
A Visual Engineering Environment for
Test Software Development
Software development for computer-automated testing is dramatically
eased by HP VEE, which allows a problem to be expressed on the
computer using the conceptual model most common to the technical user:
the block diagram.

by Douglas C. Beethe and William L. Hunt

For many years, the cost of developing computer-automated
testing software has grown while the cost of the computer
and instrumentation equipment required to run tests has
dropped significantly. Today, in many test systems, the hard
ware costs represent less than 25% of the total cost of the
system and software costs consume the other 75%. HP VEE
was designed to dramatically reduce test software develop
ment costs by allowing the test to be expressed on the com
puter using the conceptual model most common to the tech
nical user: the block diagram. This article will provide a
general overview of the development of HP VEE, its feature
set, and how it applies the concept of the executable block
diagram. Further details of the architecture of HP VEE can
be found in the articles on pages 78 and 84.

There was a time when business and finance people dreaded
using a computer because it meant an extended question-
and-answer session with a primitive mainframe application
being displayed on a dumb terminal. Even after the first per
sonal computers were introduced, very little changed, since
the existing applications were simply rewritten to run on
them. When the electronic spreadsheet was developed, busi
ness users could finally interact with the computer on their
own terms, expressing problems in the ledger language they
understood.

Un titled

The technical community was left out of this story, not be
cause the personal computer was incapable of meeting
many of their needs, but because their problems could sel
dom be expressed well in the rows and columns of a ledger.
Their only options, therefore, were to continue to work with
the question-and-answer style applications of the past, or to
write special-purpose programs in a traditional programming
language such as Pascal, C, or BASIC.

Technical people often find it difficult to discuss technical
issues without drawing block diagrams on white boards,
notebooks, lunch napkins, or anything else at hand. This
begins at the university where they are taught to model vari
ous phenomena by expressing the basic problem in the form
of a block diagram. These block diagrams usually consist of
objects or processes that interact with other objects or pro
cesses in a predictable manner. Sometimes the nature of the
interactions is well-known and many times these interactions
must be determined experimentally, but in nearly all cases
the common language of expression is the block diagram.

Unfortunately, the task of translating the block diagram on
the lunch napkin into some unintelligible computer language
is so difficult that most technical people simply cannot ex
tract real value from a computer. Staying up on the learning

H u n S t o p C e n t S t e p |

Fig. 1. A simple HI' \KE program
to draw a circle.

72 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

curve of their own problem domain is a sufficient challenge
that embracing a whole new learning curve (programming)
just to translate problems for the computer's benefit hardly
seems worth the effort. While it is true that many wonderful
solutions to certain kinds of problems have been generated
over the years, most of the potential usefulness of comput
ers has never been realized. In many cases, a good calcula
tor is still the best bet because it makes a manual solution
relatively easy to compute.

What is HP VEE?
HP VEE, Hewlett-Packard's visual engineering environment,
is a software tool that allows users to create solutions by
Unking visual objects (icons) into block diagrams, rather
than by using traditional textual programming statements.
HP VEE provides objects for data collection, analysis, and
presentation, in addition to objects and features for data
storage, flow, modularity, debugging, documenting, and
creating graphical user interfaces. The objects work to
gether in the form of an interconnected network or block
diagram constructed by the user to represent the problem at
hand. The user selects the necessary objects from the menu,
links them in the manner that represents how data flows
from one object to another, and then executes the resulting
block diagram. No translation to some other language. No
other intermediate step.

To understand HP VEE better, consider a simple graphical
program to draw a circle. By connecting a loop box, two

math boxes (sin and cos), and a graph, this simple program
can be built in less than one minute (Fig. 1). Although this is
not a difficult task using a traditional language that has sup
port for graphics, it is still likely that it will be quicker to
develop it using HP VEE.

