
HP Instrument Driver

Language Reference

ABCDE

HP Part No. E2001-90004

Printed in USA

The information contained in this document is subject to change without

notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH

REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for

errors contained herein or for incidental consequential damages in connection

with the furnishing, performance, or use of this material.

This document contains proprietary information which is protected by

copyright. All rights are reserved. No part of this document may be

photocopied, reproduced, or translated into another language without the prior

written consent of Hewlett-Packard Company.

cÍCopyright 1989, 1992 Hewlett-Packard Co.

Printing History

First Edition - July 1992

iii

Contents

1. The HP Instrument Driver

Overview . 1-1

Conventions . 1-2

Controlling an Instrument (Overview) 1-2

Parts of an HP ID . 1-4

Component Section . 1-4

Panel Section . 1-6

HP ID Example . 1-7

2. The Component Section

Overview . 2-1

General Statements . 2-2

Components and Status 2-4

A Component Description 2-5

Requirements . 2-6

Name . 2-6

Type Statement . 2-8

VALUES Statement 2-9

RANGE . 2-9

INITIAL Statement 2-10

COUPLED Statement 2-10

SET ACTIONS Compound Statement 2-11

GET ACTIONS Compound Statement 2-11

PANEL SET ACTIONS Compound Statement 2-11

PANEL GET ACTIONS Compound Statement 2-12

What a State is . 2-12

What Happens During Store State 2-13

What Happens During Recall State 2-13

Contents-1

3. The Panel Section

Overview . 3-1

Structure . 3-1

The Panel Elements . 3-2

Text . 3-4

Controls . 3-5

Displays . 3-10

Designing a Panel . 3-12

Panel Layout . 3-12

Size of Panel Elements 3-13

Positioning Panel Elements 3-13

Using Color . 3-14

General Guidelines 3-14

Other HP Conventions 3-14

Creating a Multi-Layered Panel 3-15

Displaying and Hiding Subpanels 3-16

Moving Between Subpanels 3-17

Using a DISCRETE Control 3-17

Using a BUTTON Control 3-19

4. Action Lists

Overview . 4-1

Named ACTIONS . 4-2

SET ACTIONS Statement 4-3

GET ACTIONS Statement 4-4

PANEL SET ACTIONS 4-5

PANEL GET ACTIONS 4-6

HIT ACTIONS . 4-6

UPDATE ACTIONS 4-7

Action Statements . 4-8

Instrument I/O . 4-8

OUTPUT and ENTER 4-8

FLUSH . 4-9

Component Interactions 4-9

SET and GET . 4-9

POKEINITIAL . 4-9

INVALIDATE, VALIDATE, and DONTCARE 4-9

Wait Times and Conditions 4-10

Contents-2

WAIT SPOLL BIT and WAIT TIME 4-10

HP-IB Controls . 4-11

TRIGGER . 4-11

SPOLL . 4-11

CLEAR . 4-11

Subprogram Calls . 4-11

GOSUB . 4-11

Stack Operations . 4-12

Math, Logical, and String Operators 4-12

Panel Control . 4-13

SHOW and HIDE 4-13

NOTIFY . 4-13

ENABLE and DISABLE 4-13

Program Flow . 4-13

IF . . . END IF, SELECT . . . END SELECT, and LOOP . . .

END LOOP . 4-13

Miscellaneous . 4-14

CODEGEN . 4-14

MATSCALE . 4-14

BITS . 4-14

5. Writing a Driver

Timeline in Writing a Driver 5-1

Learning the Instrument 5-2

1. Identify the controls of the instrument 5-3

2. Identify the menu structure of the instrument, if there is one 5-4

3. Isolate the various modes of the instrument 5-4

4. Identify the type of each control 5-6

5. Identify the range or values of each control 5-6

6. Identify the initial value of each control 5-7

7. Summarize the HP-IB command set 5-8

Coding the Driver . 5-9

1. Prepare a skeleton component outline 5-9

2. Prepare a skeleton panel outline 5-10

3. Developing SET ACTION and GET ACTION 5-14

4. Finishing touches 5-20

Internal components 5-20

Valid Reset State 5-20

Contents-3

Error Checking in the Driver 5-21

6. Advanced Topics

Overview . 6-1

Initializing the Driver 6-1

Reset Button . 6-2

How Recall Works . 6-3

Using HIT, UPDATE, and PANEL ACTIONS 6-4

HIT ACTIONS . 6-4

UPDATE ACTIONS 6-5

PANEL SET ACTIONS 6-6

PANEL GET ACTIONS 6-6

Summary . 6-6

Using Learn Mode . 6-7

Using Saved Components 6-9

When to Use Learn Strings 6-10

Simulating a Component 6-10

Component Interactions 6-11

Lockout Parameters 6-12

Dragged Parameters 6-12

Functional Couplings 6-14

Tips for State Recall 6-16

Without Learn String 6-16

With learn string . 6-18

7. Creating Instrument Help

Overview . 7-1

Creating a Help File . 7-1

8. Component/Action Syntax

Overview . 8-1

Interpreting the Syntax Drawings 8-1

Optional Elements and Their Defaults 8-1

Naming Rules . 8-1

Comments . 8-2

Spaces, Commas, and Other Separators 8-2

ACTIONS . 8-3

BITS . 8-14

Contents-4

CLEAR . 8-18

CLONE . 8-19

CODEGEN (HP ITG only) 8-21

COMPONENT . 8-24

COUPLED . 8-29

DISABLE . 8-31

DONTCARE . 8-33

DOWNLOAD . 8-36

ENABLE . 8-38

ENTER . 8-40

EOL . 8-45

ERROR COMPONENT 8-49

EXIT IF . 8-51

FETCH . 8-53

FLUSH . 8-58

GET . 8-60

GET ACTIONS 8-61

GOSUB . 8-63

HIDE . 8-64

IF . . . END IF . 8-66

INITIAL . 8-70

INITIALIZE COMPONENT 8-73

INVALIDATE . 8-74

LOOP . . . END LOOP 8-77

MATSCALE . 8-78

NOERRCHECK 8-82

NOGEN (HP ITG only) 8-83

NOPOKEINITIAL 8-84

NOTIFY . 8-85

NOTSAVED . 8-90

numeric expr . 8-91

numeric source . 8-92

OUTPUT . 8-95

PANEL GET ACTIONS 8-104

PANEL SET ACTIONS 8-105

POINTS . 8-107

POKEINITIAL . 8-109

PREFIX . 8-111

Contents-5

RECALL COMPONENT 8-113

REVISION . 8-115

SELECT . . . END SELECT 8-116

SET . 8-122

SET ACTIONS . 8-124

SHOW . 8-126

SKIP EOL . 8-128

SKIP ERRCHECK 8-131

SPOLL . 8-132

STORE . 8-133

STORE COMPONENT 8-136

string expr . 8-138

string source . 8-139

SYNC COMPONENT 8-141

TRACETYPE . 8-142

TRIGGER . 8-145

TYPE . 8-146

UPDATE COMPONENT 8-149

UPLOAD . 8-152

USERSUB (HP ITG only) 8-154

VALIDATE . 8-158

VALUES . 8-161

WAIT SPOLL BIT 8-164

WAIT TIME . 8-165

XINCR . 8-166

XLOG . 8-168

XMIN . 8-170

XUNIT . 8-172

YUNIT . 8-174

9. Panel Syntax

Overview . 9-1

Interpreting the Syntax Drawings 9-1

Optional Elements and Defaults 9-1

Naming Rules . 9-2

Comments . 9-2

Spaces, Commas, and Other Separators 9-2

BACKGROUND 9-3

Contents-6

BUTTON . 9-7

CONNECT . 9-10

CONTINUOUS . 9-12

DISCRETE . 9-17

DISPLAY . 9-21

FONT . 9-26

FOREGROUND 9-28

FORMAT . 9-32

GRATICULE . 9-36

HIT ACTIONS . 9-41

INPUT . 9-44

LABEL . 9-48

MARKER . 9-51

PANEL . 9-57

POSITION . 9-61

SCALE . 9-64

SIZE . 9-68

STATE . 9-70

STEP . 9-74

STYLE . 9-78

TEXT . 9-80

TITLE . 9-83

TOGGLE . 9-85

TRACE . 9-89

TYPE . 9-94

UPDATE ACTIONS 9-97

XY . 9-100

Index

Contents-7

Figures

1-1. A Simple Panel for a Multimeter 1-9

2-1. Syntax for the Component Section 2-2

2-2. Syntax of a Component 2-6

4-1. The HP ID Language Arithmetic, Logical, and String

Operators . 4-12

7-1. Product Example Uses the Topics as Selections in the List Box 7-2

Contents-8

Tables

2-1. Attributes of a Component 2-5

2-2. 2-12

5-1. 5-10

8-1. Action Statements 8-5

8-2. Binary Arithmetic Operators 8-8

8-3. Unary Arithmetic Operators 8-9

8-4. Binary Logic Operators 8-10

8-5. Unary Logic Operators 8-10

8-6. Miscellaneous Operators 8-11

8-7. STRING Operators 8-12

8-8. EÃect of STRING Operators on the Stack 8-13

8-9. Valid ENTER FORMAT SpeciÕers 8-43

8-10. Decimal-ASCII Conversions 8-47

8-11. Valid OUTPUT FORMAT SpeciÕers 8-102

9-1. Recommended Colors for Panel Elements 9-4

9-2. Engineering Suœxes Available 9-15

9-3. Recommended Colors for Panel Elements 9-29

9-4. Valid FORMAT SpeciÕers 9-33

9-5. Valid FORMAT SpeciÕers (cont.) 9-34

9-6. The Value of comp name Controls the Graticule 9-38

9-7. Relationship of MARKER TYPE with comp name 9-54

9-8. Default Trace Colors 9-93

9-9. Relationship of MARKER TYPE with comp name 9-95

Contents-9

1

1

The HP Instrument Driver

Overview

The purpose of this manual is to provide a guide for writing a Hewlett-Packard

Instrument Driver (HP ID). An HP ID is a collection of statements from

the HP Instrument Driver Language that displays the instrument panels and

controls the instrument over an interface bus (HP-IB, VXI, etc.) The HP ID

allows the user to control the instrument both interactively (through the soft

front panel) and programmatically. This language will be discussed in detail

throughout this manual. An HP ID may include an optional Help Õle that can

be read or printed by the user of the HP ID.

The HP Instrument Driver Language has proven powerful enough to describe a

wide variety of programmable instruments.

This manual assumes familiarity with the use of HP Instrument Drivers.

Note This book is written using HP ITG syntax. Instrument driver

developers are responsible for knowing the language and

limitations of their own development environment.

The HP Instrument Driver 1-1

1

Conventions

The following typefaces are used to help you understand how terms and

phrases are used:

Bold Bold indicates the introduction of new terms.

Italics Words are printed in italics for emphasis.

Computer Commands you should type or that appear in program listings

appear in a computer-style type.

ÄKeyÅ Individual keyboard keys are distinguished by the keycap-style

border around the key's name.

Controlling an Instrument (Overview)

Any instrument, such as a voltmeter, function generator, or oscilloscope, must

include some type of interface to be useful. This interface provides a set of

controls that are used to conÕgure the instrument to produce the desired

result. Every time a control is changed, the operation of the instrument is

changed to reŒect the new setting. The controls provided by the interface allow

the operator to change the state of the instrument. Some examples of controls

for instruments are the frequency control of a function generator, the voltage

setting of a power supply, and the time scale of an oscilloscope.

One type of interface is the front panels manual interface. The front panel

allows the operator to change instrument settings manually to produce the

desired state. The manual interface, however, is slow and does not allow

automation. Every time a new instrument state is desired, the settings of each

control must be changed manually, one at a time.

Because manual operation is error prone and tedious, many instruments

provide another type of interface that allows controls to be set by computer

commands. This type of interface is known as an interface bus. An interface

bus allows many diÃerent devices to talk to each other. There are many

diÃerent protocols that allow communication between devices, such as RS-232

or IEEE 488.2 (HP-IB); each one sets diÃerent standards for communication

to take place. These standards ensure that devices know when to talk and

1-2 The HP Instrument Driver

1

when to listen, but most do not deÕne a common language for all devices. As

a result, instruments typically speak their own language, which means that a

computer must be able to talk to each instrument separately. For example,

to query the frequency on an HP3314 function generator, send \QFR", but

to query and HP3325 function generator, send \FR?" With HP-IB, each

instrument is assigned to a diÃerent address and the controller must select the

proper address to send a command to the instrument.

The interface bus allows a computer to change the settings of an instrument

quickly|much quicker than the manual front panel interface allows. However,

to write a program to change these settings, the programmer must have a

knowledge of the language the instrument uses, that is, the programmer must

know what commands to send to the instrument to change the correct control

to the proper setting. By controlling the instrument over the interface bus,

settings can be quickly changed and states quickly recovered. This set of

commands, known as the command set, has syntactical and other rules that the

programmer must adhere to.

The HP ID combines the speed, accuracy, and automation of the interface

bus and the convenience of the front panel interface. Using an HP ID, the

operator no longer needs to be concerned with the command set syntax of

the instrument, instead, the HP ID knows how to communicate with the

instruments it is controlling. The control information is provided in the form of

a Õle called an instrument driver.

Note If you're serious about writing an HP ID, it will help to have

an HP 59401A Bus System Analyzer or equivalent on hand to

debug HP IB transactions generated by the driver.

The HP Instrument Driver 1-3

1

Parts of an HP ID

This section describes in detail the diÃerent parts of an HP ID.

All HP IDs consist of two parts: a component section and a panel section.

The component section describes how the HP ID will communicate with the

instrument; the panel section describes how the HP ID will communicate with

the user through the soft front panel, the user interface for the HP ID.

A minimum HP ID must include:

A REVISION statement at the top of the HP ID.

At least one component declaration.

A main panel. Panels nest inside one another, therefore, any additional

panels must be included as subpanels under the main panel.

The REVISION statement indicates which version of HP ID Language was

used to write the HP ID. For instance, HP IDs that use the SYNC feature

must announce themselves as requiring REVISION 2.0, since the SYNC feature

was unavailable before 2.0. Currently, all HP IDs should be written with

REVISION 2.0.

Component Section

The component section of an HP ID is a series of component declarations. A

component is a placeholder for a value of a given control in the instrument. A

component is similar to a variable in a programming language like BASIC or

C. For example, suppose that you are writing an HP ID for a multimeter and

want to allow the user of the HP ID to change the function and take a reading;

declare two components, function and reading. First function:

COMPONENT Function;

TYPE DISCRETE;

VALUES DCV, ACV, OHM;

INITIAL DCV;

END COMPONENT;

This component declaration can be thought of as a declaration of the variable

\function". (Case is not important.) \TYPE DISCRETE" means that the

1-4 The HP Instrument Driver

1

value for \function" must come from a list of values, here DCV, ACV, and

OHM. When the multimeter is reset, function will revert to its initial value,

DCV.

The component declaration for reading is

COMPONENT Reading;

TYPE CONTINUOUS;

END COMPONENT;

\TYPE CONTINUOUS" says that this value can be any real number.

So far, these components are just variable declarations, as in BASIC; they

only hold a value. If you want the user to be able to change function or take

a reading, add SET and GET ACTIONS inside the component declarations.

SET ACTIONS are executed when the user wishes to change the value of the

component. GET ACTIONS are executed when the user wishes to ask the

instrument for a reading.

Here is our completed function component:

COMPONENT Function;

TYPE DISCRETE;

VALUES DCV, ACV, OHM;

INITIAL DCV;

SET ACTIONS:

OUTPUT Function TABLE "FN0", "FN1", "FN2";

END ACTIONS;

GET ACTIONS;

OUTPUT STRING "FN?";

ENTER Function FORMAT 'K';

END ACTIONS;

END COMPONENT;

Now, when the user of this HP ID changes the function to something like

ACV, the value of function gets changed to ACV, then the SET ACTIONS are

executed. The OUTPUT TABLE statement causes one string to be sent to the

instrument. If the value of function is DCV (the Õrst value in the VALUES

statement), then \FN0" (the Õrst string in the OUTPUT TABLE statement) is

sent. If the value of function is ACV, then \FN1" would be sent, and so on.

The HP Instrument Driver 1-5

1

If the user wants to ask the instrument \What is the current function?", then

the GET ACTIONS are executed. This sends \FN?" to the instrument, which

responds with a 0, 1, or 2, interpreted as DCV, ACV, and OHM, respectively.

Each component of the HP ID corresponds to a diÃerent control on the

instrument, usually on a one to one basis. Order of the components in the Õle

is important only for state recall, which will be covered later. The most often

used components should be at the top since components are searched from

top to bottom. That is why \READING" is usually the Õrst component in a

multimeter or counter HP ID.

Each component will have a name, type, and initial value, and most will have

SET or GET ACTIONS, as well.

Panel Section

The panel section of the HP ID describes the soft front panel, the user interface

for the HP ID. Usually, the panel section is easy to write and follows the menu

structure of the instrument's HP-IB command set. That is, the panel section

will include a subpanel for every diÃerent menu path on the HP-IB command

set. Although it is possible to write an HP ID that does not reŒect the HP-IB

command set menu structure, there are several good reasons to follow the

structure:

The overhead is much less. When an HP ID is written with a diÃerent menu

structure than the instrument has, extra code is almost always involved.

For users of the HP ID that are already familiar with the HP-IB operation of

the instrument, the panels will be easier to use.

Very often, the HP-IB interface to the instrument is designed with a similar

menu structure to that of the front panel interface. If this is the case, the

panels of the HP ID will end up appearing and behaving similarly to the

front panel of the instrument.

Instrument menu structures are not developed at random. They are

developed to Õt the functionality of the instrument. Writing an HP ID to

follow the menu structure preserves this functionality.

1-6 The HP Instrument Driver

1

Panels are nested one inside another and the outside panel, usually called root

or main, must appear after the last component in the HP ID. Each panel

contains one or more \widgets", or controls, that correspond to components

in the HP ID. The type of each control is associated with the type of each

component in the HP ID. Each \widget" controls one component from the

component section. Occasionally, one component will have more than one

widget associated with it. For example, an autoranging multimeter may have a

discrete range control and an autorange on/oÃ control.

As the user of the HP ID clicks on the widgets in the panel section, the HP ID

executes the SET or GET action statements for the component tied to that

widget.

HP ID Example

The following example illustrates the basics of building an HP ID.

In our example code, we have created a simple HP ID that lets the user control

the function and range controls on the multimeter, then take a reading. The

multimeter needs three components: function, range, and reading. As you SET

the values of these components, the HP ID sends commands over the HP-IB to

ensure that the multimeter is in the same state as the HP ID. It is also possible

to query the instrument as to its current function, range, or reading. Querying

is done by executing GET ACTIONS.

The panel section places all three components on the main panel.

The HP Instrument Driver 1-7

1

Here is a simple HP ID for the multimeter. Figure 1-1 shows the panel it

produces.

REVISION 2.0;

COMPONENT Reading;

TYPE CONTINUOUS;

GET ACTIONS;

TRIGGER;

ENTER Reading FORMAT 'K';

END ACTIONS;

END COMPONENT;

COMPONENT Function;

TYPE DISCRETE;

VALUES DCV,ACV,OHM;

INITIAL DCV;

SET ACTIONS;

OUTPUT Function TABLE "FNO","FN1","FN2";

END ACTIONS;

GET ACTIONS;

OUTPUT STRING "FN?";

ENTER Function FORMAT 'K';

END ACTIONS;

END COMPONENT;

COMPONENT Range;

TYPE DISCRETE;

VALUES "30mV", "300mV", "3V", "30V", "300V";

INITIAL "3V";

SET ACTIONS;

OUTPUT Range TABLE "RAO", "RA1", "RA2", "RA3", "RA4";

END ACTIONS;

GET ACTIONS;

OUTPUT STRING "RA?";

ENTER Range FORMAT 'K';

END ACTIONS;

END COMPONENT;

(Continued)

1-8 The HP Instrument Driver

1

PANEL Multimeter;

POSITION 1,1;

SIZE 214,213;

DISPLAY Reading;

POSITION 80, 180;

TITLE "Reading";

FORMAT "5DIGITS";

END DISPLAY;

DISCRETE Function;

POSITION 80, 150;

TITLE "Function";

END DISCRETE;

DISCRETE Range;

POSITION 80, 120;

TITLE "Range";

END DISCRETE;

END PANEL;

Figure 1-1.

A Simple Panel for a

Multimeter

The HP Instrument Driver 1-9

1

Here are some important points to remember about HP IDs:

You must have a REVISION statement at the top.

Component declarations come before panel declarations.

Component declarations do not nest one inside the other, but panel

declarations do. This is because a panel may contain other subpanels (panels

within panels).

The typical SET ACTIONS is just an output statement.

The typical GET ACTIONS is an output or a query followed by an ENTER.

If additional programmatic power is needed for a more complicated

instrument, the actions can become quite advanced, including

IF/THEN/ELSE and SELECT/CASE statements, calls to subprograms, and

so on.

1-10 The HP Instrument Driver

2

2

The Component Section

Overview

The component section is the portion of the HP ID that controls the

instrument.

The component section is divided into two parts:

1. General statements that specify typical attributes of the HP ID. These

include EOL (end of line), initialization, error detection, command preÕx

information, version information, and custom state control. You can have

one of each of the general statements anywhere in the component section.

2. A series of compound statements. The statements within each compound

statement describe the component and include one or more sets of action

lists. You can have as many components statements as you want.

Action lists are compound statements in which you provide a list of statements

that the HP ID executes such as an ENTER.

An action list may be deÕned in a component description as a SET or GET

action or separately outside of a component as a named action list.

In general, action statements primarily aÃect instrument I/O and component

interactions.

The Component Section 2-1

2

Figure 2-1. Syntax for the Component Section

General Statements

There are nine general statements, of which only the REVISION is required.

HP suggests that all HP IDs use the INITIALIZE COMPONENT and ERROR

COMPONENT statements. Use of the other general statements is optional,

depending on the particular instrument involved. These general statements are:

The REVISION statement.

This is the required statement and must be the Õrst non-commented

statement of the HP ID. REVISION is used to keep track of the version of

the HP ID Language.

2-2 The Component Section

2
The INITIALIZE COMPONENT statement.

Allows you to specify a component whose SET ACTIONS are executed

whenever the user loads the HP ID or pushes the \Reset" button.

The EOL statement.

Allows you to specify an OUTPUT end-of-line (EOL) sequence if your

instrument requires one that diÃers from the default. The default is carriage

return, line feed, no EOI.

The ERROR COMPONENT statement.

Allows the HP ID to query the instrument to see if there was an error after

each instrument transaction.

The RECALL COMPONENT statement.

Allows you to specify a component whose SET ACTIONS are executed at

the beginning of a state recall.

The STORE COMPONENT statement.

Allows you to specify a component whose SET ACTIONS are executed when

a state is stored.

The UPDATE COMPONENT statement.

Allows you to specify a component whose GET ACTIONS will be executed

repetitively as long as there is no cursor movement or other actions lists

being executed. The UPDATE component is generally used to provide

interactive updates on reading or XY displays.

The PREFIX statement.

Allows you to address cards in a card-cage instrument. The PREFIX string

is sent to the instrument before a SET action or GET action is executed.

The SYNC statement.

Allows you to specify a component whose GET ACTIONS will be executed

whenever the user of the HP ID requests that the HP ID \sync up" with

the current state of the instrument. The HP ID should attempt to query

the state of the instrument, updating the HP ID without changing the

instrument.

The Component Section 2-3

2 Components and Status

A component is a place holder for a value, much like a variable in BASIC

or C. Component declarations contain more than just a variable declaration,

however.

A component also has a status associated with it. A component's status is

always one of the following three:

Valid (VALID).

Invalid (INVALID).

Don't care (DONTCARE).

The value of a component and its status are independent. Generally, if a

component is VALID, its value matches that of the corresponding control in

the instrument. If a component is INVALID, its value may not be the same as

that of the corresponding control. If a component is DONTCARE, the value

of the corresponding control is currently not important to the operation of the

instrument.

The component description must contain the following:

A name.

The type of data that will be associated with the component.

A component description may also contain the following:

The valid values and an initial value.

The actions necessary to control the instrument (that is, send and receive

information).

A list of components that are coupled to the current component (that is,

their value depends on the value of the current component).

The following table illustrates some of the attributes of a component.

2-4 The Component Section

2
Table 2-1. Attributes of a Component

Instrument Feature Component Name Component Type Valid Values Initial Value

DMM function FUNCTION DISCRETE DCV, ACV, . . . DCV

Source frequency FREQUENCY REAL 0 - 20E6 10000.0

DMM reading READING REAL | |

Oscilloscope waveform TRACE RARRAY | |

A Component Description

A component description is a compound statement (see Õgure 2-2) containing a

series of statements that specify the attributes of the component. A component

description begins with the keyword COMPONENT and ends with END

COMPONENT.

The Component Section 2-5

2

Figure 2-2. Syntax of a Component

Requirements

Each component description must have a name immediately following the

keyword COMPONENT. All components except those speciÕed as CLONE

must have a TYPE statement. The rest of the statements are optional (except

TYPE DISCRETE components, for which VALUES is required).

Name

The component name must start with an alpha character, A-Z or a-z. After

that character, it may be followed by any mix of alphanumeric characters,

either upper or lower case, or by an underscore. The syntax in not case

sensitive.

Immediately after the name, you can include the following optional keywords:

2-6 The Component Section

2
CLONE

CLONE speciÕes that the component is identical to another component in

all attributes except name. Following the keyword CLONE is the name of

the component that is being cloned. A CLONE component description is

just a single statement. For example:

COMPONENT Switch2 CLONE Switch1;

If the component Switch1 is speciÕed as NOTSAVED, NOGEN,

NOPOKEINITIAL, and/or NOERRCHECK, then the component Switch2

is deÕned the same way. Additionally, all actions are identical.

NOTSAVED

NOTSAVED speciÕes that the HP ID should not include the value of the

component when the user stores or saves a panel setup as a state in the

development environment. If a component is not speciÕed as NOTSAVED,

the HP ID always saves its value. NOTSAVED is typically used on

dummy components that contain a value but do not relate to any setting

in the instrument

menu components that change panels but do not have any impact on the

instrument

components that implement some automatic setup feature of the

instrument

components that hold readings returned from the instrument

NOGEN

NOGEN is applicable to HP ITG only.

NOGEN speciÕes that the HP ID should not generate any code that

references the component. If a component is not speciÕed as NOGEN,

HP ITG generates code in the editor window involving the component when

the user has turned on Log HP ITG Calls. Again, menu components and

dummy components should be NOGEN.

The Component Section 2-7

2
NOERRCHECK

NOERRCHECK speciÕes that the HP ID should not perform default

error checking after executing any actions initiated by this component.

For example, components that set up triggering in multimeters may want

to avoid an error check, since the bus traœc for the error check might

cause unpredictable triggers (see \ERROR COMPONENT" in chapter 8,

\Component/Action Syntax").

NOPOKEINITIAL

NOPOKEINITIAL speciÕes that the POKEINITIAL statement (usually

present in the INITIALIZE COMPONENT) does not aÃect this component.

That is, normally a POKEINITIAL statement will set every component

to its initial value. If a component speciÕes NOPOKEINITIAL, then

execution of a POKEINITIAL will not aÃect the value of this component.

NOPOKEINITIAL is useful only in rare situations on complex instruments

where a RESET of the instrument does not reset the value of a particular

component.

Type Statement

The HP ID uses the information in the TYPE statement to determine how

much memory to allocate for the component's value. You can select from the

following types:

DISCRETE

The component can have a value that is selected from a predeÕned list of

labels.

INTEGER

The component can have a value that is a 16-bit integer, from -32768 to

32767.

CONTINUOUS

The component can have a value that is a 64-bit real number.

STRING

The component can have a string value that is not more than 256 characters.

2-8 The Component Section

2
IARRAY

The component can have a value that is a one- or two-dimensional array of

integers.

RARRAY

The component can have a value that is a one- or two-dimensional array of

real numbers.

ITRACE

The component can have a value that is a one- or two-dimensional array of

integers. It also may have further information on attributes of the data.

RTRACE

The component can have a value that is a one- or two-dimensional array of

reals. It also may have further information on attributes of the data.

VALUES Statement

The VALUES statement allows you to specify a list or range of allowable values

for the component. When the user is using the HP ID in the development

environment, the VALUES statement restricts the values that the user can

enter. The VALUES statement is required for TYPE DISCRETE components

where it is used to list the allowed values.

RANGE

For INTEGER and CONTINUOUS type components, you can specify a

RANGE that marks the lowest and highest allowable values.

Part of the RANGE speciÕcation includes a step size that can be either linear

or logarithmic. This step size is used to round the value given by the user to

the nearest legal value for the instrument.

An optional part of the RANGE speciÕcation is AUTO. You can include this

keyword at the end of the RANGE speciÕcation if your instrument has an

autoranging feature associated with this component.

The Component Section 2-9

2 INITIAL Statement

The INITIAL statement allows you to specify an initial value for the

component as well as an initial status, for example, INVALID or DONTCARE.

When a POKEINITIAL statement is executed in an action list, the HP ID sets

all the components with an INITIAL statement to their INITIAL value and

status, unless NOPOKEINITIAL is speciÕed.

If a component doesn't include an INITIAL statement, the default status is

VALID and the default value is determined by these rules:

DISCRETE components are set to the Õrst value in the VALUES list.

STRING components are set to " ", that is, null.

All other components are set to 0.

COUPLED Statement

The COUPLED statement is designed to simplify handling the relationship

between diÃerent components. COUPLED is used when changing the value

of one component, like center frequency, might change the value other other

components, like start and stop frequency. In the COUPLED statement, you

specify the name of one or more components. When the HP ID executes the

SET ACTIONS of the component containing the COUPLED statement, it does

the following:

In the development environment, executes the GET ACTIONS of all

components speciÕed in the COUPLED statement.

In the run-time environment, invalidates components speciÕed in the

COUPLED statement.

During a recall state, COUPLED has no eÃect.

In general, if you have two components, A and B for example, and changing

the value of A may change the value of B, you should include the statement

COUPLED B;

in the A component's description.

2-10 The Component Section

2SET ACTIONS Compound Statement

The HP ID executes the statements in this action list when the component's

value is set (that is, when the user changes a component's value). If the

component is associated with a control, it usually needs at least a SET

ACTIONS list.

GET ACTIONS Compound Statement

The HP ID executes the statements in this actions list when the instrument is

requested to provide a value for the component (that is, when the user asks

the instrument for this value). If the component represents a measurement or

query, it usually needs only a GET ACTIONS list.

PANEL SET ACTIONS Compound Statement

The HP ID executes the statements in this action list after it executes the

component's SET ACTIONS list, if there is one. If there is not a SET

ACTIONS list, then the HP ID executes the PANEL SET ACTIONS list in its

place. The HP ID executes this list only in the development environment.

The PANEL SET ACTIONS list is provided to perform extra actions that

make the panel easier to use. These actions do not need to be executed when

you run programs you develop with the development environment.

For example, if the instrument might round the value, then a PANEL SET

ACTIONS might look like

PANEL SET ACTIONS;

GET Compname;

END ACTIONS;

which would query the rounded value from the instrument so that the panel is

correct. During run time, this is not needed, so putting it in a PANEL SET

ACTIONS list avoids the overhead of the query.

The Component Section 2-11

2 PANEL GET ACTIONS Compound Statement

The HP ID executes the statements in this action list after it executes the

component's GET ACTIONS list, if there is one. If there is not a GET

ACTIONS list, then the HP ID executes the PANEL GET ACTIONS list in

its place. The PANEL GET ACTIONS are only executed in the development

environment.

The PANEL GET ACTIONS list is provided to perform extra actions that

make the panel easier to use but do not need to be executed when you run

programs generated from the development environment.

What a State is

A state is a collection of the values and status of each component in the HP ID

that is needed to set up the instrument. In our multimeter example in chapter

1, a state might be as follows:

Table 2-2.

Component Value Status

Reading ? INVALID

Range 3V VALID

Function ACV VALID

This is one state of the instrument, and we can store this state and give it a

name, for example, \AC 3V". In this state, the Range is 3V, and the status is

VALID, so we expect that the Range component and the Range control in the

instrument are the same. Reading, however, is INVALID, and so we say that

we don't know what the value is, and the display shows \?".

Notice that Reading is not important for setting up the state of the instrument.

We do not send Reading to the instrument in order to set it up for a diÃerent

measurement. Therefore, we can put the word NOTSAVED in the component

2-12 The Component Section

2
declaration for Reading, which means that Reading is not part of the state of

the instrument.

COMPONENT Reading NOTSAVED;

...

END COMPONENT;

What Happens During Store State

When a state is stored, a list is built with the value and status of each

component that is not NOTSAVED. So, let's say that we store two states, one

ACV, 30V and one DCV, 3V. HP ID writers need not concern themselves with

maintaining this list.

What Happens During Recall State

Assume that the multimeter is in state ACV, 30V and we want to go to state

DCV, 3V. So, we recall the state DCV, 3V.

The saved components are scanned in the order they appear in the HP ID,

marking as INVALID those whose values diÃer from the desired value in

the desired state. Both Function and Range are marked as INVALID here.

Reading is speciÕed as NOTSAVED, therefore, it is skipped. Next, recall

makes another pass through each saved component and executes a SET on each

component marked as INVALID during the Õrst pass. This executes the SET

ACTIONS statements in that component, causing the HP ID to send FN0 and

RA2 to the multimeter; this also causes Function and Range to be marked as

VALID. The multimeter is now in the state DCV, 3V.

Suppose that we recall a state of DCV, 30V. Then recall goes through the same

two passes of the components, but this time Function is already set to the

desired value, so it is not marked as INVALID. On the second pass, only the

new range is sent, RA3.

This example demonstrates the power of state recall in reducing bus traœc by

tracking the state of the instrument and sending the fewest HP-IB commands

The Component Section 2-13

2
needed to achieve a state transition. This allows the test developer to deÕne

the states needed in the application without regard to the previous or next

state that will be needed. The HP ID sends the fewest commands necessary to

reach the new state regardless of the current state.

Note For complete information on recalling a state, refer to \How

Recall Works" in chapter 6, \Advanced Topics."

2-14 The Component Section

3

3

The Panel Section

Overview

The panel section is the portion of the HP ID that builds a panel in the

development environment. When a program developer uses the HP ID in

the development environment, the interactions with the panel control the

instrument and generate instrument-control code.

When in a run-time mode, the HP ID does not execute the action lists

associated with the panels (such as UPDATE ACTIONS and HIT ACTIONS).

This means that there is no overhead associated with the panel section of the

HP ID and the program executes faster. It follows, then, that UPDATE and

HIT ACTIONS should not be used for anything necessary in the run-time

environment.

Structure

The panel section follows the component section in the HP ID. The panel

section is one large compound statement that begins with PANEL and ends

with END PANEL.

Within the PANEL . . . END PANEL compound statement, you add

statements to design the panel (see chapter 9, \Panel Syntax"). These

statements are divided into three categories:

Attributes

Attributes includes the name, size, and position of the panel, as well as

text and Õll colors.

The HP ID Language provides defaults for most of these attributes so that

you need specify them only if you wish to vary from the default.

The Panel Section 3-1

3

Panel elements

These are predeÕned elements that you use to build a panel. They include

text Õelds, various controls, and displays.

The panel elements are compound statements in which you can specify the

attributes of the element.

These attributes vary from element to element. The HP ID Language

provides defaults for most of these attributes so that you specify them only

if you wish to vary from the default.

The name you give to a panel element links that element to a component

whose action lists are executed when the user interacts with the element.

Actions

There are two action lists that can be used with certain panel elements.

If a HIT ACTIONS list is speciÕed, the HP ID executes this list instead of

its default behavior for the panel element.

If an UPDATE ACTIONS list is speciÕed, the HP ID executes this list

whenever the view of the associated component changes.

You can nest PANEL . . . END PANEL statements within the main one,

creating a multi-layered panel. You can use all the panel elements in both the

main and nested PANEL . . . END PANEL statements. The nested panels are

called subpanels in this manual.

The Panel Elements

The HP ID Language provides a set of predeÕned elements from which you

select when designing a panel. These elements fall into three categories:

Text Õelds: These allow you to generate text on a panel. You can use this

capability to label the other elements, increasing the overall friendliness of

the panel.

Controls: These allow the user to control an instrument and generate

instrument-control code.

3-2 The Panel Section

3

Displays: These provide a way for you to display data from an instrument.

Usually, when you use a panel element other than TEXT, you'll need to

associate it with a component description. This means that the name following

the panel element must be the same as a component name of the right

TYPE. Many panel elements can only be associated with certain TYPEs of

components. A panel element provides a view of the value of the component.

You can use the same component for several diÃerent panel elements. For

example, you can create a Frequency control that appears on Õve diÃerent

subpanels. In the HP ID, there would be one component description for

Frequency, but it would be referenced in a panel element description in Õve

subpanels.

The Panel Section 3-3

3

Text

TEXT is the only panel element in this category. When you use this element,

specify the text and where you want it displayed on the panel. You can also

specify the font, area-Õll color, and line color if you don't want to use defaults.

TEXT is usually used to label the controls and displays on the panel. TEXT

does not require a matching component name.

REVISION 2.0;

PANEL MAIN;

TEXT "Auto Trig";

POSITION 8,98;

END TEXT;

END PANEL;

3-4 The Panel Section

3

Controls

The BUTTON control allows you to create a push button on an instrument

panel. When a BUTTON is pushed, the HP ID immediately executes

the SET ACTIONS associated with that button. BUTTON requires a

matching INTEGER component. You can include a HIT ACTIONS list in a

BUTTON . . . END BUTTON compound statement.

REVISION 2.0;

COMPONENT Reset;

TYPE INTEGER;

END COMPONENT;

PANEL MAIN;

BUTTON Reset;

POSITION 10,98;

LABEL "Reset";

END BUTTON;

END PANEL;

The Panel Section 3-5

3

The TOGGLE control is a two-position control. It selects one of the two values

available for instrument controls that have two values. Pushing the TOGGLE

button toward a setting executes that setting's SET ACTIONS. TOGGLE

requires a matching DISCRETE component.

REVISION 2.0;

COMPONENT SlopeA;

TYPE DISCRETE;

VALUES POS,NEG;

END COMPONENT;

PANEL MAIN;

TOGGLE SlopeA;

POSITION 96,70;

LABEL "Pos","Neg";

END TOGGLE;

END PANEL;

3-6 The Panel Section

3

The DISCRETE control allows you to specify a set of valid values from which

the user can select. DISCRETE requires a DISCRETE component.

REVISION 2.0;

COMPONENT Function;

TYPE DISCRETE;

VALUES DCV,ACV,OHMS;

END COMPONENT;

PANEL MAIN;

DISCRETE Function;

POSITION 134,29;

LABEL "DCV","ACV","OHMS";

END DISCRETE;

END PANEL;

The Panel Section 3-7

3

The CONTINUOUS control allows you to specify a range of valid values.

CONTINUOUS requires either an INTEGER or CONTINUOUS component.

REVISION 2.0;

COMPONENT IntTrigLevelA;

TYPE CONTINUOUS;

END COMPONENT;

PANEL MAIN;

CONTINUOUS IntTrigLevelA;

POSITION 90,47;

STYLE "NOENGR";

FORMAT "SD.DD";

END CONTINUOUS;

END PANEL;

3-8 The Panel Section

3

The INPUT control allows you to create a Õeld in which the user can enter

text. INPUT requires a STRING, CONTINUOUS, or INTEGER component.

REVISION 2.0;

COMPONENT UserInput;

TYPE STRING 10;

END COMPONENT;

PANEL MAIN;

INPUT UserInput;

POSITION 90,47;

TITLE "Input";

END INPUT;

END PANEL;

The Panel Section 3-9

3

Displays

The DISPLAY panel element provides one or more lines where the display can

show measurement or status data from the instrument. DISPLAY requires a

CONTINUOUS, INTEGER, DISCRETE, or STRING component.

REVISION 2.0;

COMPONENT Reading;

TYPE CONTINUOUS;

END COMPONENT;

PANEL MAIN;

DISPLAY Reading;

POSITION 2,145;

FONT 15,25;

FORMAT "D.DDDDDDD";

END DISPLAY;

END PANEL;

3-10 The Panel Section

3

The XY element displays array data from the instrument. You can optionally

specify a matching INTEGER component. You can include a HIT ACTIONS

list in an XY . . . END XY compound statement.

REVISION 2.0;

COMPONENT TraceA;

TYPE RARRAY 1,5;

END COMPONENT;

COMPONENT Acquire;

TYPE INTEGER;

END COMPONENT;

COMPONENT Current;

TYPE INTEGER;

END COMPONENT;

PANEL MAIN;

XY Acquire;

POSITION 5,5;

SCALE 1,5,-3,3;

GRATICULE FRAME;

TRACE TraceA;

MARKER Current;

TYPE POINT;

END MARKER;

END TRACE;

END XY;

END PANEL;

The Panel Section 3-11

3

Designing a Panel

This section discusses several of the most important attribute statements.

Please refer to chapter 9, \Panel Syntax," for complete information on all the

panel statements.

The following discussion is fairly general. Note that there are subtle diÃerences

in the attribute statements, depending on the panel element.

Panel Layout

The HP ID generates a title bar that spans the top of each instrument panel.

This title bar contains the name the user enters when adding the panel to a

soft test system as well as the HP-IB address of the instrument. The title bar

also contains two icons:

A box on the left. Clicking on it displays the panel menu.

An arrow on the right. Clicking on it reduces the panel to an icon.

3-12 The Panel Section

3

Size of Panel Elements

The SIZE statement allows you to specify the size of a panel or panel element.

The default size of a panel is 214 by 213 pixels.

The HP ID determines the default size of a panel element based on the

font and length of the longest item that will be displayed. For example, to

determine the default size of a BUTTON, we use the following formulas:

width = (LEN(LABEL) Â font width) + 4

height = font height + 4

LABEL is the text that is displayed inside the BUTTON. The default font

width is 9; the default font height is 15. If you do not want to use the font

defaults, you can specify a width and height using the FONT statement.

