
A P P L I C A T I O N N O T E

VEE Extensible VEE Object (EVO)
Developer’s Guideline

Page 2Find us at www.keysight.com 	

Keysight Technologies, Inc. VEE functionality has been extended through the use of
Extensible VEE Objects (EVOs). Each EVO can have its own graphical user interface (GUI)
control and execution behavior. EVOs are very similar to generic VEE objects where there
are pins for input, output, control, sequence input, and sequence output which cannot
be found on imported .NET controls. Some vTools components are created using EVOs.
vTools are complimentary toolboxes that you can use with Keysight VEE 9.3 and help in
VEE program development.

EVO is a beta release in Keysight VEE version 9.3, allowing users to write their EVOs
for integration into Keysight VEE. EVOs are developed using the Microsoft .NET add-in
platform and can be written using any Microsoft .NET Framework language such as
Visual C#and Visual Basic .NET.

Overview

Page 3Find us at www.keysight.com 	

How EVO Works in VEE In order to write an EVO, two things are needed:
1. A .NET class needs to implement the Keysight.Vee.Extensibility.IExtensibleVeeObject 	
	 interface. This interface defines the contract needed for VEE to host the EVO.
	 Appendix A lists the interface details and descriptions.
2. An EVO configuration file with extension .evo is needed to describe the EVO.
	 Appendix B lists the layout, contents and descriptions of the EVO configuration file. 	
	 One EVO configuration file is needed for each EVO.

The EVO configuration file must reside in either location below:

Table 1. EVO configuration file locations

Operating
system Directory

User visibility in Device >
Extensible Vee Objects menu

Windows XP C:\Documents and Settings\{User}\My
Documents\Keysight\Keysight VEE 9.3\
Addins Only user {User}

Windows Vista or
Windows 7

C:\Users\{User}\Documents\Keysight\
Keysight VEE 9.3\Addins

Windows XP C:\Documents and Settings\All Users\
Application Data\Keysight\Keysight VEE 9.3\
Addins All users

Windows Vista or
Windows 7

C:\ProgramData\Keysight\Keysight VEE 9.3\
Addins

If the directory does not exist in your system, you may need to create it manually and
then place the EVO configuration file in the directory. If an EVO configuration file exists
in both locations above, it will have two entries in the Device > Extensible Vee Objects
menu.

When VEE starts up, it browses the EVO configuration file locations, shown in Table 1,
for EVO configuration files. If the EVO configuration file format and version match, VEE
displays the EVO in the Device > Extensible Vee Objects menu. However, in Device >
Extensible Vee Objects menu, it appears as a flat list and there is no method to organize
its appearance in a hierarchical format.

When the EVO is added to the VEE workspace, VEE loads the EVO. The EVO might take
longer to load the first time, due to .NET Framework Just-In-Time (JIT) and runtime
constructions. It will take less time for subsequent loads. When the program is saved,
the EVO is saved as a .NET component, where its .NET assembly’s full name and full
directory path are saved in the VEE program. In other words, the EVO’s full absolute path
is saved inside the VEE program. Due to this behavior, there are two scenarios you need
to consider when sharing or deploying your EVO:

–– When the end user is to use your EVO in Keysight VEE Integrated Development
 Environment (IDE)

–– When the end user is to run a program that contains your EVO

Page 4Find us at www.keysight.com 	

How EVO Works in VEE
(continued)

For end users to use your EVO
in Keysight VEE IDE

As explained above, in the Device > Extensible VEE Objects menu, EVOs appear in
a flat list. However, sometimes it is more appropriate to show EVOs in a hierarchical
representation, which can be achieved in other VEE menus. For example, in vTools, EVOs
are grouped in categories for a better user experience. To create a hierarchical view:

–– Add the EVOs into Main.
–– Add the necessary VEE objects e.g. notepad and text constant.
–– Save them into a VEE program.
–– Use the VEE customize menu (.mnu file or .xmnu file) to create a hierarchical menu

presentation. Please refer to the VEE help file Contents > To Customize the VEE
Menus.

