VEE Advanced Techniques

Notice

The information contained in this document is subject to change without
notice.

Agilent Technologies shall not be liable for any errors contained in this
document. Agilent Technologies makes no warranties of any kind with
regard to this document, whether express or implied. Agilent Technologies
specifically disclaims the implied warranties of merchantability and fitness
for a particular purpose. Agilent Technologies shall not be liable for any
direct, indirect, special, incidental, or consequential damages, whether based
on contract, tort, or any other legal theory, in connection with the furnishing
of this document or the use of the information in this document.

Warranty Information

A copy of the specific warranty terms applicable to your Agilent
Technologies product and replacement parts can be obtained from your
local Sales and Service Office.

U.S. Government Restricted Rights

The Software and Documentation have been developed entirely at private
expense. They are delivered and licensed as commercial computer software
as defined in DFARS 252.227-7013 (Oct 1988), DFARS 252.211-7015
(May 1991) or DFARS 252.227-7014 (Jun 1995), as a “commercial item” as
defined in FAR 52.101(a), or as Restricted computer software as defined in
FAR 52.227-19 (Jun 1987) (or any equivalent agency regulation or contract
clause), whichever is applicable. You have only those rights provided for
such Software and Documentation by the applicable FAR or DFARS clause
or the HP standard software agreement for the product involved.

Copyright © 2004 Agilent Technologies. All rights reserved.

This document contains information which is protected by copyright. All
rights are reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under the copyright laws.

Microsoft®, MS-DOS®, Windows®, MS Windows®, and Windows NT®
are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of The Open Group.
VEE ™ and VEE Pro™ are trademarks of Agilent Technologies.

Printing History
Edition 2......oooiiiieeeeee e March 2004

Conventions Used in This Manual

This manual uses the following typographical conventions:

Advanced
Techniques

Dialog Box

File

dir filename

File = Open

Sml | Med | Lrg

Press Enter

Press Ctrl + O

Italicized text is used for book titles and for
emphasis.

Bold text is used for the first instance of a word
that is defined in the glossary.

Computer font represents text that you will see
on the screen, including menu names, features,
buttons, or text that you have to enter.

In this context, the text in computer font
represents an argument that you type exactly as
shown, and the italicized text represents an
argument that you must replace with an actual
value.

The “="1s used in a shorthand notation to show
the location of VEE Pro features in the menu. For
example, “File = Open” means to select the
File menu and then select Open.

Choices in computer font, separated with bars
(1), indicate that you should choose one of the
options.

In this context, bold represents a key to press on
the keyboard.

Represents a combination of keys on the
keyboard that you should press at the same time.

Contents

1. Introduction

About This Manualcceeeiiiiiiiiiiccieecieecieeere et 3
Configuring VEEcoooiii ettt 5
Configuring VEE for Windows..........cccccveviieriierinnenie e 5
Color and Font Settings.......c..ccevvververeereesieeseesieesieeseesseesseenesenes 5
Customizing [con Bitmapsccccveeveevienienieenieeieeieere e 6
Selecting a Bitmap for a Panel Viewc.cccccoevviieviiinciiencieeciens 6
Configuring VEE for UNIXcccoiiiiiiiiiniineiieeneeeeeeeeeeeee 7
Color and Font Settings...........ccvvvverveerceerieenieeneenieesieeieenieeseessesnnes 7
Changing X11 Attributes (UNIX)......ccccevvevenvieeriieiinieere e 7
Screen Colors Change (UNIX) .oooceiiiieieeeeeceee e, 8
Attempt to Use Too Many Colors (UNIX)c.cccccevecriiecrienieennen. 8
Applications that Use a Local Color Map (UNIX)..........ccoccuveeeee. 9
Using Non-USASCII Keyboards (UNIX).......ccocevenereeneenenenennene 11
Using HP-GL Plotters (UNIX)......cccovvierierieniieiieieeieeie e 11
Using VEE Example Programscccceeeveireienienienieneeieesieeie s 14
The EXxample DIr€CtOriesc.cccvirverierierreriiesieesieesreesseesseeseevessneeens 14
Running the EXamples.......cccccieviiiiiieniieiieeiee e 14
Using Library ObBJects........coeeriereeneriiieiieieeie ettt 15
Formula ObJectsc.eevieiiieiieiieieeieeee et 15
Supported [/O INterfaces.......c.evvvereiereerieerieiieieieeie e 16
Using VEE EXecution MOdeSccccuveviieiieriieeienienieniesieeieeneeeee e 17
Setting EXecution MOdES.........cccvevvierieeriieniieiieie e sreseesreesreesneens 17
What is an Execution Mode?cccccovieniinienienieneeiceceeeen 17

Why should I want to change Execution Modes?cc....... 18

How do I know when to change Execution Modes?.................... 18
Guidelines to Switching Execution Modesccccveevereveniennnnn. 19
About the COMPIIET.......ceecviriieieiieeieree e 19
Execution Mode Changes: VEE 3t0 VEE 4ccooevvviviiveieennne, 21
Line Colors in Compiler Modecccceevieviieniieeniieeieeiieeiieens 21
Potential Compatibility Problemsc.ccccceeeviveeviieiciiieciieeiiens 21

Contents-1

Execution Mode Changes: VEE 4 t0 VEE 5.......cccoooviviiiiiviiiies 29

About the VEE 5 Execution Modeccceeeveninieriennieneeeee 29
Converting Programs to VEE 5 Execution Mode...........ccc.c....... 29
VEE 5 Execution Mode Changes..........cccccveeevveecieeecieeciveenieeennenn 30
Using VEE 5 Mode in HP-UX.......cccccocoiiniiiiinininiiicnenenceens 34
Execution Mode Changes: VEE 5 t0 VEE 6.....c.ccococieviiiinincnienen, 35
About the VEE 5 Execution Modec.cceceevievineniniienenenenee. 35
NEW Datd TYPES..cccvieiiieeiieeiieeieeette e e erre e sreesreeseree e 35
Variant to VEE Data Type Conversion - Improved Array Handling
35

Updated FUNCLionscoccecvevereninienienineneceeeceieeeeeeeeee 37
Related Reading........coc.eeeuieiiiiriiiniieiieceece et 38

2. Instrument Control Fundamentals

Introduction to Direct I/O.......cocoeiiiiiiiiiiiiieeeeeeeeeeee 44
An Example of Direct [/O......coooveviiiiiiiiiieceeeeeee e 44
Multilnstrument

DITECE I/O et 44

Introduction to VXIpIug&pIayc...ccoueeeveeeeeeeeceeeieeeceeeeee e 46
Getting Startedooveeciieeieeie e 46
What YOu Need.......cooveiiiiiiiiie et 47
Installing the VXIplug&play Driver Software............cccceevuenenne. 47
Location of Files (WIN95 and WINNT Frameworks)................. 47
Location of Files (HP-UX Framework)..........ccccecevuevenenencenene 48
Summary of Terminologyc.ccvevveeriierieecrerienierreseeseesseeseeens 48
A VXlIplug&play Example Program..........ccccoeeeveeeciieeciiencneeennnn. 48
Further Information............ccooceiiiiiiiiiiiii e 49

Introduction to Panel Drivers and Component Drivers..................... 49
Panel DIIVETS.....cocuevuiiiiiieieiee et 49
Component DIIVETLScccvvcveriirieriieiieseeseesieeseeseesessessnessnens 50
Further Information...........cccoceeieieieninieeee e 52

Support For Register-Based VXI Devicescccceeveevvienrieecreeennennn 52

3. Configuring Instruments

Using the Instrument Managerc.ceecveeecveenieenieeneeeseeesveesveesneenes 58
OVEIVIEW ..ttt ettt ettt ettt ettt ettt st e eae 58

Contents-2

AULO DISCOVETY ..oeiuiieiiiiieiieeiieiestesttestesteseessaestaesse e saesseesseenseeseans 60

The Instrument Listccooeriririeieereeee e 61
Instrument Configurationccoeeveevveecienrenieseeseeseeseesee e sreenns 63
Renaming an InStrument............cccceevvieriieeiiesiiesiee e 65
Adding an Instrument Configurationcceeceeveeveenencieneenen. 67
Adding a Panel Driver or Component Driver..........ccccceevverveneenn. 72
Editing an Instrument Configuration...........c.cceceveevereenenencenne. 73
Editing an Interface Configuration...........ccceevvevveecreneesresvervenen. 75
Configuring for a Direct /O Object.......cccccvevievieviieieeieereererieennn 76
Configuring for a VXIplug&play Driverccccocvevevievciiencieeneeennenn 79
Configuring for a PC Plugln Card...........ccccoviiviininiiiieiieeeee, 83
Details of the Properties Dialog BOXes........cccceevveiiirieniiniinienieee, 85
Instrument Properties Dialog BOXc.ccccovveviienienieniieieeie e 85
NamMe Fieldooiiiiieeee e 86
Interface Fieldccocoviiiiiiiiii e 86
Address Field.......cccoooiiiiiiiiiee e 86
Gateway Fieldccoooveiiiiiiie e 88
Advanced... BUONco.eiieiiiiiiiieeeeceeeeceee e 88
Advanced Instrument Properties Dialog Box: General Tab.............. 89
Timeout (seC) Fieldcovvevvieiiiiieiiceceeeeeceee e 89
Live Mode Field........coooiiiiiiiiieieeeeeeeeeeee e 90
Byte Ordering Field.......c.ccooveiviiiiieeiieeiie et 90
Description (optional) Fieldccoeeviiiiiiiniiiiieeecee, 90
Advanced Instrument Properties Dialog Box: Direct I/O Tab 91
Read Terminator Fieldcccooeienininiiiiiicee e 91
Write EOL Sequence Fieldcccoveevveviieiiiiiciiciecee e, 92
Write Multi-field As Field.........ccoooviiiiiiiieceeee, 92
Write Array Separator Field.........ccooeeveviiiiiciiiiiiecieeciieceeeies 93
Write Array Format Field.........ccoocovoiiiiiiinieeeceeeen 93
Write END (EOI)
On EOL Field
(GPIB ONlY) ettt 94
Conformance Field..........ccooiiiiiiiiiiiieeeeeeeeee 95
Binblock Field........cooiiiiiiiiiiie e, 95
State (Learn String) Field........coccoeoiiiiniiniiieeeeeee e 96
Upload String Fieldcccvevveiieeiieiieieeieeeeece e 96
Download String Fieldcccoovieeiieeieiieiieceeceee e, 96

Contents-3

Advanced Instrument Properties Dialog Box: Plug&play Driver Tab .

97
Plug&play Driver Name Field.........cccooveviieviieiieiiciecie e 97
Parameters to init() call Field.........c..cccoeeeviinviinciiiciieciecee e, 98
Advanced Instrument Properties Dialog Box: Panel Driver Tab...... 99
ID Filename Fieldc.ccoooierieiiiiiiiieeeeecee e 100
Sub Address Fieldcocovieiiiininiiieeeeecee e 100
Error Checking Field.........cccoveviiiiiiiieiiiecee e 100
Incremental Mode Field..........ccoocoiiriiiininieeeeeee 100
Advanced Instrument Properties Dialog Box: Serial Tab............... 102
Advanced Instrument Properties Dialog Box: GPIO Tab............... 103
Advanced Instrument Properties Dialog Box: A16 Space (VXI Only)
TAD e e 104
Byte Access (D8) Field.......covevvveieeiieiiiieceecee e 104
Word Access (D16) Fieldcccovvevieiiiiieiieciieceeee e 104
LongWord Access (D32) Field.......ccocovveeiieniieiieieeieeeeee 105
Add Register Fieldcccooieniiniiiiiiieeecee e, 105
Delete Register Field.........cccocvveiirieriinieieseeseeseeeeeeieeiens 106
AN EXAMPIC.....viiiieiieiiiiieie et s 106
Advanced Instrument Properties Dialog Box: A24/A32 Space (VXI
ONLY) TAD c.eviiiiieieeceeceeeeeee et et 108
Byte Access (D8) Field......cccovvecveeeiiiiiieieceeeee e, 108
Word Access (D16) Fieldccceeeiiiiiiiiiiiieiieceeeee e, 109
LongWord Access (D32) Field.......ccccoovevieneeriiecieeieeeie e 109
QuadWord Access (D64) Field.........cccooevvieeiieciiicieceeeeeee 109
Add Location Fieldccooiiiiiriiiiieeeee e 109
Delete Location Field.........ccccoiiiiiiiiiiiiiiiiicceeeeee 111
Interface Propertiesccceovvievuiieciieeiie et 111
Interface Fieldcocoriiiiiiiiiieeeeee e 111
Address Fieldcooovieiiiininieeeeee e 111
Gateway Fieldccoovveiiiiiiieceeeeee e 111

4. Using Transaction I/O

Creating and Reading Transactions...........ccceevveeveeveererenienveneesnesnennns 115
Creating and Editing Transactionscccecveevverreereesreesveessensnenns 116
Editing with Mouse and Keyboardcccceevvieviieniienieene, 116
Editing the Data Fieldcccoooieeciiiiiiiiiieceeeecee e 118

Contents-4

Adding Terminals.........ccoccverierieniienieeee e 120

Reading Transaction Datac.ceeeviieeiiereiieeieeieeeeseeseesieeieens 121
Transactions that Read a Specified Number of Data Elements . 122
Read-To-End Transactions............cceceeveeveenieneenieenienieeie e 124
Non-Blocking Readscccocvriiiieiiiiieieeeeceeeeeeeeiee 126

Suggestions for Developing Transactions............cceceeeeerveeeeeeneenne 129

Using Transaction-Based ODJectS.........cccuevverierieereerieecienieniesee e 130

Execution RUIES........coouieiiiiiieeee e 130

Object ConfigUIationcceevveeeviecreeieireeresreseesreeseeseesseeseesseens 130
End Of Line (EOL) Fieldcccccoovveviiiiiieiiecieeeeeceeeeeeie 132
Array Separator Field........cccooveiiiiiiiieieeeeeeeeeee s 132
Multi-Field Format Field...........cccovoeviiiiiiiiiecececeee 132
Array Format Field.........coccooiiiiiniieeeee 133

Choosing Correct TranSactions..........c.eeververeerieerieesreessessseessesssesnesenes 135

Selecting Correct Objects and Transactions..........ccceeeeveeeeveeeneennee. 137
Example: Selecting an Object and Transaction..............c...c....... 137

Using To String and From Stringcecceveveverveencncneneniennene. 138

Communicating With Files cccovevierieieeeeee e 139

Using File POINLETScevveriiriieiieieeie e 139
Read POINTETS.......cooieiiieieieee e 140
WIite POINEEIS....couiiiieiieiieieeeecee et 140
CloSING FileS....iiiuiiiiiieiiieeie ettt 140
EOF Data Output....c.c.coviiiiiiiiieiieeieeiee et 142

IMPOrting Data.........c.eecvevieriiiiesieriereeeee e ere e eae e saesene s 143
Importing X-Y Values......ccccccevvveriieriieniieieeie e e 143
Importing Waveformscccecveeevieieiieneesieneeeeseereese e 144

Communicating With Programs (UNIX)cccoeiiiciiecieeieeeee, 149

Using Execute Program (UNIX)ccccocviiviiiiieenie e 149
Execute Program (UNIX) Fields........cccceevrviniiinieniinieiieenn, 150
Running a Shell Commandc.ccccovevvveeriienieenienieiieieeieenns 152
Running a C Program...........ccoecvevvereeneenieenieeieeieeie e sve s 154

Using To/From Named Pipe (UNIX)cccoovvevievieviniiereeie e, 155
Hints for Using Named Pipes.......ccccccoveviievieenieccieceeeieeen 156

Using To/From Socketc..cccvviviiiecieiiieiie et 157
To/From Socket Fieldsccccovvveeiieeiiiiiiiiciiecieeceeeeeeeeen 158
Data Organizationcceceeeveecverieseeneeseeseesseesseenseesseensennns 160

Contents-5

Object EXECULION.....ccuvevieieeieeieeieeie et 160

To/From Socket Object Example.........cccoccvvevrneenieenienienieenens 160
Using Rocky Mountain Basic Objects (HP-UX)cccccevvevvennnee. 162
Initialize Rocky Mountain Basic.........ccccccveveiieriiencieeie e, 163
To/From
Rocky Mountain Basicccccceeeeeienienienienieeeeeeee 163
Examples Using To/From Rocky Mountain Basic 164
Communicating With Programs (PC)c.cccceveviieviievienieieerecnenn 166
Using Execute Program (PC)........cccccevievienienienecriereereere e 166
Execute Program (PC) Fields.........cccooeveeviieniiiniieiieeie e, 167
Using Dynamic Data Exchange (DDE)ccccocniniiiinininnnnene. 169
DDE EXQMPIES ...cueeeiiiieiieriieiieieeieeie ettt 173
Using Transactions in Direct I/O and Interface Operations.................. 176
Using the Direct [/O ObBJECtccvvvvievieiieieiieseeseeieereere e 177
Sending Commandscceeeevierieerieeniiesieeeie e e sveesae s 177
Reading Data........c..oooviiiiieiiieieeeeeceeee e e 180
Using the Multilnstrument Direct I/O Objectcccccoevircreennene 181
Transaction Dialog BOXccceeveviviiiinciieiieiecie e 182
Editing Transactionsccceeeververeerieeseeseesieesieesseensesssesnenns 183
ODJECt MENUL......uiiiieiieiieiicre ettt seeste e ss e s e esreeereeens 184
Using the Interface Operations Object.........ccceeeveeeeiieecieeniieeieenee. 184
The EXECUTE Transactioncccecceeceerieneeneeneeneenieneeniens 184
The SEND Transactioncccecceeveeeieeierieeiesee e seesieseeenieens 185

5. Advanced 1I/0O Topics

I/0 Configuration TEChNIQUES........c.ceoueriiriiiiiriereeseeeeeee e 189
The I/O Configuration File...........cccocevieriiiniienieieieeieeie e, 189
Changing the Configuration File..........ccccooconiniiniiiininnene, 190
Programmatic I/O Configurationcccceevvveveevieecreecieeieeneeenenn 190
LAN GatEWaYS....ueeeiuiieiiieeiieeriesreesreesreesreeeseesseessessssessssesessenas 193
CONTIGUIATION ...ecevieeiieciie ettt e ettt e e eeaee e eeee s 194
Execution Behavior.........c.ccccieeiiiiciiiiiieciicceceeeee e 196
Protecting Critical SECtIONS........cccvvvverierierierierieieere e 198
Supported Platforms...........cceveerierienienieeereeseeeeeee e 199
Execution Behavior..........ccoocvoieiieiieiinieeee e 199

Example: EXECUTE LOCK/UNLOCK Transactions - GPIB..201

Contents-6

Example: EXECUTE LOCK/UNLOCK Transactions - VXI....202

I/O Control TEChNIQUESc.eevvieiieiieieeie ettt re e 204
POIING....ccviiiiiieieeee ettt st e e sne e 204
Service REQUESES.....ccccuiiiiiieiiieie ettt e e 205
Monitoring Bus ACHVILY....cccueveerierierieieeieeie e 208
Low-Level Bus Control.........cccoccieeiiieiiiiiiecieccieecreeeee e 209
Instrument Downloadingccccoveivrienienienieiieie e 210
Logical Units and I/O Addressingccecveevereereeneenieeienneeneenenens 212
Recommended I/0O Logical Units for VEEccccoevvinieniienn, 212
I/O AdAIESSING.....eeeceiieiiieciiecie ettt sreeeveeeveeeeree e 215
To Address Serial POItS..........ccovveeiieiiieciiccieeee e 215
To Address GPIO Devicesceeeeveeeciieciiieiieeiie e 215
To Address GPIB Interfaces and Devices...........ccoeevveeveereennnne, 216
To Address VXI Devices on the GPIBccccoevevveiieneennnnne, 217
To Set Address/Sub Address Values.........ccccoeeeeeniiniiniennnnne. 218
To Address the VXI Backplane Directlyccccccveecveeeninnnnenn. 219

Excluding Address Space for the 82335 Card (Windows 95/98 Only).
219

6. Using Panel Driver and Component Driver Objects

Understanding Panel Driver and Component Driver Objects 225
Inside Panel DIIVETScccoviriirierienienieeeeeeeeeee e 225
Panel Driver Files.......cccooiiiiiieieieeeeeeecee e 225
COMPONECIILS.....eeeurieeerreeiieesireertreesteeestreesereessveessseeseseesseessseessseanes 225

STALES ..ttt ettt ettt ettt et sttt 227

How Panel Driver-Based I/O WoOrks..........ccccccvveiviieeciieiieeiee, 227
Panel Driver Operation............ceeverierieereesieenieenseenieesseesseessessesnnens 228
Component Driver Operation..........ccoecvevvvervesieesieereeecnesseesnennnes 228
Multiple Driver ODJECESicvvievreeirieieerieee e seeesteeseeesreesseereenns 229
Selected TEChNIQUESeeeviieiieeiieciiecee et 231
Using Panel Driver Objects Interactively........ccceeeveeecieeecieeeceeennnen. 231
Using Panel Driver Objects Programmaticallyccoccoceviennne. 231
Using Component Driver Objects in a Program...........cc.ccecceeeneenee. 232
Getting Panel Driver Helpcccvecvivieiiiniirieiece e 234

Contents-7

7. Using VXIplug&play Drivers

Using the To/From VXIplug&play Object........cccvevvvevrievieecienrenrenneens 237
Selecting @ FUNCHIONc.ecvvieriieiiciicie ettt 238
Editing Function Panel Parameters..........c.cccccveveveeecrieecneeeneenne. 240
Getting Help on a VXIplug&play Driver.........cccceevevevcenieneennenns 245
Running a VEE Program...........ccccovienirniienienieeeieee e 246
Initializing and Closing DIiVers.........coccecevevenerieneneneeeeene 246
Advanced Initialization Information............cccccovereeiininenenne. 246

Error and Caution ChecKingccecvevvievievenienieseeneenieeneens 247
Passing Parameters.........ccccccvveiieeeiieeeiieeic et 248

An Example Program..........ccccceevvevieiiniieniieieseeeee e 250
Limitations to VXIplug&play.......cccccceevieiieiieiiiieeieeieeienens 251
Using VXlIplug&play Functions from Call Objects........cccccoerereennene. 252
Using a Dynamic Link Library or Shared Library in VEE............. 252
Importing the Library........ccccceeeeeeeiieiciieiiiecieecieeeee e 253
Calling a VXIplug&play Driver from VEE...........c..cccoveuvenen. 253
Deleting the Libraryccocceevevienienienienee e 255

A Simple EXamplecocvvvievieniieiiciecie e 256

A More Complete EXamplecccceevverieeiiecinieeieeieeieseeeenn 257

Some Helpful HINtS........cccvevveriienienieciesceeee e 258

8. Data Propagation

Understanding Propagationcccceeceeveevienienieenieerieenne e snesnenenens 261
HoW ODbjJects OPErateeeevvviereieeeiieiieeieeeveeeveeseveeeveesereeseveeseneas 261
Basic Propagation Ordercccceeevieeciieiiieeiie e 263
Pins and Propagationcccecceeeeeieniinieenienieceeee e 263
Propagation of Threads and Subthreads............ccccecverinininncenennne 266
Propagation SUMMATYccceeverierierieneeneeeeeere e eee e senes 267

Propagation in USErODJECEScccvevvverierierieriiesieeseesreesieereereeseeneens 269
UserObject Featuresoovvveviieiiieciieeieecieecveesree e 269
Contexts and USErODJECEScveecveeeviiriieriieereeeieeeveeeveesveeseveees 270
Propagation and UserObjectscocovereerieneneneeienenineeeenieneenne 270
Data Output from a UserObjectccccvevveerveerierieriieieeieeee e 272

Controlling Program FIOW.........cccccvvviirviiiciinieiienieseeeeceee e 274
Basic Program Control...........cccevvevieviieneeniiereeieeieere e sene e 274

Contents-8

Continuous LOOPSeecvieiieiieiieiiiieree ettt 276

Making Programs INteractive..........ccevveveeriereesieenreenreenneeneenns 278
Advanced Program Control...........cccccveeviieriiencienieecieecee e 280
Example: Initiating Program Tasks........c..cccceevvveeciieecieeeceeennnnn, 280
Calling FUNCLIONSoecviiiieieieciiereere ettt 282
Clearing Strip ChartS..........ccceveveeieeieeiereesteseeseeecee e 284
Handling Propagation Problems.............cccecvevvierienieeniienieiieieeieenenes 286
Error Handling.........ccoovvevvieeiiiiieieee et 286
Capturing Control Pin Errors..........cceevvveviiiieciieiiniecie e, 287
Data Propagation on Control Pins.........c.cccceevevieiiiieniiencieeeieeeieens 290
Building a Record..........ocverieriieiieiieieeieeeee e 291
Multiple Inputs to a Formula............ccccoeiiriiniiiiiiieeieececee 294
Working With LOOPS.......cccvrieriiniiniesierie e 295
TImMING EVENLS ...ccvviiiiiiiiiieieeeeee et 297

9. Math Operations

Understanding Data CONtainers..........ccoecveeveevesveneesieeseesieesseesseesseenns 301
Data Container OPeration...........cc.eeeveerveerveesveesiveesreenereessseesneenns 301
Terminals Information...........cccoeoeeiieniiininnieiieeeee e 302

Data Type CONVETSIONS.....cc.eevuiereieiieieeieeieeieeteeieeieeneeeneesneeeneeeneeens 304
VEE Data TYPES ..ceecueieeiiierieeeieeciie ettt et et steesteeseieeeeeesaeesnnee e 304

Data Type DesCriptions........ccecvecvieveerreriresresresereseeeseesieesseennes 304
Line Colors for Data TYPES......cceeeververiereerierieerieereereeseeneenns 306
VEE Data Shapescccveiiiieiiiieiie e e eiee e evveeeve e 307
Converting Data TYPES.....c.eecvieriieriieeiiecieeere e eree e e 308
Converting Data Types on Input Terminals............ccccceeveennennee. 308
Converting Data Types with Objects and Functions.................. 309
Automatic Data Type CONVersionscceeeverevereverververeeenenens 310
Instrument I/O Data Type CONVersionsccceeeeveeveevesenennns 312

Processing Dataccccccveeeciiieiiiieiie et 314
The Function & Object BIOWSETcoovieviieiiieiieeciee e eiee e 314
General CONCEPLS......uvuuiriirieeierierie ettt e st aeens 314

Expressions and FUNCHONScccvecvverieerieeniieiecieeieeee e 315
Using Strings in EXPressions........c.vecveeveveereeneeneeneeneensesneenns 316
Using Variables in EXPressions.........ccocvevvereenieerieecrescvennenenenns 316
Using Records in EXpressions.........ceeeveeveeecieeceeenieeneeesieeenes 318

Contents-9

Using Assignment OPErationscecveeveeeereesieeseeseesseerseens 319

ErTOr RECOVETY ..eiiniiiiiiieiieeie ettt e 321
Using Global and Local Variablesccccovvevievieciieieeiecie e, 321
Global and Local Variables in Assignments..............ccceeuveenneen. 322
Data Container Contents on Terminals..........ccccceeevereerceneennenns 323
Using Dyadic Operatorscceeeerererienienienenenieeeeiene e 324
Dyadic Operators Cate@OTiesccvevveereeerereeneesieereereesseenseens 324
Precedence of Dyadic Operators.........cccuveveeveeeesvesvenveseennenns 325
Dyadic Operators Data Type CONversioncoeeevveecverevennnns 325
Dyadic Operators Considerationscceeeveerveerveenveesveennne 326
Array Operations in VEEcccoooiiiiiiiieceeeeeeeeees 330
Array Operations Techniques...........cceecveevierneerieeieeieeieeie e 330
Comparison of Array Operation Techniques...........c.ccccceeeunenee. 330
Accessing Arrays in EXpressions........ooeeeeveerieeneenreenieenneeneans 331
Examples: Values Returned from Array.......ccccccvveveveeecveeeneennne. 332
Building Arrays in EXpressionsceeecvveeeveecieeenieenveeseeennes 333
Performing Array Math Operations...........cccceeveevveneeneeneennenns 334
Basic Array OPerationscccvecverieerieereesieesieesseessesssesssesseesnennns 334
Array Functions Operations............cceceerveecveeereneeneeseessnesnenenns 334
Changing Values in an ATTaY.......ccceeveeeveevereeneeseeseeesseesseesseenns 335
Splitting @ Large ATTAYcceeeveeeereeeeiieeiie e eieeeieeereeesveeevee e 336
COMDINING ATTAYS..ccuveeerieerieerieereeesreeesreeeseeesseeesseeesseeesseessseens 337
Multiplying a Vector by a MatriXccceveverereeneneneneeeennenn 337
Inserting Elements into an AITayccceeevevvereeseenieenneesiennenns 338
Converting a Vector to @ MatriXcceecvveeeerceereeenieneenieenieeneenns 340
Advanced Array Operations........c..cceevveevveeererrervesiueseeseeseesnessens 341
Combining Disparate Elements into One Arrayc.cccuveneee.. 341
Comparing TWO AITAYSccceeevvveereieeiiieireeneeenreeesreeereeeveeeneens 342
Using Alternate EXPressions.......ccocoveveevenenenenienieneneneenenn 343
Choosing Efficient Techniques...........cccovevevveereerieneeneeieenenn, 344

10. Variables

ADOUL VATTADIES ... 349
About Undeclared Variablesccccooevviieeieeeeeiiecceeee e, 349
About Declared Variablescoooviviviviiiiiiiiieeeee e 350
About Variables Namingcccccccveeeieeiieinieeiieeiee e eeee e 350

Contents-10

USING VariabIesc.covvieriieriieiieiieiieie ettt snee e 352

Setting Initial Valuesccceevieviiiiieiieieciecrece e 352
Accessing Variable Valuesccccceevvieeiiiciiniieniesieneeeeseene e 354
Deleting Variablesc..cocveeviieiieeciieeieceeeee e 355
Using Variables in Libraries.........ccoccovevereenienenencnienicnencnceeenen 355

11. Using Records and DataSets

USING RECOTAS....couiiiiiiiiiiiiisieeeec e 359
Understanding Record Containers...........ccceevevereeeenenencenienienenne. 359
AccesSING RECOTAS......ocvviiieiieiieiecie et 360
Programmatically Building Recordscccccvevviecieiviencienieniiennens 364
Editing Record Fieldsccovvieviiiniiniiciieiecieceeeee e 365

USING DAtaSEets......cccviiiiiieiieeiie e eieeeiee e aeesaeeveesveeseveesesee e 367

12. User-Defined Functions/Libraries

About UserFUNCHIONSc..eeiiiiiiiieiieieeeeeeeee e 371
Converting Between UserObjects and UserFunctions 371
Calling a UserFunction from an EXpressionccoceeeeeeeencnennen. 372

Using a Library of FUNCHONScoeiiriiieiiiirceee e 374

Creating a UserFunction Librarycccceeeveevieeviniiniesee e 375
Importing and Calling a UserFunctioncceeevvevveeneeenveennneenns 376
Merging UserFunctions.........c.ccccveeeieeeiieiciienieesieeeree e 377

About Compiled FUNCHIONS........ccceevvieiiieiieiieie e 378
Using a Compiled FUNCLION.........ccccieriieriieiieiicieeie e 378
Design Considerations for Compiled Functions...........cccccoevceneeee. 379
Importing and Calling a Compiled Function............cccccevervncennnne. 381

The Definition File........cocoiiiiiiiiieeeeeee 383
Building a C FUNCtioncccceveevieecieeeieeie e eee e 384
Creating a Compiled Function (UNIX).....ccccoceririiieninininnienene. 387
Creating a Shared Libraryccocveviieriecincinieeie e 388
Binding the Shared Librarycccocevevevieniienieneerieeeee e 388
Creating a Dynamic Link Library (MS Windows)..........c.ccccveneee. 389
Creating the DLLcccciiiiiiiieie et 390
Parameter Limitationsccoceeiienieiiineenienceeeeee e 391
The Import Library Objectcocvveeeviireenienieiieeeieeee e 392

Contents-11

The Call ObJECt...ccvieieeiieiieieeieste et see e e eeens 392

The Delete Library ObJectccvevveevieeiirrinieeieeseeseeseesveeneens 393
Using DLL Functions in Formula Objects...........cccccveevinieereeennne. 393
About Remote FUNCHONSc..ooiiiiiiiiiiiiceciiee e 394
Using Remote FUnctionsc.ccoeeveevenineneeneneneneeieeneseeeene 394
UNIX Security, UIDs, and Namesccccecceeeveeierieneenieneeneeneens 398
ReESOUICE FILES ..cuvviieiieiiecetee et 400
BITOTS ..t et et 400

13. Using ActiveX Automation Objects and Controls

Using ActiveX Automation in VEEccccooiieiiiiiiiiiiiecieieieeens 403
Using ActiveX Automation ObjJectS.......ccceevvveevieereeesiieeniee e eiie e 404
Making Automation Objects Available in VEE..........c..cc.cccve.... 404
Declaring Automation Object Variables...........ccccoeceevievienieneennen. 406
Creating an Automation Object in a Program............ccccccevvverveennens 407
Using Distributed Component Object Model (DCOM).................. 408
Getting an Existing Automation Object.........ceevveevvreviencreriesiennens 409
Manipulating Automation ObjectS.........cceeveeerieevieeniieeiie e 410
Getting and Setting Propertiesccccvevevverieeveeeneeeceeeieeeenenn 410
Calling MethOodS.......c.cecveiirireiieiere et 411

Using ENUMETations..........ccvecveeeveriesiierienreseesieeseesseeseesesnenns 412

Using the ActiveX Object BIOWSETccecvveciveiiniienieeienieiens 413

Data Type Compatibilityccceveeviieriierieeieeriereeie e seeeeees 416
Deleting Automation ObJECtS.......c.ceeveeriierieerieeriie e eiee e 425
Handling Automation Object Eventsccccccevveviieviieniecnieeen, 425
Using ActiveX Automation Controlsceceeverenenernienienenenennenn 428
Selecting ActiveX COontrolS.......ccvecveeieecieeciincienieeeeseeseeseeseenieens 428
Adding a Control to VEEccccoovveiiiiiieeeeeeeeee e 430
Differences in the ActiveX Control Host........cccooeeieierrneenenne. 430
Using an ActiveX Control in VEE...........ccccoviiiiiiiiceee e 432
Using the Assigned Local Variablecccceevveeeieeiieeniiecnens 432
Declaring a Global Variable for a Control.............cccceevvenieennn. 432
Manipulating ActiveX COntrols........cccceevvveveeerieciencienireeieseeseenenen 433

Contents-12

14. Using the Sequencer Object

The Sequencer ODJECt........ccveivierierierieiereese et 437
What is the Sequencer ODJect?.......cccovievierieeriieiieieeee e 437
Logging Test RESUltS.......ccccveviiiiiiieiieiecieeieeee e 438

Using the Sequencer ObJect.......c..coiverienienininieieneneneeeeeene e 439
Example: Sequencer Transactions..........ccceceeeveeeereeseeneeneeniennnenns 439
Example: Logging Test ReSults.........cccovevevieniienienieneeneeie e 444
Example: Logging to a DataSet.........cccovveevirciiiienieeieieeeieenens 447
Example: Bin SOrtcc.ocvvevieiieniierieie e 448

A. T/0 Transaction Reference

I/O Transactions SUMMATYcc.eeeveeerreeerieeeneeerieeesieeesreeeeeeeseveesseeesens 459
WRITE TransSactionsccueeeueeeeeeerieenieeesieeenieeesereessseesseessseessseennns 461
Path-Specific Behaviorsccocceeviiiieniiiieeeeeeeeeeeee 461
Behaviors for all Paths...........ccccevvverienienieieeececeece e 462
TEXT ENCOAING.....ccceeviiriieiieniieiiesieesieeieeieeie e eneseesnesnnessnessnens 464
DEFAULT FOrmatccccvvveiiieiieeieeie e eseeeseve e e 466
STRING FOrmat........ccoeeeviieiieieiesieeieeteee e 467
QUOTED STRING FOrmatcccoeeeeeienenineieieiese e 470
INTEGER FOrmats.......c.cccooevuirieienieeieieiesieee e 475
OCTAL FOIrmatcccveeeiieeieeeiie ettt see et e e 478
HEX FOrmatccccueiiiiiiiie ettt 480
REAL32 and REAL64 Format...........ccceeevvevveenieeiieeeeeeieenenenn 482
COMPLEX, PCOMPLEX, and COORD Formats..................... 485
TIME STAMP FOrmatccccovieieiieneeieieieeeeeeee e 488
BYTE ENCOING ...coovviiiiiieiieiieiiee ettt 490
CASE ENCOQING.....ccvtiiiiiieiieieeieeie st ste et seeseesee e sseesneens 491
BINARY ENcodingcccceevveviieriieniieniieiieieeieeee e see e seee e 492
BINBLOCK ENCOdingccccoveriieriieriieiiereereereeneeeesresnessnenenens 494
Non-GPIB BINBLOCKcociiieieiiieeee e 494
GPIB BINBLOCKooeiiiieiieiieieieseeee e 495
CONTAINER Encoding..........ccccervieieierieniiniieiesienieseeeeveiesveeenas 496
STATE ENCOINGocvveeiiiieiieriiesieetetteieesie e 496
REGISTER Encodingcccccevievieiieniieiieieeieeieeee e 497
MEMORY Encodingcccoevvieviieviiiieciiciecie et 498
IOCONTROL ENcoding.........ccccvveerveeriieiiieniiesieeeieeesneeesneeeneeens 499

Contents-13

READ TranSactiONSoooeeevveveeeiiieeieeeeeeeeeeeieeeeeeeeeeeeeeeeessesensseeessesns 500

TEXT ENCOAINGooviinriiiieiiciieieeieete e ste v ereereesseevessvessveeenens 501
General Notes for READ TEXTcoooviiiiviiiiieeceeeeeieeee 504
CHAR FOImat.......cooooueiiiiiiiieeeee et 508
TOKEN FOIMAL......cccoiiuiiiiiiiiiieeiie et 510
STRING FOIMAt.....c.uoeiiiiiiiieiiieieeeee ettt 514
QUOTED STRING Formatcccccoevveeiieniieciieecreeeeieeeeeeeenen 516
INT16 and INT32 FOrmatsccccvveeeieeeeiieeeeeeeeeeeeeeee e 517
(O 108 72N B 210)'s 1 V- | SRS 519
HEX FOImat......ccuveviiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeee e 520
REAL32 and REALG64 FOrmatccceeeveuveeeeiiieeeieee e, 521
COMPLEX, PCOMPLEX and COORD Formats 525

BINARY ENncodingc.ccccevvvevieriieniienieeieeieeieeiesne e sene e 526

BINBLOCK ENCOAINgcccvevieriieriieniienieeieereeresneenesnesenesenenenas 528

CONTAINER Encodingccccoueeviieriieniienieenie e evee e 529

REGISTER Encodingccccccveeciiieiieie et 530

MEMORY Encodingcccccoovieiiinienieieeeeeeeee e 531

TIOSTATUS ENCodingcccvvvverierieniierieenieeseesieeseeseeneseesnesnnes 532

Other TranSaCtiONS.c..eeeeiveeeeeeeeeeeteeeeeeeeeeeeeeeeeeaeeeeeareseerreeeeareeeas 534

EXECUTE TranSactiOnscccueveeeeeeeieveeeeeeeeeieeeeeeeeesnreeeeeeeeenns 534
Details About GPIBoooiiiiiiiiiiiieeee e 539
Details ADOUt VXTI ..oooiiiiiiiiiiiieeee e 541

WAIT TTanSaCtIONSeeeeeeeieeeieieeeeeeieieeeeeeeeeeieeeeeeeeesneaeeeeeeseennnes 543

SEND TranSactiOnS...........coeveeeeeveeeeeireeeeereeeeeeseeeeenreeeeneeseenreeeenns 546

WRITE(POKE) Transactions...........cccccvervververieesreesieesseessesseesnennnes 548