Some panel elements accept the FORMAT and STYLE statements. These

allow you to specify how you want numbers displayed. FORMAT requires a

string in which you insert image speciÕers. The STYLE statement allows you

to specify that engineering preÕxes not be used (for example, k for kilo, m for

milli). When used, both the FORMAT and STYLE statements may aÃect the

default size of the panel element.

Positioning Panel Elements

The POSITION statement allows you to specify the position of either a

subpanel on the main panel or a panel element on the main panel or subpanel.

Specify the position in pixels relative to the lower left corner of the panel.

The default position for most panel elements is 1,1, meaning one pixel over and

one pixel up from the bottom left corner of the panel. Obviously, if you use the

default position for more than one panel element, the elements will overlap

on the panel. Therefore, you should plan to specify a position for each panel

element.

The Panel Section 3-13

3

Using Color

You can use the the FOREGROUND and BACKGROUND statements to

specify the area-Õll, text, and border colors for the panel or panel element.

However, the default colors are recommended for consistency between panels.

General Guidelines

Hewlett-Packard recommends the following guidelines, which were established

during the development of the HP IDs:

Position displays in the upper left portion of the panel.

For XY displays, position any controls associated with the XY display to

the right of the display or across the bottom if there is room. (See \XY" in

chapter 9, \Panel Syntax" for information on the default colors for the XY

traces.)

All controls except BUTTONs and TOGGLEs should be identiÕed by a

TEXT or TITLE Õeld to their left.

Control boxes should be at least three pixels apart so they don't appear too

close together.

Other HP Conventions

All HP IDs produce panels that provide a Reset BUTTON, which is located in

the top left portion of the panel, above any displays. The Reset component

3-14 The Panel Section

3

that is associated with the Reset BUTTON contains a SET ACTIONS list that

contains a POKEINITIAL statement. When the user clicks on this button, the

HP ID conÕgures the instrument and the HP ID to the speciÕed initialization

state (see chapter 6, \Advanced Topics").

Most HP IDs also provide a menu control in the top right portion of the

panel. You can use this menu control to go from subpanel to subpanel, with

each subpanel providing a diÃerent set of controls and displays. See the next

section, \Creating a Multi-Layered Panel," for information on creating a

multi-layered panel.

Creating a Multi-Layered Panel

An instrument panel can include one or more subpanels, allowing you to create

a multi-layered panel. This is valuable because most instruments contain many

more functions than can Õt on one panel. Subpanels allow you to replace one

set of controls and displays with another.

As mentioned earlier, the panel section really consists of one large PANEL

compound statement. In the following example, Parent is the name of the

main panel, and Sub1 is a subpanel of Parent.

The Panel Section 3-15

3

The subpanel containing text, NEW, is the default size for subpanels.

REVISION 2.0;

INITIALIZE COMPONENT Reset;

COMPONENT Reset;

TYPE INTEGER;

SET ACTIONS;

SHOW Sub1;

END ACTIONS;

END COMPONENT;

PANEL Parent;

PANEL Sub1;

FOREGROUND (0,0,0) 0;

TEXT 10,20,"NEW";

END PANEL;

END PANEL;

Displaying and Hiding Subpanels

The SHOW and HIDE action statements control which subpanels are displayed

in the development environment.

When you specify a panel in a SHOW statement, the subpanel is displayed if

the parent panel is currently being shown. When the HP ID executes a HIDE

statement, it hides the subpanel speciÕed. The main panel can never be hidden

because there is no outer panel in which it is nested.

3-16 The Panel Section

3

Note To display a subpanel when a panel is Õrst loaded into the

development environment, use the INITIALIZE COMPONENT

statement.

Moving Between Subpanels

You can use either a BUTTON or DISCRETE control to allow the user to

access the diÃerent subpanels. When you use a BUTTON control, the subpanel

is displayed when the user clicks on the button. When you use a DISCRETE

control, a listbox is displayed from which the user can select a subpanel to be

displayed.

Using a DISCRETE Control

Here is the code needed to implement a Sweep subpanel and a Phase subpanel

using a DISCRETE control.

REVISION 2.0;

INITIALIZE COMPONENT Reset;

COMPONENT Reset;

TYPE INTEGER;

SET ACTIONS;

POKEINITIAL;

SET Menu;

END ACTIONS;

END COMPONENT;

COMPONENT Menu;

TYPE DISCRETE;

VALUES Sweep,Phase;

INITIAL Sweep;

SET ACTIONS;

SELECT Menu:

CASE Sweep;

HIDE Ph_panel;

SHOW Sw_panel;

CASE Phase;

HIDE Sw_panel;

SHOW Ph_panel;

(Continued)

The Panel Section 3-17

3

END SELECT;

END ACTIONS;

END COMPONENT;

PANEL Main;

PANEL Sw_panel;

TEXT 10,20,"SWEEP";

FOREGROUND (0,0,0) 100;

END PANEL;

PANEL Ph_panel;

TEXT 10,20,"PHASE";

FOREGROUND (0,0,0) 100;

END PANEL;

DISCRETE Menu;

POSITION 72,188;

END DISCRETE;

END PANEL;

3-18 The Panel Section

3

Using a BUTTON Control

Here is the code needed to implement a Sweep subpanel and a Phase subpanel

using a BUTTON control.

REVISION 2.0;

INITIALIZE COMPONENT Reset;

COMPONENT Reset;

TYPE INTEGER;

SET ACTIONS;

SHOW Sw_panel;

END ACTIONS;

END COMPONENT;

COMPONENT Phase;

TYPE INTEGER;

SET ACTIONS;

HIDE Sw_panel;

SHOW Ph_panel;

END ACTIONS;

END COMPONENT;

COMPONENT Sweep;

TYPE INTEGER;

SET ACTIONS;

HIDE Ph_panel;

SHOW Sw_panel;

END ACTIONS;

END COMPONENT;

PANEL Main;

PANEL Sw_panel;

TEXT 10,10,"SWEEP PANEL";

FOREGROUND (0,0,0) 100;

(Continued)

The Panel Section 3-19

3

BUTTON Phase;

POSITION 70,40;

TITLE "Go to:";

END BUTTON;

END PANEL;

PANEL Ph_panel;

TEXT 10,20,"PHASE PANEL";

FOREGROUND (0,0,0) 100;

BUTTON Sweep;

POSITION 70,40;

TITLE "Go to:";

END BUTTON;

END PANEL;

END PANEL;

3-20 The Panel Section

4

4

Action Lists

Overview

An action list is a compound statement in which you specify the actions that

the HP ID must execute. These action lists are executed when SETs or GETs

are done on a component.

You can call other action lists from within an action list, as well as specify

general action lists that can be called from any action list. This is necessary

because most instruments have interrelated functions.

There are seven places where you can use an action list:

1. Named outside of a component.

2. Unnamed SET ACTIONS in a component.

3. Unnamed GET ACTIONS in a component.

4. Unnamed PANEL SET ACTIONS in a component.

5. Unnamed PANEL GET ACTIONS in a component.

6. Unnamed HIT ACTIONS in a panel element.

7. Unnamed UPDATE ACTIONS in a panel element.

Creating action lists accounts for the majority of the time spent creating an

HP ID. The HP ID Language provides over 20 action statements that you can

use in an action list. These statements cover the following:

instrument I/O

component interactions

wait times and conditions

HP-IB controls

subprogram and subroutine calls

stack operations and calculations

panel control

program Œow

miscellaneous

Action Lists 4-1

4

Named ACTIONS

The ACTIONS . . . END ACTIONS compound statement allows you to deÕne

an action list that can be associated with many diÃerent components or panel

elements.

You can substitute the ACTIONS name for an actions list when you create any

unnamed action lists. For example, if two components require the same SET

ACTIONS list you could use the following code rather than writing them out

twice.

ACTIONS Common_actions;

OUTPUT A FORMAT K;

OUTPUT B FORMAT K;

END ACTIONS;

COMPONENT A;

TYPE INTEGER;

SET ACTIONS Common_actions;

END COMPONENT;

COMPONENT B;

TYPE INTEGER;

SET ACTIONS Common_actions;

END COMPONENT;

Within an actions list, you can use the GOSUB action statement to call an

action list. For example:

ACTIONS Freq0;

FETCH 0;

STORE FREQ;

END ACTIONS;

COMPONENT A;

TYPE INTEGER;

SET ACTIONS;

OUTPUT A FORMAT K;

GOSUB Freq0;

END ACTIONS;

END COMPONENT;

4-2 Action Lists

4

SET ACTIONS Statement

The SET ACTIONS . . . END ACTIONS compound statement can be used in

a component description; it allows you to create a SET ACTIONS list. The

action statements in this list are executed when a SET is done from the HP ID

Language, or when the user of the HP ID changes the value of the component,

or when state recall must change the value of the component.

Here's an example of a SET ACTIONS list:

COMPONENT Function;

TYPE DISCRETE;

VALUES DCV,ACV;

INITIAL DCV;

SET ACTIONS;

OUTPUT Function TABLE "FN0","FN1";

END ACTIONS;

GET ACTIONS;

OUTPUT STRING "FN?";

ENTER Function FORMAT 'K';

END ACTIONS;

END COMPONENT;

In the following example, a named actions list is speciÕed in the SET

ACTIONS statement.

ACTIONS Common_actions;

OUTPUT IMPEDANCE_1 FORMAT K;

END ACTIONS;

!

COMPONENT IMPEDANCE_1;

TYPE DISCRETE;

VALUES ON,OFF;

SET ACTIONS Common_actions;

END COMPONENT;

Action Lists 4-3

4

GET ACTIONS Statement

The GET ACTIONS . . . END ACTIONS compound statement can be used in

a component description; it also allows you to create a GET ACTIONS list.

The action statements in this list are executed when the user of the HP ID

asks for the value of a component, or when a GET is done from the HP ID

Language itself, or when a COUPLED statement causes a GET.

You are responsible for including the action statements necessary to query the

instrument or instruct it to make a measurement and return the value. You are

also responsible for calling any other action lists that must be executed as a

result of the value returned.

Here's an example of a GET ACTIONS list:

COMPONENT Function;

TYPE DISCRETE;

VALUES DCV,ACV;

INITIAL DCV;

SET ACTIONS;

OUTPUT Function TABLE "FN0","FN1";

END ACTIONS;

GET ACTIONS;

OUTPUT STRING "FN?";

ENTER Function FORMAT 'K';

END ACTIONS;

END COMPONENT;

In the following example, a named actions list is speciÕed in the GET

ACTIONS statement:

ACTIONS Common_actions;

OUTPUT STRING "FN?";

ENTER Function FORMAT 'K';

END ACTIONS;

COMPONENT Function;

TYPE DISCRETE;

VALUES DCV,ACV;

INITIAL DCV;

SET ACTIONS;

OUTPUT Function TABLE "FN0", "FN1";

END ACTIONS;

GET ACTIONS Common_actions;

END COMPONENT;

4-4 Action Lists

4

PANEL SET ACTIONS

The PANEL SET ACTIONS . . . END ACTIONS compound statement can

be used in a component description, allowing you to create a PANEL SET

ACTIONS list. PANEL SET ACTIONS are executed after SET ACTIONS.

Use this action list to perform actions needed to keep the panel up-to-date.

Since this action list is executed only in the development environment, these

actions won't slow execution during run time. The most commonly used

statements in a PANEL SET ACTIONS list include:

SHOW and HIDE

Allow you to specify which panels are displayed based on selections the user

has made.

NOTIFY

Allows you to specify a message that is displayed when the user selects a

particular control.

Here's an example of a PANEL SET ACTIONS list.

COMPONENT Function;

TYPE DISCRETE;

VALUES DCV,ACV;

INITIAL DCV;

SET ACTIONS;

OUTPUT Function TABLE "FN0","FN1";

END ACTIONS;

PANEL SET ACTIONS;

SELECT Functions;

CASE DCV;

HIDE Filter_panel;

CASE ACV;

SHOW Filter_panel;

END SELECT;

END ACTIONS;

END COMPONENT;

Action Lists 4-5

4

PANEL GET ACTIONS

The PANEL GET ACTIONS . . . END ACTIONS compound statement can

be used in a component description, allowing you to create a PANEL GET

ACTIONS list. PANEL GET ACTIONS are executed after GET ACTIONS.

Use this action list to perform actions needed to keep the panel up-to-date.

Since this action list is executed only in the development environment, these

actions won't slow down execution during run time.

Here's an example of a PANEL GET ACTIONS list:

COMPONENT AUTO_RANGE;

TYPE DISCRETE;

VALUES ON,OFF;

! .

! .

! .

PANEL GET ACTIONS;

GET RANGE;

END ACTIONS;

END COMPONENT;

HIT ACTIONS

The HIT ACTIONS . . . END ACTIONS compound statement can be used

in the description of a BUTTON, DISPLAY, or XY panel element. The

statement also allows you to create a HIT ACTIONS list.

Normally, when a user clicks on a BUTTON or DISPLAY, the HP ID performs

the following:

Generates an HP ITG subprogram call in the editor window if Log HP ITG

Calls is on.

Performs a SET on the component associated with the BUTTON and a GET

on the component associated with the DISPLAY.

CODEGEN is available with the HP ITG soft test system only.

However, if the panel element includes a HIT ACTIONS list, the HP ID

does not perform any of the actions listed above. With a HIT ACTIONS list

4-6 Action Lists

4

speciÕed, you must include the CODEGEN statement in the list if you want

HP ITG to generate code when the user clicks on the panel element with Log

HP ITG Calls on. If you want to set the value of the component, you must

include the SET statement in the list.

A HIT ACTIONS list gives you complete control over what the HP ID does

when the user uses the instrument panel. For example, in the listing below, the

HIT ACTIONS list speciÕes the panel be hidden before the new value of the

component is set.

Here's an example of a HIT ACTIONS list:

BUTTON OK_SWEEP_PANEL;

POSITION 116,6;

SIZE 58,19;

LABEL "Done";

HIT ACTIONS;

HIDE SWEEP_PNL;

SET OK_SWEEP_PNL;

CODEGEN POKE TIMER;

CODEGEN POKE SAMPLE_EVT;

CODEGEN SET NRGDS;

END ACTIONS;

END BUTTON;

Since HIT ACTIONS are not executed in the run-time environment, HP

suggests that they be used only for HIDE, SHOW, and other operations not

aÃecting the state of the instrument.

UPDATE ACTIONS

The UPDATE ACTIONS . . . END ACTIONS compound statement can be

used in the description of any panel element except XY and TEXT; it allows

you to create an UPDATE ACTIONS list.

The HP ID only executes the UPDATE ACTIONS list for the panel element

when the view of the component changes.

Action Lists 4-7

4

Here's an example of an UPDATE ACTIONS list.

DISCRETE FUNCTION;

POSITION 80,150;

UPDATE ACTIONS;

SELECT FUNCTION;

CASE DCV;

HIDE Filter_panel;

CASE ACV;

SHOW Filter_panel;

END SELECT;

END ACTIONS;

END DISCRETE;

Since UPDATE ACTIONS are not executed in the run-time environment, HP

suggests that they be used only for HIDE, SHOW, and other operations not

aÃecting the state of the instrument.

Action Statements

Following is a description of common action statements and their implications.

Instrument I/O

OUTPUT and ENTER

The OUTPUT statement is used to send commands to the instrument.

The ENTER statement is used to input data from the instrument and assign

the values entered to the components. ENTER is most commonly used in GET

ACTIONS lists.

4-8 Action Lists

4

FLUSH

Normally, all output strings are buÃered. The FLUSH statement causes

everything in the buÃer to be sent to the instrument. The following example

causes the HP ID to send FN0 as a separate bus transaction rather than

sending FN0RA0 all at once.

ACTIONS Common;

OUTPUT STRING "FN0";

FLUSH;

OUTPUT STRING "RA0";

END ACTIONS;

Component Interactions

Following is a description of common component interactions and their

implications.

SET and GET

The SET and GET statements are used to execute the action lists of a

component.

SET is typically used after a value is stored into a component. It executes

the SET ACTIONS list of the speciÕed component, then the PANEL SET

ACTIONS, if present.

GET is typically used to request that the instrument send the value of a

component. GET executes the GET ACTIONS list of the speciÕed component,

then the PANEL GET ACTIONS, if present.

POKEINITIAL

The POKEINITIAL statement sets the value and status of all components

with initial values as speciÕed in the INITIAL statement (see \INITIAL"

in chapter 8, \Component/Action Syntax"). Usually, only the INITIALIZE

COMPONENT uses POKEINITIAL.

INVALIDATE, VALIDATE, and DONTCARE

INVALIDATE, VALIDATE, and DONTCARE statements explicitly control the

status of a component's value.

Action Lists 4-9

4

A component is always in one of the following states:

Valid: The HP ID's value for the component is the same as the instrument's.

A component usually becomes valid when its value is sent to the instrument.

The VALIDATE statement allows you to specify that a particular

component's value is valid.

Invalid: The HP ID's value for the component is not necessarily the same as

the instrument's value.

The INVALIDATE statement allows you to specify that a particular

component's value is invalid.

Don't care: The value of the component is not part of the current instrument

state.

The DONTCARE statement allows you to specify that a particular

component's value should not be used when recalling a state. You can

reverse this by using a VALIDATE or INVALIDATE statement.

Wait Times and Conditions

Following is a description of common component wait times and conditions and

their implications.

WAIT SPOLL BIT and WAIT TIME

WAIT SPOLL BIT and WAIT TIME statements allow you to create a HP ID

that will provide for settling delays in the instrument if the instrument does

not provide for them itself.

The WAIT SPOLL BIT statement causes the HP ID to delay execution of

the next statement until it receives a serial poll bit true (ready bit) from the

instrument.

The WAIT TIME statement causes the HP ID to wait a speciÕed number of

seconds before executing the next statement.

4-10 Action Lists

4

HP-IB Controls

Following is a description of HP-IB controls and their implications.

TRIGGER

The TRIGGER statement sends a group execute trigger (GET) to the

instrument.

SPOLL

The SPOLL statement performs a serial poll of the instrument and pushes the

result onto the stack.

CLEAR

The CLEAR statement sends a selected device clear to the instrument.

Subprogram Calls

Following is a description of subprogram calls and their implications.

GOSUB

The GOSUB statement allows you to call a named action list as a subroutine

of an action list.

Action Lists 4-11

4

Stack Operations

Following is a description of stack operations and their implications.

Math, Logical, and String Operators

These commands form the basis of a stack machine. The operators obtain their

operands from the stack and return the result to the stack. You can use the

FETCH statement to specify a source whose value you want to put on top of

the stack. You can use the STORE statement to get a value from the top of

the stack and put it in a destination. Figure 4-1 shows all operators valid in

the HP ID Language. Refer to \ACTIONS" in chapter 8, \Component/Action

Syntax," for a description of these operators.

Figure 4-1. The HP ID Language Arithmetic, Logical, and String Operators

4-12 Action Lists

4

Panel Control

Following is a description of panel controls and their implications. Typically,

these statements are used only in PANEL SET ACTIONS, PANEL GET

ACTIONS, HIT ACTIONS, and UPDATE ACTIONS lists.

SHOW and HIDE

The SHOW and HIDE statements allow you to control which subpanels are

displayed at any given time.

NOTIFY

The NOTIFY statement allows you to display a message to the user.

ENABLE and DISABLE

The ENABLE and DISABLE statements provide control over which values in a

DISCRETE component are currently valid. For example, if your power supply

does not have a relay option installed, you can disable the relay panel choice on

the DISCRETE component that controls which panel is shown.

Program Flow

Following is a description of program Œow control statements and their

implications.

IF . . . END IF, SELECT . . . END SELECT, and LOOP . . . END LOOP

The IF . . . END IF statement provides conditional execution of alternate

sections of code based on the speciÕed value. If the value is not zero, then the

THEN clause is executed; otherwise, the ELSE clause, if present, is executed.

The SELECT . . . END SELECT statement allows for a multi-branch in

code execution. Please refer to the syntax for the SELECT statement for

complete information on which type of CASE can be used with which TYPE of

components.

The LOOP and END LOOP statements deÕne a loop structure that can be

exited with one or more EXIT IF statements.

You can nest IF, SELECT, and LOOP statements ten deep.

Action Lists 4-13

4

Miscellaneous

Following is a list of miscellaneous information.

CODEGEN

CODEGEN is available with the HP ITG soft test system only.

The CODEGEN statement allows you to override the default code generation

and specify which HP ITG subprograms HP ITG generates when the user

selects a panel element and Log HP ITG Calls mode is on.

MATSCALE

The MATSCALE statement allows you to instruct the HP ID to perform

mx+b arithmetic on the data in an array or track component, for example,

RARRAY and ITRACE.

BITS

The BITS statement provides a way of building a bit pattern from a series of

sources. The HP ID puts the extracted bit pattern on top of the stack. To

build a bit pattern from separate sources requires an uninterrupted sequence of

BITS statements.

4-14 Action Lists

5

5

Writing a Driver

Timeline in Writing a Driver

It takes time to write a useful HP ID. The time in writing, testing and

documenting a good HP ID is directly proportional to the complexity of the

instrument. You can expect to spend the following amount of time developing

drivers for instruments with the following complexity:

Simple instrument: 2-4 weeks (HP3437, HP5384 HP IDs)

Moderately complex instrument: about 2 months (HP3314, HP3458 HP IDs)

Complex instrument: about 3 months (HP54501, HP71000 HP IDs)

The design phase is the most important phase in the development of an HP ID.

If the design phase is done well, it is fairly straightforward to code the HP ID.

Note The following deÕnitions are used heavily in the text. An

understanding of these terms and the distinctions between

them will aid in reading the remainder of this manual.

instrument control - instrument controls reside on the instrument and aÃects

instrument operation. A control is changed by using an interface, usually either

the front panel or the HP-IB interface bus. A control usually has a set of valid

settings, such as on or oÃ, associated with it.

instrument command - an instrument command is a keyword or token sent

over the HP-IB interface bus that causes the instrument to change a particular

control to a new setting. Usually, but not always, an instrument command will

be associated directly with a control on the instrument on a one-to-one basis.

Writing a Driver 5-1

5

instrument state - an instrument state is a set of values, each one

corresponding to a setting of a particular control. Every control on the

instrument is represented once and only once. The collection of all possible

states of the instrument includes every operating conÕguration that the

instrument can be used in.

interface - an instrument interface is what allows the controls of the instrument

to be changed.

Learning the Instrument

The Õrst step that must be taken in writing an HP ID is learning the operation

of the instrument. Both the front panel of the instrument and the HP-IB

command set need to be mastered. The HP-IB operation of the instrument will

inŒuence the component section of the HP ID because the HP-IB command set

provides the HP ID communication with the instrument. In addition, the front

panel operation of the instrument can help with the lay out the panel section of

the HP ID.

One good way to learn the instrument's HP-IB programming language is to

write BASIC programs that do certain tasks for which the instrument can be

used. For example, write a program for an oscilloscope using the autoscale

feature to set up a trace on the scope screen, asking for measurements, etc.

The advantage of learning the instrument in this way is exposure to the

details of the HP-IB command set and, once the HP ID is done, reusing the

development environment to write the same programs. The HP-IB traœc

generated by the development product should be comparable to the code you

originally wrote, providing an easy way to measure the eœciency of the HP ID.

Pay special attention to the details while learning the instrument's operation.

It's better to Õnd out what will work and what won't work now rather than

later in the middle of testing. For example, some features of the instrument

may be impossible to use over the HP-IB and some HP-IB features may not

reside on the front panel anywhere. The function of some of the commands

over the bus may not be the same as the same features on the front panel. You

need to know whether instruments with a menu-driven front panel and/or

softkeys have an HP-IB command set that reŒects the same menu structure.

5-2 Writing a Driver

5

Some commands are valid only at certain times. Consider these factors before

writing the HP ID to minimize the time in HP ID coding and testing.

The next seven sections summarize the procedure that should be followed to

learn the instrument and eÃectively anticipate HP ID design problems:

1. Identify the controls of the instrument

This is usually an easy task to do from the front panel, however, sometimes it

can be tricky matching HP-IB commands to instrument controls. The best

approach is to assign the controls of the instrument (frequency, controls,

voltage controls, etc.) to HP-IB commands and queries. Therefore, controls for

which there are no HP-IB commands or queries are impossible to implement

into an HP ID because there is no way for the HP ID to interact with the

instrument to SET or GET the value of a certain control.

Usually, every control on the instrument will correspond to one HP-IB

command, possibly with numbers or parameters for each of the possible

settings. For example, on a function generator, AM0 and AM1 turn amplitude

modulation oÃ and on. The commands FN0 through FN4 may set the type

of function (sine, square, etc.) to be generated. This should suggest to the

HP ID writer that there are two controls: one for amplitude modulation with

two possible settings, and one for function with Õve possible settings. The

HP-IB commands AM and FN are the interface to the instrument controls for

amplitude modulation and function type.

Scanning the instrument's command set won't always indicate which

commands relate to separate controls on the instrument. On the HP 54502/3A

Digitizing Oscilloscopes, there is a control that turns channel 1 oÃ or on.

However, over the interface bus, the command VIEW CHAN1 turns the

channel on and the command BLANK CHAN1 turns the channel oÃ. Although

the commands may appear diÃerent, the functionality is the same, and the

HP-IB commands VIEW and BLANK are actually interfaces to the same

control on the instrument.

Writing a Driver 5-3

5

2. Identify the menu structure of the instrument, if there is one

A menu structure in the HP-IB command set is usually easy to spot. When

a certain command must be preÕxed with a keyword, or if the manual says

the command is only valid in a certain menu, there is a menu structure in

the HP-IB command set. Once the menu structure has been identiÕed, it

sometimes helps to write it out. Following is an example of a menu structure

from the HP 54111D digitizing oscilloscope:

Main level

Chan1

Chan2

Timebase

Trigger

Edge

Pattern

State

Time

Events

Delta-V

...

In each menu, HP-IB commands exist that are not valid, or work diÃerently, in

a diÃerent menu.

Always include any menu path with the HP-IB command. Then the command

will work no matter when it is sent to the instrument. For example, to change

channel 1 sensitivity, above, the command CHAN1 SENS must be used instead

of just SENS. If just SENS was used and the oscilloscope happened to be in the

timebase menu, the time sensitivity would be changed instead.

Most of the simple and moderately complex instruments do not have a menu

structure. The more complex instruments, however, usually do.

3. Isolate the various modes of the instrument

An instrument mode holds the value for the current setting of its present

function. For example, in a digitizing oscilloscope, the user has a choice of

triggering in edge, pattern, or state mode. In edge trigger mode, there is a

choice of triggering on the rising or falling edge of the signal. However, in the

pattern trigger mode, the oscilloscope will trigger whenever the logic levels

of the channels match the speciÕed pattern, for example, when channel 1 is

5-4 Writing a Driver

5

high and channel 2 is low. The current setting of the edge control makes no

diÃerence in the operation of the oscilloscope when set in the pattern trigger

mode. Therefore, both edge and pattern qualify as modes of the oscilloscope.

When either edge mode or pattern mode is selected, an additional control is

necessary to determine the state of the whole instrument. The additional

control also has no impact on the operation of the instrument when the edge or

pattern mode is not selected.

Instruments with a menu structure in their HP-IB command set often require

that the instrument be in the correct menu in order to send any commands in

that menu to the instrument. Usually, however, the settings of the controls in a

certain menu will still aÃect the operation of the instrument when a diÃerent

menu is selected. Since the controls still have an aÃect, each menu choice does

not qualify as a separate mode of the instrument, because the controls under

each menu are still valid in other menus, even though the HP-IB commands are

not.

A diÃerent way to look at the diÃerence between instrument menus and

instrument modes is as follows: instrument menus refer to whether HP-IB

commands are valid or not, whereas instrument modes indicate whether the

control itself is valid, that is, whether the control on the instrument will have

any impact on the operation of the instrument. An instrument mode will

frequently have an instrument menu associated with it. When the control is

not valid on the instrument, the corresponding HP-IB command will also not

be valid. On the other hand, not all instrument menus will have an instrument

mode associated with them.

Instrument modes present a special concern to the HP ID writer. The controls

under a certain mode are not valid in other modes. To change the value of

one of these controls, the mode must be changed Õrst. Changing a menu at

any time will not aÃect the operation of the instrument. However, since this

is a mode, the actual operation of the instrument will change when a control

under it is changed. To make matters more complex, during the run-time

environment, the user could unknowingly change the mode of operation of the

instrument by changing a control under the mode. The HP ID needs to take

this into account (see \Developing SET ACTION and GET ACTION" later in

this chapter).

Writing a Driver 5-5

5

4. Identify the type of each control

Most controls in the instrument will be integers, reals, or discrete (a set of

choices). Other types, such as strings or arrays, are not so common. Decide

what type each control in the instrument is.

5. Identify the range or values of each control

Every control on the instrument should have an absolute maximum and an

absolute minimum value. Determine these values before writing the HP ID

to reduce problems later. Keep in mind that sometimes the maximum and

minimum values of a control will change depending on the settings of other

controls on the instrument. A soft range is a range that \Œoats" according to

the settings of other parameters. For example, the HP 54111D HP ID has a

probe adjustment control. For its initial setting of 1:1 probe adjustment, the

channel sensitivity will have a range of 1 mV to 5 V. However, with a probe

adjustment of 10:1, the sensitivity will range from 10 mV to 50 V. Therefore,

the range of values for channel sensitivity depends on the setting of the probe

adjustment control. The HP ID was written to accommodate the absolute

minimum and maximum values for the channel sensitivity control.

It is possible to use soft ranges in the HP ID so that the correct maximum

and minimum values are reŒected in the HP ID at all times. To use a soft

range this way, the HP ID writer must spend some time trying to Õgure

out the algorithm that is used by the instrument to determine the ranges

for each control. For example, the channel sensitivity range in the HP

54111D is directly proportional to the probe adjustment setting and inversely

proportional to the number of screens being displayed. The implementation

of these algorithms in the actual HP ID can be complex and sometimes lead

to conŒicts with other components due to couplings and GETs that must be

added. The use of soft ranges is time-consuming and adds extra code to the

HP ID. For complex HP IDs, it is easier to use absolute limits with veriÕcation

in the PANEL SET ACTIONS. An alternative is to couple the components

that hold the soft limits to any component that may change the range of

allowable values.

For discrete controls, there will be a set of choices for which the control can be

set instead of a range of choices. In some cases, the available discrete choices

can change depending on the settings of other components in the HP ID. The

5-6 Writing a Driver

5

values list should include every possible choice for the control. If certain values

are not valid at all times the disable/enable command is used to turn oÃ/on

discrete options at appropriate times.

6. Identify the initial value of each control

Every control on the instrument needs to have an initial value. The initial

value on powerup is sometimes not correct if the instrument can remember its

old setting when it is turned oÃ. Most instruments usually have a reset button

or an HP-IB command that will reset the instrument. The initial value will

then be the value of the control when the entire instrument is reset.

In rare cases, an instrument may have a control \survive" an instrument

reset and turn the instrument oÃ. Such controls present special headaches

if found too late in the writing process. Take time to reset the instrument,

change the value of the control, and reset the instrument again FOR EACH

CONTROL! If any controls have diÃerent values after the two resets they

are of the survive-a-reset type. Components of this type will have no initial

value and you will have to work around this problem when writing the HP ID.

Generally, you will need to mark each such component as NOPOKEINITIAL,

and possibly do a GET of each such component at the end of the INITIALIZE

COMPONENT's SET ACTIONS.

Writing a Driver 5-7

5

7. Summarize the HP-IB command set

Every control that you decide to include in the HP ID will have an HP-IB

command associated with it. Take the time to summarize the command set

in the following form for easy reference. The following example illustrates an

oscilloscope command set:

Control: Timebase sensitivity

HP-IB command: TIME:SENS <real number>

command? Y query? Y

Valid menu: Timebase menu (Notice the TIME prefix in HP-IB command)

Valid mode: None - the control is always valid

Type: Real number

Range of values: 100 ps to 5 s

Initial value: 1 us

Survive a reset? No

Control: Trigger pattern logic, channel 1

HP-IB command: TRIG:MODE:PATTERN:LOGIC { LOW | HIGH | DONTCARE }

command? Y query? Y

Valid menu: Trigger/Pattern menu (pattern menu is a sub-menu of the

trigger menu)

Valid mode: Trigger/Pattern (control, not just the HP-IB command, is

valid only in pattern trigger mode)

Type: Discrete

Range of values: LOW, HIGH, DONTCARE

Initial value: LOW

Survive a reset? No

Note \Valid menu" is the menu, if any, that the instrument must be

in for the command to be valid.

\Valid mode" is the mode, if any, that the instrument must be

in for the control to be valid.

5-8 Writing a Driver

5

Coding the Driver

The component section and the panel sections of the HP ID are usually

developed in parallel, that is, as another component is added, the panel widget

that goes with that component is added, too.

It helps while writing the HP ID code to periodically check the code with the

HP ID compiler. This is a tool that locates errors in the HP ID.

1. Prepare a skeleton component outline

Recall that every component in the HP ID must have a name and a type. It is

good practice to include an initial value. Use the information in the previous

table and assign exactly one component to each control to quickly create

a skeleton HP ID. Usually it is helpful to name each component something

similar to the control it represents, and to group components in the same

menus and modes together. The HP ID will have many components that look

like the following component:

COMPONENT FOO;

TYPE <Foo_type>;

VALUES <Foo_values>;

INITIAL <Foo_initial_value>;

END COMPONENT;

Note that component type determines the values statements syntax.

Writing a Driver 5-9

5

2. Prepare a skeleton panel outline

After a new component is added, the corresponding panel widget should also

be added in the panel section. The Õve diÃerent panel widgets: continuous,

discrete, toggle, button and input, are directly related to the component type.

The following table assigns panel widget types to component types:

Table 5-1.

Component type Widget type

INTEGER CONTINUOUS, INPUT

CONTINUOUS CONTINUOUS, INPUT

DISCRETE DISCRETE,TOGGLE (for binary components)

STRING INPUT

RARRAY TRACE on an XY

IARRAY TRACE on an XY

A BUTTON widget is usually assigned to an INTEGER component, but no

data is entered with the button widget. When the user clicks on the button,

the value of the component is set to 1 and the SET ACTIONS are executed.

RARRAY and IARRAY components are usually used only to receive data from

the instrument, and so do not have an input widget for the panel section. To

allow an RARRAY or IARRAY component to be read from the instrument, a

dummy integer component can be created with the following SET ACTIONS:

COMPONENT DATA_ARRAY;

TYPE IARRAY <size>;

INITIAL INVALID;

GET ACTIONS

...

SET ACTIONS

END COMPONENT;

(Continued)

5-10 Writing a Driver

5

COMPONENT DUMMY_COMPONENT;

TYPE INTEGER;

INITIAL INVALID;

SET ACTIONS;

GET DATA_ARRAY;

END ACTIONS;

END COMPONENT;

Then the DUMMY COMPONENT can be assigned to a button on the panel

of the HP ID. When the user clicks on the panel button, the development

environment will execute the SET ACTIONS of the DUMMY COMPONENT,

which will get the array from the instrument.

The panel section of the HP ID consists of panels nested inside one another.

Each widget that is added to the HP ID will have to be inside one of these

panels. An easy way to design the panel structure of the HP ID is to follow

the menu structure of the instrument's HP-IB command set. This information

will be at your Õngertips if the table described in the previous section was

completed. A good procedure in developing the panel section is:

1. Declare the panels Õrst, naming each panel similar to the menu/mode it

represents to prevent confusion. For an instrument that has two diÃerent

menus that contain voltage and frequency controls, the panel structure

would then resemble the following:

PANEL ROOT;

PANEL VOLTAGE_SETTINGS;

END PANEL;

PANEL FREQUENCY_SETTINGS;

END PANEL;

END PANEL;

The root panel must always be included in any HP ID, so for an instrument

with no menu structure only the root panel is necessary.

2. Add the widgets, one corresponding to each component, to the appropriate

panel or subpanel. If the HP-IB command associated with a control is only

valid in a certain menu, then the widget associated with the component that

contains that HP-IB command will be put in the corresponding panel.

Keep in mind that, once you have subpanels in the HP ID, you must add

code in the RESET COMPONENT to SHOW or HIDE the appropriate

panels. Only the root panel is automatically shown. The use of a menu

Writing a Driver 5-11

5

component with SHOWs and HIDEs can be useful, also, as shown in the

following HP ID:

COMPONENT RESET NOTSAVED NOGEN;

TYPE INTEGER;

INITIAL DONTCARE;

SET ACTIONS;

CLEAR;

OUTPUT STRING "RESET;";

FLUSH;

POKEINITIAL;

END ACTIONS;

PANEL SET ACTIONS;

SET MENU;

END ACTIONS;

COMPONENT MENU;

TYPE DISCRETE;

VALUES CHAN1, CHAN2, TIMEBASE;

PANEL SET ACTIONS;

HIDE CHAN1_PANEL;

HIDE CHAN2_PANEL;

HIDE TIME_PANEL;

SELECT MENU;

CASE CHAN1;

SHOW CHAN1_PANEL;

CASE CHAN2;

SHOW CHAN2_PANEL;

CASE TIME;

SHOW TIME_PANEL;

CASE ELSE;

SHOW CHAN1_PANEL;

END SELECT;

END ACTIONS;

END COMPONENT;

(Continued)

5-12 Writing a Driver

5

PANEL MAIN_PANEL;

POSITION 1,1;

SIZE 214,213;

PANEL Top1_panel;

POSITION 0,182;

SIZE 214,31;

FOREGROUND (255,255,255),100;

BUTTON Reset;

POSITION 3,6;

SIZE 50,19;

LABEL "Reset";

BACKGROUND (0,130,70),0;

END BUTTON;

DISCRETE Menu;

POSITION 88,6;

BACKGROUND(75,0,240),0;

SIZE 121,19;

LABEL "Channel 1", "Channel 2", "Timebase";

END DISCRETE;

END PANEL;

PANEL CHAN1_PANEL;

POSITION 1,1;

SIZE 212,180;

END PANEL;

PANEL CHAN2_PANEL;

POSITION 1,1;

SIZE 212,180;

END PANEL;

PANEL TIME_PANEL;

POSITION 1,1;

SIZE 212,180;

END PANEL;

END PANEL;

The main menu component uses UPDATE ACTIONS as the means for

accomplishing the appropriate SHOWs and HIDEs every time the component

is updated in panel mode only. The action list should Õrst HIDE all the

Writing a Driver 5-13

5

subpanels, then SHOW the appropriate one. If this method is not used, the

panels may Œash every time the main menu component is changed.

3. Developing SET ACTION and GET ACTION

For every component in an HP ID that corresponds to a control on the

instrument (excluding dummy components or other special components) there

should also be both SET and GET ACTIONS whenever possible. Sometimes,

however, the GET ACTIONS cannot be programmed because there is not

an HP-IB command to query the instrument. The GET ACTIONS should

always be included if there is an instrument query available. Without any

GET ACTIONS, it becomes impossible to automate the testing of the HP ID

or make a live query of the instrument value. Thus, any testing must be done

manually, which is time-consuming and not very accurate.

Every SET/GET ACTION list that sends a command to, or queries a value

from, the instrument must use the OUTPUT and ENTER statements (see

\ENTER" and \OUTPUT" in chapter 8, \Component/Action Syntax").

In addition, some actions will have to include modiÕcations to account for

instrument modes and menus.

The Õrst step in writing the SET/GET ACTIONS of a component is to

implement the HP-IB command/query in the component. For real or integer

components, the syntax is simple. For example:

SET ACTIONS;

OUTPUT Component_name FORMAT '"<HP-IB command> ",K,";"';

END ACTIONS;

GET ACTIONS;

OUTPUT STRING "<HP-IB query>";

ENTER Component_name FORMAT K;

END ACTIONS;

5-14 Writing a Driver

5

For discrete components, the following structure can be used for the SET/GET

ACTIONS:

SET ACTIONS;

OUTPUT STRING "<HP-IB command> ";

OUTPUT Component_name TABLE 'Choice1;','Choice2;', ... ,'ChoiceN;';

END ACTIONS;

GET ACTIONS;

OUTPUT STRING "<HP-IB query>";

ENTER CHARSTRING FORMAT "AAAA...."; ! Enter String

SELECT CHARSTRING;

CASE "<String1>";

FETCH (Component_name)Value1;

CASE "<String2>";

FETCH (Component_name)Value2;

...

CASE "<StringN>";

FETCH (Component_name)ValueN;

CASE ELSE;

FETCH Component_name;

END SELECT;

STORE Component_name;

END ACTIONS;

The previous GET ACTIONS use the dummy component \charstring" to read

a string from the instrument, then compare charstring to the diÃerent possible

instrument responses to fetch the correct discrete value for Component name

onto the stack. Next, the value is stored into the component by the STORE

statement. Remember, when using string comparisons with a development

product, the strings must be of equal length or the comparison is automatically

false. Therefore, the length of String1, String2, . . . , StringN in the select

statement must match the number of As in the enter statement.

The same charstring component can be used for all the GET ACTIONS for all

the components. Its form is the following:

COMPONENT CHARSTRING NOTSAVED NOGEN NOERRCHECK;

TYPE STRING 255;

INITIAL INVALID;

END COMPONENT;

The CASE ELSE statement is necessary in the GET ACTIONS of the discrete

component to prevent an error message from happening in non-live mode. In

Writing a Driver 5-15

5

non-live mode, the output and enter statements in the GET ACTIONS will

not be executed, but the select statement will be. The contents of component

charstring will not be valid and, if the CASE ELSE statement is not there, the

development product will issue an error message. It does this when there is not

a match for the value on the stack in the CASE selections in the construct,

which for a non-live mode query is a null string or a 0.

The SET/GET ACTIONS for IARRAY or RARRAY components are not as

simple because the exact format of output statements and enter statements

depends on the application and the instrument. See the system documentation

for details on reading in array components.

The <HP-IB command> in the above examples refers to the HP-IB command

that is sent to the instrument. The tables you created summarizing the

HP-IB command set will have the appropriate entry. Note that any preÕx

to the command that selects the appropriate menu for the command to be

valid should be included in <HP-IB command>. This guarantees that the

component can be used regardless of what the current menu setting in the

instrument is.