In this scenario, the EVO assembly, the VEE program file and customize menu file (.mnu
or .xmnu) are needed. The EVO assembly needs to exist in target machine with the same
absolute path that is saved inside the VEE program. The EVO configuration file (.evo)
can be excluded because the EVO .NET assembly’s full absolute path is saved in the VEE
program.

If you are planning on creating an installation package for your EVO package, the
Deployment section of this document provides information on the steps and details for a
seamless end user experience when using EVO and running programs containing EVO.

If you are using EVOs when writing a VEE program and need to deploy the final program
only to other users or other PCs, the EVO configuration file (.evo) is not needed. This is
because the EVO assembly’s absolute path is saved in the VEE program. In this scenario,
in addition to the VEE program, the EVO assembly needs to exist in target machine
with the same absolute path that is saved inside the VEE program. However, VEE has
enhanced this mechanism and the details are discussed in the Deployment section of
this document.

Each EVO uses a fixed set of data terminals which is defined in DataInputs, DataOutputs,
and ControlInputs. All data input terminals must be added and connected, or else there
will be compilation errors.

Control input terminals can be left unconnected, thus some EVO developers use
them as optional input terminals. When the user adds EVO control input, VEE invokes
ControlEvoTerminalAdded. Then the EVO developer can handle the required logic,
for example disable some control. Similarly, the removed method is available via
ControlEvoTerminalRemoved. Similar methods are available for data input terminals,
i.e. InputEvoTerminalAdded and InputEvoTerminalRemoved. However, control input
terminals have a different data propagation behavior. For details, refer to VEE help file
Contents > Tell Me About… > Propagation > Handling Propagation Problems > Data
Propagation on Control Pins.

Similar to other VEE objects, data output terminals can be left unconnected.

For end users to run
programs containing EVO

EVO terminals

Page 5Find us at www.keysight.com 	

How EVO Works in VEE

System Requirements

For some EVO functionality there is a need to be able to update the EVO terminal list
during VEE program development. This can be done by using the TerminalChanged
event in the IExtensibleVeeObject interface. We called this a dynamic terminal in EVO.
With this feature, we recommend avoiding the use of EVO control input terminals. In
most cases, using the dynamic terminal is sufficient.

EVO terminal behavior is slightly different from other VEE object terminal behavior. For
example, in the Formula object the user is allowed to add any number of input terminals
as needed. This is different in EVO since its terminals are fixed set terminals written in
.NET. If there is a need to allow users to add any number of terminals with a customized
name, it’s recommended that the dynamic terminal feature be used. Also note that the
EVO terminal name cannot be edited. Avoid duplicated terminal Names. More details
can be found in Avoid Duplicate Terminal Names.

Keysight VEE version 9.3 and above
Microsoft Visual Studio 2008 and above

EVO terminals (continued)

Page 6Find us at www.keysight.com 	

Creating an EVO In this section we will be describing the steps to create an EVO using a C# expression
graph example. This example can be downloaded from
http://www.Keysight.com/find/veesamples

1. Create a new Microsoft Visual Studio C# control library. This will be either a WPF User
Control Library or a Windows Forms Control Library depending on the EVO developer.

2. At Project Properties, change the Target Framework to .NET Framework 3.5, 3.0 or 2.0.

3. Add a reference to {VEE Installed Directory}\ AddInViews\Keysight.Vee.AddInView.dll.
Typically it is
C:\Program Files\Keysight\VEE Pro 9.3\AddInViews\Keysight.Vee.AddInView.dll.

In 64-bit OS, it could be
C:\Program Files (x86)\Keysight\VEE Pro 9.3\AddInViews\Keysight.Vee.AddInView.dll.

When compiling the example program, if there is compilation error on missing Keysight.
Vee.AddInView, re-add the reference.

4. In Solution Explorer’s References, select the DLL just added and change the Copy Local
to False. If this change is not done, it could yield a compilation error later.

5. EVO class implements the Keysight.Vee.Extensibility.
IExtensibleVeeObject interface. This can be done quickly using the Visual Studio-provided
implement interface options.