READ(REQUEST) Transactions...........cccvevverveerveerveerseerseessesnenenns 548

Contents-14

. Troubleshooting Techniques

. Instrument I/O Data Type Conversions

. Keys to Faster Programming

. ASCII Table

. VEE for UNIX and VEE for Windows Differences

. About Callable VEE

Using the VEE RPC APL......cccoooiiiiiiiiieeeeeeee,
About the VEE RPC APIocoiiiiieeee
Starting and Stopping a Server.........ccccoeeeeveerieenenne
Loading and Unloading a Libraryc...cccccvennenee.
Selecting UserFunctions...........c.cceeevevvenvenivenieennens
Calling UserFunctions...........cccceevvevveerieerieecreenennnens
Other FUNCtions.........ccoceeveeneenieninsieceeeeeee
Error Codes for the VEE RPC API...........cc.cco....
About the VEE DATA APIL......ccooeiiiieeeeeeee,
Data Types, Shapes and Mappingscccccceeuennee.
Scalar Data Handlingccccceevveveieivnnienieeienenens
Array Data Handlingccccevvveviieniiecieeieciecn,
Enum Types...ccoccveeeeciiiiiiieecieeecee e
Mapping Functions...........cccceevvveercreeecreeesieeerieeennenn
Other FUNCtionsccceeevieiiieiiecieccieeeeeeee e

Contents-15

Contents-16

Figures

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 1-6.
Figure 1-7.
Figure 1-8.
Figure 1-9.
Figure 1-10
Figure 1-11

The File 2 Save As Dialog BoX....coccooivciiivciienciiecniene, 6
Color Map File Using Wordscccceeveeeevieecieeeieeeieeereene 10
Color Map File Using Hex Valuescccccevvevveenveennenee. 10
Feedback in Previous Versions.......c..cceceeeeeveeneeneesieneennne. 24
Feedback in Compiled Mode.........c.ccccvverrieeciieerieniiecreee, 24
EOF Differencesccooveereenienienienieeieeieceeeieeie e 26

Paralle]l JUNCHONScc.eevuieiiiiiiiiiieee e 27
INtersecting LOOPS ..occvveeeviieiieeiie et eee et 27
Intersecting Loops Via Junctions...........cccceevveevveenveennneens 28

.READ TEXT Transaction with TOKEN in VEE 4 Mode 33
. READ TEXT Transaction with TOKEN in VEE 5 Mode 34

Figure 2-1. VEE Instrument Control Objects..........cccceeveviercreeecieenneennen. 42
Figure 2-2. Using Direct I/O to Identify an Instrument.......................... 44
Figure 2-3. Multilnstrument Direct I/0 Controlling Several Instruments .
45
Figure 2-4. Using the To/From VXlIplug&play Driver Object 49
Figure 2-5. Two HP3325B Panel DIiverscccccvvevveeviieneeecieeereeee. 50
Figure 2-6. Combining Panel Drivers and Component Drivers............. 52
Figure 3-1. The Instrument Manager Dialog BoX.........cccccceveevvveeieennen. 59
Figure 3-2. The Instrument List.........c.ccoeeeeiieriiieniieiie e 61
Figure 3-3. Collapsing the GPIB7 Interface Configuration 62
Figure 3-4. Selecting an Instrument for Configurationc.......... 63
Figure 3-5. Updating the Instrument Configuration............c..ccceeeveenne.. 64
Figure 3-6. The Instrument List after Configuring Drivers.................... 65
Figure 3-7. Changing an Instrument Namec.ccccceeveveercveenveenneennnn. 66
Figure 3-8. The Renamed Instrument............cccoeviievieecieecieeie e, 67
Figure 3-9. Adding an InStrumentcccceeeeveeriienieencieesieeevee e 68
Figure 3-10. Changing the Name and Address Fields.............cceeveenneen. 69
Figure 3-11. The Advanced Instrument Properties Dialog Box............. 69
Figure 3-12. The Panel Driver Tab...........ccccooviiiiiiiciieiiecee e, 70
Figure 3-13. Selecting an Instrument Driver File..........ccccccoeveveeiennnen. 71
Figure 3-14. The Selected ID Filenameccccccvvevveecieeieeeieeieeennen. 71
Figure 3-15. The New Configurationcccceeevveeeiieecrieecreeseneesveeennenn 72
Figure 3-16. The Component Driver Objectccccveeereeeveierieeeieennen. 73
Figure 3-17. Editing the dmm Configuration............ccccceceevveerieenneenen. 74
Figure 3-18. Editing the GPIB7 Configurationcccceevveeevveeveennen. 75
Figure 3-19. Configuring a Serial Deviceccccceevevverciierciieeieeereeee. 76

Contents-17

Figure 3-20. The Serial Tab.........ccocceviiiririienieeeceeeeeeeeee 77
Figure 3-21. The Direct I/O Tab.......cccceoveveverinieeieeeeeeeeeeeae 78
Figure 3-22. The Direct I/O Objectcccoeverieieneninieieiereeeceeene 78
Figure 3-23. Adding a VXI DeViCeccoecerererienieniiniieeeieeneeeeeeene 80
Figure 3-24. The Plug&play Driver Tabccccoveveeienininienereeeee, 81
Figure 3-25. The VXI Configuration...........ccccevvereenieneneninneeneneeeenne. 82
Figure 3-26. The To/From VXlIplug&play Object........ccceveverververenenen. 82
Figure 3-27. Example PC Plugln Configurationcccceoevereevcenenne. 83
Figure 3-28. Formula Object Created by VEE.........ccccoovvvieviviiinnen. 84
Figure 3-29. The Instrument Properties Dialog BoXcccccvevevennnen. 85
Figure 3-30. The General Tabcccceviviiieieneninieeceeeeeee 89
Figure 3-31. The Direct I/O Tab.......cccceovevenininieeniieeeeeeceee, 91
Figure 3-32. The Plug&play Driver Tabcccccovceveeienininieneiceeee, 97
Figure 3-33. The Panel Driver Tab........cccccoooviiiiiieniniieecceceee, 99
Figure 3-34. The Serial Tab.......cccocvieiiiininieeieeeeeee 102
Figure 3-35. The GPIO Tab.....cccccooiviiiiieiieeeceeeeeececee 103
Figure 3-36. The A16 Space Tabcccccoocevieiinininieieeeceeee 104
Figure 3-37. The A16 Configuration for the HP E1411B Multimeter. 107
Figure 3-38. The A24/A32 Space Tabcccoceeveevereninieeencen 108
Figure 3-39. The Interface Properties Dialog BoXcccecveviveieennenne. 111
Figure 4-1. Default Transaction in To String Object......c.cccceeeneee. 115
Figure 4-2. A Program Using To String Object......ccccevevvncrcnnnene. 115
Figure 4-3. Editing the Default Transaction in To String Object.... 117
Figure 4-4. READ Transaction Using a Variable in the Data Field 118
Figure 4-5. WRITE Transaction Using an Expression in the Data Field.....
118
Figure 4-6. Terminals Correspond to Variablescc.cccceverereennene 121
Figure 4-7. Select Read Dimension from List........c.cccceoenininnnnnene 122
Figure 4-8. Transaction Dialog Box for Multi-Dimensional Read 123
Figure 4-9. Transaction Dialog Box for Multi-Dimensional Read-To-End
125
Figure 4-10. Using READ IOSTATUS DATAREADY for a Non-Blocking
ReAd. ... 128
Figure 4-11. Example: USINg TO STLing everveeverenenieieneenienceeenee 129
Figure 4-12. The Properties Dialog BoX ...ccccooeviriivinininnieene 131
Figure 4-13. Using the EXECUTE CLOSE Transaction...........c..ceceeue.. 141
Figure 4-14. Typical Use of EOF to Read a File.......c..cccccceninnnnnenn 143
Figure 4-15. Importing XY Values......c.ccccevvevieniienienieiieieeie e 144
Figure 4-16. Importing a Waveform Filecccooonviniiiinninnnnne 146
Figure 4-17. Importing a Waveform Fileccccoovininiininnnninnn 148
Figure 4-18. The Execute Program (UNIX) Objectcccccrvennnene 150

Contents-18

Figure 4-19. Execute Program (UNIX) Running a Shell Command...
152
Figure 4-20. Execute Program (UNIX) Runninga Shell Command us-

ing Read-To-Endcccooooniiiiiiiie e 153
Figure 4-21. Execute Program Running a C Program..................... 154
Figure 4-22. C Program LiSting..........ccceccvvvverierienienienieiieieeieene s 155
Figure 4-23. The To/From Socket ObJect ...cccevvievererinieiinirieeene 158

Figure 4-24. To/From Socket Binding Port for Server Process........ 161
Figure 4-25. To/From Socket Connecting Port for Client Process .. 162

Figure 4-26. To/From Rocky Mountain Basic Settings............... 164
Figure 4-27. The Execute Program (PC) Objectcccevcervrennnene. 167
Figure 4-28. The To/From DDE ODJECE ..coceereiruirieierieniieieienieeieeeene 170
Figure 4-29. The To/From DDE Exampleccccooiniinvniininininnne 171
Figure 4-30. Execute PC before To/From DDEccccceiinininnene 172
Figure 4-31. I/O Terminals and To/From DDE..........ccccceciiinininnene. 172
Figure 4-32. Lotus 123 DDE Examplecccceoevinininneninicceeene 173
Figure 4-33. Excel DDE Example.........ccccooerieniniininieiecceceee 173
Figure 4-34. Reflections DDE Example.........ccccoooeienininieninineneene. 174
Figure 4-35. Word for Windows DDE Example.........ccccccocevienieninnnene 174
Figure 4-36. WordPerfect DDE Example..........cccccoveniiieninincnieene 175
Figure 4-37. Configuring for Learn Strings.........ccccoceveeveneneneneennne 180

Figure 4-38. Multilnstrument Direct I/O Controlling Several Instruments
182

Figure 4-39. Entering an Instrument Address as a Variable................. 183
Figure 5-1. Function and Object BrowSsercccccoceverienienincnieeene 191
Figure 5-2. Create Set Formula Dialog BoX........cccocevieveninincnieene 192
Figure 5-3. Programmatically Reconfiguring Device [/O 193
Figure 5-4. Gateway Configuration............cceeevevvereereeneeneenieenieennennns 194
Figure 5-5. Examples of Devices Configured on Remote Machines ... 195
Figure 5-6. EXECUTE LOCK/UNLOCK Transactions - GPIB.......... 201
Figure 5-7. EXECUTE LOCK/UNLOCK Transactions - VXI............ 202
Figure 5-8. Instrument Event Configured for Serial Polling 205
Figure 5-9. Handling Service Requestscccecvvreieecienienienienie e 206
Figure 5-10. The Bus I/O MONILOTcceoerieririiiieienieneeceeeee e 208
Figure 5-11. Two Methods of Low-Level GPIB Control..................... 209
Figure 5-12. Example: Downloading to an Instrument......................... 211
Figure 6-1. Accessing Driver Componentsccccoeceveeeeneenenenene 226
Figure 6-2. Two Voltmeter Statesccccevereerienenenenieiencececeene 227
Figure 6-3. Using Panel Drivers and Component Drivers.................... 233
Figure 7-1. To/From VXIplug&play Objectccccevvvverververiierieeienn, 237
Figure 7-2. Select a Function Panel Dialog BoXccccccceeivieninnnnene. 238

Contents-19

Figure 7-3. Panel Tab of Edit Function Panel Dialog Box................... 240

Figure 7-4. Parameter Tab of Edit Function Panel Dialog Box 242
Figure 7-5. Selecting the Auto-Allocate Input Feature 244
Figure 7-6. A Program Using To/From VXlplug&play Objects 250
Figure 7-7. Simple Example: Using VXIplug&play Drivers............... 256

Figure 7-8. More Complete Example: Using VXlIplug&play Drivers.257
Figure 8-1. The a+b Object Propagates When Both Inputs Have Data261
Figure 8-2. Controlling Propagation Using a Sequence Input Pin....... 262

Figure 8-3. Controlling Propagation Using the XEQ Pin..................... 262
Figure 8-4. Pins Available on Objects..........cccevererienienenenineienn 264
Figure 8-5. A Program with Two Parallel Threads...........cccccoceeenene. 266
Figure 8-6. A Program with Two Parallel Subthreadsc..cc...... 267
Figure 8-7. UserObject Features............ccoceeievierininenieneninceceen 270
Figure 8-8. Data Propagation from a UserObject.........c..cccevererennnee. 272
Figure 8-9. A Simple Loop Counter...........ccovvvevvvereereenieenieeieeeeeneenns 275
Figure 8-10. A Simple Nested Loop Counter.........c..cceeeveevveienvennnnnne 275
Figure 8-11. A Simple Continuous Loopccccvevverrieriinciinienieeerennes 276
Figure 8-12. Stopping a Continuous Loopcccceeeevvereneninceneeniennnn 277
Figure 8-13. Using If/Then/Else to Stop a Continuous Loop............... 278
Figure 8-14. Using the Until Break Loop to Select a Program’s Subthread
279
Figure 8-15. Using the Until Break Loop to Detect an Instrument’s Ser-
VICE REQUESE ...oviieiiicieieciiesteteeeteee e eees 281
Figure 8-16. SRQ SEttNgS......coeerteririiriieieiirieeeteiesie e 282
Figure 8-17. Clearing SRQ.....ccccoceriiiiiiiirieieeeeeteeeeeee e 282

Figure 8-18. Using the Until Break Loop to Call a UserFunction 283
Figure 8-19. Using the Until Break Loop to Control a Strip Chart’s Data

COLLECHION ...t 284
Figure 8-20. Using the Until Break Loop to Handle Error Conditions 286
Figure 8-21. The Incorrect Way to Capture Control Pin Errors........... 288
Figure 8-22. Error Dialog BOXccoceeieieniniiieieere e 289
Figure 8-23. A Correct Way to Capture Control Pin Errors................. 290

Figure 8-24. Sequencing Problems on Objects with Control Pins........ 291

Figure 8-25. Using the Sequence Input on Objects with Control Pins. 291

Figure 8-26. Invalid Data Inputs Stops Propagation on Build Record in a
| 0T) o T PSSP 292

Figure 8-27. Maintaining Propagation When Data Inputs are Invalid . 293

Figure 8-28. Maintaining Propagation by Preventing Invalid Data Inputs
294

Figure 8-29. Invalid Data Inputs Stop Propagation on a Formula in a Loop
295

Contents-20

Figure 8-30
296
Figure 8-31
Figure 8-32
Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 9-4.
Figure 9-5.
Figure 9-6.
336
Figure 9-7.
336
Figure 9-8.
Figure 9-9.
Figure 9-10
339
Figure 9-11
Figure 9-12
Figure 9-13
Figure 9-14
Figure 9-15

Figure 10-1.
Figure 10-2.
Figure 10-3.
Figure 11-1.
Figure 11-2.
Figure 11-3.
Figure 11-4.
Figure 11-5.
Figure 11-6.
Figure 11-7.
Figure 11-8.
Figure 11-9.
Figure 12-1.
Figure 12-2.
Figure 12-3.
Figure 12-4.
Figure 12-5.
Figure 12-6.
Figure 12-7.

. Using a Variable to Prevent Invalid Data Inputs on a Formula

. Uncontrolled Timer Inputs can Cause Timing Errors......297

. Using the Do Object with Timer for Accurate Results....298
VEE Automatically Converts Data Types as Needed........ 301
Left-Click a Line to View Its Data Container.................... 302
Initializing a Declared Global Variable..............ccccceeenne. 323
Generating an Array Using Individual Objects 330

Generating an Array Using a Mathematical Expression....331
Using an Assignment Expression to Change Array Values.....

Reorganizing Values in a Large Array Using an Expression ..
Combining Two Arrays Using an Expression 337
Multiplying a Vector Array by a Matrix Array 338

. An Expression that Inserts Elements into an Existing Array.

. Using a Loop to Insert Elements into an Existing Array.339

. Converting a One-Dimension Array to Two Dimensions340
. Collecting Maximum Values from Many Arrays............ 341
. Comparing Values in TWo AITayscccoeceevererenceeenne. 342
. Finding Transition Points in an Array of Values............. 345
A Variable Example.........cccovvvveiiniienieniieieeieeie e, 352
Setting Array Values........coccveeveeiieciieneenieeeeeieeieeieens 353
Accessing a Variable Multiple Ways.........c.cceeveeevereenen. 354
Example: A Record Container...........cocceevevverueneeeceneennnnn 360
Retrieving Record Fields with Get Field 361
Using Array Syntax in Get Fieldcocoeeiininnnnnne 362
Retrieving Record Fields with UnBuild Record.............. 363
The Effect of Output Shape in Build Record................... 364
Mixing Scalar and Array Input Data...........ccceoerereeneene. 365
Using Set Field to Edit a Record..........ccocvvvvveciveiennnnen. 366
Using To DataSet to Save a Record.........ccccvvevvecvenennnen. 367
Using From DataSet to Retrieve a Record....................... 368
Calling a UserFunction from Expressionsc.......... 372
Creating UserFunctions for a Libraryc.cccceveeeeeenne. 375
Importing a UserFunction Librarycccceeererencnneene. 376
Using Import Library for Compiled Functions................ 381
Using Call for Compiled Functionsc.cccceeeeereeneene 382
Program Calling a Compiled Functioncccccceeeenee. 387
Import Library for Remote Functions............cccccoceeeenene. 395

Contents-21

Figure 13-1. Selecting ActiveX Automation Type Libraries............... 405

Figure 13-2. Declaring an ActiveX Automation Variable 406
Figure 13-3. Specifying the Automation Object Type.......cccceevereeneee 407
Figure 13-4. Using the ActiveX Object Browserccccoocevereeeennene 413

Figure 13-5. Elements Displayed in the Function & Object Browser.. 414
Figure 13-6. Create Event Handler UserFunction browser...426

Figure 13-7. Selecting ActiveX Controlsccccecevererienienenencenne 429
Figure 13-8. Adding ActiveX Controls from the Device Menu........... 430
Figure 13-9. Accessing Properties and Help in an ActiveX Control ... 431
Figure 14-1. Example: Sequencer Transactions...........cc.cceceeeereeneennene 439
Figure 14-2. testl Sequence Transaction Dialog BoXcccceceeeennee. 440
Figure 14-3. test2 Sequence Transaction Dialog BoXcccceceeeennee. 441
Figure 14-4. EXEC Transaction Dialog BOXc.cceceeevininincniennne. 441
Figure 14-5. Running the Programcccoccvevivreienvinncienienieeieenenn, 442
Figure 14-6. A Logged Record of Recordscccceevveviivciinivniennnnne, 443
Figure 14-7. Example: Logging Test Results.........cccoceeverinenininnene. 444
Figure 14-8. A Logged Array of Records of Records.........c.cccceeuenneene. 445
Figure 14-9. Analyzing the Logged Test Results.........cccccoceverniennene 446
Figure 14-10. Example: Logging to a DataSet...........cccecvevveriverveennennn 447
Figure 14-11. Bin Sort Example..........cccocevieiininininiieeeeceen 449
Figure 14-12. test] Transaction.........cccoceeeeeeriereneneeienenesiceeeeeeenne 449
Figure 14-13. test2 Transaction.........cccoceeeeieierieneneeieneneeeeeeeeeee 450
Figure 14-14. Improved Bin Sort Exampleccccoceveninincninnennne 451
Figure 14-15. Improved test] Transactionc..ceceeevenenceeeniennnnn 452
Figure 14-16. Improved test2 Transactionc..cecceeeeveneneeeeneennnn 453
Figure 14-17. globalOhms Transaction...........cccceeevererceneenencncnnne. 454
Figure A-1. AWRITE TEXT Transaction........c.cccceveeveeveenieneneneenenn 466
Figure A-2. TwWo WRITE TEXT STRING Transactions..........c..c.c....... 467
Figure A-3. TwWo WRITE TEXT STRING Transactions..........c..c.c....... 468
Figure A-4. AWRITE TEXT STRING Transaction...........c.ccceceeeene. 468
Figure A-5. TWo WRITE TEXT STRING Transactions..........c..c.c....... 469
Figure A-6. Two WRITE TEXT QUOTED STRING Transactions........ 471
Figure A-7. Two WRITE TEXT QUOTED STRING Transactions........ 471
Figure A-8. AWRITE TEXT QUOTED STRING Transaction.............. 472
Figure A-9. Two WRITE TEXT QUOTED STRING Transactions........ 472
Figure A-10. A WRITE TEXT QUOTED STRING Transaction............ 474
Figure A-11. Two WRITE TEXT INTEGER Transactions................. 476
Figure A-12. AWRITE TEXT INTEGER Transaction 477
Figure A-13. Two WRITE TEXT INTEGER Transactions................. 477
Figure A-14. AWRITE TEXT OCTAL Transaction..........cccccecceveeeene. 479
Figure A-15. AWRITE TEXT OCTAL Transaction..........cccceceeeeeeene 480

Contents-22

Figure A-16. A WRITE TEXT HEX Transactionc.cccccecevenene 481
Figure A-17. AWRITE TEXT HEX Transactionc.cccccecevennne 482
Figure A-18. Three WRITE TEXT REAL Transactions..........c............. 483
Figure A-19. Three WRITE TEXT REAL Transactions..........c.....c....... 484
Figure A-20. Three WRITE TEXT REAL Transactions..........c............. 484
Figure A-21. AWRITE TEXT COMPLEX Transaction............c..c..c...... 486
Figure A-22. Two WRITE TEXT PCOMPLEX Transactions 487
Figure A-23. A WRITE TEXT PCOMPLEX Transactionc............. 487
Figure A-24. Two WRITE BYTE Transactionsccccceecevenereenne 491
Figure A-25. Two WRITE CASE Transactionsccccceecereeereenene 491
Figure A-26. Quoted and Non-Quoted Data...........cocceceerenienincceneennnne 507
Figure A-27. READ TOKEN Datalcccoviririeniniieieenieeceeeee e 510
Figure A-28. READ TOKEN Datalcccovirieiininiieieiesieneeecee e 512
Figure A-29. READ TOKEN Datacccovirieieniniieieierieeceeceeeeee 513

Contents-23

Contents-24

Tables

Table 1-1. Manual Contents DesCriptionsccceccveeeveerveerieenveeseveennn 3
Table 1-2. Instrument I/O SUPPOLL......cceeevrieivireriieiieeee e 16
Table 1-3. VEE Versions and Execution Modesc.cccocevienieneannen. 18
Table 2-1. Comparing Instrument Control Objects in VEE 43
Table 2-2. Location of WIN95 and WINNT Framework Driver Files...47
Table 2-3. Location of HP-UX Framework Driver Filesc......... 48
Table 3-1. Escape Charactersccceeceeevueeeneeeriieiieeiee e eveesiee e 92
Table 4-1. Editing Transactions With a Mouse...........cccceeeveeerreeneennne. 116
Table 4-2. Editing Transactions With the Keyboardccc.u....... 117
Table 4-3. Typical Data Field Entriesccccceeevvvevieecieecieeie e, 119
Table 4-4. Escape Characterscccccccoeveeeriieerieenieesieeie e esene e 120
Table 4-5. Summary of Transaction-Based Objectscccueeeenee. 135
Table 4-6. Summary of Transaction Types —cccccccveviverieenieenneeenne. 136
Table 4-7. Objects and Sources/Destinationscceeeveereveerveenveennne 139
Table 4-8. Programs and Related Objects (UNIX).......cccccccveeerreennnnee. 149
Table 4-9. Range of Integers Allowed for Socket Port Numbers......... 159
Table 4-10. Programs and Related Objects (PC)......c.ccevveervenriennnennee. 166
Table 4-11. Summary of EXECUTE Commands (Interface Operations) ..
185
Table 4-12. SEND Bus Commandscccccereereeneeneeiienienieeie e 186
Table 5-1. EXECUTE LOCK/UNLOCK Supportccceeveereeeeeennnne 199
Table 5-2. Recommended I/O Logical Units...........cccoeevvevveenreennnennee. 213
Table 5-3. Recommended I/O Logical Units..........ccceevverveenveennnnnnne. 213
Table 9-1. VEE Data TYPeS.....cccvueeeiiiiiieiieeiie et 305
Table 9-2. Promotion and of Data Types.......ccccccueevveeciieecieeniieeieeenne 311
Table 9-3. Escape Sequences Characters..........cccveevuveeeveeecieennveesveeenne 316
Table 13-1. Converting from Automation Scalar Data Types to VEE Data
Types in VEE 6 Execution Mode..........c.cccceeeiieriiieecieeiie e, 416
Table 13-2. Converting from Automation Scalar Data Types to VEE Data
Types in VEE 5 Execution Mode..........c.ccccveeiieriiieecieeiie e, 418
Table 13-3. Converting from VEE Data Types to Automation Scalar Data
Types in VEE 6 Execution Mode..........c.cccceeevieniiieecieeiieeiee e 419
Table 13-4. Converting from VEE Data Types to Automation Scalar Data
Types in VEE 5 Execution Mode..........c.cccveeiieiiiieecieeiieeiee e, 421
Table 13-5. Converting from Automation Array Data Types to VEE Data
Types in VEE 6 Execution Mode..........c.ccccveeeiieriiieecieeiie e, 421

Table 13-6. Converting from Automation Array Data Types to VEE Data

Contents-25

Types in VEE 5 Execution Mode.........c.cecerininiiienininieeeeee 423

Table 13-7. Automation Data Type Modifiers...........cceevrvivrvrennennnnne. 424
Table A-1. Summary of I/O Transaction TYPes.......c.cceeevercverevereeernenn. 459
Table A-2. Summary of I/O Transaction Objectscccceeeverereennens 460
Table A-3. WRITE Encodings and Formats..........c.cceccvevvieriienieniennnnne, 462
Table A-4. Formats for WRITE TEXT Transactions..............ccceveeeennne.. 465
Table A-5. Escape Charactersccoocveveerveerreesieerieeiesresresenesenenenens 474
Table A-6. Sign Prefixescocveeeevieeciieiieieciecee et 477
Table A-7. Octal PrefiXescooviviiiveeiieeeeeeee e 479
Table A-8. Hexadecimal PrefiXes........oovvvevvveeeiiiieeiiieeeieenee e, 481
Table A-9. REAL NOTAtIONScccovvvieieieeeeeireeeeeireeeeereeeeerreeeennreeeennens 483
Table A-10. PCOMPLEX Phase UnNitscccovveveevuveiieieeeecreeeeereee e, 487
Table A-11. Time and Date NOtatioNS......cc..ccevveeeeereeeeerreeeeenreeeennnen. 490
Table A-12. HP 98622A GPIO Control Linescccceeeeevveeeevveeeennen. 499
Table A-13. READ Encodings and Formatsc.ccoecvevveriveniennennnnnne, 500
Table A-14. Formats for READ TEXT TransactionS.............cceeveeene... 502
Table A-15. Characters Recognized as Part of an INT16 or INT32:...518
Table A-16. Suffixes for REAL NUMDETScccovvvvevereeieirreeeeereeeennen. 524
Table A-17. TOSTATUS ValUCSccovvieiiieiiicieeceeeee e 532
Table A-18. Summary of EXECUTE Commandscccccceeereennene 534
Table A-19. EXECUTE ABORT GPIB AcCtionsS........cccocveeeeevveeeeineneennen. 539
Table A-20. EXECUTE CLEAR GPIB AcCtionsS........ccocevevevveveenneneennen. 539
Table A-21. EXECUTE TRIGGER GPIB Actionscccevvvveveuvereennnen. 540
Table A-22. EXECUTE LOCAL GPIB AcCtionsS........cccoeveveeeuveeeeinereennen. 540
Table A-23. EXECUTE REMOTE GPIB Actions.......ccccccoevvvevevvnvereennnen. 540
Table A-24. EXECUTE LOCAL LOCKOUT GPIB Actions 541
Table A-25. EXECUTE CLEAR VXI ACHONS....cccveveereeeecrreeeenreeeennen. 542
Table A-26. EXECUTE TRIGGER VXI ACtiONSccceevvieeureeereeennennn, 542
Table A-27. EXECUTE LOCAL VXI ACHONS......ccovvevieeciriecrreeeieeeenenns 542
Table A-28. EXECUTE REMOTE VXI ACHONS.......ccovvvveieirreeeerreeeennnen. 543
Table A-29. SEND Bus Commands............cocveeeevveeeenieeeeenreeeeereeeennen. 547
Table B-1. Instrument Control Troubleshooting..............cccovvcvrrerennene. 550
Table B-2. VEE Troubleshooting............ccccvevverienieenieeienieeie e 552
Table E-1. ASCIL 7-bit COdEScvvvieeereiieeieee e 562

Contents-26

Introduction

Introduction

This chapter provides an introduction to this manual and to VEE, including:

About This Manual
Configuring VEE

Using VEE Example Programs
Using Library Objects
Supported I/O Interfaces
Using VEE Execution Modes
Related Reading

2 Chapter1

Introduction
About This Manual

About This Manual

This manual provides detailed information about the advanced features of
VEE. Table 1-1 briefly describes the manual contents.

Table 1-1. Manual Contents Descriptions

Chapter

Description

1 - Introduction

Shows how to use VEE example programs
and library objects.

2 - Instrument Control
Fundamentals

Explains five methods for communicating
with instruments.

3 - Configuring
Instruments

Explains four methods to configure VEE to
communicate with instruments.

4 - Using Transaction 1/O

Explains all VEE 1/O objects that use
transactions.

5 - Advanced I/O Topics

Explains 1/0 configuration and addressing.

6 - Using Panel Driver
and Component Driver
Objects

Describes how to use Panel Driver and
Component Driver objects with VEE.

7 - Using VXIplug&play
Drivers

Explains how to use a VXIplugé&play driver to
communicate with an instrument.

8 - Data Propagation

Describes how to produce programs using
data propagation between objects.

9 - Math Operations

Describes math operations on scalars and
arrays.

10 - Variables

Describes variables in VEE.

11 - Using Records and
DataSets

Describes the Record data type and the
DataSet.

12 - User Defined
Functions and Libraries

Describes 19 categories of built-in functions
and explains UserFunctions.

Chapter 1

Introduction
About This Manual

Table 1-1. Manual Contents Descriptions

- Using the Sequencer [ilProvides guidelines for using the Sequencer
Object object.

14 - Using ActiveX Explains how to use ActiveX automation and
Automation Objects and controls in VEE.
Controls

4 Chapter1

Color and Font
Settings

Introduction
Configuring VEE

Configuring VEE

This section gives guidelines to configure and customize VEE for your
environment by changing VEE options and X11 options (in the UNIX®
environment) or Windows options (in the MS Windows® environment).

Configuring VEE for Windows

VEE for Windows uses the Windows Registry to store VEE environment
information. You can change many VEE window properties in the VEE
Default Preferences dialog box (use File = Default
Preferences). These properties are saved in the defaults file VEE. RC in
the following directory:

$userprofile$\LocalSettings\Application Data\Agilent\VEE
Pro

or in $HOMES, if it is defined.

In VEE 6.0, the Save colors & fonts with program selection no
longer appears in the Default Preferences dialog box. You can save
colors and fonts with the program by choosing File = Save As. Figure 1-1
shows the new Save File dialog box.

Chapter 1 5

Customizing Icon
Bitmaps

Selecting a Bitmap
for a Panel View

Introduction
Configuring VEE

Save File 7| x|
Savein: | ‘=l VEE Pro 6.0 -l & @ i [EE
bitmaps: [P
examples
idz
include
Lib
matlab
File narne: | Save I
Save as lype: IVEE Frograms [*.vee] =] Cancel |
Options
[Save colors and fonts with program
[Save /0 configuration with program

Figure 1-1. The File = Save As Dialog Box

For colors and fonts, only the settings you change are saved in the VEE . RC
defaults file. See How Do I in VEE Online Help for more information
about changing colors and fonts in VEE.

You can change the icon displayed for any iconized object to a bitmap or
pixmap. VEE provides many files, or you can create your own. VEE for
Windows supports 24-bit . BMP bitmap files, .GIF87, .GIF89a, .PNG
(Portable Network Graphics), .WMF (Windows Meta Files), and . ICN icon
files. To select an object's icon, click the object menu's Properties feature,
then use the Tcon tab on the Properties dialog box.

You can create your own bitmaps for object icons using any editor that
outputs graphics formats that VEE supports, such as MS Windows Paint.
You should specify 48x48 as the size for an icon. Larger icons use more
space in the VEE program area while smaller icons are difficult to see. You
can also use screen capture utilities such as Print Screen with Paint.

You can select a bitmap to use as the background icon for a panel view. This
applies to UserObjects and to VEE programs displayed in their panel views.

6 Chapter1

Color and Font
Settings

Changing X11
Attributes (UNIX)

Introduction
Configuring VEE

Panel view icons must use the formats VEE supports. You can also use icons
you create, as described in the previous paragraph.

To select a bitmap as the icon for a panel view, enable the panel view so the
Panel and Detail buttons appear in the title bar (by adding an object to the
panel). Click the object menu, then click Properties. Use the Panel tab
on the Properties dialog box to choose a bitmap.

Configuring VEE for UNIX

In VEE 6.0, the Save colors & fonts with program selection no
longer appears in the Default Preferences dialog box. You can save
colors and fonts with the program by choosing File = Save As. Figure 1-1
shows the new Save File dialog box.

The color and font settings you change in VEE are saved in the defaults file
.veerc in your SHOME directory. For colors and fonts, only the settings
you change are saved in this defaults file. See How Do I in VEE Help for
more information about changing colors and fonts in VEE.

On UNIX platforms, VEE supports .bmp (bitmap), .gif, .icn (icon), and
.xwd (X11 bitmap) files. You can create your own bitmaps for object icons
using any editor that supports graphics formats that VEE supports, such as
the IconEditor program on HP-UX. You can also use screen capture
utilities such as X11 Window Dump (xwd) on UNIX.

VEE provides an app-defaults file named vee that you can use to customize
several attributes of VEE. This file is in opt /veetest/config/ for HP-
UX 10.20. In the same directory is the app-defaults file named Helpview,
which lets you customize the appearance of your Help windows.

To use these files, you must install them into your X11 resources database. If
you are using xrdb, install the files by typing xrdb -merge filename
for each file before starting VEE. If you are not using xrdb, merge the files
into your X11 resources file. Your X11 resources file is usually
.Xdefaults in your $HOME directory, but may be in a file identified with
the environment variable $XENVIRONMENT.

To change other X11 resources, change or add to your X11 resources file.
For example, to change the default geometry of the VEE window so that it

Chapter 1 7

Introduction
Configuring VEE

always starts in the lower right corner of your screen and is sized to 640 by
480 pixels, add the following line to your X11 resources file (probably
.Xdefaults):

Vee*geometry: =640x480-0-0.

For more information about customizing an X11 environment, see the
Beginner's Guide to the X Window System.

Screen Colors Your workstation is equipped with a certain number of color planes (usually
Change (UNIX) 1,4, 6, or 8). X11 uses the information in these color planes to color your
application's window.

If you have more than one application running (each in its own window) and
you notice the screen colors changing as you move from one application's
window to another, one of two things may be happening. Either all the
applications together use more colors than your display has available, or one
or more of the applications allocates its own private color map (for example,

Rocky Mountain Basicl).

VEE uses at least 39 colors (this varies depending on how you define the
colors and which colors VEE actually uses while running) so you may
experience this behavior when VEE is one of your applications.

The symptoms are that when you are in the VEE window, the VEE colors
will be correct for VEE but may be wrong in other application's windows.
When you move to another application's window, the colors will be correct
for that application but may be wrong for VEE. This is typical X11 behavior
-- it is not a problem with VEE.

This behavior does not affect the performance of VEE or any other
application. However, there are some things you can do to correct the
situation.

Attempt to Use Too Your workstation can display some number of colors at one time, based on
Many Colors (UNIX) the number of color planes for your display. This number is:

2number of color planes

1. Rocky Montain Basic was formerly known as HP BASIC/UX.

8 Chapter1

Applications that
Use a Local Color
Map (UNIX)

Introduction
Configuring VEE

For example, if you have 4 color planes, you can use as many as 16 colors at
a time on your display.

24=16

If you exceed this number, you may see the screen flashing as you change
from one window to another.

If you exceed your total available colors, the first step in eliminating the
"flashing" is to reduce your colors to be within the limits of your
workstation. Some tips on reducing colors are:

B Remove any extra colors. If two applications can use the same color
scheme, customize them to do so.

B Use reduced-color color schemes in applications. Click File =
Default Preferences.Inthe Default Preferences dialog box,
change your default colors to use only a few colors.

B Stop any applications you do not need. Each application may use its own
color scheme. This can quickly increase your requested colors to exceed
your color map limit. If you stop other applications, you probably need to
re-start VEE to see the change.

B Reduce the number of colors allocated by the xinitcolormap
command. Because these colors remain permanently in the color map,
there is room for fewer temporary colors.

Some X11 window managers have a colormap focus directive (for example,
*colormapFocusPolicy). This value may affect how colors are used on
the screen. If you exceed the total number of colors you can simultaneously
display and this value is set to explicit, you may not see correct colors in
your application's window.

Some applications use a local color map. When you run such an application
it saves the current color map and switches over to its own local color map.
When this happens you may see the "flashing" between windows.

One way to circumvent this is to pre-allocate the VEE colors using the
xinitcolormap command. To do this, create an ASCII file listing the

Chapter 1 9

Introduction
Configuring VEE

colors you want to pre-allocate. This file is described in the man page for
xinitcolormap.

The file cannot contain blank lines and must start with the colors Black and
White. The color format can be either pre-defined words or RGB hex
values, preceded by the symbol #. For example, Figure 1-2 and Figure 1-3
contain examples of black, white and a shade of light gray:

Black
White
LightGray
Figure 1-2. Color Map File Using Words

#000000
#EffEEE

#aB8a8a8
Figure 1-3. Color Map File Using Hex Values

Rocky Mountain Basic is one application that uses a local color map and
recommends that you pre-allocate the Rocky Mountain Basic colors at
startup using the xinitcolormap command. See the

/opt/rmb/newconfig/rgb.README file for details.

To pre-allocate VEE colors:

1. Create a "colormap" file that contains all the different VEE colors you
will use.

2. Change to your $HOME directory:
cd SHOME
3. Concatenate the Rocky Mountain Basic and the VEE colormap files:

cat /opt/rmb/newconfig/xrmbcolormap vee-colormapfile >
.xveecolormap

The Rocky Mountain Basic colors must go first because Rocky Mountain
Basic assumes that they are the first 16 entries in the colormap. You can
mix word colors and hex number colors in one file.

10 Chapter1

Note

Introduction
Configuring VEE

4. Place the xinitcolormap command near the beginning of your
.x11start file. This command must execute before you allocate any
colors for other applications.

For example, if your colors are in $SHOME/ . xveecolormap and you
have 55 colors listed in the file (16 from Rocky Mountain Basic + 39
from VEE), add the following line to .x11start:

/opt/X1l/xinitcolormap -c 55 -f SHOME/.xveecolormap

5. Restart X11. To do this, stop the window manager by pressing
Shift+Ctrl+Break or selecting Reset from your root menu, then type:

xllstart

Using Non-USASCII Keyboards (UNIX)

If you are using a non-USASCII keyboard, you need to modify the SLANG
variable in your X11 environment. To use a German language keyboard,
enter the command in the Korn shell:

export LANG=german.iso88591

When the LANG variable is set, use File = Default Preferences to
change fonts.

If you are accessing data that was created with the Roman8 character set, you
must translate any special characters (above ASCII 127) used.

Your terminal window may use Roman8. Therefore, TEXT written to stdout,
file names (such as specified by To File and From File), and programs
names must use ASCII characters 0-127 to match with those specified with
VEE.

Using HP-GL Plotters (UNIX)

VEE supports graphics output to plotters and files using HP-GL. Before you
can send plots to a plotter (either local or networked) your system
administrator must add the plotter as a spooled device on your system.

Chapter 1 1

Introduction
Configuring VEE

In addition to standard HP-GL plotters, such as the HP 7475, the HP
ColorPro (HP 7440), or the HP 7550, some printers, such as the PaintJet XL
and the LaserJet I11, can be used as plotters. The HP ColorPro plotter
requires the Graphics Enhancement Cartridge to plot polar or Smith Chart
graticules or an Area-Fill line type. The PaintJet XL requires the HP-GL/2
Cartridge in order to make any plots.