The last step in completing the SET/GET ACTIONS is to allow for

any instrument modes that the instrument may have. One problem with

instrument modes is diœculty returning them to their original mode when they

have been changed to a second mode. For example, suppose the instrument

is currently operating in a certain mode and you want to SET or GET a

component/control in a diÃerent mode. Part of the HP-IB command string

that the component sends out must include a preÕx that places the instrument

in the correct mode that contains the control you want to SET/GET. Once the

control has been SET or queried, the instrument remains in the new mode of

operation. You can't output an HP-IB command that returns the instrument

to its original mode, because you don't know what the original mode was. The

solution is to execute the SET ACTIONS of the mode component that contains

information regarding the original mode of operation. Now you have resolved

the problem: the development environment has a correct state, the component

has been SET/queried, and the instrument is still in the original mode of

operation.

5-16 Writing a Driver

5

An example of proper mode manipulation from the HP 54111D HP ID is:

COMPONENT TRIGGER_MODE;

TYPE DISCRETE;

VALUES EDGE,PATTERN,STATE,TIME,EVENTS;

INITIAL EDGE;

SET ACTIONS;

OUTPUT STRING "TRIG MODE ";

OUTPUT TRIGGER_MODE TABLE 'EDGE;','PAT;','STAT;','TDLY;','EDLY;';

END ACTIONS;

GET ACTIONS;

OUTPUT STRING "TRIG MODE?";

ENTER CHARSTRING FORMAT "AAAA";

SELECT CHARSTRING;

CASE "EDGE";

FETCH (TRIGGER_MODE)EDGE;

CASE "PAT ";

FETCH (TRIGGER_MODE)PATTERN;

CASE "STAT";

FETCH (TRIGGER_MODE)STATE;

CASE "TDLY";

FETCH (TRIGGER_MODE)TIME;

CASE "EDLY";

FETCH (TRIGGER_MODE)EVENTS;

CASE ELSE;

FETCH TRIGGER_MODE;

END SELECT;

STORE TRIGGER_MODE;

END ACTIONS;

END COMPONENT;

COMPONENT EDGE_TRIGGER_SOURCE;

TYPE DISCRETE;

VALUES CH1,CH2,TRIG3,TRIG4;

INITIAL CH1;

SET ACTIONS;

! Note that MODE EDGE must be included in the command to allow state

! recalls without learn string...

OUTPUT STRING "TRIG MODE EDGE SOUR "; ! Set to edge mode

OUTPUT EDGE_TRIGGER_SOURCE TABLE 'CHAN1;','CHAN2;','TRIG3;','TRIG4;';

SET TRIGGER_MODE; ! Set it back to original mode

END ACTIONS;

(Continued)

Writing a Driver 5-17

5

GET ACTIONS;

OUTPUT STRING "TRIG MODE EDGE SOUR?";

ENTER CHARSTRING FORMAT "AAAAAAAAAAAA";

SELECT CHARSTRING;

CASE "CHAN 1";

FETCH (EDGE_TRIGGER_SOURCE)CH1;

CASE "CHAN 2";

FETCH (EDGE_TRIGGER_SOURCE)CH2;

CASE "TRIG 3";

FETCH (EDGE_TRIGGER_SOURCE)TRIG3;

CASE "TRIG 4";

FETCH (EDGE_TRIGGER_SOURCE)TRIG4;

CASE ELSE;

FETCH EDGE_TRIGGER_SOURCE;

END SELECT;

STORE EDGE_TRIGGER_SOURCE;

SET TRIGGER_MODE; ! Restore previous mode of operation

END ACTIONS;

END COMPONENT;

The mode component is TRIGGER MODE, which allows a choice of

operating modes of the oscilloscope. The EDGE TRIGGER SOURCE

component corresponds to a control on the oscilloscope that is only valid

in the edge trigger mode of operation. Therefore, the HP-IB command for

EDGE TRIGGER SOURCE includes the preÕx TRIG MODE EDGE, which

changes the instrument's current menu to trigger and the current mode to

edge. EDGE TRIGGER SOURCE can now be SET or queried, but the

instrument is now in the EDGE TRIGGER mode of operation. The last line

of both the SET and the GET actions, SET TRIGGER MODE, executes the

SET ACTIONS of the TRIGGER MODE component to restore the instrument

to the original mode of operation. Note that this method will work no matter

what the original mode of operation was, but if the original mode of operation

was EDGE, then there will be some extra HP-IB code generated.

The summary of HP-IB commands that you created while learning the

instrument should make it easy to Õnd the components that must be modiÕed

to account for modes of the instrument. The components can be altered in

exactly the same manner as illustrated. Instruments such as the HP 54111D

have modes that are nested two deep. For example, in the HP 54111D,

the trigger level control depends on which source is selected. Therefore, to

SET/query the TRIGGER LEVEL CH1 component, Õrst, select the edge

5-18 Writing a Driver

5

mode of operation. Next, SET the EDGE TRIGGER SOURCE to channel 1

to make the TRIGGER LEVEL CH1 control valid on the instrument.

COMPONENT TRIGGER_LEVEL_CH1;

TYPE CONTINUOUS;

VALUES RANGE -160E3,160E3,1E-6;

INITIAL 0.0;

SET ACTIONS;

OUTPUT TRIGGER_LEVEL_CH1 FORMAT '"TRIG MODE EDGE SOUR CHAN1 LEV ",K,";"';

SET EDGE_TRIGGER_SOURCE;

END ACTIONS;

GET ACTIONS;

OUTPUT STRING "TRIG MODE EDGE SOUR CHAN1 LEV?";

ENTER TRIGGER_LEVEL_CH1 FORMAT K;

SET EDGE_TRIGGER_SOURCE;

END ACTIONS;

END COMPONENT;

Notice that the preÕx to the HP-IB command is now

TRIG MODE EDGE SOUR CHAN1; this preÕx sets the appropriate

menus/modes. To restore the original modes, the SET ACTIONS for

EDGE TRIGGER SOURCE are executed, which executes the SET ACTIONS

for TRIGGER MODE, as just discussed.

This completes the basic HP ID. Undoubtedly, there will be situations that

will call for innovation that no manual can cover completely. The best way

to handle problems is trial-and-error, that is, to experiment with diÃerent

solutions and choose the best one.

While it is possible to add all the components at once, it is advisable to add

them one at a time, then read the unÕnished HP ID into the development

environment to see whether the code actually works. This will save time in

debugging an HP ID at a later time.

Writing a Driver 5-19

5

4. Finishing touches

Internal components

Components in an HP ID can be used as variables to store a number or

value in much the same way as variables in a programming language. Such

components will only have a name with no SET or GET ACTIONS. Using

components for variable storage is a perfectly legal thing to do, then other

components in the HP ID can reference the value stored in the component.

Component variable storage can be used as a method of parameter passing

between two components. Component variable storage can also be used for

other functions such as remembering the last value of components or as a

simple placeholder in a SELECT . . . CASE . . . ELSE construct, a construct

that requires that a component name be speciÕed. Since these internal

components are only used as variables, always use them with the NOTSAVED

NOGEN NOERRCHECK options to save time and space in the HP ID.

Valid Reset State

A working HP ID must have a valid state at all times, that is, the development

product's values in the components must match the instrument's control

settings. To make this match, the development product tracks the state of

the instrument using the HP ID as a guide of how to match the values and

settings. There needs to be a state that guarantees that the states of the HP

ID and instrument are exactly the same. This is known as a \reset state."

The reset component speciÕed by the INITIALIZE COMPONENT statement

in the HP ID will be the component that conÕgures the HP ID in a valid reset

state. To create this conÕguration, both the control values on the instrument

and the component values in the HP ID must be set to the same initial value.

The instrument will have a reset command that sets all the controls to their

initial value, unless they are of the survive-a-reset type. Every component

in the HP ID should have an initial value matching the corresponding initial

value of the instrument control. All the INITIALIZE COMPONENT needs to

do, provided that no controls on the instrument survive a reset, is send the

instrument the reset HP-IB command, then initialize the HP ID values with

the POKEINITIAL statement.

5-20 Writing a Driver

5

When one or more components/controls are known to survive a reset, the

INITIALIZE COMPONENT should perform a GET on the component. This

will guarantee that the reset state is always valid, although it will not be

constant for the components that survive a reset. A GET, instead of a SET, is

used for two reasons:

1. Often, SETs will involve couplings or other side eÃects, while GETs are

usually \clean," that is, they do not alter the values of other controls of the

instrument.

2. Using a GET preserves the functionality of the instrument. That is,

after a reset, the HP ID will reŒect a natural state of the instrument; the

instrument state does not necessarily reŒect the state of the HP ID. The

entire purpose of the HP ID is to allow the development environment to

track the state of the instrument by \understanding" the operation of the

instrument.

Error Checking in the Driver

Most instruments have an HP-IB command that asks if there have been any

errors. The instrument responds with the appropriate answer. If error checking

is present, the error component can be used for automatic error checking in

the HP ID. The ERROR COMPONENT statement at the top of the HP ID

declares which component in the HP ID is the error component.

When the error checking mode is active, each time there is a SET or a GET

on any component that component will execute the GET ACTIONS of the

error component unless the NOERRCHECK option is set for that component

or SKIPERRORCHECK is done in the action list (see \NOERRCHECK" in

chapter 8, \Component/Action Syntax"). If, after the GET ACTIONS have

been executed, the error component's value is zero, the development product

will take no other action. Otherwise, the component's number is taken as the

error number and notiÕes the user that there has been an error.

Writing a Driver 5-21

5

If the instrument has an error queue, the error component should take steps

to make sure that the queue is empty at the end of every error check. For

example, using the error queue of the HP 54501A, the HP ID is as follows:

COMPONENT ERR_NUMBER NOTSAVED NOERRCHECK;

TYPE INTEGER;

INITIAL 0;

GET ACTIONS;

OUTPUT STRING ":SYSTEM:ERR?;";

ENTER ERR_NUMBER FORMAT K;

SELECT ERR_NUMBER;

CASE 0;

! no error ...

CASE ELSE;

GOSUB FLUSH_ERR_QUEUE;

END SELECT;

END ACTIONS;

END COMPONENT;

For this instrument, if a zero is returned, there has been no error and the

GET ACTIONS are exited. If a non-zero number is returned, there has

been an error, so the component's value is non-zero and the action list

FLUSH ERR QUEUE is executed to ensure that the instrument's error queue

is empty.

5-22 Writing a Driver

6

6

Advanced Topics

Overview

The topics in this chapter vary widely. Although they deal with concepts that

are not required to create HP IDs, they can make your HP ID more useful and

powerful.

Initializing the Driver

The three statements INITIAL, POKEINITIAL, and INITIALIZE, work

together to provide HP ID initialization. The HP ID is initialized when:

The HP ID is added to a soft test system in the development environment.

The subprogram hpt init is executed.

Its address is changed in the development environment.

When the HP ID is initialized, the development product executes the SET

ACTIONS (and PANEL SET ACTIONS in the development environment) of

the component speciÕed in the INITIALIZE statement. The SET ACTIONS of

this component usually include a POKEINITIAL statement, which sets each

component to the value and status speciÕed in its INITIAL statement. In the

SET ACTIONS, you should also include the commands you want the run-time

environment to send the instrument to put it into the proper state.

Usually the PANEL SET ACTIONS of this component also HIDE all panels

except the main panel, then SHOWs the main panel.

Advanced Topics 6-1

6

In summary, here's what you need to do:

1. Determine which components you want as part of the initialization.

2. Use an INITIAL statement in each component you want to set during

initialization. For DISCRETE components, this statement is only valid if

you have also used a VALUES statement in the component description.

3. Create a component description similar to the RESET component in the

program below. It provides a SET ACTIONS list that

a. sends the commands to the instrument for initialization.

b. HIDEs and SHOWs appropriate panels.

c. includes a POKEINITIAL statement.

d. the POKEINITIAL statement sets all components that. have an

INITIAL statement to the value speciÕed.

4. Use the general INITIALIZE statement and specify the name of the

component containing the POKEINITIAL statement.

Reset Button

Hewlett-Packard recommends that you provide a reset button on your

instrument's soft panel that allows the user to reset the instrument whenever

necessary. Hewlett-Packard also recommends that the component speciÕed by

the INITIALIZE statement be written so that the instrument is reset regardless

of its previous state. Usually this requires sending a device clear (CLEAR)

to the instrument. Normally, a device clear resets the instrument parser

regardless of its current state. Usually it is beneÕcial to use some sort of reset

syntax (along with device clear) to reset the instrument. Reset syntax/device

clear provides a much faster initialization than sending all of the incremental

conÕguration commands.

6-2 Advanced Topics

6

INITIALIZE COMPONENT RESET;

!

COMPONENT RESET;

TYPE INTEGER;

SET ACTIONS;

CLEAR;

OUTPUT STRING "*RST";

POKEINITIAL;

END ACTIONS;

PANEL SET ACTIONS;

HIDE Other;

HIDE About;

SHOW Main;

END ACTIONS;

END COMPONENT;

How Recall Works

When the development product recalls a state, it performs the following steps:

1. The development product updates the value and status of all components

in the HP ID to the corresponding values in the state being recalled.

The development product also creates a list of components whose SET

ACTIONS (and PANEL SET ACTIONS in the development environment)

are executed by using the following algorithm:

If the HP ID component is VALID, then it is compared with the

component from the recalled state. If the values are the same, no further

action is taken. If the values diÃer, the run-time environment copies the

new value into the HP ID component and the component is added to the

list of components requiring updates.

If the HP ID component is INVALID or DONTCARE, then the value

from the recalled state is copied into the HP ID component and the

component is added to the list of components requiring updates.

2. During the development environment, the development product executes

the SET ACTIONS of the component that is speciÕed in the RECALL

COMPONENT statement. Also, in the development environment, the

development product executes the PANEL SET ACTIONS.

Advanced Topics 6-3

6

3. The development product executes the SET ACTIONS of every component

that is in the list generated in step 1. The SET ACTIONS will be executed

in the order in which the components are deÕned in the HP ID.

If a component is validated during a state recall or while executing the

actions of the RECALL COMPONENT, it is removed from the list of SET

ACTIONS to be executed. Since the run-time environment goes through

the HP ID in the order of the components, validating a component deÕned

earlier in the list will not prevent its action list from being executed.

If a component is invalidated during a state recall or while executing the

actions of the RECALL COMPONENT, it will be added to the list of

SET ACTIONS to be executed. Since the development environment goes

through the HP ID in the order of the components, invalidating a preceding

component will not prevent its action list from being executed.

Using HIT, UPDATE, and PANEL ACTIONS

The development environment includes four special types of action lists that

control an HP ID's soft panel. These are:

HIT ACTIONS

UPDATE ACTIONS

PANEL SET ACTIONS

PANEL GET ACTIONS

Each of these action lists describe some sort of action that is not used during

run time.

HIT ACTIONS

HIT ACTIONS are in the PANEL section of the HP ID. They are used to

replace the development product's normal behavior when a user clicks on a

BUTTON, DISPLAY, or XY. If one of these panel elements includes HIT

ACTIONS, the development environment will not execute any other action list.

The development product normally generates an hpt set or hpt get (with

Log HP ITG Calls mode on), then executes an hpt set or hpt get on the

6-4 Advanced Topics

6

component associated with the panel element. Therefore, the HIT ACTIONS

must perform any desired code generation and/or any SETs or GETs.

Note HIT ACTIONS should usually be used for XY displays

because XY panel elements tend to be associated with several

components. HIT ACTIONS indicate what the development

environment should do when the user clicks on the XY panel

element.

Be careful using HIT ACTIONS because it can inŒuence the way some

products interact with components. Generally, interactions with the instrument

should be made through SET/GET actions rather than HIT ACTIONS.

UPDATE ACTIONS

UPDATE ACTIONS provide an alternative to PANEL SET ACTIONS

and PANEL GET ACTIONS for keeping the soft front panels live in the

development environment.

UPDATE ACTIONS are part of a panel element description. They are

associated with the same component as the panel element. UPDATE

ACTIONS are executed whenever the associated component's value is changed.

UPDATE ACTIONS provide a way of distinguishing the visual representation

of a component on the panel from the control of the actual instrument (such as

the component itself).

Be careful using UPDATE ACTIONS because it can inŒuence the way some

products interact with components. Generally, interactions with the instrument

should be made through SET/GET actions rather than UPDATE ACTIONS.

Because UPDATE ACTIONS are associated with the component through the

panel element, multiple UPDATE ACTIONS may be associated with one

component. Normally, multiple UPDATE ACTIONS are used to manage the

diÃerent representations of the component as provided by the diÃerent panel

elements.

Advanced Topics 6-5

6

PANEL SET ACTIONS

In the development environment, PANEL SET ACTIONS are executed after

a component's SET ACTIONS are executed. PANEL SET ACTIONS are not

executed in the run-time environment. Using PANEL SET ACTIONS and SET

ACTIONS provides a way of keeping the soft panel live while not impacting

performance when your program is running.

PANEL GET ACTIONS

In the development environment, PANEL GET ACTIONS are executed after

a component's GET ACTIONS are executed. PANEL GET ACTIONS are

not executed in the run-time environment. Using PANEL GET ACTIONS

and GET ACTIONS provides a way of keeping the soft panel live while not

impacting performance when your program is running.

Summary

HIT ACTIONS are used to alter the default behavior of the development

environment when the user clicks on a DISPLAY, BUTTON, or XY. HIT

ACTIONS are largely independent of the other action lists.

UPDATE ACTIONS and PANEL SET/GET ACTIONS provide alternative

ways of including actions to keep the soft panel live while not aÃecting

run-time performance. UPDATE ACTIONS allow the user to update the

representation of a component on the soft panel as the component's value or

status changes.

PANEL SET/GET ACTIONS allow you to specify operations performed only

when running in the development environment. PANEL SET/GET ACTIONS

can be used in addition to normal SET/GET ACTIONS. Note that UPDATE

ACTIONS are executed when a component's value or status is changed and

the value is currently displayed in the development environment, but PANEL

SET/GET ACTIONS are only executed when a component's SET/GET

ACTIONS are executed.

6-6 Advanced Topics

6

Using Learn Mode

Some instruments provide what is commonly known as a learn string. A

learn string is a string that is generated by the instrument that, when sent

back to the instrument, returns the instrument to the state it was in when it

generated the learn string. For some instruments, the learn string is accepted

and acted upon in less time than just a few conventional instructions. For such

instruments, it may be desirable to send the learn string during a state recall

instead of using the development product's incremental state programming.

To program an instrument using learn strings with the development product,

you must extract the string from the instrument when the product stores

a state and you must send it back when the product recalls the state. You

do this by using a STORE COMPONENT statement and a RECALL

COMPONENT statement.

The development product executes the SET ACTIONS of the component

speciÕed in the STORE COMPONENT statement whenever the user stores a

state. These actions should include the commands needed to extract the learn

string from the instrument, placing it in some SAVED component.

As discussed earlier in this chapter in \How Recall Works," the development

product executes the SET ACTIONS of the component speciÕed in the

RECALL COMPONENT statement after it sets the components to their target

values, but before it executes any of the SET ACTIONS of the components.

Hence, you should use the SET ACTIONS of the component speciÕed by the

RECALL COMPONENT to send the learn string to the instrument and then

use a VALIDATE ALL statement to prevent the product from sending any

additional commands to the instrument.

For example, consider the HP 54501A Digitizing Oscilloscope. It accepts a

learn string in approximately the same amount of time that it accepts four

or Õve conventional instructions. This makes state programming with a

learn string a good choice. To implement the learn string, we created three

components:

LEARN STRING holds the actual learn string.

STORE STATE reads the learn string from the instrument.

RECALL STATE sends it back to the instrument.

Advanced Topics 6-7

6

!=======================

! LEARN STRING SUPPORT

!=======================

COMPONENT LEARN_STRING;

TYPE IARRAY 512; ! 512 INT's = 1024 BYTEs

INITIAL INVALID;

END COMPONENT;

COMPONENT STORE_STATE NOTSAVED NOGEN NOERRCHECK;

TYPE INTEGER;

SET ACTIONS;

!

! Binary Block Format:

!

! '#800001024' 10-byte header

! < data block > 1024-byte binary data

! 'LF' 1-byte LF terminator

!

OUTPUT STRING ":SYSTEM:SETUP?";

! Skip 10-byte header

! Read 1024-byte learn string

ENTER LEARN_STRING FORMAT INT16 10 512;

! Consume "LF' terminator

ENTER CHARSTRING FORMAT "#,A";

END ACTIONS;

END COMPONENT;

COMPONENT RECALL_STATE NOTSAVED NOGEN NOERRCHECK;

TYPE INTEGER;

SET ACTIONS;

! Download learn string to instrument

OUTPUT STRING ":SYSTEM:SETUP #800001024";

OUTPUT LEARN_STRING INT16 512;

OUTPUT STRING "";

(Continued)

6-8 Advanced Topics

6

! Validate status of all components in HP ID

! to prevent the normal incremental SETs...

VALIDATE ALL; ! triggers appropriate UPDATE ACTIONS

! Invalidate any components which represent

! some form of acquisition or measurement

INVALIDATE VMARKER1;

INVALIDATE VMARKER2;

INVALIDATE TMARKER1;

INVALIDATE TMARKER2;

INVALIDATE PULSE_MSMT_VALUE;

INVALIDATE DELAY_MSMT_VALUE;

END ACTIONS;

PANEL SET ACTIONS;

GOSUB UPDATE_TRACE_DATA; ! Get current trace data

END ACTIONS;

END COMPONENT;

Using Saved Components

As mentioned above, if you use a VALIDATE ALL statement in the SET

ACTIONS of the component speciÕed in the RECALL COMPONENT

statement, the development product will not execute the SET ACTIONS of the

other components. With this in mind, you might wonder why you would design

an HP ID with any saved components other than the one holding the learn

string.

Note A saved component is any component not speciÕed as

NOTSAVED.

A valid alternative is to have no saved components other than the one

containing the learn string. This approach minimizes what the development

product must do while recalling a state, and it minimizes the amount of

memory required to store a state.

However, in some cases you may want to use some saved components so

that when the user recalls a state in the development environment, the

development product will set the components to their target values. If none of

the components in the HP ID are saved, then none of them would change when

Advanced Topics 6-9

6

the user recalled a state. During run time this is of little importance, but it

may be desirable in the development environment.

When to Use Learn Strings

Although many instruments use learn strings, there are some disadvantages to

using them. When deciding if your HP ID should use learn strings, you should

consider:

How fast the learn string is compared to incremental programming.

How fast does the instrument accept a learn string versus how fast it

accepts conventional instructions?

How many components will be sent to the instrument during a typical

state recall?

If you store a state using a learn string, the instrument must be present.

Without learn strings, you can create states for an instrument without the

instrument present.

Using learn strings relieves the HP ID of the task of sending each incremental

programming step in the correct order during a state recall, which can be

a major eÃort in the design of the HP ID. Including learn strings greatly

simpliÕes the task.

Simulating a Component

It is occasionally useful to represent a component with panel elements of a

diÃerent type than the component. For example, the HP 438A HP ID uses two

buttons to get and store a binary string. In this case, it is not desirable to use

either the INPUT or DISPLAY panel elements because the string is rather long

and does not need to be visible.

For this case, it is desirable to use two buttons. One button will read the

string and one will write the string to the instrument. To create these

buttons, we've created the component STATE STRING. STATE STRING's

GET ACTIONS reads the string and its SET ACTIONS sends the string.

The two BUTTONs each include HIT ACTIONS. One HIT ACTIONS list

6-10 Advanced Topics

6

includes a GET STATE STRING statement. GET STATE STRING causes

the development environment to execute the GET ACTIONS list of the

STATE STRING component.

The other HIT ACTIONS list includes a SET STATE STRING statement.

SET STATE STRING causes the development environment to execute the

SET ACTIONS list of the STATE STRING component. Each HIT ACTIONS

list also includes a CODEGEN (available in HP ITG only) statement so

that calls to hpt get or hpt set will be logged when the user clicks on the

appropriate button with Log HP ITG Calls mode on.

TEXT 7,84,"Setup String";

BUTTON STATE_STRING;

POSITION 120,84;

LABEL "READ";

HIT ACTIONS;

CODEGEN GET,LEARN_STRING;

GET STATE_STRING;

END ACTIONS;

END BUTTON;

!

BUTTON STATE_STRING;

POSITION 165,84;

LABEL "Send";

HIT ACTIONS;

CODEGEN SET,LEARN_STRING,"Value";

SET STATE_STRING;

END ACTIONS;

END BUTTON;

Component Interactions

In general, instruments change several settings as a result of a single command.

For example, when changing the Function on a multimeter, the RANGE may

also change. Most instrument interactions fall into one of three categories:

Lockout parameters.

Parameters that get dragged.

Advanced Topics 6-11

6

Parameters where a convenient value is chosen but not required are

functionally coupled.

Each of these types of interactions are rare, but they can be very important.

For example, an interaction may only occur when some component is set near

its usable limit.

Lockout Parameters

A lockout parameter is a command setting that the instrument does not

allow while in certain states. Usually, the disallowed command represents an

impossible hardware conÕguration.

Consider a hypothetical situation where an oscilloscope measures rise time

using an internal algorithm. First, this algorithm sets the trigger level at the

10% amplitude of the waveform, then sets a marker at the 90% level. Then,

the marker time provides the rise time.

For this example, when the oscilloscope is conÕgured to measure rise time, the

user is not allowed to set the trigger level. Under these conditions, trigger level

is a lockout parameter.

Instead of introducing lockout parameters, many instruments allow the user

to set the parameter but then will not use that parameter when making the

measurement. The user-supplied value is then used when the instrument

returns to conventional operation.

You may also create a subpanel with the component, then HIDE the subpanel

when the lockout condition is selected.

Dragged Parameters

This is the most common type of coupling. A dragged parameter is one that

must be changed in order for the instrument to execute an instruction.

For example, consider a multimeter that allows a range of 1, 10, and 100

when measuring DC volts, and a range of 10, 100, and 1000 when measuring

resistance. The multimeter must pick a legal value for range when the function

is changed. That is, if you are measuring volts on the 1 volt range and change

the function to resistance, the multimeter will change the range to a legal

value, probably the 10 volt range in this case.

6-12 Advanced Topics

6

The development product's COUPLED statement helps you deal with this type

of coupling. The previous example would look something like this:

COMPONENT FUNCTION;

TYPE DISCRETE;

VALUES DCV,OHM;

COUPLED RANGE;

SET ACTIONS;

OUTPUT FUNCTION TABLE "DCV","OHM";

END ACTIONS;

END COMPONENT;

!

COMPONENT RANGE;

TYPE CONTINUOUS;

VALUES RANGE 1,1000;

SET ACTIONS;

OUTPUT RANGE FORMAT "'RANGE',K";

END ACTIONS;

GET ACTIONS;

OUTPUT STRING "RANGE?";

ENTER RANGE;

END ACTIONS;

END COMPONENT;

The COUPLED statement indicates to the development product that changing

FUNCTION may change RANGE. When FUNCTION is set via the soft panel

or with hpt set, the product acts as follows:

The development environment executes the GET ACTIONS of RANGE,

updating the component to the value selected by the instrument. If Live

mode is oÃ, nothing is done.

The run-time environment INVALIDATEs RANGE. This not only saves the

overhead of getting RANGE, but also indicates to the development product

that, when recalling a subsequent state, the value of RANGE should be

updated.

During a recall state, COUPLED has no aÃect because the stored state is

known to be internally consistent. Therefore, if the stored value for RANGE

is consistent with the function and the stored value for RANGE is the same

as the current one, then the instrument does not need to alter the RANGE

setting. Alternatively, if the instrument needs to alter its range setting, the

development product will note the change during the state recall and will send

Advanced Topics 6-13

6

the value for RANGE to the instrument. Note that this is not true for some

types of component interactions.

For this process to work, it is necessary to send the value for FUNCTION to

the instrument before sending the value for RANGE. If RANGE were sent Õrst,

it might be inconsistent with the value for FUNCTION and would be ignored

by the instrument.

Remember, use COUPLED for the following cases involving dragged

parameters:

When changing one component changes another, that is, leaving it alone

would create an illegal state.

When the changed component has GET ACTIONS.

Functional Couplings

A functional coupling occurs when the instrument chooses a new value for a

related component even though the old value was meaningful. For example,

consider a source whose output can be disabled. The source may enable its

output as a result of a change in the modulation frequency.

Usually one of the more convenient things to do with this sort of coupling is to

send the value of the related component to the instrument when the original

component changes. In this example, you would send the output enable

component to the instrument whenever the modulation frequency is changed.

This approach makes the HP ID behave diÃerently from the instrument (that

is, changing the modulation frequency does not enable the output).

COMPONENT MOD_FREQ;

TYPE CONTINUOUS;

SET ACTIONS MOD_FREQ_SET;

END COMPONENT;

!

COMPONENT OUTPUT_ENABLE;

TYPE DISCRETE;

VALUES DISABLE,ENABLE;

SET ACTIONS OUTPUT_ENABLE_SET;

END COMPONENT;

!

(Continued)

6-14 Advanced Topics

6

ACTIONS OUTPUT_ENABLE_SET;

OUTPUT OUTPUT_ENABLE TABLE "OD","OE";

END ACTIONS;

!

ACTIONS MOD_FREQ_SET;

OUTPUT MOD_FREQ FORMAT "'MF',K,'HZ'";

GOSUB OUTPUT_ENABLE_SET;

END ACTIONS;

Another alternative is to have the modulation component in the HP ID set

its copy of the output enable Œag, although this presents a problem when

recalling states. To see the problem, consider a stored state with the output

disabled. When recalling this state, if the value of the modulation frequency

has changed, the SET ACTIONS for modulation frequency will reenable the

output, and the state will not be recalled correctly. Therefore, when choosing

this alternative, the HP ID should only alter the enable Œag while not recalling

a state.

COMPONENT MOD_FREQ;

TYPE CONTINUOUS;

SET ACTIONS MOD_FREQ_SET;

END COMPONENT;

!

COMPONENT OUTPUT_ENABLE;

TYPE DISCRETE;

VALUES DISABLE,ENABLE;

SET ACTIONS OUTPUT_ENABLE_SET;

END COMPONENT;

!

ACTIONS OUTPUT_ENABLE_SET;

OUTPUT OUTPUT_ENABLE TABLE "OD","OE";

END ACTIONS;

!

ACTIONS MOD_FREQ_SET;

OUTPUT MOD_FREQ FORMAT "'MF',K,'HZ'";

IF RECALLING THEN;

GOSUB OUTPUT_ENABLE_SET;

ELSE;

FETCH (OUTPUT_ENABLE)ENABLE;

STORE OUTPUT_ENABLE;

END IF;

END ACTIONS;

Advanced Topics 6-15

6

Tips for State Recall

Without Learn String . . .

The hardest part of writing an HP ID is getting state stores and recalls to

work. Debugging a recall problem can create headaches quickly, even for the

best HP ID writers. When a state is recalled, the HP ID executes the SET

ACTIONS of every component whose value has been changed in the order that

the component appears in the HP ID. In other words, during a state recall,

you have no control over the order that the component SET ACTIONS are

executed other than the order they occur in the HP ID. This order-of-execution

constraint is what leads to many of the problems that occur during recall

testing.

The key to passing a recall test is to write every component such that its

SET/GET ACTIONS will work correctly no matter what menu, mode, or

state the instrument is currently in. This was the basic reason for modifying

the SET/GET ACTIONS of the components to allow for HP-IB command set

menu structures and instrument modes. If an instrument had no command

set menu structure, or it was possible to access any control at any time,

theoretically, there would be no problems with recall testing other than

couplings.

The way to avoid most problems regarding recalling states involves the use of

a recall component and a Õnish recall component. The recall component is a

special component with SET ACTIONS that are executed during a state recall

before it starts executing any other components. The Õnish recall component is

executed at the end of every state recall. Together, the two components can be

used to solve a variety of problems.

6-16 Advanced Topics

6

The recall component and the Õnish recall component take the following form:

COMPONENT RECALL_STATE NOTSAVED NOGEN NOERRCHECK;

TYPE INTEGER;

INITIAL DONTCARE;

SET ACTIONS;

...

INVALIDATE FINISH_RECALL; ! always executed after a recall

END ACTIONS;

END COMPONENT;

COMPONENT FINISH_RECALL NOGEN; ! last component in the HP ID

TYPE INTEGER;

INITIAL DONTCARE;

SET ACTIONS;

...

END ACTIONS;

END COMPONENT;

When the SET ACTIONS of the recall component are executed before

every state recall, the FINISH RECALL component will automatically be

invalidated. The invalidation will tell the development product to execute the

SET ACTIONS of the FINISH RECALL component when it gets to it. Since

the components are validated in the order of their placement in the HP ID, the

Õnish recall component should be the last component in the HP ID. Isolating

problems with state recalls takes patience, and solving them can at times

demand a bit of creativity. It is impossible to describe every type of problem

that can occur, but many of them fall into the following categories:

Problem: One component must be set before a second component to avoid side

eÃects, but if the Õrst is placed before the second in the HP ID, it causes an

error during parsing due to a forward reference.

Solution 1: In the SET ACTIONS of the recall component, set the component

so that it is executed Õrst. This will also validate the component so that it will

not be executed later.

Solution 2: Forward references in action lists can be moved to named action

lists and then the order of the components can be reversed.

Problem: Many components in the HP ID call the same action list for cosmetic

reasons, such as screen updates, but during a recall, this should not happen.

Advanced Topics 6-17

6

Solution: Use constructs like the IF RECALLING or IF PANELMODE in the

action list.

Problem: A component must have its SET ACTIONS executed during every

state recall, even if its value does not change.

Solution: Invalidate the component in the recall component. Its SET

ACTIONS will be executed when state recall gets to that component.

Problem: A component is changed when a state is stored. When the state is

recalled, however, the component's value is diÃerent from what is expected.

The problem is traced to an order of execution problem, but the problem

cannot be solved by positioning in the HP ID or by a SET in the recall

component.

Solution: In the Õnish recall component, do a SET of the component.

Problem: Components A & B each have VALUES RANGE 0,4 but the

instrument limits the sum of the two to 6. For other reasons they must be

separate components. The states:

State 1 State 2

A 4 A 2

B 2 B 4

will not work for a state recall. If A is before B in the HP ID, then recalling

from state 1 to state 2 works, but recalling from state 2 to state 1 causes the

<set A to 4> command to be sent while B is still sect to 4, causing an error.

Conversely, if B comes before A in the HP ID, recalling from state 1 to state 2

fails.

Solution: In the RECALL COMPONENT do a

OUTPUT "<HP-IB command to set A to 0>"

INVALIDATE A

With learn string . . .

A learn string is a string of data that can be requested from some instruments;

the string contains information about the current state of the instrument. For

HP IDs that use learn strings, there will be no problems with state recalling

because the HP ID can simply feed the learn string back to the instrument

rather than executing the SET ACTIONS list of every component that changes

6-18 Advanced Topics

6

in the new state. This eliminates order of execution problems that could occur

if learn strings were not used. To decide whether or not to use learn strings in

an HP ID, consider the following concerns:

Advantages of learn strings

1. The time it takes for an instrument to receive a learn string and conÕgure

itself to the new state can be much quicker than if learn strings were not used.

2. A learn string HP ID is much easier to code and to test. For a complex

instrument this alone may be enough of an argument to include learn strings in

the HP ID.

Disadvantages of learn strings

1. Using a learn string makes it mandatory for the instrument to be present to

create states. The HP ID is no longer stand-alone in that to save a state or

recall a state, the HP ID will need to work with the instrument to create a

consistent or valid state. One of the strong points about the HP ID is that for

non-learn string HP IDs it is possible to build valid states with no instrument

present.

2. For simple instruments a learn string can make recalling slower, rather than

faster. Even for complex instruments, if the number of components that change

between states is small, learn strings can still be up to three times as slow.

3. In the development environment, after a state recall, many of the component

settings will not have been set to the values in the learnstring and will show a

diÃerent value from that of the instrument. This can be misleading.

Advanced Topics 6-19

6

If learn strings are a good decision for a particular instrument, use the

following procedure to add them to an HP ID:

Note Drivers with learn strings should not do any SETs in the

RECALL COMPONENT of any saved components.

1. You must inform the HP ID how to read and store the learn string during

state stores and recalls. This is done using store and recall components. The

store and recall components can be named anything, but the HP ID needs

to mark them as store and recall components. Add the following lines and

components to the HP ID:

RECALL COMPONENT <recall component name>;

STORE COMPONENT <store component name>;

COMPONENT <recall component name> NOTSAVED NOGEN NOERRCHECK;

TYPE INTEGER;

END COMPONENT;

COMPONENT <store component name> NOTSAVED NOGEN NOERRCHECK;

TYPE INTEGER;

END COMPONENT;

2. The learn string is actually an array of data that must be saved along with

all the other components during a state store. This is accomplished with a

dummy learn string component that the store component reads in every time

a state is stored. The store components SET ACTIONS will automatically be

executed every time a state is stored:

COMPONENT LEARN_STRING;

TYPE IARRAY <learn string length>;

INITIAL INVALID;

END COMPONENT;

6-20 Advanced Topics

6

3. Add the following SET ACTIONS to the store component:

SET ACTIONS;

OUTPUT STRING <HP-IB learn string query>;

ENTER LEARN_STRING FORMAT INT16 XXX YYY;

ENTER CHARSTRING "#,A"; !Eat up the rest of the line

END ACTIONS;

XXX is the amount of characters to skip before the data, if any, and YYY is

the length of the learn string. The enter charstring line is used to consume any

EOL characters that the instrument may send back. Obviously, there must be

a string component named \charstring" to make this work.

4. The SET ACTIONS of the recall component are executed each time a

state is recalled. Therefore, there needs to be a SET ACTIONS list in the

recall component that tells the HP ID how to feed the learn string back to the

instrument:

SET ACTIONS;

OUTPUT STRING <HP-IB learn string command>;

OUTPUT LEARN_STRING INT16 <learn string length>;

VALIDATE ALL;

END ACTIONS;

The VALIDATE ALL statement will keep the HP ID from executing any other

SET ACTIONS in the HP ID, as usually happens in a state recall. When

a state is recalled, the components that change their value are marked as

invalid, then the SET ACTIONS of the recall component are executed. The

VALIDATE ALL statement will inform the HP ID that after the learn string

has been sent to the instrument, all the components in the HP ID will be valid.

Advanced Topics 6-21

7

7

Creating Instrument Help

Overview

The development product's online Help system allows you to document the HP

ID you have created so that users can get that information quickly.

This chapter describes how you can create online Help for your HP IDs. As a

general guideline, we recommend that you use the online Help system within

your development product as a quick reference guide to the instrument.

Creating a Help File

Help Õles must be ASCII Õles. To create a Help Õle, you can use the same text

editor you used to create the HP ID. The name of the Help Õle must be the

same as the associated HP ID, except the Help Õle name must end with an .IH

extension and meet the MS DOS Õle-naming requirements.

A Help source Õle is similar to the component and panel sections of the

HP ID in that it consists of a series of HELP . . . END HELP statements

(see Õgure 7-1). Each HELP statement requires a topic that the development

product uses as a selection in the Help list box for the current instrument

(see Õgure 7-2). Each topic should be less than 40 characters long and each line

of the text less than 45 characters. These limitations maintain the required

margins for the product's Help window.

Following is a Help Õle example:

HELP OVERVIEW

This is a Help file for the HP 3478A.

END HELP

(Continued)

Creating Instrument Help 7-1

7

HELP Using the Panels

This is the second topic of the

file.

END HELP

HELP SRQ Mask

This is the third topic.

END HELP

HELP SRQ Status

This is the fourth topic.

END HELP

HELP Error Register

This is the fifth topic.

END HELP

Figure 7-1.

Product Example Uses the Topics as Selections in the List Box

Note When the user adds an HP ID to the product's development

system, it looks for a Õle with a name that matches the HP ID

name, except for the diÃerence in Õle name extensions: .ID for

the HP ID, and .IH for the help Õle. This means that if you

use one Help Õle for several closely related instruments, you

must copy that Õle so that each instrument has its own Help

Õle with a matching name.

7-2 Creating Instrument Help

8

8

Component/Action Syntax

Overview

This section contains an alphabetical reference to the keywords available for

use in the component section of an HP ID. Each entry deÕnes the keyword,

shows the proper syntax for its use, provides one or more examples, and

explains semantic details.

Interpreting the Syntax Drawings

All characters enclosed in an oval must be entered exactly as shown.

Words enclosed by a rectangle are names of items used in the statement.

Italic letters indicate that the word or words are fully explained in their own

section of this chapter.

Statement elements are connected by lines. Each line can be followed in only

one direction, with an arrow indicating the direction.

Optional Elements and Their Defaults

An element is optional if there is a path around it. Optional elements usually

have default values. The table or text following the drawing speciÕes the

default value that is used when an optional item is not included in a statement.

Naming Rules

Don't use keywords for component or action names.

Component and action names can be up to 25 characters long.

Component and action names must start with an alpha character, A-Z or

a-z. That character may be followed by any mix of alphanumeric characters,

Component/Action Syntax 8-1

8

either upper or lower case, or by an underscore. The syntax is not case

sensitive.

Following is a list of possible component names:

FREQUENCY

SLOT4

SLOT 4

Start Frequency

Comments

A comment may be created by preceding the comment with an exclamation

mark. You can also make comments on the same line as a statement. This is

done by placing an exclamation mark after the statement.

Spaces, Commas, and Other Separators

In general, a space is required between a keyword and an item. A space or a

comma is required between a keyword and multiple items following it.

Note All component statements must end with a semicolon. More

than one action statement may appear on the same line, but

they must be separated by semicolons. For example:

FETCH 2; STORE V_MAX;

8-2 Component/Action Syntax

8

ACTIONS

ACTIONS

The ACTIONS . . . END ACTIONS compound statement allows you to deÕne

an action list outside of a component description. Such an action list can be

associated with many diÃerent components or panel elements, and it may be

useful if the action list for one component references another. This type of

action list is generally called a named action list.

You can call a named action list two ways:

Specify the name of the general action list in a GOSUB action statement.