Page 7Find us at www.keysight.com 	

Creating an EVO
(continued)

6 EVO-related Intellisense in Step 5 should appear automatically. If it doesn’t, verify
Keysight.Vee.AddInView.xml exists in
{VEE Installed Directory}\AddInViews folder.

Typically it is C:\Program Files\Keysight\VEE Pro 9.3\AddInViews.
In 64-bit OS, it could be
C:\Program Files (x86)\Keysight\VEE Pro 9.3\AddInViews.

The VEE 9.3 installer will put the XML file inside the folder mentioned.

7 Implement the method appropriately as in ExpressionGraphEvo.cs.
In the expression graph solution some other classes are also implemented.

8 Close all VEE instances to allow VEE to load the newly added EVO. Build the
project. After it is successfully built, copy ExpressionGraph.evo to either
location below. (Create the folder manually if it does not exist.)

For EVO to be visible to only {user}: C:\Documents and Settings\{user}\My
Documents\Keysight\Keysight VEE 9.3\Addins

For EVO to be visible to all users logged in to the PC:C:\Documents and
Settings\All Users\Keysight\Keysight VEE 9.3\Addins

Refer to Table 1: EVO configuration file locations for other OS directories.

9 Copy the DLL and its related references to the path mentioned in the
ExpressionGraph.evo <Assembly> field.

For example, in the example provided,
<Assembly>ExpressionGraph.dll</Assembly> requires
ExpressionGraph.dll and antlr.runtime.dll to be in the same folder as
ExpressionGraph.evo. However, you may specify another absolute path, such
as <Assembly>C:\MyAddin\ExpressionGraph.dll</Assembly>.

10 Launch VEE. The EVO should appears in Device > Extensible Vee Objects
menu.

11 Drag-and-drop the EVO to VEE and it is ready to use.

Page 8Find us at www.keysight.com 	

Deployment

If your EVO assemblies always reside in a fixed and common directory such as C:\Documents
and Settings\All Users\Application Data\MyEVO, then you may skip this section.

EVO assembly path

When saving a Keysight VEE program that contains an EVO, the EVO’s absolute path is
saved, similar to .NET DLL. (Unfortunately, VEE is currently unable to load EVOs from Global
Assembly Cache (GAC).) To illustrate, let’s use a scenario where an EVO assembly is located
in Path A. When it is used in a VEE program, upon being saved, the EVO’s full path is saved,
i.e. Path A. When opening the program in another PC, if the EVO assembly is available in
Path B instead of Path A, an error occurs during the loading of the EVO. This applies when
running either a VEE program or VEE runtime program.

To fix the issue, the quickest method is to manually create Path A in the new machine
and place the EVO assembly in Path A accordingly. If this workaround is acceptable, you
may skip to next section. If this workaround is not acceptable, implementing the following
deployment practices is recommended.

During VEE 9.3 installation, two groups of three system environment variables (SEVs) listed
below will be added. As with the SEV nomenclature, PRO is reserved for VEE Pro, STU for
VEE Student, while RUN is for VEE Runtime.

Group A: SEV for EVO file path
VEE_PRO93_EVO_PATH
VEE_STU93_EVO_PATH
VEE_RUN93_EVO_PATH

Group B: EVO SEV counter
NUM_OF_PRO93_EVO
NUM_OF_STU93_EVO
NUM_OF_RUN93_EVO

For Keysight VEE 9.2, different sets of SEV are used and those are not discussed here.

Page 9Find us at www.keysight.com 	

Deployment

EVO assembly path
(continued)

Table 2. Installing EVO

Step Action

1 Check that the SEV you need to use is in Group A and Group B, if not, create it.

For example, to install SEV into VEE runtime, verify that you have
SEV VEE_RUN93_EVO_PATH.

2 Add your EVO file path value to the appropriate SEV value.

For example:
VEE_RUN93_EVO_PATH = “C:\Program Files\Keysight\VEE Pro 9.3\Lib\-
Toolboxes; C:\Program Files\myEvo”

3 At the appropriate SEV counter, increment the existing value by one.

For example, vTools installer has increment NUM_OF_RUN93_EVO to 1. During
myEVO’s EVO1 installation, the value will be increased to 2.