HP \"EE eases the complexity of data typing by pro\iding
objects that can generate and interpret a variety of data
types in a number of shapes. For example, the virtual func
tion generator object generates a waveform data type, which
is just an array of real numbers plus the time-base informa
tion. It can be displayed on a graph simply by connecting its
output to the graph object. If its output is connected to a
special graph object called a MagSpec (magnitude spectrum)
graph, an automatic FFT (fast Fourier transform) is per
formed on the waveform (Fig. 2). By connecting a noise gen
erator through an add box, random noise can be injected into
this virtual signal (Fig. 3). If we had preferred to add a dc
offset to this virtual signal, we could have used a constant
box instead of the noise generator.

User panels allow HP VEE programs to be built with ad
vanced graphical user interfaces. They also allow the imple
mentation details to be hidden from the end user. To com
plete our waveform application, we can add the slider and
the graph to the user panel (Fig. 4). We can adjust the pre
sentation of this panel by stretching or moving the panel
elements as required for our application.

Unfilled : R u n Â ¡ S t o p . C o n t S t e p

F i l e E d i t F l o w D e v i c e D a t a M a t h

Fig. 2. A waveform displayed in
the time and frequency domains.

October 1992 Hewlett-Packard Journal 73

© Copr. 1949-1998 Hewlett-Packard Co.

Hun 1 S top : Con t

F l o w D e v i c e M a t h A d v M a t h D i s p l a y H e l p

Ã­ Frequency

Ã ̄Amplitude

| Phase I Deg

; Time Span

Fig. 3. Noise added to a wave
form in the time and frequency
domains.

This is just a trivial overview of the basic concept behind
HP VEE. Other major features not covered include objects
for sending data to and from files, data translation and con
version, advanced math capabilities, and data display func
tions. HP VEE actually consists of two products. HP VEE-
Engine is for the analysis and presentation of data gathered
from files or programs or generated mathematically. HP
VEE-Test is a superset of HP VEE-Engine and adds objects
and capabilities for device I/O and instrument control.

Development Philosophy
The team's goal for HP VEE was a new programming para
digm targeted not only at the casual user, but also at the
advanced user solving very complex problems. One simple
approach would have been to assign an icon to each state
ment in a traditional language and present it to the user in a
graphical environment. The user would simply create icons
(statements) and connect them in a structure similar to a
flowchart. However, such a system would be harder to use
than a traditional language, since the graphical program
would require more display space than the older textual
representation and would be more difficult to create,
maintain, and modify. This would actually have been a step
backward.

We decided that a genuine breakthrough in productivity
could only be achieved if we moved to a higher level of ab
straction to more closely model the user's problem. We
therefore chose to allow users to express their problems as

executable block diagrams in which each block contains the
functionality of many traditional program statements. Many
elements in HP VEE provide functionality that would require
entire routines or libraries if the equivalent functionality
were implemented using a traditional language. When users
can work with larger building blocks, they are freed from
worrying about small programming details.

Consider the task of writing data to a file. Most current pro
gramming languages require separate statements for opening
the file, writing the data, and closing the file. I(would have
been relatively easy to create a file open object, a file write
object, and a file close object in HP VEE. Such an approach
would have required at least three objects and (heir associ
ated connections for even the simplest operation. Instead,
we created a single object that handles the open and close
steps automatically, and also allows all of the intermediate
data operations to be handled in the same box. This single
To File box supports the block diagram metaphor because the
user's original block diagram would not include open and
close steps (unless this user is also a computer programmer),
it would only have a box labeled "Append this measurement
to the data file." The open and close steps are programming
details that are required by traditional programming languages
but are not part of the original problem.

Or, consider the task of evaluating mathematical expres
sions. In some common dataflow solutions, a simple opera
tion such as 2xA+3 would require four objects and their

74 October 1992 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

associated connections (two constants, one add operation,
and one multiply operation). Using HP VEE's formula box
requires only the single expression object to solve this prob
lem. The point of a block diagram is to show an overview of
how a complex system operates without regard to imple
mentation details. Had HP VEE been implemented without a
higher level of abstraction, the resulting graphical program
would have had so many boxes and lines that it would have
resembled a maze rather than a block diagram.