Specify the name of the general action list in a SET ACTIONS, GET

ACTIONS, PANEL SET ACTIONS, PANEL GET ACTIONS, HIT

ACTIONS, or UPDATE ACTIONS statement.

An action list consists of a series of action statements. The valid statements

are shown in tables 8-1 through 8-8. Each statement is fully described in this

chapter.

Syntax

Component/Action Syntax 8-3

8

ACTIONS

Item Description

actions name The name of the action list.

action statement See tables 8-1 through 8-8 for a complete list.

8-4 Component/Action Syntax

8

ACTIONS

Table 8-1. Action Statements

BITS GOSUB SHOW

CLEAR HIDE SKIP EOL

CODEGEN IF SKIP ERRCHECK

DISABLE INVALIDATE SPOLL

DONTCARE LOOP STORE

DOWNLOAD MATSCALE TRIGGER

ENABLE NOTIFY UPLOAD

EXIT IF OUTPUT USERSUB

ENTER POKEINITIAL VALIDATE

FETCH SELECT WAIT SPOLL BIT

FLUSH SET WAIT TIME

GET

Example

REVISION 2.0;

ACTIONS FREQ_0;

FETCH 0;

STORE FREQ;

END ACTIONS;

COMPONENT DC;

TYPE INTEGER;

SET ACTIONS;

OUTPUT STRING "DC";

GOSUB FREQ_0;

END ACTIONS;

END COMPONENT;

Component/Action Syntax 8-5

8

ACTIONS

Arithmetic, Logical, and String Operators

The arithmetic, logic, and string operators (OP) obtain their operands from

the stack and return the result to the stack.

Binary operators operate on the two values on top of the stack as follows:

second from the top OP top of stack

Unary operators operate on the top stack value.

Arithmetic operators use the values of the operands and perform REAL

arithmetic.

Logical operators operate on the true (non-zero) and false (zero) values of the

operands.

Bit operators (BINAND, BINIOR, BINEOR, BINCMP, BIT) round their

values to 16-bit 2's complement integers before operating on them.

The miscellaneous operators (table 8-6) DUP, SWAP, DROP, ROT, OVER,

and PICK, as well as the following binary logic operators, all work on strings:

EQ

NE

LT

GT

LE

GE

String operations operate on strings or parts of strings (see tables 8-7 and

8-8).

Note When not speciÕed otherwise, the result of each arithmetic,

logical, and string operation is pushed on the stack, replacing

whatever values were popped.

8-6 Component/Action Syntax

8

ACTIONS

To help you understand the order of operation for the binary operators, assume

two values, A and B, are fetched, resulting in the following stack conÕguration:

Example

FETCH A;

FETCH B;

| B | <-- TOS

| A |

| . |

| . |

| . |

The order of operation is \A operator B." The original stack conÕguration is

destroyed as the operation result is pushed onto the stack.

Example

| result | <-- TOS

| . |

| . |

| . |

Note For the following binary arithmetic operators, the value for B

should not equal zero: DIV, EXPON, MOD.

Component/Action Syntax 8-7

8

ACTIONS

Table 8-2. Binary Arithmetic Operators

Item Description

ADD Pops the top two values from the stack and adds them with the

result pushed back onto the stack. (A ADD B)

SUB Pops the top two values from the stack and subtracts the top stack

value from the value second to the top of the stack. (A SUB B)

MUL Pops the top two values from the stack and multiplies them. (A

MUL B)

DIV Pops the top two values from the stack and divides the value second

from the top of the stack by the top stack value. (A DIV B)

EXPON Pops the top two values from the stack and exponentially raises the

value second from the top of the stack by the top stack value. (A

EXPON B)

MOD Pops the top two values on the stack and divides the value second

from the top of the stack by the top value, and then pushes the

remainder of the division on the stack. (A MOD B)

IDIV Pops the top two values from the stack and divides the value second

from the top of the stack by the top stack value, and then pushes

the integer portion of the quotient. (A IDIV B)

BINAND Pops the top two values and performs a bit-by-bit logical AND

operation on them after rounding them to 16-bit integers. (A

BINAND B)

BINIOR Pops the top two values and performs a bit-by-bit inclusive OR

operation on them after rounding them to 16-bit integers. (A

BINIOR B)

BINEOR Pops the top two values and performs a bit-by-bit exclusive OR

operation on them after rounding them to 16-bit integers. (A

BINEOR B)

BINCMP The value at the top of the stack is rounded to a 16-bit integer, and

then each bit is complemented. (A BINCMP B)

BIT Pops the top two stack values, and uses the top stack value to point

to a speciÕc bit in the value second from the top of the stack. Zero

is the least signiÕcant bit. (BIT B of A)

8-8 Component/Action Syntax

8

ACTIONS

Table 8-3. Unary Arithmetic Operators

Item Description

LN Pops the top stack value, and performs the natural log operation on

that value.

EXP Pops the top stack value, and performs the natural log

exponentiation operation on that value. Uses the Naperian e value

(~2.718 281 828 459 05) for the exponentiation.

LGT Performs the base ten logarithm operation on the top stack value.

EXP10 Replaces the top stack value with a value that is 10 to the power of

the top stack value.

SQRT Replaces the top stack value with the square root of the top stack

value.

ABS Replaces top of stack with the absolute value of the top of stack.

SIN Replaces top of stack with SIN of the top of stack value.

COS Replaces top of stack with COS of the top of stack value.

TAN Replaces top of stack with TAN of the top of stack value.

ARCSIN Replaces top of stack with the inverse SIN of the top of stack.

ARCCOS Replaces top of stack with the inverse COS of the top of stack.

ARCTAN Replaces top of stack with the inverse TAN of the top of stack.

Component/Action Syntax 8-9

8

ACTIONS

Table 8-4. Binary Logic Operators

Item Description

AND Pops the top two values, and performs a logical AND operation on them. A

non-zero (positive or negative) value is treated as a 1. (A AND B)

OR Pops the top two values, and performs a logical OR operation on them. A

non-zero (positive or negative) value is treated as a 1. (A OR B)

EQ Pops the top two values and compares them bit-by-bit. If all the bits are the

same, then 1 is pushed on the top of the stack. Otherwise, 0 is pushed on the

top of the stack. (A EQ B)

NE Pops the top two values and compares them. If equal, then 0 is pushed on

the top of the stack. (A NE B)

GT Pops the top two values. If the second to the top value is greater than the

top value, then 1 is pushed on the stack. Otherwise, 0 is pushed on the top

of the stack. (A GT B)

LT Pops the top two values. If the second to the top value is less than the top

value, then 1 is pushed on the stack. Otherwise, 0 is pushed on the top of the

stack. (A LT B)

GE Pops the top two values. If the second to the top value is greater than or

equal to the top value, then 1 is pushed on the stack. Otherwise, 0 is pushed

on the top of the stack. (A GE B)

LE Pops the top two values. If the second to the top value is less than or equal

to the top value, then 1 is pushed on the stack. Otherwise, 0 is pushed on

the top of the stack. (A LE B)

Table 8-5. Unary Logic Operators

Item Description

NOT If the top stack value is 0, that value is replaced with a 1. Otherwise, that

value is replaced with 0.

8-10 Component/Action Syntax

8

ACTIONS

Table 8-6. Miscellaneous Operators

Item Description

DUP Pushes a duplicate of the top stack value on the top of the stack.

SWAP Reverses the top two values on the stack.

DROP Removes the top stack value from the stack.

ROT Rotates the top 3 items on the stack such that the third value moves to the

top and the Õrst and second values move down one place.

OVER Pushes a duplicate of the second to top stack value on the top of the stack.

PICK Pops the top value and uses that value as an index into the stack, pushing

the indexed value.

Component/Action Syntax 8-11

8

ACTIONS

Note All STRING operations are deÕned for strings only. If numbers

are used where strings should be, unpredictable results may

occur.

Table 8-7. STRING Operators

STRING Operators

LENGTH Pops the top value (string) and returns the length of the string to the

stack.

NUM Pops the top value (string) from the stack and returns the ASCII value

of the Õrst character of the string to the top of the stack.

CHRSTR Takes the value and returns its ASCII character.

VAL Pops the top value from the stack (string) and converts it to a number.

VALSTR Pops the top value from the stack (number) and converts it to a string.

POS Pops two values (strings) from the stack and returns the position string

at the top of the stack in the string at the second from the top of the

stack.

SUBSTR Pops two numbers of a string. LENGTH should be at top of the stack,

START position at second from top of the string is at third from top.

The substring of the string starting at START and LENGTH long is

returned to the stack.

CATSTR Concatenates the string at top of stack to the string at second to top of

stack.

TRIMSTR Trims all leading and trailing blanks from the string at top of stack.

8-12 Component/Action Syntax

8

ACTIONS

Table 8-8. Effect of STRING Operators on the Stack

STRING Stack Before Operation Stack After Operation

TOS
1 TOS-1 TOS-2 TOS

LENGTH string - - length of string

NUM \one" - - 111 (ASCII 'o')

VAL \1.2" - - 1.2 (a number)

VALSTR 1.2 - - \1.2"

CHRSTR 49 - - \1"

POS little big - POS(big,little)

SUBSTR length start string substr(of string)

CATSTR str2 str1 - str1str2

TRIMSTR \ str " - - \str1"

1 Top of Stack

Component/Action Syntax 8-13

8

BITS

The BITS statement is an action statement. This statement provides a way of

extracting a bit pattern from a source. The HP ID pushes the resulting value

on the stack.

Multiple BITS statements may be used to accumulate a bit pattern from

separate sources.

For any sequence of BITS instructions a single value is placed on the stack.

That value is the accumulated value of the Õelds indicated with the list of

BITS statements. Each BITS statement speciÕes a source and the desired

number of bits from that source. The number of bits is equal to (stop-start+1)

bits. These bits are taken from the source starting with the least signiÕcant bit

of the source and put into the stack destination at position <start> through

<stop>.

For example, BITS 3,1,7 takes 3-1+1 (start-stop+1) from the source (7=0111

in binary) starting with the least signiÕcant bit. Thus, 111 is extracted

from the bit pattern 0111 and is put into position 3 through 1 on the stack.

Assuming a zero was already on the stack, this yields a 1110 on the stack

(decimal 14). The bit Õeld is speciÕed as a start position and a stop position in

the stack destination.

This bit Õeld is extracted from the source and accumulated into the result,

starting with the least signiÕcant bit and incrementing by the Õeld width of

each BITS statement. This statement validates all source components unless

they are marked DONTCARE.

Syntax

8-14 Component/Action Syntax

8

BITS

Drawing 2

Item Description

start A numeric source (see drawing 2) that speciÕes the left bit of

the pattern (0 origin from least signiÕcant bit, which is

right-most bit).

stop A numeric source (see drawing 2) that speciÕes the right bit of

the pattern (0 origin from least signiÕcant bit, which is

right-most bit).

numeric source See drawing 2. SpeciÕes the source from which the bits are

extracted.

Component/Action Syntax 8-15

8

BITS

Item Description

(discrete component name)

selection

The selection of the speciÕed DISCRETE component.

DEFAULT Value of the current INTEGER or CONTINUOUS.

STACK Value at the top of the stack.

number An integer or real number.

ADDR Address speciÕed in the conÕguration box.

LIVEMODE \1" if LIVE MODE is on, otherwise, \0".

PANELMODE \1" if running in the development environment,

otherwise, \0".

AUTO The value AUTO may be used if the current

component is CONTINUOUS and its VALUES

statement speciÕes AUTO.

RECALLING \1" if currently performing a state recall, otherwise,

\0".

TIMEOUT Timeout for the device speciÕed in the conÕguration

box.

numeric component name Value of the speciÕed CONTINUOUS or INTEGER

component.

COMPONENT

numeric component name

Value of the speciÕed CONTINUOUS or INTEGER

component. Usually used when working with

ambiguous component names.

8-16 Component/Action Syntax

8

BITS

Example

COMPONENT MASK;

TYPE INTEGER;

GET ACTIONS BUILD_MASK;

END COMPONENT;

ACTIONS BUILD_MASK;

BITS 0,0 FAULT;

! Assume that we want to build this mask register:

!

! BIT 0 (LSB) FAULT

! BIT 1 POWER_ON

! BIT 2 FRONT_PANEL

! BITS 3-7 ERROR_MASK

!

BITS 1,1 POWER_ON;

BITS 2,2 FRONT_PANEL;

BITS 7,3 ERROR_MASK;

STORE MASK;

END ACTIONS;

Component/Action Syntax 8-17

8

CLEAR

The CLEAR statement is an action statement. The CLEAR statement causes

the development environment to send the HP-IB selected device clear command

(SDC) to the instrument.

The CLEAR statement has no parameters.

Syntax

Example

SET ACTIONS;

CLEAR; ! Clears the instrument

POKEINITIAL ! Sets the components to INITIAL values

END ACTIONS;

8-18 Component/Action Syntax

8

CLONE

CLONE

CLONE is a clause that may follow the component name in a COMPONENT

compound statement. It creates a component that diÃers from the cloned

component only in name.

CLONE is useful when developing HP IDs for devices such as switches. It saves

memory in the HP ID Õle by eliminating the need for you to completely specify

all components that diÃer in name only.

The new component will have the same combination of NOTSAVED, NOGEN

and NOERRCHECK as the original.

Syntax

Item Description

comp name1 The name of the new component.

comp name2 The name of the component being cloned.

Component/Action Syntax 8-19

8

CLONE

In the following example, the instrument has four registers. They are named

MAX, MIN, SDEV, AVG. The following four components access these

registers.

Example

COMPONENT MAX;

TYPE CONTINUOUS;

INITIAL 0;

SET ACTIONS;

OUTPUT SELF FORMAT '"STORE",K';

END ACTIONS;

GET ACTIONS;

OUTPUT SELF FORMAT '"RECALL",K';

ENTER DEFAULT;

END ACTIONS;

END COMPONENT;

!

COMPONENT MIN CLONE MAX;

COMPONENT SDEV CLONE MAX;

COMPONENT AVG CLONE MAX;

Cross Reference

COMPONENT

8-20 Component/Action Syntax

8

CODEGEN (HP ITG only)

CODEGEN (HP ITG only)

The CODEGEN statement is an action statement. This statement will cause

a speciÕc line of code to be logged to the editor when it is executed in panels

mode with Log HP ITG Calls mode enabled.

This statement can be used with NOGEN to override the default code

generation algorithm used by HP ITG.

Syntax

Item Description

op SpeciÕes which subprogram is called.

If op = SET, HP ITG generates a call to hpt set.

If op = GET, HP ITG generates a call to hpt get.

If op = PEEK, HP ITG generates a call to hpt peek.

If op = POKE, HP ITG generates a call to hpt poke.

If op = PUSH, HP ITG generates a call to hpt push.

For SET, GET, POKE, and PEEK, the variation of the subprogram

called depends on the TYPE of component. For example, for a STRING

component with SET, HP ITG generates a call to hpt set str.

comp name The name of the component to be used in the subprogram call.

string Optional. If speciÕed, this string is used as the third parameter in the

generated subprogram call rather than a value input by the user.

Component/Action Syntax 8-21

8

CODEGEN (HP ITG only)

Example

REVISION 2.0;

COMPONENT LEARN_STRING NOTSAVED;

TYPE STRING 128;

INITIAL "";

SET ACTIONS;

OUTPUT LEARN_STRING FORMAT K;

INVALIDATE ALL;

END ACTIONS;

GET ACTIONS;

OUTPUT STRING "LP1";

ENTER LEARN_STRING FORMAT K;

END ACTIONS;

END COMPONENT;

PANEL MAIN;

POSITION 1,1;

SIZE 220, 120;

TEXT 7,84, "Learn String";

BUTTON LEARN_STRING;

POSITION 120, 84;

LABEL "Read";

HIT ACTIONS;

CODEGEN GET, LEARN_STRING;

GET LEARN_STRING;

END ACTIONS;

END BUTTON;

(Continued)

8-22 Component/Action Syntax

8

CODEGEN (HP ITG only)

BUTTON LEARN_STRING;

POSITION 165, 84;

LABEL "Send";

HIT ACTIONS;

CODEGEN SET,LEARN_STRING,"Value";

SET LEARN_STRING;

END ACTIONS;

END BUTTON;

END PANEL;

In this example, the instrument supports a binary learn mode feature.

Because the string is binary and too long to display, it is useful to provide two

buttons|one that reads the string from the instrument and a second that

sends the string to the instrument. The default code generation would provide

an hpt push for each of these actions. We want it to generate an hpt get str

and hpt set str. The CODEGEN statement in the example provides

this behavior. Note that NOGEN was not necessary for the component

LEARN STRING because the CODEGEN statement is part of the HIT

ACTIONS list, which suspends HP ITG's default behavior of performing SET

ACTIONS.

Cross Reference

NOGEN

Component/Action Syntax 8-23

8

COMPONENT

A COMPONENT . . . END COMPONENT compound statement deÕnes

a component. As the name suggests, you describe the functionality of the

component within this statement.

You must specify a name for the component and the type of value it will have

so that the development environment can create an appropriate component.

You can also specify a range or list of valid values, an initial value, the name of

one or more components whose value depends on this component's value.

Component and action names must start with an alpha character, A-Z or a-z.

That character may be followed by any mix of alphanumeric characters, either

upper or lower case, or by an underscore. The syntax is not case sensitive.

Following is a list of possible component names:

FREQUENCY

SLOT4

SLOT 4

Start Frequency

You can also add up to four action lists: one SET ACTIONS, one GET

ACTIONS, one PANEL SET ACTIONS, and one PANEL GET ACTIONS.

8-24 Component/Action Syntax

8

COMPONENT

Syntax

Component/Action Syntax 8-25

8

COMPONENT

Item Description

comp name The name of the component. This is a required part of the

component.

Component and action names must start with an alpha

character, A-Z or a-z. That character may be followed by any

mix of alphanumeric characters, either upper or lower case,

or by an underscore. The syntax is not case sensitive.

Following is a list of possible component names:

FREQUENCY

SLOT4

SLOT 4

Start Frequency

NOTSAVED Optional. Instructs the development environment to not

include the component when the user stores or recalls a state.

NOGEN Optional. Instructs the development environment to not

generate the default code associated with the component.

NOERRCHECK Optional. Instructs the development environment to not

perform default error checking after executing any actions

initiated by the component.

CLONE CLONE is a clause that may follow the component name in a

COMPONENT compound statement. It creates a component

that diÃers from the cloned component only in name.

TYPE Required. SpeciÕes the type of the component.

VALUES Optional (except for DISCRETE components). Used to

specify a list or range of valid values.

INITIAL Optional. Used to specify the initial value of the component.

COUPLED Optional. Used to specify one or more components that are

linked to the current component.

SET ACTIONS Optional. Used to specify the actions the development

environment must execute whenever the component is

referenced in an hpt set call.

8-26 Component/Action Syntax

8

COMPONENT

Item Description

GET ACTIONS Optional. Used to specify the actions the development

environment must execute whenever the component is

referenced in an hpt get call.

PANEL SET

ACTIONS

Optional. Used to specify the actions the development

environment must execute after the component's SET

ACTIONS are executed. Executed only in the development

environment.

PANEL GET

ACTIONS

Optional. Used to specify the actions the development

environment must execute after the component's GET

ACTIONS are executed. Executed only in the development

environment.

TRACETYPE Optional. Valid for TYPE ITRACE and RTRACE only.

SpeciÕes the type of trace (spectrum, waveform, etc.)

POINTS Optional. Valid for TYPE ITRACE and RTRACE only.

SpeciÕes the current dynamic dimensions of the array.

XMIN Optional. Valid for TYPE ITRACE and RTRACE only.

SpeciÕes the X-axis value of the Õrst data point.

XINC Optional. Valid for TYPE ITRACE and RTRACE only.

SpeciÕes the X-axis spacing between data points. If XLOG is

true, speciÕes the number of steps per decade.

XLOG Optional. Valid for TYPE ITRACE and RTRACE only.

SpeciÕes whether the X-axis spacing is logarithmic.

XUNIT Optional. Valid for TYPE ITRACE and RTRACE only.

SpeciÕes the X-axis unit for graph labeling.

YUNIT Optional. Valid for TYPE ITRACE and RTRACE only.

SpeciÕes the Y-axis unit for graph labeling.

Component/Action Syntax 8-27

8

COMPONENT

Cross Reference

CLONE

COUPLED

INITIAL

NOERRCHECK

NOGEN

NOTSAVED

TYPE

VALUES

8-28 Component/Action Syntax

8

COUPLED

COUPLED

The COUPLED statement, which is used within the COMPONENT . . . END

COMPONENT compound statement, is designed to simplify handling the

relationship between related components. The development environment allows

you to couple a component with as many other components as necessary.

After the SET ACTIONS of the component containing the COUPLED

statement are executed, the development environment acts upon the

components speciÕed in the COUPLED statement as follows:

In the development environment, if Live mode is on, then the development

environment executes the GET ACTIONS and PANEL GET ACTIONS of

all components speciÕed in the COUPLED statement. If Live mode is oÃ, no

action is taken.

During run time, the development environment invalidates the components

speciÕed in the COUPLED statement so that the next recall sends all the

components' values again.

When recalling a state, COUPLED has no eÃect.

In general, when a change in component A may change component B, you

should include the statement COUPLED B in component A's declaration. You

should not, however, couple to a component that has no GET ACTIONS.

Syntax

Item Description

comp name The name of the component coupled to the current component.

Component/Action Syntax 8-29

8

COUPLED

Example

COMPONENT VOLT2;

TYPE CONTINUOUS;

VALUES RANGE 0,20,.2.0.006;

INITIAL 0;

COUPLED CURR2;

SET ACTIONS;

OUTPUT VOLT2 FORMAT '"VSET 2,",DDD.DDDD';

END ACTIONS;

GET ACTIONS;

OUTPUT STRING "VSET? 2";

ENTER VOLT2 FORMAT K;

END ACTIONS;

END COMPONENT;

!

COMPONENT CURR2;

TYPE CONTINUOUS;

VALUES RANGE 0,10.3,0.05;

INITIAL 0;

COUPLED VOLT2;

SET ACTIONS;

OUTPUT CURR2 FORMAT '"ISET 2,",DDD.DDDD';

END ACTIONS;

GET ACTIONS;

OUTPUT STRING "ISET? 2";

ENTER CURR2 FORMAT K;

END ACTIONS;

END COMPONENT;

This example shows that when the voltage is changed the current may change

as a result.

In the development environment with Live mode on, the development

environment will get the new current after performing the SET ACTIONS

of VOLT2. This provides the user with good feedback as to the state of the

instrument. During run time, the development environment just invalidates the

component.

Cross Reference

COMPONENT

8-30 Component/Action Syntax

8

DISABLE

DISABLE

The DISABLE statement is an action statement. It is used to disable

speciÕed selections of a TYPE DISCRETE component. In the development

environment, the user can enter only nondisabled selections (that is, they are

enabled unless you disable them). Once disabled, you must use the ENABLE

statement to reenable them.

Note that POKEINITIAL does not reenable components, so the component

speciÕed by INITIALIZE COMPONENT should reenable any necessary

selections.

Syntax

Item Description

comp name The name of the DISCRETE component whose list of values

you want to alter.

selection One or more selections of a DISCRETE component that you

want to disable.

Component/Action Syntax 8-31

8

DISABLE

Example

REVISION 2.0;

COMPONENT MENU NOTSAVED NOGEN NOERRCHECK;

TYPE DISCRETE;

VALUES MAIN,STATUS,RELAY;

!.

!.

!.

END COMPONENT;

COMPONENT RESET;

TYPE INTEGER;

SET ACTIONS;

!.

!.

OUTPUT STRING "RELAY?";

ENTER STACK FORMAT K;

SELECT STACK;

CASE 0;

HIDE RELAY_P;

DISABLE MENU,RELAY;

CASE 1;

SHOW RELAY_P;

ENABLE MENU,RELAY;

END SELECT;

END ACTIONS;

END COMPONENT;

Cross Reference

ENABLE

8-32 Component/Action Syntax

8

DONTCARE

DONTCARE

The DONTCARE statement is an action statement. This statement is one

of three that control the status of a component. The other two are the

INVALIDATE and VALIDATE statements.

The development environment's incremental state programming feature enables

it to send only the commands needed to conÕgure the instrument as speciÕed

in the recalled state. To do this, the development environment keeps track of

the current values of all components and so, can compare the current value

with the speciÕed value of any component in the state.

There may be some components that you don't want the development

environment to send when recalling a state; normally these components should

be speciÕed as NOTSAVED. Occasionally, you will have a component that is

necessary at some times but not at others. To do this, you can set the status

of a component to DONTCARE. When a state is recalled that includes a

component marked as DONTCARE, the development environment will not

execute the SET actions for that component.

A component ceases to be DONTCARE when it is validated (with

VALIDATE), invalidated (with INVALIDATE), or when development

environment recalls a state that includes the component and it is not marked

as DONTCARE in the state being recalled.

Syntax

Item Description

comp name The name of the component whose value you don't want the

development environment to compare to the value speciÕed in

the recalled state.

Component/Action Syntax 8-33

8

DONTCARE

Example

REVISION 2.0;

COMPONENT ARANGE;

TYPE DISCRETE;

VALUES OFF,ON;

INITIAL ON;

SET ACTIONS;

SELECT ARANGE;

CASE OFF;

OUTPUT STRING "AERH";

INVALIDATE RANGE;

CASE ON;

OUTPUT STRING "AERA";

DONTCARE RANGE;

END SELECT;

END ACTIONS;

END COMPONENT;

COMPONENT RANGE;

TYPE INTEGER;

VALUES RANGE 1,5;

INITIAL DONTCARE;

SET ACTIONS;

OUTPUT RANGE FORMAT '"AERM",D,"EN"';

FETCH (ARANGE)OFF;

STORE ARANGE;

VALIDATE RANGE;

END ACTIONS;

END COMPONENT;

(Continued)

8-34 Component/Action Syntax

8

DONTCARE

PANEL MAIN;

POSITION 1,1;

SIZE 200,200;

DISCRETE ARANGE;

POSITION 90,20;

TITLE "A Range";

END DISCRETE;

CONTINUOUS RANGE;

POSITION 90,50;

TITLE "Range";

END CONTINUOUS;

END PANEL;

Cross Reference

INVALIDATE

NOTSAVED

VALIDATE

Component/Action Syntax 8-35

8

DOWNLOAD

This statement causes the data contained in a Õle on the host computer to be

transferred to the instrument. The Õle is transferred byte for byte and the

development environment performs no data processing function.

The Õle name is speciÕed in the string source, and is interpreted by the Õle

system of the host computer.

Syntax

Item Description

string source The name of the Õle to be downloaded to the instrument.

8-36 Component/Action Syntax

8

DOWNLOAD

Example

COMPONENT SEND_HOP_LIST NOTSAVED;

TYPE STRING 32;

SET ACTIONS;

FETCH SEND_HOP_LIST;

FETCH "";

NE;

IF STACK THEN;

OUTPUT STRING "HOP:LIST?"

DOWNLOAD SEND_HOP_LIST;

END IF;

END ACTIONS;

END COMPONENT;

...

PANEL HOP;

...

INPUT SEND_HOP_LIST;

POSITION 4,55;

SIZE 120,19;

STYLE "FILESELECT";

END INPUT;

Cross Reference

UPLOAD

Component/Action Syntax 8-37

8

ENABLE

The ENABLE statement is an action statement. It is used to ENABLE

speciÕed selections of a TYPE DISCRETE component. In the development

environment, the user can enter only enabled selections (that is, they are

enabled unless you disable them). Once disabled, you must use the ENABLE

statement to reenable them. Initially, all selections for a DISCRETE are

ENABLED.

Note that POKEINITIAL does not reenable components, so the component

speciÕed by INITIALIZE COMPONENT should reenable any necessary

selections.

Syntax

Item Description

comp name The name of the DISCRETE component whose list of values

you want to alter.

selection One or more selections of a DISCRETE component that you

want to enable.

8-38 Component/Action Syntax

8

ENABLE

Example

REVISION 2.0;

COMPONENT MENU NOTSAVED NOGEN NOERRCHECK;

TYPE DISCRETE;

VALUES MAIN,STATUS,RELAY;

!.

!.

!.

END COMPONENT;

COMPONENT RESET;

TYPE INTEGER;

SET ACTIONS;

!.

!.

OUTPUT STRING "RELAY?";

ENTER STACK FORMAT K;

SELECT STACK;

CASE 0;

HIDE RELAY_P;

DISABLE MENU,RELAY;

CASE 1;

SHOW RELAY_P;

ENABLE MENU,RELAY;

END SELECT;

END ACTIONS;

END COMPONENT;

Cross Reference

DISABLE

Component/Action Syntax 8-39

8

ENTER

The ENTER statement is used to input data from the instrument. You can

specify that the development environment put the data into any component

TYPE.

Syntax

8-40 Component/Action Syntax

8

ENTER

Item Description

comp name Name of an INTEGER, DISCRETE, STRING or

CONTINUOUS component into which the development

environment puts the incoming data.

STACK The development environment puts the incoming data at the

top of the stack. The data must be numeric, not string.

DEFAULT The development environment replaces the value of the current

component with the incoming data.

string See ACTIONS keyword table 8-7 for speciÕers.

array comp name Name of an ITRACE, RTRACE, IARRAY, or RARRAY

component into which the development environment puts the

incoming data. The development environment converts the data

to the proper type.

ASCII SpeciÕes that the development environment will read items

separated by commas or carriage return/line feed.

INT16 SpeciÕes that the development environment will read 16-bit

integer data.

REAL64 SpeciÕes that the development environment will read 64-bit

IEEE 754 Œoating point data.

skip A constant or name of a component whose value speciÕes how

many bytes to skip before putting the data into

array_comp_name.

rows A constant or name of a component whose value speciÕes how

many elements (that is, not bytes) to Õll up with the incoming

data. If rows is missing, it defaults to 1.

cols A constant or name of a component whose value speciÕes how

many elements (that is, not bytes) to Õll up with the incoming

data.

Component/Action Syntax 8-41

8

ENTER

For array enters, rows and cols indicate whether they are entered with the row

or column index incrementing faster. If rows and cols match the rows and cols

speciÕed in the IARRAY or RARRAY component statement, then the array

is entered with the column index incrementing faster. If the rows and cols in

the ENTER statement are swapped from those speciÕed in the IARRAY or

RARRAY component statement, then the array is entered with the row index

incrementing faster. If rows or cols in the ENTER statement is smaller than

rows or cols in the array component, then only that many rows or columns is

ENTERED.

In any case, the smaller of rows or cols in the ENTER statement must match

rows in the TYPE statement.

8-42 Component/Action Syntax

8

ENTER

Table 8-9. Valid ENTER FORMAT Specifiers

FORMAT

SpeciÕer

Meaning

K FreeÕeld entry

Numeric: Entered characters are sent to the number builder. Leading

non-numeric characters are ignored. All blanks are ignored. Trailing

non-numeric characters and characters sent with EOI true are

delimiters. Numeric characters include digits, decimal point, +, -, e, and

E when their order is meaningful.

String: Entered characters are placed in the string. Carriage return not

immediately followed by line feed is entered into the string. Entry to a

string terminates on CR/LF, LF, a character received with EOI true, or

when the dimensioned length of the string is reached.

D Enters a character. Non-numerics are accepted to Õll the character

count. Blanks are ignored. Other non-numerics are delimiters.

Z Same as D.

M Same as D.

S Same as D.

. Same as D.

E Same as DDDD.

ESZ Same as DDD.

ESZZ Same as DDDD.

ESZZZ Same as DDDDD.

A Enters a string character. Any character received is placed in the string.

X Skips a character.

Statement is terminated when the last ENTER item is terminated. EOI

and line feed are item terminators, and early termination is not allowed.

B Demands one byte. The byte becomes a numeric quantity.

W Demands one 16-bit word, which is interpreted as a 16-bit, two's

complement integer.

Component/Action Syntax 8-43

8

ENTER

Example

REVISION 2.0;

COMPONENT SINGLE;

TYPE INTEGER;

GET ACTIONS;

ENTER SINGLE FORMAT "K";

END ACTIONS;

END COMPONENT;

COMPONENT ARRAY;

TYPE RARRAY 1 20;

GET ACTIONS;

ENTER ARRAY FORMAT ASCII 0 1 20; ! SKIP

END ACTIONS;

END COMPONENT;

8-44 Component/Action Syntax

8

EOL

EOL

The EOL statement is a general statement that allows you to select the

end-of-line (EOL) characters that are sent to the instrument.

The default EOL sequence is 13,10 (that is, carriage return/line feed).

You can specify up to two numbers, each of which is the decimal value of the

desired ASCII character (see table 8-10).

You can also specify EOI (end-or-identify) as part of the EOL sequence.

This causes the HP-IB EOI line to be asserted with the last byte of the

transmission. If EOL EOI is speciÕed, then the EOI line is asserted with the

last data byte.

The development environment buÃers outgoing data before it is sent. If the

development environment determines that it is time to send the buÃer, and if

the buÃer is not empty, it is sent with the EOL sequence on the end.

The following action statements and an END ACTIONS cause the buÃer to be

sent:

SET

GET

WAIT TIME

WAIT SPOLL BIT

ENTER

TRIGGER

SPOLL

USERSUB

CLEAR

FLUSH

POKEINITIAL

Syntax

Component/Action Syntax 8-45

8

EOL

Item Description Range

number 1 Optional. An integer. This is the decimal equivalent to the

ASCII character that is the Õrst character in the EOL

sequence.

0 - 127

number 2 Optional. An integer. This is the decimal equivalent to the

ASCII character that is the second character in the EOL

sequence.

0 - 127

EOI Optional. When speciÕed, the development environment

asserts EOI with the last data byte.

8-46 Component/Action Syntax

8

EOL

Table 8-10. Decimal-ASCII Conversions

Control Number

& Symbol

Upper Case

Letters & Symbols

Lower Case

Letters & Symbols

Dec. ASCII Dec. ASCII Dec. ASCII Dec. ASCII

0 NUL 33 ! 65 A 97 a

1 SOH 34 " 66 B 98 b

2 STX 35 # 67 C 99 c

3 ETX 36 $ 68 D 100 d

4 EOT 37 % 69 E 101 e

5 ENQ 38 & 70 F 102 f

6 ACK 39 ' 71 G 103 g

7 BEL 40 (72 H 104 h

8 BS 41) 73 I 105 i

9 HT 42 * 74 J 106 j

10 LF 43 + 75 K 107 k

11 VT 44 , 76 L 108 l

12 FF 45 - 77 M 109 m

13 CR 46 . 78 N 110 n

14 SO 47 / 79 O 111 o

15 SI 48 0 80 P 112 p

16 DL 49 1 81 Q 113 q

17 DCI 50 2 82 R 114 r

18 DC2 51 3 83 S 115 s

19 DC3 52 4 84 T 116 t

20 DC4 53 5 85 U 117 u

21 NAK 54 6 86 V 118 v

22 SYN 55 7 87 W 119 w

23 ETB 56 8 88 X 120 x

24 CAN 57 9 89 Y 121 y

25 EM 58 : 90 Z 122 z

26 SUB 59 ; 91 [123 f

27 ESC 60 < 92 n 124 j

28 FS 61 = 93] 125 g

29 GS 62 > 94 ^ 126 ~

30 RS 63 ? 95 127 DELn(rubout)

31 US 64 @ 96 `

32 SP

Component/Action Syntax 8-47

8

EOL

Example

! Example 1: End with EOI

REVISION 2.0;

EOL EOI;

!

! Example 2: End with a line feed

REVISION 2.0;

EOL 10;

Cross Reference

SKIP EOL

8-48 Component/Action Syntax

8

ERROR COMPONENT

ERROR COMPONENT

The ERROR COMPONENT statement allows you to take advantage of

an instrument's error-checking capability. This statement indicates to the

development product how to check for instrument errors. If the error checking

is turned on, error checking is done after each transaction between the

development product and the instrument.

The development environment checks for instrument errors by executing the

GET actions of the speciÕed component. If the component is non-zero after

executing the GET actions, an error is raised.

The GET ACTIONS list of the component indicated in the ERROR

COMPONENT statement typically includes an OUTPUT statement

that queries the instrument's error register, and an ENTER statement in which

the instrument returns a value indicating whether an error has occurred.

When error checking is enabled during run time and an error is detected, an

error will be generated. (In HP ITG only, the routine hpt errmsg can then be

used to ascertain more speciÕcs about the error.)

Syntax

Item Description

comp name The component whose GET ACTIONS are executed after each

transaction with the instrument. This must be a TYPE

INTEGER or CONTINUOUS component.

Component/Action Syntax 8-49

8

ERROR COMPONENT

Example

REVISION 2.0;

!

ERROR COMPONENT SYSTEM_ERROR;

! .

! .

! .

COMPONENT SYSTEM_ERROR NOTSAVED;

TYPE INTEGER;

GET ACTIONS;

OUTPUT STRING "ERR?";

ENTER SYSTEM_ERROR FORMAT K;

END ACTIONS;

END COMPONENT;

Cross Reference

NOERRCHECK

8-50 Component/Action Syntax

8

EXIT IF

EXIT IF

The EXIT IF statement is an action statement. It is used to break out of a

LOOP . . . END LOOP compound statement. EXIT IFs can occur anywhere

inside a loop.

The EXIT IF condition will cause control to be transferred to the statement

after the END LOOP statement of the LOOP where the EXIT IF occurs.

Syntax

Component/Action Syntax 8-51

8

EXIT IF

Item Description

(discrete component name)

selection

The selection of the speciÕed DISCRETE component.

DEFAULT Value of the current INTEGER or CONTINUOUS.

STACK Value at the top of the stack.

number An integer or real number.

ADDR Address speciÕed in the conÕguration box.

LIVEMODE \1" if LIVE MODE is on, otherwise, \0".

PANELMODE \1" if running in the development environment,

otherwise, \0".

AUTO The value AUTO may be used if the current

component is CONTINUOUS and its VALUES

statement speciÕes AUTO.

RECALLING \1" if currently performing a state recall, otherwise,

\0".

TIMEOUT Timeout for the device speciÕed in the conÕguration

box.

numeric component name Value of the speciÕed CONTINUOUS or INTEGER

component.

COMPONENT

numeric component name

Value of the speciÕed CONTINUOUS or INTEGER

component. Usually used when working with

ambiguous component names.

Cross Reference

LOOP

8-52 Component/Action Syntax

8

FETCH

FETCH

The FETCH statement is an action statement. This statement, along with

the STORE statement, and arithmetic, logic, and string operators form the

vocabulary of a FORTH-like stack machine.

The FETCH statement places the value from the source on top of the stack

(that is, it pushes the value from the source).

Syntax

Item Description

numeric source See drawing 2.

string source See drawing 3.

Component/Action Syntax 8-53

8

FETCH

Drawing 2

8-54 Component/Action Syntax

8

FETCH

Item Description

(discrete component name)

selection

The selection of the speciÕed DISCRETE component.

DEFAULT Value of the current INTEGER or CONTINUOUS.

STACK Value at the top of the stack.

number An integer or real number.

ADDR Address speciÕed in the conÕguration box.

LIVEMODE \1" if LIVE MODE is on, otherwise, \0".

PANELMODE \1" if running in the development environment,

otherwise, \0".

AUTO The value AUTO may be used if the current

component is CONTINUOUS and its VALUES

statement speciÕes AUTO.

RECALLING \1" if currently performing a state recall, otherwise,

\0".

TIMEOUT Timeout for the device speciÕed in the conÕguration

box.

numeric component name Value of the speciÕed CONTINUOUS or INTEGER

component.

COMPONENT

numeric component name

Value of the speciÕed CONTINUOUS or INTEGER

component. Usually used when working with

ambiguous component names.

Component/Action Syntax 8-55

8

FETCH

Drawing 3

In either case, the array element is FETCHed onto the stack.

Item Description

STRING The development environment uses a user-entered

string as the value.

SELF The development environment uses the name of

the current component as the value.

string component name The development environment uses the name of

the STRING component speciÕed.

STACK The development environment uses the value at

the top of the stack.

DEFAULT The development environment uses the value of

the current component.

SUBADDR The development environment uses the subaddress

the user typed into the conÕguration box.

COMPONENT string Indicates using a component as the source

component name.

8-56 Component/Action Syntax

8

FETCH

Fetching Array Elements

Array elements can be FETCHed onto the stack. Arrays are either

one-dimension or two-dimension, and start at one. To FETCH one element of

an array, use the following statements in an action list:

One-dimension array:

FETCH index

FETCH comp name

Two-dimension array:

FETCH row index

FETCH col index

FETCH comp name

Example

FETCH SRQ_MASK; ! Puts value on stack

FETCH 0; ! Puts value on stack

BIT; ! Puts the 0-position bit of SRQ_MASK on stack

STORE SRQ_FAULT; ! and stores it in SRQ_FAULT

Component/Action Syntax 8-57

8

FLUSH

The FLUSH statement is an action statement. FLUSH is used to force the

development environment to output its buÃer.

The development environment buÃers outgoing data before it is sent. The

FLUSH statement is used to force the buÃer to be transmitted to the

instrument. If the buÃer is not empty, the EOL sequence will be sent also.

The following ACTIONS statements and END ACTIONS cause the

development environment to Œush the buÃer:

SET

GET

WAIT TIME

WAIT SPOLL BIT

ENTER

TRIGGER

SPOLL

USERSUB

CLEAR

FLUSH

POKEINITIAL

FLUSH does not have any parameters.

Example

In the following example, let us assume that the default EOL sequence is being

used.

SET ACTIONS;

OUTPUT "FUNC ";

OUTPUT FUNCTION TABLE "DCV","ACV","OHM";

END ACTIONS;

Because there is not a FLUSH statement between the two OUTPUT

statements, FUNC DCV CR LF is sent to the instrument. If a FLUSH statement is

added between the two output statements, FUNC CR LF DCV CR LF would be sent.

Note that adding a second FLUSH between the OUTPUTs would not have sent

the EOL sequence again. This is because the buÃer is empty at this point.