When VEE program loads, it first uses the EVO .NET’s absolute path saved in the VEE
program. If VEE cannot find the DLL, it looks for the appropriate value captured in the
associated SEV path.

Table 3. Un-installing EVO

Step Action

A Remove your path value from the SEV path in Step 2 of the prior section.

B Decrement the SEV counter in Step 3 of the prior section.

C Check the value of SEV counter in Step B above. If it is zero remove it.
Otherwise, keep it in the system.

The operation above provides seamless EVO integration and VEE experience
for the following:

1. Installing EVO then VEE, or
2. Installing VEE then EVO, or
3. During development, install EVO in a specific folder. However during runtime,
 install EVO in a different folder.

Page 10Find us at www.keysight.com 	

Recommended Practices

EVO icon In the EVO configuration file (.evo), the EVO developer can specify the EVO icon be
minimized by adding: <Icon>myIcon\info.gif</Icon>

There are two choices for the icon path value:

1. A subfolder inside the VEE bitmap folder: {VEE Installed Directory}\bitmaps. The 	
	 icon value looks like: <Icon>myIcon\info.gif</Icon>

In this example, the icon image file is:
C:\Program Files\Keysight\VEE Pro 9.3\bitmaps\myIcon\info.gif. In 64-bit OS, it could
be C:\Program Files (x86)\Keysight\VEE Pro 9.3\bitmaps\myIcon\info.gif

2. Use the absolute icon’s full path, for example: <Icon>C:\My product\myIcon\info.	
	 gif</Icon>
	 When using the full absolute path and deploying the program to another PC, 		
	 remember that the image needs to reside in the same full absolute path. If there is a 	
	 path mismatch, when the user minimizes the VEE object, an icon not found message 	
	 will appear.

In the EVO configuration file (.evo), the EVO developer can specify the EVO assembly
location by using:
<Assembly>ExpressionGraph.dll</Assembly>

There are two choices for the assembly path value:

1. Specifying the assembly name only: <Assembly>ExpressionGraph.dll</Assembly>
 	 In this case, the assembly is assumed to be in the same path as the EVO 		
	 configuration file, in other words if you are using the Windows XP operating system it
	 will be: C:\Documents and Settings\{user}\My Documents\Keysight\Keysight VEE 9.3\	
	 Addins. Alternatively, if you are using a Windows Vista or Windows 7 operating system 	
	 it will be: C:\Users\{user}\Documents\Keysight\Keysight VEE 9.3\Addins.

Please refer to the How EVO Works in VEE section of this document for alternatives on
the EVO configuration file path. Using this definition, if there are a few EVOs installed,
the EVO configuration file path could be full of .evo files and assemblies. This could
eventually become wieldy.

2. Using the absolute assembly’s full path, such as:
	 <Assembly>C:\MyEvo1\ExpressionGraph.dll</Assembly>
	 When the full absolute path is used and the need arises to use the program on 	
	 another PC, remember that the assembly needs to reside in the same full absolute 	
	 path. Refer to the EVO Assembly Path section of this document for details on how to 	
	 fix relevant deployment issues.

EVO assemblies path
location

Page 11Find us at www.keysight.com 	

Recommended Practices
(continued)

Avoid duplicate terminal
names

Duplicate names should be avoided within the same type of input type. For example, it is
safe to have an input terminal named “Data” and an output terminal named “Data”, but
having two input terminals both named “Data” is not recommended.

If there are duplicated names, there will be no compilation error/warning in Visual
Studio, however, when using the EVO in Keysight VEE, the data container value and
execution may result in incorrect values.

VEE EVO terminals are case sensitive. For example if there are two data input terminals
named In1 and in1, VEE EVO treats these as different terminals. This is the same for data
output terminals. If there is a data output terminal named error, it will be unique from the
VEE error output terminal. However, this naming practice is not recommended because
most of the other VEE objects (such as Formula) terminal names are not case sensitive.
In other words, In1 and in1 are the same for a Formula object. Thus avoiding the use of
terminal names that differ only by case sensitivity is strongly recommended.