Development Process
We followed a fairly informal development lifecycle for HP
VEE. It was based on the spiral lifecycle,1 which divides the
development phase into a series of design/build/test cycles
with a risk assessment before each. This worked very well
for us for several reasons. Probably the most important fac
tor was that the team was small and highly motivated. This
made rigorous checkpoints and detailed design documents
unnecessary since all of the team members worked very
closely together toward the same goals. Another important
factor was the use of an object-oriented design approach
coupled with very careful design practices. This allowed us
to design classes according to their interactions with the
rest of the system without spending a great deal of time im
plementing the internals of the classes. This is important in
a spiral lifecycle because during each cycle, an entire class
or set of classes may need to be reimplemented. Without an
object-oriented approach, this would require an excessive
amount of time rewriting other seemingly unrelated parts of
the system. Another successful development decision was
the early incorporation of a full-time software testing team
to help us with the test phases of the lifecycle.

Fig. 4. User panel for waveform
plus noise application.

The Search for Primitives
The initial functionality was specified by the team based on
our experience as frustrated users of third-generation lan
guages (3GLs) such as Pascal, C, and BASIC. Certain tasks
appeared over and over on the "I wish there were some
other way to do this ..." list. Experience had already shown
that library of limited flexibility, the usual subroutine library
approach did not offer the type of productivity increase being
sought. However, with our executable block diagram meta
phor, we felt that many of these tasks could be implemented
as primitives in HP VEE while still providing the necessary
flexibility.

Foremost among these tasks were data management, engi
neering graphics, instrument control, and integration of mul
tiple applications. In each case we were convinced that a
higher level of abstraction could be developed that would be
flexible yet simple enough to require only minor configura
tion specification from the user in most situations.

Data Management
To tame the basic data management problem we developed
the container architecture. Containers hold data, either ar
rays or scalars, of a wide variety of data types, and provide a
rich set of mathematical intrinsics to operate on that data.
Many operations such as type conversion and array process
ing, formerly left to the user, are incorporated into these
object abstractions in a fashion that makes them relatively
transparent.

Another aspect of data management involves interfacing
with the file system because so much effort must be ex
pended on it when using 3GLs. We developed objects that
offer the powerful input/output capabilities of many 3GLs,

October 1992 Hewlett-Packard Journal 75
© Copr. 1949-1998 Hewlett-Packard Co.

Object-Oriented Programming in a Large System

The biggest problem with a large software development effort is that there is just
too much complexity for the human mind to manage. The obvious solution is to
add more people to the project so that the members are not asked to manage
more than their individual abilities permit. Unfortunately, the law of diminishing
returns applies, since each additional team member adds a very large communica
tion and training load on the rest of the team. In addition, there are increased
opportunities for disagreement and conflict.

In some to development of large software systems is like one person trying to
dig a canal using only a shovel. Yes, it is possible, but probably not in that person's
lifetime. If more people are assigned to the task, it can be done more quickly, but
only at an enormous cost. However, if equipped with the right tools (backhoes,
earth movers, etc.), one person can accomplish so much that only a small number
of people are required to complete the project within a reasonable amount of time.

This reducing amount the idea behind object-oriented programming. By reducing the amount
of complexity that one software developer must manage, that one person can be
responsible for a much larger portion of the system. The result is that much higher
productivity is attainable since smaller teams can be used, thereby avoiding the
effects of the law of diminishing returns. Features of object-oriented programming
such as larger and inheritance allow one person to maintain a much larger
portion of a large system than would be possible with a traditional approach.

Encapsulation is probably the strongest reason to use an object-oriented approach
for a large system. Object-oriented systems encapsulate functionality by combin
ing data and associated routines into one package (the class) and then disallowing
access code the data except through one of the routines. When this is done, code
outside of the class is less likely to have dependencies on the structure or mean
ing of the data in the class since its only access to the data is through the access
routines rather than directly to the data. This allows a class to define the exter
nally visible interface separately from the internal implementation. Because of this
basic structure, a class or even an entire hierarchy of classes can be completely
rewritten without affecting other parts of the system as long as the externally
visible interface remains constant.