8-58 Component/Action Syntax

8

FLUSH

It is desirable to use the FLUSH statement when sending two separate

commands as in the following example:

GET ACTIONS;

OUTPUT "INIT OFF";

FLUSH;

OUTPUT "FUNC?";

ENTER FUNCTION;

END ACTIONS;

Note that a FLUSH statement is not required before the ENTER statement.

Cross Reference

ENTER

EOL

OUTPUT

CLEAR

SPOLL

TRIGGER

Component/Action Syntax 8-59

8

GET

The GET statement is an action statement. When the GET statement is

executed in an action list, the development environment executes the GET

ACTIONS of the component speciÕed in the statement. When the development

environment is running, it then executes the PANEL GET ACTIONS, if there

are any.

You can nest GET statements up to the available memory on your computer.

Syntax

Item Description

comp name The name of the component whose GET ACTIONS are

executed when the GET statement is encountered in an action

list.

Example

ACTIONS FINISH_POKEINITIAL;

! Assume that a POKEINITIAL was just executed.

! This gets the values for all components not initialized.

GET SENS_VOLT1;

GET SENS_CURR1;

GET CURR1;

! .

! .

! .

END ACTIONS;

Cross Reference

ACTIONS

8-60 Component/Action Syntax

8

GET ACTIONS

GET ACTIONS

The GET ACTIONS . . . END ACTIONS compound statement deÕnes an

action list that will GET the value of a component.

The GET ACTIONS statement is part of a component description and is

typically used to instruct the instrument to make a measurement or to query

the instrument for the value of a component.

The GET ACTIONS are executed when:

hpt get, hpt get str, hpt get ary, or hpt get iary is executed on this

component.

hpt get2, hpt get str2, hpt get ary2, or hpt get iary2 is executed on this

component.

A GET statement references this component in an action list.

A component that is coupled to this component is changed in the

development environment with Live mode on.

Syntax

Item Description

actions name The name of the action list.

action statement See tables 8-1 through 8-8 under the ACTIONS keyword for the valid statements.

Component/Action Syntax 8-61

8

GET ACTIONS

Example

ACTIONS READING;

SELECT trigger;

CASE SINGLE;

OUTPUT STRING "TR2;

CASE FAST;

OUTPUT STRING "TR1";

CASE ELSE;

END SELECT;

ENTER READING FORMAT "K";

END ACTIONS;

!

COMPONENT SAMPLE;

TYPE CONTINUOUS;

GET ACTIONS READING;

END COMPONENT;

Cross Reference

ACTIONS

8-62 Component/Action Syntax

8

GOSUB

GOSUB

The GOSUB statement is an action statement. GOSUB statement is used to

call a named action list.

You can nest GOSUBs up to the memory limitations of your computer.

Syntax

Item Description

actions name The name of the named action list.

Example

REVISION 2.0;

ACTIONS FREQ_0;

FETCH 0;

STORE FREQ;

END ACTIONS;

COMPONENT DC;

TYPE INTEGER;

SET ACTIONS;

OUTPUT STRING "DC";

GOSUB FREQ_0;

END ACTIONS;

END COMPONENT;

Cross Reference

ACTIONS

Component/Action Syntax 8-63

8

HIDE

The HIDE statement is an action statement. This statement allows you to

specify that a subpanel is not displayed. It is executed only in the development

environment.

HIDE is hierarchical. If you HIDE panel name, then all subpanels of

panel name will not be seen, but when you SHOW panel name they will

reappear.

Syntax

Item Description

panel name The name of the subpanel that you do not want displayed.

In the following example, HP 438 is the main panel. TOP and

WATT READING are its subpanels. SUB WATT is a subpanel of

WATT READING. When WATT READING is hidden, SUB WATT will also

disappear.

8-64 Component/Action Syntax

8

HIDE

Example

INITIALIZE COMPONENT RESET;

TYPE INTEGER;

SET ACTIONS;

! .

! .

! .

END ACTIONS;

PANEL SET ACTIONS;

SHOW TOP;

HIDE WATT_READING;

INVALIDATE A_RANGE;

END ACTIONS;

END COMPONENT;

! .

! .

! .

!Panel section

PANEL HP_438;

PANEL TOP;

POSITION 0,182;

! .

! .

! .

END PANEL;

PANEL WATT_READING;

POSITION 10,150;

PANEL SUB_WATT;

! .

! .

! .

END PANEL;

END PANEL;

! .

! .

! .

END PANEL;

Cross Reference

SHOW

Component/Action Syntax 8-65

8

IF . . . END IF

The IF . . . END IF compound statement is an action statement. The IF . . .

END IF statement allows you to conditionally execute a portion of your action

lists.

You can nest IF . . . END IF, LOOP . . . END LOOP, and SELECT . . . END

SELECT compound statements up to ten deep.

If the value is not zero:

Then the development environment executes the statements between THEN

and ELSE (or END IF, if ELSE is not present).

If the value is zero:

Then the development environment executes the statements between ELSE

and END IF if ELSE is present.

Syntax

Item Description

numeric source See drawing 2. The source provides a value.

action statement See tables 8-1 through 8-8 under the ACTIONS

keyword for the valid statements.

8-66 Component/Action Syntax

8

IF . . . END IF

Drawing 2

Component/Action Syntax 8-67

8

IF . . . END IF

Item Description

(discrete component name)

selection

The selection of the speciÕed DISCRETE component.

DEFAULT Value of the current INTEGER or CONTINUOUS.

STACK Value at the top of the stack.

number An integer or real number.

ADDR Address speciÕed in the conÕguration box.

LIVEMODE \1" if LIVE MODE is on, otherwise, \0".

PANELMODE \1" if running in the development environment,

otherwise, \0".

AUTO The value AUTO may be used if the current

component is CONTINUOUS and its VALUES

statement speciÕes AUTO.

RECALLING \1" if currently performing a state recall, otherwise,

\0".

TIMEOUT Timeout for the device speciÕed in the conÕguration

box.

numeric component name Value of the speciÕed CONTINUOUS or INTEGER

component.

COMPONENT

numeric component name

Value of the speciÕed CONTINUOUS or INTEGER

component. Usually used when working with

ambiguous component names.

8-68 Component/Action Syntax

8

IF . . . END IF

Example

REVISION 2.0;

COMPONENT MENU NOTSAVED NOGEN NOERRCHECK;

TYPE DISCRETE;

VALUES MAIN,STATUS,RELAY;

!.

!.

!.

END COMPONENT;

COMPONENT RESET;

TYPE INTEGER;

SET ACTIONS;

!.

!.

OUTPUT STRING "RELAY?";

ENTER STACK FORMAT K;

IF STACK THEN;

HIDE RELAY_P;

DISABLE MENU,RELAY;

ELSE;

SHOW RELAY_P;

ENABLE MENU,RELAY;

END IF;

END ACTIONS;

END COMPONENT;

Cross Reference

SELECT

Component/Action Syntax 8-69

8

INITIAL

The INITIAL statement allows you to specify an initial value for the

component as well as an initial status. It is an optional part of a component

description, and if present, must follow the VALUES statement.

The development environment sets each component to the values speciÕed in

its INITIAL statement when executing a POKEINITIAL statement.

For status, you can specify the component be initially INVALID or

DONTCARE. The default is VALID. If you specify a state, you may also

specify a value.

The development environment ignores INITIAL values set for IARRAY and

RARRAY components. When a program is run, the development environment

sets IARRAY and RARRAY values to 0. The POKEINITIAL statement

ignores IARRAY and RARRAY components.

Defaults:

DISCRETE components are set to the Õrst value in their VALUES list.

STRING components are set to " " (empty string).

All others are set to 0.

Syntax

8-70 Component/Action Syntax

8

INITIAL

Item Description

number An integer or real number that you want to be the initial value

of an INTEGER or CONTINUOUS component.

string A string that you want to be the initial value of a STRING

component.

discrete selection A value from the list of valid values speciÕed in the VALUES

statement of a DISCRETE component.

DONTCARE SpeciÕes that the component is initially DONTCARE.

INVALID SpeciÕes that the component is initially INVALID.

AUTO SpeciÕes that the component, which must be CONTINUOUS

and include AUTO in its VALUE statement, initially has the

value AUTO.

Example

REVISION 2.0;

INITIALIZE COMPONENT RESET; ! Executes SET ACTIONS of component RESET.

! .

! .

! .

COMPONENT UNITS;

TYPE DISCRETE;

VALUES LOG,LINEAR;

INITIAL LOG; ! Sets UNITS to LOG when POKEINITIAL executed.

! .

! .

! .

END COMPONENT;

!

(Continued)

Component/Action Syntax 8-71

8

INITIAL

COMPONENT A_CAL_ADJUST;

TYPE CONTINUOUS;

VALUES RANGE 50,120,.1;

INITIAL 100 ! Sets A_CAL_ADJUST to 100 when POKEINITIAL executed.

END COMPONENT;

!

COMPONENT A_CAL NOTSAVED;

TYPE INTEGER; ! Defaults to initial value of 0.

SET ACTIONS;

OUTPUT A_CAL_ADJUST FORMAT '"AECL",K,"ENEN"';

END ACTIONS;

END COMPONENT;

!

COMPONENT RESET;

TYPE INTEGER;

SET ACTIONS;

CLEAR;

! .

! .

! .

POKEINITIAL; !Sets components to initial value.

END ACTIONS;

END COMPONENT;

Cross Reference

COMPONENT

POKEINITIAL

VALUES

8-72 Component/Action Syntax

8

INITIALIZE COMPONENT

INITIALIZE COMPONENT

The INITIALIZE statement indicates to the development environment which

component should be SET to initialize the HP ID and instrument. The

development environment sets the INITIALIZE component whenever the user

adds the HP ID to a test system in the development environment or executes

hpt assign in the run-time environment.

Usually, the INITIALIZE component will include the POKEINITIAL

statement.

Syntax

Item Description

comp name This is the name of the INTEGER component whose SET

ACTIONS the development environment executes whenever a

program is run or whenever the HP ID is added to the development

environment.

Example

See INITIAL.

Cross Reference

POKEINITIAL

NOPOKEINITIAL

Component/Action Syntax 8-73

8

INVALIDATE

The INVALIDATE statement is an action statement. This statement is

one of three that control the state of a component. The other two are the

DONTCARE and VALIDATE statements.

INVALIDATE is used to indicate to the development environment that the

value of a component does not necessarily reŒect the conÕguration of the

instrument. This way, when the development environment recalls a state, it

will know that this component needs to be SET again.

Using the INVALIDATE statement allows you to indicate that a setting in the

instrument has changed without incurring the overhead of sending it again

immediately (note that in many cases recall would have had to send this

component again anyway).

The development environment's incremental state programming feature uses

INVALIDATE also (see \How Recall Works" in chapter 6, \Advanced Topics").

You can use INVALIDATE in a SET ACTION to cause a companion

component to be output during a state recall.

You can use INVALIDATE to indicate that a component is not longer

DONTCARE, but the value in the component does not necessarily match that

of the instrument.

Syntax

Item Description

comp name The name of the component you want to mark as INVALID.

ALL You can use this keyword to mark all components in the HP ID as

INVALID.

8-74 Component/Action Syntax

8

INVALIDATE

Example

REVISION 2.0;

COMPONENT ARANGE;

TYPE DISCRETE;

VALUES OFF,ON;

INITIAL ON;

SET ACTIONS;

SELECT ARANGE;

CASE OFF;

OUTPUT STRING "AERH";

INVALIDATE RANGE;

CASE ON;

OUTPUT STRING "AERA";

DONTCARE RANGE;

END SELECT;

END ACTIONS;

END COMPONENT;

COMPONENT RANGE;

TYPE INTEGER;

VALUES RANGE 1,5;

INITIAL DONTCARE;

SET ACTIONS;

OUTPUT RANGE FORMAT '"AERM",D,"EN"';

FETCH (ARANGE)OFF;

STORE ARANGE;

VALIDATE RANGE;

END ACTIONS;

END COMPONENT;

(Continued)

Component/Action Syntax 8-75

8

INVALIDATE

PANEL MAIN;

POSITION 1,1;

SIZE 200,200;

DISCRETE ARANGE;

POSITION 90,20;

TITLE "A Range";

END DISCRETE;

CONTINUOUS RANGE;

POSITION 90,50;

TITLE "Range";

END CONTINUOUS;

END PANEL;

Cross Reference

DONTCARE

VALIDATE

8-76 Component/Action Syntax

8

LOOP . . . END LOOP

LOOP . . . END LOOP

The LOOP and END LOOP statements are action statements. These

statements deÕne a loop structure that can be exited with one or more EXIT

IF statements.

Loops can be nested and the EXIT IF can occur anywhere within the LOOP.

The EXIT IF condition will cause control to be transferred to the statement

after the END LOOP statement of the loop where the EXIT IF occurs. You

can next LOOP . . . END LOOP, IF . . . END IF, and SELECT . . . END

SELECT compound statements up to 10 deep.

Syntax

Example

FETCH 10;

LOOP;

FETCH 1;

SUB;

DUP;

FETCH 0;

EQ;

EXIT IF STACK;

.

.

.

END LOOP

DROP;

Cross Reference

EXIT IF

Component/Action Syntax 8-77

8

MATSCALE

The MATSCALE statement is an action statement that operates on TYPE

ARRAY or RARRAY components. The MATSCALE statement is used to

scale an array. It instructs the development environment to perform mx + b

arithmetic on the speciÕed component.

Syntax

Item Description

multiplier A numeric source that speciÕes the m value. You can use any of the

values in drawing 2 (following page).

oÃset A numeric source that speciÕes the b value. You can use any of the

values in drawing 2 (following page).

comp name The name of an IARRAY or RARRAY component whose values will

be scaled by multiplier and oÃset.

8-78 Component/Action Syntax

8

MATSCALE

Drawing 2

Component/Action Syntax 8-79

8

MATSCALE

Item Description

(discrete component name)

selection

The selection of the speciÕed DISCRETE component.

DEFAULT Value of the current INTEGER or CONTINUOUS.

STACK Value at the top of the stack.

number An integer or real number.

ADDR Address speciÕed in the conÕguration box.

LIVEMODE \1" if LIVE MODE is on, otherwise, \0".

PANELMODE \1" if running in the development environment,

otherwise, \0".

AUTO The value AUTO may be used if the current

component is CONTINUOUS and its VALUES

statement speciÕes AUTO.

RECALLING \1" if currently performing a state recall, otherwise,

\0".

TIMEOUT Timeout for the device speciÕed in the conÕguration

box.

numeric component name Value of the speciÕed CONTINUOUS or INTEGER

component.

COMPONENT

numeric component name

Value of the speciÕed CONTINUOUS or INTEGER

component. Usually used when working with

ambiguous component names.

8-80 Component/Action Syntax

8

MATSCALE

Example

REVISION 2.0;

!

COMPONENT WF_CH1 NOTSAVED;

TYPE RARRAY 1024;

INITIAL INVALID;

GET ACTIONS;

OUTPUT STRING "WF_SIZE?";

ENTER WF_SIZE FORMAT "K";

OUTPUT STRING "YORIGIN?";

ENTER YORIGIN FORMAT "K";

OUTPUT STRING "YINCREMENT?";

ENTER YINCREMENT FORMAT "K";

OUTPUT STRING ":WAV:DATA?;";

ENTER WF_CH1 FORMAT INT16 0 WF_SIZE;

MATSCALE YINCREMENT,YORIGIN WF_CH1; ! Scales y-data in array

END ACTIONS;

END COMPONENT;

Component/Action Syntax 8-81

8

NOERRCHECK

NOERRCHECK is an optional clause that follows the component name in the

component description. The NOERRCHECK option instructs the development

environment to not execute the GET ACTIONS list of the error component

after transactions between the HP ID and the instrument that this component

initiated.

This is useful when the error check would somehow interfere with data already

in the instrument output buÃer.

Cross Reference

COMPONENT

ERROR COMPONENT

NOGEN

NOPOKEINITIAL

NOTSAVED

8-82 Component/Action Syntax

8

NOGEN (HP ITG only)

NOGEN (HP ITG only)

NOGEN is an optional clause that follows the component name in the

component description. The NOGEN option instructs HP ITG to not generate

any code associated with the component when the user is in the development

environment.

You should specify the NOGEN option for components that create menus

so that going from subpanel to subpanel does not generate code. These

components should also be speciÕed as NOTSAVED and NOERRCHECK.

NOGEN is also useful when you are explicitly logging code with CODEGEN.

Example

COMPONENT MENU NOTSAVED NOGEN NOERRCHECK;

TYPE DISCRETE;

VALUES Main, Cal, A_Meas, B_Meas, Misc, Status, About;

INITIAL Main;

SET ACTIONS;

SELECT MENU;

CASE Main;

HIDE A_Meas;

! .

! .

! .

END SELECT;

END COMPONENT;

Cross Reference

COMPONENT

NOERRCHECK

NOPOKEINITIAL

NOTSAVED

Component/Action Syntax 8-83

8

NOPOKEINITIAL

NOPOKEINITIAL is an optional clause that follows the component name

in the component description. The NOPOKEINITIAL option instructs the

measurement product to not initialize the component during a reset operation.

You should specify the NOPOKEINITIAL option for components that

correspond to instrument functions that are not initialized during a reset

operation. Examples are status registers and long Œatness correction lists.

Example

COMPONENT ESREGISTER NOTSAVED NOPOKEINITIAL;

TYPE INTEGER;

INITIAL 0;

GET ACTIONS;

OUTPUT STRING "*ESR?";

ENTER ESREGISTER FORMAT K;

END ACTIONS;

END COMPONENT;

Cross Reference

COMPONENT

8-84 Component/Action Syntax

8

NOTIFY

NOTIFY

The NOTIFY statement is an action statement. This statement allows you

to specify a message that the development environment displays to the user.

The development environment then stops executing statements until the user

responds by clicking on OK, which is displayed in the dialog box onscreen.

During run time, executing this statement has no eÃect.

Syntax

Item Description

numeric source See drawing 2.

string source See drawing 3.

Component/Action Syntax 8-85

8

NOTIFY

Drawing 2

8-86 Component/Action Syntax

8

NOTIFY

Item Description

(discrete component name)

selection

The selection of the speciÕed DISCRETE component.

DEFAULT Value of the current INTEGER or CONTINUOUS.

STACK Value at the top of the stack.

number An integer or real number.

ADDR Address speciÕed in the conÕguration box.

LIVEMODE \1" if LIVE MODE is on, otherwise, \0".

PANELMODE \1" if running in the development environment,

otherwise, \0".

AUTO The value AUTO may be used if the current

component is CONTINUOUS and its VALUES

statement speciÕes AUTO.

RECALLING \1" if currently performing a state recall, otherwise,

\0".

TIMEOUT Timeout for the device speciÕed in the conÕguration

box.

numeric component name Value of the speciÕed CONTINUOUS or INTEGER

component.

COMPONENT

numeric component name

Value of the speciÕed CONTINUOUS or INTEGER

component. Usually used when working with

ambiguous component names.

Component/Action Syntax 8-87

8

NOTIFY

Drawing 3

Item Description

STRING The development environment uses a user-entered

string as the value.

SELF The development environment uses the name of

the current component as the value.

string component name The development environment uses the name of

the STRING component speciÕed.

STACK The development environment uses the value at

the top of the stack.

DEFAULT The development environment uses the value of

the current component.

SUBADDR The development environment uses the subaddress

the user typed into the conÕguration box.

COMPONENT string Indicates using a component as the source

component name.

8-88 Component/Action Syntax

8

NOTIFY

Example

REVISION 2.0;

COMPONENT START_SCANNER NOTSAVED NOGEN NOERRCHECK;

TYPE CONTINUOUS;

PANEL SET ACTIONS;

OUTPUT STRING "OPT?";

ENTER START_SCANNER FORMAT "K";

SELECT START_SCANNER;

CASE 44491;

!.

CASE 44492;

!.

CASE 0;

NOTIFY "No scanner option available";

END SELECT;

END ACTIONS;

END COMPONENT;

Component/Action Syntax 8-89

8

NOTSAVED

NOTSAVED is an optional clause that follows the component name in the

component description. The NOTSAVED option instructs the development

environment to not include the component when the user stores or recalls a

state.

You should specify the NOTSAVED option for components that you do not

want to be stored as part of a state and then recalled in a measurement

procedure. Typically, components that have only a GET ACTIONS list should

be speciÕed as NOTSAVED. Another example of a NOTSAVED component

is one that provides a menu that allows the user to go from one subpanel to

another.

Example

COMPONENT MENU NOTSAVED NOGEN NOERRCHECK;

TYPE DISCRETE;

VALUES Main, Cal, A_Meas, B_Meas, Misc, Status, About;

INITIAL Main;

SET ACTIONS;

SELECT MENU;

CASE Main;

HIDE A_Meas;

! .

! .

! .

END SELECT;

END COMPONENT;

Cross Reference

COMPONENT

NOGEN

NOPOKEINITIAL

8-90 Component/Action Syntax

8

numeric expr

numeric expr

Numeric expressions are used throughout this chapter by statements that need

to refer to component values or literal numbers.

Syntax

Item Description

number An integer or real number.

numeric component name Value of the speciÕed INTEGER or CONTINUOUS

component.

Component/Action Syntax 8-91

8

numeric source

Numeric sources are used throughout this chapter to let action statements

access numeric component values, constants, system settings, and the stack.

Syntax

8-92 Component/Action Syntax

8

numeric source

Item Description

(discrete component name)

selection

The selection of the speciÕed DISCRETE component.

DEFAULT Value of the current INTEGER or CONTINUOUS.

STACK Value at the top of the stack.

number An integer or real number.

ADDR Address speciÕed in the conÕguration box.

LIVEMODE \1" if LIVE MODE is on, otherwise, \0".

PANELMODE \1" if running in the development environment,

otherwise, \0".

AUTO The value AUTO may be used if the current

component is CONTINUOUS and its VALUES

statement speciÕes AUTO.

RECALLING \1" if currently performing a state recall, otherwise,

\0".

TIMEOUT Timeout for the device speciÕed in the conÕguration

box.

numeric component name Value of the speciÕed CONTINUOUS or INTEGER

component.

COMPONENT

numeric component name

Value of the speciÕed CONTINUOUS or INTEGER

component. Usually used when working with

ambiguous component names.

Component/Action Syntax 8-93

8

numeric source

Example

FETCH 4.3;

FETCH (Function) Square;

FETCH AUTO;

FETCH Frequency;

FETCH COMPONENT Frequency;

FETCH DEFAULT;

FETCH TIMEOUT;

IF LIVEMODE THEN; END IF;

IF PANEL MODE THEN; END IF;

IF RECALLING THEN; END IF;

FETCH ADDR;

OUTPUT STACK FORMAT 'K';

8-94 Component/Action Syntax

8

OUTPUT

OUTPUT

The OUTPUT statement is an action statement. It is used to send commands

to the instrument.

The development environment buÃers outgoing data before it is sent. The

following action statements and END ACTIONS cause the development

environment to send the buÃer and append the EOL sequence to the end.

SET

GET

WAIT TIME

WAIT SPOLL BIT

ENTER

TRIGGER

SPOLL

USERSUB

CLEAR

FLUSH

POKEINITIAL

A component is validated when it is output. If OUTPUT STACK is used, the

value must be numeric.

When OUTPUT TABLE is used, if the value is 0, the Õrst item in the list is

sent. If the value is 1, the second item in the list is sent, and so on.

Component/Action Syntax 8-95

8

OUTPUT

Syntax

Item Description

discrete component name Name of a DISCRETE component.

numeric source See drawing 3.

string source See drawing 4.

label STRING sent to the instrument depending on the

value of the DISCRETE component.

image speciÕer See table 8-11 under this keyword section.

Outputting Arrays

8-96 Component/Action Syntax

8

OUTPUT

Item Description

array component name Name of an RARRAY or IARRAY component from

which the development environment gets the data to

output.

DEFAULT The development environment outputs the value of the

component that causes the action list to be executed.

ASCII SpeciÕes that the development environment will send

items separated by commas and terminated with a

carriage return/line feed.

INT16 SpeciÕes that the development environment will output

16-bit integer binary data.

REAL64 SpeciÕes that the development environment will output

64-bit IEEE 754 Œoating point binary data.

rows A constant or name of a component whose value speciÕes

how many rows of the array to send. If rows is missing,

it defaults to 1.

cols A constant or name of a component whose value speciÕes

how many columns of the array to send.

END Causes EOI to be sent with the last data byte of the

array.

For array outputs, anything in the output buÃer is sent over the HP-IB

without any EOL processing. Then, the array is sent without any buÃering.

The output buÃer is always empty after an array output. Normal EOL

processing is suspended for an array output. EOI is sent if and only if END is

speciÕed on the OUTPUT statement.

For array outputs, rows and cols indicate whether they are output with the row

or column index incrementing faster. If rows and cols match the rows and cols

speciÕed in the IARRAY or RARRAY component statement, then the array

is output with the column index incrementing faster. If the rows and cols in

the OUTPUT statement are swapped from those speciÕed in the IARRAY or

RARRAY component statement, then the array is output with the row index

incrementing faster. If rows or cols in the OUTPUT statement is smaller than

Component/Action Syntax 8-97

8

OUTPUT

rows or cols in the array component, then only that many rows or columns are

output.

In any case, the smaller of rows or cols in the OUTPUT statement must match

rows in the TYPE statement. For the following array declaration:

COMPONENT A;

TYPE IARRAY, 2, 4;

Containing data as follows:

1 2 3 4

5 6 7 8

The statement: Would output:

OUTPUT A, ASCII, 2, 4 1 2 3 4 5 6 7 8

OUTPUT A, ASCII, 4, 2 1 5 2 6 3 7 4 8

OUTPUT A, ASCII, 3, 2 1 5 2 6 3 7

OUTPUT A, ASCII, 2, 3 1 2 3 5 6 7

8-98 Component/Action Syntax

8

OUTPUT

Drawing 3

Component/Action Syntax 8-99

8

OUTPUT

Item Description

(discrete component name)

selection

The selection of the speciÕed DISCRETE component.

DEFAULT Value of the current INTEGER or CONTINUOUS.

STACK Value at the top of the stack.

number An integer or real number.

ADDR Address speciÕed in the conÕguration box.

LIVEMODE \1" if LIVE MODE is on, otherwise, \0".

PANELMODE \1" if running in the development environment,

otherwise, \0".

AUTO The value AUTO may be used if the current

component is CONTINUOUS and its VALUES

statement speciÕes AUTO.

RECALLING \1" if currently performing a state recall, otherwise,

\0".

TIMEOUT Timeout for the device speciÕed in the conÕguration

box.

numeric component name Value of the speciÕed CONTINUOUS or INTEGER

component.

COMPONENT

numeric component name

Value of the speciÕed CONTINUOUS or INTEGER

component. Usually used when working with

ambiguous component names.

8-100 Component/Action Syntax

8

OUTPUT

Drawing 4

Item Description

STRING The development environment uses a user-entered

string as the value.

SELF The development environment uses the name of the

current component as the value.

string component name The development environment uses the name of the

STRING component speciÕed.

STACK The development environment uses the value at the

top of the stack.

DEFAULT The development environment uses the value of the

current component.

SUBADDR The development environment uses the subaddress the

user typed into the conÕguration box.

COMPONENT string Indicates using a component as the source component

name.

Component/Action Syntax 8-101

8

OUTPUT

Table 8-11. Valid OUTPUT FORMAT Specifiers

SpeciÕer Meaning

K Compact Õeld. Outputs a number or string in standard form with no

leading or trailing blanks.

S Outputs the number sign (+ or -).

M Outputs the number's sign if negative, a blank if positive.

D Outputs 1-digit character. A leading zero is replaced by a blank. If the

number is negative and no sign image is speciÕed, the minus sign will

occupy a leading digit position. If a sign is printed, it will \Œoat" to the

left of the left-most digit.

Z Same as D, except that leading zeros are output.

. Outputs a decimal-point radix indicator.

E Outputs an E, a sign, and a 2-digit exponent.

ESZ Outputs an E, a sign, and a 1-digit exponent.

ESZZ Same as E.

ESZZZ Outputs an E, a sign, and a 3-digit exponent.

A Outputs a string character.

literal Outputs the characters in the literal.

B Outputs a byte. The number is rounded to an INTEGER and the least

signiÕcant byte is output.

8-102 Component/Action Syntax

8

OUTPUT

Example

REVISION 2.0;

COMPONENT SINGLE;

TYPE INTEGER;

SET ACTIONS;

OUTPUT SINGLE FORMAT "K";

END ACTIONS;

END COMPONENT;

COMPONENT ARRAY;

TYPE RARRAY 1 20;

SET ACTIONS;

OUTPUT ARRAY ASCII 1 20;

END ACTIONS;

END COMPONENT;

COMPONENT ONE_OF_N;

TYPE DISCRETE;

VALUES ZERO,ONE,TWO;

SET ACTIONS;

OUTPUT ONE_OF_N TABLE "FN0","FN1","FN2";

END ACTIONS

END COMPONENT;

Component/Action Syntax 8-103

8

PANEL GET ACTIONS

The PANEL GET ACTIONS . . . END ACTIONS compound statement

allows you to deÕne an action list that is executed only in the development

environment. The PANEL GET ACTIONS list should always follow the GET

ACTIONS list in a component description. The development environment

executes the PANEL GET ACTIONS list after it executes the GET ACTIONS

list. The PANEL GET ACTIONS statement is useful for operations that are

included only to make the panel work properly but are not necessary to control

the instrument in the run-time environment.

Syntax

Item Description

actions name The name of the action list.

action statement See tables 8-1 through 8-8 under the ACTIONS

keyword for the valid statements.

Cross Reference

ACTIONS

8-104 Component/Action Syntax

8

PANEL SET ACTIONS

PANEL SET ACTIONS

The PANEL SET ACTIONS . . . END ACTIONS compound statement

allows you to deÕne an action list that is executed only in the development

environment. The PANEL SET ACTIONS list should always follow the SET

ACTIONS list in a component description. The development environment

executes the PANEL SET ACTIONS list after it executes the SET ACTIONS

list. The PANEL SET ACTIONS statement is useful for operations that are

included only to make the panel work properly but are not necessary to control

the instrument in the run-time environment.

Syntax

Item Description

actions name The name of the action list.

action statement See tables 8-1 through 8-8 under the ACTIONS

keyword for the valid statements.

Component/Action Syntax 8-105

8

PANEL SET ACTIONS

Example

REVISION 2.0;

COMPONENT MENU NOTSAVED NOGEN NOERRCHECK;

TYPE DISCRETE;

VALUES SETUP, STATUS, RELAY;

INITIAL SETUP;

PANEL SET ACTIONS;

GOSUB HIDE_ALL;

SELECT MENU;

CASE SETUP;

SHOW SETUP_P;

CASE STATUS;

SHOW STATUS_P;

CASE RELAY;

SHOW RELAY_P;

END SELECT;

END ACTIONS;

END COMPONENT;

ACTIONS HIDE_ALL;

HIDE SETUP_P;

HIDE STATUS_P;

HIDE RELAY_P;

END ACTIONS;

Cross Reference

ACTIONS

8-106 Component/Action Syntax

8

POINTS

POINTS

The POINTS statement allows you to specify the current dynamic dimensions

of a trace data type. It is an optional part of the component description.

The HP ID writer is responsible for updating the value of this Õeld to reŒect

the current limits. POINTS has one to three values depending on whether

it represents a single or multiple dimensional trace. The total size speciÕed

by points cannot exceed the total size speciÕed in the ITRACE or RTRACE

statement. The default value for POINTS is the total size declared in the

component deÕnition for the Õrst value and one for the second and third

values.

Syntax

Item Description

numeric expr SpeciÕes the size currently speciÕed by that

dimension of the trace. The product of the

three numbers must be less than, or equal to,

the dimensioned size.

Component/Action Syntax 8-107

8

POINTS

Example

COMPONENT TRACE1;

TYPE RTRACE 1024;

TRACETYPE WAVEFORM;

POINTS WF_SIZE;

XMIN X_MIN;

XINCR X_INCR;

XLOG OFF;

XUNIT "s";

YUNIT "V";

COMPONENT X_INCR;

TYPE CONTINUOUS;

INITIAL 2E-6;

GET ACTIONS;

FETCH TIME_SENS; FETCH 10; MUL;

FETCH WF_SIZE; DIV;

STORE X_INCR;

END ACTIONS;

END COMPONENT;

COMPONENT X_MIN;

TYPE CONTINUOUS;

INITIAL -500E-6;

GET ACTIONS;

SELECT TIME_REF;

CASE LEFT;

FETCH 0;

CASE CENTER;

FETCH TIME_SENS; FETCH -5; MUL;

CASE RIGHT;

FETCH TIME_SENS; FETCH -10; MUL;

END SELECT;

FETCH TIME_DELAY; ADD;

STORE X_MIN;

END ACTIONS;

END COMPONENT;

Cross Reference

COMPONENT

8-108 Component/Action Syntax

8

POKEINITIAL

POKEINITIAL

The POKEINITIAL statement is an action statement. This statement sets the

value of all components in the HP ID Õle to their initial value and initial state,

as speciÕed by the INITIAL statement.

When the development environment executes the POKEINITIAL statement,

it sets the values of the appropriate components but doesn't update the

instrument.

This statement has no parameters.

Syntax

Example

REVISION 2.0;

INITIALIZE COMPONENT RESET; ! Executes SET ACTIONS of component RESET.

! .

! .

! .

COMPONENT UNITS;

TYPE DISCRETE;

VALUES LOG,LINEAR;

INITIAL LOG; ! Sets UNITS to LOG when POKEINITIAL executed.

! .

! .

! .

END COMPONENT;

!

(Continued)

Component/Action Syntax 8-109

8

POKEINITIAL

COMPONENT A_CAL_ADJUST;

TYPE CONTINUOUS;

VALUES RANGE 50,120,.1;

INITIAL 100 ! Sets A_CAL_ADJUST to 100 when POKEINITIAL executed.

END COMPONENT;

!

COMPONENT A_CAL NOTSAVED;

TYPE INTEGER; ! Defaults to initial value of 0.

SET ACTIONS;

OUTPUT A_CAL_ADJUST FORMAT '"AECL",K,"ENEN"';

END ACTIONS;

END COMPONENT;

!

COMPONENT RESET;

TYPE INTEGER;

SET ACTIONS;

CLEAR;

! .

! .

! .

POKEINITIAL; ! Sets components to initial value.

END ACTIONS;

END COMPONENT;

Cross Reference

INITIAL

INITIALIZE COMPONENT

NOPOKEINITIAL

8-110 Component/Action Syntax

8

PREFIX

PREFIX

The PREFIX statement speciÕes a string that the development environment

sends to the instrument before it executes any SET ACTIONS or GET

ACTIONS lists. This is useful in formatting a card-cage instrument's

subaddress.

The PREFIX statement enables the development environment to address

card-cage instruments that require addressing information at the beginning of

the data stream.

Each time the PREFIX statement is executed, the development environment

formats the subaddress Õeld as speciÕed by the PREFIX statement. This is

the Õeld in the instrument conÕguration box that the user enters a subaddress

into when working in the development environment. If this Õeld is blank, the

PREFIX is not sent.

Syntax

Item Description

string See table 8-11 for speciÕers (under OUTPUT).

Component/Action Syntax 8-111

8

PREFIX

Example

REVISION 2.0;

PREFIX '"USE ",K,";"';

COMPONENT A;

TYPE INTEGER;

SET ACTIONS;

OUTPUT A FORMAT '"SET A ",K';

END ACTIONS;

END COMPONENT;

PANEL MAIN;

POSITION 1,1;

SIZE 200,200;

CONTINUOUS A;

POSITION 10,10;

TITLE "A";

END CONTINUOUS;

END PANEL;

8-112 Component/Action Syntax

8

RECALL COMPONENT

RECALL COMPONENT

RECALL COMPONENT is a general HP ID statement that allows you to

specify a component whose SET ACTIONS are executed during a state recall.

The component must be of TYPE INTEGER. During a state recall, after the

development environment has put all of the desired values into the components,

the SET ACTIONS of the RECALL COMPONENT will be executed.

In addition, during the recall the value of the component speciÕed by

RECALL COMPONENT will be set to 1. At all other times, the RECALL

COMPONENT will be 0.

Syntax

Item Description

comp name The name of an INTEGER component whose SET ACTIONS

you want executed during a state recall.

Component/Action Syntax 8-113

8

RECALL COMPONENT

Example

REVISION 2.0;

STORE COMPONENT STORE_STATE;

RECALL COMPONENT LEARNSTRING;

COMPONENT LEARNSTRING;

TYPE IARRAY 1,512;

SET ACTIONS;

OUTPUT "LEARN";

OUTPUT LEARNSTRING INT16 1 512 END;

VALIDATE ALL;

END ACTIONS;

END COMPONENT;

COMPONENT STORE_STATE NOTSAVED;

TYPE INTEGER;

SET ACTIONS;

OUTPUT "LEARN?";

ENTER LEARNSTRING INT16 1 512;

END ACTIONS

END COMPONENT;

PANEL MAIN;

SIZE 200,200;

POSITION 1,1;

END PANEL;

Cross Reference

STORE COMPONENT

8-114 Component/Action Syntax

8

REVISION

REVISION

The REVISION statement indicates the revision level of the driver standard to

which the HP ID is written.

The REVISION statement must be the Õrst non-comment statement in the HP

ID Õle.

Syntax

Item Description

number A real number that speciÕes the version of the HP ID. It must

be 2.0 for HP IDs written using the speciÕcations described in

this manual.

Example

!Opening comment lines

REVISION 2.0;

!

INITIALIZE COMPONENT RESET;

ERROR COMPONENT ERROR;

! .

! .

Component/Action Syntax 8-115

8

SELECT . . . END SELECT

SELECT . . . END SELECT is a compound action statement. It is similar

to the IF . . . END IF compound action statement, however it allows you to

deÕne several conditional action lists instead of one or two. The development

environment executes only one action list each time the statement is executed.

Each action list begins after a CASE or CASE ELSE statement, and ends when

the next program line is a CASE, CASE ELSE, or END SELECT statement.

The SELECT statement speciÕes a source (see drawing 1, following page)

whose value is compared to the list of values in each CASE statement. When

a match is found, the development environment executes the corresponding

action list. The remaining action lists are skipped, and the development

environment continues execution with the Õrst program line following the END

SELECT statement.

All CASE values must be of the same type (for example, STRING,

DISCRETE, and so on).

The optional CASE ELSE statement deÕnes an action list that is to be

executed when the SELECT statement value does not match any CASE

statement value.

You can nest IF . . . END IF, LOOP . . . END LOOP, and SELECT . . . END

SELECT compound statements up to ten deep.

The development environment requires that either a CASE ELSE or a CASE

for each possible value be included.

8-116 Component/Action Syntax

8

SELECT . . . END SELECT

Syntax

Item Description

numeric source See drawing 2.

string source See drawing 3.

const A numeric or string value that the development environment

compares with the value provided by the source. If they are the

same, then the development environment executes the action

list that follows CASE const. If the source is a DISCRETE

component, the value can be of the form (comp name)

discrete selection.

RANGE Only valid if a numeric source is used. If the value provided by

the source is within the numbers speciÕed in lo const and

hi const, the development environment executes the action list

that follows CASE RANGE.

lo const The lowest numeric value in a RANGE.

hi const The highest numeric value in a RANGE.

action statement See tables 8-1 through 8-8 under the ACTIONS keyword for the

valid statements.

Component/Action Syntax 8-117

8

SELECT . . . END SELECT

Drawing 2

8-118 Component/Action Syntax

8

SELECT . . . END SELECT

Item Description

(discrete component name)

selection

The selection of the speciÕed DISCRETE component.

DEFAULT Value of the current INTEGER or CONTINUOUS.

STACK Value at the top of the stack.

number An integer or real number.

ADDR Address speciÕed in the conÕguration box.

LIVEMODE \1" if LIVE MODE is on, otherwise, \0".

PANELMODE \1" if running in the development environment,

otherwise, \0".

AUTO The value AUTO may be used if the current

component is CONTINUOUS and its VALUES

statement speciÕes AUTO.

RECALLING \1" if currently performing a state recall, otherwise,

\0".

TIMEOUT Timeout for the device speciÕed in the conÕguration

box.

numeric component name Value of the speciÕed CONTINUOUS or INTEGER

component.

COMPONENT

numeric component name

Value of the speciÕed CONTINUOUS or INTEGER

component. Usually used when working with

ambiguous component names.

Component/Action Syntax 8-119

8

SELECT . . . END SELECT

Drawing 3

Item Description

STRING The development environment uses a user-entered

string as the value.

SELF The development environment uses the name of the

current component as the value.

string component name The development environment uses the value of the

STRING component speciÕed.

STACK The development environment uses the value at the

top of the stack.

DEFAULT The development environment uses the value of the

current component.

SUBADDR The development environment uses the subaddress the

user typed into the conÕguration box.

COMPONENT string Indicates using a component as the source component

name.

8-120 Component/Action Syntax

8

SELECT . . . END SELECT

Example

REVISION 2.0;

COMPONENT RANGE;

TYPE CONTINUOUS;

VALUES RANGE 1 5 AUTO;

SET ACTIONS;

SELECT RANGE;

CASE AUTO;

OUTPUT STRING "RA";

CASE RANGE 0,1;

OUTPUT STRING "RO";

CASE RANGE 1,2;

OUTPUT STRING "R1";

CASE RANGE 2,3;

OUTPUT STRING "R2";

CASE RANGE 3,4;

OUTPUT STRING "R4";

END SELECT;

END ACTIONS;

END COMPONENT;

PANEL MAIN;

POSITION 1,1;

SIZE 200,200;

CONTINUOUS RANGE;

POSITION 70,40;

TITLE "Range";

END CONTINUOUS;

END PANEL;

Cross Reference

IF . . . END IF

Component/Action Syntax 8-121

8

SET

The SET statement is an action statement. When the SET statement is

executed in an action list, the development environment executes the SET

ACTIONS of the component speciÕed in the statement, and then the PANEL

SET ACTIONS if you are in the development environment.

If the component being set is COUPLED to another, either a GET or an

INVALIDATE is done on each component in this component's COUPLED list

(see COUPLED).

Syntax

Item Description

comp name The name of the component whose SET ACTIONS are

executed when the SET statement is executed in an action list.