To make plots on the LaserJet Il requires at least two megabytes of optional
memory expansion, and the Page Protection configuration option should be
enabled. Plots of many vectors, especially with Polar or Smith chart
graticules, may require even more optional memory. Any plot intended for a
printer requires the plotter type to be set to HP-GL/2, which causes the
proper HP-GL/2 setup sequence to be included with the plot information.

Any of the following graphical two-dimensional displays can be plotted to
an HP-GL or HP-GL/2 plotter, or to a file:

XY Trace

Strip Chart
Complex Plane

X vs Y Plot

Polar Plot
Waveform

Magnitude Spectrum
Phase Spectrum

Magnitude vs Phase

You can specify the appropriate default plotter configuration by selecting:
File = Default Preferences. Selectthe Printing tab in the
Default Preferences dialog box and click the Plotter Setup button
to edit the Plotter Configuration dialog box.

To generate a plot directly from a display object, select P1ot on the display's
object menu, specify the required parameters in the Plotter
Configuration dialog box, and press OK.

You can also add P1ot as a control input to generate plots programmatically.
The entire view of the display object will be plotted and scaled to fill the
defined plotting area, while retaining the aspect ratio of the original display
object.

12 Chapter1

Introduction
Configuring VEE

By re-sizing the display object you can control the aspect ratio of the plotted
image. By making the display object larger, you can reduce the relative size
of the text and numeric labels around the plot.

For an explanation of the plotter configuration parameters in the Plotter
Configuration dialog box, see the Default Preferences section in
Objects and Menu Items under Reference in VEE Online Help.
Also, see the reference sections for the appropriate two-dimensional display
devices.

Chapter 1 13

Introduction
Using VEE Example Programs

Using VEE Example Programs

VEE includes many example programs to help you understand how it works.
The example programs are installed as part of the VEE installation process.
The Example Directories

The default directory for examples is:

For Windows:

C:\Program Files\Agilent\VEE Pro 6.0\examples\
For VEE for HP-UX running on HP-UX 10.20:
/opt/veetest/examples/

The examples referenced in this manual are included in the Manual
subdirectory, with file names like manual01.VEE, etc. Other examples not
referenced in this manual are available in other subdirectories to illustrate
specific VEE concepts or to illustrate solutions to engineering problems.

Running the Examples

You can load and run example programs using the He1p menu, as follows:
1. Click Help = Open Example on the menu bar. This presents a list of
subdirectories that group similar examples together. (You can also use

File = Open = Examples to load VEE examples.)
2. Double-click the desired subdirectory to see the programs in that group.

3. Scroll through the list until you find the desired example.

4. Click the example name, then click OK to open the program. You are
prompted to save the any existing program in the work area.

5. To run the program, press the Run button on the tool bar.

14 Chapter1

Note

Formula Objects

Introduction
Using Library Objects

Using Library Objects

VEE also includes a library of objects that you can “Merge" into your
programs. The library objects are installed as part of the VEE installation
process in the following directory:

For Windows:
C:\Program Files\Agilent\VEE Pro 6.0\Lib\

For HP-UX 10.20:
/opt/veetest/1lib/

Most library objects are UserObjects that encapsulate individual objects.
You can create UserObjects for the library and save them.

In Windows, save your UserObjects in:

C:\Program Files\Agilent\VEE Pro 6.0\Lib
In HP-UX, save your UserObjects in:
/opt/veetest/lib/contrib/

In HP-UX, the contrib subdirectory provides a place for your own library
of "contributed" objects.

You must be root user to write to the 1ib directory on HP-UX platforms.

Formula objects that you can merge into your program are also available.
Each of these objects performs a useful conversion function, such as degrees
to radians.

In Windows, the files are located in:
C:\Program Files\Agilent\VEE Pro 6.0\Lib\convert\
In HP-UX 10.20, they are located in:

/opt/veetest/lib/convert/

Chapter 1 15

Introduction
Supported I/O Interfaces

Supported I/0 Interfaces

Before VEE can communicate with instruments, the computer running VEE
must be properly configured and the I/O libraries must be installed as
described in Installing the Agilent 10 Libraries - VEE for Windows or
Installing the Agilent 10 Libraries - VEE for HP-UX. Also, see “Logical
Units and I/O Addressing” on page 212 in this manual for logical unit

and I/O addressing information.

Table 1-2 lists the supported I/O interfaces for each platform.

Table 1-2. Instrument I/O Support

HP-U X

(HP 9000 Series 700, V/743)

Platform Supported /O Interfaces
Windows 95/98 GPIB®
(PC, HP 6232, HP 6233, EPC7/8) Serial
GPIO
VXIP
Windows NT GPIB?
(PC, HP 6232, HP 6233, EPC7/8) Serial
GPIO
VXIP

a. Can address VXI devices using HP E1406 Command Module.

b. Direct backplane access for embedded controllers: HP 6232 or HP 6233
VXI Pentium® Controller, HP RADI-EPC7/8 VXI Controller, or RadiSys
EPC7/8 VXI Controller. Direct backplane access for external PCs using

VXLink.

c. Direct backplane access for HP V/743 VXI Embedded Controller. Direct
backplane access for external Series 700 using HP E1489C EISA/ISA-to-

MXIlbus interface.

16

Chapter1

What is an
Execution Mode?

Introduction
Using VEE Execution Modes

Using VEE Execution Modes

This section gives guidelines for using VEE Execution Modes,
including:

B Setting Execution Modes

B Execution Mode Changes: VEE 3 to VEE 4
B Execution Mode Changes: VEE 4 to VEE 5
B Execution Mode Changes: VEE 5 to VEE 6

Setting Execution Modes

Each version of VEE has several Execution Modes (formerly Compatibility
Modes). This allows a newer version of VEE to run programs created with
an older VEE version exactly the same way the older VEE ran them. This is
known as "backwards compatibility", and all version of VEE are 100%
backwards compatible using Execution Modes. Version 6.0 of VEE adds the
VEE 6 Execution Mode.

VEE Version 4.0 had two Execution Modes: VEE 3.x and VEE 4. This
allowed VEE 4.0 to run old programs created with VEE Version 3.0 (or
prior) in the exact same way the programs ran in VEE Version 3. If you want
to run a VEE 3 program in Compiled mode, you switch modes and then VEE
4 runs your program using the Compiler.

In the same manner, VEE Version 5.0 had three Execution Modes: VEE
3.x,VEE 4,and VEE 5. In VEE Version 6.0, VEE 6 Execution Mode is
added to the list. When a program created with an older version of VEE is
brought into VEE, the program knows what Execution Mode it used. When
VEE loads that program, VEE puts itself into that corresponding Execution
Mode so the program will run exactly as it did in the older version of VEE.

Once a program is written and saved with a Execution Mode, the program
retains that Execution Mode unless changed by the user. If you developed
and saved a program in Version 5.0, the program is saved with Execution
Mode VEE 5. If you then load the program in Version 6.0 and save it, the
program still has Execution Mode VEE 5. Unless you change the Execution
Mode (using the Default Preferences Dialog Box or other means), the

Chapter 1 17

Why should | want
to change Execution

Modes?

How do | know when
to change Execution

Modes?

Introduction
Using VEE Execution Modes

Execution Mode does not change for the program, no matter which version
of VEE loads the program.

To change a program’s execution mode, open the File menu and select
Default Preferences. When the Default Preferences dialog box opens,
click the diamond next to the execution mode you want to apply to the
program. Save the program or click OK.

You should change Execution Modes if you add new features to an existing
program. For example, if you add new features, such as new data types
available in VEE 6, to a program written in VEE Version 5.0 (with
associated Execution Mode VEE 5), you should change the Execution
Mode to VEE 6. If you change the program but do not change the Execution
Mode, the new features added to the program may not run properly.

In most cases, programs written in previous versions of VEE will run 100%
as long as the Execution Mode is not changed. However, you may not be
able to run new features unless the latest Execution Mode is used.

Table 1-3 shows the combinations of programs that will run for various
versions and Execution Modes. Note that old programs will run in any
version as long as the Execution Mode is not changed. The only potential
problem occurs when the Execution Mode is switched.

Table 1-3. VEE Versions and Execution Modes

Program Created in Execution Mode:
Running in VEE: VEE 4 VEE 5 VEE 6
Version 4.0 runs CNA* CNA*
Version 5.0 runs runs CNA*
Version 6.0 runs runs runs

*CNA means Compatibility Not Assured. Programs created on later
versions of VEE might load and run on earlier versions of VEE, if they do
not include any features unique to the later version. Programs which take
advantage of newly added features will not run correctly on older versions of

18 Chapter1

Guidelines to
Switching Execution
Modes

About the Compiler

Note

Introduction
Using VEE Execution Modes

VEE. In some cases, the programs may not even load into older versions of
VEE.

The point of Execution Modes is to assure that existing programs will run on
newer versions of VEE. There is no assurance that new features will run on
old versions of VEE.

You should use VEE 6 Execution Mode when you develop new programs in
VEE 6.

You can run any existing VEE program by selecting the applicable
Execution Mode (VEE 3 for VEE 3.x programs, VEE 4 for VEE 4.x
programs, or VEE 5 for VEE 5.x programs). The appropriate mode for older
programs is automatically set when the program is loaded.

If you switch to VEE 6 Execution Mode, an old program may or may not
run correctly. Most programs will run correctly. See the following example
for a "bug fix" that may cause a program to run differently.

Suppose you have a Version 5.0 program (Execution Mode VEE 5) which
includes a To File that does a WRITE BINARY BYTE transaction. In
Version 5.0 (and prior versions), you could send "300" into this and get "44"
written to the file. (This is technically a defect because "300" does not fit
into a byte, and this should have errored instead of truncating 300 to 44.)

In Version 6.0 with VEE 5 and prior Execution Modes, you still get "44" to
preserve program compatibility. However, in VEE 6.0 with VEE 6
Execution Mode you get an error message saying VEE cannot convert 300 to
a UInts (out of range). See “Execution Mode Changes: VEE 5 to VEE 6”
on page 35 for a list of changes from VEE 5 to VEE 6 execution mode.

To use the compiler and include ActiveX automation and controls, set
Execution Mode to VEE 6. If you want to convert

VEE 3 programs to VEE 6 mode, you should make sure they work in
VEE 4 and VEE 5 modes first, as there are some program execution
differences between each mode.

It is not necessary to understand the information in this section to use the
compiler. This section explains the concepts behind the compiler for your

Chapter 1 19

Introduction
Using VEE Execution Modes

information only. Information about the compiler applies to VEE 4 and
higher modes, except for minor changes.

The compiler works with programs that run in VEE 4, VEE 5, or VEE 6
modes. The VEE compiler converts a VEE program into p-code, but there is
no machine language or executable generated.

The compiler allows VEE to:

B Predict at compile time (instead of determining at run time) the order of
execution of objects

B Determine what data types will be flowing on certain data lines
B Optimize code generation
B Generate and execute the most optimal p-code for any given VEE object.

VEE programs compile transparently when you press the Run button.
Stepping and breakpoints are fully supported, as well as Show Execution
Flow, Show Data Flowand Line Probe.

Subsequent runs of the same unmodified program do not require
recompilation. When a program is modified only the contexts needing
recompiling are recompiled (much like an incremental compiler). Most
programs benefit from the use of the compiler, though the actual results vary.
For example, a program using many levels of nested loops may see a greater
speedup than one that does a lot of I/O or screen updates (e.g., displays).

In compiled mode, iterators and formulas gain the most execution speed
benefit. A program written with an previous version of VEE may not run
exactly the same way with the compiler. This could be due to specific
programming techniques, use of undocumented side-effects, or even slight
changes in documented behavior.

20 Chapter1

Line Colors in
Compiler Mode

Potential
Compatibility
Problems

Introduction
Using VEE Execution Modes

Execution Mode Changes: VEE 3 to VEE 4

VEE programs written with versions before VEE 4.0 run exactly the same as
they used to when run in VEE 3 mode. To ensure this, the interpreter is
automatically enabled upon loading of older programs. This section
describes the new functions and enhancements in VEE Version 4.0, that is,
in VEE 4 mode.

In compiler mode, VEE assigns different colors to the data lines that connect
objects based on the type of data flowing through the line. The default colors
are listed below, along with the names of the color properties. You can
change them in the Default Preferences dialog box, selected from the
File menu. Choose the line you want to change in the Screen Element box,
click on the Color Value box to open the color palette, and click on the color
you prefer. Click Ok to keep the new color for the selected line type.

B Dark Sky Blue: numeric (Integer or Real type)

B Dark Sky Blue: complex (Complex and PComplex type)

B Med Orange: string (String type)

B Med Dark Gray: sequence out (nil value, usually from a sequence out
line)

B Magenta: highlight

W Black: unknown type or type that is not optimized (for

example, Record types).

If the data type is an array, VEE displays a wider line. To increase speed,
check your program for colored lines. The more non-black lines, the faster
the program runs.

Programs written in versions before VEE 4.0 automatically run in VEE 3
mode. Programs written using VEE 4.x automatically run in VEE 4 mode.
Programs written using VEE 5.x automatically run in VEE 5 mode. You can,
however, change the Execution Mode of a program at any time.

Compeatibility problems could arise in certain areas when changing an
existing program from VEE 3 to VEE 4. The following paragraphs explain
the potential problem areas. The information about using older versions of
VEE is the same as when using interpreted mode or VEE 3 mode. (If you are
creating new programs, you should use VEE 6 Execution Mode.)

Chapter 1 21

Introduction
Using VEE Execution Modes

Time-Slicing UserFunctions. In versions before VEE 4.0, UserFunctions
did not time-slice with other parts of the program. In compiled mode,
UserFunctions will time-slice when called from separate threads. Be sure to
use sequence pins between Call objects when parallelism is not desired.

UserFunctions only time-slice when called from Call, Formula, or If/
Then/Else, or Sequencer objects (only when called from the Function
field). Breakpoints also now work in UserFunctions when called
from Ccal1l or the other objects listed above.

UserFunctions will not time-slice, nor will breakpoints work, when called
froma To File, To String, or similar objects or if the formula is supplied
via a control pin.

If a UserFunction is executing and gets called again from another part of the
program, that call will be blocked until the original call returns.

UserObjects. UserObjects would always time-slice in previous versions,
but in compiled mode they will only time-slice when invoked from separate
threads.

Function Precedence. The precedence of functions called from the
Formula object has changed to the following:

1. Internal functions (like sin () and totSize ())

2. Local UserFunctions

3. Imported UserFunctions

4. Compiled Functions

5. Remote Functions

In VEE 3 Execution Mode, internal functions are last in precedence. This

allowed you to override internal functions such as totsize () or £ft ()
with your own.

Auto Execute and Start. There are some subtle changes in behavior when
using the Auto Execute feature of certain objects. In compiled mode, the

22 Chapter1

Introduction
Using VEE Execution Modes

behavior is as if the object was hooked directly to a Start object and that
Start button was pushed. This change does not affect most programs.

OK Buttons and Wait for Input. Most asynchronous objects like the Ok
object or any object with wait for Input enabled will work better in
compiled mode in these two areas:

B Stepping: In previous versions, stepping over such an object would often
result in the termination of the program. In compiler mode, stepping
works properly.

B CPU usage: In previous versions, executing such an object usually
resulted in increased CPU usage. In compiler mode, the CPU stays in
an idle state.

Collectors Without Data. In previous versions, pinging the XEQ pin of a
Collector that has never been pinged with data outputs a nil container. In
compiler mode, if the data type is known at compile time, you get a zero-
element array of that data type. Otherwise, you get a zero-element array of
type Integer.

This change allows the type inferences to be more consistent, producing
better p-code downstream from the Collector object. Note that
totSize () of anil produces a one, while totSize () of a zero-element
array produces a zero.

Sample & Hold Without Data. In previous versions, pinging the XEQ pin
ofa Sample & Hold object that has never been pinged with data yields a
nil container. In compiler mode, the following error is generated (error
number 937):

Sample & Hold was not given any data.

This change allows the type inferences to be more consistent, producing
better p-code downstream from the Sample & Hold object.

Timer Object. In previous versions, the Timer object output an undefined
result if the Time2 pin (the bottom data input pin) was pinged before the
Timel pin. In compiler mode, the Timer object generates an error if the
pins are executed out of sequence.

Chapter 1 23

Introduction
Using VEE Execution Modes

Feedback Cycles. In compiler mode, a Junction object is required inside
a feedback cycle. start objects are no longer required. The following error
is generated when feedback without a Junction is detected (error number
935):

A Junction is required inside of feedback cycles. See Figure 1-4 and
Figure 1-5.

—|Far Count| « = Formula =]

s
r'ﬂ

Figure 1-4. Feedback in Previous Versions

=1

—|For (5|:|unt| Al

[10)
= Formula | =]

-'||”tE_QEV| A ﬂ ja+B Result
I it 3

Figure 1-5. Feedback in Compiled Mode

24 Chapter1

Introduction
Using VEE Execution Modes

VEE Version 4.0 and higher does not allow invalid connections, such as an
object's data input pin connected to its data output pin or, for most objects,
connecting a sequence output pin to a data input pin.

Parallel Threads. In VEE 3 Execution Mode, independent threads would
round-robin between each thread, meaning that one object will be executed
in one thread, then an object in the other thread, etc. In compiler mode, this
behavior is not guaranteed.

Loop Bounds. To increase looping performance, the bounds of iterators
(such as the step field in a For Range object) are examined only at the
beginning of the first iteration and not at every iteration. The object's fields
are grayed at run time to show the value is not changeable. Data inputs to the
iterators will be ignored if the value changes while the loop is running

For example, if the Step value of a For Range object is changed via the
data input pin while the loop runs, it is ignored in VEE 4 and higher
Execution Mode. In previous versions, the step value would have been
checked on every iteration.

UserObjects and Calls With XEQ Pins. In versions before 4.0, you could
have an xEQ pin on a UserObject or a Call object run the UserObject or
UserFunction before all the data input pins were satisfied. The behavior of
objects inside the UserObject or UserFunction connected to those unpurged
data inputs was undefined. In VEE 4 and higher Execution Mode, this is not
allowed. XEQ pins on those objects will generate an error. You can no longer
add an XEQ pin to those objects.

OK Buttons With XEQ Pins. In versions before 4.0, an OK object with an
XEQ pin was only executed once, when either the OK button was pressed or
when the XEQ pin was sent data. In VEE 4 and higher Execution Mode, the
OK button executes every time the XEQ pin is sent data. You can no longer
add an XEQ pin to an OK object.

From File With EOF Pins. In versions before 4.0, the data output pin on a
From File object was treated differently from other data output pins in

Chapter 1 25

Introduction
Using VEE Execution Modes

VEE. If the From File was in a loop, the data on the output pin remained
valid when the EOF data output pin was executed.

In VEE 4 and higher Execution Mode, the data output from a From File
object is invalidated each time the loop executes (just like on all other
objects). Therefore, when the EOF pin is executed, the data output is already
invalid and cannot propagate.

Figure 1-6 illustrates this situation. In versions before 4.0, the data fed into A
on the Formula would have remained valid even while another iteration of
the loop executed. To get valid data fed into B on the Formula, the EOF pin
(on the bottom) executes and then the Formula executes.

In VEE 4 and higher Execution Mode, the data fed into A is invalidated as
soon as the next iteration of the loop begins. Because Formula does not get
valid inputs on the same iteration of the loop, it never executes.

To File
TI —| AlphaMumeric | «
Until Break
—| Farmula =

From File ———[a+B Result |

B
= |Real |j Break|
|12

Figure 1-6. EOF Differences

Parallel Junctions. In versions before VEE 4.0, if you had unconstrained
objects that were connected in parallel to Junction objects, the order that
you made the connections affected the execution order. In VEE 4 and higher
Execution Mode, the order of connection does not matter, as Figure 1-7

26 Chapter1

shows.

—|Far count| -

[10 |

JcT

—|Integer| |

|D— i

L,
B

Introduction
Using VEE Execution Modes

4]

Result

~|
| A |
8|

Formula

|a+t:|

JCT

Figure 1-7. Parallel Junctions

Intersecting Loops. In versions before 4.0, you could intersect iteration

objects. The execution order was undefined, but was affected by the order

the connections were made. In VEE 4 and higher Execution Mode, only
loops that intersect via a Junction object are allowed. Any other
intersecting loops generate error 938. VEE was unable to compile
this part of the program. Figure 1-8 shows this situation.

—|For Count| =

[2

Formula

[=]

—|For Count| =

.

LB
[

e

E*El Result

—| Logging Alphalumeric | «

1

Figure 1-8. Intersecting Loops

Chapter 1

27

Introduction
Using VEE Execution Modes

Intersecting Loops Via Junctions. In versions before VEE 4.0, the
example shown in Figure 1-9 would execute the Integer first. When the
program encountered the Break it would stop. In VEE 4 and higher
Execution Mode, the example below runs the For Count objects after the
Integer objects because the Break does not stop the program.

—=| Integer | - |

|1—._

—| For Count | «

I 10
LJCT|"| = Ifa== =
TeatEr Lal o4 | 0Tt —
ELET A Else Else Break|

o e

—| For Count | « —| Counter | «

#arﬁ

Figure 1-9. Intersecting Loops Via Junctions

Open View Object Changes. In versions before VEE 4.0, you could change
the data in open view fields while the program was running or paused. These
changes would affect program behavior and the result was not guaranteed. In
VEE 4 and higher Execution Mode, many objects do not allow this type of
modification when the program is running or paused (the input fields are
grayed). Some examples of this are:

Formula and If/Then

Collector

All Transaction objects' transactions

Get Mappings and Set Mappings

Get Values and Set Values

Constant's properties such as setting Scalar or 1D Array,Wait for
Input, Or Auto Execute.

Setting properties like Clear at PreRun

UserObject and UserFunction Trig Mode

28 Chapter1

About the VEE 5
Execution Mode

Converting
Programs to VEE 5
Execution Mode

Introduction
Using VEE Execution Modes

B Dialog Boxes properties

Adding or deleting input or output terminals on objects is grayed at run time
(but not when paused). If this action is done at pause time, the program is
stopped (as in versions before VEE 4.0).

Array Syntax in Expressions. Expressions with array syntax entered
without commas, suchas [1 2 37, will be reparsed when the program loads
and automatically modified to use commas, as in [1, 2, 3]. This is true for
programs in VEE 3 and VEE 4 modes.

Execution Mode Changes: VEE 4 to VEE 5

In VEE 6.0, the VEE 4 and VEE 3 modes retain their compatibility
definitions set in VEE 4.0, which are described in “Execution Mode
Changes: VEE 3 to VEE 4” on page 21. There are minor changes that will
not affect existing programs that run in their original execution modes (VEE
3 or VEE 4). These changes are important to know if you plan to convert
programs from older to newer modes.

The VEE 5 Execution Mode is a superset of the VEE 4 mode. The VEE 5
mode retains the compiler features described previously and introduces
significant changes affecting program compatibility. Most of the changes
enable support for ActiveX automation and controls.

Other changes may impact your programming techniques if you use any of
the features described in this section, even if you do not use ActiveX. For
information about using ActiveX in VEE, see Chapter 14, “Using the
Sequencer Object.”.

Old programs will automatically open in the appropriate old execution
mode. If you want to change older programs to a newer mode, you must do
this manually using Default Preferences under the file menu. When
you change a program to VEE 5 mode, errors can occur. A list appears
explaining problems. You need to fix these errors before VEE 6.0 accepts
the switch to VEE 5 mode. VEE 6.0 does not automatically revise any part
of your program to fix the errors.

Chapter 1 29

VEE 5 Execution
Mode Changes

Note

Introduction
Using VEE Execution Modes

To help you know how to fix errors, the VEE 5 mode compatibility changes
are described below.

If you want to change VEE 3.x programs to VEE 5 mode, you should be sure
they work in VEE 4 mode first and then change them to VEE 5 mode. See
“Execution Mode Changes: VEE 3 to VEE 4” on page 21 for help with that
conversion.

Menu Changes. As part of the ActiveX support added to VEE 5.0, the
Device menu has changed slightly. These new menu items have been
added:

ActiveX Automation References...
ActiveX Control References...
ActiveX Controls

Also, the menu item Math & Functions that opened the Select
Functions dialog box, is now called Function & Object Browser and
opens the Function & Object Browser. You still use it the same way to
select math operators and functions for a program, and its expanded
functionality supports ActiveX.

Expressions. The following changes affect objects that contain expressions,
such as Formula:

B SET and ByRef are new keywords that are used for ActiveX automation.
They are reserved and cannot be used as names for terminals.

B New syntax is supported for ActiveX automation such as
excel.worksheets (1) .cells(1,2) = 2.

B [nVvEE 3 and VEE 4 modes, expressions with array syntax entered
without commas, suchas [1 2 3], are reparsed when the program loads
and automatically modified to use commas, asin [1,2,3].In VEE 5
and higher modes, entering array syntax without commas, such as [1 2
31 will cause an error when Formula loses focus.

B A value such as 1 returns an INT32, 1.0 returns a REAL64. Previously,
both returned a REAL64.

30 Chapter1

Introduction
Using VEE Execution Modes

B There are two new built-in functions for ActiveX automation:
CreateObject () and GetObject ().

B There are two new built-in constants for ActiveX automation:
true and false.

Variables. The following changes affect variables:

B When Delete Variables at PreRun isturned on (in Default
Preferences), global variables are not deleted if they reference
ActiveX controls.

B The Declare Variable object has a new variable type called Object
which is used for ActiveX automation.

B The new Object variable type is also available on input terminals as a
Required Type, though it cannot be coerced from or to another type.

Global Namespace. Global namespace rules have changed, which affects
names given to variables, functions, and libraries in the following ways:

B Local UserFunctions, Library names, global declared and undeclared
variables, and local-to-library declared variables are now all in the same
name space and must have unique names. This affects existing programs
if they contain more than one instance of a name. For example, you
cannot have a UserFunction and a declared global variable both named
daily results. This will cause an error when you switch the program
to VEE 5 mode.

B Within a Library, local UserFunctions and local-to-library declared
variables are in the same namespace and must have unique names. This
will cause an error when you switch the program to VEE 5 mode, or if
you import a Library containing conflicting names into a VEE 5 mode
program.

Chapter 1 31

Introduction
Using VEE Execution Modes

B New syntax is allowed in the Formula object in all modes, such as
lib.func(a,b) = RightHandExpr

This parses correctly in all modes. However, it executes correctly only in
VEE 5 and higher mode and causes a run-time error in VEE 3 and VEE 4
modes.

The changes in global namespace rules also change the order of precedence
used in VEE 5 and higher mode to the following order when VEE looks up
variable and function names used in a Formula:

1. Local input/output terminals.
2. Declared local-to-context variables.

3. Declared local-to-library variables when inside a UserObject context
nested in a UserFunction context.

4. Global declared and undeclared variables, local UserFunctions, Library
names, which all must be unique names.

5. Built-in functions, such as sin () and totSize ().

6. ActiveX controls and automation constants depending on which libraries
have been referenced using Instrument = ActiveX Automation
References Or ActiveX Control References. Forexample,
many constants exist in Excel’s automation library, such as
x1Maximized).

7. Imported UserFunctions, Compiled Functions, and Remote Functions
appear in random order. To guarantee getting the correct one, include the
imported Library’s name, as in myLib. func ().

An unlikely example of how this new order can cause an older program to
fail might involve a Formula containing the expression sin (90) with a
data input terminal (a variable) named sin. In VEE 3 and VEE 4 modes,
VEE ignores the input terminal name and calls the sin () built-in function.

32 Chapter1

Introduction
Using VEE Execution Modes

However, VEE 5 and higher mode uses the new precedence order to look up
the function and variable names. So VEE 6.0 looks up the terminal name,

assumes it has an ActiveX object on the input, and tries to call the object’s
default method. An expression that calls an ActiveX object’s default method,

cells(1,1),is similarto sin (90). For information about ActiveX, see
Chapter 14, “Using the Sequencer Object.”

READ TEXT Transactions. In VEE 3 and VEE 4 modes, the READ TEXT
transaction using the TOKEN format with EXCLUDE CHARS does not advance
the read pointer to exclude the specified character. Figure 1-10 shows an

example of this in VEE 4 mode:

= Text =]
|The first phrase * the next phrase * the end
= AlphaMurmeric F
The first phrase
—| From String =
® = AlphaMumeric P
- READ TEXT y TORKEM EXC S
ASHING | FOEAD TEXT 2 STR LY
Z
= AlphaNumeric =

* the next phrase * the end

Figure 1-10. READ TEXT Transaction with TOKEN in VEE 4 Mode

This is an unexpected result. An expected result is for each phrase separated

nyn

by the excluded character

to appear in separate AlphaNumeric

displays, as shown in the VEE 5 mode example in Figure 1-11.

Chapter 1

33

Using VEE 5 Mode
in HP-UX

Introduction
Using VEE Execution Modes

= Text =]

|The first phrase * the next phrase * the end

= AlphaMurmeric F
The first phrase

—| Fram String =]
READ TEXT x TOK] HE Fy —| AlphaMumeric F
= READ TEXT y TOKEN EXCLUDE"*" the next phrase
ASHING | | pEAD TEXT 7 5TR LY H
Z

= AlphaMurmeric F
the end

Figure 1-11. READ TEXT Transaction with TOKEN in VEE 5 Mode

Interaction Between To/From File and To/From DataSet.InVEE 3
and VEE 4 modes, a program using a To File or From File object with
the EXECUTE REWIND transaction to access the same data file as a To
DataSet or From DataSet object can cause unexpected interactions.
More specifically, if a program uses From File (with EXECUTE REWIND)
to read data from a file, then uses To DataSet to write data back into the
same file, the data can be written incorrectly.

A similar interaction can happen when using From DataSet with To
File.InVEE 5 and higher mode, this unexpected interaction is fixed so the
data is written to the file correctly. However, we stil/ do not recommend
mixing To/From File with To/From DataSet operations on the same
file.

Since VEE 5 mode provides ActiveX support for Windows only, there are
some conditions to be aware of. In VEE for HP-UX, you can put programs
into VEE 5 mode. This affects the global namespace, as described
previously. However, the ActiveX automation menu items will not appear
since ActiveX is not supported on HP-UX.

If you develop a program using VEE for Windows that uses ActiveX
features, it can cause errors or not run properly if you move the program to
an HP-UX system. If the program calls VEE functions supporting ActiveX
automation (CreateObject () and GetObject ()), the program will cause

34 Chapter1

About the VEE 5
Execution Mode

New Data Types

Variant to VEE Data
Type Conversion -
Improved Array
Handling

Introduction
Using VEE Execution Modes

an error. Programs that declare Object variable types will load into VEE for
HP-UX, but they will not run properly.

Execution Mode Changes: VEE 5 to VEE 6

In VEE 6.0, the VEE 4 and VEE 3 modes retain their compatibility
definitions set in VEE 4.0, which are described in “Execution Mode
Changes: VEE 3 to VEE 4” on page 21. There are minor changes that will
not affect existing programs that run in their original execution modes (VEE
3 or VEE 4). These changes are important to know if you plan to convert
programs from older to newer modes. They are described below.

The VEE 5 Execution Mode is a superset of the VEE 4 mode. The VEE 5
mode retains the compiler features described previously and introduces
significant changes affecting program compatibility. Most of the changes
enable support for ActiveX automation and controls.

Other changes may impact your programming techniques if you use any of
the features described in this section, even if you do not use ActiveX. For
information about using ActiveX in VEE, see Chapter 14, “Using the
Sequencer Object.”.

Int16,Real32, Variant, and UInt8 are new data types for VEE 6.0. All
new data types and new transactions such as WRITE TEXT INT16 appear in
all Execution Modes. However, new transactions behave the old way in old
modes.

For example, in VEE 5 mode, WRITE BINARY INT16 actually does a
WRITE BINARY INT32 and will not convert the data to an Int16. In VEE
6 mode, WRITE BINARY INT16 does convert data to an Int16. See
“Setting Execution Modes” on page 17 for ways that the VEE Execution
Mode could change program behavior.

When data are returned from an ActiveX Automation Server (such as Excel)
or an ActiveX control, VEE must convert the automation data types to VEE
data types. With VEE 5.0, an array of Variants converted into a VEE Record.
With VEE 6.0 (in VEE 6 Execution Mode), an array of Variants converts
into a VEE array if all elements are of the same data type. (For mixed data
types, there is no change from VEE 5.0 behavior.)

Chapter 1 35

Note

Introduction
Using VEE Execution Modes

If all elements of an array are of the same data type, mapping of Variant
data type to VEE array data type is as follows.

This feature is available in VEE 6 Execution Mode only.

Variant array VEE 6.0
member type data type
VT_UI1 Uint8
VT_BOOL Int16
VT _I2 Int16
VT_UI2 Int16
VT |14 Int32
VT_Ul4 Int32
VT_R4 Real32
VT_R8 Real64
VT_DATE Real64
VT_CY Real64
VT_BSTR Text
VT_DISPATCH Object

However, there are still some gaps in this compatibility between new VEE 6
data types and ActiveX automation servers:

B Data types such as Boolean (VI _BOOL), Date (VT _DATE),
Currency (VT _CY), and Error (VT_ERROR) do not have built-in
VEE data type counterparts. Use of these data types with "ByRef" in
ActiveX is supported with the Set functions and Query functions
described below.

B Certain special Variant values such as Empty (VT _EMPTY) and NULL
(VT _NULL) have no equivalent and cannot be uniquely identified.

Set Functions. The Set functions tell VEE that during ActiveX automation
operations the containers returned by these functions will be given special
treatment. The set functions are:

asVariantBool()
asVariantCurrency()
asVariantDate()

36 Chapter1

Updated Functions

Introduction
Using VEE Execution Modes

asVariantError()
asVariantEmpty()
asVariantNull()

Query Functions. Query functions are used on containers created from the
return values of automation methods and properties. The Query functions
are:

isVariantBool()
isVariantCurrency()
isVariantDate()
isVariantError()
isVariantEmpty()
isVariantNull()

The following functions have been updated for VEE 6.0.

whichOS() — updated with return values of "Windows 98" and
"Windows_2000".

createObject() — updated with an optional second parameter that specifies
the name of a remote host computer.

Chapter 1 37

Introduction
Related Reading

Related Reading

For more detailed information about instrument control topics discussed in
this manual, refer to the following publications.

B Tutorial Description of the Hewlett-Packard Interface Bus
(Hewlett-Packard Company, 1987), part number 5021-1927.

This document provides a condensed description of the important
concepts contained in IEEE 488.1 and IEEE 488.2. If you are unfamiliar
with the IEEE 488.1 interface, this is the best place to start.

B /EEFE Standard 488.1-1987, IEEE Standard Digital Interface for
Programmable Instrumentation (The Institute of Electrical and
Electronics Engineers, 1987).

This standard defines the technical details required to design and build a
GPIB (IEEE 488.1) interface. This standard contains electrical
specifications and information on protocol that is beyond the needs of
most programmers.

B /EEFE Standard 488.2-1987, IEEE Standard Codes, Formats, Protocols,
and Common Commands For Use with ANSI/IEEE Std 488.1-1987 (The
Institute of Electrical and Electronics Engineers, 1987).

This document describes the underlying message formats and data types
used by instruments that implement the Standard Commands for
Programmable Instruments (SCPI).

B /EEFE Standard 728-1982, IEEE Recommended Practice For Code and
Format Conventions For Use with ANSI/IEEE Std 488-1978, etc. (The
Institute of Electrical and Electronics Engineers, 1983).

38 Chapter1

Introduction
Related Reading

B VMEbus Extensions for Instrumentation, including: "VXI-0, Rev. 1.0:
Overview of VXlIbus Specifications" and "VXI-1, Rev. 1.4: System
Specification," VXIbus Consortium, Inc., 1992.

B HP VISA User's Guide (Hewlett-Packard Company, 1998), part number
E2090-90035.

This document is useful for users who create their own VXlIplug&play
drivers and provides additional information about addressing and using

VXlIplug&play drivers.

Chapter 1 39

Introduction
Related Reading

40 Chapter1

Instrument Control Fundamentals

Instrument Control Fundamentals

VEE supports five types of objects for controlling instruments.

Figure 2-1 shows each of these objects in its open view. Each of these
examples communicates with an HP E1410A VXI Multimeter, except the
PC Plugln card driver object.

—| DMMZ (hpel1410a @ 16028) =

YWRITE TEXT "IDN?" EOL

Direct /0 Object —

—| To/From DMM2 =

ToiFrom Plug&play hpet1d410 read QinstrHandle, readings)
Object —8m — readings |

—| DMMZ (hpel1d10a @ 16028) =
Multimeter
Panel Driver
Volts DC |

Object ————»
Simulated Data

Function DC Voltage

READING

Peading Mode Single Reading
Signal source

Instrument Options Trigger Options

Component Driver |=|_ DMM2 (hpel410a @ 16028) | |
Object —— | READING

PC Plugln Card =] Formula (Analogin) =
Driver Object — 1 Ch ’TemnSensor.AlnSingle(Ch. Byrefval) Result
Wal

A val

Figure 2-1. VEE Instrument Control Objects

42 Chapter2

Note

Instrument Control Fundamentals

Table 2-1 gives an overview of the differences between these instrument

control objects.

Table 2-1. Comparing Instrument Control Objects in VEE

Card Driver

supplied by the instrument
manufacturer.

can be used by
multiple software
applications.

VEE Object Instrument Access Main Benefits Supported
Interfaces?

Direct I/0 Communicates directly with Fast I/0. Can GPIB, Serial,

any instrument. control any GPIO, VXI, and
instrument. LAN.

To/From Requires a VXlplug&play Fast 1/0. Drivers GPIB, VXI, and

VXIplugs&play | driver supplied from the can be used by Serial.
instrument manufacturer multiple software
specific to each platform. applications.
Requires VISA to be installed.

Panel Driver Requires an Instrument Panel Easy to use. GPIB and VXI.
Driver supplied with VEE.P

Component Requires an Instrument Panel Faster 1/O than GPIB and VXI.

Driver Driver supplied with VEE. Panel Driver.

PC Plugin Requires an ODAS driver Fast 1/0. Drivers PC plugin slots

a. HP-IB is Hewlett-Packard's implementation of the IEEE-488 interface
bus standard. Other implementations are called GPIB. LAN interface
support does not include purely LAN-based instruments.

b. Panel Drivers are also sometimes called "VEE drivers."

The To/From VXIplug&play, Panel Driver, Component Driver,
and PC Plugin Driver objects allow you to control instruments without
learning the details of the instrument's programming mnemonics and syntax.
If you prefer to communicate with your instruments by sending low-level
mnemonics, or if a driver is not available for your instrument, you can use

Direct I/O.

You can use all five methods to communicate with different instruments
within a VEE program. However, do not use VXlplug&play drivers along
with any of the other methods to communicate with the same instrument in
the same program — unexpected results may occur.

Chapter 2

43

An Example of
Direct 110

Multilnstrument
Direct I/0

Instrument Control Fundamentals

Introduction to Direct I/0O

Direct I/0 objects allow you to read and write arbitrary instrument data
in much the same way you read from and write to files. This allows you full
access to any programmable feature of any instrument. No instrument driver
file is required, but you must have a detailed understanding of your
instrument's programming commands to use Direct I/0.In order to use
Direct I/0 tocommunicate with GPIB, VXI, or Serial devices, the I/0
libraries must be installed as described in Installing the Agilent 1/0 Libraries
(VEE for Windows) or Installing the Agilent I/O Libraries (VEE for HP-UX).

Direct I/0 objects also provide convenient support for learn strings. A
learn string is a special feature supported by some instruments that allows
you to set up measurement states from the front panel of the physical
instrument. Once the instrument is configured, you simply select Upload
from the Direct I/0 object menu to upload the entire measurement state
of the instrument to VEE. You can recall the measurement state from within
your program by using the Direct I/0 object.

Figure 2-2 shows a Direct I/0 object set up to obtain the identification
string from an HP 34401 A Multimeter:

— dmm?2 (hp34201a @ 723) =
WIRITE TEXT "idn?" EOL —| _Alphanumeric | «|
READ TEXT % STR HEWLETT PACKARD, 3

= Double-Click to Add Transaction = Pl ﬂ

Figure 2-2. Using Direct I/O to Identify an Instrument

The first transaction in the Direct I/0 object writes the text string * IDN?
to the HP 34401A at GPIB address 722. This causes the HP 34401A to send
the identification string, which is read by the second transaction and output

to the AlphaNumeric object.