Output terminal name vs.
error output terminal

Dynamic terminal

When defining an output terminal name, avoid using the name Error. Output terminal
name Error is reserved. If you name an output terminal Error, there is no compilation
error/warning in Visual Studio, however, when you execute the VEE program, a malfunction
may occur.

Dynamic terminal is useful during VEE program development, though it is recommended
that its use be avoided when running a VEE program. This is because the program may
break some terminal connections and cause unconnected pin errors. The EVO developer
may hide/disable the dynamic terminal changes using the PreRun method and then
show/enable it using the PostRun method.

When using dynamic terminal:
1. Avoid duplicate terminal names as mentioned in the Avoid Duplicate Terminal Names 	
	 section of this document.
2. Use SetObjectData/GetObjectData to handle device terminal status. This allows 	
	 previously set terminal information to be loaded when a user reopens the VEE 		
	 program. SetObjectData/GetObjectData is useful in storing and retrieving EVO state 	
	 information from saved VEE program file.

Page 12Find us at www.keysight.com 	

How Do I Debug
EVO Code?

Regardless of whether the EVO is added from a Device > Extensible Vee Objects menu,
or via the VEE customized menu, the debugging steps are identical. The same debugging
steps are applicable for running a VEE runtime program containing EVO.

There are two ways to debug EVO .NET source code.

1. Launch the VEE instance from Visual Studio. EVO is a Class Library project type, thus 	
	 it is not allowed to be started in Visual Studio when clicking on Start Debugging. Use 	
	 the following procedure to debug EVO .NET source code:

Table 4. Debugging

Step Action

1 In Visual Studio Solution Explorer, right click on the Project.

2 Select Properties.

3 In Debug > Start Action, select Start external program and
point to the VEE Pro 9.3 executable file.

If you are debugging from a VEE runtime program (.vxe), point the
start up program to the VEE Runtime 9.3 executable file and enter the
runtime program name in the Command line arguments.

4 Click Start Debugging or F5. Visual Studio brings up a VEE Pro (or
VEE Runtime) instance. Use the EVO in VEE. If you put a break point in
the EVO source code, it breaks accordingly and you may debug your
EVO source code now.

2. Go to the Visual Studio menu Debug > Attach to Process. Select the VEE Pro (or
	 VEE runtime) instance containing the EVO instance.

If there is error in loading EVO, please refer to the EVO Assembly Path section of this
document.

Page 13Find us at www.keysight.com 	

Some Notes on the
Expression Graph
Example

If there is compilation error about a missing Keysight.Vee.AddInView.dll, add the DLL
reference following the steps below:

Table 5. Adding the DLL reference

Step Action

1 Remove the Keysight.Vee.AddInView reference.
Right click on Keysight.Vee.AddInView.
Select Remove.

2 Add a reference to:
Keysight.Vee.AddInView in {VEE Installed Directory}\
AddInViews.

Typically it is: C:\Program Files\Keysight\VEE Pro 9.3\
AddInViews\Keysight.Vee.AddInView.dll.
In 64-bit OS, it could be: C:\Program Files (x86)\
Keysight\VEE Pro 9.3\AddInViews\Keysight.Vee.
AddInView.dll

3 Rebuild the solution. No compilation error should occur.
Please contact Keysight for support if other difficulties are
experienced.

Page 14Find us at www.keysight.com 	

Appendix A: Keysight.Vee.Extensibility.IExtensibleVeeObject Interface

This table lists all members in IExtensibleVeeObject interface with description.

Table 6. Properties

Name Description

Title Gets the default title of EVO. User can change it in VEE.

ControlInputs Gets the list of EVO control input terminals. It serves as the optional data input terminals. Its behavior is same
as the control input terminals of the original VEE objects. Avoid using control input terminals names if possible.

DataInputs Gets the list of EVO data input terminals.