Inheritance is another reason to use an object-oriented approach in a large system.
Inheritance allows a new class to be written simply by specifying additions or

changes to an existing class. This means that just a few lines of added code can
provide is significant increase in functionality. The other benefit of inheritance is
that code reuse of internal routines is increased substantially. For example, there
is only text single-line text editor in HP VEE, which is used for all single-line text
entry fields. However, since it is easy to add to the behavior of the editor class
through inheritance, the numeric fields that allow constant expressions as numeric
input editor. just a very small incremental effort over the original line editor. They
simply add to the "accept" mechanism at the end of an editing session and pass
the typed string to the parser for evaluation as an expression before attempting to
record the numeric result.

However, features such as encapsulation and inheritance do not automatically
result practices a system that is easier to maintain and build. Very careful design practices
must be followed and the team members must be motivated to do high-quality
work. partitioning the most important design practice is careful partitioning of the
system so that complexity in one area is not visible in an unrelated area.

An object-oriented approach coupled with careful design practices will often
cause the software development effort to seem harder than with a more tradi
tional approach. For example, in a traditional approach, if a variable in one module
needs reference be accessed in another module, it is easy to declare that reference directly
to the compiler. In an object-oriented approach, it is common for these variables to
exist only as instance variables, which are not allocated until the owning class
has been instantiated. This means that the compiler cannot reference a value
directly because it doesn't exist until run time. Therefore, a more complete solu
tion means be devised to find the required value. This usually means that a mes
sage the for the value must be sent to the object that knows the answer with
out ever the accessing the variable. This sounds harder, and it is, but in the
long run the resulting code is much more maintainable and extendable.

William L Hunt
Development Engineer
VXI Systems Division

but present them to the user by means of an interactive dia
log box to eliminate the need to remember syntax. Each of
these dialog boxes represents a single transaction with the
file such as read, write, or rewind, and as many transactions
as necessary can be put into a single file I/O object.

Engineering Graphics
For engineering graphics, the task of finding a higher level
of abstraction was relatively easy. Unlike data management,
engineering graphics is a fundamentally visual operation and
as such it is clear that a single element in a block diagram
can be used to encapsulate an entire graphical display.
Therefore, we just developed the basic framework for each
type of graph, and we present these to the user as graph
displays that require only minor interactive configuration. In
this area we had a rich set of examples to draw from because
of the wide variety of highly developed graphs available on
HP instruments. In some cases, we were even able to reuse
the graphics display code from these instruments.

Instrument Control
Instrument control is a collection of several problems:
knowing the commands required to execute specific opera
tions, keeping track of the state of the instrument, and (like
file I/O) remembering the elaborate syntax required by 3GLs
to format and parse the data sent over the bus. We developed

two abstractions to solve these problems: instrument drivers
and direct I/O.

Instrument drivers have all of the command syntax for an
instrument embedded behind an interactive, onscreen panel.
This panel and the driver behind it are developed using a
special driver language used by other HP products in addi
tion to HP VEE. With these panels the task of controlling the
instrument is reduced to interacting with the onscreen panel
in much the same fashion as one interacts with the instru
ment front panel. This is especially useful for modern card-
cage instruments that have no front panel at all. Currently
HP provides drivers for more than 200 HP instruments, as
well as special applications that can be used to develop
panels and drivers for other instruments.

In some situations instrument drivers are not flexible
enough or fast enough, or they are simply not available for
the required instruments. For these situations, we developed
direct I/O. Direct I/O uses transactions similar to the file I/O
objects with added capabilities for supporting instrument
interface features such as sending HP-IB commands. Direct
I/O provides the most flexible way to communicate with
instruments because it gives the user control over all of the
commands and data being sent across the bus. However,
unlike instrument drivers, the user is also required to know
the specific commands required to control the instrument.

76 October 1992 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

To simplify the process of reconfiguring an instrument for a
different measurement, direct I/O also supports the upload
ing and downloading of learn strings from and to the instru
ment. A learn string is the binary image of the current state
of an instrument. It can be used to simplify the process of
setting up an instrument for a measurement. A typical use of
this feature is to configure an instrument for a specific mea
surement using its front panel and then simply upload that
state into HP VEE, where it will be automatically down
loaded before making the measurements. Thus, the user is
saved from having to learn all of the commands required to
initially configure the instrument from a base or reset state
before making the measurement. In most cases the user is
already familiar with the instrument's front panel.