8-122 Component/Action Syntax

8

SET

Example

REVISION 2.0;

COMPONENT A;

TYPE INTEGER;

SET ACTIONS;

OUTPUT A FORMAT '"SET A ",K';

END ACTIONS;

END COMPONENT;

ACTIONS RESET_A;

FETCH 0;

STORE A;

SET A;

END ACTIONS;

PANEL MAIN;

SIZE 200,200;

END PANEL;

Cross Reference

COUPLED

Component/Action Syntax 8-123

8

SET ACTIONS

The SET ACTIONS . . . END ACTIONS compound statement deÕnes

an action list that will SET the value of a component. Usually the SET

ACTIONS will send the value of the component to the instrument.

SET ACTIONS will be executed when:

The SET instruction references this component in an action list.

hpt set, hpt set str, hpt set ary, or hpt set iary is executed on this

component.

hpt set2, hpt set str2, hpt set ary2, or hpt set iary2 is executed on this

component.

Syntax

Item Description

actions name The name of the action list.

action statement See tables 8-1 through through 8-8 under the

ACTIONS keyword for the valid statements.

8-124 Component/Action Syntax

8

SET ACTIONS

Example

REVISION 2.0;

ACTIONS FREQ_0;

FETCH 0;

STORE FREQ;

END ACTIONS;

COMPONENT DC;

TYPE INTEGER;

SET ACTIONS;

OUTPUT STRING "DC";

GOSUB FREQ_0;

END ACTIONS;

END COMPONENTS;

Cross Reference

ACTIONS

Component/Action Syntax 8-125

8

SHOW

The SHOW statement is an action statement. This statement allows you to

display a subpanel.

All the subpanels of the panel speciÕed are also shown, unless they have been

hidden with the HIDE statement.

Syntax

Item Description

panel name The name of the subpanel that you want displayed with the

parent panel.

Example

COMPONENT RESET;

TYPE INTEGER;

SET ACTIONS;

! .

! .

! .

END ACTIONS;

PANEL SET ACTIONS;

SHOW TOP;

HIDE WATT_READING;

INVALIDATE A_RANGE;

END ACTIONS;

END COMPONENT;

(Continued)

8-126 Component/Action Syntax

8

SHOW

! .

! .

! .

!Panel section

PANEL HP_438;

PANEL TOP;

POSITION 0,182;

! .

! .

! .

END PANEL;

PANEL WATT_READING;

POSITION 10,150;

PANEL SUB_WATT;

! .

! .

! .

END PANEL;

END PANEL;

! .

! .

! .

END PANEL;

Cross Reference

HIDE

Component/Action Syntax 8-127

8

SKIP EOL

The SKIP EOL statement is an action statement. It is used to suppress the

EOL processing that would occur the next time the development environment

sends a command to the HP-IB. In general, each time the development

environment sends a command to the HP-IB, it sends the current EOL setting

after the command, which, by default, would append a carriage return and line

feed to the data being sent.

If SKIP EOL is in eÃect, the string is sent to the HP-IB, but no EOL

characters or EOI is sent.

If a SKIP EOL statement is executed, it is in eÃect until just after one of the

following:

A FLUSH statement is executed.

An END ACTIONS statement is executed unless the END ACTIONS

statement was reached by executing a GOSUB statement.

If SKIP EOL is in eÃect and another SET or GET is done, EOL processing will

be restored while executing that SET or GET action list, but once back in the

original action list, SKIP EOL will again take eÃect.

Syntax

8-128 Component/Action Syntax

8

SKIP EOL

Example

REVISION 2.0;

COMPONENT A;

TYPE INTEGER;

SET ACTIONS;

GOSUB S;

OUTPUT...

ENTER... ! Implicit flush without EOL

SET B;

OUTPUT...

FLUSH ! This explicit FLUSH outputs

! the string without EOL,

! but then turns EOL processing

! back on.

OUTPUT...

END ACTIONS; ! Implicit flush with EOL

END COMPONENT;

COMPONENT B;

TYPE INTEGER;

SET ACTIONS;

OUTPUT...

ENTER... ! Implicit flush with EOL

END ACTIONS;

END COMPONENT;

ACTIONS S;

SKIP EOL;

OUTPUT...

ENTER... ! Implicit flush without EOL

END ACTIONS;

Component/Action Syntax 8-129

8

SKIP EOL

In this example, suppose a

SET A;

is executed. The development environment executes GOSUB S, which causes

the development environment to execute SKIP EOL. EOL processing is now

oÃ. Any strings sent to the HP-IB will not have EOL commands. Returning

from S, EOL processing is still oÃ, since this END ACTIONS statement was

reached by executing a GOSUB.

The next OUTPUT/ENTER sequence (in component A's SET ACTIONS list)

has no EOL processing. The SET B, however, causes development environment

to execute B's SET ACTIONS with EOL processing on. Once we return to A's

SET ACTIONS, EOL processing is again oÃ. The FLUSH then turns EOL

processing on.

Cross Reference

FLUSH

EOL

8-130 Component/Action Syntax

8

SKIP ERRCHECK

SKIP ERRCHECK

The SKIP ERRCHECK statement is an action statement. It is used to

suppress the error checking normally done by the development environment

when error checking mode is on.

If error checking mode is on, the development environment will check for an

error by executing the GET ACTIONS of the component speciÕed by the

ERROR COMPONENT just before an hpt set or hpt get call is completed.

Note that the action statement:

SET comp_name;

does not cause another call to hpt set and, therefore, does not invoke error

handling at the end of the comp name SET ACTIONS list.

If the SKIP ERRCHECK statement is executed while executing an action list

directly as a result of an hpt set or hpt get, the error check that would have

occurred at the end of the hpt set or hpt get will not be done even if error

checking mode is on.

If the SKIP ERRCHECK statement is executed while executing an action list

invoked by a SET or GET keyword, no error checking would have occurred

anyway, and the SKIP ERRCHECK statement has no eÃect.

SKIP ERRCHECK is useful if your HP ID has set up the instrument for

a measurement to be taken later, and the error query would disturb the

instrument setup.

Syntax

Cross Reference

ERROR COMPONENT

Component/Action Syntax 8-131

8

SPOLL

The SPOLL statement is an action statement. The SPOLL statement performs

a serial poll of the instrument and pushes the result on the stack.

Syntax

Example

COMPONENT SPOLL_VALUE NOTSAVED;

TYPE INTEGER;

GET ACTIONS;

SPOLL;

STORE SPOLL_VALUE;

END ACTIONS;

END COMPONENT;

8-132 Component/Action Syntax

8

STORE

STORE

The STORE statement is an action statement. This statement along with the

FETCH statement and the development environment arithmetic, logical, and

string operators (tables 8-1 through 8-8 under the ACTIONS keyword) form

the vocabulary of a stack machine.

The STORE statement pops the value from the top of the stack and places it

into the speciÕed destination.

Note The component is VALIDATEd unless its state is

DONTCARE.

Syntax

Component/Action Syntax 8-133

8

STORE

Item Description

comp name The value at the top of the stack replaces the value of component

comp name.

DEFAULT The value at the top of the stack replaces the value of the

component whose action list contains the STORE statement.

STACK The value at the top of the stack replaces the value at the top of the

stack. This is a no-op.

TIMEOUT The value at the top of the stack replaces the timeout of the device

(usually speciÕed when conÕguring the device.

ADDR The value at the top of the stack replaces the address of the device

(usually speciÕed when conÕguring the device).

SUBADDR The value at the top of the stack replaces the subaddress of the

device (usually speciÕed when conÕguring the device).

Storing Into an Array

You can store a number into a single element of an array. This is done by

pushing the value, then the indexes, onto the stack, then storing to comp name

(see FETCH). To store a value into an array, use the following statements in an

action list:

One-dimension array:

FETCH value

FETCH index

STORE array comp name

Two-dimension array:

FETCH value

FETCH row index

FETCH col index

STORE comp name

8-134 Component/Action Syntax

8

STORE

Example

FETCH SRQ_MASK; ! Puts value on stack

FETCH 0; ! Puts value on stack

BIT; ! Puts the 0-position bit of SRQ_MASK on stack

STORE SRQ_FAULT; ! and stores it in SRQ_FAULT

Component/Action Syntax 8-135

8

STORE COMPONENT

STORE COMPONENT is a general HP ID statement. A STORE

COMPONENT may be declared in an HP ID if you need to alter the behavior

of the development environment when a state is stored.

When a state is stored, the component speciÕed in the STORE COMPONENT

is SET to a 1. The component must be TYPE INTEGER.

If the instrument is so complex that it is diœcult to store and recall states as a

combination of storing and recalling component values, perhaps the instrument

state can be stored and recalled some other way.

For example, the instrument learn string can be used to store and recall the

state of some complex instruments.

The SET ACTIONS of the component speciÕed in the STORE COMPONENT

can then query the instrument for its learn string, and then another component

can send this learn string to the instrument when a state recall occurs.

Syntax

Item Description

comp name The name of an INTEGER component whose SET ACTIONS

you want executed during a store state.

8-136 Component/Action Syntax

8

STORE COMPONENT

Example

REVISION 2.0;

STORE COMPONENT STORE_STATE;

RECALL COMPONENT LEARNSTRING;

COMPONENT LEARNSTRING;

TYPE IARRAY 1,512;

SET ACTIONS;

OUTPUT "LEARN";

OUTPUT LEARNSTRING INT16 1 512 END;

VALIDATE ALL;

END ACTIONS;

END COMPONENT;

COMPONENT STORE_STATE NOTSAVED;

TYPE INTEGER;

SET ACTIONS;

OUTPUT "LEARN?";

ENTER LEARNSTRING INT16 1 512;

END ACTIONS;

END COMPONENT;

PANEL MAIN;

SIZE 200,200;

POSITION 1,1;

END PANEL;

Cross Reference

RECALL COMPONENT

Component/Action Syntax 8-137

8

string expr

String expressions are used throughout this chapter by statements that need to

refer to component values or literal strings.

Syntax

Item Description

\literal string" An actual string enclosed in double quotes.

string component name Value of the speciÕed string component.

8-138 Component/Action Syntax

8

string source

string source

String sources are used throughout this chapter to let action statements access

string component values, constants, system settings, and the stack.

Syntax

Component/Action Syntax 8-139

8

string source

Item Description

\literal string" An actual string enclosed in double quotes.

STRING \literal string" An actual string enclosed in double quotes. This syntax

can be used to avoid certain language ambiguities.

SELF Name of the current component.

string component name Value of the speciÕed STRING component.

COMPONENT

string component name.

Value of the speciÕed STRING component. This

syntax can be used when dealing with ambiguous

component names.

DEFAULT Value of the current component.

SUBADDR Subaddress of the device (usually speciÕed when

conÕguring the device.

STACK Value at the top of the stack.

8-140 Component/Action Syntax

8

SYNC COMPONENT

SYNC COMPONENT

SYNC COMPONENT is a general HP ID statement that allows you to specify

a component whose GET ACTIONS are executed during a sync operation.

The component must be of TYPE INTEGER. During a sync operation, the

development environment will execute the GET ACTION of the speciÕed

component. This allows the HP ID to synchronize its state with the current

instrument state.

In addition, during the synchronization, the value of the component speciÕed

by the SYNC COMPONENT will be set to 1. At all other times, the SYNC

COMPONENT will be 0.

Syntax

Item Description

comp name The component whose GET ACTIONS are executed during a

SYNC operation. This must be a TYPE INTEGER or

CONTINUOUS component.

Example

REVISION 2.0;

SYNC COMPONENT SYNC_STATE;

COMPONENT SYNC_STATE NOTSAVED;

TYPE INTEGER;

GET ACTIONS;

GET Freq_cent;

GET Freq_span;

...

END ACTIONS;

END COMPONENT;

Component/Action Syntax 8-141

8

TRACETYPE

The TRACETYPE statement allows you to specify the current dynamic

dimensions of an array or trace data type. It is an optional part of the

component description and must follow the COUPLED statement.

The HP ID writer is responsible for updating the value of this Õeld to reŒect

the current limits.

Value Tracetype

0 NOT USED

1 MSPECTRUM

2 PSPECTRUM

3 WAVEFORM

4 MODULATION

5 SPECTRUM

Syntax

8-142 Component/Action Syntax

8

TRACETYPE

Item Description

MSPECTRUM Magnitude spectrum. The X axis of the trace is in the frequency

domain and the Y axis values represent signal magnitude.

PSPECTRUM Phase spectrum. The X axis of the trace is in the frequency domain

and the Y axis values represent signal phase.

WAVEFORM The X axis of the trace is in the time domain and the Y axis values

represent signal magnitude.

MODULATION The X axis of the trace is in the time domain and the Y axis values

represent frequency.

SPECTRUM A trace of complex values. The X axis is in the frequency domain

and the Y axis values are an ordered pair of real and imaginary

magnitude.

Example

COMPONENT TRACE1;

TYPE RTRACE 1024;

TRACETYPE WAVEFORM;

POINTS WF_SIZE;

XMIN X_MIN;

XINCR X_INCR;

XLOG OFF;

XUNIT "s";

YUNIT "V";

COMPONENT X_INCR;

TYPE CONTINUOUS;

INITIAL 2E-6;

GET ACTIONS;

FETCH TIME_SENS; FETCH 10; MUL;

FETCH WF_SIZE; DIV;

STORE X_INCR;

END ACTIONS;

END COMPONENT;

(Continued)

Component/Action Syntax 8-143

8

TRACETYPE

COMPONENT X_MIN;

TYPE CONTINUOUS;

INITIAL -500E-6;

GET ACTIONS;

SELECT TIME_REF;

CASE LEFT;

FETCH 0;

CASE CENTER;

FETCH TIME_SENS; FETCH -5; MUL;

CASE RIGHT;

FETCH TIME_SENS; FETCH -10; MUL;

END SELECT;

FETCH TIME_DELAY; ADD;

STORE X_MIN;

END ACTIONS;

END COMPONENT;

Cross Reference

COMPONENT

8-144 Component/Action Syntax

8

TRIGGER

TRIGGER

The TRIGGER statement is an action statement. The TRIGGER statement

causes the development environment to send an HP-IB Group Execute Trigger

(GET) command to the instrument.

Syntax

Component/Action Syntax 8-145

8

TYPE

The TYPE statement is a required part of the component description. This

indicates to the development environment what kind of component this is.

The keyword TYPE must be followed by one of eight possible types.

Syntax

8-146 Component/Action Syntax

8

TYPE

Item Description

DISCRETE Used to represent instrument controls that have 1-of-n values, such

as the Function control on a multimeter, which has a list of settings.

Be cautious about creating a 1-of-n list for a control that is not

really designed that way (for example, attenuator settings of 0 or 10

dB) because an hpt set str and hpt get str are used with

DISCRETE components and they require strings. Hence, the value

will be treated as a string.

INTEGER Used to represent values that are inherently whole numbers (for

example, an SRQ mask).

CONTINUOUS Used to represent real numbers or values outside of the range of

16-bit integers.

STRING length Used to represent strings. Requires that you specify the length of

the string. The string may be up to 256 characters long.

IARRAY Used to represent integer array data.

RARRAY Used to represent real array data, such as a waveform.

ITRACE Used to represent integer trace data.

RTRACE Used to represent real trace data.

rows Optional integer that speciÕes the number of rows in the array.

Defaults to 1.

cols Required integer that speciÕes the number of columns in the array.

Must be greater than or equal to rows in order for XY displays and

array I/O to work correctly.

Component/Action Syntax 8-147

8

TYPE

Example

REVISION 2.0;

COMPONENT INT;

TYPE INTEGER;

END COMPONENT;

COMPONENT REAL;

TYPE CONTINUOUS;

END COMPONENT;

COMPONENT STR;

TYPE STRING 20;

END COMPONENT;

COMPONENT IA;

TYPE IARRAY 1 20;

END COMPONENT;

COMPONENT RA;

TYPE RARRAY 1 20;

END COMPONENT;

COMPONENT DISC;

TYPE DISCRETE;

VALUES A,B,C;

END COMPONENT;

PANEL MAIN;

END PANEL;

Cross Reference

COMPONENT

8-148 Component/Action Syntax

8

UPDATE COMPONENT

UPDATE COMPONENT

The UPDATE COMPONENT is an HP ID statement that lets you specify a

component whose GET ACTIONS will be executed repetitively as long as no

other actions lists are being executed, and there is no cursor movement in the

development environment.

The UPDATE COMPONENT must be TYPE INTEGER. If Automatic

Update is turned on in the development environment, then UPDATE

COMPONENT will initiate an update to a speciÕed component or set of

components. This is done by setting the value of the UPDATE COMPONENT

to 1 then executing the SET ACTIONS of the UPDATE COMPONENT.

If Automatic Update is turned oÃ in the development environment, then the

UPDATE COMPONENT will Õnish the update so that the device will respond

to other commands the development environment may send over the bus. This

is done by setting the value of the UPDATE COMPONENT to a 0 and then

executing the SET ACTIONS of the UPDATE COMPONENT.

Syntax

For a simple HP ID where the device can execute the actions for the UPDATE

COMPONENT quickly, the UPDATE COMPONENT can be written as

follows:

Example

COMPONENT UPDATE_READING;

TYPE INTEGER;

INITIAL 0;

GET ACTIONS;

GET READING;

END ACTIONS;

END COMPONENT;

UPDATE COMPONENT UPDATE_READING;

Component/Action Syntax 8-149

8

UPDATE COMPONENT

For many HP IDs, however, this component may take several seconds to

execute, slowing down the response time. Therefore, it is recommended that

the UPDATE COMPONENT be written so that each time the GET ACTIONS

are executed, a minimal amount of time is spent in that component, that

is, the GET READING should be broken into several pieces or phases. The

following example shows this technique:

COMPONENT UPD_PHASE: ! Storage place for the current phase of the update.

TYPE INTEGER;

INITIAL 1;

END COMPONENT;

! Up_d reading divided into 3 phases: trigger reading, poll to see if

! data is ready, and enter the data.

! Component is NOTSAVED since an update should be restarted if a

! state is recalled. Component is NOERRCHECK since an error

! check in the middle of the reading will cause the device to

! hang.

COMPONENT UPD_READING NOTSAVED NOERRCHECK;

TYPE INTEGER;

SET ACTIONS;

SELECT DEFAULT;

!

CASE 0; ! Finish the update.

LOOP;

FETCH UPD_PHASE; ! Get the current phase

FETCH 1;

SUB;

NOT; ! Is current phase=1 (ready to start new reading)

EXIT IF STACK; ! (exit if current phase=1)

FETCH LIVEMODE; ! (is the instrument live?)

NOT;

EXIT IF STACK; ! (exit if livemode is disabled)

FETCH 1; ! otherwise, do SET ACTIONS of upd_reading.

! value must be 1 to finish the next phase.

STORE UPD_READING;

SET UPD_READING; ! do the next phase of the update.

FETCH 0; ! re-store the value of this component.

STORE UPD_READING;

END LOOP;

(Continued)

8-150 Component/Action Syntax

8

UPDATE COMPONENT

!

CASE 1;

GET UPD_READING; ! initiate a reading.

!

END SELECT;

END ACTIONS;

!

GET ACTIONS;

SELECT UPD_PHASE;

CASE 1; ! phase 1: trigger a reading

TRIGGER;

FETCH 2; ! indicates that phase 2 is to be done next time

STORE UPD_PHASE;

!

CASE 2; ! phase 2: SPOLL for data ready to be sent

SPOLL;

FETCH 1;

BINAND; ! If BIT 0 is set, data is ready.

IF STACK THEN;

FETCH 3; ! indicates the phase 3 is to be done next time

STORE UPD_PHASE;

!ELSE must repeat this phase next time

END IF;

!

CASE 3; ! phase 3: get the data

ENTER READING FORMAT K; ! enter data into desired component

FETCH 1; ! indicates that phase 1 is to done next time

STORE UPD_PHASE;

!

END SELECT;

!

END ACTIONS;

!

END COMP;

!

UPDATE COMPONENT UPD_READING;

Component/Action Syntax 8-151

8

UPLOAD

This statement causes the data ready for output from an instrument to be

transferred to a Õle on host computer.

The Õle is transferred byte for byte and the development product performs no

data processing function.

The Õle name is speciÕed in the string source and is interpreted by the Õle

system of the host computer.

Syntax

Item Description

string source The name of the Õle to be uploaded to the instrument.

8-152 Component/Action Syntax

8

UPLOAD

Example

COMPONENT SEND_HOP-LIST NOTSAVED;

TYPE STRING 32;

SET ACTIONS;

FETCH SEND_HOP_LIST;

FETCH "";

NE;

IF STACK THEN;

OUTPUT STRING "HOP:LIST?"

UPLOAD SEND_HOP_LIST;

END IF;

END ACTIONS;

END COMPONENT;

...

PANEL HOP;

...

INPUT SEND_HOP_LIST;

POSITION 4,55;

SIZE 120,19;

STYLE "FILESELECT"";

END INPUT;

Cross Reference

DOWNLOAD

Component/Action Syntax 8-153

8

USERSUB (HP ITG only)

Caution This keyword will work only with the HP ITG for HP BASIC

(product number HP E2000A).

The USERSUB statement is an action statement. This statement is used to

call an HP BASIC subprogram. It is not used to call HP ITG subprograms.

This statement should only be used to call subprograms that perform actions

not provided by the other HP ITG action statements.

Caution You should be cautious about developing HP IDs that call

subprograms because Hewlett-Packard cannot guarantee

that all future revisions of HP ITG will accommodate the

subprograms.

When you use this statement, HP ITG passes a set of parameters to the

subprogram in a named common block called /hpt app/. The common block

contains HP ITG's internal number for the instrument. HP ITG establishes

the internal number when the user adds it to the soft test system in the

development environment. HP ITG's internal number identiÕes the component

that contains the action list that includes the USERSUB statement. The

component also contains a value for app op indicating one of the following

operations:

If app op = 1 The component's HIT ACTIONS or UPDATE ACTIONS

are being executed.

If app op = 4 the component's SET ACTIONS are being executed.

If app op = 6 hpt set is being executed.

If app op = 7 the component's GET ACTIONS are being executed.

If app op = 8 the panel's Query button has been clicked.

If app op = 9 hpt get is being executed.

If app op = 10 hpt recall is being executed.

8-154 Component/Action Syntax

8

USERSUB (HP ITG only)

User subprograms are useful when an instrument returns readings in a packed

notation that cannot be decoded using format speciÕers. They are also useful

for developing applications. See the Application ADFREQRESP provided with

the HP ITG driver software for an example.

Syntax

Item Description

sub name The name of an HP BASIC subprogram.

Component/Action Syntax 8-155

8

USERSUB (HP ITG only)

Example

The component ANA_CHANGED is used to communicate to subprogram

Hp3852_delrange what has changed.

COMPONENT ANA_CHANGED NOTSAVED NOERRCHECK;

TYPE INTEGER;

INITIAL 0;

END COMPONENT;

ACTIONS FUNC_ACT;

FETCH 0;

STORE ANA_CHANGED;

SELECT DVM_RANGE;

CASE AUTO;

CASE ELSE;

FETCH AUTO;

STORE DVM_RANGE;

FETCH 1;

STORE ANA_CHANGED;

END SELECT;

SELECT DELAY;

CASE AUTO;

CASE ELSE;

FETCH 2;

FETCH ANA_CHANGED;

ADD;

STORE ANA_CHANGED;

END SELECT;

IF PANELMODE THEN;

USERSUB HP3852_DELRANGE;

END IF;

END ACTIONS;

This HP ID calls the subprogram on the following page.

8-156 Component/Action Syntax

8

USERSUB (HP ITG only)

SUB Hp3852iv_init

SUBEND

! The subprogram Hp3852_delrange tells the user whether

! delay and range have changed.

SUB Hp3852_delrange

COM /Hpt_app/ INTEGER App_dev,App_comp,App_op

REAL Ana_changed

DIM Line1$[25],Line2$[25]

Hpt_peek(App_dev,"ANA_CHANGED",Ana_changed)

Line2$=" reset to AUTO."

SELECT Ana_changed

CASE <1.5

Line1$=" Range has been"

CASE <2.5

Line1$=" Delay has been"

CASE ELSE

Line1$=" Range & Delay have"

Line2$=" been reset to AUTO"

END SELECT

Hpt_dlgnotify1("NOTE: DVM options changed",Line1$,Line2$)

SUBEND

The HP BASIC Subprogram

Component/Action Syntax 8-157

8

VALIDATE

The VALIDATE statement is an action statement. This statement is one

of three that control the state of a component. The other two are the

DONTCARE and INVALIDATE statements.

VALIDATE is used to indicate to the development environment that the value

of a component reŒects the conÕguration of the instrument. This way, when

the development environment recalls a state, it will know that this component

does not need to be SET again.

You can use VALIDATE to indicate that a component is no longer

DONTCARE, but the value in the component must match that of the

instrument.

Note that a component is validated when it is referenced in an OUTPUT,

BITS, or STORE statement, unless its state is DONTCARE.

Syntax

Item Description

comp name The name of the component that you are specifying to be VALID.

ALL You can use this keyword to mark all components in the HP ID as

INVALID.

8-158 Component/Action Syntax

8

VALIDATE

Example

REVISION 2.0;

COMPONENT ARANGE;

TYPE DISCRETE;

VALUES OFF,ON;

INITIAL ON;

SET ACTIONS;

SELECT ARANGE;

CASE OFF;

OUTPUT STRING "AERH";

INVALIDATE RANGE;

CASE ON;

OUTPUT STRING "AERA";

DONTCARE RANGE;

END SELECT;

END ACTIONS;

END COMPONENT;

COMPONENT RANGE;

TYPE INTEGER;

VALUES RANGE 1,5;

INITIAL DONTCARE;

SET ACTIONS;

OUTPUT RANGE FORMAT '"AERM",D,"EN"';

FETCH (ARANGE)OFF;

STORE ARANGE;

VALIDATE RANGE;

END ACTIONS;

END COMPONENT;

(Continued)

Component/Action Syntax 8-159

8

VALIDATE

PANEL MAIN;

POSITION 1,1;

SIZE 200,200;

DISCRETE ARANGE;

POSITION 90,20;

TITLE "A Range";

END DISCRETE;

CONTINUOUS RANGE;

POSITION 90,50;

TITLE "Range";

END CONTINUOUS;

END PANEL;

Cross Reference

DONTCARE

INVALIDATE

8-160 Component/Action Syntax

8

VALUES

VALUES

The VALUES statement is an optional part of all component descriptions

except DISCRETE. It is required for DISCRETE components.

For numeric components this statement deÕnes the RANGE of values that

should be accepted by the development environment human interface. This

may include the keyword AUTO for CONTINUOUS components.

The default VALUES for integers is -32768 to 32767. The default range for

CONTINUOUS components is -1E18 through +1E18.

For a DISCRETE component, the VALUES statement enumerates every

possible value for that component.

Syntax

Component/Action Syntax 8-161

8

VALUES

Item Description

selection This parameter is used only for DISCRETE components. The list of

selections is the list of allowed values for DISCRETE components.

RANGE This is used for all types of components other than DISCRETE and

STRING. When using RANGE, you must specify the lowest value,

highest value, and optional step size. The step size can be linear or

logarithmic. The step size is used when the user changes the value

of the component by clicking on the up/down arrows on the scroll

bar rather than entering a value in the development environment.

low A component name or number specifying the lowest value the user

can enter for the component in the development environment.

high A component name or number specifying the highest value the user

can enter for the component in the development environment.

resolution The amount the value is incremented or decremented when the user

clicks on the arrows on the scroll bar in the development

environment.

LOG SpeciÕes that the step size is logarithmic.

step dec The number of steps per decade.

n digits The number of digits.

To increase by decade, (for example, 3, 30, 300):

set step dec = 1 and n digits = 1

To increase in a 1-3 sequence:

set step dec = 2 and n digits = 1

To increase in a 1-2-5 sequence:

set step dec = 3 and n digits = 1

AUTO For CONTINUOUS components only. SpeciÕes that the control can

have the value AUTO.

8-162 Component/Action Syntax

8

VALUES

Example

REVISION 2.0;

COMPONENT RNG;

TYPE CONTINUOUS;

VALUES RANGE .001 100 LOG 1 1 AUTO;

END COMPONENT;

PANEL MAIN;

SIZE 200,200;

POSITION 1,1;

CONTINUOUS RNG;

POSITION 70,10;

TITLE "Range";

END CONTINUOUS;

END PANEL;

Cross Reference

COMPONENT

Component/Action Syntax 8-163

8

WAIT SPOLL BIT

The WAIT SPOLL BIT statement is an action statement. This statement

causes the development environment to suspend execution of the action list

until it receives a serial poll bit (for example, ready bit) from the instrument.

Syntax

Item Description

numeric source SpeciÕes the bit number with 0 being the least signiÕcant bit. For

complete information see \numeric source" earlier in this chapter.

Example

REVISION 2.0;

COMPONENT READINGS;

TYPE IARRAY 1 1024;

GET ACTIONS;

WAIT SPOLL BIT 4; ! WAIT UNTIL READY

ENTER READINGS FORMAT INT16 0 1 512;

END ACTIONS;

END COMPONENT;

PANEL MAIN;

SIZE 200,200;

POSITION 1,1;

END PANEL;

Cross Reference

WAIT TIME

8-164 Component/Action Syntax

8

WAIT TIME

WAIT TIME

The WAIT TIME statement is an action statement. This statement causes

the development environment to wait the speciÕed number of seconds before

executing the next statement.

Syntax

Item Description

numeric source SpeciÕes the number of seconds. For complete

information see \numeric source" earlier in this

chapter.

Cross Reference

WAIT SPOLL BIT

Component/Action Syntax 8-165

8

XINCR

The XINCR statement allows you to specify the X-axis increment between data

points in an ITRACE or RTRACE if XLOG is 0. If XLOG is 1, it speciÕes the

X-axis multiplier between points.

The default value is 1. The HP ID writer is responsible for updating

this Õeld. The Õeld is transferred as part of the waveform record in an

hpt peek waveform operation.

Syntax

Item Description

numeric expr SpeciÕes the X-axis increment between points.

For linear traces this is the spacing between points.

For log traces this is the multiplier between points.

Example

COMPONENT TRACE1;

TYPE RTRACE 1024;

TRACETYPE WAVEFORM;

POINTS WF_SIZE;

XMIN X_MIN;

XINCR X_INCR;

XLOG OFF;

XUNIT "s";

YUNIT "V";

(Continued)

8-166 Component/Action Syntax

8

XINCR

COMPONENT X_INCR;

TYPE CONTINUOUS;

INITIAL 2E-6;

GET ACTIONS;

FETCH TIME_SENS; FETCH 10; MUL;

FETCH WF_SIZE; DIV;

STORE X_INCR;

END ACTIONS;

END COMPONENT;

COMPONENT X_MIN;

TYPE CONTINUOUS;

INITIAL -500E-6;

GET ACTIONS;

SELECT TIME_REF;

CASE LEFT;

FETCH 0;

CASE CENTER;

FETCH TIME_SENS; FETCH -5; MUL;

CASE RIGHT;

FETCH TIME_SENS; FETCH -10; MUL;

END SELECT;

FETCH TIME_DELAY; ADD;

STORE X_MIN;

END ACTIONS;

END COMPONENT;

Cross Reference

COMPONENT

Component/Action Syntax 8-167

8

XLOG

The XLOG statement allows you to specify the X-axis spacing in an ITRACE

or RTRACE.

XLOG is an integer. A value of 0 (OFF) speciÕes linear spacing. A non-0

(ON) value speciÕes log spacing. The default value is OFF.

The HP ID writer is responsible for updating this Õeld. The Õeld is transferred

as part of the waveform record in an hpt peek waveform operation.

Syntax

Item Description

numeric expr 0=linear X-axis spacing. Non 0=logarithmic X-axis

spacing.

Example

TYPE RTRACE 1024;

TRACETYPE WAVEFORM;

POINTS WF_SIZE;

XMIN X_MIN;

XINCR X_INCR;

XLOG OFF;

XUNIT "s";

YUNIT "V";

(Continued)

8-168 Component/Action Syntax

8

XLOG

COMPONENT X_INCR;

TYPE CONTINUOUS;

INITIAL 2E-6;

GET ACTIONS;

FETCH TIME_SENS; FETCH 10; MUL;

FETCH WF_SIZE; DIV;

STORE X_INCR;

END ACTIONS;

END COMPONENT;

COMPONENT X_MIN;

TYPE CONTINUOUS;

INITIAL -500E-6;

GET ACTIONS;

SELECT TIME_REF;

CASE LEFT;

FETCH 0;

CASE CENTER;

FETCH TIME_SENS; FETCH -5; MUL;

CASE RIGHT;

FETCH TIME_SENS; FETCH -10; MUL;

END SELECT;

FETCH TIME_DELAY; ADD;

STORE X_MIN;

END ACTIONS;

END COMPONENT;

Cross Reference

COMPONENT

Component/Action Syntax 8-169

8

XMIN

The XMIN statement allows you to specify the X-axis value for the initial data

point in an ITRACE or RTRACE.

The default value is 0. The HP ID writer is responsible for updating

this Õeld. The Õeld is transferred as part of the waveform record in an

hpt peek waveform operation.

Item Description

numeric expr SpeciÕes the value for the initial data point of a waveform.

Syntax

Example

COMPONENT TRACE1;

TYPE RTRACE 1024;

TRACETYPE WAVEFORM;

POINTS WF_SIZE;

XMIN X_MIN;

XINCR X_INCR;

XLOG OFF;

XUNIT "s";

YUNIT "V";

(Continued)

8-170 Component/Action Syntax

8

XMIN

COMPONENT X_INCR;

TYPE CONTINUOUS;

INITIAL 2E-6;

GET ACTIONS;

FETCH TIME_SENS; FETCH 10; MUL;

FETCH WF_SIZE; DIV;

STORE X_INCR;

END ACTIONS;

END COMPONENT;

COMPONENT X_MIN;

TYPE CONTINUOUS;

INITIAL -500E-6;

GET ACTIONS;

SELECT TIME_REF;

CASE LEFT;

FETCH 0;

CASE CENTER;

FETCH TIME_SENS; FETCH -5; MUL;

CASE RIGHT;

FETCH TIME_SENS; FETCH -10; MUL;

END SELECT;

FETCH TIME_DELAY; ADD;

STORE X_MIN;

END ACTIONS;

END COMPONENT;

Cross Reference

COMPONENT

Component/Action Syntax 8-171

8

XUNIT

The XUNIT statement allows you to specify the unit for the X axis in an

ITRACE or RTRACE.

The statement is of type string and the default value is the null string. The HP

ID writer is responsible for updating this Õeld. The Õeld is transferred as part

of the waveform record in an hpt peek waveform operation.

Syntax

Item Description

string expr SpeciÕes a string used by the measurement product for

graph labelling of the X axis.

Example

COMPONENT TRACE1;

TYPE RTRACE 1024;

TRACETYPE WAVEFORM;

POINTS WF_SIZE;

XMIN X_MIN;

XINCR X_INCR;

XLOG OFF;

XUNIT "s";

YUNIT "V";

(Continued)

8-172 Component/Action Syntax

8

XUNIT

COMPONENT X_INCR;

TYPE CONTINUOUS;

INITIAL 2E-6;

GET ACTIONS;

FETCH TIME_SENS; FETCH 10; MUL;

FETCH WF_SIZE; DIV;

STORE X_INCR;

END ACTIONS;

END COMPONENT;

COMPONENT X_MIN;

TYPE CONTINUOUS;

INITIAL -500E-6;

GET ACTIONS;

SELECT TIME_REF;

CASE LEFT;

FETCH 0;

CASE CENTER;

FETCH TIME_SENS; FETCH -5; MUL;

CASE RIGHT;

FETCH TIME_SENS; FETCH -10; MUL;

END SELECT;

FETCH TIME_DELAY; ADD;

STORE X_MIN;

END ACTIONS;

END COMPONENT;

Cross Reference

COMPONENT

Component/Action Syntax 8-173

8

YUNIT

The YUNIT statement allows you to specify the unit for the Y axis in an

ITRACE or RTRACE.

The statement is of type string and the default value is the null string. The HP

ID writer is responsible for updating this Õeld. The Õeld is transferred as part

of the waveform record in an hpt peek waveform operation.

Syntax

Item Description

string expr SpeciÕes a string used by the measurement product for

graph labelling of the Y axis.

Example

COMPONENT TRACE1;

TYPE RTRACE 1024;

TRACETYPE WAVEFORM;

POINTS WF_SIZE;

XMIN X_MIN;

XINCR X_INCR;

XLOG OFF;

XUNIT "s";

YUNIT "V";

(Continued)

8-174 Component/Action Syntax

8

YUNIT

COMPONENT X_INCR;

TYPE CONTINUOUS;

INITIAL 2E-6;

GET ACTIONS;

FETCH TIME_SENS; FETCH 10; MUL;

FETCH WF_SIZE; DIV;

STORE X_INCR;

END ACTIONS;

END COMPONENT;

COMPONENT X_MIN;

TYPE CONTINUOUS;

INITIAL -500E-6;

GET ACTIONS;

SELECT TIME_REF;

CASE LEFT;

FETCH 0;

CASE CENTER;

FETCH TIME_SENS; FETCH -5; MUL;

CASE RIGHT;

FETCH TIME_SENS; FETCH -10; MUL;

END SELECT;

FETCH TIME_DELAY; ADD;

STORE X_MIN;

END ACTIONS;

END COMPONENT;

Cross Reference

COMPONENT

Component/Action Syntax 8-175

9

9

Panel Syntax

Overview

This section contains an alphabetical listing of the keywords currently available

for use in the panel section of an HP ID. Each entry deÕnes the keyword, shows

the proper syntax for its use, provides one or more examples, and explains

relevant semantic details.

Interpreting the Syntax Drawings

All characters enclosed by an oval must be entered exactly as shown

(case-independent).

Words enclosed by a rectangle are names of items used in the statement.

Italic letters indicate that the word or words are keywords, and are fully

documented elsewhere in this chapter.

Statement elements are connected by lines. Each line can be followed in only

one direction with an arrow indicating the direction.

Optional Elements and Defaults

An element is optional if there is a path around it. Optional values usually

have default values. The table or text following the drawing speciÕes the

default value that is used when an optional item is not included in a statement.

Panel Syntax 9-1

9

Naming Rules

Don't use keywords for component or action names.

Component and action names can be up to 25 characters long.

Component and action names must start with an alpha character, A-Z or

a-z. That character may be followed by any mix of alphanumeric characters,

either upper or lower case, or by an underscore. The syntax is not case

sensitive.

Following is a list of possible component names:

FREQUENCY

SLOT4

SLOT 4

Start Frequency

Comments

A comment may be created by preceding a statement with an exclamation

mark. You can also make comments on the same line as a statement. This is

done by placing an exclamation mark after the statement.

Spaces, Commas, and Other Separators

In general, a space is required between a keyword and an item. A space or

a comma is required between multiple items following a keyword. Tabs are

treated as spaces.

9-2 Panel Syntax

9

BACKGROUND

BACKGROUND

BACKGROUND speciÕes the area Õll color of a panel or panel element. For

color displays, BACKGROUND speciÕes intensities of red, green, and blue. For

monochrome displays, BACKGROUND speciÕes the percentage of white.

On a monochrome display, the development environment ignores the values

provided for red, green, and blue. On a color display, it ignores the values

provided for mono.

The development environment supports up to 16 colors (see table 9-1). When

the user selects a panel's control or display in the development environment,

it highlights the selected control or display in a color that is the inverse of the

original color.

Note The actual number of supported colors depends on the

particular computer system you use.

Syntax

Item Description Range

red An integer 0-255

green An integer 0-255

blue An integer 0-255

mono An integer 0=black

100=white

Panel Syntax 9-3

9

BACKGROUND

Table 9-1. Recommended Colors for Panel Elements

Color Name Example Red Green Blue

Lavender Title Bar 90 0 170

Evening Blue System Menu Bar 75 0 240

Beige Gray Background 148 139 123

French Gray Editor Background 105 95 80

Evening Gold Pushbuttons 150 110 75

Forest Green Reset Buttons 0 130 70

Parchment White Panel Background 220 211 184

White Panel Outline 255 255 255

Black Panel Text 0 0 0

Yellow 1st Trace on XY 255 255 0

Cyan 2nd Trace on XY 0 255 255

Magenta 3rd Trace on XY 255 0 255

Rich Green 4th Trace on XY 0 200 50

Harvest Gold None 238 150 0

Safety Red None 230 30 30

Razor Blue None 120 184 210

9-4 Panel Syntax

9

BACKGROUND

Example

REVISION 2.0;

COMPONENT Btn;

TYPE INTEGER;

SET ACTIONS;

NOTIFY "Ok";

END ACTIONS;

END COMPONENT;

PANEL Main;

BUTTON Btn;

POSITION 70,80;

SIZE 50,50;

LABEL "STOP!";

BACKGROUND (230,30,30),100;

FOREGROUND (255,255,255),0;

END BUTTON;

END PANEL;

Panel Syntax 9-5

9

BACKGROUND

Cross Reference

BUTTON

CONTINUOUS

DISCRETE

DISPLAY

INPUT

PANEL

TEXT

TOGGLE

XY

9-6 Panel Syntax

9

BUTTON

BUTTON

The BUTTON . . . END BUTTON compound statement allows you to

simulate a momentary contact button. When the user clicks on a button in

the development environment, it immediately executes the SET ACTIONS

speciÕed in the component description associated with the button. The

component that the BUTTON is tied to is set to a value of 1.

Syntax

Panel Syntax 9-7

9

BUTTON

Item Description

x position An integer specifying the number of pixels to the right of the

bottom left corner of the panel. Used with y position to specify

the bottom left corner of the button.

y position An integer specifying the number of pixels above the bottom left

corner of the panel. Used with x position to specify the bottom

left corner of the button.

comp name The name of an INTEGER component whose SET ACTIONS are

executed when the button is pressed (see \HIT ACTIONS" in this

chapter).

POSITION Consists of an x-position and a y-position that together specify the

lower left corner of the button. The default is 1,1, meaning 1 pixel

over and 1 pixel up from the bottom left corner of the panel.