DataOutputs Gets the list of EVO data output terminals.

DefaultWidth Gets the default width of the EVO.

DefaultHeight Gets the default height of the EVO.

ErrorOutput Gets/Sets the EVO error message. If the EVO error output terminal is added, it will be stored in that terminal;
otherwise VEE will display the message in runtime error dialog.

Table 7. Methods

Name Description

GetControl The UI control of the Extensible VEE Object. It can be Windows Forms Control or WPF window. Returns null if
there is no EVO UI.

PreRun This method executes before the VEE program starts to run.

Execute This method executes when the VEE program executes to this EVO. If there is an unhandled exception in this
method, VEE catches it and treats it as a runtime error.

PostRun This method executes right after the Execute method and before the VEE program ends.

GetCurrentApplication Gets a reference to the current instance of the Keysight VEE application, which is the root object of the
Keysight VEE automation model. It is a good practice to check that the application is not null before using it.

GetObjectData Gets the data representing the EVO state. VEE saves the data into the VEE program file.

SetObjectData When opening a saved VEE program, saved EVO state data is serialized into a string. The string data is passed
to EVO to process the state.

ShowHelp Launches the EVO help function.

InputEvoTerminalAdded This method executes after the EVO input terminal is added.

InputEvoTerminalRemoved This method executes after the EVO input terminal is removed.

ControlEvoTerminalAdded This method executes after the EVO control terminal is added.

ControlEvoTerminalRemoved This method executes after the EVO control terminal is removed.

Table 8. Events

Name Description

ModifiedSet An event to notify the VEE that there are EVO changes. When this event is fired, the VEE displays an asterisk
symbol in the program title bar.

TerminalChanged An event to notify the VEE that there is a change in input/output/control terminal.

This information is subject to change without notice. © Keysight Technologies, 2012 -2019, Published in USA, January 28, 2019, 5990-9437EN

Page 15Find us at www.keysight.com 	

Learn more at: www.keysight.com
For more information on Keysight Technologies’ products, applications or services,

please contact your local Keysight office. The complete list is available at:

www.keysight.com/find/contactus

Appendix B: EVO Configuration File (.evo)

This is the layout and description of the content of EVO configuration file (.evo).

<?xml version=“1.0” encoding=“UTF-16” standalone=“no”?>
<Extensibility xmlns=“http://www.Keysight.com/Schemas/AutomationExtensibility”>
 <HostApplication>
 <Name>Keysight VEE</Name>
 <!-- Change to appropriate VEE version, i.e. 9.3 -->
 <Version>9.3</Version>
 </HostApplication>
 <Addin>
 <!-- EVO default name displays in Device menu -->
 <FriendlyName>ExpressionGraph</FriendlyName>

 <!-- Text in status bar when the EVO menu item is highlighted in VEE -->
 <Description>Realtime expression graph</Description>

 <!-- The full path of the EVO assembly -->
 <!-- In the example below, VEE will search ExpressionGraph.dll in
Addins folder -->
 <!-- If full absolute path e.g. C:\MyProject\ExpressionGraph.dll is specified, VEE will search for the
assembly in the path specified. -->
 <Assembly>ExpressionGraph.dll</Assembly>

 <!-- The full class name of the EVO -->
 <FullClassName>Keysight.Vee.EvoExample.ExpressionGraphEvo</FullClassName>

 <!-- Currently not in use, leave it as 0 -->
 <StartUp>0</StartUp>

 <!-- Display icon picture when EVO is minimized in VEE -->
 <!-- In example below, VEE will look for info.gif in VeeInstallDir\bitmaps\myIcon folder-->
 <!-- If full absolute path is specified e.g. C:\MyIcon\info.gif, VEE will search for the icon in the path
specified. -->
 <Icon>myIcon\info.gif</Icon>

 <!-- Set to 1,to add EVO into the Device menu. If 0, the EVO will not be visible -->
 <CreateMenu>1</CreateMenu>
 </Addin>
</Extensibility>

http://www.keysight.com
http://www.keysight.com
http://www.keysight.com/find/contactus