For information about how to configure VEE to use Direct I/0,see
Chapter 3, “Configuring Instruments”. For details about how to use the
Direct I/0 object, see Chapter 4, “Using Transaction [/O”.

The MultiInstrument Direct I/0 objectlets you control several
instruments from a single object using direct I/O transactions. This object

44 Chapter2

Instrument Control Fundamentals

looks the same as the Direct I/0 object, except that each transaction in
the MultiInstrument Direct I/O objectcan address a separate
instrument.

The object is a standard transaction object, and works with all interfaces that
VEE supports. Since the MultiInstrument Direct I/0 objectdoes not
necessarily control a single instrument, the title does not list an instrument
name, address, or live mode condition.

By using the MultiInstrument Direct I/0,you can reduce the number
of instrument-specific Direct I/0 objectsin your program. The resulting
performance increase is especially important for the VXI interface, which is
faster than GPIB at instrument control.

Figure 2-3 shows the MultiInstrument Direct I/0 objectanditsI/0
Transaction dialog box. The object is being set up to communicate with
an HP E1413B, HP E1328, and HP 3325.

— multilnstrument Cirect 0 =l

WRITE "hp3478a" TEXT "initcont’ EOL
WWRITE "hp3326h" TEXT "FR1234.0000

= Dnnhle-Click to Add Transaction =

/0 Transaction

| wrTE =] | dmm2 [=] DefaultAddressl | TEXT =] fuoitt.2s
[DEFaULTFORMAT =] EOLONl

ok | wop | cancel

Figure 2-3. Multilnstrument Direct I/0O Controlling Several Instruments

For further information about using the MultiInstrument Direct I/0
object, see “Using the Multilnstrument Direct I/O Object” on page 181.

Chapter 2 45

Getting Started

Note

Instrument Control Fundamentals

Introduction to VXIplug&play

VXlplug&play is an interface specification that allows multiple vendors to
supply compatible hardware and software. A VXlplug&play driver is a
library of functions for controlling a specific instrument. The driver is
written by the hardware vendor and shipped with the instrument.

VXlIplug&play drivers can be written for non-VXI instruments.

VEE Version 3.2 and later supports drivers that comply with the WIN95/98,
or WINNT, or HP-UX framework, VXlIplug&play specification version 3.0
or later. The HP-UX framework supports HP-UX version 10.x.

Before you can get started with VXlplug&play, you must have completed
these steps:

1. Install the interface (GPIB or VXI).

2. Install VISA. If you are using an Agilent interface card use VISA as
supplied with VEE. See Installing the Agilent I/0 Libraries (VEE for
Windows) or Installing the Agilent 1/0 Libraries (VEE for HP-UX) for
details. Otherwise, you must install VISA as supplied with the interface
card.

3. Configure VISA for each hardware interface. If you are using an
Agilent interface card follow the instructions in Installing the Agilent /0O
Libraries (VEE for Windows) or Installing the Agilent I/0 Libraries (VEE
for HP-UX). Otherwise, you must configure VISA as specified by the
interface manufacturer.

VISA (Virtual Instrument Software Architecture) is an 1/O library that
VXlplug&play drivers use to control instruments. VISA is required for
VXlplug&play and provides VISA function calls which are used by the
VXlplug&play drivers.

46 Chapter2

What You Need

Note

Installing the
VXlplug&play Driver
Software

Location of Files
(WIN95 and WINNT
Frameworks)

Instrument Control Fundamentals

VEE needs these four files for each VXIplugdplay driver.

B The library file

B The function panel file

B The header file
B The help file

The files installed with each VXIplug&play driver always include these files.
Other files are also installed.

Not all VXIplug&play drivers support all frameworks (platforms). Also,
certain versions of VISA may not be supported on all frameworks. Please
check with the appropriate vendor.

To install the set of files needed for each driver, follow the instructions
included with the driver by the instrument manufacturer.

The VXlIplug&play files are located under the WIN95\ or WIN98\ directory
or the WINNT\ directory. This location is relative to the root drive and
directory value stored in the registry by the VISA installation. The default
value for the root drive and directory is C: \VXIPNP.

Table 2-2 shows the VXIplugdplay driver files needed by VEE:

Table 2-2. Location of WIN95 and WINNT Framework Driver Files

Filename? Location Purpose
PREFIX 32.DLL | BIN Instrument driver library
PREFIX.FP PREFIX Instrument driver function panel file
PREFIX.H INCLUDE Instrument driver header file
PREFIX.HLP PREFIX Instrument driver help file

a. PREFIX refers to the name of the instrument such as HPE1410.

Chapter 2

47

Location of Files
(HP-UX Framework)

Summary of
Terminology

A VXlplug&play
Example Program

Instrument Control Fundamentals

The VXlplug&play files are located under the vxipnp/hpux/ directory.
This location is relative to the root directory represented by the environment
variable vXIPNPPATH. This environment variable is set to /opt by default,
so the directory is normally /opt/vxipnp/hpux/.

Table 2-3 shows the VXIplugd&play driver files needed by VEE:

Table 2-3. Location of HP-UX Framework Driver Files

Filename?

nstrument driver tunction panel tile
nstrument driver heaaqer ftile
nstrument ariver nelp tile

a. PREFIX refers to the name of the instrument such as HPE1410.

Working with VXlplug&play drivers is different than using other types of
I/0 with VEE. Here is a summary of how the different pieces fit together.

B The VEE program calls VXlplug&play functions.

B The functions (that have parameters that may be set via function panels)
are part of the VXIplug&play driver. The functions talk to the instrument
through the VISA software.

B The instrument passes data back through VISA and into the function
parameters.

Figure 2-4 shows an example program that uses the To/From
VXIplugé&play object to initiate a voltage measurement and to obtain a
reading from the HP E1410A Multimeter.

48 Chapter2

Instrument Control Fundamentals

= To/Fram DMA2 =

hpe1410_measure_2(nstrHandle, hp —| Alphakumeric| -
= Diouble-Click to Add Function = . 1031

Figure 2-4. Using the To/From VXIplug&play Driver Object

Further Information For information about how to configure VEE to use VXIplug&play, see

Panel Drivers

Chapter 3, “Configuring Instruments”. For further information about how to
use VXlplug&play in VEE, see Chapter 7, “Using VXIplug&play Drivers”.

Introduction to Panel Drivers and Component Drivers

Panel Driver and Component Driver objects can be used for a
particular instrument only if there is a driver file to support that instrument.
The installation procedure for VEE for HP-UX automatically copies all of
the available driver files onto your system disk. The installation procedure
for VEE for Windows 95/98 and Windows NT allows you to select which
drivers you want to install. Chapter 3, “Configuring Instruments” describes
how to select and configure the proper driver files for your instruments.
Also, the 1/O libraries must be installed as described in Installing the Agilent
1/0 Libraries (VEE for Windows) or Installing the Agilent I/O Libraries
(VEE for HP-UX).

Panel Drivers serve two purposes in VEE:

B They allow you to define a measurement state that specifies all the
instrument function settings. When a Panel Driver operates, the
corresponding physical instrument is automatically programmed to
match the settings defined in the Panel Driver.

B They act as instrument control panels for interactively controlling
instruments. This is useful during development and debugging of your
programs. It is also useful when your instruments do not have a physical
front panel.

Chapter 2 49

Component Drivers

Instrument Control Fundamentals

As shown in Figure 2-1, the open-view of a Panel Driver contains a
graphical control panel for the associated physical instrument. If the physical
instrument is properly connected to your computer, you can control the
instrument by clicking the fields in the graphical control panel. You can also
make measurements and display the results by clicking the numeric and XY
displays.

Even if the instrument is not connected to your computer, you can still use
the graphical panel to define a measurement state. In fact, this can be a
benefit if you want to develop programs before instruments are purchased
or while they are being used elsewhere.

For example, suppose you want to program an HP 3325B function generator
to provide two different output signals:

1. A square wave with a frequency of 20 kHz and an amplitude of 20mV
ms.

2. A sine wave with a frequency of 50 kHz and an amplitude of 50mV rms.

Figure 2-5 shows the two Panel Drivers that provide the desired signals.

—| fgen (hp332sh @ 717) = —| fgen (hp332sh @ 717) =

Main Panel Reset

Main Panel

Function 5 2 Function

DECEHEmERy k Frequency TTTEILEEE
T O
otcece NN oo N
 — L ——

Aszsign 0 Aszsign 0

Figure 2-5. Two HP3325B Panel Drivers

In an instrument driver, each instrument function and measured value is
called a component. A component is like a variable inside the driver that
records the function setting or measured value. Thus, a Component
Driver is an object that reads or writes only the components you

50 Chapter2

Instrument Control Fundamentals

specify as input and output terminals. This is in contrast to a Panel
Driver, which automatically writes values for many or all components.

Component Drivers are provided to help you improve the execution
speed of your program. Speed is the only advantage they provide over
Panel Drivers. The execution speed of a program is generally impacted
most when an instrument control object is attached to an iterator object
where it must operate many times. In these cases, it is common for only one
or two components to be changing; this is exactly the situation Component
Drivers are designed to handle.

The increase in execution speed provided by a Component Driver will
vary considerably from one situation to another. The increase depends
primarily on the particular driver file used. There is no easy way to predict
the exact increase in execution speed.

For example, suppose you want to program the HP 3325B Function
Generator to do the following:

1. Output a sine wave with an initial frequency of 10 kHz and an amplitude
determined by operator input.

2. Sweep the frequency output from 10 kHz to 1 MHz using 5 steps per
decade.

In this case, it makes sense to use a Panel Driver to perform the initial
setup and a Component Driver to repeatedly set the output frequency.
Figure 2-6 shows a program that does this.

Chapter 2 51

Further Information

Instrument Control Fundamentals

—| Amplitude | «

- fgen (hp332sh @ 717) =
| 35m -
Main Panel
| 50m —
Function
— Frequency TTIEOLEEE
AMPLITUDE | amplitude HESEIN 533
oftset NN
o os
Aszign U
I D —

-[—J

—|Far Log Range | ~
—| fgen(hp3azsh@ 71T |«
Fram [10k
Thru |1DDDK 1 FREGUEMCY
iDec 5

Figure 2-6. Combining Panel Drivers and Component Drivers

For information about how to configure VEE, see Chapter 3, “Configuring
Instruments”. For further information about how to use the Panel Driver
and Component Driver objects, see Chapter 6, “Using Panel Driver and
Component Driver Objects”.

Support For Register-Based VXI Devices

When using the instrument control objects to directly address VXI devices
on the VXI backplane, you need to know whether devices are message-
based or register-based. VEE communicates with message-based devices
by means of SCPI (Standard Commands for Programmable Instruments)
messages.

VEE also provides Interpreted SCPI (I-SCPI) support for most Hewlett-
Packard and Agilent register-based devices. [-SCPI drivers let you
communicate with register-based devices as though they were message-
based. This means that a VEE program can communicate with a register-
based device using standard SCPI messages, provided there is an I-SCPI
driver for that particular device. If no I-SCPI driver is available for a

52 Chapter2

Instrument Control Fundamentals

register-based device, VEE must communicate with that device by directly
accessing its registers.

The I-SCPI drivers give you the flexibility to use any of the instrument
control objects you prefer. You can use the Panel Driver for easier
programming, or use SCPI commands in Direct I/0 for faster execution
speed. When you program VEE to communicate with a register-based
device using SCPI messages, VEE will inform you if the required I-SCPI
driver is not available. In that case, you will need to access the device
registers directly using Direct I/OorMultilnstrument Direct I/O.

Chapter 2 53

Instrument Control Fundamentals

54 Chapter2

Configuring Instruments

Configuring Instruments

This chapter shows how to configure VEE to communicate with your
instruments using the following methods:

1. By means of Direct I/0 objects (no instrument driver is required).

2. By means of VXlplug&play drivers using To/From VXIplugsplay
objects.

3. By means of Agilent Panel Drivers ("IDs") using either Panel Driver
or Component Driver objects.

4. By means of Formula objects using ODAS PC Plugln card drivers.
VEE 6.0 supports PC Plugln cards with ODAS (Open Data Acquisition
Standard) compliant software drivers.

The VEE Instrument Manager dialog provides a unified method to select
and configure all of these instrument-control objects.

For VEE to communicate with instruments, you must first install the
Agilent I/O Libraries as described in Installing the Agilent 1/O Libraries
(VEE for Windows) or Installing the Agilent 1/O Libraries (VEE for HP-UX).
The Agilent SICL libraries let you use Panel Driver, Component
Driver, or Direct I/0 objects. The VISA libraries let you use To/From
VXIplug&play objects.

To use Panel Driver or Component Driver objects, you must install
the appropriate Panel Drivers. For VEE for HP-UX, the drivers are
automatically installed as part of the VEE installation. For VEE for
Windows, you can install any desired selection of Instrument Drivers during
the VEE installation. (No instrument drivers are required for Direct

I/0 objects.)

VXlplug&play drivers are supplied by the instrument manufacturer with
many VXI instruments. To use a To/From VXIplugs&play object, you
must install the appropriate VXlplug&play driver files, following the

56 Chapter3

Configuring Instruments

instructions provided with the driver. For further information about
VXlplug&play drivers, see Chapter 7, “Using VXIplug&play Drivers”.

ODAS PCPI card drivers are supplied by the instrument manufacturer with
many PC instruments. To use an ODAS PCPI card driver object, you must
install the appropriate ODAS PCPI driver files, following the instructions
provided with the driver.

Chapter 3 57

Configuring Instruments
Using the Instrument Manager

Using the Instrument Manager

This section provides an overview of how to use the Instrument
Manager and the configuration dialog boxes to find and configure
instruments in VEE. Some examples are given and, for many applications,
you can use the default values for most parameters. However, see “Details of
the Properties Dialog Boxes” on page 85 for details of the configuration
fields in these dialog boxes.

Overview

To configure an instrument, select I/0 = Instrument Manager or click
on the Instrument Manager button in the toolbar.

H#H
It looks like this:

The Instrument Manager dialog box appears. It has no instruments until
you find and add them, as Figure 3-1 shows.

58 Chapter3

Configuring Instruments
Using the Instrument Manager

Instrurnent Manager

~Instrument List ~Auto Discovery

Find Instrurments
7w | = E e s
Settings...

rInstrument
Add...
BErmaye
ErapEies

- Create VO Object——
mirect|ie
ElrgEalaw Erver

Eamel e

)]) = =

[o]34 | Savel Cam:ell Printl Helpl

Figure 3-1. The Instrument Manager Dialog Box

The Instrument Manager displays four sections:

B Auto Discovery buttons allow you to find instruments and configure
drivers for them. If you click on the Find Instruments button, VEE
automatically updates all configured GPIB and VXI instruments and
displays any other GPIB and VXI instruments connected to your
computer. If you click on the Settings button, VEE displays the Auto
Discovery Settings dialog box, described in the next section.

B Instrument List displays the instruments that are currently
configured. This configuration is defined by the I/O configuration file
(see “The 1/0 Configuration File” on page 189 for further information).
The default configuration is blank (empty).

B Instrument buttons allow you to modify the instrument configuration.
The Instrument button actions are described in more detail later in this
chapter.

Chapter 3 59

Configuring Instruments
Using the Instrument Manager

B Create I/0 Object buttons allow you to select Direct 1/0,
Plug&play Driver, Panel Driver, and Component Driver
objects and place them in your program.

Auto Discovery

The Auto Discovery area contains three buttons: Find Instruments,
Configure Drivers, and Settings.

B The Find Instruments button updates any existing GPIB and VXI
instrument configurations and adds any unconfigured GPIB and VXI
instruments connected to your computer to the Instrument List.
Find Instruments also finds and adds any Serial and GPIO interfaces
to the Instrument List, but not the instruments connected to them.

B The Configure Drivers button configures drivers for instruments
already found and in the Instrument List.

B The Settings button allows you to determine how instruments and
drivers are configured.

With My Configuration highlighted in the Instrument List,

click Find Instruments to update all existing GPIB and VXI instrument
configurations and to add any unconfigured GPIB and VXI instruments to
the list. Live mode is turned on for instruments that are found and are
powered up. (Live mode settings are not switched from on to off if
configured instruments are not found.)

Next click Settings, to bring up the dialog box that allows you to control
how instruments and drivers are detected and configured. This box has two
sections: Find Instruments and Instrument Identification.

The Find Instruments section has two radio buttons:

U Detect only
U Detect, identify, and configure drivers for each instrument.

If "Detect only" is checked, VEE detects all live bus addresses when you
click the Find Instruments button. If "Detect, identify, and configure
drivers for all instruments" is checked, VEE detects all live bus addresses,

60 Chapter3

Configuring Instruments
Using the Instrument Manager

sends "*IDN?" to all detected instruments, and tries to configure drivers for
each instrument.

The lower section controls the Configure Drivers button. If "Ask before
sending "*IDN?" to each instrument?" box is checked, VEE stops before
configuring each driver and asks if you want to proceed. If this box is not
checked, VEE automatically configures each driver.

The Instrument List

If Find Instruments found one instrument connected to your computer,
the Instrument Manager might look like Figure 3-2. In this example,
Find Instruments found a Serial Interface but does not show any
instruments that may be connected to it. Newly discovered instruments are
named "newlInstrument", "newInstrument1", etc. You can give them more
descriptive names, as shown later.

Instrurnent Manager

~Instrument List ~Auto Discovery
My Configuration (d-wee.jioy* Findlnstrurmets
M cPIB7

Eaniure Drvers
L newlnstrument(g@722) —————

Bm Settings...

- Instrument
Add. .

Properies

- Create I Ohject——
[DirEche
S i B =iy
Eamel DrveEr

L o = g B

Ok | Savel Cancell F'rintl Helpl

Figure 3-2. The Instrument List

Chapter 3 61

Configuring Instruments
Using the Instrument Manager

To use the Instrument Manager, click the GPIB7 Interface selection. It
becomes highlighted and the Properties button becomes active. Click the
[-1 icon in front of GPIB7 to "collapse" the selections under it. Figure 3-3

shows the collapsed configuration.

Instrurnent Manager

- Instrurment List

My Configuration (dwee.io)*

-= [

¥ Serialt

AUt Discovery

Find Instrurments |

)) e = = |
Settings... |

- Instrument
Add. .

HEEMovE |

Properies

- Create fO Object——

Eljfze i) |
e o = I = |
EEmElETYER |

CDmpnnentDriverl

8154 | Savel Cancell

Print | Help |

Figure 3-3. Collapsing the GPIB7 Interface Configuration

To "expand" the selections again, click the [+] icon in front of GPIB7.

(To expand the entire tree, select My configuration and press the * key.)
Now click the selection newInstrument@722 or the "instrument” icon in
front of it to highlight it. Figure 3-4 shows how the window looks.

62

Chapter3

Configuring Instruments
Using the Instrument Manager

Instrument Manager

- Instrument List ~Auto Discovery

Wy Configuration (d-wee.io)* Fifid Irstrurients |
¥ GPIB7 .
Canfigure Drivers |
LE?‘ nenwlnstrumen) -
¥ Serialt Settings... |

rInstrument
Add..

Remowe |

Properties

- Create VO Object——

Direct (10 |
ElrgEalaw Erver |
EArielfriver |
CUmpDnentDriverl

Ok | Savel Cancell Printl Helpl

Figure 3-4. Selecting an Instrument for Configuration

Instrument Configuration

Note that all of the buttons under Instrument are now active, including
Properties. This means you can delete, edit, or manually configure the
configuration of the existing instrument or add a new instrument to the list.

Also, note that one of the buttons under Create I/0 Object is now
active. This means you can select and place a Direct I/0 Object for the
instrument. With other instrument configurations, the Plugsplay Driver,
Panel Driver, and Component Driver buttons may be active at this
point, depending on what drivers you have installed.

Click on the Configure Drivers button to update the instrument
configuration. The Identify Instrument dialog box appears asking if you
want to send the * IDN? (identification) message to the instrument. Figure 3-
5 shows this dialog box.

Chapter 3 63

Configuring Instruments
Using the Instrument Manager

Instrument Manager

~Instrument List -Auto Discovery

My Configuration {d-wee. in)* Find mettiments
® GPIB7 i
Configure Drivers
L= Settings |
¥ Serialt

~Instrument
Add...

Remaove

Froperties

Instrument

Send "*IDMN?" to newlnstrument { @ 7227

The response to "*IDN?" provides an
@ accurate identification of this instrurment.

Mote: Older, non 488.2 campliant instruments do not
understand this command. Ifthis command causes an
QK | Save error in the instrument, cycle the power an the

instrument to reset it.
4 Mo |

Figure 3-5. Updating the Instrument Configuration

Click ox. If the instrument connected to the GPIB Interface is turned on, the
instrument will respond. In this example, the instrument is an HP 34401 A
and is turned on. Figure 3-6 shows how the ITnstrument List looks at this
point.

64 Chapter3

Configuring Instruments
Using the Instrument Manager

Instrurment Manager

- Instrument List AUt Discovery
Wy Configuration (d-wee.io)* Firdlrstrirents
¥ GPIB7

o '| ewlnstrumentthp34401a Setings..
¥ seriall
rInstrument
Add...
Remave
Fropeties

- Create fO Object——
Direct /O
Plugé&play Driver

Panel Driver

Component Driver

[o]54 | Savel Cancell F'rintl Helpl

Figure 3-6. The Instrument List after Configuring Drivers

Note that two changes have occurred:

1. The instrument identification has changed to
newInstrument (hp34401a@722).

2. The "instrument" icon in front of newInstrument (hp34401a@722)
has changed to show that the instrument is connected to the computer.

(If the instrument is not powered up, the identification and the icon will not
change.)

Renaming an Instrument

When the instrument has been identified, you can give it a more meaningful
name in the Instrument List. Click the Properties button to do this. When
the Properties dialog box appears, click in the Name field and type the

Chapter 3 65

Configuring Instruments
Using the Instrument Manager

name you prefer. Figure 3-7 shows the name "dmm" entered to replace
"newlnstrument" for the HP 34401A.

Instrurnent Manager

- Instrument List ~Auto Discovery
My Configuration (dwee.io)* Findllnstruments
= opip7 - - Canfigure Drivers
rial1 ' . : Settings...
rInstrument
Add...
Remove

Instrurnent Properties

Marme: drmm
Interface: | GPIB 'I
Address {eg 714): 722

Gateway: This hast |
(0] 4 | Save Ca Advanced___l

— 0K | Cancell Helpl

Figure 3-7. Changing an Instrument Name

Clicking OK completes the change. Figure 3-8 shows the Instrument
List with the new name for the HP 34401A.

66 Chapter3

Configuring Instruments
Using the Instrument Manager

Instrurment Manager

~Instrument List ~Auto Discovery
My Configuration (d-wee.jioy* Findlnstrurmets
L PIBT Configure Drivers
IE[_ —
= Settinos...
¥ Serial =
- Instrument
Add..
Femove
- Create I Ohject——
Direct 10
Plugé&play Driver
Panel Driver
Component Driver
8154 | Save | Cancell Primt | Help |

Figure 3-8. The Renamed Instrument

Adding an To add an instrument, click the Add... button. The Instrument Properties
|nStrl.Jmentl dialog box appears as shown in Figure 3-9.
Configuration

Chapter 3 67

Note

Configuring Instruments
Using the Instrument Manager

Instrurnent Manager

- Instrument List ~Auto Discovery
My Configuration (d’vee.io)* Fifid Irstrurients
¥ GPIB7

Canfigure Drivers

dmmihp34401a
= - Settings...
¥ Serialt 2
- Instrument
Add..

Remave |

Instrurnent Properties

Name: Inewinstrument[il
Interface: | GPIB 'I
Address {eg 714): 714

Gateway: This hast |
(0] 4 | Save Ca Advanced___l

— 0K | Cancell Helpl

Figure 3-9. Adding an Instrument

By default, the new configuration displays the name newInstrument. You
can type in a new name, such as dmm2. Leave the Interface field with
GPIB selected. (If you want to change the type of interface, click the arrow
to the right of GPIB to display the drop-down list.) Then, click the address
field and change the address to 723. Figure 3-10 shows the Instrument
Properties dialog box with these changes.

To move from field to field in the dialog box, click the desired field, or use
the Tab key. If you press Enter or Return, the dialog box will exit.

68 Chapter3

Note

Configuring Instruments
Using the Instrument Manager

Instrurnent Properties

Mame: Em
Interface: | GPIB 'I

Address (eg 714 723

Gateway: Thiz hast |
Advanced...l

0K | Cancell Helpl

Figure 3-10. Changing the Name and Address Fields

Now click the Advanced... button to display the Advanced Instrument
Properties dialog box in Figure 3-11.

Advanced Instrument Properties

General | Direct 0 | Flug&play Driver | Fanel Criver |

Timeout {sec): | E
Live Mode: o} |
Byte Ordering: MSB

Description {optionaly: |

0K | Cancell Helpl

Figure 3-11. The Advanced Instrument Properties Dialog Box

The General tab of this dialog box allows you to specify a timeout value,
to turn live mode on or off, to select byte ordering, and to add a description.
Click the Description field and enter hp34401a.

For further information about the individual fields in the Instrument
Properties and Advanced Instrument Properties dialog boxes, see
“Details of the Properties Dialog Boxes” on page 85.

Chapter 3 69

Configuring Instruments
Using the Instrument Manager

The tabs and fields displayed in the Advanced Instrument Properties
dialog box depend on the interface you have selected.

Now select the Panel Driver tab to display the dialog box shown in
Figure 3-12.

Advanced Instrument Properties

General | Directlio | Plug&play Driver |

IC Filename: |
Sub Address: |

Errar Checking: LI
Incremental Mode: o} |

0K | Cancell Helpl

Figure 3-12. The Panel Driver Tab

Click the 1D Filename field. You are prompted to select an Instrument
Driver file. (The Windows dialog is shown in Figure 3-13. The HP-UX
dialog is different, but also allows you to select a file.)

70 Chapter3

Configuring Instruments
Using the Instrument Manager

Look [3 i = i
1 help hp54504a.cid

hp33120a.cid hpS4600. cid
hp3325h.cid hpel 300a.cid
hp34401 a.cid hpe 40 cid
hp3475a.cid

hp3478a.id

Filz name: | Open I
Filez of bepe: IInstr. Diriveers (7010710 ﬂ Cancel |
P

Figure 3-13. Selecting an Instrument Driver File

Double-click hp34401a.cid to select that file, as shown in Figure 3-14.

ed Instrument Properties

General | Direct IO | Plug&play Driver ~ Panel Driver

ID Filename:
Sub Address: l—
Errar Checking: o} |
Incremental Mode: il |

0K | Cancell Helpl

Figure 3-14. The Selected ID Filename

Now click OK on each dialog box to return to the Instrument Manager as
shown in Figure 3-15.

Chapter 3 71

Configuring Instruments
Using the Instrument Manager

Instrurnent Manager

- Instrurment List AUt Discovery

My Configuration (d-wee.io)* Findnetriraets |
L PIBT Canfigure Drivers |
=24 dmmihp34401a@722)
my " Settings... |

- Instrument
Add. .

¥ Serialt

Femove |

Properies

- Create fO Object——

Direct 170 |
Plugé&play Driver |
Panel Driver |
CDmpnnentDriverl

Ok | Savel Cancell F'rintl Helpl

Figure 3-15. The New Configuration

At this point you can save the new configuration by clicking the Save
button.

Adding a Panel Driver or Component Driver

When you have saved your new configuration, you can add either a Panel
Driver object or a Component Driver object for dmm2. Select 1/0 =
Instrument Manager to redisplay the Instrument Manager, as
shown in Figure 3-15. Click dmm2 (@723) ifiit is not already highlighted and
then click the Component Driver button. Move the outline to the desired
position in the work area, and click the mouse button to place the
Component Driver object. The object appears as an icon as shown in
Figure 3-16.

72 Chapter3

Editing an
Instrument
Configuration

Configuring Instruments
Using the Instrument Manager

Figure 3-16. The Component Driver Object

In the same manner, if you had clicked on the Panel Driver button, a
Panel Driver object would have appeared.

You can edit an existing instrument configuration, also using the
Instrument Properties and Advanced Instrument Properties
dialog boxes. To edit the configuration for the HP 34401A Digital
Multimeter, select dmm (hp34401a@722) inthe Instrument List, and
then click the Properties... button. The Instrument Properties
dialog appears as shown in Figure 3-17.

Chapter 3 73

Configuring Instruments
Using the Instrument Manager

Instrurnent Manager

- Instrument List

My Configuration (dwee.io)*
® oPiB7

dmmthp34401
= drmm 2(@7 23)

¥ Serialt

oK | Save E

~Auto Discovery

Eirmdimstrments

Canfigure Drivers
Settings...

- Instrument
Add...
Remave

Instrurment Properties

Marme: Em
Interface: IW;[
Address (ed 7143 722
Gateway: This host |

Advanced...l

OK | Cancell Helpl

Figure 3-17. Editing the dmm Configuration

To change the configuration, modify the fields in the properties dialog boxes
as described previously in “Adding an Instrument Configuration” on

page 67.

74

Chapter3

Configuring Instruments
Using the Instrument Manager

Editing an Interface You can also edit an entire Interface configuration, affecting multiple

Configuration

Note

instruments. To do this, select the Interface in the Instrument List, and
then click the Properties button. For example, select GP1B7 and click the
Properties button to get the display shown in Figure 3-18.

Instrurnent Manager

-Instrument List ~Auto Discovery
My Configuration (d:wee io)* Find Instrurments
= EHBT 7w | = E e s
Sed dmmihp34401a@y22
thp @y Settings...
S5 dmm2i@T 23
¥ Serialt -Instrurnent
Add...

EErmaye

Interface Propertie

Interface:
Address:

Gateway: This host |

OK | Cancell Helpl

[o]34 | Savel Cancell Printl Helpl

Figure 3-18. Editing the GPIB7 Configuration

Press Cancel to make no changes, retaining the GPIB7 configuration for
use in examples.

From the Interface Properties dialog box, you can change the
Interface type from GPIB to VX1, the address from 7 to some other unused
logical unit, and you can configure a LAN gateway. Any changes will affect
all of the instruments (dmm, dmm2, etc.) currently under GPIB7. For further
information, see “Details of the Properties Dialog Boxes” on page 85.

Chapter 3 75

Configuring Instruments
Using the Instrument Manager

Configuring for a Direct I/O Object

The following example shows how to configure a Direct I/0 object. In
this example, we configure a Serial Instrument at logical unit 1 (COM1) for
direct I/O.

1. Select My Configuration

2. Click on Find Instruments

3. When Find Instruments is finished, select Seriall and click on Add...

4. You should see the dialog box shown in Figure 3-19.

Instrurnent Manager

~Instrument List ~Auto Discovery
My Configuration (d:wee.io)y* Findlnstrurmets
W cPIB7

Eaniure Drvers

Settings...

dmmihp344012@722)
B dmm2(@723)

= - Instrument
Add...

Femove |

Instrument Properties

Narme: [newinstrumentfil
Interface: Im
Address (eg 9): | 1

Gateway Thiz host |
Ok | Save Ca Advanced,_,l

— 0K | Cancell Helpl

Figure 3-19. Configuring a Serial Device

The Instrument Properties dialog box allows you to select the name
and address of the new instrument. Change the name to Seriall.

76 Chapter3

Note

Configuring Instruments
Using the Instrument Manager

Click Advanced... to display the Advanced Instrument Properties
dialog box in Figure 3-20. There are two tabs of interest.

Advanced Instrument Properties

General | Direct 0 | Flug&play Driver | Fanel Driver

Baud Rate: | 9600

Character Size: IS—;I
Stop Bits: 1 |
Farity: m
Handshake MNone |
Receive BuferSize [4085

0K | Cancell Helpl

Figure 3-20. The Serial Tab

The serial tab allows you to specify the serial parameters such as baud
rate. See “Details of the Properties Dialog Boxes” on page 85 for further
information about the individual parameters and fields. You can use the
defaults for many applications.

The Direct I/0 tab,shown in Figure 3-21, allows you to specify a number
of parameters for direct 1/0O, including the EOL sequence. You can use the
defaults for most applications.

The selection of fields displayed by the Direct I/0 tab depends on the
Interface that you have selected. In addition, for VXI only there are two
additional tabs, A16 Space and A24/A32 Space.

These tabs allow you to configure a VXI device's registers for WRITE or
READ transactions in a Direct I/0 object. See “Details of the Properties
Dialog Boxes” on page 85 for further information about the parameters and
fields displayed by each tab.

Chapter 3 77

Configuring Instruments
Using the Instrument Manager

rument Properties

General | Serial |Direct Q) |P|ug&p|ayDriver Fanel Criver
Read Terminator: | "in"

Write

EOL Sequence: I "in”

Multi-Field as: Data Onlv|
Array Separator: |

Array Format: Linear |

0K | Cancell Helpl

Figure 3-21. The Direct I/O Tab

Click OK (or Cancel to make no changes) on each dialog box to return to the
Instrument Manager. In this example, a new instrument, Seriall, has
been added under the Seriall interface. To add a Direct I/0 objectto
the work area, click the Direct I/0 button, place the object, and click
again for the display in Figure 3-22.

= Seriall (@ (NOT LIVE) =

= Dauble-Click to Add Transaction =

Figure 3-22. The Direct 1/0 Object

Note Direct I/0 objects use transaction-based I/O to communicate with
instruments, without using an instrument driver. See Chapter 4, “Using
Transaction I/O” for further information.

78 Chapter3

Note

Configuring Instruments
Using the Instrument Manager

Configuring for a VXIplug&play Driver

The procedure to configure for a To/From VxIplugs&play objectis very
similar to the procedures for Panel Driver, Component Driver, and
Direct I/0 objects. However, you must first install the appropriate
VXlplug&play driver files as described in “Installing the VXIplug&play
Driver Software” on page 47.

If you are using the Windows operating system, the VISA Assistant utility
provides helpful information about VXIplug&play drivers. The information
helps you determine valid addresses required for VXIplug&play driver
configuration. Look for VISA Assistant in the Windows Start menu
Program Files = Agilent I/O Libraries = VISA Assistant

For example, we will add a VXlIplug&play configuration for the HP E1410A
6.5-Digit VXI Multimeter. Select I/0 = Instrument Manager, and click
Add.... The Instrument Properties dialog box appears. Change the
name to vxiDevice and select vXI for the Interface type, as shown in
Figure 3-23.

Chapter 3 79

Configuring Instruments
Using the Instrument Manager

Instrurnent Manager

- Instrument List ~Auto Discovery
My Configuration {d-ee.io)*
W cPin7
=l dmmchp34401 a@7232)
S5 dmm2i@r23)
¥ Serialt ~Instrurment
Seriall {(@MNOT LIVE)) Acdd

EERIEYE |

Find Instrurments
EOiiaure BrHyers

Settings...

Instrument Properties

MHame: W

Interface: i
Address (eq 1ED2E): | 0
Gateway: This host |

oK | Save Ca Ad\tanced...l

— 0K | Cancell Helpl

Figure 3-23. Adding a VXI Device

The Address field is not used for VXIplugdplay drivers. Click Advanced...
to display the Advanced Instrument Properties dialog box, and then
select the Plugsplay Driver tab.

Next, select the driver named HPE1410 from the Plugsplay Driver
Name drop-down list, as shown in Figure 3-24. You will not be able to select
the VXlplug&play driver unless you have previously installed the driver as
described in “Installing the VXIplug&play Driver Software” on page 47.

80 Chapter3

Note

Configuring Instruments
Using the Instrument Manager

Lovanced Instrument Properties
General | Directlfo [PlugBpiayDriver] | Panel Driver | 416 Space | 2432 Space
Flug&play Driver Name: | HFPE1410 'l

Farameters ta initd call - Download drivers from the Yeb

Address (e.g., GRPIBO: 22INSTR) WID::D::INSTR To add new drivers to your system:
IV Perform Identification Query 1. Download drivers from the following URL:
¥ Perform Reset hitpefieeni agilent.comifindfinst_drivers

2. Install drivers to CIWHIPMNPUWAINGS.

3. Click OK to exit this dialog box.

4. RE-enter this dialog box to see the revised
driver list.

0K | Cancell Helpl

Figure 3-24. The Plug&play Driver Tab

By default, the Address field displays VX10: :0: : INSTR, which assumes a
VXI logical address of 0 for the instrument. Generally, you will need to
supply the correct logical address. For example, if the logical address of the
HP E1410A is 24, change the Address field to vXI0::24: : INSTR. For
further information about the fields in the Plugsplay Driver tab, see
“Details of the Properties Dialog Boxes” on page 85.

Only the Plugsplay Driver tab applies to configuring VXIplug&play
drivers. The General, Direct I/0, Panel Driver,Al6 Space, and
A24/A32 Space tabs have no effect on a VXIplug&play configuration.
For example, the Live Mode setting on the General tab is ignored since
a VXlplug&play device is always considered live.

Chapter 3 81

Configuring Instruments
Using the Instrument Manager

When you have configured the instrument, click 0K on each dialog box to
return to the Instrument Manager, which will show the added
instrument, as in Figure 3-25.

Instrurnent Manager

~Instrument List ~Auto Discovery
My Configuration (d-wee.jioy* Findlnstrurmets
L PIBT Configure Drivers
Bl o —
mmihp344012@722) r—
= dmm2{@E@T23)
¥ Seriall ~Instrurment
Sernall(@MOT LIVE)) Add
= a0
’ Remove

- Create I Ohject——

Direct 7O
Plugé&play Driver

Eamel DrveEr

L o = g B

Ok | Savel Cancell F'rintl Helpl

Figure 3-25. The VXI Configuration

Click the Plugsplay Driver buttonto add a To/From VXIplugsplay
object as shown in Figure 3-26.

— TofFrom wievice =

= Double-Click to Add Function =

Figure 3-26. The To/From VXIplug&play Object

See “Using the To/From VXIplug&play Object” on page 237 for
information about using the To/From VxIplug&play object.

82 Chapter3

Configuring Instruments
Using the Instrument Manager

Configuring for a PC Plugln Card

VEE supports ODAS (Open Data Acquisition Standard) compatible PC
Plugln cards through ActiveX automation. Follow the manufacturer’s
instructions to install and configure these cards.

In the ITnstrument Manager, click Find Instruments. Ifthe PC Plugln
hardware and software have been configured correctly you see a
configuration similar to Figure 3-27:

Instrument kManager
~Instrurment List ~Auto Discovery

4 Eid et ERts |
L] CPI AGDevice0D {AGPCPIOD) [— |
= Rohotarm (Robot&rm)
= ot SRS |
- Instrument

Add...

Remowe |
Properties |

- Create W0 Qbject——

FCRI Driver |

¥ PCPIAGDevice01 (AGPCPIOT)
22} BathTemp (BathTemp)
"=l HeaterControl (HeaterControl

Ok | Savel Carcell Printl Helpl

Figure 3-27. Example PC Plugin Configuration

Click on the PCPI Driver button to get a formula object similar to Figure
3-28:

Chapter 3 83

Configuring Instruments
Using the Instrument Manager

: —-| Formula (Analogln

Ch | ITemnSensnr.AlnSinule(Ch. Bryrefvall

Figure 3-28. Formula Object Created by VEE

This is a formula object with a call to AInSingle method. VEE will
automatically create an object for this method (in this example
‘TempSensor’) so you don’t have to call CreateObject() to create it. All the
properties and methods supported for this objects are listed in the Function
& Object browser under ActiveX Objects.

84 Chapter3

Configuring Instruments
Details of the Properties Dialog Boxes

Details of the Properties Dialog Boxes

This section provides a detailed description of the Instrument
Properties dialog box, each tab of the Advanced Instrument
Properties dialog box, and the Interface Properties dialog box.
For an overview of using Instrument Manager and these dialog boxes,
see “Using the Instrument Manager” on page 58.

Instrument Properties Dialog Box

The Instrument Properties dialog box appears when you select an
instrument and click either the Add... button or the Properties button in
the Instrument Manager. See Figure 3-29 for an example of this dialog
box:

Instrument Properties

Name: o340 1
Interface: | GFIB 'I
Address (eqg T14) 714

Gateway: This host |
Advanced...l

0K | Cancell Helpl

Figure 3-29. The Instrument Properties Dialog Box

The following sections describe the individual fields.