FONT Consists of a width and height that together specify the size in

pixels for the characters displayed in LABEL. Default is 9 x 15

pixels.

SIZE Consists of a width and height that together specify the size in

pixels of the button. If not speciÕed, the development environment

computes a default size using the following formula:

width = (length of LABEL Â FONT width) + 4

height = FONT height + 4

BACKGROUND SpeciÕes the area Õll color for the button. Values must be

provided for red, green, blue, and monochrome. Default color is

Evening Gold (see \BACKGROUND," table 9-1) and black for

monochrome displays.

FOREGROUND SpeciÕes the color of the text and border of the button. Values

must be provided for red, green, blue, and monochrome. Default

color is White for color (see table 9-1) and monochrome displays.

LABEL SpeciÕes the text to be placed inside of the button. If more than

one string is speciÕed, the development environment uses only the

Õrst. Default is the associated component name.

(Continued)

9-8 Panel Syntax

9

BUTTON

Item Description

HIT ACTIONS If speciÕed, the development environment executes this action list

instead of the SET ACTIONS of the associated component.

Executed only in the development environment.

TITLE SpeciÕes the text to be placed to the left of the button on the

panel. If not speciÕed, the development environment does not

generate one. The color of the characters in the TITLE is black.

Example

REVISION 2.0;

COMPONENT Btn;

TYPE INTEGER;

SET ACTIONS;

NOTIFY "The button was pressed.";

END ACTIONS;

END COMPONENT;

PANEL Main;

BUTTON Btn;

POSITION 120,100;

TITLE "Press this ";

LABEL "button!";

END BUTTON;

END PANEL;

Panel Syntax 9-9

9

CONNECT

CONNECT is used to turn on and oÃ the connect-the-dots mode for a TRACE

in the XY panel element.

Syntax

Item Description

ON SpeciÕes that the dots should be connected.

OFF SpeciÕes that the dots should not be connected.

comp name The name of an INTEGER, CONTINUOUS, or DISCRETE

component.

For INTEGER or CONTINUOUS components:

If the value is 0, then CONNECT is oÃ. Otherwise it's on.

For DISCRETE components:

If the current value is the Õrst in the list, then CONNECT is oÃ. Otherwise

it's on.

9-10 Panel Syntax

9

CONNECT

Example

REVISION 2.0;

COMPONENT Trace_data;

TYPE RARRAY 1,10;

END COMPONENT;

COMPONENT Connect_is;

TYPE DISCRETE;

VALUES OFF,ON;

END COMPONENT;

PANEL Main;

XY;

TRACE Trace_date;

SCALE 0,11,-5,5;

CONNECT Connect_is;

END TRACE;

END XY;

TOGGLE 100,50,Connect_is;

END PANEL;

Cross Reference

TRACE

Panel Syntax 9-11

9

CONTINUOUS

The CONTINUOUS . . . END CONTINUOUS compound statement creates a

control that allows the user to input a numeric value within a speciÕed range.

You can specify the range, including AUTO if appropriate, using the RANGE

option in the VALUES statement in the component description.

The current value of a CONTINUOUS control is displayed in a box on the

panel; the development environment displays ? in the box for INVALID values,

* for components speciÕed as DONTCARE, and AUTO if auto is enabled.

Syntax

9-12 Panel Syntax

9

CONTINUOUS

Item Description

x position An integer specifying the number of pixels to the right of the

bottom left corner of the panel. Used with y position to specify the

bottom left corner of the control.

y position An integer specifying the number of pixels above the bottom left

corner of the panel. Used with x position to specify the bottom left

corner of the control.

comp name The name of an INTEGER or CONTINUOUS component whose

SET ACTIONS are executed after the user has entered a new

value. The value displayed is stored in this component.

POSITION Consists of an x-position and a y-position that together specify the

lower left corner of the control. The default is 1,1, meaning 1 pixel

over and 1 pixel up from the bottom left corner of the panel.

FONT Consists of a width and height that together specify the size in

pixels of the characters associated with this control. These include

the characters that constitute the value and the TITLE. Default is

9 x 15 pixels.

FORMAT Requires a string in which you insert either speciÕers (table 9-4

under FORMAT keyword) or a number and the word DIGITS. The

latter indicates that you want the current value rounded to the

speciÕed number of digits. Default is 3 DIGITS (for example, 4.33).

STYLE Requires a string. If the string is \NOENGR", then the

development environment does not display engineering suœxes (see

table 9-2). Default provides engineering suœxes. The development

environment determines the appropriate suœxes based on the range

speciÕed in the associated component.

NOENGR = no engineering suœxes used

anything else in the string = engineering suœxes used

NONDECIMAL = no suœxes are displayed. Instead, the entry

box contains additional Õelds for binary, octal, decimal, and

hexadecimal entry. The display format is controlled by the

FORMAT speciÕer.

(Continued)

Panel Syntax 9-13

9

CONTINUOUS

Item Description

SIZE Consists of a width and height that together specify the size in

pixels of the control. If not speciÕed, the development environment

computes a default size using the following formula:

If STYLE \NOENGR" is not speciÕed:

width = ((length of FORMAT + 3) Â FONT width) + 4

height = FONT height + 4

If STYLE \NOENGR" is speciÕed:

width = (length of FORMAT Â FONT width) + 4

height = FONT height + 4

BACKGROUND SpeciÕes the area Õll color for the control. Values must be provided

for red, green, blue, and monochrome. Default color is French Gray

(see \BACKGROUND," table 9-1) and black for monochrome

displays.

FOREGROUND SpeciÕes the color of the text and border of the control. Values

must be provided for red, green, blue, and monochrome. Default

color is White (see table 9-1) for color and monochrome displays.

STEP SpeciÕes the amount by which the up/down arrows on the scroll

bar change the current value. If STEP is speciÕed, then resolution

is continuous (that is, any number between the upper and lower

limits is acceptable). You can specify STEP size to be linear or

logarithmic. If STEP is not speciÕed, then the up/down arrows

change the value by the resolution speciÕed in the component (see

\VALUES" under \RANGE" in chapter 8, \Component/Action

Syntax").

TITLE SpeciÕes the text to be placed to the left of the control. If you do

not provide a TITLE, the development environment does not

generate one. However, if you use the short form of the

CONTINUOUS statement (that is, specify just the x position,

y position, and comp name), then the development environment

generates a default TITLE, which is comp name.

UPDATE

ACTIONS

An action list whose statements the development environment

executes whenever the view of the associated component is changed

in the development environment.

9-14 Panel Syntax

9

CONTINUOUS

Table 9-2. Engineering Suffixes Available

Symbol PreÕx Multiplication

Factor

E exa 1018

P peta 101
5

T tera 101
2

G giga 10
9

M mega 10
6

k kilo 103

m milli 10
-3

u micro 10
-6

n nano 10
-9

p pico 10
-12

f femto 10
-15

Example

REVISION 2.0;

COMPONENT Short_form;

TYPE CONTINUOUS;

END COMPONENT;

PANEL Main;

CONTINUOUS Short_form;

POSITION 100,100;

FORMAT "DDD.DDESZZ";

STYLE "NOENGR";

TITLE "LONG_FORM";

END CONTINUOUS;

CONTINUOUS 100,80,Short_form;

END PANEL;

Panel Syntax 9-15

9

CONTINUOUS

9-16 Panel Syntax

9

DISCRETE

DISCRETE

The DISCRETE . . . END DISCRETE compound statement allows you to

create a control in which the user can select from a list of allowable values.

The current value of a DISCRETE control is displayed in a box on the panel;

the development environment displays ? in the box for INVALID values and

* for components marked as DONTCARE. When the user clicks on the box

containing the current value, the development environment displays the list of

valid values from which the user can select a new value.

A DISCRETE control and a CONTINUOUS control look identical on a panel.

The only diÃerence is the way in which the user changes the current value.

Syntax

Panel Syntax 9-17

9

DISCRETE

Item Description

x position An integer specifying the number of pixels to the right of the

bottom left corner of the panel. Used with y position to specify the

bottom left corner of the control.

y position An integer specifying the number of pixels above the bottom left

corner of the panel. Used with x position to specify the bottom left

corner of the control.

comp name The name of a DISCRETE component whose SET ACTIONS are

executed after the user has selected a new value. The value

displayed is stored in this component.

POSITION Consists of an x-position and a y-position that together specify the

lower left corner of the control. The default is 1,1, meaning 1 pixel

over and 1 pixel up from the bottom left corner of the panel.

FONT Consists of a width and height that together specify the size in

pixels of the characters associated with this control. These include

the characters that constitute the value and the TITLE. Default is

9 x 15 pixels.

SIZE Consists of a width and height that together specify the size in

pixels of the control. If not speciÕed, the development environment

computes a default size using the following formula:

width = (length of longest LABEL Â FONT width) + 4

height = FONT height + 4

BACKGROUND SpeciÕes the area Õll color for the control. Values must be provided

for red, green, blue, and monochrome. Default color is French Gray

(see \BACKGROUND," table 9-1) and black for monochrome

displays.

FOREGROUND SpeciÕes the color of the text and border of the control. Values

must be provided for red, green, blue, and monochrome. Default

color is White (see table 9-1) for color and monochrome displays.

(Continued)

9-18 Panel Syntax

9

DISCRETE

Item Description

LABEL SpeciÕes the selections listed in the list box that the development

environment displays when the user clicks on the control box. The

Õrst string in the LABEL statement corresponds to the Õrst VALUE

speciÕed in the associated component, and so on. The development

environment ignores any excess strings. If LABEL is not speciÕed,

the development environment uses the VALUES statement in the

component as the default labels. If there are more VALUES than

LABEL strings, then the development environment uses the excess

VALUES as the default labels.

TITLE SpeciÕes the text to be placed to the left of the control. If you do

not provide a TITLE, the development environment does not

generate one. The color of the characters in the TITLE is black.

However, if you use the short form of the DISCRETE statement

(that is, specify just the x position, y position, and comp name),

then the development environment generates a default TITLE,

which is comp name.

UPDATE

ACTIONS

An action list whose statements the development environment

executes whenever the view of the associated component is changed

in the development environment.

Panel Syntax 9-19

9

DISCRETE

Example

REVISION 2.0;

COMPONENT List;

TYPE DISCRETE;

VALUES First,Second,Third,Fourth,Fifth,Sixth,Seventh;

END COMPONENT;

PANEL Main;

DISCRETE List;

POSITION 100,100;

SIZE 100,25;

LABEL "1st","2nd","3rd","4th","5th","6th","7th";

END DISCRETE;

DISCRETE 100,60,List;

END PANEL;

9-20 Panel Syntax

9

DISPLAY

DISPLAY

The DISPLAY . . . END DISPLAY compound statement allows you to create

an area in which the development environment can display an instrument

reading or measurement.

Syntax

Panel Syntax 9-21

9

DISPLAY

Item Description

x position An integer specifying the number of pixels to the right of the

bottom left corner of the panel. Used with y position to specify the

bottom left corner of the display.

y position An integer specifying the number of pixels above the bottom left

corner of the panel. Used with x position to specify the bottom left

corner of the display.

comp name The name of a CONTINUOUS, INTEGER, DISCRETE, or

STRING component whose GET ACTIONS are executed whenever

the user clicks on the display (see \HIT ACTIONS" in this

chapter).

POSITION Consists of an x position and a y position that together specify the

lower left corner of the display. The default is 1,1, meaning 1 pixel

over and 1 pixel up from the bottom left corner of the panel.

FONT Consists of a width and height that together specify the size in

pixels of the characters in the display. Default is 9 x 15 pixels.

STYLE Only valid for DISPLAYs associated with INTEGER or

CONTINUOUS components. Requires a string. If the string is

NOENGR, then the development environment does not display any

engineering suœxes with numeric values. Default provides

engineering suœxes (see \CONTINUOUS," table 9-2).

NOENGR = no engineering suœxes used.

anything else in the string = engineering suœxes used.

FORMAT Requires a string in which you insert either speciÕers (FORMAT,

table 9-4) or a number and the word DIGITS. The latter indicates

that you want the current value rounded to the speciÕed number of

digits. Default is 3 DIGITS (for example, 4.33).

(Continued)

9-22 Panel Syntax

9

DISPLAY

Item Description

SIZE Consists of a width and height that together specify the size in

pixels of the display. If not speciÕed, the development environment

computes a default size using the following formula:

If the component is an INTEGER or CONTINUOUS:

If STYLE \NOENGR" is not speciÕed:

width = ((length of FORMAT + 3) Â FONT width) + 4

height = FONT height + 4

If STYLE \NOENGR" is speciÕed:

width = (length of FORMAT Â FONT width) + 4

height = FONT height + 4

If the component is a DISCRETE:

width = (length of longest LABEL Â FONT width) + 4

height = FONT height + 4

If the component is a STRING:

width = (length of FORMAT Â FONT width) + 4

height = FONT height + 4

BACKGROUND SpeciÕes the area Õll color for the display. Values must be provided

for red, green, blue, and monochrome. Default color is French Gray

(see \BACKGROUND," table 9-1), and black for monochrome

displays.

FOREGROUND SpeciÕes the color of the text and border of the display. Values

must be provided for red, green, blue, and monochrome. Default

color is White (see table 9-1) for both color and monochrome

displays.

(Continued)

Panel Syntax 9-23

9

DISPLAY

Item Description

TITLE SpeciÕes the text to be placed to the left of the display on the panel.

If not speciÕed, the development environment does not generate a

title. The color of the characters in the TITLE is black.

UPDATE

ACTIONS

An action list whose statements the development environment

executes whenever the view of the associated component is changed

in the development environment.

9-24 Panel Syntax

9

DISPLAY

Example

REVISION 2.0;

INITIALIZE COMPONENT Reset;

COMPONENT Reset;

TYPE INTEGER;

SET ACTIONS;

POKEINITIAL;

END ACTIONS;

END COMPONENT; ! Reset

COMPONENT Value;

TYPE CONTINUOUS;

VALUES RANGE -1000,1E6,.001;

INITIAL 1;

END COMPONENT; !Value

PANEL Main;

DISPLAY Value;

POSITION 30,180;

FONT 15,25;

FORMAT "DDDD.DD";

END DISPLAY;

CONTINUOUS 90,50,Value;

END PANEL; ! Main

Panel Syntax 9-25

9

DISPLAY

FONT

FONT consists of a width and a height that together specify the size in pixels

of each character in the panel elements that display text. The default is 9 Â

15 pixels. For consistency, Hewlett-Packard recommends that you only use two

font sizes, a 9 Â 15 font size for most text and a 15 Â 25 font size for the text

in large DISPLAYs.

Syntax

Item Description Range

char width An integer 1 - 32767

char height An integer 1 - 32767

Example

REVISION 2.0;

PANEL Main;

TEXT 5,180,"9x15 FONT";

TEXT "15x25 FONT";

POSITION 5,150;

FONT 15,25;

END TEXT;

END PANEL;

9-26 Panel Syntax

9

FONT

Cross Reference

BUTTON

CONTINUOUS

DISCRETE

DISPLAY

INPUT

TEXT

TOGGLE

Panel Syntax 9-27

9

FOREGROUND

FOREGROUND speciÕes the line and text color of a panel, subpanel, or panel

element. For color displays, FOREGROUND speciÕes intensities of red, green,

and blue. For monochrome displays, FOREGROUND speciÕes the percentage

of white.

On a monochrome display, the development environment ignores the values

provided for red, green, and blue. On a color display, it ignores the values

provided for mono.

The development environment supports up to 16 colors (see table 9-3). When

the user selects a panel's control or display in the development environment,

it highlights the selected control or display in a color that is the inverse of the

original color.

Note The actual number of supported colors depends on the

particular computer system you use.

Syntax

Item Description Range

red An integer 0-255

green An integer 0-255

blue An integer 0-255

mono An integer 0=black

100=white

9-28 Panel Syntax

9

FOREGROUND

Table 9-3. Recommended Colors for Panel Elements

Color Name Example Red Green Blue

Lavender Title Bar 90 0 170

Evening Blue System Menu Bar 75 0 240

Beige Gray Background 148 139 123

French Gray Editor Background 105 95 80

Evening Gold Pushbuttons 150 110 75

Forest Green Reset Buttons 0 130 70

Parchment White Panel Background 220 211 184

White Panel Outline 255 255 255

Black Panel Text 0 0 0

Yellow 1st Trace on XY 255 255 0

Cyan 2nd Trace on XY 0 255 255

Magenta 3rd Trace on XY 255 0 255

Rich Green 4th Trace on XY 0 200 50

Harvest Gold None 238 150 0

Safety Red None 230 30 30

Razor Blue None 120 184 210

Panel Syntax 9-29

9

FOREGROUND

Example

REVISION 2.0;

INITIALIZE COMPONENT Reset;

COMPONENT Reset;

TYPE INTEGER;

SET ACTIONS;

SHOW Sub;

END ACTIONS;

END COMPONENT;

PANEL Main;

PANEL Sub;

FOREGROUND (230,30,30),100;

END PANEL;

END PANEL;

9-30 Panel Syntax

9

FOREGROUND

Cross Reference

BUTTON

CONTINUOUS

DISCRETE

DISPLAY

INPUT

MARKER

PANEL

TEXT

TOGGLE

TRACE

XY

Panel Syntax 9-31

9

FORMAT

FORMAT allows you to specify how numbers are displayed. FORMAT requires

a string in which you insert either speciÕers (see table 9-4) or an integer

followed by the word DIGITS. The latter indicates that you want the current

value rounded to the speciÕed number of digits.

In general, the default FORMAT is \3 DIGITS" (for example, 4.33).

Syntax

Item Description

image string Table 9-4 lists the valid speciÕers. You can also specify an

integer followed by the word DIGITS.

The following applies to DIGITS:

If the integer is >15, no rounding occurs.

If the integer is <1, 0 is returned.

If the integer is 1 - 15, the value is rounded oÃ to that many

digits.

9-32 Panel Syntax

9

FORMAT

Table 9-4. Valid FORMAT Specifiers

SpeciÕer Meaning

K Compact Õeld. Prints the number in standard form with no leading or

trailing blanks.

-K Same as K.

H Similar to K, except that the number is printed using the European

number format (comma radix).

-H Same as H.

S Outputs the number's sign (+ or -).

M Prints the number's sign if negative, a blank if positive.

D Prints 1-digit character. A leading zero is replaced by a blank. If the

number is negative and no sign is speciÕed, the minus sign will occupy a

leading digit position. If a sign is printed, it will \Œoat" to the left of the

left-most digit.

Z Same as D, except that leading zeros are printed.

* Like Z, except that asterisks are printed instead of leading zeros.

. Prints a decimal-point radix indicator.

R Prints a comma radix indicator (European format).

E Prints an E, a sign, and a two-digit exponent.

ESZ Prints an E, a sign, and a one-digit exponent.

ESZZ Same as E.

ESZZZ Prints an E, a sign, and a three-digit exponent.

A Outputs a string character.

literal Outputs the characters in the literal.

B Output a byte. The number is rounded to an INTEGER and the least

signiÕcant byte is output.

Statement is terminated when the last ENTER item is terminated. EOI

and line feed are item terminators and early termination is not allowed.

X Skips a character.

Panel Syntax 9-33

9

FORMAT

Table 9-5. Valid FORMAT Specifiers (cont.)

SpeciÕer Meaning

h Prints 1 hexadecimal character. Leading 0s are printed. Signs are not

printed. Instead, they are replaced by 2's complement representation of

the hex number.

o Same as h, except that an octal digit is printed.

b Same as h, except that a binary digit is printed.

Example

REVISION 2.0;

INITIALIZE COMPONENT Reset;

COMPONENT Reset;

TYPE INTEGER;

SET ACTIONS;

POKEINITIAL;

END ACTIONS;

END COMPONENT;

COMPONENT Value;

TYPE CONTINUOUS;

INITIAL 1.2345;

END COMPONENT;

PANEL Main;

DISPLAY Value;

POSITION 100,180;

FORMAT "5 DIGITS";

TITLE "5 DIGITS";

END DISPLAY;

DISPLAY Value;

POSITION 100,160;

FORMAT "DDD.DD";

TITLE "DDD.DD";

END DISPLAY;

(Continued)

9-34 Panel Syntax

9

FORMAT

DISPLAY Value;

POSITION 100,140;

FORMAT "***.DD";

TITLE "***.DD";

END DISPLAY;

DISPLAY Value;

POSITION 100,120;

FORMAT "ZZZ.DD";

TITLE "ZZZ.DD";

END DISPLAY;

CONTINUOUS 100,50,Value;

END PANEL;

Cross Reference

CONTINUOUS

DISPLAY

INPUT

Panel Syntax 9-35

9

GRATICULE

GRATICULE speciÕes the graticule to be drawn on an XY display. The

default is no GRATICULE.

Note Unless you specify SCALE, the development environment uses

pixels to scale the graticule.

Syntax

9-36 Panel Syntax

9

GRATICULE

Item Description

AXES SpeciÕes that the development environment draw an XY display with an

X axis and Y axis.

GRID SpeciÕes that the development environment draw an XY display with

vertical and horizontal lines at the tic marks on the x and y axes.

FRAME SpeciÕes that the development environment draw an XY display with tic

marks around the edge.

comp name SpeciÕes a DISCRETE or INTEGER component whose value determines

the type of graticule (see table 9-5).

x space SpeciÕes the tic mark spacing along the X axis. Default is 1.

y space SpeciÕes the tic mark spacing along the Y axis. Default is 1.

x loc y SpeciÕes the intersection points of the X axis along the orthogonal axis.

Default is 0. This value is ignored if the type is a FRAME.

y loc x SpeciÕes the intersection points of the Y axis along the orthogonal axis.

Default is 0. This value is ignored if the type is a FRAME.

x major SpeciÕes the number of tick intervals between major tick marks along

the X axis. Default is 1 (every tick is major).

y major SpeciÕes the number of tick intervals between major tick marks along

the Y axis. Default is 1 (every tick is major).

SMITH SpeciÕes that the development environment draw a Smith chart

graticule. Smith chart scaling (reference value) is taken from the

\x space" component.

INVSMITH SpeciÕes that the development environment draw an Inverted Smith

chart graticule. Inverted Smith chart scaling (reference value) is taken

from the \x space" component.

POLAR SpeciÕes that the development environment draws a polar graticule.

Note For SMITH/POLAR graticules, the spacing, loc, and major

information is not used if it is speciÕed.

Panel Syntax 9-37

9

GRATICULE

Table 9-6. The Value of comp name Controls the Graticule

Numeric Value DISCRETE Position Graticule Type

0 First None

1 Second AXES

2 Third GRID

3 Fourth FRAME

4 Fifth SMITH

5 Sixth INVSMITH

6 Seventh POLAR

Example

REVISION 2.0;

INITIALIZE COMPONENT Reset;

COMPONENT Reset;

TYPE INTEGER;

SET ACTIONS;

POKEINITIAL;

VALIDATE Xydata;

END ACTIONS;

END COMPONENT;

COMPONENT Xydata;

TYPE RARRAY 5,1;

END COMPONENT;

(Continued)

9-38 Panel Syntax

9

GRATICULE

COMPONENT Grattype;

TYPE DISCRETE;

VALUES NONE,AXES,GRID,FRAME;

INITIAL AXES;

END COMPONENT;

COMPONENT Xtick;

TYPE REAL;

INITIAL 1;

END COMPONENT;

COMPONENT Ytick;

TYPE REAL;

INITIAL 1;

END COMPONENT;

COMPONENT Xlocy;

TYPE REAL;

INITIAL 0;

END COMPONENT;

COMPONENT Ylocx;

TYPE REAL;

INITIAL 0;

END COMPONENT;

COMPONENT Xmajor;

TYPE REAL;

INITIAL 1;

END COMPONENT;

(Continued)

Panel Syntax 9-39

9

GRATICULE

COMPONENT Ymajor;

TYPE REAL;

INITIAL 1;

END COMPONENT;

PANEL Main;

SIZE 428,213;

XY;

SCALE 1,10,-5,5;

GRATICULE Grattype,Xtick,Ytick,Ylocx,Xlocy,Xmajor,Ymajor;

TRACE Xydata;

END TRACE;

END XY;

DISCRETE 314,180,Grattype;

CONTINUOUS 314,160,Xtick;

CONTINUOUS 314,140,Ytick;

CONTINUOUS 314,120,Ylocx;

CONTINUOUS 314,100,Xlocy;

CONTINUOUS 314,80,Xmajor;

CONTINUOUS 314,60,Ymajor;

END PANEL;

Cross Reference

SCALE

XY

9-40 Panel Syntax

9

HIT ACTIONS

HIT ACTIONS

The development environment executes the action statements within this

action list rather than the SET ACTIONS or GET ACTIONS for the

associated component.

Caution If you use HIT ACTIONS, then you may not generate any code

automatically for the panel element or even be able to access

the component. This depends on the development product you

are using.

Syntax

Item Description

action statement See tables 8-1 through 8-8 under \ACTIONS" in chapter 8,

\Component/Action Syntax," for the valid statements.

actions name The name of the action list.

Panel Syntax 9-41

9

HIT ACTIONS

Example

REVISION 2.0;

COMPONENT Value;

TYPE DISCRETE;

VALUES OFF,ON;

END COMPONENT;

COMPONENT Btn_dummy;

TYPE INTEGER;

END COMPONENT;

PANEL Main;

DISCRETE Value;

POSITION 45,180;

FONT 15,25;

LABEL "IT'S OFF","IT'S ON";

END DISCRETE;

BUTTON Btn_dummy;

POSITION 50,100;

LABEL "OFF";

HIT ACTIONS;

FETCH (Value) OFF;

STORE Value;

END ACTIONS;

END BUTTON;

BUTTON Btn_dummy;

POSITION 150,100;

LABEL "ON";

HIT ACTIONS;

FETCH (Value) ON;

STORE Value;

END ACTIONS;

END BUTTON;

END PANEL;

9-42 Panel Syntax

9

HIT ACTIONS

Cross Reference

BUTTON

DISPLAY

XY

Panel Syntax 9-43

9

INPUT

The INPUT . . . END INPUT compound statement creates a Õeld on a soft

panel in which the user can enter a value. The current value of an INPUT

control is in this Õeld. When the user clicks on the Õeld, the development

environment puts a cursor in the box, allowing the user to type in a new value.

The user must press ÄReturnÅ on the keyboard after the value is entered.

Syntax

9-44 Panel Syntax

9

INPUT

Item Description

x position An integer specifying the number of pixels to the right of the

bottom left corner of the panel. Used with y position to specify

the bottom left corner of the INPUT Õeld.

y position An integer specifying the number of pixels above the bottom

left corner of the panel. Used with x position to specify the

bottom left corner of the INPUT Õeld.

comp name The name of an INTEGER, CONTINUOUS, or STRING

component new value. The value entered is stored in this

component.

POSITION Consists of an x position and a y position that together specify

the lower left corner of the INPUT Õeld. The default is 1,1,

meaning 1 pixel over and 1 pixel up from the bottom left corner

of the panel.

FONT Consists of a width and height that together specify the size in

pixels of the characters associated with the panel element.

These include the characters that constitute the current value

and the TITLE. Default is 9 Â 15 pixels.

FORMAT Requires a string in which you insert either speciÕers (see

\FORMAT," table 9-4) or a number and the word DIGITS.

The latter indicates that you want the current value rounded to

the speciÕed number of digits. Default is D.DDESZZ (for

example, 4.33E+00).

(Continued)

Panel Syntax 9-45

9

INPUT

Item Description

SIZE Consists of a width and height that together specify the size in

pixels of the input Õeld. If not speciÕed, the development

environment computes a default size using the following

formula:

If the component is an INTEGER or a CONTINUOUS:

width = (length of FORMAT Â FONT width) + 4

height = FONT height + 4

If the component is a STRING;

width = (length of FORMAT Â FONT width) + 4

height = FONT height + 4

BACKGROUND SpeciÕes the area Õll color for the input Õeld. Values must be

provided for red, green, blue, and monochrome. Default color is

French Gray (see \BACKGROUND," table 9-1) and black for

monochrome displays.

FOREGROUND SpeciÕes the color of the text and border of the input Õeld.

Values must be provided for red, green, blue, and monochrome.

Default color is White (see table 9-1) for color and monochrome

displays.

TITLE SpeciÕes the text to be placed to the left of the input Õeld. If

you do not provide a TITLE, the development environment

does not generate one. However, if you use the short form of the

INPUT statement (that is, specify just the x position,

y position, and comp name), then the development

environment generates a default TITLE, which is comp name.

The color of the characters is black.

UPDATE

ACTIONS

An action list whose statements are executed whenever the view

of the associated component is changed in the development

environment.

STYLE FILESELECT indicates that a Õlename will be required as

input to the input control. The FILESELECT option is only

valid with STRING components. FILESELECT uses a

standard dialog box to let the user select Õlenames.

9-46 Panel Syntax

9

INPUT

Example

REVISION 2.0;

COMPONENT Astr;

TYPE STRING 10;

END COMPONENT;

COMPONENT Anum;

TYPE CONTINUOUS;

END COMPONENT;

PANEL Main;

INPUT 100,180,Astr;

INPUT Anum;

POSITION 100,160;

TITLE "Anum";

FORMAT "ZZZ.DD";

END INPUT;

END PANEL;

Panel Syntax 9-47

9

LABEL

LABEL is used to specify strings needed by DISCRETE, TOGGLE, and

BUTTON controls.

Syntax

Item Description

string For BUTTONs, string can contain:

A string that is the text to label this control on the panel. If

not speciÕed, the development environment uses the name of

the associated component.

For TOGGLEs, string can contain:

A string that is the text to label this control on the panel. If

not speciÕed, the development environment uses the

information in the VALUES statement in the associated

component.

For DISCRETEs, string can contain:

Strings that are included in the list box from which the user

selects. If not speciÕed, the development environment uses

the VALUES speciÕed in the associated component.

9-48 Panel Syntax

9

LABEL

Example

REVISION 2.0;

COMPONENT Btn;

TYPE INTEGER;

END COMPONENT;

COMPONENT Sample;

TYPE DISCRETE;

VALUES A,B,C,D;

END COMPONENT; ! Sample

PANEL Main;

DISCRETE Sample;

POSITION 100,100;

LABEL "This","Is","An","Example";

TITLE "Discrete";

END DISCRETE;

TOGGLE Sample;

POSITION 100,80;

LABEL "Off","On";

TITLE "Toggle";

END TOGGLE;

BUTTON Btn;

POSITION 100,60;

LABEL "Hit Me";

TITLE "Button";

END BUTTON;

END PANEL;

Panel Syntax 9-49

9

LABEL

Cross Reference

BUTTON

DISCRETE

TOGGLE

9-50 Panel Syntax

9

MARKER

MARKER

MARKER is used to specify a marker in an XY display. A marker can be

positioned on a TRACE in the XY display, but it doesn't have to be. Markers

that are not associated with a trace are called global markers.

There are three TYPEs of markers:

A POINT (a diamond-shaped marker).

When used as a global marker, you must specify components that provide

the x and y positions (see table 9-6).

When associated with a trace, you can specify that the marker's y position

be derived from the data contained in the trace.

A HORIZONTAL dotted line across the display.

The position of this marker is derived from the value of a component

(comp name).

A VERTICAL dotted line from the top to the bottom of the display

(comp name).

The position of this marker is derived from the value of a component.

You can use the STATE statement to set up the MARKER so that it is

displayed or not displayed depending on the value of a speciÕed component.

You can use the SCALE statement to specify scaling for the MARKER that

diÃers from the scaling for the TRACE or XY display.

Panel Syntax 9-51

9

MARKER

Note If the positioning components are INVALID or DONTCARE,

then the marker is not displayed.

The development environment positions the MARKER in

user units if SCALE is used (either in MARKER, TRACE,

or XY), and pixels if SCALE is not in either the MARKER,

TRACE, or XY display.

Syntax

9-52 Panel Syntax

9

MARKER

Item Description

comp name The name of a CONTINUOUS or INTEGER component whose

value HP ITG uses to determine the position of the marker,

depending on the TYPE of marker speciÕed (see table 9-6).

y comp The name of a CONTINUOUS or INTEGER component whose

value the development environment uses to determine the y

position of a TYPE POINT marker; y comp is ignored for

TYPE VERTICAL and HORIZONTAL.

FOREGROUND SpeciÕes the color of the marker. The default color is White for

both color and monochrome displays.

TYPE SpeciÕes the type of marker (that is, POINT, HORIZONTAL,

or VERTICAL). Default is POINT.

STATE SpeciÕes whether the marker is displayed. The default is to

display the marker.

SCALE SpeciÕes the user units the development environment uses when

positioning the MARKER, if they diÃer from the TRACE or

XY SCALE.

Panel Syntax 9-53

9

MARKER

Table 9-7. Relationship of MARKER TYPE with comp name

MARKER TYPE y comp

speciÕed?

Is MARKER

in TRACE?

How comp name

is used

POINT Yes Don't care The x-position of the

marker, in user units

(see \SCALE" in this

chapter).

POINT No Yes The oÃset into the array

containing the trace

data and the x-position

in user units.

POINT No No This is an error.

HORIZONTAL Don't care Don't care The y-position of the

marker in user units (see

\SCALE" in this

chapter).

VERTICAL Don't care Don't care The x-position of the

marker in user units (see

\SCALE" in this

chapter).

9-54 Panel Syntax

9

MARKER

Example

REVISION 2.0;

INITIALIZE COMPONENT Reset;

COMPONENT Reset;

TYPE INTEGER;

SET ACTIONS;

POKEINITIAL;

VALIDATE XYDATA;

END ACTIONS;

END COMPONENT; ! Reset

COMPONENT Xydata;

TYPE RARRAY 2,20;

END COMPONENT; ! Xydata

COMPONENT Xpos;

TYPE CONTINUOUS;

VALUES RANGE 1,20,1;

INITIAL 10;

END COMPONENT; ! Xpos

COMPONENT Ypos;

TYPE CONTINUOUS;

VALUES RANGE -10,10,1;

INITIAL 0;

END COMPONENT; !Ypos

PANEL Main;

XY;

SCALE 1,20,-10,10;

GRATICULE FRAME;

MARKER Xpos;

TYPE VERTICAL;

END MARKER;

(Continued)

Panel Syntax 9-55

9

MARKER

MARKER Ypos;

TYPE HORIZONTAL;

END MARKER;

MARKER Xpos,Ypos;

TYPE POINT;

FOREGROUND (230,30,30),100;

END MARKER;

TRACE Xydata;

MARKER Xpos;

FOREGROUND (120,184,210),100;

END MARKER;

END TRACE;

END XY;

CONTINUOUS 100,50,Xpos;

CONTINUOUS 100,30,Ypos;

END PANEL; ! Main

Cross Reference

SCALE

STYLE

TRACE

TYPE

XY

9-56 Panel Syntax

9

PANEL

PANEL

The PANEL . . . END PANEL compound statement is used to specify the

layout of an entire soft panel as well as any subpanels.

Syntax

Panel Syntax 9-57

9

PANEL

Item Description

panel name This name is used to reference the panel in SHOW and HIDE

action statements (see \SHOW" and \HIDE" in chapter 8,

\Component/Action Syntax"). Each panel must have a unique

name.

POSITION SpeciÕes the lower left corner of a subpanel relative to the main

panel. The development environment determines the position of

an HP ID's main panel, and so ignores any POSITION

speciÕed. Default is 6,6 for subpanels, meaning 6 pixels over

and 6 pixels up from the bottom left corner of the main panel.

SIZE SpeciÕes the size of the panel in pixels. Default is 214 Â 213

pixels for the main panel, and 202 Â 176 pixels for subpanels.

BACKGROUND SpeciÕes the area Õll color of the panel. If not speciÕed for a

main panel, default is Parchment White (see

\BACKGROUND," table 9-1), black for monochrome displays.

If not speciÕed for a subpanel, default is the color of the parent

panel.

FOREGROUND SpeciÕes the color of the edge of the panel. If not speciÕed for a

main panel, default is White (see table 9-1) for color and

monochrome displays. If not speciÕed for a subpanel, the

subpanel does not have an edge drawn.

PANEL Allows you to create subpanels by nesting PANEL statements.

TEXT Used to create text on the panel. Most often used to label

controls and displays.

BUTTON Used to create a pushbutton control.

TOGGLE Used to create a button that toggles between two values.

DISCRETE Used to create a control in which the user selects a value from a

list of allowable values.

(Continued)

9-58 Panel Syntax

9

PANEL

Item Description

CONTINUOUS Used to create a control in which the user can enter a numeric

value.

INPUT Used to create a Õeld in which the user can type in a value.

DISPLAY Used to create a Õeld in which the measurement or reading can

be displayed.

XY Used to create an XY display.

Example

REVISION 2.0;

INITIALIZE COMPONENT Reset;

COMPONENT Reset;

TYPE INTEGER;

SET ACTIONS;

SHOW Second;

END ACTIONS;

END COMPONENT; ! Reset

COMPONENT Dmybtn;

TYPE INTEGER;

END COMPONENT; ! Dmybtn

PANEL Main;

BUTTON 80,190,Reset;

PANEL Second;

POSITION 10,10;

SIZE 200,170;

BACKGROUND (120,184,210),100;

(Continued)

Panel Syntax 9-59

9

PANEL

BUTTON Dmybtn;

POSITION 20,20;

LABEL "Hit Me";

HIT ACTIONS;

HIDE Second;

END ACTIONS;

END BUTTON;

END PANEL;

END PANEL;

9-60 Panel Syntax

9

POSITION

POSITION

SpeciÕes the lower left corner of a panel element (that is, text, display, or

control) relative to the lower left corner of the panel containing the element.

The development environment determines the POSITION for the main panel,

and so ignores any POSITION speciÕed. Refer to each panel element for

default information.

Syntax

Item Description

x position An integer specifying the number of pixels to the right of the

lower left corner of the panel.

y position An integer specifying the number of pixels above the lower left

corner of the panel.

Panel Syntax 9-61

9

POSITION

Example

REVISION 2.0;

INITIALIZE Startup;

COMPONENT Startup;

TYPE INTEGER;

SET ACTIONS;

SHOW Sub;

END ACTIONS;

END COMPONENT;

PANEL Main;

TEXT 10,10,"Text at 10,10";

PANEL Sub;

POSITION 5,100;

SIZE 200,100;

FOREGROUND (230,30,30),100;

TEXT 10,10,"Text at 10,10";

END PANEL;

END PANEL;

9-62 Panel Syntax

9

POSITION

Cross Reference

BUTTON

CONTINUOUS

DISCRETE

DISPLAY

INPUT

PANEL

TEXT

TOGGLE

XY

Panel Syntax 9-63

9

SCALE

SCALE is used to deÕne the unit of measure for the diÃerent elements of an

XY display. The parameters of SCALE specify the values at the boundaries of

the XY display.

SCALE can be speciÕed for XY displays, TRACEs, and MARKERs.

The SCALE speciÕed in the XY display applies to the GRATICULE and any

TRACEs or global MARKERS in the XY display that do not have their own

SCALE. If SCALE is not speciÕed in an XY display, then pixels are used as the

unit of measure with 0,0 being the lower left corner.

A SCALE speciÕed within a TRACE applies to the trace and any MARKERS

deÕned following the SCALE statement within the TRACE. If no SCALE is

speciÕed for a TRACE, then the SCALE for the XY display is used.

A SCALE speciÕed for a MARKER applies only to that MARKER. If no

SCALE is speciÕed for the MARKER, then the SCALE for the TRACE of the

XY display in which it is declared will be used.

Syntax

9-64 Panel Syntax

9

SCALE

A LOG (base 10) on the scale does two things. First, the scale value pairs,

either left/right or bottom/top, are passed to the trace drawing routines as

the log of the values. Second, if LOG is speciÕed in front of the left/right

pair, then all the X values are converted to the log of the values. If LOG is

speciÕed in front of the bottom/top pair, then all the Y values of the graph are

converted to the log of the Y values.

Item Description

left A real number or name of an INTEGER or CONTINUOUS component

whose value speciÕes the minimum data value for the X axis.

right A real number or name of an INTEGER or CONTINUOUS component

whose value speciÕes the maximum data value for the X axis.

bottom A real number or name of an INTEGER or CONTINUOUS component

whose value speciÕes the minimum data value for the Y axis.

top A real number or name of an INTEGER or CONTINUOUS component

whose value speciÕes the maximum data value for the Y axis.

LOG SpeciÕes that the graph will be a logarithmic axis on one or both axes.

LOG is taken as the base 10 logarithm.

Example

REVISION 2.0;

INITIALIZE COMPONENT Reset;

COMPONENT Reset;

TYPE INTEGER;

SET ACTIONS;

POKEINITIAL;

VALIDATE Xydata;

END ACTIONS;

END COMPONENT; ! Reset

(Continued)

Panel Syntax 9-65

9

SCALE

COMPONENT Xydata;

TYPE RARRAY 2,20;

END COMPONENT; ! Xydata

COMPONENT Upper;

TYPE CONTINUOUS;

VALUES RANGE 1,100,1;

INITIAL 20;

END COMPONENT; ! Upper

COMPONENT Mkr;

TYPE CONTINUOUS;

VALUES RANGE 1,100,1;

INITIAL 10;

END COMPONENT; ! Mkr;

PANEL Main;

XY;

SCALE 0,Upper,-5,5;

GRATICULE FRAME;

MARKER Mkr;

TYPE VERTICAL;

END MARKER;

TRACE Xydata;

END TRACE;

END XY;

CONTINUOUS 100,50,Upper;

CONTINUOUS 100,30,Mkr;

END PANEL;

9-66 Panel Syntax

9

SCALE

Cross Reference

GRATICULE

MARKER

TRACE

XY

Panel Syntax 9-67

9

SIZE

SIZE speciÕes the dimensions of a panel element (text, display, or control) in

pixels.

Syntax

Item Description

width An integer specifying the width in pixels of a panel element.

height An integer specifying the height in pixels of a panel element.

