase, working from back to front, each
view in the view stack where the event occurred asks the
views in front of it to process the event. When there are no
more views in front of the current view, the second phase
begins with an attempt to consume the event. Working from
front to back, each view in the view stack (as determined
during the first phase) is given an opportunity to consume or
ignore the event. If the view takes no special action, the
event is passed to the next view down in the view stack. If
the the view intends to consume the event, it does so by
performing an action associated with the event such as indi
cating that a button has been pressed and then marking the
event as consumed. This process continues until the event is
consumed, or until the DispDriver class is given the event (this
class consumes all events).

Other Classes
The visible part of each object in an HP VEE program is
maintained by the DevCarrier class. DevCarrier's job is to main
tain the visual appearance of all objects in the system by
showing the terminal pins, maintaining the various high
lights and outlines required by HP VEE, and allowing vari
ous editing operations on the user's program such as con
necting lines and adjusting the sizes or positions of objects.
DevCarrier does not display any object-specific information.
That information is displayed by object-specific view
classes, which are attached to DevCarrier as subviews.

User objects are specialized objects that are built using a
subclass of DevCarrier called SubProg. SubProg maintains a
visual subprogram which acts just like a normal object when
viewed from the outside, but contains an internal dataflow
network of its own that is just like the main program. All of
the dataflow networks in HP VEE are maintained by a class
called ConView (context view). It is the gray background area
behind the lines and boxes in a dataflow network.

The top-level workspace environment class â€” IPEditor (iconic
program editor) â€” is just a special case of SubProg and is
therefore built as a subclass of SubProg. It is attached as the
only subview of DispDriver and maintains the top-level editing
environment. It is the same as SubProg, except that it must
maintain the menu bar, run/stop buttons, and other features
specific to the top level.

The context view class (ConView) maintains a list of all ob
jects in the context and the lines connecting them. When the
context view is asked to repaint itself, it first paints its back
ground color (gray, by default), and then paints all lines in
the line list. Then each HP VEE object in the context is
painted according to the stacking order. If an HP VEE object
falls partially or completely outside the context view's
bounds, then according to the clipping rules, that view will
be only partially painted or not painted at all.

The clipping and repaint algorithms allow an HP VEE pro
gram to be visually much larger than the screen space al
lotted to it. By adding navigation controls such as the back
ground scroll capability, a very large dataflow network can
be supported even on a comparatively small screen.

82 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Model-Mew Architecture
HP VEE is organized around a model-view architecture. This
is similar to the model-view-controller architecture used in
other object-oriented systems except that we chose to
merge the functionality of the controller into the view. The
fundamental assumption in the model-view architecture is
that the internal data and program elements (the models)
can operate without any knowledge of or dependence on
their visual representations (the views). By separating the
system at this natural boundary, both the views and the
models can be written more simply without any unneces
sary dependencies. One feature of this architecture is that
one model can be attached to any of several different views
without any special support in the model. For example, a
model that contains a real number can be attached to a text
field or to a meter. Since the properties of the number do
not change based on how it is displayed, no changes are
required of the class that holds the number. However, since
there are few similarities between a meter view and a text
view, they need not be built with one view class.

User panels are one area that really benefit from the split
between models and views. When the user selects an HP
VEE object such as a slider and asks that it be added to the
user panel, several things happen internally to make that
happen. First, if a user panel has not been created for this
program or user object, one is created. The user panel class
is similar in concept to the context view class, but without
support for interconnections required for dataflow net
works. Next, an instance of the PanelCarrier class is created to
hold a copy of the object-specific part of the slider view.
This copy is created from the original and attached to the
new panel carrier and to the original slider model (which is
not copied). The panel carrier is then attached to the user
panel view.

One of the most significant architectural impacts of the im
plementation of user panels is the fact that there can be
many independent views attached to the same underlying
model at the same time. Because of this architecture, it is
easy for panels from user objects to be added as a unit to
higher-level panels. This allows the creation of complex
panels consisting of grouped controls and displays.

The DispDriver class is designed to be the only place where
calls to the underlying window system (such as the X Win
dow System) occur. This allows the display driver to be re
placed if appropriate when porting to a new platform. Dur
ing development, for example, we used a driver written to
talk directly to the display card of an HP 9000 Series 300
computer because it ran so much faster than the window
systems. Now that very high-performance workstations are
available, this is no longer necessary.

Printing is handled simply by replacing DispDriver with the
printer driver class, which knows how to perform graphics
operations on a printer. The information intended for the
printer is just "displayed" on the printer and no special
printer support must be developed aside from the printer
driver itself. This also allows the print output to match the
screen display very nicely.

Acknowledgments
Building an advanced user interface is really not difficult,
but it takes a great deal of thought and perseverance. It also
requires support from management. We were lucky on the
HP VEE team because we had managers who understood
the value of a good user interface. They encouraged the
team to produce the best product that we were capable of
even if the schedule would be put at risk. Of course, the
team members themselves were very highly motivated to
produce an exciting product. John Bidwell, the HP VEE
project manager, provided the leadership and management
support required for our success. He was able to resist the
temptation to ship the product before it was ready, and kept
all of the various team members focused on the goal of a
truly easy-to-use product. Sue Wolber, Randy Bailey, and
Ken Colasuanno each contributed to the overall usability of
the system in each of their respective areas. Jon Pennington
performed usability testing and provided most of the usability
feedback during development.

Reference
1. P. Brooks, "No Silver Bullet: Essence and Accidents of Software
Engineering," IEEE Computer, September 1987, pp. 43-57.

Microsoft is a U.S. registered trademark of Microsoft Corp.

October 1992 Hewlett-Packard Journal 83

© Copr. 1949-1998 Hewlett-Packard Co.