Chapter 3 85

Name Field

Note

Interface Field

Address Field

Configuring Instruments
Details of the Properties Dialog Boxes

VEE Instrument control objects require that the Name field uniquely
identifies a particular instrument configuration. The instrument Name is a
symbolic link between each instance of an Instrument Control object and all
the configuration information corresponding to that Name. Usually, this field
is used to give a descriptive name to the instrument, such as Oscilloscope
or Power Supply.

Name must be a valid VEE variable name if you want to programatically get/
set its properties. The name must start with an alpha character, followed by
alphanumeric characters or underscores.

Names must be unique. For example, you cannot configure two instruments
with a Name of Scope. While it is possible to create two different Names that
refer to the same physical instrument, it can cause problems if you use both
Names with Panel Drivers or VXIplug&play drivers in the same program.

Do not confuse the Name of an instrument with the text that appears as the
title in an Instrument Control object. The default title of an Instrument
Control object is the name, but you can change the title and it has no effect
on the Name. If you need to determine the Name of a particular instance of an
Instrument Control object, select Properties in the Instrument Control object
menu, (e.g. Direct I/O, Multilnstrument 1/O).

It is very important that you use Names correctly. This section discusses
only the more common situations. For more details about how VEE uses
names, see “The Importance of Names” on page 229.

The Interface field specifies the type of hardware interface used to
communicate with the instrument: GPIB, VXI, GPIO, or Serial.

The address field specifies the address of the instrument. For instruments
using GPIO or Serial Interfaces, the address is the same as the interface
logical unit. An interface logical unit is a number used by the computer to
identify a particular interface.

For instruments using GPIB Interfaces, the address is of the form xxyyzz,
where:

86 Chapter3

Note

Note

Configuring Instruments
Details of the Properties Dialog Boxes

B xx is the one- or two-digit interface logical unit. The factory default
logical unit for most GPIB Interfaces is 7.

B yyis the two-digit bus address of the instrument. Use a leading zero for
bus addresses less than 10. For example, use 09 not 9.

B zz is the secondary address of the instrument. Secondary addresses are
typically used by cardcage-type instruments that use multiple plug-in
modules. Secondary addresses are used to access devices through a
command module in a C size VXI mainframe, and to address devices
in a B size VXI mainframe.

The secondary address is the secondary address as defined in IEEE 488.1.
It is part of the interface specification of the instrument hardware. The
instrument hardware design determines whether or not a secondary address
is required. Secondary addresses are not related to driver configuration.

Do not confuse secondary addresses with the Sub Address field used in
the Advanced Instrument Properties dialog box. Subaddresses are a
driver-related feature and are used very rarely.

For instruments using VXI Interfaces (connected to embedded controllers or
controllers with direct access to the VXI backplane), the address is of the
form xxyyy, where:

B xx is the one- or two-digit logical unit of the VXI backplane interface of
an embedded or external controller.

B yyyis the logical address of the VXI device. Use leading zeros for
logical addresses less than 100. For example, use 008 not 8.

Setting the Address field to 0 has special meaning. Setting the Address
field to 0 (for any interface) means there is no physical instrument matching
this device description connected to the computer. An address of 0
automatically sets Live Mode to OFF.

Chapter 3 87

Gateway Field

Advanced... Button

Configuring Instruments
Details of the Properties Dialog Boxes

GPIB Address Example 1. To control a GPIB instrument at bus address

9 using a GPIB interface card with logical unit 7, the Address field setting
for the instrument is 709. See “Logical Units and I/O Addressing” on

page 212 for information about the recommended logical units.

GPIB Address Example 2. To control an instrument at bus address 12 using
a GPIB interface card with logical unit 14, the Address field setting is
1412.

VXI Address Example 1. To control a VXI instrument with logical address
28 using an embedded VXI controller with logical unit 16, the Address
field setting is 16028. See “Logical Units and I/O Addressing” on page 212
for information about recommended logical units. Logical addresses for
VXI instruments are 1 - 255, inclusive.

VXI Address Example 2. To address a VXI instrument with logical address
24 using an HP E1406 GPIB Command Module with bus address 9 via a
GPIB Interface at logical unit 7, the Address field setting is 70903.

For an HP E1406 Command Module, use a secondary address for the VXI
instrument equal to the instrument’s logical address divided by 8. For logical
address 24, the secondary address is 3. Thus, the complete address is 70903.

Serial Address Example. To control an instrument using the COM1 serial
port with logical unit 9, the Address field setting for the instrument is 9.
See “Logical Units and I/O Addressing” on page 212 for information about
recommended logical units.

GPIO Address Example. To control a custom-built instrument using a
GPIO Interface with logical unit 13, the Address field setting for the
instrument is 13. See “Logical Units and I/O Addressing” on page 212 for
information about recommended logical units.

Use the Gateway field set to the name of the LAN gateway used during a
remote process. See “LAN Gateways” on page 193 for further information.

Click the Advanced... button to go to the Advanced Instrument
Properties dialog box.

88 Chapter3

Configuring Instruments
Details of the Properties Dialog Boxes

Advanced Instrument Properties Dialog Box: General
Tab

Figure 3-30 shows an example of the General tab of the Advanced
Instrument Properties dialog box:

Advanced Instrument Properties

General | Direct 0 | Flug&play Driver | Fanel Criver |

Timeout {sec): | E
Live Mode: o} |
Byte Ordering: MSB

Description {optionaly: |

0K | Cancell Helpl

Figure 3-30. The General Tab

The following sections describe the individual fields.

Note The parameters specified in the General tab apply to Direct I/0,
Panel Driver, and Component Driver objects, but not to
To/From VXIplugé&play objects.

Timeout (sec) Field The Timeout field specifies how many seconds VEE will wait for an
instrument to respond to a request for communication before generating an
error. The default value of five seconds works well for most applications.
In general, you should ot set this field to 0. If you do, VEE will never detect
a timeout. Certain Direct I/0 transactions for register or memory access
of VXI devices do not support a timeout.

Chapter 3 89

Configuring Instruments
Details of the Properties Dialog Boxes

Live Mode Field The Live Mode field determines whether or not VEE will attempt to
communicate with an instrument at the specified address. To communicate
with an instrument connected to your computer, you must set Live Mode
to ON.

If Live Mode is OFF for a particular instrument, you can run programs
containing Panel Drivers, Component Drivers,or Direct I/0
objects that would otherwise read and write to that instrument. However, no
instrument communication actually takes place. This behavior can be useful
if you want to develop or debug portions of a program while instruments are
not available.

Byte Ordering Field Use this field to specify the order the device uses for reading and writing
binary data. VEE uses the value in this field to determine if byte swapping is
necessary. Click this field to choose between MSB (send Most-Significant
Byte first) and LSB (send Least-Significant Byte first). All
IEEE 488.2-compliant devices must default to MSB order. See your device
manual for specific information.

Description The Description field is typically used to record the manufacturer's

(optional) Field model number. For example, the Description for the HP 54504A
oscilloscope could be hp54504a. This field is provided for your
convenience, but VEE does not use it.

90 Chapter3

Note

Read Terminator
Field

Configuring Instruments
Details of the Properties Dialog Boxes

Advanced Instrument Properties Dialog Box: Direct 1/O
Tab

Figure 3-31 shows an example of the Direct I/0 tab of the Advanced
Instrument Properties dialog box (shown for the GPIB Interface):

Advanced Instrument Properties

General |Direct Q) |P|ug&p|ayDriver| Fanel Criver

Read Terminator: [Conformance: [1EEE 485 =]
Write

L EEoE | T Binblock: | Mone 'l

Multi-Field as: Data 0”'\’| State (Learn String): Mot Config'd |

Array Separator: I Unlnad St
- pload String:

Array Format: Linear |

END (EOI} on EOL: YES D i) il

0K | Cancell Helpl

Figure 3-31. The Direct I/O Tab

The following sections describe the individual fields.

When addressing VXI devices directly on the VXI backplane, you can use
SCPI messages to control register-based devices, if [-SCPI drivers exist for
them. VEE will inform you if required [-SCPI drivers are not available.

If I-SCPI drivers are not available, you must control register-based devices
by direct read/write access to device registers or device memory. See
“Advanced Instrument Properties Dialog Box: A16 Space (VXI Only) Tab”
on page 104 or “Advanced Instrument Properties Dialog Box: A24/A32
Space (VXI Only) Tab” on page 108 for details.

The Read Terminator field specifies the character that terminates READ
transactions. The entry in this field must be a single character surrounded
by double quotes. "Double quote" means ASCII 34 decimal. VEE
recognizes any ASCII character as a Read Terminator as well as the
escape characters shown in Table 3-1.

Chapter 3 91

Write EOL
Sequence Field

Write Multi-field As
Field

Configuring Instruments
Details of the Properties Dialog Boxes

The character you should specify is determined by the design of your
instrument. Most GPIB instruments send New1ine after sending data to
the computer. See your instrument programming manual for details.

Table 3-1. Escape Characters

Escape Character ASCII Code Meaning
(decimal)

\n 10 Newline

\t 9 Horizontal Tab

\v 11 Vertical Tab

\b 8 Backspace

\r 13 Carriage Return

\f 12 Form Feed

\" 34 Double Quote

\' 39 Single Quote

A\ 92 Backslash

\ddd The ASCII character

corresponding to the three-digit
octal value ddd.

The EOL Sequence field specifies the characters that are sent at the end of
WRITE transactions that use EOL ON. The entry in this field must be zero or
more characters surrounded by double quotes. "Double quote" means ASCII
34 decimal. VEE recognizes any ASCII characters within EOL Sequence
including the escape characters shown in Table 3-1.

The Multi-field As field specifies the formatting style for multi-field
data types for WRITE TEXT transactions. The multi-field data types in VEE
are Coord, Complex, PComplex, and Spectrum. Other data types and other
formats are not affected by this setting.

Specifying a multi-field format of (...) Syntax surrounds each multi-field
item with parentheses. Specifying Data Only omits the parentheses, but
retains the separating comma. For example, the complex number 2+2 5

92 Chapter3

Write Array
Separator Field

Write Array Format
Field

Configuring Instruments
Details of the Properties Dialog Boxes

could be written as (2,2) using (...) Syntax or as 2, 2 using Data Only
syntax.

The Array Separator field specifies the character string used to separate
elements of an array written by WRITE TEXT transactions. The entry in this
field must be a a single character surrounded by double quotes. "Double
quotes" means ASCII 34 decimal. VEE recognizes any ASCII character as
an Array Separator as well as the escape characters shown in

Table 3-1.

WRITE TEXT STR transactions in Direct I/0 objects that write arrays
are a special case. In this case, the value in the Array Separator field is
ignored and the linefeed character (ASCII 10 decimal) is used to separate the
elements of an array. This behavior is consistent with the needs of most
instruments.

VEE allows arrays of multi-field data types. For example, you can create an
array of Complex data. In this case, if Multi-Field Format issetto (...)
Syntax the array will be written as:

(1,1)array sep(2,2)array sep

where array sep is the character specified in the Array Separator
field.

The Array Format field determines the manner in which multidimensional
arrays are written. For example, mathematicians write a matrix like this:

1 2 34 5 67 8 9

VEE writes the same matrix in one of two ways, depending on the setting of
Array Format. In the two examples that follow, EOL Sequence is set to
"\n" (newline) and Array Separatorissetto™" " (space).

1 2 3 Block Array Format
4 5 6
78 9

123456 789 Linear Array Format

Either array format separates each element of the array with the Array
Separator character. Block Array Format takes the additional step
of separating each row in the array using the EOL, Sequence character.

Chapter 3 93

Write END (EOI)
On EOL Field
(GPIB Only)

Configuring Instruments
Details of the Properties Dialog Boxes

In the more general case (arrays greater than two dimensions), Block
Array Format outputs an EOL Sequence character each time a subscript
other than the right-most subscript changes. For example, if you write the
three-dimensional array A[x, vy, z] using Block array format with this
transaction:

WRITE TEXT A

an EOL Sequence will be output each time x or y changes value. If the size
of each dimension in A is two, the elements will be written in this order:

A[0,0,0] A[0,0,1]<EOL Sequence>
A[O0,1,0] A[0,1,1]1<EOL Sequence>
<EOL Sequence>

A[1,0,0] A[l1,0,1]1<EOL Sequence>
A[1,1,0] A[l,1,1]1<EOL Sequence>

Notice that after A[0, 1, 1] is written, x and y change simultaneously and
consequently two <EOL Sequence>s are written.

Writing Arrays with Direct I/O. WRITE TEXT STR transactions that
write arrays to direct I/O paths ignore the Array Separator setting for
the Direct I/0 object. These transactions always use linefeed (ASCII
decimal 10) to separate each element of an array as it is written. This
behavior is consistent with the needs of most instruments. (7his special
behavior for arrays does not apply to any other type of transaction.)

END on EOL controls the behavior of EOI (End Or Identify). If END on
EOL is YES, the EOI line is asserted on the bus at the time the last data byte
is written under one of the following circumstances:

1. A WRITE transaction with EOL ON executes.

2. A WRITE transaction executes as the last transaction listed in the
Direct I/0 object.

3. One or more WRITE transactions execute without asserting EOI and are
followed by a non-WRITE transaction, such as READ.

94 Chapter3

Conformance Field

Binblock Field

Configuring Instruments
Details of the Properties Dialog Boxes

Many instruments accept either EOI or a newline as valid message
terminators. Some block transfers may require EOI. See your instrument's
programming manual for details.

Conformance specifies whether an instrument conforms to the IEEE 488.1
or [EEE 488.2 standard. See your instrument programming manual to
determine the standard to which your instrument conforms, and then set the
Conformance field accordingly.

Each of these standards defines communication protocols for the GPIB
Interface. However, IEEE 488.2 specifies rules for block headers and learn
strings that are left undefined in IEEE 488.1. All message-based VXI
instruments are IEEE 488.2 compliant, as well as register-based VXI
instruments supported by I-SCPI drivers.

If you set Conformance to TEEE 488 (which denotes IEEE 488.1), you
may optionally specify additional settings to handle block headers and learn
strings, as described in the following sections.

The Binblock field specifies the block data format used for WRITE
BINBLOCK transactions. Binblock may specify IEEE 728 #A, #T, or #1
block headers. If Binblock is None, WRITE BINBLOCK writes an IEEE
488.2 Definite Length Arbitrary Block Response Data block.

IEEE 728 block headers are of the following forms:

#A<Byte Count><Data>
#I<Byte Count><Data>
#I<Data><END>

where:

<Byte Count> is a 16-bit unsigned integer that specifies the number of
bytes that follow in <Data>.

<Data> is a stream of arbitrary bytes.

<END> indicates that EOI is asserted with the last data byte transmitted.

Chapter 3 95

State (Learn String)
Field

Upload String Field

Download String
Field

Configuring Instruments
Details of the Properties Dialog Boxes

The state field indicates whether or not the instrument has been configured
for uploading and downloading learn strings. If the State entry is Not
Config'd" and you want to configure the instrument for use with learn
strings, click the state field and the Upload String and Download
fields will appear. If the State entry is Not Config'd, the Upload
String and Download String fields are set to the null string.

The Upload String field specifies the command that is sent to the
instrument when you select Upload State from the Direct I/0 object
menu. Specify the command that causes the instrument to output its learn
string. See your instrument programming manual for details. You must
surround the command with double quotes.

The Download String field specifies the string that is sent to the
instrument immediately before the learn string as the result of a WRITE
STATE transaction in a Direct I/0 object. This field is provided to
support instruments that require a command prefix when downloading a
learn string. See your instrument programming manual for details.

96 Chapter3

Plug&play Driver
Name Field

Configuring Instruments
Details of the Properties Dialog Boxes

Advanced Instrument Properties Dialog Box:
Plug&play Driver Tab

Figure 3-32 shows an example of the P1lugsplay Driver tab of the
Advanced Instrument Properties dialog box (shown for the GPIB
Interface):

Advanced Instrument Properties

General | Direct /0 [Plug&play Drive | Panel Driver |
Flug&play Driver Name: | Lnknown 'l

Farameters ta initd call - Download drivers from the Yeb

Address (e.g., GPIBO:12:IMNETR) |GPIEID::14::INSTR To add new drivers to vour systern:

¥ Perform Identification Query 1. Download drivers from the fallowing URL:
¥ Perfarm Reset hitpefieeni agilent.comifindfinst_drivers

2. Install drivers to CIWHIPMNPUWAINGS.

3. Click OK to exit this dialog box.

4. RE-enter this dialog box to see the revised
driver list.

0K | Cancell Helpl

Figure 3-32. The Plug&play Driver Tab

The Plugsplay Driver tab is the only tab of the Advanced
Instrument Properties dialog box that applies to VXlIplug&play driver
configurations.

The following sections describe the individual fields.

This field specifies the name of the VXIplug&play driver. You must select a
driver name, as this parameter is required. The drop-down list displays all
VXlplug&play drivers installed. If there are no entries in the list, either you
do not have any VXlplug&play drivers installed or your registry entry or
the environment variable may not be set correctly. See “Introduction to
VXlplug&play” on page 46 for further information.

Chapter 3 97

Parameters to init()
call Field

Configuring Instruments
Details of the Properties Dialog Boxes

Address. Enter the address that identifies the instrument. The address
format depends on the interface to which the instrument is connected:

B VXI address string (embedded VXI, VXLink, or MXIbus controller).

For a VXI instrument with an embedded, VXLink, or MXIbus controller,
the address string takes the form

VXI[board]::VXI logical address[::INSTR]

An example is VXI::24:: INSTR for an instrument at logical address 24.
The board number is optional for the first board (VXT::24::INSTR s
equivalent to VXI0::24:: INSTR). However, the board number is

required for subsequent boards (VXI1, vXI2, and so forth).

B GPIB-VXI address string (command module).

For a VXI instrument that is being controlled from a GPIB card
connected to a command module, the address string takes the form

GPIB-VXI[board]::VXI logical address [::INSTR]

An example is GPIB-VXI::24::INSTR (Or GPIB-VXIO0::24::INSTR)
for an instrument at VXI logical address 24.

B GPIB address string (GPIB instruments).

For a non-VXI instrument being controlled from a GPIB card, the
address string takes the form

GPIB[board]::GPIB primary address::[GPIB secondary
address] [:: INSTR]

An example is GPIB: :23: : INSTR (or GPIB0: :23: : INSTR) for a
GPIB instrument at primary address 23. (The optional secondary address
is rarely used.)

98 Chapter3

Note

Configuring Instruments
Details of the Properties Dialog Boxes

Perform Identification Query. Select this check box if you want the driver
to query the instrument for its identification the first time a function panel
for this driver is executed. You generally want to select the check box,
except in the rare case that your instrument does not support this operation.

Perform Reset. Select this check box if you want a reset sent to the
instrument the first time a function panel for this driver is executed. You
generally want to select the check box, except in the rare case that your
instrument does not support this operation. Note that all VXI instruments
support this operation.

Download Drivers. If you need a new driver or to update a driver, click on
the URL in the Advanced Instrument Properties dialog box.

Advanced Instrument Properties Dialog Box: Panel
Driver Tab

Figure 3-33 is an example of the Panel Driver tab of the Advanced
Instrument Properties dialog box:

ced Instrument Properties

General | Directlio | Plug&play Driver |

IC Filenarme: hp34401a.cid |
Sub Address: |

Error Checking: ON |
Incremental Mode: o} |

0K | Cancell Helpl

Figure 3-33. The Panel Driver Tab

You can configure register-based VXI devices as message-based only if they
are supported by I-SCPI drivers.

Chapter 3 99

ID Filename Field

Sub Address Field

Note

Note

Error Checking Field

Incremental Mode
Field

Note

Configuring Instruments
Details of the Properties Dialog Boxes

This tab is used to configure both Panel Driver and Component Driver
objects. The following sections describe the individual fields.

The 1D Filename field specifies the file that contains the desired Panel
Driver. Click the field to display the Read from what Instrument
Driver? dialog box and choose a file. Files are named according to
instrument model number.

Be certain to choose the name corresponding to the exact model number you
are using, as there are similar file names such as hp3325a.cid and
hp3325b.cid.

The Sub Address field specifies the subaddress used by certain drivers to
identify plug-in modules in cardcage-type instruments, such as data
acquisition systems and switches. If you are not configuring a driver for one
of these plug-ins, set this field to "" (the NULL string).

Since very few drivers use subaddresses, the default setting of "" (the
NULL string) is the proper setting in almost all situations.

If you are configuring a driver for one of these plug-ins, see online help for
the instrument driver to determine if and how subaddresses are used.

Do not confuse the Sub Address field with a secondary address for GPIB
instruments. Subaddresses are part of the driver configuration; they are not
part of the hardware address.

The Error Checking field determines whether or not VEE queries
the instrument for errors after setting component values. Set this field to oN
unless execution speed is not acceptable.

The Incremental Mode field specifies whether or not incremental state
recall is used with Panel Driver objects.

The proper setting for Incremental Mode is ON in almost all situations.

100 Chapter3

Configuring Instruments
Details of the Properties Dialog Boxes

When Incremental Mode is set to ON, VEE automatically minimizes the
number of commands sent to the instrument to change its state. To do this,

VEE compares its record of the current state the physical instrument to the

new state specified in the Panel Driver.

VEE determines which component settings are different and then sends only
those commands needed to change components that do not match the desired
state. In most cases, you should set Incremental Mode to ON, since this
mode provides the best execution speed.

When Incremental Mode is set to OFF, VEE explicitly sets the values of
every component when a corresponding Panel Driver operates. This
mode is generally used only when there is a chance that VEE's record of the
instrument state does not match the true state of the instrument.

The Incremental Mode setting affects the operation of Panel Driver
objects, but not Component Driver objects. These things do suggest
setting Incremental Mode to OFF:

B Allowing front panel operation of an instrument while a VEE program is
also controlling the instrument.

B Changing instrument settings outside of the VEE environment through C
programs, Rocky Mountain Basic programs, or shell commands while a
VEE program is also controlling the instrument.

Using combinations of Component Drivers, Panel Drivers, and
Direct I/0 objectsin a program does not imply that you need to set
Incremental Mode to OFF.

Chapter 3 101

Configuring Instruments
Details of the Properties Dialog Boxes

Advanced Instrument Properties Dialog Box: Serial Tab

Figure 3-34 is an example of the Serial tab of the Advanced
Instrument Properties dialog box (valid for serial interfaces only):

Advanced Instrument Properties

General | Direct 0 | Flug&play Driver | Fanel Driver

Baud Rate: | 9600

Character Size: IS—;I
Stop Bits: 1 |
Farity: m
Handshake MNone |
Receive BuferSize [4085

0K | Cancell Helpl

Figure 3-34. The Serial Tab
You can set the following fields for the serial (RS-232) interface:

B Baud Rate — The default is 9600 (bits per second).

B Character Size — The defaultis 8 (bits). Allowed values are 5, 6, 7,
8, and None.

B Stop Bits — The default is 1. Allowed values are 1 and 2.

B Parity - The default is None. Allowed values are None, 0dd, Even,
Mark, and Space.

B Handshake — The default is None. Allowed values are None and
Xon/Xoff.

B Receive Buffer Size — The defaultis 4096 (bytes).

102 Chapter3

Configuring Instruments
Details of the Properties Dialog Boxes

Advanced Instrument Properties Dialog Box: GPIO Tab

Figure 3-35 is an example of the GPT0 tab of the Advanced Instrument
Properties dialog box (valid for GPIO interfaces only):

Advanced Instrument Properties

General | Direct IO | Panel Driver |

Data Width: a8 |

0K | Cancell Helpl

Figure 3-35. The GPIO Tab

The GPI0 tab has only one field, Data Width. The Data Width field
specifies the number of bits of parallel data transmitted as a unit across the
GPIO interface. This field configures the interface to read and write data
eight or sixteen bits wide. No hardware switches need to be set in
conjunction with this field.

Chapter 3 103

Byte Access (D8)
Field

Word Access (D16)
Field

Configuring Instruments
Details of the Properties Dialog Boxes

Advanced Instrument Properties Dialog Box: A16 Space
(VXI Only) Tab

Figure 3-36 is an example of the A16 Space tab of the Advanced
Instrument Properties dialog box. This tab appears only for the VXI
Interface, and is used only for register-based Direct I/0 transactions.

Advanced Instrument Properties

General | Direct i | Flug&play Driver | Fanel Criver |A24IA32 Space |

Bite Access (DB) NONE | AddRegister | Delete Register |‘
Wiord Access (D1 6) B ACEESS |
MName Offset Format Mode
LongWord Access (D32 MOMNE

0K | Cancell Helpl

Figure 3-36. The A16 Space Tab

The following sections describe the individual fields.

The Byte Access field specifies whether the VXI device supports 8-bit
A16 memory accesses. The possible choices for this field are:

B NONE - Device does not support byte access.

B ODD ACCESS - Device supports byte access, but only on odd byte
boundaries (D08(0O)).

B ODD/EVEN ACCESS - Device supports byte access on all boundaries
(DOS(EO)).

The Word Access field is not editable. All VXI devices must support 16-bit
access (D16).

104 Chapter3

LongWord Access
(D32) Field

Add Register Field

Configuring Instruments
Details of the Properties Dialog Boxes

The LongWord Access field specifies whether the VXI device supports
32-bit A16 memory accesses. The possible choices are:

B NONE - Device does not support 32-bit access.

B D32 ACCESS - Device supports 32-bit A16 memory access.

When you click the Add Register field, it adds a row of fields to the
dialog box. These fields allow you to configure access to a device's A16
memory. The four fields are:

B Name - The symbolic name of the register, which is used to refer to the
particular register in a Direct I/0 objectusing READ REGISTER Or
WRITE REGISTER transactions.

B offset - The offset in bytes from the relative base of a device's A16
memory for the register being configured.

B Format - The data format that will be read from, or written to, the
register being configured. The read or write access will take place at the
byte specified in the 0Offset field. The possible formats are:

O BYTE - Read or write a byte. The device must support and be
configured correctly for 8-bit access by using the BYTE field
discussed above. If the BYTE field is ODD, the byte location specified
in the Of fset field must be an odd number.

U worD16 - Read or write a 16-bit word. The 16-bits are represented as
a two's complement integer. All VXI devices explicitly support this
format.

Chapter 3 105

Delete Register
Field

An Example

Note

Configuring Instruments
Details of the Properties Dialog Boxes

O worD32 - Read or write a 32-bit word. The 32-bits are represented as
a two's complement integer. VEE supports this format even if the
LongWord Access field is specified as NONE (by using two D16
accesses to read or write all 32 bits). If the LongWord Access field
is specified as D32 ACCESS, all 32 bits are accessed.

U REAL32 - Read or write a 32-bit word. The 32-bits are represented as
a IEEE 754 32-bit floating-point number. VEE supports this format
even if the LongWord Access field is specified as NONE (by using
two D16 accesses to read or write all 32 bits). If the LongWord
Access field is specified as D32 ACCESS, all 32 bits are accessed.

B Mode - Specifies what I/0 mode the register will support. The choices
are:

O READ - This register will appear as a choice in a READ REGISTER
transaction only.

U wRITE - This register will appear as a choice in a WRITE REGISTER
transaction only.

O READ/WRITE - This register will appear as a choice in both a
READ REGISTER and WRITE REGISTER transaction.

When you click the Delete Register field, it will display a list of the
symbolic names of the currently configured registers. The selected register
will be removed from the dialog box.

Figure 3-37 shows the 216 Space tab with the register configuration of
an HP E1411B VXI Multimeter. Note that the list of registers scrolls as
additional registers are added using Add Register.

An extended (224/A32 Space) memory configuration would be similar,
but would consist of memory "locations," rather than "registers."

106 Chapter3

Configuring Instruments
Details of the Properties Dialog Boxes

Advanced Instrument Properties

General | Direct 0 | Flug&play Driver | Panel Driver Al6 Space |A24IA32 Space |

Bite Access (DB) NONE | AddRegister | Delete Register |‘
Wiord Access (D1 6) B ACEESS |
MName Offset Format Mode
LongWord Access (D32 MOMNE |
[stat 4 WORD16 rReAD |

0K | Cancell Helpl

Figure 3-37. The A16 Configuration for the HP E1411B Multimeter

The of£set field is configured with the offset in bytes of each register from
the relative base of the device's A16 space. The status register (Name: =
stat in the figure) is configured with a 4-byte offset and is configured for
READ mode.

The control register is not shown in the figure, but typically would be
configured for a 4-byte offset in WRITE mode. While two separate register
locations could have the same mode, the Name field must be unique.
However, it would be possible for the register at byte location 4 to be named
statuscontrol with a mode of READ/WRITE.

Chapter 3 107

Note

Byte Access (D8)
Field

Configuring Instruments
Details of the Properties Dialog Boxes

Advanced Instrument Properties Dialog Box: A24/A32
Space (VXI Only) Tab

Figure 3-38 is an example of the A24/A32 Space tab of the Advanced
Instrument Properties dialog box. This tab appears only for the VXI
Interface, and is used only for register-based Direct I/0 transactions.

Advanced Instrument Properties

General | Direct 0 | FPlug&play Driver | Panel Crriver | A1B Space P24iA32 Space |

Byie Access (D) NONE | #dd Location | Delete Location | ‘
Ward Access (D16) B | E e = e |
MName Offset Format Mode
LongWord Access (D32 MNONE
Guadiard Access (DE4) MOME

0K | Cancell Helpl

Figure 3-38. The A24/A32 Space Tab

The following sections describe the individual fields.

The term "extended memory" indicates either A24 or A32 memory ina VXI
device. (A VXI device can implement either A24 or A32 memory, but not
both.)

The Byte Access field specifies whether the VXI device supports 8-bit
extended memory accesses. The possible choices for this field are:

B NONE - Device does not support byte access.

B ODD ACCESS - Device supports byte access, but only on odd byte
boundaries (D08(0O)).

B ODD/EVEN ACCESS - Device supports byte access on all boundaries
(DOS(EO)).

108 Chapter3

Word Access (D16)
Field

LongWord Access
(D32) Field

QuadWord Access
(D64) Field

Add Location Field

Configuring Instruments
Details of the Properties Dialog Boxes

The Word Access field is not editable. All VXI devices must support 16-bit
access (D16) for all memory spaces.

The LongWord Access field specifies whether the VXI device supports
32-bit extended memory accesses. The possible choices are:

B NONE - Device does not support 32-bit access.

B D32 ACCESS - Device supports 32-bit extended memory access.

The QuadWord Access field specifies whether the VXI device supports
64-bit extended memory access. The possible choices are:

B NONE - Device does not support 64-bit access.
B D64 ACCESS - Device supports 64-bit memory access.

Agilent I/O Libraries G.02.02 supports 64-bit access to some VXI I/O
instruments’ memory space. This feature enables VEE programs to read/
write memory in 64-bit units for VXI instruments that support this mode. If
you have version G.02.02 installed, you can use the A24/A32 Space Tab on
the Advanced Instrument Configuration dialogbox to enable
this access mode.

To enable this mode, first enable Quadiiord access (D64) Access and
choose format WORD32*2, or REAL64. If you choose the WORD32*2 format,
a 64-bit value is read into two adjacent numbers of the INT32 array.

Location: I/0 = Instrument Manager (select VXI instrument) = Edit
Instrument = Advanced I/0O Config... A24/A32 Space Tab.

When you click the Add Location field, it adds a row of fields to the
dialog box. These fields allow you to configure access to a device's extended
memory. The four fields are:

B Name - The symbolic name of the location, which is used to refer to the
particular memory location in a Direct I/0 objectusing
READ MEMORY or WRITE MEMORY transactions.

B offset - The offset in bytes from the relative base of a device's extended
memory for the location being configured.

Chapter 3 109

Configuring Instruments
Details of the Properties Dialog Boxes

B Format - The data format that will be read from, or written to, the
location being configured. The read or write access will take place at the
byte specified in the Of fset field. The possible formats are:

U BYTE - Read or write a byte. The device must support and be
configured correctly for 8-bit access by using the BYTE field
discussed above. If the BYTE field is ODD, the byte location specified
in the Of fset field must be an odd number.

U worD16 - Read or write a 16-bit word. The 16-bits are represented as
a two's complement integer. All VXI devices explicitly support this
format.

O worD32 - Read or write a 32-bit word. The 32-bits are represented as
a two's complement integer. VEE supports this format even if the
LongWord Access field is specified as NONE (by using two D16
accesses to read or write all 32 bits). If the LongWord Access field
is specified as D32 ACCESS, all 32 bits are accessed.

U REAL32 - Read or write a 32-bit word. The 32-bits are represented as
a IEEE 754 32-bit floating-point number. VEE supports this format
even if the LongWord Access field is specified as NONE (by using
two D16 accesses to read or write all 32 bits). If the LongWord
Access field is specified as D32 ACCESS, all 32 bits are accessed.

U worD32*32 - Read or write a 64-bit word as two 32-bit words (as two
Int32). QuadWord Access must be enabled.

U REAL64 - Read or write a 64-bit word as a REAL64. QuadWord
Access must be enabled.

B Mode - Specify what I/O mode the location will support. The choices are:

U reAD - This location will appear as a choice in a READ MEMORY
transaction only.

U wRITE - This location will appear as a choice in a WRITE MEMORY
transaction only.

110 Chapter3

Delete Location
Field

Interface Field

Address Field

Gateway Field

Configuring Instruments
Details of the Properties Dialog Boxes

U READ/WRITE - This location will appear as a choice in both a
READ MEMORY and WRITE MEMORY transaction.

When you click the Delete Location field, it will display a list of the
symbolic names of the currently configured location. The selected location
will be removed from the dialog box.

Interface Properties

The Interface Properties dialog box appears only when you select an
Interface in the Instrument Manager’s instrument list, and then click the
Properties button. Figure 3-39 is an example of this dialog box:

Interface Properties B4
Interface: cris
Address: | 7 _.;
Gateway: This host |

0K | Cancell Helpl

Figure 3-39. The Interface Properties Dialog Box

The following sections describe the individual fields.

The Interface field specifies the type of hardware interface. You can
interchange GPIB with VX I (both are multiple-instrument buses), or Serial
with GP10 (both are single-instrument interfaces).

The Address field specifies the logical unit for the Interface, affecting all
instruments connected to it. Use the up and down arrows to change the
Address — only the logical units without conflicts will appear.

Use the Gateway field set to the name of the LAN gateway used during a
remote process. See “LAN Gateways” on page 193 for further information.

Chapter 3 111

Configuring Instruments
Details of the Properties Dialog Boxes

112 Chapter3

Using Transaction 1/0

Note

Using Transaction I/O

VEE for UNIX includes objects to communicate with files, printers, named
pipes and other processes. It also provides the means to communicate with
Rocky Mountain Basic and with hardware interfaces and the instruments
connected to them.

I/O objects control this communication using transactions. This chapter
explains general concepts common to all objects using transactions,
including:

B Creating and Reading Transactions

Using Transaction-Based Objects

Choosing Correct Transactions

Communicating With Files

Communicating With Programs (UNIX)

Communicating With Programs (PC)

B Using Transactions in Direct I/O and Interface Operations

It also explains how to use transactions in Direct I/O and Interface
Operations.

Related Reading:

I. Haviland, Keith and Salama, Ben, UNIX System Programming. (Addison-
Wesley Publishing Company, Menlo Park, California, 1987).

This book contains information of general interest to programmers

using UNIX. In particular, this book contains explanations of interprocess
communications and pipes that are applicable to with To/From

Named Pipe, To/From Socket, To/From Rocky Mountain Basic
and Execute Program.

114 Chapter4

Using Transaction 1/0
Creating and Reading Transactions

Creating and Reading Transactions

All I/O objects discussed in this chapter contain transactions. A transaction
specifies a low-level input or output operation, such as how to read or write
data. Each transaction appears as a line of text listed in the

open view of an I/O object. To view a typical transaction, click

I1/0 = To => Stringto create a To String object. Figure 4-1 shows
this object.

Tao String

[-]

= Double-Click to Add Transaction =

result

Figure 4-1. Default Transaction in To String Object
To add a transaction, double click in the object.
Figure 4-2 shows a simple program using the To String object to illustrate

how transactions operate. The program uses two transactions, one to write a
string literal and one to write a number in fixed decimal format.

—|Realtd Slider| - To String I7]
| 7.095 = _
WRITE TEXT "walue is ™
I 10 WRITE TEXT a REALE4 Fli1 EOL
ﬂ = Double-Click to Add Transaction = w
a
A
4
2 —| Alphakumeric| -
value is 7.1
I 1]

Figure 4-2. A Program Using To String Object

Chapter 4 115

Using Transaction 1/0
Creating and Reading Transactions

You generally need to do at least two things with a transaction-based object:

1. Add additional transactions as required.

2. Add input terminals, output terminals, or both. Most terminals will be
automatically added as needed—as you add or edit transactions.

Creating and Editing Transactions

Editing with Mouse ~ Table 4-1 describes briefly how to edit transactions with a mouse.

and Keyboard

Table 4-1. Editing Transactions With a Mouse

To Do This...

Click This...

Add another transaction to the end of the list.

Double click in the object,
or add Trans in the object menu.

Move the highlight bar to a different transaction.

Any non-highlighted transaction.

Insert a transaction above the highlighted
transaction.

Insert Trans in the object menu.

Cut (delete) the highlighted transaction, saving it
in the transaction "cut-and-paste" buffer.

Cut Trans in the object menu.

Copy the highlighted transaction to the
transaction "cut-and-paste" buffer.

Copy Trans in the object menu.

Paste the transaction currently in the buffer above
the highlighted transaction.

Paste Trans in the object menu.

Edit the transaction.

Double-click the transaction.

116

Chapter4

Using Transaction 1/0
Creating and Reading Transactions

Table 4-2 describes briefly how to edit transactions with the keyboard.

Table 4-2. Editing Transactions With the Keyboard

To Do This... Press This Key...
Move the highlight bar to the next transaction. CTRL+N
Move the highlight bar to the previous CTRL+P

transaction.

Move the highlight bar to a different transaction. 7,1, Home

Insert a transaction above the highlighted Insert line or CTRL+O
transaction.

Cut (delete) the highlighted transaction, saving it Delete line or CTRL+K
to the transaction "cut-and-paste" buffer.

Paste the transaction currently in the buffer above | CTRL+Y
the highlighted transaction.

Edit the highlighted transaction. space bar

To edit the fields within a transaction, double-click the transaction to expand
ittoan I/0 Transaction dialog box, as shown in Figure 4-3.

= To String =

= Double-Click to Add Transaction = result

[/0 Transaction

[wrme=] [TEXT = H
[DEFAULTFORMAT (=] EOLON |

ok | wop | cancel

Figure 4-3. Editing the Default Transaction in To String Object

Chapter 4 117

Editing the Data
Field

Using Transaction 1/0
Creating and Reading Transactions

The fields shown in the I/0 Transaction dialog box are different for
different types of I/O operations. To change information in a field, click on
the arrow and select from the list that appears. Fields without an arrow
require you to enter text. Click OK to accept the selections and return to the I/
O object.

Clicking NOP saves the latest settings shown in the dialog box, and makes
that transaction a "no operation" or a "no op." Its effect is the same as
commenting out a line of code in a text-based computer program.

Input and output terminals are added automatically as needed. You can also
use the Object menu to add or delete terminals.

The data field requires you to enter text. Figure 4-4 shows an example of a
READ Transaction and what you might enter in the data field.

YO Transaction

[READE] | TERT =] K ——+— Data Field

[REALG4FORMAT =] | ma<numMcHARS: |5

|ARRA‘|’2D ~| =izE | |2] |2)

ok | nNoP | cancel

Figure 4-4. READ Transaction Using a Variable in the Data Field

Figure 4-5 shows an example of a WRITE Transaction and what you might
enter in the data field.

YO Transaction

fwrme=] [TExT = [3+2% — 1 Data Field

[REALG4FORMAT ¥] DEFAULT FIELD WIDTH|

[~ = | FE0 =] | NUMFRACTDIGITS: [3 EOLONl

ok | mnop | cancel

Figure 4-5. WRITE Transaction Using an Expression in the Data Field

118 Chapter4

Note

Using Transaction 1/0
Creating and Reading Transactions

WRITE transactions allow you to specify an expression list (variables,
constants and operators), but READ allows only a variable list. Table 4-3 lists
typical entries for the data field.