Multiple Applications
Multiple application integration turned out to be one of the
easiest tasks in HP VEE, since the inherent parallelism of
multiprocess operations can be expressed directly in a
block diagram. Each element of a block diagram must
execute only after the elements that provide data for its in
puts. However, two elements that do not depend on each
other can execute in any order or in parallel. This feature,
along for the powerful formatting capabilities provided for
interprocess communication, allows the integration and
coordination of very disparate applications regardless of
whether they exist as several processes on one system or as
processes distributed across multiple systems. The only
object abstractions required to support these activities are
those that act as communication ports to other processes. A
pair of objects is available that supports communication
with local processes (both child and peer) using formatting
capabilities similar to those used by file and instrument I/O.

Finally, we needed to develop objects that would encapsu
late several other objects to form some larger user-defined
abstraction. This abstraction is available using the user ob
ject, which can be used to encapsulate an HP VEE block
diagram as a unit. It can have user-defined input and output
pins and a user panel, and from the outside it appears to be
just like any other primitive object.

Refining the Design
While still in the early cycles of our spiral lifecycle, we
sought a limited number of industry partners. This enabled
us to incorporate design feedback from target users attempt
ing real problems well before encountering design freezes.
Although there were fears that such attempts would slow
our development effort because of the additional support
time required, we felt that the payback in design refinement
for both user interface elements and functional elements
was substantial.

One example of such a refinement in the user interface is
the automatic line routing feature. Before line routing was
added, our early users would often spend half of their time
adjusting and readjusting the layouts of their programs.
When asked why they spent so much time doing this, they
generally were not certain, but felt compelled to do it any
way. We were very concerned about the amount of time
being spent because it reduced the potential amount of

productivity that could be gained by using HP VEE. Thus
we added automatic line routing and a snap grid for easier
object alignment so that users would spend less time trying
to make their programs look perfect.

An example of a refinement in the functional aspects of the
product is the comparator object. Several early users en
countered the need to compare some acquired or synthe
sized waveform against an arbitrary limit or envelope. This
task would not have been so difficult except that the bound
ary values (envelope) rarely contained the same number of
points as the test value. Before the comparator was devel
oped, this task required many different objects to perform
the interpolation and comparison operations on the wave
forms. The comparator was developed to perform all of
these operations and generate a simple pass or fail output.
In addition, it optionally generates a list of the coordinates
of failed points from the test waveform, since many users
want to document or display such failures.

Conclusion
Early prototypes of HP VEE were used for a wide variety of
technical problems from the control of manufacturing pro
cesses to the testing of widely distributed telecommunica
tions networks. Many began exploring it to orchestrate the
interaction of other applications, especially where network
interconnections were involved.

Current experience suggests that the block diagram form of
problem expression and its companion solution by means of
dataflow models has wide applicability to problems in many
domains: science, engineering, manufacturing, telecommu
nications, business, education, and many others. Many
problems that are difficult to translate to the inline text of
third-generation languages such as Pascal or C are easily
expressed as block diagrams. Potential users who are ex
perts in their own problem domain, but who have avoided
computers in the past, may now be able to extract real value
from computers simply because they can express their prob
lems in the more natural language of the block diagram. In
addition, large-scale problems that require the expert user to
orchestrate many different but related applications involv
ing multiple processes and/or systems can now be handled
almost as easily as the simpler problems involving a few
variables in a single process.

Acknowledgments
We would like to thank design team members Sue Wolber,
Randy Bailey, Ken Colasuonno, and Bill Heinzman, who
were responsible for many key features in HP VEE and who
patiently reviewed the HP Journal submissions. We would
also like to thank Jerry Schneider and John Frieman who
pioneered the testing effort and provided many key insights
on product features and usability. More than any other we
would like to thank David Palermo without whose far-sighted
backing through the years we could not have produced this
product.

Reference
1. B.W. Boehm, "A Spiral Model of Software Development and
Enhancement," IEEE Computer, May 1988.

1992 Hewlett-Packard Journal 77 © Copr. 1949-1998 Hewlett-Packard Co.