The development environment determines the default size of a panel element

using the following formulas:

width = ((LEN(LABEL) Â font width) + 4

height = font height + 4

Example

REVISION 2.0;

COMPONENT Btn;

TYPE INTEGER;

SET ACTIONS;

NOTIFY "The button was pressed.";

END ACTIONS;

END COMPONENT;

(Continued)

9-68 Panel Syntax

9

SIZE

PANEL Main;

BUTTON Btn;

POSITION 6,6;

SIZE 202,176;

LABEL "A BIG BUTTON";

END BUTTON;

END PANEL;

Cross Reference

BUTTON

CONTINUOUS

DISCRETE

DISPLAY

INPUT

TEXT

TOGGLE

Panel Syntax 9-69

9

STATE

STATE speciÕes whether a MARKER or TRACE is displayed.

Syntax

Item Description

comp name The name of an INTEGER, CONTINUOUS, or DISCRETE

component whose value determines whether a marker or trace is

displayed.

For INTEGER or CONTINUOUS components:

If the value is 0, the marker or trace is not displayed.

Otherwise, the marker or trace is displayed.

For DISCRETE components:

If the current value is the Õrst value in the list, then the

marker or trace is not displayed. Otherwise, the marker or

trace is displayed.

9-70 Panel Syntax

9

STATE

Example

REVISION 2.0;

INITIALIZE COMPONENT Reset;

COMPONENT Reset;

TYPE INTEGER;

SET ACTIONS;

POKEINITIAL;

VALIDATE Xy_a;

VALIDATE Xy_b;

MATSCALE 0,1,Xy_a;

END ACTIONS;

END COMPONENT; ! Reset

COMPONENT Xy_a;

TYPE RARRAY 1,20;

END COMPONENT; ! Xy_a

COMPONENT Xy_b;

TYPE RARRAY 1,20;

END COMPONENT; ! Xy_b

COMPONENT Mrk_val;

TYPE CONTINUOUS;

VALUES RANGE 1,20;

INITIAL 5;

END COMPONENT; ! Mkr_val

COMPONENT A;

TYPE DISCRETE;

VALUES OFF,ON;

INITIAL ON;

END COMPONENT; ! A

(Continued)

Panel Syntax 9-71

9

STATE

COMPONENT B;

TYPE DISCRETE;

VALUES OFF,ON;

INITIAL ON;

END COMPONENT; ! B

COMPONENT Mkr;

TYPE DISCRETE;

VALUES OFF,ON;

INITIAL ON;

END COMPONENT; ! Mkr

COMPONENT Btn;

TYPE INTEGER;

END COMPONENT; ! Btn

PANEL Main;

XY;

SCALE 1,20,-5,5;

MARKER Mrk_val;

TYPE VERTICAL;

STATE Mrk;

END MARKER;

TRACE Xy_a;

STATE A;

END TRACE;

TRACE Xy_b;

STATE B;

END TRACE;

END XY;

TOGGLE 100,50,A;

TOGGLE 100,30,B;

TOGGLE 100,10,Mrk;

(Continued)

9-72 Panel Syntax

9

STATE

BUTTON 10,50,Reset;

BUTTON Btn;

POSITION 10,30;

LABEL "Bump";

HIT ACTIONS;

MATSCALE 1,1,Xy_a;

END ACTIONS;

END BUTTON;

END PANEL;

Cross Reference

MARKER

TRACE

Panel Syntax 9-73

9

STEP

STEP speciÕes the amount by which the up/down arrows on the ends of the

scroll bar in a CONTINUOUS dialog box change the displayed value. STEP

can be speciÕed to increase linearly or logarithmically.

If STEP is speciÕed, the resolution is continuous. If STEP is not speciÕed, the

resolution from the associated component is used to determine the step size

(see \VALUES" in chapter 8, \Component/Action Syntax").

Note Do not use STEP LOG if the upper or lower limit of the

VALUES RANGE of the component is less than or equal to 0.

Syntax

9-74 Panel Syntax

9

STEP

Item Description

lin step A number or name of an INTEGER or a CONTINUOUS component

whose value is used as the step size.

per decade An integer or name of a INTEGER component whose value speciÕes the

number of steps per decade that the development environment should

increment the current value.

n digits An integer or name of a INTEGER component whose value speciÕes the

number of digits of resolution.

To increase by decade (for example, 3, 30, 300):

set per decade = 1 and n digits = 1

To increase in a 1-3 sequence:

set per decade = 2 and n digits = 1

To increase in a 1-2-5 sequence:

set per decade = 3 and n digits = 1

Example

REVISION 2.0;

INITIALIZE COMPONENT Reset;

COMPONENT Reset;

TYPE INTEGER;

SET ACTIONS;

POKEINITIAL;

END ACTIONS;

END COMPONENT;

COMPONENT Linstep;

TYPE CONTINUOUS;

VALUES RANGE -10,10;

INITIAL 0;

END COMPONENT;

(Continued)

Panel Syntax 9-75

9

STEP

COMPONENT Logstep;

TYPE CONTINUOUS;

VALUES RANGE 1,1E12;

INITIAL 0;

END COMPONENT;

COMPONENT Stepsize;

TYPE CONTINUOUS;

VALUES RANGE 0,10;

INITIAL 1;

END COMPONENT;

COMPONENT Perdecade;

TYPE INTEGER;

VALUES RANGE 1,20;

INITIAL 1;

END COMPONENT;

COMPONENT Ndigits;

TYPE INTEGER;

VALUES RANGE 1,16;

INITIAL 1;

END COMPONENT;

PANEL Main;

CONTINUOUS Linstep;

POSITION 100,180;

STEP Stepsize;

TITLE "Linear";

END CONTINUOUS;

CONTINUOUS 100,160,Stepsize;

CONTINUOUS Logstep;

POSITION 100,120;

STEP LOG Perdecade,Ndigits;

TITLE "Log";

END CONTINUOUS;

CONTINUOUS 100,100,Perdecade;

CONTINUOUS 100,80,Ndigits;

END PANEL;

9-76 Panel Syntax

9

STEP

Cross Reference

CONTINUOUS

Panel Syntax 9-77

9

STYLE

STYLE speciÕes extra parameters on CONTINUOUS, DISPLAY, and

TOGGLE. Please refer to these elements for a complete description of how

STYLE can be used.

Syntax

Item Description

NOENGR For CONTINUOUS controls and DISPLAYs, values are displayed

without engineering suœxes.

HIGHLIGHT For TOGGLE controls, the toggle button's color changes as follows:

First toggle value in list:

Text Color is set by FOREGROUND.

Area Fill color is set by BACKGROUND.

Any other toggle value:

Text Color is set by BACKGROUND.

Area Fill color is set by FOREGROUND.

NONDECIMAL No suœxes are displayed. Instead, the entry box contains additional

Õeld for binary, octal, decimal, and hexadecimal entry. The display

format is controlled by the FORMAT speciÕer.

9-78 Panel Syntax

9

STYLE

Example

REVISION 2.0;

COMPONENT Value;

TYPE CONTINUOUS;

END COMPONENT;

PANEL Main;

CONTINUOUS Value;

POSITION 100,160;

TITLE "No Style";

END CONTINUOUS;

CONTINUOUS Value;

POSITION 100,100;

TITLE "Style";

STYLE "NOENGR";

END CONTINUOUS;

END PANEL;

Cross Reference

CONTINUOUS

DISPLAY

INPUT

TRACE

TOGGLE

Panel Syntax 9-79

9

TEXT

The TEXT . . . END TEXT compound statement is used to create text on the

panel. The text is most often used to label controls and displays.

Syntax

9-80 Panel Syntax

9

TEXT

Item Description

x position An integer specifying the number of pixels to the right of the

bottom left corner of the panel. Used with y position to specify

the bottom left corner of the TEXT.

y position An integer specifying the number of pixels above the bottom

left corner of the panel. Used with x position to specify the

bottom left corner of the TEXT.

string This is the actual text that is displayed on the panel as

speciÕed by the other parameters.

POSITION Consists of an x-position and a y position that together specify

the lower left corner of the TEXT. The default is 1,1, meaning 1

pixel over and 1 pixel up from the bottom left corner of the

panel.

FONT Consists of a width and height that together specify the size in

pixels of the characters in TEXT. Default is 9 Â 15 pixels.

SIZE Consists of a width and height that together specify the size in

pixels of the TEXT. If not speciÕed, the development

environment computes a default size using the following

formula:

width = length of string Â FONT width

height = FONT height

BACKGROUND The BACKGROUND statement is present for compatibility but

has no aÃect on TEXT background color. TEXT uses the panel

background color.

FOREGROUND SpeciÕes the color for the TEXT. Values must be provided for

red, green, blue, and monochrome. Default color is black for

color displays and white for monochrome displays.

Panel Syntax 9-81

9

TEXT

Example

REVISION 2.0;

PANEL Main;

TEXT 5,180,"The following text";

TEXT 5,160,"shows the effect of";

TEXT 5,140,"POSITION, SIZE";

TEXT 5,120,"FONT, and FOREGROUND.";

TEXT "Hello!";

POSITION 5,5;

SIZE 200,100;

FONT 15,25;

FOREGROUND (0,0,0),0;

END TEXT;

END PANEL;

Cross Reference

TITLE

9-82 Panel Syntax

9

TITLE

TITLE

TITLE speciÕes text that is positioned to the left of some displays and

controls. This is an easy way to label controls instead of using TEXT. The text

in the TITLE is displayed in black on color displays and white on monochrome

displays.

Syntax

Item Description

string Text that is displayed 3 pixels to the left of the control or display.

Example

REVISION 2.0;

COMPONENT Btn;

TYPE INTEGER;

SET ACTIONS;

NOTIFY "Yup!";

END ACTIONS;

END COMPONENT;

PANEL Main;

BUTTON Btn;

POSITION 100,100;

TITLE "Is this a";

LABEL "button?";

END BUTTON;

END PANEL;

Panel Syntax 9-83

9

TITLE

Cross Reference

BUTTON

CONTINUOUS

DISCRETE

DISPLAY

INPUT

TOGGLE

9-84 Panel Syntax

9

TOGGLE

TOGGLE

The TOGGLE . . . END TOGGLE compound statement is used to create a

button that toggles between two values.

When the user clicks on a toggle button in the development environment, it

executes the SET ACTIONS in the DISCRETE component with which the

toggle is associated.

Syntax

Panel Syntax 9-85

9

TOGGLE

Item Description

x position An integer specifying the number of pixels to the right of the

bottom left corner of the panel. Used with y position to specify

the bottom left corner of the toggle.

y position An integer specifying the number of pixels above the bottom

left corner of the panel. Used with x position to specify the

bottom left corner of the toggle.

comp name The name of a DISCRETE component whose SET ACTIONS

are executed after the user has toggled to a new value. The

component should have a list of two values (see \VALUES" in

chapter 8, \Component/Action Syntax"). The Õrst value is the

initial value, unless an INITIAL statement is used (see

\INITIAL" in chapter 8, \Component/Action Syntax").

POSITION Consists of an x-position and a y-position that together specify

the lower left corner of the toggle. The default is 1,1, meaning 1

pixel over and 1 pixel up from the bottom left corner of the

panel.

FONT Consists of a width and height that together specify the size in

pixels of the characters in toggle. Default is 9 Â 15 pixels.

SIZE Consists of a width and height that together specify the size in

pixels of the toggle. If not speciÕed, the development

environment computes a default size using the following

formula:

width = (length of longest LABEL Â FONT width) + 4

height = FONT height + 4

(Continued)

9-86 Panel Syntax

9

TOGGLE

Item Description

STYLE If string = \HIGHLIGHT", then the color of the toggle button

changes as follows:

First toggle value in list:

Text Color is set by FOREGROUND.

Area Fill color is set by BACKGROUND.

Any other toggle value:

Text Color is set by BACKGROUND.

Area Fill color is set by FOREGROUND.

BACKGROUND SpeciÕes the area Õll color for the toggle. Values must be

provided for red, green, blue, and monochrome. Default color is

Evening Gold (see \BACKGROUND," table 9-1), and black for

monochrome displays.

FOREGROUND SpeciÕes the color of the text and border of the toggle. Values

must be provided for red, green, blue, and monochrome.

Default color is White (see table 9-1) for color and monochrome

displays.

LABEL SpeciÕes the text that appears in the toggle. The Õrst string is

the text when the toggle is oÃ (that is, the current value is the

Õrst value in the DISCRETE component VALUES list), and the

second string is the text when the toggle is on. If not speciÕed,

the development environment uses the VALUES from the

component (see \VALUES" in chapter 8, \Component/Action

Syntax").

TITLE SpeciÕes the text to be placed to the left of the toggle. If not

speciÕed, the development environment does not generate one.

However, if you use the short form of the TOGGLE statement

(that is, specify just the x position, y position, and

comp name), then the development environment generates a

default TITLE, which is comp name.

UPDATE

ACTIONS

An action list that the development environment executes

whenever the value of the component is changed in the

development environment.

Panel Syntax 9-87

9

TOGGLE

Example

REVISION 2.0;

COMPONENT Tgl;

TYPE DISCRETE;

VALUES NO,YES;

END COMPONENT;

PANEL Main;

TOGGLE Tgl;

POSITION 100,100;

LABEL "today!","tomorrow!";

TITLE "Do it";

STYLE "HIGHLIGHT";

END TOGGLE;

END PANEL;

9-88 Panel Syntax

9

TRACE

TRACE

TRACE is used to specify details about a trace on an XY display. You need

to use a TRACE statement for every trace you want displayed. The number of

traces allowed is limited only by your system's memory.

The development environment provides for having an optional X component

on the TRACE statement. This allows you to create a trace with the X-axis

data speciÕed in one component and the Y-axis data in the same or diÃerent

component (see the following syntax diagram).

In addition, the X and Y components can optionally specify which row/column

of data to be used in the plot. The row/column information is deÕned

diÃerently depending if the array is a 1-dimension or 2-dimension array.

Syntax

If the Xcomp is given, it must resolve down to a vector or unpredictable results

may occur. Only one row of data can be allowed for the X axis. Multiple Y

rows yield multiple plots of the same color.

Panel Syntax 9-89

9

TRACE

1-Dimension Array Component

2-Dimension Array Component

9-90 Panel Syntax

9

TRACE

Item Description

xcomp See drawing for 1- or 2-dimension array component.

ycomp See drawing for 1- or 2-dimension array component.

FOREGROUND SpeciÕes the color of the TRACE. Default colors are listed in

table 9-7, following page. Default for monochrome is a white

trace.

CONNECT SpeciÕes whether the trace data points should be connected.

Default is connected.

STATE SpeciÕes whether the TRACE is displayed. The default is to

display the TRACE.

MARKER SpeciÕes a marker that is associated with the TRACE. Any

TYPE of MARKER can be deÕned in a TRACE, but POINT

markers are the only TYPE that use trace data. Default is no

markers.

SCALE SpeciÕes the user unit scaling of the TRACE. SCALE requires

the parameters left, right, top, and bottom for the minimum

and maximum data values for the x and y axes respectively.

Default is 1 unit per pixel, with left and bottom being zero.

comp name The name of an IARRAY or RARRAY component that

contains data to be plotted on the XY display.

col spec See drawing for col spec.

row spec See drawing for row spec.

col A real number or name of an INTEGER or CONTINUOUS

component whose value speciÕes the column to be used.

row A real number or name of an INTEGER or CONTINUOUS

component whose value speciÕes the row to be used.

* Use the character, *, which means to use the whole row or

column of data.

Panel Syntax 9-91

9

TRACE

Example

Here are some examples of array row/columns speciÕcations and example

TRACE statements. These will be inside a TRACE statement as either the X

or Y component:

1-dimension:

data1[1:Numpts] Plot the Õrst <Numpts> pts. Numpts is numeric

component.

data1[1:100] Plot the Õrst 100 pts.

data1[*] Plot the whole vector.

data1 Plot the whole vector.

TRACE data1[1:Numpts] data2[2,1:Numpts];

END TRACE;

2-dimension:

data2 Multi plot all rows as same color.

data2[*,*] ERROR - invalid ROW SPEC

data2[1] ERROR - must have row/col speciÕer.

data2[1,*] Single plot of Õrst row of data.

data2[3,1:50] Plot Õrst 50 points from row 3.

TRACE data2;

END TRACE;

9-92 Panel Syntax

9

TRACE

Table 9-8. Default Trace Colors

Trace Color Red Green Blue Mono

First Yellow 255 255 0 100

Second Cyan 0 255 255 100

Third Magenta 255 0 255 100

Fourth Rich Green 0 200 50 100

Other White 255 255 255 100

Cross Reference

MARKER

XY

Panel Syntax 9-93

9

TYPE

TYPE speciÕes the type of MARKER to be displayed. There are three types of

markers:

A POINT (a diamond-shaped marker).

A HORIZONTAL dotted line across the display.

A VERTICAL dotted line from the top to the bottom of the display

If TYPE is not speciÕed, POINT is the default.

Syntax

Item Description

POINT When used as a global marker, you must specify components

that provide the x and y positions (see table 9-8).

When associated with a trace, you can specify that the marker's

y position be derived from the data contained in the trace.

VERTICAL The position of this marker is derived from the value of a

component (comp name).

HORIZONTAL The position of this marker is derived from the value of a

component (comp name).

9-94 Panel Syntax

9

TYPE

Table 9-9. Relationship of MARKER TYPE with comp name

MARKER

Type

y comp

SpeciÕed?

Is MARKER in

TRACE?

How comp name is used

POINT Yes Don't care The x-position of the marker, in

user units (see \SCALE" in this

chapter).

POINT No Yes The oÃset into the array

containing the trace data and the

x-position in user units.

POINT No No This is an error.

HORIZONTAL Don't care Don't care The y-position of the marker in

user units (see \SCALE" in this

chapter).

VERTICAL Don't care Don't care The x-position of the marker in

user units (see \SCALE" in this

chapter).

Example

REVISION 2.0;

COMPONENT X;

TYPE CONTINUOUS;

END COMPONENT;

COMPONENT Y;

TYPE CONTINUOUS;

END COMPONENT;

PANEL Main;

XY;

SCALE -10,10,-10,10;

MARKER X;

TYPE VERTICAL;

END MARKER;

MARKER Y;

TYPE HORIZONTAL;

END MARKER;

END XY;

END PANEL;

Panel Syntax 9-95

9

TYPE

Cross Reference

GRATICULE

MARKER

TRACE

XY

9-96 Panel Syntax

9

UPDATE ACTIONS

UPDATE ACTIONS

UPDATE ACTIONS are a set of action statements that are executed whenever

the value of the associated component changes.

Syntax

Item Description

action statement See tables 8-1 through 8-8 under \ACTIONS" in chapter 8,

\Component/Action Syntax" for valid action statements.

actions names The name of the action list.

Panel Syntax 9-97

9

UPDATE ACTIONS

Example

REVISION 2.0;

COMPONENT Value;

TYPE CONTINUOUS;

SET ACTIONS;

NOTIFY "Set Actions.";

END ACTIONS;

GET ACTIONS;

NOTIFY "Get Actions.";

END ACTIONS;

PANEL SET ACTIONS;

NOTIFY "Panel Set Actions.";

END ACTIONS;

END COMPONENT;

PANEL Main;

DISPLAY Value;

POSITION 100,180;

TITLE "A Display";

UPDATE ACTIONS;

NOTIFY "Update Actions.";

END ACTIONS;

END DISPLAY;

CONTINUOUS 100,100,Value;

END PANEL;

9-98 Panel Syntax

9

UPDATE ACTIONS

Cross Reference

CONTINUOUS

DISCRETE

DISPLAY

INPUT

TOGGLE

Panel Syntax 9-99

9

XY

The XY . . . END XY compound statement is used to create an XY display

on a panel. An XY display can plot data from a real or integer array (that is,

from a RARRAY or IARRAY component).

Syntax

9-100 Panel Syntax

9

XY

Item Description

x position An integer specifying the number of pixels to the right of the

bottom left corner of the panel. Used with y position to specify

the bottom left corner of the XY display.

y position An integer specifying the number of pixels above the bottom

left corner of the panel. Used with x position to specify the

bottom left corner of the XY display.

trace comp The name of an IARRAY or RARRAY component that

contains the data to be plotted on the XY display.

left A number or name of a CONTINUOUS or INTEGER

component whose value speciÕes the left data point of the XY

display (see \SCALE" in this chapter).

right A number or name of a CONTINUOUS or INTEGER

component whose value speciÕes the right data point of the XY

display (see \SCALE" in this chapter).

bottom A number or name of a CONTINUOUS or INTEGER

component whose value speciÕes the bottom data point of the

XY display (see \SCALE" in this chapter).

top A number or name of a CONTINUOUS or INTEGER

component whose value speciÕes the top data point of the XY

display (see \SCALE" in this chapter).

comp name The name of an INTEGER component whose GET ACTIONS

are executed when the user clicks on the XY display (see \HIT

ACTIONS" in this chapter). If comp name is not speciÕed and

there are no HIT ACTIONS, then GET ACTIONS are executed

on each TRACE and MARKER in the XY display.

(Continued)

Panel Syntax 9-101

9

XY

Item Description

POSITION Consists of an x-position and a y-position that together specify

the lower left corner of the XY display. The default is 6,74,

meaning 6 pixels over and 74 pixels up from the bottom left

corner of the panel.

SIZE Consists of a width and height that together specify the size in

pixels of the XY display. Default is 185 x133.

BACKGROUND SpeciÕes the area Õll color for the XY display. Values must be

provided for red, green, blue, and monochrome. Default color is

French Gray (see \BACKGROUND," table 9-1), and black for

monochrome displays.

FOREGROUND SpeciÕes the color of the border of the XY display. Values must

be provided for red, green, blue, and monochrome. Default color

is White (see table 9-1) for color and monochrome displays.

SCALE SpeciÕes the user unit scaling of the XY display. SCALE

requires the parameters left, right, top, and bottom for the

minimum and maximum data values for the x and y axes

respectively. Default is 1 unit per pixel, with left and bottom

being zero.

GRATICULE SpeciÕes the graticule that the development environment plots

on the XY display. Default is no graticule. Allowable values are

AXES, GRID, SMITH, INVSMITH, POLAR, FRAME, and

comp name.

MARKER SpeciÕes a global marker (that is, not associated with a

TRACE). You must specify a y-component for a POINT global

MARKER.

TRACE SpeciÕes the traces to be plotted on the XY display.

HIT ACTIONS The statements in this action list are executed instead of the

GET ACTIONS for the associated component.

9-102 Panel Syntax

9

XY

Example

REVISION 2.0;

INITIALIZE COMPONENT Reset;

COMPONENT Reset;

TYPE INTEGER;

SET ACTIONS;

POKEINITIAL;

VALIDATE Short;

VALIDATE Long;

SET Xy_is;

END ACTIONS;

END COMPONENT; ! Reset

COMPONENT Short;

TYPE RARRAY 1,10;

END COMPONENT; ! Short

COMPONENT Long;

TYPE RARRAY 1,90;

END COMPONENT; ! Long

COMPONENT Xy_is;

TYPE DISCRETE;

VALUES SHORT,LONG;

INITIAL SHORT;

SET ACTIONS;

SELECT Xy_is;

CASE SHORT;

HIDE Longp;

SHOW Shortp;

CASE LONG;

HIDE Shortp;

SHOW Longp;

END SELECT;

END ACTIONS;

END COMPONENT; ! Xy_is

(Continued)

Panel Syntax 9-103

9

XY

COMPONENT Acquire;

TYPE INTEGER;

GET ACTIONS;

NOTIFY "Got it!";

END ACTIONS;

END COMPONENT; ! Acquire

PANEL Main;

TOGGLE 100,190,Xy_is;

PANEL Shortp;

XY 6,30,Short,1,100,-1,1;

END PANEL;

PANEL Longp;

XY Acquire;

POSITION 6,30;

SCALE 1,100,-1,1;

TRACE Long;

END TRACE;

END XY;

END PANEL;

END PANEL;

9-104 Panel Syntax

Index

Index

A

ABS, 8-9

action lists

action statements used, 4-1

deÕning, 8-104, 8-105

description, 2-1, 4-1

HIT ACTIONS, 6-4

named, 8-3

PANEL GET ACTIONS, 6-6

PANEL SET ACTIONS, 6-6

places of usage, 4-1

UPDATE ACTIONS, 6-5

action names

naming rules, 8-1

actions

PANEL, 3-2

ACTIONS

description, 4-2, 8-3

action statements

BITS, 8-14

CLEAR, 8-18

CODEGEN, 8-21

DISABLE, 8-31

discussion, 4-8{14

DONTCARE, 8-33

DOWNLOAD, 8-36

ENABLE, 8-38

END LOOP, 8-77

EXIT IF, 8-51

FETCH, 8-53

FLUSH, 8-58

GET, 8-60

GOSUB, 8-63

HIDE, 8-64

HIT ACTIONS, 9-41

INVALIDATE, 8-74

LOOP, 8-77

MATSCALE, 8-78

NOTIFY, 8-85

OUTPUT, 8-95

POKEINITIAL, 8-109

SET, 8-122

SHOW, 8-126

SKIP EOL, 8-128

SKIP ERRCHECK, 8-131

SPOLL, 8-132

STORE, 8-133

SYNC COMPONENT, 8-141

TRIGGER, 8-145

UPDATE ACTIONS, 9-97

UPLOAD, 8-152

used in an action list, 4-1

USERSUB, 8-154

VALIDATE, 8-158

WAIT SPOLL BIT, 8-164

WAIT TIME, 8-165

action syntax, 8-1

ADD, 8-7

advanced topics, 6-1

AND, 8-10

ARCCOS, 8-9

ARCSIN, 8-9

ARCTAN, 8-9

arithmetic operators, 8-6

Index-1

Index

array, 8-78, 8-134

enters, 8-42

outputs, 8-97

array component, 4-14

1-dimension, 8-53, 8-134, 9-90

2-dimension, 8-53, 8-134, 9-90

array elements

fetching, 8-57

ASCII, 8-40

ASCII Õles, 7-1

attributes

of a component, 2-4

PANEL, 3-1

attribute statements, 3-12

B

BACKGROUND

description, 9-3

BINAND, 8-7

binary learn mode, 8-23

binary operators, 8-6

BINCMP, 8-7

BINEOR, 8-7

BINIOR, 8-7

BIT, 8-7

bit operators, 8-6

BITS

description, 4-14, 8-14

buÃer, 8-45, 8-58, 8-95{98

building an HP ID, example, 1-7

bus system analyzer

HP IB, 1-3

BUTTON, 3-14, 3-19

description, 3-5, 9-7

HP recommendation, 6-2

panel element, 4-6

C

CASE ELSE, 8-116

CATSTR, 8-12

CHRSTR, 8-12

CLEAR

description, 4-11, 8-18

CLONE

description, 2-6, 8-19

CODEGEN, 4-6

description, 4-14, 8-21

colors

available choices, 9-4

deÕned by BACKGROUND, 9-3

deÕned by FOREGROUND, 9-28

description, 3-14

column index, 8-42, 8-97

comments

conventions for adding, 8-2, 9-2

comp name, 8-131, 8-134

relationship with MARKER TYPE,

9-54

component

declarations, 1-10

deÕnition, 2-5

description, 1-4

description rules, 2-4{12

interactions, 4-9, 6-11

memory allocation, 2-8

naming rules, 2-6, 8-1

setting the status, 4-9

setting the value, 4-9

simulating, 6-10

states, 4-9{10

status, 2-4

syntax, 8-1

syntax example, 2-5

table of attributes, 2-4

value, 2-4

COMPONENT

description, 2-5, 8-24

component section

compound statements, 2-1

deÕnition, 2-1

general statements, 2-1

syntax diagram, 2-2

Index-2

Index

compound statements, 2-1

action lists, 4-1

ACTIONS, 4-2, 8-3

BUTTON, 9-7

COMPONENT, 8-24

CONTINUOUS, 9-12

DISCRETE, 9-17

DISPLAY, 9-21

GET ACTIONS, 2-11, 4-4, 8-61

HIT ACTIONS, 4-6, 9-41

IF, 8-66

INPUT, 9-44

PANEL, 9-57

PANEL GET ACTIONS, 2-12, 4-6,

8-104

panel section, 3-1

PANEL SET ACTIONS, 2-11, 4-5,

8-105

SELECT, 8-116

SET ACTIONS, 2-11, 4-3, 8-124

TEXT, 9-80

TOGGLE, 9-85

UPDATE ACTIONS, 4-7, 9-97

XY, 9-100

CONNECT

description, 9-10

CONTINUOUS, 2-8

description, 3-8, 9-12

engineering suœxes available, 9-15

controls, 3-2

BUTTON, 3-5, 3-19, 9-7

CONTINUOUS, 3-8, 9-12

DISCRETE, 3-7, 3-17, 9-17

INPUT, 3-9

LABEL used to specify strings, 9-48

TOGGLE, 3-6, 9-85

COS, 8-9

COUPLED

description, 2-10, 8-29

coupling

dragged parameters, 6-12

creating a help Õle, 7-1

D

data transfer

DOWNLOAD, 8-36

UPLOAD, 8-152

designing a panel, 3-1{15

predeÕned elements, 3-2

development environment, 1-1, 2-1

building a panel, 3-1

RANGE, 2-9

VALUES statement, 2-9

DIGITS, 9-32

DISABLE

description, 4-13, 8-31

DISCRETE, 2-8, 3-17

description, 3-7, 9-17

DISPLAY

description, 3-10, 9-21

panel element, 4-6

displays, 3-2

DIV, 8-7

DONTCARE

description, 2-4, 4-9, 8-33

DOWNLOAD

description, 8-36

dragged parameters, 6-12

drivers

basics of building, 1-7

guidelines for developing, 3-14

language, 1-1

multimeter example, 1-8

points to remember, 1-10

DUP, 8-11

E

ENABLE

description, 4-13, 8-38

enable Œag, 6-15

END COMPONENT

description, 2-5, 8-24

Index-3

Index

END LOOP

description, 8-77

ENTER

description, 4-8, 8-40

EOL

description, 2-2, 8-45

EQ, 8-10

error checking, 8-49, 8-82, 8-131

ERROR COMPONENT

description, 2-3, 8-49

EXIT IF

description, 8-51

EXP, 8-9

EXP10, 8-9

EXPON, 8-7

F

FETCH

array elements, 8-57

description, 4-12, 8-53

working with STORE, 8-133

FLUSH

description, 4-9, 8-58

FONT

description, 9-26

HP recommendations, 9-26

FOREGROUND

description, 9-28

FORMAT, 8-40

description, 9-32

FUNCTION, 6-14

functional coupling, 6-14

G

GE, 8-10

general statements, 2-1

deÕnition, 2-2

EOL, 2-2

ERROR COMPONENT, 2-3

INITIALIZE COMPONENT, 2-2

PREFIX, 2-3

RECALL COMPONENT, 2-3

REVISION, 2-2

STORE COMPONENT, 2-3

UPDATE COMPONENT, 2-3

GET, 1-7

description, 4-9, 8-60

GET ACTIONS, 1-10, 2-11, 4-1

description, 4-4, 8-61

related subprograms, 8-61

GOSUB, 4-2

description, 4-11, 8-63

GRATICULE

description, 9-36

value of comp name controls, 9-38

GT, 8-10

guidelines for developing drivers, 3-14

H

Help Õle, 1-1

creating, 7-1

example, 7-1

speciÕcations, 7-1

HIDE, 4-13

description, 4-5, 8-64

subpanel displaying, 3-16

HIT ACTIONS, 3-1, 4-7

description, 4-6{7, 6-4, 9-41

HP BASIC subprogram, 8-154, 8-157

HP-IB, 1-1, 3-12

HP IB Bus System Analyzer, 1-3

HP IDs

initializing, 6-1

hpt app, 8-154

hpt get, 2-11, 4-4, 8-131

hpt init, 6-1

hpt push, 4-3, 9-7

hpt recall, 4-3, 8-113

hpt set, 2-11, 4-3, 6-13, 8-131

Index-4

Index

I

IARRAY, 2-8

IDIV, 8-7

IF

description, 4-13, 8-66

INITIAL, 6-1

description, 2-10, 8-70

INITIALIZE, 6-1

HP recommendation, 6-2

INITIALIZE COMPONENT

description, 2-2, 8-73

initializing the HP ID, 6-1

INPUT

description, 3-9, 9-44

instrument

driver language, 1-1

errors, 8-49

I/O, 4-8

panels, 1-1

instrument learn string, 6-7, 8-136

INT16, 8-40

INTEGER, 2-8

interface bus, 1-2

INVALID

description, 2-4

INVALIDATE

description, 4-9, 8-74

INVSMITH/POLAR graticules, 9-37

K

keywords

optional, 2-6

keywords reference

component section, 8-1

panel section, 9-1

L

LABEL

description, 3-13, 9-48

LE, 8-10

learn string

description, 6-7, 8-136

disadvantages, 6-10

example, 6-8

when to use, 6-10

LENGTH, 8-12

LGT, 8-9

Live mode, 6-13, 8-29, 8-30

LN, 8-9

lockout parameters, 6-12

LOG, 9-65

log calls on, 6-4

logical, math, and string operators, 4-12

logical operators, 8-6

LOOP

description, 4-13, 8-77

LT, 8-10

M

MARKER

description, 9-51

math and logical operators, 8-133

math, logical, and string operators, 4-12

math operators, 8-53

MATSCALE

description, 4-14, 8-78

menu control, 3-14

miscellaneous operators, 8-6

MOD, 8-7

moving between subpanels, 3-17

MUL, 8-7

multi-layered panels, 3-15

N

named action list, 8-3

used with GOSUB, 8-63

NE, 8-10

NOERRCHECK

description, 2-6, 8-82

NOGEN

description, 2-6, 8-83

NOPOKEINITIAL

Index-5

Index

description, 8-84

NOT, 8-10

NOTIFY, 4-13

description, 4-5, 8-85

NOTSAVED

description, 2-6, 8-90

NUM, 8-12

numeric expr

description, 8-91

numeric source

description, 8-92

O

online help system, 7-1

operators

arithmetic, 8-6

binary, 8-6

binary arithmetic, 8-7

binary logic, 8-10

bit, 8-6

logical, 8-6

math and logical, 4-12, 8-7

miscellaneous, 8-6, 8-11

string, 4-12, 8-6

STRING, 8-12

unary, 8-6

unary arithmetic, 8-9

unary logic, 8-10

optional clause

NOERRCHECK, 2-8, 8-82

NOGEN, 2-8, 8-83

NOTSAVED, 2-6, 8-90

optional keywords, 2-6

OR, 8-10

OUTPUT

description, 4-8, 8-95

output enable Œag, 6-15

OVER, 8-11

P

panel

description, 1-4

PANEL

description, 3-1, 9-57

panel control, 4-13

panel elements

color, 3-14

description, 3-1, 3-2

designing, 3-1

DISPLAY, 3-10

LABEL, 3-13

layout, 3-12

nesting, 3-2

PANEL, 3-1

position, 3-13

POSITION, 9-61

SIZE, 3-13, 9-68

TEXT, 3-4

UPDATE ACTIONS, 6-5

XY, 3-11

PANEL GET ACTIONS, 2-12, 4-1

description, 4-6, 6-6, 8-104

panel section

description, 3-1

PANEL SET ACTIONS, 2-11, 4-1

description, 4-5, 6-6, 8-105

panel syntax, 9-1

PICK, 8-11

POINTS

description, 8-107

POKEINITIAL, 2-10, 6-1

description, 4-9, 8-109

POS, 8-12

POSITION

description, 3-13, 9-61

predeÕned elements

controls, 3-2

displays, 3-2

text Õelds, 3-2

PREFIX

Index-6

Index

description, 2-3, 8-111

program Œow, 4-13

R

range

soft, 5-6

RANGE, 6-14

description, 2-9

RARRAY, 2-8

REAL64, 8-40

RECALL COMPONENT, 6-7

description, 2-3, 8-113

recalling a state, 6-3, 6-13, 8-33, 8-74,

8-136

reset button, 6-2

reset component, 3-14

REVISION

description, 2-2, 8-115

ROT, 8-11

row index, 8-42, 8-97

run-time environment, 6-6

S

saved components, 6-9

SCALE

description, 9-64

SELECT

description, 4-13, 8-116

serial poll bit, 8-164

SET

description, 4-9, 8-122

SET ACTIONS, 1-10, 2-10, 2-11, 4-3

description, 4-3, 8-124

example list, 4-3

related subprograms, 8-124

setting the status of components, 4-9

setting the value of components, 4-9

settling delays, 4-10

SHOW, 4-13

description, 4-5, 8-126

subpanel displaying, 3-16

simulating a component, 6-10

SIN, 8-9

SIZE

description, 3-13, 9-68

SKIP EOL

description, 8-128

SKIP ERRCHECK

description, 8-131

soft panel, 6-4, 6-7, 6-13, 9-57

soft range, 5-6

soft test system, 6-1

SPOLL

description, 4-11, 8-132

SQRT, 8-9

stack, 8-6, 8-133

stack operations, 4-12

STATE

description, 9-70

statements

ACTIONS, 4-2, 8-3

BITS, 4-14, 8-14

BUTTON, 9-7

CLEAR, 4-11, 8-18

CODEGEN, 4-6, 4-14, 8-21

COMPONENT, 2-5, 8-24

compound, 2-1

COUPLED, 2-10, 6-12, 8-29

DISABLE, 8-31

DISCRETE, 9-17

DISPLAY, 9-21

DONTCARE, 4-10, 8-33

DOWNLOAD, 8-36

ENABLE, 8-38

END LOOP, 8-77

ENTER, 4-8, 8-40

EOL, 8-45

ERROR COMPONENT, 8-49

EXIT IF, 8-51

FETCH, 8-53

FLUSH, 4-9, 8-58

general, 2-2Ã

Index-7

Index

GET, 4-9, 8-60

GET ACTIONS, 8-61

GOSUB, 4-11, 8-63

HELP, 7-1

HIDE, 8-64

HIT ACTIONS, 9-41

IF, 4-13, 8-66

INITIAL, 2-10, 6-1, 8-70

INITIALIZE, 6-1

INITIALIZE COMPONENT, 8-73

INPUT, 9-44

INVALIDATE, 4-10, 8-74

LOOP, 8-77

MATSCALE, 4-14, 8-78

NOPOKEINITIAL, 8-84

NOTIFY, 8-85

OUTPUT, 4-8, 8-95

PANEL, 9-57

PANEL GET ACTIONS, 8-104

PANEL SET ACTIONS, 8-105

POINTS, 8-107

POKEINITIAL, 4-9, 6-1, 8-109

POSITION, 3-13, 9-61

PREFIX, 8-111

RECALL COMPONENT, 8-113

REVISION, 8-115

SELECT, 4-13, 8-116

SET, 4-6, 4-9

SET ACTIONS, 8-124

SIZE, 3-13, 9-68

SKIP EOL, 8-128

SKIP ERRCHECK, 8-131

SPOLL, 4-11, 8-132

STORE, 8-133

STORE COMPONENT, 8-136

string expr, 8-138

string source, 8-139

SYNC COMPONENT, 8-141

TEXT, 9-80

TOGGLE, 9-85

TRACETYPE, 8-142

TRIGGER, 4-11, 8-145

TYPE, 2-8, 8-146

UPDATE ACTIONS, 9-97

UPDATE COMPONENT, 2-2, 8-149

UPLOAD, 8-152

VALIDATE, 4-9, 8-158

VALIDATE ALL, 6-7

VALUES, 2-9, 8-161

WAIT SPOLL BIT, 4-10, 8-164

WAIT TIME, 4-10, 8-165

XINCR, 8-166

XLOG, 8-168

XMIN, 8-170

XUNIT, 8-172

XY, 9-100

YUNIT, 8-174

state recall, 8-113

status of a component, 2-4

STEP

description, 9-74

STEP LOG, 9-74

step size, 2-9

STORE

description, 4-12, 8-133

STORE COMPONENT, 6-7

description, 2-3, 8-136

storing a state, 8-136

STRING, 2-8

string expr

description, 8-138

statements, 8-138

string operators, 8-6

eÃect on the stack, 8-13

string source

description, 8-139

statements, 8-139

STYLE

description, 9-78

SUB, 8-7

subpanels

deÕnition, 3-2

Index-8

Index

displaying, 3-16

layout, 9-57

moving between, 3-17

multi-layers, 3-15

position, 3-13

subprograms, 8-154

execution, 4-1

HP BASIC, 8-157

hpt app, 8-154

hpt get, 2-11, 4-4, 8-131

hpt init, 6-1

hpt push, 4-3, 9-7

hpt recall, 4-3, 8-113

hpt set, 4-3, 8-131

SUBSTR, 8-12

SWAP, 8-11

SYNC COMPONENT

description, 8-141

syntax

action, 8-1

component, 8-1

interpreting drawings, 8-1

T

TAN, 8-9

TEXT

description, 3-4, 9-80

text Õelds, 3-2

TITLE

description, 9-83

title bar, 3-12

TOGGLE

description, 3-6, 9-85

TRACE

description, 9-89

TRACETYPE

description, 8-142

TRIGGER

description, 4-11, 8-145

TRIMSTR, 8-12

TYPE, 2-6

description, 2-8, 8-146, 9-94

U

unary operators, 8-6

UPDATE ACTIONS, 3-1, 4-1

description, 4-7, 4-8, 6-5, 9-97

UPDATE COMPONENT

description, 2-3, 8-149

writing recommendations, 8-149

UPLOAD

description, 8-152

USERSUB

description, 8-154

used in calling subprograms, 8-154

using learn mode, 6-7

using saved components, 6-9

V

VAL, 8-12

VALID

description, 2-4

VALIDATE

description, 4-9, 6-7, 8-158

valid ENTER FORMAT speciÕers, 8-44

valid FORMAT speciÕers, 9-34

valid OUTPUT FORMAT speciÕers,

8-102

VALSTR, 8-12

values

app op, 8-154

component, 2-4

VALUES

description, 2-9, 8-161

W

WAIT SPOLL BIT

description, 4-10, 8-164

WAIT TIME

description, 4-10, 8-165

wait times and conditions, 4-10

Index-9

Index

X

XINCR

description, 8-166

XLOG

description, 8-168

XMIN

description, 8-170

XUNIT

description, 8-172

XY

description, 3-11, 9-100

Y

YUNIT

description, 8-174

Index-10