Table 4-3. Typical Data Field Entries

Data Field Entry

Meaning

X (READ) Read data into the variable X.

A (WRITE) Write the value of the variable A.

X, Y (READ) Read data into the variable X and then read data into the
variable Y.

A/B (WRITE) Write the value of the variable A and then write the value
of the variable B.

null (READ only) Read the specified value and throw it away. null is a
special variable defined by VEE.

A,A*1.1 (WRITE only) Write the value of A and then write the value of A
multiplied by 1.1.

"hello\n" (WRITE) Write the Text literal hel1lo followed by a newline

character.

"FR ",Fr," MHZ"

(WRITE) Write a combination of Text literals and a numeric value. If
the transaction is WRITE TEXT REAL and Fr has the Real value
1.234, then VEE writes FR 1.234 MHZ.

You may include the escape characters shown in Table 4-4 in any field that
accepts text input as a string delimited by double quotes.

READ transactions allow a nul1 variable in the data field. Reading data into
the null variable throws the data away. This is useful for removing unneeded

data.

Chapter 4

119

Using Transaction 1/0

Creating and Reading Transactions

Table 4-4. Escape Characters

Escape Character ASCII Code Meaning
(decimal)
\n 10 Newline
\t 9 Horizontal Tab
\v 11 Vertical Tab
\b 8 Backspace
\r 13 Carriage Return
\f 12 Form Feed
A" 34 Double Quote
' 39 Single Quote
AR 92 Backslash
\ddd The ASCII character corresponding
to the three-digit octal value ddd.
Adding Terminals

Vee automatically adds input and output terminals as needed. To add one
manually, click on "Add Terminal" in the object menu, or use the keyboard

short cut CTRL+A.

WRITE transactions transfer data from VEE to the destination associated
with the object and require a data input terminal. A WRITE transaction can
also write data from a global or an expression such as "abs(globalA)"

READ transactions transfer data from the source associated with the object to

VEE and require a data output terminal.

Variable names that appear on the terminal must match the variable names in
the transaction specification, as shown in Figure 4-6.

120

Chapter4

Using Transaction 1/0
Creating and Reading Transactions

= ToFile B B Fram File Ir |
{ a | ToFie: myFile | From File: myFile || %
[" Clear File At PreRun & Open READ TEAT ¥, y REALB4
WRITE TEXT a, b EQL
1h = Double-Click to Add Trangaction = ¥

hese data input terminals... These transaction variables... ..map to these

...map to these dat tout
transaction variables. ata outputs.

Figure 4-6. Terminals Correspond to Variables

To edit a terminal variable name, do the following:

1. Double click the terminal to expand it into a Terminal Information
dialog box.

2. Edit the Name field in the dialog box.

Variable names in VEE are not case-sensitive. Thus, s is the same as S and
Signal is the same as signal.

Reading Transaction Data

To read data into a variable, VEE must know either the number of data
elements to read or the specific terminating condition. READ transactions
look for either a specified number of data elements or an end-of-file (EOF)
indication. Specify this in the last field of the I/O Transaction dialog box.

Chapter 4 121

Transactions that
Read a Specified
Number of Data
Elements

Using Transaction 1/0
Creating and Reading Transactions

The last field in the transaction dialog box has the default value SCALAR.
This specifies that the READ transaction is to read only one element. To
change this, click the SCALAR field and choose from a list of available
choices, as shown in Figure 4-7.

= Fram File =]
From File: rryFile | E
READ TEXT x,y REALE4
e T reap =] [Bmery = fuov
[T3z 7]

ARRAY 1D
ARRAY 2D ok | mnop | cancel
ARRAY 3D
ARRAY 4D
ARRAY 5D
ARRAY 6D
ARRAY 7D
ARRAY 8D
ARRAY 9D
ARRAY 10D

Figure 4-7. Select Read Dimension from List

The choices in the list indicate the number of dimensions for the READ
transaction. For example, SCALAR indicates a dimension of 0, ARRAY 1D
indicates a one-dimensional array, ARRAY 2D indicates a two-dimensional
array, etc.

122 Chapter4

Using Transaction 1/0
Creating and Reading Transactions

When you select a dimension, the transaction dialog box shows a fill-in field
for each dimension specified. Figure 4-8 shows a transaction dialog box
configured to read a three-dimensional array of binary integers into the
variable named mat rix. Each of the three fields after STZE: contains the
number of integers for the corresponding dimension. (In this case, each
dimension has two elements.)

= Fram File =

Fram File: myFile | Py

READ BIMA)
= Double g

| rREAD =] | BINARY =]

IEAE
[aRRav3D =] | sz | (2 C 2 2)

ok | mnop | cancel

Figure 4-8. Transaction Dialog Box for Multi-Dimensional Read

When more than one dimension is specified, the rightmost or "innermost"
dimension is filled first. In this example, the elements are read in the
following order:

matrix read first

4 4

matrix

4 4

matrix [0,

[0,0,0]
[0,0,1]
[0,1,0]
matrix[0,1,1]
[1,0,0]
[1,0,1]
[1,1,0]
[1,1,1]

4

matrix

4 4

matrix

4 4

matrix

4 4

matrix read last

4 4

When you click the OK button in the transaction dialog box, the resulting
transaction appears with the ARRAY : keyword followed by the dimension
sizes. For example:

READ BINARY matrix INT32 ARRAY:2,2,2

Chapter 4 123

Read-To-End
Transactions

Using Transaction 1/0
Creating and Reading Transactions

If the transaction is configured to read a scalar value, the transaction appears
as follows:

READ BINARY x INT32

You can use variable names in the SIZE: fields to specify array dimensions
programmatically. For example, the following transaction would read a
three-dimensional matrix:

READ BINARY matrix INT32 ARRAY:xsize,ysize,zsize

In this case, xsize, ysize, and zsize could be either the names of input
terminals or the names of output terminals set by previous transactions in the
same object.

Certain VEE objects support READ transactions that read to the end-of-file
(eoF). This makes it possible to read the contents of a file with a single
transaction. Such transactions are called read-to-end transactions. EOF,
besides indicating end-of-file for a standard disk file, can also indicate
closure of a named-pipe or pipe.

The following VEE objects support read-to-end transactions:

From File

From String

From Stdin (UNIX)

To/From Named Pipe (UNIX)

To/From Rocky Mountain Basic (UNIX)
Execute Program (UNIX)

To/From DDE (PC)

124 Chapter4

Using Transaction 1/0
Creating and Reading Transactions

Figure 4-9 shows the transaction dialog box of a From File object, reading
a three dimensional array of binary integers, but configured for read-to-end:

= Frarm File =

Fram File: rryFile | H

| READ =] | BINARY =] |matrix

I INT32 'I

|ARRaY 3D 7] [0END:|(S 7)

ok | mnop | cancel

Figure 4-9. Transaction Dialog Box for Multi-Dimensional Read-To-End

Read-to-end transactions are not supported for scalars. The transaction must
be configured for at least a one-dimensional array to be configured as read-
to-end. If a VEE object supports read-to-end, the S1zE: field appears as a
button in the transaction dialog box. Clicking the S1ZE: field enables read-
to-end, and the field appears as TO END:.

If a one-dimensional array is read to the end, the number of elements in the
array is unknown until EOF is found. The unknown size of the array is
denoted by an asterisk (*) in the transaction.

When reading a multi-dimensional array is read to the end, the number of
elements must be supplied for each dimension except the left-most or
"outer" dimension. Figure 4-9 shows that this dimension has an (*) in place
of a size in the transaction. This dimension size is unknown until the read-to-
end is transaction complete.

A three-dimensional array is nothing more than a number of two-
dimensional arrays grouped together. A two-dimensional array has the
dimensions of "rows" and "columns". Stacking two-dimensional arrays
(like cards) adds the third dimension "depth".

Chapter 4 125

Note

Non-Blocking Reads

Using Transaction 1/0
Creating and Reading Transactions

In a read-to-end transaction of a three-dimensional array, the number of
"rows" and "columns" is specified, but the "depth" is unknown until EOF is
encountered. The same is true for all multi-dimensional read-to-end
transactions. If the array has n dimensions, the size of n-1 of those
dimensions must be specified. Only one (the left-most) dimension can be of
unknown size.

In read-to-end transactions of dimensions greater than an ARRAY 1D, the
number of total elements read has to be evenly divisible by the product of
the known dimensions. For example, if the read-to-end example of a three-
dimensional array is from a file with 16 total elements, the transaction will
read four two-by-two arrays since the transaction specifies the number of
"rows" and "columns" is equal to 2. Hence, the unknown dimension size,
"depth", is 4 when the read is complete.

If the file actually contained 18 elements, one of the two-by-two arrays
would be incomplete. It would contain only two elements. A read-to-end of
this file would result in an error (and no data would be read) if you specified
a size of 2 for the "row" and "column" dimensions. On the other hand, you
could read this file if the number of "rows" is equal to 1 and the number of
"columns" is equal to 3. A read-to-end of this file would then result in a
"depth" of 6.

If you do not know the absolute number of data elements in a file, you can
always use a read-to-end using ARRAY 1D.

The read-to-end transaction is useful with the Execute Program object
for a program that is a shell command that will return an unknown number
of elements.

A READ transaction finishes when the read is complete. Until the read is
complete, the transaction is said to block. When reading disk files, the
blocking action is not apparent since data is always available from the disk.
However, for named-pipes and for pipes where data is being made available
from another process, a READ transaction could block, effectively halting
execution of a VEE program. In some cases, the READ transaction could
block indefinitely.

The READ IOSTATUS DATAREADY transaction provides a means to peek at
a named-pipe or pipe to see if there is data available for a READ transaction.

126 Chapter4

Using Transaction 1/0
Creating and Reading Transactions

The READ IOSTATUS DATAREADY transaction is available in the following
VEE objects:

B To/From Named Pipe (UNIX)

To/From Socket

To/From Rocky Mountain Basic (UNIX)
From StdIn (UNIX)

Note A READ IOSTATUS DATAREADY transaction, when executed, will block
until the named pipe has been opened on the other end by the writing
process. The transaction will then return the status of the pipe.

If the pipe has been closed by the writing process, effectively writing an
EOF into the pipe, the READ TOSTATUS DATAREADY transaction will return
a 1, indicating an EOF is in the pipe. A subsequent READ transaction will
generate an EOF error. Use an error pin on the object reading the data to
trap the EOF error.

Chapter 4 127

Using Transaction 1/0
Creating and Reading Transactions

Figure 4-10 shows a program where READ TOSTATUS DATAREADY is used
to detect data on the StdIn pipe.

Ev]

LIntil Break

=] From Stdin =

——1
W ———-1 IFMOTA Caunter

READ [QSTATUS DATAREADY

= Double-Click to Add Transaction =
= Fram Stdin =
— Meter =
READ TEXT ¥ TR |
= Double-Click to Add Transaction = M ID I a00
200 300
100 400
- Alphahumeric = \
| 158

Figure 4-10. Using READ IOSTATUS DATAREADY for a Non-Blocking
Read

This program is saved in the file manual47.vee in the examples
directory.

The program in Figure 4-10 shows the use of a READ IOSTATUS
DATAREADY transaction in From StdIn. The transaction returns a zero (0)
if no data is present on the stdin pipe. If data is present, a one (1) is returned.
The If/Then/Else is used to test the returned value of the READ
IOSTATUS DATAREADY transaction. If the result is 1, the second From
StdiIn is allowed to execute, reading the data typed into the VEE start-up
terminal window.

If no data has been typed into the start-up terminal window (or a Return has
not been typed), execution continues again at the start of the thread. The
program uses Until Break to iterate the thread so the From StdIn with
the READ TOSTATUS DATAREADY transaction is continually tested.

128 Chapter4

Using Transaction 1/0
Creating and Reading Transactions

To view complete programs that illustrate how to read arrays from files,
open and run the programs manual27.vee and manual28.vee in the
examples directory.

Suggestions for Developing Transactions

Many times the best way to develop the transactions you need is by using
trial and error. A large portion of the data handled by I/O transactions is text
(as opposed to some type of binary data). Data written as TEXT is very useful
for experimenting because it is human-readable. While using TEXT is not the
most compact or fastest approach, you can use it to do just about anything.

You can use the To String object to accurately simulate the output
behavior of other I/O objects writing text. The program in Figure 4-11 shows
one way you might do this.

_.| To ETtring | -'|

WRITE TEXT "HELLCinin" EOL

WRITE TEXT 255 HEX PREF X" unknown' EOL

\WRITE BYTE 65, 66, 67, 63, 68, 10 T
WRITE CASE 2,1, 0 OF "dogin”, "catin”, "hirdin" EOL

= Dauble-Click to Add Transaction =

— |Logging Alphaturme... | «
HELLD =

£f

ABCDE

bird

cat —

dog j

Figure 4-11. Example: Using To String

Chapter 4 129

Using Transaction 1/0
Using Transaction-Based Objects

Using Transaction-Based Objects

This section gives guidelines for using transaction-based objects, including
execution rules and Object configuration.

Execution Rules

Transaction I/O objects obey all general propagation rules for VEE
programs. In addition, there are a few rules for the transactions themselves:

1. Transactions execute beginning with the top-most transaction and
proceed sequentially downward.

2. Each transaction in the list executes completely before the next one
begins. Transactions within a given object do not execute in an
overlapped fashion. Similarly, only one transaction object has access to a
particular source or destination at a time.

3. Transaction-based I/O objects accessing the same source or destination
may exist in separate threads or the same thread within the same
program.

For file-related objects, there is only one read pointer and one write

pointer per file. The same pointers are shared by all objects accessing a
particular file.

Object Configuration

In the most general case, the result of any transaction is actually determined
by two things:

B The specifications in the transaction
B The settings accessed via Properties in the object menu

In most cases you do not need to be concerned about the Properties
settings as the default values are generally suitable.

130 Chapter4

Note

Using Transaction 1/0
Using Transaction-Based Objects

Transaction-based I/O objects that write data (except Direct I/0) include
an additional tab in the Properties dialog box that lets you edit the data
format. The resulting dialog box allows you to view and edit various
settings.

Direct I/0 objectsinclude a Show Config feature in their object menu
that allows you to view (but not edit) configuration settings. To edit the
configuration of a Direct I/0 object, you must use

I/0 = Instrument Manager.

Clicking Properties in the object menu of a transaction I/O object yields a
Properties dialog box like the one in Figure 4-12.

= To File =

To File: rriyFile: |
[~ Clear File At PreRun & Cpen

= Diouhle-Click to Add Transaction =

To File Properties

General | Colars | Fonts | lcan |

~ Beparator Seguence

End Of Line {(ECL): f'll‘ln"

Array Separator: e
~Multi-Field Format— Array Format—;
< Data Only < Linear

< () Syntax < Block

0K | Cancell Helpl

Figure 4-12. The Properties Dialog Box

Chapter 4 131

End Of Line (EOL)
Field

Array Separator
Field

Multi-Field Format
Field

Using Transaction 1/0
Using Transaction-Based Objects

The Properties dialog box has a Data Format tab containing settings
that affect the way certain data is written by WRITE transactions. The

End Of Line (EOL) affects any WRITE in which EOL ON is set. The
remaining Data Format fields affect only WRITE TEXT transactions.

The following sections explain the fields in the Data Format tab in detail.

The End 0f Line (EOL) field specifies the characters that are sent at the
end of WRITE transactions that use EOL ON. The entry in this field must be
zero or more characters surrounded by double quotes. "Double quote" means
ASCII 34 decimal. VEE recognizes any ASCII characters within End 0Of
Line (EOL) including the escape characters shown in Table 4-4.

The Array Separator field specifies the character string used to separate
elements of an array written by WRITE TEXT transactions. The entry in this
field must be surrounded by double quotes. "Double quote" means ASCII 34
decimal. VEE recognizes any ASCII character as an Array Separator as
well as the escape characters shown in Table 4-4.

WRITE TEXT STR transactions in Direct I/O objects that write arrays are
a special case. In this case, the value in the Array Separator field is
ignored and the linefeed character (ASCII 10 decimal) is used to separate the
elements of an array. This behavior is consistent with the needs of most
instruments.

The Multi-Field Format field specifies the formatting style for multi-
field data types for WRITE TEXT transactions. The multi-field data types in
VEE are Coord, Complex, PComplex and Spectrum. Other data types and
other formats are unaffected by this setting.

Specifying a multi-field format of (...) Syntax surrounds each multi-
field item with parentheses. Specifying Data Only omits the parentheses,
but retains the separating comma. For example, the complex number 2+2 j
could be written as (2,2) using (...) Syntaxoras 2,2 using

Data Only syntax.

132 Chapter4

Array Format Field

Using Transaction 1/0
Using Transaction-Based Objects

VEE allows arrays of multi-field data types. For example, you can create an
array of Complex data. In such a case, if Multi-Field Format is set to
(...) Syntax, the array will be written as:

(1,1)array sep(2,2)array sep

where array sep is the character specified in the Array Separator
field.

The Array Format field determines the manner in which multidimensional
arrays are written. For example, mathematicians write a matrix like this:

~
o U1 N
O o W

VEE writes the same matrix in one of two ways, depending on the setting of
Array Format. In the two examples that follow, End Of Line (EOL) is
set to "\n" (newline) and Array Separatorissetto™ " (space).

Block Array Format

~ B =
N o O N

3
6
9
3

1 45 6 7 8 9 Linear Array Format

Either array format separates each element of the array with the

Array Separator character. Block Array Format takes the additional
step of separating each row in the array using the End Of Line (EOL)
character.

In the more general case (arrays greater than two dimensions), Block
Array Format outputs an End Of Line (EOL) character each time a
subscript other than the right-most subscript changes.

For example, if you write the three-dimensional array A [x, y, z] using
Block array format with this transaction:

WRITE TEXT A

an End Of Line (EOL) character will be output each time x or y changes
value.

Chapter 4 133

Using Transaction 1/0
Using Transaction-Based Objects

If the size of each dimension in A is two, the elements will be written in this
order:

A[0,0,0] A[0,0,1]1<EOL Character>
A[0,1,0] A[0,1,1]1<EQOL Character>
<EOL Character>

A[1,0,0] A[1l,0,1]1<EOL Character>
Al1,1,0] A[1,1,1]1<EOL Character>

After A[0, 1, 1] is written, x and y change simultaneously and
consequently two <EOL Character>s are written.

134 Chapter4

Using Transaction 1/0
Choosing Correct Transactions

Choosing Correct Transactions

This section summarizes various I/O objects and transactions they support. It
also suggests a procedure for determining the correct object and transaction
for a particular purpose. For details on transaction encodings and formats,
see Appendix A, “I/O Transaction Reference”. Figure 4-5 and Figure 4-6
summarize transaction-based objects available in VEE and the actions they
support.

Table 4-5. Summary of Transaction-Based Objects

Object Description
To File Writes data to a file.
From File Reads data from a file.
To String Writes text to a VEE container.
From String Reads text from a VEE container.

Execute Program pawns an executable Tile, writes 1o standard input and
(UNIX) reads from standard output of the spawned process.
Execute Program (PC) is nottransaction based.

Writes text to the VEE text printer.

To StdoOut Writes data to V standard output. (A file on the P

To StdError rites data to VEE standard error. (A file on the PC)

From StdIn Reads data from VEE standard input. (A file on the PC)

Direct I/0 Communicates directly with GPIB, VXI, serial, or GPIO
instruments.

MultiInstrument Communicates directly with multiple GPIB, VXI, serial, or

Direct I/0 GPIO instruments in the same object.

Interface Transmits low-level bus commands and data bytes on an

Operations GPIB or VXl interface.

Chapter 4 135

Using Transaction 1/0
Choosing Correct Transactions

Table 4-5. Summary of Transaction-Based Objects

Object Description

d ddla 10 dalld om narr
(UNIX) interprocess communications.
To/From Rocky
Mountain Basic ransmits data to and from an Rocky Mountain Basic
process via HP-UX named pipes.

To/From DDE (PC) Dynamically exchanges data between programs running
under Microsoft Windows.

To/From Socket Uses Interprocess communication to exchange data within
networked computer systems.

Table 4-6. Summary of Transaction Types

Action Description

EXECUTE Executes low-level commands to control the file, instrument,
or interface associated with the transaction-based object.
This action is used to adjust file pointers, clear buffers, close
files and pipes and provide low-level control of hardware
interfaces.

WAIT Waits for a specified period of time before executing the next
transaction.

For Direct I/0 to GPIB, message-based and I-SCPI-
supported register-based VXI instruments, WAIT can also
wait for a specific serial poll response.

READ Reads data from the associated object.
WRITE Writes data to the associated object.
SEND Sends IEEE 488-defined bus messages (commands and

data) to a GPIB interface.

136 Chapter4

Example: Selecting
an Object and
Transaction

Using Transaction 1/0
Choosing Correct Transactions

Selecting Correct Objects and Transactions

1. Determine the source or destination of your I/O operation and the form in
which data is to be transmitted.

2. Determine the type of object that supports the source or destination using
Table 4-5.

3. Determine the correct type of transaction using Table 4-6.

4. To determine the remaining specifications for the transaction, such as
encodings and formats, see Appendix A, “I/O Transaction Reference”.

For example, assume you need to read a file containing two columns of text
data. Each row contains a time stamp and a real number separated by a white
space. Each line ends with a newline character. A partial listing of the
contents of the file is:

14:18:00 1.001
14:18:30 -2.002
14:19:00 1.0E-03

Based on the previous procedure for selecting objects and transactions, the
steps to solve this problem are:

1. The source is a text file. The data consists of a time stamp in 24-hour
hours-minutes-seconds notation and signed real numbers in scientific and
decimal notation.

2. From Table 4-5, the object used to read a file is From File.

3. From Table 4-6, the type of transaction used to read data from a file is
READ.

4. The required transactions are:

READ TEXT x TIME
READ TEXT y REAL

Chapter 4 137

Note

Using Transaction 1/0
Choosing Correct Transactions

Using To String and From String

Use To String to create formatted Text by using transactions. The Text is
written to a VEE container.

Use From String to read formatted Text from a VEE container.

If only one string is generated by all the transactions ina To String object,
the output container is a Text scalar. If more than one string is generated by
the transactions in a To String, the output is a one-dimensional array of
Text.

WRITE transactions using EOL ON always terminate the current output
string. This causes the next transaction to begin writing to the next array
element in the output container.

WRITE transactions ending with EOL OFF will not terminate the output
string, causing the characters output by the next WRITE transaction to
append to the end of the current string. The last transaction ina To String
always terminates the current string, regardless of that transaction's EOL
setting.

For most situations, the proper type of transaction for use with To String
is WRITE TEXT. For details about encodings other than TEXT, see Appendix
A, “I/O Transaction Reference”.

From String can read a Text scalar or an array depending on the
configuration of the READ TEXT transaction. READ TEXT will either
terminate a read upon encountering an EOL or will consume the EOL and
continue with the read. This is dependent on the format. For details about
formats, see Appendix A, “I/O Transaction Reference”.

READ and WRITE Compeatibility

In general, you must know how data was written to read it properly. This is
particularly true when the data in question is in some type of binary format
that cannot be examined directly to determine its format. You must read data
in the same format it was written.

138 Chapter4

Using Transaction 1/0
Communicating With Files

Communicating With Files

This section gives guidelines for communicating with files, including using
file pointers and importing data.

Using File Pointers

VEE maintains one read pointer and one write pointer per file regardless of
how many objects are accessing the file. A read pointer indicates the
position of the next data item to be read. Similarly, a write pointer indicates
the position where the next item should be written. Figure 4-7 shows objects
and source/destination files.

Table 4-7. Objects and Sources/Destinations

Source or Destination Object

Data Files To File, From File

tandard Output To StdOut

The position of these pointers can be affected by:
B A READ, WRITE, or EXECUTE action

B The Clear File at PreRun & Open setting in the open view of
To File

All objects accessing the same file share the same read and write pointers,
even if the objects are in different threads or different contexts.

A file is opened for reading and writing when either of these conditions is
met:

Chapter 4 139

Read Pointers

Write Pointers

Note

Closing Files

Using Transaction 1/0
Communicating With Files

B The first object to access a particular file operates for the first time after
PreRun. This is the most common case.

B New data arrives at the optional control input terminal that specifies the
file name. This case occurs less frequently.

At the time From File opens a file, the read pointer is at the beginning of
the file. Subsequent READ transactions advance the file pointer as required to
satisfy the READ. You can force the read pointer to the beginning of the file

at any time using an EXECUTE REWIND transaction in a From File object.
Data in the file is not affected by this action.

The initial position of a write pointer depends on the

Clear File at PreRun & Open setting in the open view of To File.
If you enable Clear File at PreRun & Open, the file contents are
erased and the write pointer is positioned at the beginning of the file when
the file is opened. Otherwise, the write pointer is positioned at the end of the
file and data is appended.

You can force the write pointer to the beginning of the file at any time using
an EXECUTE REWIND or EXECUTE CLEAR transaction. REWIND preserves
any data already in the file. However, new data will overwrite old data
starting at the new position. CLEAR erases data already in the file.

The To DataSet and From DataSet objects also share one read and one
write pointer per file with the To File and From File objects. However,
mixing To DataSet and From DataSet operations with To File and
From File operations on the same file is not recommended.

VEE guarantees that any data written by To File is written to the operating
system when the last transaction completes execution and all output
terminals have been activated.

The UNIX operating system writes data buffered by the operating system to
disk periodically, typically every 15-30 seconds. This buffered operation is
part of the operating system and is not unique to VEE.

VEE automatically closes all files at PostRun. PostRun occurs when all
active threads finish executing.

140 Chapter4

Using Transaction 1/0
Communicating With Files

Files may be closed programmatically by using the EXECUTE CLOSE
transaction in both To File and From File. This provides a means to
continually read or write a file that may have been created by another
process.

Files may also be deleted programmatically by using the EXECUTE DELETE
transaction. This is useful for deleting temporary files.

Figure 4-13 shows an example using EXECUTE CLOSE. This program is
saved in the file manual48.vee in the examples directory.

—| ForGount [«
1 Delay I\
Stop |
WhichO80 {1 tThenElss
= Execute Program (UNE) [= - Executs Prograrm (PC) r
Shell: [sh x| ‘Maitforprog exit Yes Run Style: Minimized ¥
Shell command: [date » imp/dateFile Bt code | Wiaitfor prog exitt Yes
< Double-Click ta Add Tra s Prog with params: [cammand.com /o ver = dosver bt
Working directory: |
= From file IE = Fram File =
From File: AmpidateFile From Flle: —
READ TEXT x 5TR kS
EXECUTE CLOSE EXECUTE CLOSE v
= Double-Click to Add Transaction » - - —
= Logging Alphahlurmeric &

Tue Oct 12 12:20:58 MDT 1999
Tue Oct 12 12:20:58 MDT 1989
Tue Oct 12 12:21:00 MDT 1989
Tue Oct 12 12:21:01 MDT 1999
Tue Oct 12 12:21:02 MDT 1999

Figure 4-13. Using the EXECUTE CLOSE Transaction

In Figure 4-13, Execute Program executes a shell command (date)

that creates and writes the date and time to a file (/tmp/dateFile).
Within the same thread, a From File reads the date from that file using a
READ TEXT x STR transaction. The EXECUTE CLOSE transaction is
necessary because the subthread is executed multiple times by For Count.

Chapter 4 141

EOF Data Output

Using Transaction 1/0
Communicating With Files

Succeeding executions of Execute Program will overwrite the file.
However, since From File only opens the file once, upon the second
execution of From File the read pointer will be stale. It will no longer
point to the file because Execute Program has re-created the file. An
error will occur.

From File must close the file after reading the data by using an
EXECUTE CLOSE transaction. The EXECUTE CLOSE transaction forces
From File tore-open the file on every execution.

In the example of Figure 4-13, the error can be shown by using an NOP to
"comment out" the EXECUTE CLOSE transaction. The error will state End
of file or no data found.Removing the NOP will allow the program
to run normally.

From File supports a unique data output terminal named EOF (end-of-file).
This terminal is activated whenever you attempt to read beyond the end of a
file. The EOF terminal is useful when you want to read a file of unknown
length.

The read-to-end feature, discussed in “Reading Transaction Data” on

page 121, also provides a means of reading a file of unknown length.
However, the contents of the file will be in a single VEE container. If the file
is to be read an element at a time, with each element residing in its own
container, use the EOF terminal.

Figure 4-14 illustrates a typical use of EOF. The file being read contains a list
of x-vY data of unknown length. Typical contents of the file are:

o N U1
= o O

142 Chapter4

Importing X-Y
Values

Using Transaction 1/0
Communicating With Files

O —|Logging AlphaMumeric | r ||
1 FY
IIntil Break g.§
: 2.1
=] Fram File =] 5
From File: myFile | 1z
: H 34
READ TEXT x REALR4 iz
= Dauble-Click to Add Transaction = 1
2
= -

Elre-akl

Figure 4-14. Typical Use of EOF to Read a File

Importing Data

Because VEE provides a convenient environment for analyzing and
displaying data, you may want to import data into VEE from other
programs. The general procedure to use for importing data from another
software application is:

1. Save the data in a text file (ASCII file).

2. Examine the data file with a text editor to determine the format of the
data.

3. UseaFrom File object with a READ TEXT transaction to read the data
file.

One very common problem is reading a text file containing an unknown
number of X and Y values and plotting them. The program in Figure 4-15
solves this problem.

Chapter 4 143

Using Transaction 1/0
Communicating With Files

o =

Until Break —| AlghaNurmeric | =
= From File =
5 -
Fram File: irIexampIesImanuaIImanl H |_f_ Collectar I_J

READ TEXT x, v REALE4 ¥ |_| -
= Douhble- 0 Add Tr: Collector

—| Alphatumeric |

O = Hvs ¥ Plot r

Until Break

—| From File

Fram File: rIexampIesImanuaIImalj

= Double-Click to Add Transaction

EiiwEl I W name

Figure 4-15. Importing XYy Values

The program in Figure 4-15 is saved in the file manual29.vee in the
examples directory.

The READ TEXT REALG64 transaction easily handles all the different
notations used for Y values, including signs, decimals and exponents. A
portion of the data file is:

8 8.555555

9 9e0

10 1.05e+01

11 +11.

12 12.5

13 1.3E1
Importing Other software applications have many different conventions for saving
Waveforms waveforms as text files. In general, the file consists of a number of

144 Chapter4

Using Transaction 1/0
Communicating With Files

individual values that describe attributes of the waveform and a one-
dimensional array of v values. This section illustrates how to import
waveforms saved using one of these conventions:

B Fixed-format file header. Waveform attributes are listed in fixed positions
at the beginning of the file, followed by a one-dimensional array of Y
data.

B Variable-format file header. A variable number of attributes are listed at
the beginning of the file, followed by a one-dimensional array of v data.
Their positions are marked by special text tokens.

Fixed-Format Header. A portion of the data file read by the program in
Figure 4-16 is:

NAME Noisel
START TIME 0.0
STOP_TIME 1.0E-03
SAMPLES 32
DATA
.243545
.2345776

Since this is a fixed-format header, labels such as NAME and SAMPLES are
irrelevant. The waveform attributes always appear and are in the same
position. Figure 4-16 shows a program that reads the waveform data file.

Chapter 4 145

Using Transaction 1/0
Communicating With Files

:
- Signal Name =

= Fram File Ir | 1 Moise1
From File: StaIIDirIexampIesImanuaIImanuaIBD.| Mame & - -
READ TEXT null TOKEN Tstat | 35/
READ TEXT Mame TOKEM sind
READ TEXT Tstart REALG4 Tstop b1 Formula
READ TEXT Tstop REALE4 ——
READ TEXT Samples REALG4 Signal
READ TEXT Signal REALE4 ARRAY:Samples
= Double-Click to Add Transaction = Samples 1
- Build ¥Waveform
= Waveform (Tima) =
1
08 A A A [
f i i |
WA os f|| o f|| ol f|| I|
L ,..| |,..| |,..| |,..|
0z II|| I.|I|| II|| ||||||
7 | |"| |"| |"| i |"|
0z |
Tracel a4

o 0.2m 0.4m 0.Em 0.8m m

Time

Figure 4-16. Importing a Waveform File

The program in Figure 4-16 is saved in the file manual30.vee in your
examples directory.

The transactions in From File do most of the work here. Here is how each
transaction works:

146 Chapter4

Using Transaction 1/0
Communicating With Files

1. The first transaction strips away the NAME label. This must be done
before attempting to read the string that names the waveform, or NAME
and Noisel will be read together as a single string.

2. The second transaction reads the string name of the waveform.

3. The third through fifth transactions read the specified numeric quantity.
VEE reads and ignores any preceding "extra" characters in the file not
needed to build a number.

4. The sixth transaction reads the one-dimensional array of ¥ data using the
ARRAY SIZE determined by the previous transaction. Samples must
appear as an output terminal to be used in this transaction.

Variable-Format Header. Here is a portion of the data file read by the
program in Figure 4-17:

First Line Of File
<MARKER1> 1 2 3
<MARKER2> A B C

<DATA>

1 1.1
2 2.2
3 2.9

In this case, the exact contents and position of data in the file are not known.
The only fact known about this file is that a list of x¥ values follows the
special text marker <DATA>.

To simplify this example, the program in Figure 4-17 finds only the data
associated with <DATA>. In your own applications, you might need to search
for several markers.

Chapter 4 147

Using Transaction 1/0
Communicating With Files

Start

(o]

Until Break #1

<)

Until Break #2

P -
IfA==H |

From File #1

Frarn File: ID\rJexampIesImanualImanual

READ TEXT 3 TOKEN

= Douhle-Click to Add Tran

From File #2

Frorn File: JlrfexamplesImanuaIJmanui

READ TEXT x, ¥ REALG4

Break |

—| Logging Alphakiumeric | «

<MARFER1> =
1
B

- Aws Y Plot

YDatal

Figure 4-17. Importing a Waveform File

The program in Figure 4-17 is saved in the file manual31.vee in your
examples directory.

From File #1 reads tokens (words delimited by white space) one at a
time, searching for <DATA>. Once <DATA> is found, From File reads
XY pairs until the end of the file is reached.

148

Chapter4

Using Transaction 1/0
Communicating With Programs (UNIX)

Communicating With Programs (UNIX)

This section gives guidelines for communicating with programs using
UNIX, including:

B Using Execute Program (UNIX)

B Using To/From Named Pipe (UNIX)

B Using To/From Socket (UNIX)

B Using Rocky Mountain Basic Objects (HP-UX)

Table 4-8 shows programs and related objects.

Table 4-8. Programs and Related Objects (UNIX)

Program Object(s)
Shell command Execute Program (UNIX)
C program Execute Program (UNIX)

To/From Named Pipe (UNIX)
To/From Socket

Rocky Mountain Basic Initialize Rocky Mountain
Basic (UNIX)

To/From Rocky Mountain Basic
(UNIX)

Using Execute Program (UNIX)

You can use a VEE program to perform a task that you would normally do
from the Operating System command line. The

Execute Program (UNIX) object allows you to do this. Figure 4-18
shows the Execute Program (UNIX) Object. You can use Execute
Program (UNIX) to run any executable file including:

B Compiled C programs
B Shell scripts

B UNIX system commands, such as 1s and grep

Chapter 4 149

Execute Program
(UNIX) Fields

Using Transaction 1/0
Communicating With Programs (UNIX)

= Execute Prograrm (UMD =

Shell: |n0ne vl \Wait for prog exit. Yes
Frog with params: |myF'r0g—nptinna—nptinnh

WRITE TEXT InData EOL Exit code
WRITE TEXT QutData EOL

= Diouhle-Click to Add Transaction =

Figure 4-18. The Execute Program (UNIX) Object

The following sections explain the fields visible in the open view of
Execute Program (UNIX).

Shell. shell specifies the name of an UNIX shell, such as sh, csh, or ksh.
If the shell field is set to none, the first token in the Prog with params
field is assumed to be the name of an executable file, and each token
thereafter is assumed to be a command-line parameter. The executable is
spawned directly as a child process of VEE. All other things being equal,
Execute Program (UNIX) executes fastest when Shell is setto none.

If the shel1 field specifies a shell, VEE spawns a process corresponding to
the specified shell. The string contained in the Prog with params field is
passed to the specified shell for interpretation. Generally, the shell will
spawn additional processes.

150 Chapter4

Using Transaction 1/0
Communicating With Programs (UNIX)

Wait for Prog Exit. Wait for prog exit determines when VEE
completes operation of the Execute Program object and activates any
data outputs. [f wait for prog exit issetto Yes, VEE will:

1. Check to see if a child process corresponding to the
Execute Program (UNIX) objectis active. If one is not already
active, VEE will spawn one.

2. Execute all transactions specified in the Execute Program object.

3. Close all pipes to the child process and send an end-of-file (EOF) to the
child.

4. Wait until the child process terminates before activating any output pins
of the Execute Program (UNIX) object. If the shell field is nof set
to none, the shell must terminate to satisfy this condition.

IfWwait for prog exit is setto No, VEE will:

1. Check to see if a child process corresponding to the
Execute Program (UNIX) objectis active. If one is not already
active, VEE will spawn one.

2. Execute all transactions specified in the Execute Program object.

3. Activate any data output pins on the Execute Program object. The
child process remains active and the corresponding pipes still exist.

All other things being equal, Execute Program (UNIX) executes fastest
whenWait for prog exit is setto No.

Prog With Params. Prog with params specifies either:

1. The name of an executable file and command line parameters
(Shell set to none).

2. A command that will be sent to a shell for interpretation
(Shell not set to none).

Chapter 4 151

Running a Shell
Command

Using Transaction 1/0
Communicating With Programs (UNIX)

Examples of what you typically type into the Prog with params field are:
To run a shell command (Shell set to ksh):

ls -t *.dat | more
To run a compiled C program (Shell set to none):

MyProg -optionA -optionB

If you use shell-dependent features in the Prog with params field, you
must specify a shell to achieve the desired result. Common shell-dependent
features are:

B Standard input/output redirection (< and >)
B File name expansion using wildcards (*, ? and [a-z])
B Pipes ()

Execute Program (UNIX) can be used to run shell commands such as
1s, mkdir and rm. Figure 4-19 shows one method for obtaining a list of files
in a directory using a VEE program.

= Execute Program (LK) = —| Alphakumeric| -

Shell: Inone 'I Wizt far prog exit. Yes Exit code | 12
Prog with params: |(Is ftmp | wee -1 s ftmp
BOEERN READ TEXT Lines INT32 Lines —|Alphabume, .| 4
READ TEXT X STR ARRAY:Lines 0:JingleBells =
= Double-Click to Add Transaction = 1. Music.dat
H
Q 2 README
3 Setvalue.bar
4. Songs
A catalog.aol
B container
T controld.c

Figure 4-19. Execute Program (UNIX) Running a Shell Command

The program in Figure 4-19 is saved in the file manual32.vee in the
examples directory.

In Figure 4-19, Execute Program (UNIX) determines the number of file
names in the /tmp directory by listing the names in a single column (1s -1)

152 Chapter4

Using Transaction 1/0
Communicating With Programs (UNIX)

and piping this list to a line counting program (wc -1). Because the pipe is
used, the command contained in the Prog with params field must be sent
to a shell for interpretation. The shel1 field is set to sh. The number of
lines is read by the READ TEXT transaction and passed to the output terminal
named Lines.

The second transaction reads the list of files in the /tmp directory. The
second transaction reads exactly the number of lines detected in the first
transaction. The shell command is separated by a semicolon to tell the shell
it is executing two commands.

In the Execute Program (UNIX),Wait for prog exit issetto Yes.
In this case, this setting is not very important because these shell commands
are only executed once. The No setting is useful when you want the process
spawned by the Execute Program (UNIX) to remain active while your
VEE program continues to execute.

Figure 4-20 shows another method for obtaining a list of files in a directory
using a VEE program.

=] Execute Prograrm (LN =
Shell: |n0ne VI Wait for prog exit: Yes = .ﬁlphaNume... =
Exit code 0: JingleBells S
Progwith params: |Is ftmp 1: Music. dat
READ TEXT ¥ ETR ARRAY™ 2. README
= Double-Click to Add Transaction = 3 Setvalue.bar
N -
4. 8ongs
A catalog.agl
B container
7. contrald.c

Figure 4-20. Execute Program (UNIX) Running a Shell Command
using Read-To-End

This program is saved in the file manual50.vee in the examples
directory.

In Figure 4-20, the VEE program displays the contents of the / tmp directory
in a simpler fashion than in Figure 4-19.

Chapter 4 153

Runninga C
Program

Using Transaction 1/0
Communicating With Programs (UNIX)

In Figure 4-20, Execute Program (UNIX) hasinthe Prog with
params field the single shell command 1s /tmp. There is no need to first
obtain the number of files in the directory, as was done in the program in
Figure 4-19 because the transaction READ TEXT x STR ARRAY:* uses the
read-to-end feature discussed in “Reading Transaction Data” on page 121.

When the shell command has executed, it will close the pipe that
Execute Program (UNIX) is using to read the list of files. This sends
an end-of-file (EOF) which terminates the transaction.

The program in Figure 4-21 illustrates one way to share data with a C
program using stdin and stdout of the C program. In this case, the C
program reads a real number from VEE, adds one to the number and returns
the incremented value.

| Numper ||
|ELEE =l
I 100 —=
= Execute Program (UM =
Exit code
Shell: |n0ne 'l VWait for prog exit. Yes |
Frog with params: yUSI’.ﬂib test nplesimanual m # |
2 WRITE TEXT a REALE4 STD EQOL a |
READ TEXT b REALE4
= Double-Click to Add Transaction = h |—]
L—| Result | «
S5.85

Figure 4-21. Execute Program Running a C Program

The program in Figure 4-21 is saved in the file manual33.vee in the
examples directory.

154 Chapter4

Using Transaction 1/0
Communicating With Programs (UNIX)

Figure 4-22 contains a listing of the C program called by the VEE program
in Figure 4-21.

The program listing in Figure 4-22 uses both setbuf and £f1lush to force
data through stdout of the C program. In practice, either setbuf or
fflush is sufficient. Using setbuf (file,NULL) turns off buffering for
all output to file. Using £flush (file) flushes any already buffered data
to file.

#include <stdio.h>
main ()
{
int c;
double wval;
setbuf (stdout, NULL) ; /* turn stdout buffering off */

while (((c=scanf ("%1f",&val)) != EOF) && c > 0){
fprintf (stdout, "$g\n",val+l);
fflush (stdout) ; /* force output back to VEE*/
}
exit (0);

Figure 4-22. C Program Listing

Using To/From Named Pipe (UNIX)

To/From Named Pipe is atool for advanced users who want to implement
interprocess communication. Using named pipes in UNIX is not a task for
casual users as named pipes have some complex behaviors. To learn more
about named pipes and interprocess communication, see the Note about
Related Reading at the beginning of this chapter.

All To/From Named Pipe objects contain the same default names for read
and write pipes. Be certain you correctly specify the names of the pipes you
want to read or write. This can be a problem if you run VEE on a diskless
workstation. Be sure that the named pipes in your program are not being
accessed by another user.

VEE creates pipes for you as they are needed. You do not need to create
them outside the VEE environment.

Chapter 4 155

Hints for Using
Named Pipes

Using Transaction 1/0
Communicating With Programs (UNIX)

B Be certain that VEE and the process on the other end of the pipe expect to
share the same type of data. In particular, be certain that the amount of
data sent is sufficient to satisfy the receiver and that unclaimed data is not
left in the pipe.

B Use unbuffered output to send data to VEE or flush output buffers to
force data through to VEE. This can be achieved by using non-buffered 1/
O (write), turning off buffering (setbuf), or flushing buffers explicitly
(£f1lush).

Here are examples of the C function calls used to control buffered output to
VEE:
setbuf (out pipel,NULL) Turns off output buffering.
or
fflush (out pipel) Flushes datato VEE.
or
write (out pipe2,data,n) Writes unbuffered data.

where out pipel isafile pointer and out pipeZ2is a file descriptor for
the Read Pipe specified in To/From Named Pipe.

VEE automatically performs similar flushing operations when writing data
to a pipe. VEE does the equivalent of an £ f1ush when either of these
conditions is met:

B The last transaction in the object executes.
B A WRITE transaction is followed by a non-WRITE transaction.

To/From Named Pipe supports read-to-end transactions as described in
“Reading Transaction Data” on page 121. To/From Named Pipe also
supports EXECUTE CLOSE READ PIPE and

EXECUTE CLOSE WRITE PIPE transactions. These transactions can be
used for inter-process communications where the amount of data to read and
write between VEE and the other process is not explicitly known.

156 Chapter4

Using Transaction 1/0
Communicating With Programs (UNIX)

For example, suppose VEE is using named-pipes to communicate with
another process. If VEE is writing data out on a named pipe and the amount
of data is less than that expected by the reading process, the reading process
will hang until there is enough data on the named-pipe.

By using an EXECUTE CLOSE WRITE PIPE transaction, the named-pipe is
closed when an EOF (end-of-file) is sent. Thus, an EOF will terminate most
read function calls (read, fread, fgets, etc...), allowing the reading
process to unblock and still obtain the data written by VEE into the pipe.

Conversely, if VEE is the reading process, a READ transaction using the
read-to-end feature allows VEE to read an unknown amount of data from the
named-pipe if the writing process performs a close () on the pipe, sending
an EOF. Another way to avoid a read that will block indefinitely is to use the
READ IOSTATUS transaction. See Appendix A, “I/O Transaction Reference”
for more information about using READ IOSTATUS transactions.

Using To/From Socket

The To/From Socket object is for advanced users who want to implement
interprocess communication for systems integration. Using sockets is not a
task for casual users as sockets have some complex behaviors.

Sockets let you implement interprocess communication (IPC) to allow
programs to treat the LAN as a file descriptor. IPC implies that there are two
sockets involved between two or more processes on two different
computers. Instead of a simple open()/close() interface as used in the
To/From Named Pipe object, sockets use an exported address and an
initial caller/receiver strategy, referred to as a connection-oriented protocol.

In a connection-oriented protocol, also known as a client/server
arrangement, the server must obtain a socket, then bind an address known as
the port number to the socket. After binding a port number, the server waits
in a blocked state to accept a connection request. To call for a connection,
the client must obtain a socket, then use two elements of the server's identity.

The elements include the port number the server bound to its socket and the
server's host name or [P address. If the server's host name cannot be resolved
into an [P address, the client must use the IP address specifically. After the
server accepts the client's connection request, the connection is established

Chapter 4 157

To/From Socket
Fields

Using Transaction 1/0
Communicating With Programs (UNIX)

and normal I/O activities can begin. Figure 4-23 shows an example of the
To/From Socket Object.

—| To/Fram Socket = —| To/Fram Socket =
Bind Port ||W Connect Port ||T
Host Mame: ’W Host Mame: IhpjtT
ﬂ Timeout: IT ﬂ Timeout: IT

WRITE TEXT x STR WRITE TEXT a STR EOL

= Double-Click to Add Transaction = = Double-Click to Add Trangaction =

Figure 4-23. The To/From Socket Object

The To/From Socket object contains fields that let you do the following:
B Connect to a bound socket on a remote computer.

B Bind a socket on the computer on which VEE is running and wait for a
connection to occur.

Of the four available fields, values of the following three fields can be input
as control pins to the object:

B Connect/Bind Port Mode
B Host name
H Timeout

The following sections explain the fields visible in the To/From Socket
open view.

Connect/Bind Port Mode. Connect/Bind Port Mode comprises two fields,
the mode button and the text field. The mode button toggles between Bind
pPort and Connect Port. The text field lets you enter the port number.
Allowed port numbers are integers from 1024 through 65535.

Numbers from 0 through 1023 are reserved and will cause a run-time error
if you use them. Port numbers above 5000 are commonly called transient

158 Chapter4

Using Transaction 1/0
Communicating With Programs (UNIX)

and are the range of numbers you should use. Table 4-9 shows the range of
integers allowed for socket port numbers.

Table 4-9. Range of Integers Allowed for Socket Port Numbers

Number Range Reserved for ...
0—1023 operating system
1024—5000 commercial or global application®
5001—65535 internal or closed distributed applications

a. Usually involves a registration process.

Host Name. If the mode is set to Bind Port, this field displays the name
of the host computer on which VEE is running. You cannot change this field
to the host name of a remote computer because it is not possible to bind a
port number to a socket on a remote computer.

If the mode is set to Connect Port, you can edit this field. Enter the host
name or [P address of the remote computer to which you want to connect.
The host name must be resolvable to the IP address. If a host name table is
not available on the network to translate the host name to an IP address, you
must enter the specific address, such as 15.11.29.103.

Timeout. Timeout lets you enter an integer value that represents the
timeout period in seconds for all READ and WRITE transactions. This timeout
period is also in effect for the initial connection when the To/From Socket
object is set either in the Bind Port mode waiting for a connection to
occur, or in the Connect Port mode waiting for a connection to be
accepted. This value is ignored if the remote host does not exist or is down.
In this case, the VEE interface is frozen until the connection fails, which
may take up to one minute.

Transactions. The To/From Socket object uses the same normal I/O
transactions used by the To/From Named Pipe object. READ and WRITE
transactions support all data types. See Appendix A, “I/O Transaction
Reference” for detailed information about transactions.

Chapter 4 159

Data Organization

Object Execution

To/From Socket
Object Example

Using Transaction 1/0
Communicating With Programs (UNIX)

All binary data is placed on the LAN in network-byte order. This
corresponds to Most Significant Byte (MSB) or Big Endian ordering. Binary
transactions will swap bytes on READs and WRITES, if necessary. This
implies that any other process that VEE is connected to will need to conform
to this standard. In the previous example, the server process could have been
little endian ordered while the client could be big endian ordered. Byte
swapping done by VEE is invisible.

A To/From Socket object set to bind a socket at a port number uses the
timeout period waiting for a connection to occur. Concurrent threads in VEE
will not execute during this period. The timeout value can be set to zero,
which disables timeouts, potentially making the period waiting for a
connection infinitely long. Any timeout violation causes an error and halts
VEE execution.

Once a connection has been established the instruments perform the
transactions contained in the transaction list. All READ operations will block
for the timeout period waiting for the amount and type of data specified in
the transaction. To avoid potential blocked threads, use the READ TOSTATUS
transaction to detect when data is available on the socket.

To specifically terminate a connection, use the EXECUTE CLOSE transaction.
All socket connections established in a VEE program are broken when a
program stops executing. Whichever way connections are broken, the server
and client objects must repeat the bind-accept and connect-to protocols to
re-establish connections. EXECUTE CLOSE should be used as a mutually
agreed-upon termination method and not merely an expedient way to flush
data from a socket.

Multiple To/From Socket objects share sockets. All objects that are
binding an identical port number share the same socket. All objects that are
configured with identical port numbers and host names to attempt
connection to the same bound socket share the same socket. The overhead of
establishing the connection is incurred in the first execution of one of the
commonly configured objects.

Figure 4-24 shows a VEE program that uses the To/From Socket object to
provide a separate server process for data acquisition using the

HP E1413B. This server can honor client requests to initialize instruments,
acquire and write data to disk, and shutdown and quit. During the acquisition

160 Chapter4

Using Transaction 1/0
Communicating With Programs (UNIX)

phase data is read from the Current Value Table in the A/D and sent to the
client.

The first To/From Socket object to execute, connected to the Until
Break object, binds a socket to port number 5001 on the host computer
named hpijtmxzz and waits 180 seconds for another process to connect to
that socket.

Note the use of an error pin to avoid a halt due to a timeout. In this case,
that object is executed again and waits another 180 seconds for a connection.
After the connection has been made, the object then blocks on the READ
transaction waiting for the client to send a command. Again, if a timeout
occurs on the READ, the object executes again and blocks on the READ
transaction.

= =] [/ Then/Else = [—i Init Instruments |
O — Then
. JstrUp(a)=="init" -
Until Break
——— [trUp(A)=="auit Else If ———— Shutdown
- To/From Socket)
| [" IlrUp(A)=="Acqire* il | To/From Socket |«
Bind Port - -
[einoeot |[500 = Else Else | :
HostMame: | hpjtmxzz gind Part ||~ 5001
Timeout: | 180 Host Mame: hpitrmxzz
READ TE> Timeout: | 180
=] ACguire TEE
—| For Count | « 4 To File |
I 10
—| To/From Socket =
Bind Port
= mirrars (hpeld 13 @ 16032) = __BindPort_|[5001
WRITE TEXT "Data Fifo Half?" EOL il Host Name: hpjtrrixzz
READ BINBLOCK x REAL32 ARRAY* —4a] Timeout [a0
WRITE TEXT "Data CVTY ({@100,105,107.116)" EOL . .
READ BINBLOCK x REALI2 ARRAY™ |) & !

Figure 4-24. To/From Socket Binding Port for Server Process

Chapter 4 161

Using Transaction 1/0
Communicating With Programs (UNIX)

Figure 4-25 shows the client side of the service described previously. The
first To/From Socket object to execute waits, sleeping, for the attempted
connection to occur. Unlike the server, any timeout error causes the program
to error and halt. The first object sends the commands Init and Acquire
then executes the loop to read the CVT.

=] TofFrom Socket = l
Connect Port ||W =l To/Fram Socket =
Host Mame: [fpfme | ConrectPort |~ sont
Timeout [&0 | Host Name: [hptmez

. ®
WRITE TEXT "Init’ EOL TMEREEE &0 o

WRITE TEXT "Acquire" EOL

—| For Count [= =] Strip Chart 4
e - R
— A0] I—' ¥hname — [.
100m/ =] =S N
- T]
—| TofFrom Socket |« » fracel - 1| | 3
— A1) ~ 1 — i

Connect Port || 5001 Trace2
Host : i —— —
psthame: | hpjmea _ " S ——— 3
Timeout: | 60 i A[2] |—| - i
WRITE TEXT "Quit* EOL CEIN - | i
_ — LT
- L0 NI PSP S AR PO A P O P
a3 I—u o 20
Step Size: 1 X name 2/

Figure 4-25. To/From Socket Connecting Port for Client Process

Using Rocky Mountain Basic Objects (HP-UX)

The Initialize Rocky Mountain Basic and To/From Rocky
Mountain Basic objects are available in all versions of VEE. They work
only in programs that run on HP 9000 Series 700 systems.

The Rocky Mountain Basic objects are tools for advanced users who want to
communicate with Rocky Mountain Basic processes. See “Using To/From
Named Pipe (UNIX)” on page 155 for general information about using pipes
with VEE.

162 Chapter4

Initialize Rocky
Mountain Basic

To/From
Rocky Mountain
Basic

Using Transaction 1/0
Communicating With Programs (UNIX)

Initialize Rocky Mountain Basic spawns a Rocky Mountain Basic
process and runs a specified Rocky Mountain Basic program.

Enter the complete path and file name of the Rocky Mountain Basic
program you wish to execute in the Program field. The program may be in
either STOREd or SAVEd format.

Initialize Rocky Mountain Basic does not provide any data path to
or from the Rocky Mountain Basic process. Use To/From Rocky
Mountain Basic for that purpose.

You can use more than one Init Rocky Mountain Basic objectin a
program and you can use more than one in a single thread.

There is no direct way to terminate a Rocky Mountain Basic process from a
VEE program. In particular, PostRun does not attempt to terminate any
Rocky Mountain Basic processes. PostRun occurs when all threads complete
execution or when you press Stop. You must provide a way to terminate the
Rocky Mountain Basic process. Possible ways to do this are:

B Your Rocky Mountain Basic program executes a QUIT statement when it
receives a certain data value from VEE.

B AnExecute Program object kills the Rocky Mountain Basic process
using a shell command, such as rmbkill.

IfyouCcut an Initialize Rocky Mountain Basic while the
associated Rocky Mountain Basic process is active, VEE automatically
terminates the Rocky Mountain Basic process. When you Exit VEE, all
Rocky Mountain Basic processes started by VEE are terminated.

The To/From Rocky Mountain Basic object supports communications
between a Rocky Mountain Basic program and VEE using named pipes.

Type in the names of the pipes you wish to use in the Read Pipe and
Write Pipe fields. Be certain they match the names of the pipes used by
your Rocky Mountain Basic program and the read and write names are not
inadvertently swapped relative to the Rocky Mountain Basic program. Use
different pipes for the To/From Rocky Mountain Basic objects in
different threads.

Chapter 4 163

Examples Using To/
From Rocky
Mountain Basic

Using Transaction 1/0
Communicating With Programs (UNIX)

Sharing Scalar Data. Consider a case where you want to:

1.

2.

4.

S.

Start Rocky Mountain Basic.

Run a specific Rocky Mountain Basic program.

Send a single number to Rocky Mountain Basic for analysis.

Retrieve the analyzed data.

Terminate Rocky Mountain Basic.

Figure 4-26 shows typical To/From Rocky Mountain Basic settings:

|

TalFrom Rocky Mountain Basic | F |

{]

\Write Pipe ftmpio_rmb
Read Pipe |trmpfrom_rmb

WRITE TEXT a REALG4 STD EOL
WRITE TEXT a REALE4 STD

= Double-Click to Add Transaction =

Figure 4-26. To/From Rocky Mountain Basic Settings

The corresponding Rocky Mountain Basic program is:

100
110
120
130
140
150

ASSIGN
ASSIGN
! Your
ENTER
OUTPUT
END

@From vee TO "/tmp/to rmb"
@To vee TO "/tmp/from rmb"
analysis code here

@From vee;Vee data

@To vee;Rmb data

To view an example program that solves this problem, open the
manual34.vee example.

164

Chapter4

Using Transaction 1/0
Communicating With Programs (UNIX)

Sharing Array Data. To share array data between VEE and Rocky
Mountain Basic using TEXT encoding, you must modify the default
Array Separator in To/From Rocky Mountain Basic. To do this,
click Properties in the To/From Rocky Mountain Basic object
menu and click the Data Format tab in the Properties dialog box. Set
the Array Separator fieldto ", " (a comma followed by a blank).

Be sure that VEE and Rocky Mountain Basic use the same size arrays.

The order in which VEE and Rocky Mountain Basic read and write array
elements is compatible. If VEE and Rocky Mountain Basic share an array
using READ and WRITE transactions in To/From Rocky Mountain
Basic, each element has the same value in VEE as in Rocky Mountain
Basic.

To view an example program that shares arrays between VEE and Rocky
Mountain Basic, open the manual35.vee example.

Sharing Binary Data. It is possible to share numeric data between VEE and
Rocky Mountain Basic without converting the numbers to text. To do this,
select BINARY encoding in the To/From Rocky Mountain Basic
transactions and FORMAT OFF for the ASSIGN statements that reference the
named pipes in Rocky Mountain Basic.

There are only two cases where it is possible to share numeric data in binary
form:

B VEE BINARY REALG64 is equivalent to Rocky Mountain Basic REAL

B VEE BINARY INT16 is equivalent to Rocky Mountain Basic INTEGER

Chapter 4 165

Using Transaction 1/0
Communicating With Programs (PC)

Communicating With Programs (PC)

This section gives guidelines to communicate with programs using a PC,
including:

B Using Execute Program (PC)
B Using Dynamic Data Exchange (DDE)

Table 4-10 shows programs and related objects.

Table 4-10. Programs and Related Objects (PC)

Program Object(s)
MS-DOS command Execute Program (PC)
Windows Application? Execute Program (PC)

To/From DDE (PC)
To/From Socket

C program Execute Program (PC)
Import Library

Call Function
Formula

a. VEE for Windows supports ActiveX automation, which lets
you control other Windows applications. For information about
using this feature, see Chapter 14, “Using the Sequencer Object”.

Using Execute Program (PC)

You can use The Execute Program (PC) object to perform a task you
would normally do from the Operating System command line. Figure 4-27
shows an example of the Execute Program (PC) object. You can use
Execute Program (PC) torun any executable file including:

B Compiled C programs

B Any MS-DOS program (* . EXE or *.COM files)

B .BAT files

166 Chapter4

Execute Program
(PC) Fields

Using Transaction 1/0
Communicating With Programs (PC)

B MS-DOS system commands, such as dir

= Execute Program (P =]

Run Style: | Marmal :I"

Wiait for prog exit: YRS

Exit code 1

Frog with params: |

Working directony: |

Figure 4-27. The Execute Program (PC) Object

The following sections explain the fields visible in the open view of
Execute Program (PC).

Run Style. If the program you want to execute runs in a window, Run
Style specifies the window style:

B Normal runs the program in a standard window.
B Minimized runs the program in a window minimized to an icon.

B Maximized runs the program in a window enlarged to its maximum size.

Wait for Prog Exit. wait for prog exit determines when VEE
completes operation of the Execute Program (PC) object and activates
any data outputs. If wait for prog exit issetto Yes, VEE will:

1. Execute the command specified in the Execute Program (PC) object.

2. Wait until the process terminates before activating any output pins of the
Execute Program (PC) object.

Chapter 4 167

Using Transaction 1/0
Communicating With Programs (PC)

IfWwait for prog exit is setto No, VEE will:
1. Execute the command specified in the Execute Program (PC) object.
2. Activate any data output pins on the Execute Program (PC) object.

All other things being equal, Execute Program (PC) executes fastest
when Wait for prog exit is setto No.

Prog With Params . Prog with params specifies either:
1. The name of an executable file and command line parameters.
2. A command that will be sent to MS-DOS for interpretation.

If you have included the appropriate path in the PATH variable in your
AUTOEXEC . BAT file, you do not need to include the path in the

Prog with params field. Examples of what you typically type into the
Prog with params field are:

To execute a MS-DOS command:
COMMAND.COM /C DIR *.DAT
To run a compiled C program:
MyProg -optionA -optionB
To open a URL in a browser:
http://www.agilent.com/find/vee
To open a document:

D:\path\word.doc

Working Directory. Working directory points to a directory where the
program you want to execute can find files it needs. For example, if you
want to run the program nmake using the makefile in the directory
c:\progs\cprogl:

I. InProg with params:, enter nmake

168 Chapter4

Note

Using Transaction 1/0
Communicating With Programs (PC)

2. InWorking directory:,enter c:\progs\cprogl.
Using Dynamic Data Exchange (DDE)

DDE is an obsolete (but still supported) feature. VEE for Windows supports
ActiveX Automation, which lets you control other Windows applications.
For information about using this feature, see Chapter 14, “Using the
Sequencer Object”. New versions of Microsoft applications, such as Office
2000, may no longer support DDE. Agilent highly recommends using
ActiveX Automation, instead of DDE.

Dynamic Data Exchange (DDE) defines a message-based protocol for
communication between Windows applications. This communication takes
place between a DDE client and a DDE server. The DDE client requests the
conversation with the DDE server. The client then requests data and services
from the server application. The server responds by sending data or
executing procedures.

A Windows application that supports DDE may act as either a client, a
server or both. VEE for Windows provides only client capabilities. It
implements DDE capabilities with the To/From DDE object.

The VEE for Windows To/From DDE object uses four types of transactions:

READ (REQUEST) [Reads Data from a DDE transter.
WRITE (POKE) Writes (pokes) Data to a DDE transter.

ends a command to the DDE server that V

or Windows is communicating with. The server then
executes the command.

Walits for the specitied amount of time (in seconds).

The To/From DDE object initiates and terminates DDE operations as part of
its function. You do not need to explicitly perform the initiate and terminate
functions.

As shown in Figure 4-28, the To/From DDE object has three main fields,
Application, Topic, and Timeout.

Chapter 4 169

Using Transaction 1/0
Communicating With Programs (PC)

= Toffrom DDE =

Application: [Excel
Topic: [Shestt

Tirneout: |5

= Double-Click to Add Transaction =

Figure 4-28. The To/From DDE Object

In the Application field enter the DDE application name for the Windows
application that you want to communicate with. Generally, this is the .EXE
file name. See the manual for each specific application to determine its DDE
application name.

The Topic field contains an application-specific identifier of the kind of
data. For example, a word processor's topic would be the document name.

The Timeout field lets you specify the timeout period for VEE to wait
if the application does not respond. The default value is five seconds.

The last field contains transactions to communicate with the other
application. For READ (REQUEST) and WRITE (POKE) transactions, you
must also fill in an Item name in the transaction. An Item name is an
application-specific identifier for each piece of data. For example, a
spreadsheet data item might be a cell location, or a word processor data item
might be a bookmark name.

The To/From DDE object in Figure 4-29, communicating with the MS
Windows Program Manager, creates a program group, adds an item to the
group, displays it for 5 seconds and then deletes the program group.

170 Chapter4

Using Transaction 1/0
Communicating With Programs (PC)

= To/From DDE =]

Application: [Proghan

Topic: Jprogman

Timeout: |5

EXECUTE CMMD:"[CreateGroup(DDE Test)]"

EXECUTE CMMD:"[Addiem{CWWEEWEE.EXE, DDE TEST)]"
WWAIT INTERWAL:S

EXECUTE CMMD:"[DeleteGraupiDDE Testi]"

= Double-Click to Add Transaction =

Figure 4-29. The To/From DDE Example

If the server DDE application is not currently running, VEE attempts to start
that application. This will only be successful if the application's executable
file name is the same as the name in the application field. The executable
file's directory must also be defined in your PATH. VEE will try to start the
application for the amount of time entered in the Timeout field.

If the executable file’s directory is not in your PATH, use an Execute
Program (PC) object before the To/From DDE object to run the
application program, as shown in Figure 4-30.

Chapter 4 171

Using Transaction 1/0
Communicating With Programs (PC)

= Execute Prograrm (PC)

]

Run Style: I Maorrmal 'I
Wiait far prog exit: [[a] |

Prog with params: [excel

Working directory: ||::IE}{|:EI

Exit code

= ToiFrom DDE

Application; [Excel

Topic: [5heett

Tirmeout: |5

A

= Dauble-Click to Add Transaction =

WRITE ITEM:"r2c3" TEXT "Some data” STR EOL

Figure 4-30. Execute PC before To/From DDE

The example in Figure 4-31 shows the use of input and output terminals with

a To/From DDE object.

WRITE ITEM:"r1c2" TEXT h EOL

WRITE [TEM:"r1c3" TEXT d EQL
—|Loan Amount| « | =

[5000 4 d | [READ ITEM"ricd" TEXT ¢ 5TR

= Double-Click to Add Transaction =

—| To/From DDE =]
|_9‘l6 Interest | Application: [Excel
a
Topic: [sheett
—| vears |4 Timeout: [
I3U b WRITE ITEM:"r1c1" TEXT a EOL - C

CUTE CMND[FORMULA'=PMT{r c1/12,r1c2%12

—|AlphaMumeric | =

Figure 4-31. 1/0 Terminals and To/From DDE

172

Chapter4

DDE Examples

Using Transaction 1/0

Communicating With Programs (PC)

Figure 4-32 through Figure 4-36 are examples of communication with
various Windows software applications. Read the Note Pad in each
example for important information regarding the example.

—_ Execute Program (PC)

<]

| MNormal 'l
e |

Run Style:
‘Wait for prog exit:

Exit code |

Progwith params: [t 23w

Waorking directary: |C:1123W

— ToiFrom DDE

= Note Pad -

Application: [123w

Topic: [system

Timeout: |5

flote that DDE to Lotus 123 for Windows
iz documented for client only. To make
it a server, you can exXecute a command
sing the followng syntax:

[run (Y commandy)]

Figure 4-32. Lotus 123 DDE Example

- Note Pad =

=]

Execute Program (PC)

ote that DDE to Excel requires Run Style: I Mormal j'
that wou use BAC3 syntax to Vst for prog exit Mo
specify cell C4 (row 4, col 3). L —l E)(itcnde|
Prog with params: |exce|
Warking directony: |C:Iexcel
= To/From DDE =
Application: [Excel
—|cell value| 4 | Topic: [sheett
|3.1 a | Timeout: |5
WRITE ITEM"R4C3" TEXT a EOL
Figure 4-33. Excel DDE Example
Chapter 4 173

Using Transaction 1/0
Communicating With Programs (PC)

= Execute Program (PC) =
= Note Pad -
Run Style: | Marmal :l'
. ” ote that DDE to Reflections can =
‘Wait for prog exit: Mo | Exitcode| se the topic "Systew”, "RCLY, or
Prog with pararns: |R1W|N "Settings”. This example requests
) . data from "SystemIten”. Other items
Wiorking directony: |C:1R1WIN are "Topics”™, "Formats™, or "Status”.
1so note that Feflections allows the
ser to change the Application name
from "R1Win" to anything else. -
- ToiFrom DDE =
Application: |R1WIN
Topic: |System
Tirmeout: |5— | —|AlphaMumeric | =
¥
READ ITEM:"sysiterns” TEXT x STR
= Double: to Add Tr: tian =
Figure 4-34. Reflections DDE Example
= Execute Program (PC) = = e Ped =
Run Style: | Marmal :l'

‘Wait for prog exit:

1o |

Exit code |

Prog with params: [C:twinwordireport.doc

ote that DDE to winword
ses bookmarks, like "Data’
in this example. &lso, Top:

Waorking directary: IC;1winword

st be a full path name.

—| To/From DDE

Topic:
—|Data valug| «| orie

E1az — a |

Timeout:

Application: Winword
Cwinwordireport.doc
|5

= Dioubl

WRITE ITEM"Data" TEXT a EOL
1 on =

Figure 4-35. Word for Windows DDE Example

174

Chapter4

Using Transaction 1/0
Communicating With Programs (PC)

= Execute Program (PC) =

= Note Pad -
IR I Mormal jv Exitcgde| ote that DDE to WordPerfect can use =
Wait for prog exit; Yes the topics "Commands™ or "System”.

is example executes the WordPerfect

Frog with params: IC;\,wpwimrepon item "MacroPlay™. The program could hawve

also requested data from items "SysItem”,
Working directory: |C:1wpwin "Topics™, or "Formats™.

-

- ToiFrom DDE =

Application: fWordPerfect

Topic: Jrommands

Timeout: |5

EXECUTE CMMND:"MacroPlayiMacroMame'test wemiy"

d T =

Figure 4-36. WordPerfect DDE Example

Chapter 4 175

Using Transaction 1/0
Using Transactions in Direct I/O and Interface Operations

Using Transactions in Direct I/O and
Interface Operations

Three VEE objects allow you to communicate with instruments using
I/O transactions:

B The Direct I/0 objectallows you to transmit data to and from
instruments via the GPIB, VXI, serial, and GPIO interfaces and via a
LAN connection.

B TheMultiInstrument Direct I/0 objectallows you to perform
direct I/O transactions to multiple instruments from a single object.

B The Interface Operations object allows you to send low-level
GPIB or VXI messages, commands, and data.

Note Register-based VXI devices can be used as message-based only if supported
by I-SCPI drivers.

For any of these objects, the messages are "constructed" and sent by means
of I/O transactions. This chapter describes some techniques for using I/O
transactions in the Direct I/0,MultiInstrument Direct I/0,and
Interface Operations objects.

Note You must properly configure VEE to communicate with instruments before
you can use the Direct I/0,MultiInstrument Direct I/0,and
Interface Operations objects. See Chapter 3, “Configuring
Instruments” for details.

176 Chapter4

Sending Commands

Using Transaction 1/0
Using Transactions in Direct I/O and Interface Operations

Using the Direct I/0 Object

The Direct I/0 objectallows you control an instrument directly using the
instrument's built-in commands. You do not need a VEE instrument driver
(ID) or VXlplug&play driver to use Direct I/0 to control an instrument.

Use WRITE transactions to send commands to an instrument using Direct
1/0. The most important WRITE transactions for sending commands to
GPIB, message-based VXI, register-based VXI supported by I-SCPI, and
serial instruments are:

O WRITE TEXT
0 WRITE BINBLOCK
O WRITE STATE

Direct I/0 usesonly WRITE BINARY and WRITE IOCONTROL
transactions to send commands to GPIO instruments.

Direct I/Ouses WRITE REGISTER and WRITE MEMORY transactions to
send commands to register-based and some message-based VXI
instruments. These transactions are the only method of communicating with
register-based VXI instruments not supported by I-SCPI drivers.

WRITE TEXT Transactions. WRITE TEXT transactions are all you need to
set up instruments for the majority of all situations where Direct I/0is
required. Most GPIB, message-based VXI, and serial instruments use
human-readable text strings for programming commands. Such commands
are easily sent to instruments using WRITE TEXT transactions.

For example, all instruments conforming to IEEE 488.2 recognize *RST as a
reset command. The transaction used to reset such an instrument is:

WRITE TEXT "*RST" EOL

Instruments often define very precise "punctuation” in their syntax. They
may demand that you send specific characters after each command or at

the end of a group of commands. In addition, GPIB instruments vary in their
use of the signal line End-Or-Identify (EOI).

If you suspect you are having problems in this area, examine the
END (EOI)on EOL and EOL Sequence fields in the Direct I/0 tab
of the Advanced Instrument Properties dialog box. See Chapter 3,

Chapter 4 177

Note

Using Transaction 1/0
Using Transactions in Direct I/O and Interface Operations

“Configuring Instruments”. See your instrument programming manual to
determine the proper command syntax for your instrument.

Direct I/0 allows you touse WRITE encodings other than TEXT when it is
required by the instrument. The encodings other than TEXT that are most
often useful are BINBLOCK and STATE.

WRITE BINBLOCK Transactions. BINBLOCK encoding writes data to
instruments using [EEE-defined block formats. These block formats are
typically used to transfer large amounts of related data, such as trace data
from oscilloscopes and spectrum analyzers. Instruments usually require a
significant number of commands before accepting BINBLOCK data. See your
instrument's programming manual for details.

To use BINBLOCK transactions, you must properly configure the
Conformance field (and possibly Binblock) in the Direct I/0 tab

of the Advanced Instrument Properties dialog box. See Chapter 3,
“Configuring Instruments”.

WRITE STATE Transactions. Some GPIB and message-based VXI
instruments support a learn string capability, which allows you to upload all
of the instrument settings. Later, you can recall the measurement state of the
instrument by downloading the learn string using a WRITE STATE
transaction. Learn strings are particularly useful when you wish to download
measurement states but an instrument driver is unavailable.

WRITE STATE transactions are available for GPIB and message-based VXI
instruments only.

A typical procedure for using learn strings is:

1. Configure the instrument to the desired measurement state. Typically,
this is done using the instrument front panel.

2. Click Upload State in the object menu of a Direct I/0 object
configured for the instrument. The instrument state is now associated

with this particular instance of the Direct I/0 object.

3. Add awRITE STATE transaction to the Direct I/0 object.

178 Chapter4

Using Transaction 1/0
Using Transactions in Direct I/O and Interface Operations

When it is used, WRITE STATE is generally the first transaction in a
Direct I/0 object. WRITE STATE writes the Uploaded learn string to
the instrument, setting all instrument functions simultaneously. Subsequent
WRITE transactions can modify the instrument setup in an incremental
fashion.

The behavior of Upload and WRITE STATE for GPIB and message-based
VXI instruments is affected by the Direct I/0 tab settings for
Conformance and State (Learn String).

If Conformance is IEEE 488.2, VEE automatically handles learn strings
using the IEEE 488.2 *L,RN? definition. If Conformance is IEEE 488,
Upload String specifies the command used to query the state, and the
Download String specifies the command that precedes the string when it
is downloaded.

Message-based VXI instruments and register-based VXI instruments
supported by I-SCPI are TEEE 488.2 compliant.

Clicking Upload State inthe Direct I/0 object menu has these results:

B The learn string is uploaded immediately.

B The learn string remains with that particular Direct I/0 objectas long
as it exists, until the next Upload. The learn string is saved with the

program.

B [fyoucloneaDirect I/0 object, itsassociated learn string is included
in the clone.

Learn String Example. For example, suppose you want to program the
HP 54100A digitizing oscilloscope using learn strings. Important facts for
the oscilloscope are:

B The oscilloscope conforms to IEEE 488. It does not conform to
IEEE 488.2.

B The command used to query the oscilloscope's learn string is SETUP?.

Chapter 4 179

Reading Data

Note

Using Transaction 1/0
Using Transactions in Direct I/O and Interface Operations

B The sETUP command must precede a learn string that is downloaded to
the instrument. A space is required between the P in SETUP and the first
character in the downloaded learn string.

You must use the Instrument Manager (see Chapter 3, “Configuring
Instruments”) to specify the proper direct I/O configuration for the
oscilloscope. Figure 4-37 shows settings for learn strings

Lovanced Instrument Properties

General Direct If | Flug&play Driver | Fanel Driver | A16 Space | AZ41A37 Space |

Read Terminator: [Conformance: [1EEE 485 =]

Write
| v Binblock: #A hd
EOL Sequence: n
Multi-Field as: Data Only State (Learn String): Configured | These fields
Array Separator; I _ control
: Upload String: "SETUPY .
Array Format: Linear | learn strmgs

END (EQI) on EOL: MO | Download String: [seTUR]

0K | Cancell Helpl

Figure 4-37. Configuring for Learn Strings

To upload a learn string from the oscilloscope, click Upload in the object
menu of a Direct I/0 objectthat controls the oscilloscope. To download
the learn string, use this transaction:

WRITE STATE

To read data from an instrument using Direct I/0,you can use READ
transactions.

Instruments return data in a variety of formats. In general, you must know
what kind of data and how much data you want VEE to read from an
instrument. The kind of data determines the encoding and format you must
specify in the transaction. The amount of data being read determines the
configuration you must use for the SCALAR or ARRAY fields in the
transaction dialog box.

180 Chapter4

Note

Note

Using Transaction 1/0
Using Transactions in Direct I/O and Interface Operations

The most important READ transactions for Direct I/0 use with GPIB,
message-based VXI, and serial instruments are:

U READ TEXT
U READ BINBLOCK

Direct I/Ousesonly READ BINARY and READ IOSTATUS transactions to
read data from GPIO instruments.

Direct I/Ouses READ REGISTER and READ MEMORY transactions to read
data from register-based and some message-based VXI instruments. These
transactions are the only method of communicating with register-based VXI
instruments not supported by I-SCPI.

If you have difficulty reading data from instruments, try using the
Bus I/0 Monitor to examine the data format.

READ TEXT Transactions. Frequently, the data you read from an
instrument as the result of a query is a single numeric value that is formatted
as text. For example, a voltmeter returns each reading as a single number in
exponential notation, such as -1.234E+00. The transaction to read a value
from the voltmeter is:

"READ TEXT a REAL"

Some instruments respond to a query with alphabetic information combined
with the numeric measurement data. In general, this not a problem since
READ TEXT REAL transactions discard preceding alphabetic characters and
extract the numeric value.

When reading numeric data from an instrument, the data type of the
instrument data is automatically converted, if necessary, according to the
rules listed in Appendix C, “Instrument I/O Data Type Conversions”.

Using the Multilnstrument Direct I/O Object

The MultiInstrument Direct I/O object(I/0 = Advanced I/0=
MultiInstrument Direct I/0)letsyou control several instruments
from a single object using direct I/O transactions. The object is a standard
transaction object and works with all interfaces that VEE supports.

Chapter 4 181

Transaction Dialog
Box

Using Transaction 1/0
Using Transactions in Direct I/O and Interface Operations

It appears the same as the Direct I/0 object, except each transaction in
MultiInstrument Direct I/O canaddress a separate instrument. Since
the MultiInstrument Direct I/0 objectdoes notnecessarily control a
particular instrument as the Direct I/0 object does, the title does not list
an instrument name, address, or live mode condition.

By using the MultiInstrument Direct I/0,you canreduce the number
of instrument-specific Direct I/0 objects in your program, which
optimizes icon-to-icon interpretation time. This performance increase is
especially important for the VXI interface, which is faster than GPIB at
instrument control.

Figure 4-38 shows the MultiInstrument Direct I/0 objectand its I/
O Transaction dialog box configured to communicate with four
instruments.

— multilnstrument Direct 100 =
WRITE "dvm" TEXT a EOL ﬂ

WRITE "dmim2" TEXT "Initcon” EQL

WRITE "Serial1" TEXT a EQL

I/0 Transaction

|WRITE 'l DefauItAddressl | TEXT =] |a
DEFAULT 3 mm2 OLONl

dvm
newlnstrument

ok | mop | cancel

Figure 4-38. Multilnstrument Direct I/O Controlling Several Instruments

The I/0 Transaction dialog box is similar to the one used by

Direct I/0,except it contains two additional fields. The common fields
work the same way. The following sections describe the two additional
fields.

Instrument Field. The Instrument Field contains the name of any of
the currently configured instruments. Clicking the down arrow presents a list

182 Chapter4

Using Transaction 1/0
Using Transactions in Direct I/O and Interface Operations

of available configured instruments. You can select a different instrument for
each transaction.

Address Field. The Address Field specifies the address of the device
showing in the Instrument Field.The Address Field hastwo modes:
Default Address and Address:.

Default Address sets VEE to use the address entered when the
instrument was originally configured. Address: includes a text box that
lets you enter a different address.

You can enter a specific numeric value, a variable name, or an expression.
The entry must evaluate to a valid address. The value entered for Address:
will change the device's address when the object executes, which is like the
address control pin action. Figure 4-39 shows the /0 Transaction
dialog box using Address:.

— Muliinstrurnent Direct 0 =
WRITE "dvm" TEXT a EOL ﬂ

WRITE "dmim2" TEXT "Initcon” EQL
WRITE "Serial1" TEXT a EQL

I/0 Transaction

[wrRITE =] [newinstument x| [Address: | Jteozs [e =l o
[DEFAULT FORMAT v] |EOLON|

ok | mop | cancel

Figure 4-39. Entering an Instrument Address as a Variable

Editing Transactions As you edit transactions using the T/0 Transaction dialog box, only
those transactions allowed by the type of instrument are accepted. For
example, if the name showing in the Instrument Field is configured as a
VXI device controlled via the VXI backplane, you can configure a
REGISTER or MEMORY access transaction.

Ifthe 1/0 Transaction dialog box is configured for a particular type of
transaction and you change the Instrument Field name, the transaction

Chapter 4 183

Object Menu

The EXECUTE
Transaction

Using Transaction 1/0
Using Transactions in Direct I/O and Interface Operations

must remain correct for the different instrument. If the transaction is
incorrect, entries in the I/0 Transaction dialog box will change to the
last valid transaction for that instrument type. A REGISTER access
transaction for a VXI device will be incorrect if you change the
Instrument Field name to a non-VXI instrument.

The object menu for MultiInstrument Direct I/0 issimilar to that of
the Direct I/0 object. The MultiInstrument Direct I/0 menu does
not include the Show Config... or Upload State menu choices. These
menu choices are for specific instrument configurations. Use the Direct
1/0 object to show an instrument's configuration or to upload a physical
instrument's settings.

There is no live mode indicator for any of the possible devices in the
transactions. To control live mode for an instrument, click I/0 =
Instrument Manager..., and then edit the selected instrument
configuration.

Using the Interface Operations Object

The Interface Operations object (I/0 = Advanced I/0=
Interface Operations) allows you to control GPIB, VXI, and serial
instruments using low-level commands. Interface Operations
supports two types of transactions that provide this low-level control:
EXECUTE and SEND.

EXECUTE transactions are of the form:
EXECUTE Command

where Command is one of the bus commands summarized in Table 4-11.
While the commands listed in Table 4-11 have the same names as the
EXECUTE commands in Direct I/0, there is an important difference.

B Direct I/0 EXECUTE commands address an instrument to receive the
command.

B Interface Operations EXECUTE commands may affect multiple
instruments. For GPIB, these instruments must be addressed to listen.

184 Chapter4

The SEND
Transaction

Using Transaction 1/0

Using Transactions in Direct I/O and Interface Operations

Table 4-11. Summary of EXECUTE Commands (Interface Operations)

Command Description

ABORT Clears the GPIB interface by asserting the IFC (Interface Clear)
line. To clear and reset the VXI interface use CLEAR

CLEAR Clears all GPIB devices by sending DCL (Device Clear). For
VXI, resets the interface and runs the Resource Manager.

TRIGGER For GPIB, triggers all devices addressed to listen by sending
GET (Group Execute Trigger). For VXI, triggers TTL, ECL, or
external triggers.

REMOTE For GPIB, asserts the REN (Remote Enable) line. There is no
counterpart for VXI.

LOCAL For GPIB, releases the REN (Remote Enable) line. There is no
counterpart for VXI.

LOCAL For GPIB, sends the LLO (Local Lockout) message. Any device
LOCKOUT in remote mode at the time LLO is sent will lock out front panel
operation. There is no counterpart for VXI.

LOCK In a multi-process system with shared resources, lets one
INTERFACE process lock the resources for its own use during a critical
section to prevent another process from trying to use them.
UNLOCK In a multi-process system where a process has locked shared
INTERFACE resources for its own use, unlocks the resources to allow other

processes access to them.

PASS CONTROL

Passes control to a GPIB device at the specified address,
provided the device is capable of becoming the active
controller. There is no counterpart for VXI.

SEND transactions are of this form:

SEND BusCmd

where BusCmd is one of the bus commands listed in Table 4-12. These
messages are defined in detail in IEEE 488.1. BusCmd is GPIB specific
only. There are no counterparts for VXI.

Chapter 4

185

Using Transaction 1/0
Using Transactions in Direct I/O and Interface Operations

Table 4-12. SEND Bus Commands

Command Description

COMMAND Sets ATN true and transmits the specified data bytes. ATN true indicates that the
data represents a bus command.

DATA Sets ATN false and transmits the specified data bytes. ATN false indicates that the
data represents device dependent information.

TALK Addresses a device at the specified primary bus address (0-30) to talk.
LISTEN Addresses a device at the specified primary bus address (0-30) to listen.
SECONDARY Specifies a secondary bus address following a TALK or LISTEN command.

Secondary addresses are typically used by card cage instruments where the card
cage is at a primary address and each plug-in module is at a secondary address.

UNLISTEN Forces all devices to stop listening; sends UNL.

UNTALK Forces all devices to stop talking; sends UNT.

MY LISTEN ADDR | Addresses the computer running VEE to listen; sends MLA.

MY TALK ADDR Addresses the computer running VEE to talk; sends MTA.

MESSAGE Sends a multi-line bus message. Consult IEEE 488.1 for details. The multi-line
messages supported by VEE are:

DCL Device Clear

SDC Selected Device Clear
GET Group Execute Trigger
GTL Go To Local

LLO Local Lockout

SPE Serial Poll Enable
SPD Serial Poll Disable
TCT Take Control

186 Chapter4

Advanced I/0 Topics

Advanced 1/0 Topics

This chapter covers the following advanced instrument I/O topics:

B [/O Configuration Techniques
B [/O Control Techniques
B [ogical Units and I/O Addressing

188 Chapter5

Advanced /O Topics
1/0 Configuration Techniques

I/0O Configuration Techniques

This section provides information about instrument configuration with VEE.
Agilent is making the instruments formerly made by HP. In general,
instrument model numbers will remain the same but be preceded by Agilent,
instead of HP. Because so many VEE users have instruments with the HP
brand, we often use that nomenclature in this manual to avoid confusion.

The 1/0 Configuration File

The I/O configuration for each program can be embedded in the program file
(recommended) or stored as a separate file. If it is stored as a separate file, it
is the VEE.IO file (vee.io in UNIX). This file is stored in the following path:

$userprofile$\Local Settings\Application
Data\Agilent\VEE Pro

on a PC, or in your SHOME directory on a UNIX system.

When you configure instruments in a new program that does not contain an
embedded configuration, the new settings are saved in memory for the
remainder of your work session and in the VEE. I0 or .veeio file.

When the I/O configuration is saved with the program, the Save button in
Instrument Manager is disabled. To keep the configuration, click OK and
save the program. This saves the updated configuration with the program.

You cannot open any program containing an instrument control object unless
your I/O configuration contains a device with a matching Name. In this
discussion, Name means the entry in the Name field in the Instrument
Properties dialog box, not the text in the object's title bar.

If the object is a Panel Driver or Component Driver,the ID
Filename must also match your configuration. Settings other than Name
and ID Filename do not affect your ability to open these programs,
although other settings may affect how the programs run.

Chapter 5 189

Changing the
Configuration File

Note

Advanced /O Topics
1/0 Configuration Techniques

Generally, VEE takes care of the VEE. I0 or .veeio file. However, there
are situations when you may want to erase, update, or copy this file outside
the VEE environment

If you want to run an instrument control program developed by someone
else, but the I/0O configuration is not embedded with the program, you need
the I/O configuration that program uses. There are three ways to get it:

1. You can manually add all of the instruments to your configuration using
the Instrument Manager and configuration dialog boxes.

2. You can copy the VEE. I0 or .veeio file for that program to your
Agilent directory (for a PC), using the path given at the beginning of this
section, or SHOME directory (for UNIX).

If you use the file copying method, save a copy of your original VEE . 10
file to another name (such as VEEIO.OLD) in case you need it later. For
UNIX systems, make sure that any . veeio file you place in your $HOME
directory has write permissions set to allow VEE to write to it.

3. You can save the program with the embedded configuration. Use the
Save As option and be sure the "Save I/O configuration with program"
option is checked.

Example programs were saved with embedded I/O configuration so the /O
configuration is self-contained. They do not depend on an external I/O
configuration file.

Programmatic I/O Configuration

You can programmatically modify your instrument configuration. The
preferred way of programing the I/O configuration is to use the
programmatic instrument configuration in the Function and Object Browser.
Figure 5-1 shows the browser window with Instruments selected in the Type
window. Selecting Instruments activates the Create Set Formula button at
the bottom of the window.

190 Chapter5

Advanced /O Topics
1/0 Configuration Techniques

Function & Qbject Browser
Type: Instrurment Categarny: Members:

Operators 3y

Built-in Functions GPIO Instrument E& enableEDI
MATLAB Functions Serial Instrurment ES eolSequence
Local User Functions WHl Instrument &' hostharme
Impored User Functions & interfaceType
Remote User Functions : EY phpResource
Compiled Functions GOl Uie U0 1S B readTerm

ActiveX Objects E& timeout
WEE Ohjects dvim
Instruments

FROPERTY address As Int32
For GRIB and ¥l instruments itis an interface and bus address like 722, For serial and
GPIC instruments it is an interface address like 9.

Create Get Formula| Create Set Formula Close Help

Figure 5-1. Function and Object Browser

Clicking Create Set Formula brings up the Formula Object dialog box
shown in Figure 5-2.

Chapter 5 191

Advanced /O Topics
1/0 Configuration Techniques

—| 10.hp3478a.address = value; =

= |ID.hp34TEa.address = value;

Figure 5-2. Create Set Formula Dialog Box

Previous versions of VEE allowed programmatic configuration through
control pins. These pins are obsolete but still supported. Control pins are
available for the Panel Driver, Component Driver,and Direct I/0
instrument control objects that let you input other values for device address
and timeout. Control pins for setting timeout values are also available for the
Interface Operations, Instrument Event, and Interface Event
objects.

When a new timeout or address is sent to one of the control pins, the new
value is changed globally for that device. This means that a/l instrument
control objects communicating with a particular device begin using the new
timeout or address value. The new value can be different from that entered
in the Instrument Properties dialog box and placed in the VEE configuration
file. However, this new value is never written to the VEE configuration file.

The example in Figure 5-3 shows a Direct I/0 objectwith an Address
control pin. The HP E1413B is originally configured for address 16032 as
shown in the title bar. The input to the control pin is 16040 (the new
address). When the control pin is sent the new address, 16040 is used for any
other objects communicating with the HP E1413B.

192 Chapter5

Advanced /O Topics
1/0 Configuration Techniques

—| mirrors (hpe1413 @ 16032) | «|
—| Integer | « |
|1ED4D - — — — 1| Address

= mirrors (hpeld13 @ 16032) =

Main Panel

Init Cont

Arm Trun

- Mumber Points _
rany [N -

Figure 5-3. Programmatically Reconfiguring Device I/O

LAN Gateways

VEE can access LAN gateways to control instruments. A LAN gateway is a
controller that allows access to its VXI, GPIB, GPIO, and Serial interfaces
and the instruments on these interfaces from a remote process.

The client-server model best represents the arrangement. A VEE process
acts as the client when accessing a LAN gateway on a remote computer, the
server. The server has a committed process, known as a daemon, which is
part of the SICL process running on the server. The daemon communicates
with the VEE client and allows access to its interfaces and their devices.

The client process calls SICL in order to control devices on the interfaces
that SICL supports. These interfaces are usually configured on the LAN
gateway on which the SICL process is running. By using the LAN gateway,
these interfaces can be on a remote computer.

As far as the client is concerned, the fact that the interfaces and their devices
are attached physically to a remote computer is invisible.

Chapter 5 193

Advanced /O Topics
1/0 Configuration Techniques

Configuration You must configure VEE and the LAN hardware to use the LAN gateway.

VEE Configuration. Configure VEE for gateway access during device
configuration, as described in Chapter 3, “Configuring Instruments”. Figure
5-4 shows the Instrument Properties dialog box. The Gateway field
shows its default setting, This host:

Instrument Properties

Marme: |hp344El1a
Interface: | GFIB "I

Address (eg 7143 714
Gateway: This host |

Ok | Cancell Helpl

Figure 5-4. Gateway Configuration

You can select the gateway name by clicking the Gateway field. A list box
appears showing all of the gateways that have been configured previously.
This host always points to the computer on which VEE is running.

If there are no other choices for gateways, you can type in a gateway name.
The name must be resolvable to an IP address either by a symbolic host
name table or by a name-server. You can also enter an IP address in dot-
format, such as 55.55.55.555.

Beyond selecting a gateway, the configuration process remains the same.
Panel Driver and Direct I/0 objects are configured as before. Figure
5-5 shows various I/0 devices configured for interfaces and devices on
remote computers.

194 Chapter5

Advanced /O Topics
1/0 Configuration Techniques

—|funcgen (hp33120 @ T10ansewr2) |« _ Bus o Monitor (wi16 on servi2 @163 | «|
Function | Cosine j »> Wed 05/Mar/2000 14:06:42

Freguency | 200

Amplitude | 1

DeOffset | 0 r = SRO: GPIBT on serv 1=
Phase | Des =] o Interface: GPIBT

Time Span | 20m Action: WAIT event i
Murm Poirts | 256 Event: SRQ =

—| dmmihp34401a @722 on senrl) = —|Interface Op's: GPIBT on serri2 @7 | « |

READ TEXT x REALEA ARRAY:10 SEND MTA
= Diouhkle-Click to Add Transaction = | & |I = Dauble-Click to Add Transaction =

~| Spall: dmmihp34401a @722 on servi2) =
Instrument [dmmihp3d4401a) (@ 722) 7]
Ewent: Spoll
status
Action: MO AT |
Mask: [#HO

Figure 5-5. Examples of Devices Configured on Remote Machines

LAN Hardware Configuration. The SICL LAN gateway support depends
on the configuration of the machine on which VEE is running, the machine
on which the gateway daemon is running, and the overall configuration of
the LAN. Consult with your system administrator to configure the LAN and
ensure that names and IP addresses are resolvable.

For the machine running the gateway daemon it is assumed that the daemon
install procedures will configure the local networking files correctly. If you
are using the HP E2050A LAN/GPIB Gateway, it is self-contained and all
internal configuration is done.

For networks using the HP-UX operating system, the client machine does
not need any special network configuration files. However, the following
line must be in the SICL configuration file hwconfig.cf.

Chapter 5 195

#

Advanced /O Topics
1/0 Configuration Techniques

LAN Configuration
<lu> <symname> ilan <not used> <not used> <sicl infinity>
<lan timeout delta> 30 lan ilan 0 0 120 25

This entry contains the normal logical unit/symbolic name keys for SICL.
The interface type is ilan. The sicl infinity and

lan timeout delta entries are special timeouts and will be discussed in
the next section.

For the server machines, entries need to be made in two files, /etc/rpc and
/etc/inetd.conf

To /etc/rpc add the following line:
siclland 395180

To /etc/inetd.conf add the following line.

rpc stream tcp nowait root /opt/sicl/bin/siclland 395180 1 siclland -e -1
/tmp/siclland.log

Execution Behavior

On the server machine, the inet daemon must be made to reread the
inetd.conf file by executing the following command with sys-admin
(root) privileges:

/etc/inetd -c

If the LAN resource discovery is not managed by the local files but by
Network Information Services (NIS, see Yellow Pages), the same files must
be modified on the database machine and the database recompiled.

Ideally, I/0 operations through the gateway work as if the interfaces and
devices are attached directly to the client computer. However, response
times can vary, depending on the LAN configuration, including the number
of connected hosts, LAN-to-LAN gateways, and current load. Sometimes, a
connection is terminated by disconnected cables or computer failures on the
LAN. These events must be accommodated when configuring timeout
periods.

When the server receives an 1/O request from the client application, VEE,
the server uses the timeout value that you enter in the Instrument
Properties dialog box. This is called the SICL timeout. If the server's
operation is not completed in the specified time, the server sends a reply to

196 Chapter5

Advanced /O Topics
1/0 Configuration Techniques

the client indicating that a timeout occurred and the normal VEE timeout
error occurs.

When the client sends an I/O request to the server, the client starts a timer
and waits for the reply from the server. If the server does not reply in time, a
timeout occurs and an VEE timeout error is produced. This is called the
LAN timeout.

The client timeout differs from the server timeout because the I/0O
transaction time for the server is usually different from the transmission time
over the LAN. The server may complete an I/O transaction within five
seconds (the VEE default timeout period), but the actual transmission over
the LAN back to the client may take longer than five seconds.

The two timeouts are separate values that are adjusted using two entries in
the SICL configuration file:

sicl infinity Used by the server 1f the user- timeout
(the SICL timeout), entered in the Advanced
Instrument Properties dialog box, is
infinity (0). The server does not allow an infinite
timeout period. The value specifies the number
of seconds to wait for a transaction to complete
within the server.

lan timeout delta to the server's timeout value to
determine the client's timeout period (LAN
imeout). The calculated LAN timeout only
increases as necessary to meet the needs of the
I/O devices, and never decreases. This avoids the
overhead of readjusting the LAN timeout every
time the SICL timeout changes.

Chapter 5 197

Advanced /O Topics
1/0 Configuration Techniques

Protecting Critical Sections

In a multi-process test system, sharing a resource among the processes
requires a locking mechanism to protect critical sections. A critical section is
needed when one of the processes needs exclusive access to a shared
instrument resource.

To prevent another process from accessing the instrument during the critical
section, the first process locks the instrument. The lock remains in effect for
the time necessary to complete its task. During this time, the second process
cannot execute any interaction with the instrument, including an attempt to
lock the instrument for its own use.

The following EXECUTE transactions let you protect critical sections and
can be used in the Direct I/0,Multilnstrument Direct I/0,and
Interface Operations transaction objects. The transaction syntax
varies depending on the interface and transaction object being used. For
GPIB, Serial, and GPIO, the entire interface is locked. For VXI, individual
devices are locked.

To lock VXI devices via direct backplane access in the Direct 1/0 object,
use the transactions:

EXECUTE LOCK DEVICE
EXECUTE UNLOCK DEVICE

Inthe MultiInstrument Direct I/0 object, use the transactions:

EXECUTE vxiScope LOCK DEVICE
EXECUTE vxiScope UNLOCK DEVICE

where vxiScope is the configured name of a VXI oscilloscope such as the
HP E1428B.

To lock GPIB, Serial, and GPIO Interfaces in the Interface Operations
object, use the transactions:

EXECUTE LOCK INTERFACE
EXECUTE UNLOCK INTERFACE

198 Chapter5

Advanced /O Topics
1/0 Configuration Techniques

Supported Platforms

Table 5-1. EXECUTE LOCK/UNLOCK Support

Platform Supported I/O Interfaces

Windows 95 GPIB2
(PC, HP 6232, HP 6233, or EPC7/8) | serial

VXI (PC with VXLink, or embedded)?

Windows NT GPIB?
(PC, HP 6232, HP 6233, or EPC7/8) | serial

VXI (PC with VXLink, or embedded)b

(HP 9000 Series 700 or V/743)

X1 (S700 with MXI, VXLink, or embedded)

a. The National Instruments GPIB interface does not support LOCK.

b. Register and memory access of VXI devices (READ/WRITE REGISTER/
MEMORY transactions) are not lockable. Only the very first execution of
a transaction that attempts a direct memory access could be locked out if
the memory is mapped into the VEE process space) by a prior lock in
another process. After that, there is no way to prevent multiple processes
from simultaneously accessing a memory location since this is shared
memory.

Execution Behavior When a version of the EXECUTE LOCK transaction executes, it tries to
acquire a lock on the device or interface. If there is no pre-existing lock
owned by another process, the transaction executes completely and the lock
acquisition succeeds. If a prior lock exists, the transaction blocks for the
current timeout configured for that device or interface.

If the other process gives up the lock within the timeout period, the
transaction completes and acquires the lock. If the timeout period lapses, an
error occurs and an error message box appears. This error can be captured by
an error pin on the transaction object.

After the lock is acquired, all subsequent I/O from Direct I/0,
MultiInstrument Direct I/O,Panel Driver, Component Driver,
and Interface Operations objects are protected from any other process
attempting to communicate to that device or interface.

Chapter 5 199

Advanced /O Topics
1/0 Configuration Techniques

After the critical section has passed, the corresponding version of the
EXECUTE UNLOCK transaction can be executed.

Locks only protect critical sections across process boundaries. A single
process can create nested locks by performing two EXECUTE LOCK
transactions in sequence. Both transactions will succeed as long as there are
no prior locks by another process.

The process must then perform two EXECUTE UNLOCK transactions.

If only one EXECUTE UNLOCK transaction is executed the device or
interface remains locked. If a transaction attempts an unlock without a prior
lock, a run-time error occurs.

Locks only exist while the VEE program is executing. When a VEE program
finishes executing, all locks are removed from devices and interfaces. This
protects the user from leaving devices or interfaces locked if the program
stops executing due to normal completion, run-time errors, or a pressed
Stop button, and no EXECUTE UNLOCK transaction has executed.

200 Chapter5

Advanced /O Topics
1/0 Configuration Techniques

Example:EXECUTE The example program in Figure 5-6 shows EXECUTE LOCK/UNLOCK

LOCK/UNLOCK INTERFACE transactions in an Interface Operations object

Transactions - GPIB configured for GPIB. (This example is identical for a serial interface.) The
lock and unlock transactions frame the UserObjects performing 1/O to the
devices on the GPIB interface at logical unit 7. This program will attempt to
acquire the lock three times. If the lock cannot be acquired after three
attempts, a user-defined error occurs.

—|For Count| =l Raise Error <]
lf | Caode 1
- Message Unahle ta acguire lock on GPIB
= Interface Op's: GPIBT @ 7 =]

EXECUTE LOCK INTERFACE -I

= Dauble-Click to Add Transaction =

— Mext
Perform 100 to devices on GFIB Interface 7

Perfarm mare 10 to devices on GRIB Interface 7

= Interface Op's: GPIBT @ 7 =
EXECUTE UMLOCK INTERFACE

= Diouhle-Click to Add Transaction =

Elre-akl

Figure 5-6. EXECUTE LOCK/UNLOCK Transactions - GPIB

For each attempt, the EXECUTE LOCK INTERFACE transaction tries to
acquire the lock in the time allowed by the configured timeout period. You
can set the timeout period in the Properties dialog box of the Interface
Operation object. The error pin attached to the Next object in the first
transaction object will cause the thread to be re-executed in another attempt.
The break object after the last transaction object ensures that the thread does
not get executed unnecessarily a second time.

Chapter 5 201

Example: EXECUTE
LOCK/UNLOCK
Transactions - VXI

Advanced /O Topics
1/0 Configuration Techniques

The example program in Figure 5-7 shows the EXECUTE LOCK/UNLOCK
DEVICE transactions in a MultiInstrument Direct I/0 object. You
could use the Direct I/0 objectinstead of the MultiInstrument
Direct I/0,butthat would mean using an object for each device instead
of one object for the group of devices. This is very similar to the program in
Figure 5-6. A For Count object drives a thread which tries to acquire locks
on three different devices. After the I/O activity is done in the user objects, a
series of unlocks are executed.

— Forsount F
I = Raise Errar =
Code 1
- = Message |Unable to acquire locks
—| Multilnstrument Direct /O =

EXECUTE "mirrors" LOCK DEVICE
EXECUTE "dmm" LOCK DEVICE

EXECUTE “funcgen” LOCK DEVICE
= Double-Click to Add Transaction =

I - Multilnstrument Direct /0 =
EXECUTE "mirrors" LOCK DEVICE
Ferform 1i0 to the three WX devices. EXECUTE "dmm" LOCK DEVICE

Error

EXECUTE “funcgen” LOCK DEVICE
I = Double-Click to Add Transaction =

Ferform maore i to the three Vx| devices.

INext
— multilnstrument Direct 100 =

EXECUTE "mirrors" UNLOCK DEVICE
EXECUTE "dmm" UNLOCK DEVICE

EXECUTE "funcgen” UNLOCK DEVICH
= Double-Click to Add Transaction =

Figure 5-7. EXECUTE LOCK/UNLOCK Transactions - VXI

Each transaction tries to acquire its respective lock for the timeout period
configured for each device. If any of the three transactions timeout, an error
occurs that is trapped by the error pin. If a successful lock is followed by an
attempt resulting in a timeout error, the error pin traps the error.

Before the program can re-execute the lock transactions, all acquired locks
must be unlocked. That is why the MultiInstrument Direct I/0 object
is attached to the error pin. It is very important that this object try to unlock
each device in the same order as the first object acquired the locks.

202 Chapter5

Advanced /O Topics
1/0 Configuration Techniques

Since an error occurs if an unlock transaction is executed before the lock
transaction, an error pin is also added to the object with the unlock
transactions. If a transaction fails to acquire the lock in the first object,
the same unlock transaction fails in the following object.

Chapter 5 203

Advanced /O Topics
1/0 Control Techniques

I/0 Control Techniques

This section describes some additional techniques for instrument /O
control.

Polling

VEE supports all serial poll operations defined by IEEE 488.1. All GPIB
instruments and all VXI message-based instruments support serial poll
operations. VXI message-based devices are, by definition, IEEE 488.2
compliant. VXI register-based devices are IEEE 488.2 compliant if an
I-SCPI driver is available. VEE does not support parallel poll operations.

You can obtain an instrument's serial poll response in two ways:

Object Serial Poll Behavior

Instrument The Instrument Event object can poll the specified

Event instrument once and output a scalar integer, which is the
serial poll response using the N0 waATT option. The
Instrument Event Object can also wait for a specific bit
pattern within the serial poll response byte by using a user
supplied bit mask and the ALL CLEAR and ANY SET
options.

Direct I/0 Direct I/0 objects for GPIB instruments support a warT
SPOLL transaction. This transaction repeatedly polls an
instrument until the serial poll response byte matches a
specific bit pattern, using a user-supplied bit mask and the
ALL CLEAR Or ANY SET options. See Chapter 4, “Using
Transaction I/O” for additional information about pirect
I/0.

The Instrument Event object has special execution properties when
configured for Spol1 that are discussed in the next section, "Service
Requests". This behavior allows other concurrent threads to continue
execution while waiting for a specific bit pattern using the mask value and
the ALL CLEAR or ANY SET options.

204 Chapter5

Advanced /O Topics
I/0 Control Techniques

NO WAIT will execute immediately and return the status byte of the GPIB or
message-based VXI instrument. Both objects have a Timeout control input
available from their object menus (Add Terminal) so you can
programmatically set a timeout period. Figure 5-8 shows an example.

~| Spoll. HPE1411B (@ 16024) =]
Device: | HPE14118 { @ 16024) =l
Event | Spoll =]
Action: RO AT |
kel I #H0O

Figure 5-8. Instrument Event Configured for Serial Polling

Service Requests

To detect a service request (SRQ message) for a VXI instrument, use the
Instrument Event object (I/0 = Advanced I/0=> Instrument
Event). To detect a service request for a GPIB instrument or RS-232, use
the Interface Event object (I/0 = Advanced I/0 = Interface
Event).

The Instrument Event and Interface Event objects provide special
behavior for interrupt-like execution. To view this behavior, you may wish to
run your program with Debug = Show Execution Flow enabled.

For example, Interface Event behaves in a program as follows:

1. Before an Interface Event object (configured for GPIB and with the
WAIT option specified) operates, execution proceeds normally with each
thread sharing execution with equal priority.

2. When an Interface Event object operates, execution of the thread
attached to the Interface Event data output pauses atthe Interface
Event object. Other threads not attached to Interface Event
continue to execute.

Chapter 5 205

Advanced /O Topics
1/0 Control Techniques

3. When an SRQ is detected on the specified interface, the data output of
Interface Event is activated. At this point, execution of all other
threads is blocked until the thread attached to the data output of
Interface Event completes execution.

Example: Service Request. The program in Figure 5-9 shows one way to
handle service requests. In this example, it is possible that either dvm or
scope is responsible for a service request. This program is saved in the file
manuall6.vee in the examples directory.

Note The program in Figure 5-9 will run only if the specified instruments are
connected, configured, and powered up. However, you can use this program
as an example of programming techniques to use in your own programs or
you can modify the program to communicate with your own instruments.

"scope™ and "dvw" (below) The "Until Break™
set up the instruments loop waits for and
and enable SR0a. services the SR0s.

O |

Until Break

drn { @ (NOT LIVES)

SR GPIBT

1 IiiTheniElse 1
HP 3478 did it

—— [fiThen/Else ‘

Spall: seope { @ (NOT LIVER Clear ESR(MOT LIVE)

Unknown did it | HP 54504 did it

Figure 5-9. Handling Service Requests

The program determines the originator of the service request by using
Instrument Event to obtain the status byte of each instrument. Each

206 Chapter5

Advanced /O Topics
I/0 Control Techniques

status byte is tested using I£/Then/Else and the bit (x,n) function to
determine if bit 6 is true. If bit 6 is set, the corresponding instrument is
responsible for the service request.

The Until Break object automatically re-enables the entire thread to
handle any subsequent service requests. The Instrument Event object is
configured for NO WAIT, meaning the status byte is returned without using
the mask value. If a mask value of 64 is used and the Instrument Event
object is configured for ANY SET, the If/Then/Else and bit (x,n)
function need not be used.

Different instruments have different requirements for clearing and re-
enabling service requests. In Figure 5-9, dvm requires only a serial poll to
clear and re-enable its SRQ capability. However, scope requires the
additional step of clearing the originating event register.

The Instrument Event object can be used to detect a service request
from a message-based VXI instrument. The instrument that writes a request
true event (RT), which is evaluated as a request for service, into the VXI
controller's signal register receives a Read STB word serial protocol
command.

The message-based instrument sends its status byte back to the controller,
and writes a request false event (RF) into the VXI controller's signal register.
The status byte is used with the supplied mask value and the ANY SET or
ALL CLEAR options to determine which bit (besides bit 6) is set. Thus one
object, the ITnstrument Event, can be used to detect a service request
from a message-based VXI device and determine why the request occurred.

Both objects have a Timeout control input available from their object
menus (Add Terminal) so you can programmatically set a timeout period.
For further information, see the Instrument Event and Interface
Event reference sections in the VEE Online Help.

Chapter 5 207

Advanced /O Topics
1/0 Control Techniques

Monitoring Bus Activity

You can use the Bus I/0 Monitor object (I/0=Bus I/0 Monitor)to
record all bus messages transmitted between VEE and any talkers and
listeners. Bus I/0 Monitor records only those bus messages inbound or
outbound from VEE.

You can monitor any supported interface (GPIB, VXI, serial, or GPIO) using
aBus I/0 Monitor. Each instance of a Bus I/0 Monitor object
monitors just one hardware interface.

Figure 5-10 shows the bus messages sent to write *RST to an instrument at
GPIB address 717.

~| Bus 1o Monitor (GPIBT @7) [a

=x Mon 06/Mars2000 15:25:59

oopoo % 0x55 U | MT4
ooool % Ox3f 2 | TINL
ooooz % 0x3l 1 ! LISTEN 17
oono0s > 0Ox2a *
oopo4 = 0x52 R
oooos = Ox53 0 8

scope (hpa4504a @ 7173 noooe = 0Oxs4 T
oooo7? > 0Ox0a <LF»

Figure 5-10. The Bus 1/0 Monitor
The display area of Bus I/0 Monitor contains five columns:
B Column I - Line number
Column 2 - Bus command (*), or outbound data (>), or inbound data (<)
Column 3 - Hexadecimal value of the byte transmitted

Column 4 - 7-bit ASCII character corresponding to the byte transmitted

Column 5 - Bus command mnemonic (bus commands only, blank for
data)

The Bus I/0 Monitor executes much faster as an icon than as an open
view object.

208 Chapter5

Advanced /O Topics
I/0 Control Techniques

Low-Level Bus Control

You can send low-level bus messages in two ways, as Figure 5-11 shows.

Object Bus Message Capability

Interface This object allows you to send arbitrary bus messages to
Operations any GPIB device, or reset the VXI interface and fire
various VXI backplane trigger lines.

Direct I/0 Direct I/0 objects for GPIB, message-based VXI
instruments, and I-SCPI supported register-based VXI
instruments lets you send CLEAR, LOCAL, REMOTE, and
TRIGGER commands using EXECUTE transactions.

For further information regarding Interface Operations and
Direct I/0,see Chapter 4, “Using Transaction 1/O”.

=l Interface Op's: GRIBT @ 7 = =l scope (hp54504a @ 717) =
EXECUTE CLEAR EXECUTE CLEAR
SEND MTA WRITE TEXT "™R5T" EOL
SEND UKL EXECUTE LOCAL
SEMD LISTEM17 = Doukle-Click to Add Transaction =
SEND DATA"™RET
EXECUTE LOCAL

= Double-Click to Add Transaction =

Figure 5-11. Two Methods of Low-Level GPIB Control

Chapter 5 209

Note

Advanced /O Topics
1/0 Control Techniques

Instrument Downloading

Some instruments allow you to download macros, measurement routines,
or complete measurement programs. For example, some HP instruments
support HP Instrument BASIC in which you can write complete HP
Instrument BASIC programs that execute inside the instrument. One
approach for using VEE to download a measurement routine to an
instrument is the following:

1. Create and maintain your measurement routine using a text editor, such
as vi. Save the measurement routine in an ordinary text file.

2. Use From File to read the file.
3. Use Direct I/0 to write the contents of the file to the instrument.

This section presents a complete example of downloading using this
approach. See Chapter 4, “Using Transaction I/O” for further information
regarding Direct I/0.

Figure 5-12 shows a program that downloads a measurement subprogram to
the HP 3852A. This example downloads subprogram BEEP2 that beeps
twice and displays a message. This program is saved in the file
manuall7.vee in the examples directory.

The program in Figure 5-12 will run only if the specified instruments are
connected, configured and powered up. However, you can use this program
as an example of programming techniques to use in your own programs or
you can modify the program to communicate with your own instruments.
This program, manuall7.vee, has embedded configuration.

210 Chapter5

Advanced /O Topics
I/0 Control Techniques

Below are the contents of the downloaded file manual17.dat. The
manuall7.dat file is provided in the examples directory.

DISP MSG "LOADING BEEP2"
WAIT 1

SUB BEEP2

DISP "BEEP2 CALLED"
BEEP

WAIT .5

BEEP

SUBEND

DISP MSG "BEEP2 LOADED"

Start

— HF 3852A (@ (NOT LIVE)) | | |

3

WRITE TEXT' SCRATCH" STR EOL

Thread #1 |
O This thread erases the HP 38524's
subroutine memory and dowmloads the
Until Break specified subroutine.

From File =

—| HP 3852A { @ (NOT LIVE)) | " |
Fram File:

~installDirfexamplesimanualimanuall 7.dat |

READ TEXT x STR MA}{FW a0

Start

HF 3852A (@ (NOT LIVE)) | | |

= Thread #2

WRITE TEXT' CALL EIEEP2 STR EOL

This thread calls the subroutine.

Figure 5-12. Example: Downloading to an Instrument

Chapter 5 211

Note

Advanced /O Topics
Logical Units and 1/0 Addressing

Logical Units and I/O Addressing

To access an I/O device, you will need to determine the correct address and
enter it in the Address field in the Instrument Properties dialog box,
using the Instrument Manager as described in Chapter 3, “Configuring
Instruments”.

This section covers the VEE 1/0 addressing scheme, including interface
logical units and instrument addresses, that supports Direct I/0, Panel
Driver, and Component Driver I/O operations. This addressing scheme
is not used for VXlplug&play 1/0 operations. See “Configuring for a
VXlplug&play Driver” on page 79 for information about VXlplug&play
addressing in VEE.

VEE supports the GPIB, RS-232 serial, and GPIO interfaces. Also, you can
access VXI devices by using an HP E1406 Command Module connected to
one of the supported GPIB interfaces.

VEE also supports direct VXI backplane access for embedded VXI
controllers, for the E1383A and E1483A VXLink interfaces for PCs, and
for the HP E1489C EISA/ISA-to-MXIbus interface with HP 9000 Series
700 computers.

The VEE addressing scheme uses logical units that you can set up using the
I/0 Config utility program as part of installing and configuring the I/O
libraries included with VEE. See Installing the Agilent 1/O Libraries (VEE
for Windows) or Installing the Agilent 1/O Libraries (VEE for HP-UX) for
information about installing and configuring the HP 1/O libraries, and setting
up logical units using 1/0 Config. It is recommended that you set logical
units for interfaces according to Table 5-2.

Recommended I/0O Logical Units for VEE

The following interface logical units are recommended for use with VEE.
See Installing the Agilent I/O Libraries (VEE for Windows) or Installing the
Agilent I/O Libraries (VEE for HP-UX) for information about installing and

212 Chapter5

Advanced /O Topics
Logical Units and I/O Addressing

configuring the I/O libraries and setting up logical units for interfaces using
the I/0 Config utility program.

Table 5-2. Recommended I/O Logical Units

Logical Unit PC (Windows 95, NT) Series 700 (HP-UX)
1 GPIB (82340 or 82341) GPIB (E2070 or E2071)
2 GPIB (82340 or 82341) GPIB (E2070 or E2071)
3 GPIB (82340 or 82341) GPIB (E2070 or E2071)
4 GPIB (82340 or 82341) GPIB (E2070 or E2071)
5 GPIB (82340 or 82341) GPIB (E2070 or E2071)
6 GPIB (82340 or 82341) GPIB (E2070 or E2071)
7 GPIB (82340 or 82341) GPIB (E2070 or E2071)
8 GPIB (82340 or 82341) GPIB (E2070 or E2071)
9 COM1 serial port COM1 serial port
10 COM2 serial port COM2 serial port
11 COMS serial port COMS serial port
12 COM4 serial port COM4 serial port
13 GPIO (HP E2075) GPIO (HP E2075)
14 GPIBO (National GPIB card) Unused
15 GPIB1 (National GPIB card) Unused
16 VXI (Embedded, or PC using VXI (Embedded, or S700 using
VXLink) EISA/ISA-to-MXIbus)
17 GPIB2 (National GPIB card) Unused
18 GPIB3 (National GPIB card0 Unused

Logical Unit

PC (Windows 95, NT)

1

GPIB (82340 or 82341)

Chapter 5

213

Advanced /O Topics
Logical Units and 1/0 Addressing

Logical Unit PC (Windows 95, NT)
2 GPIB (82340 or 82341)
3 GPIB (82340 or 82341)
4 GPIB (82340 or 82341)
5 GPIB (82340 or 82341)
6 GPIB (82340 or 82341)
7 GPIB (82340 or 82341)
8 GPIB (82340 or 82341)
9 COM1 serial port
10 COM2 serial port
11 COMS serial port
12 COM4 serial port
13 GPIO (HP E2075)
14 GPIBO (National GPIB card)
15 GPIB1 (National GPIB card)
16 VXI (Embedded, or PC using
VXLink)
17 GPIB2 (National GPIB card)
18 GPIB3 (National GPIB card0

214

Chapter5

Note

To Address Serial
Ports

To Address GPIO
Devices

Advanced /O Topics
Logical Units and I/O Addressing

Logical unit 7 is the recommended default for the first GPIB card. Each card
must have a unique logical unit.

The 82335 GPIB card is also supported for Windows 95/98 on the PC

(not for Windows NT). However, only logical units 3 through 7 are
recommended for the 82335 GPIB card and the logical unit is set by the on-
card switch settings (the default setting is 7). In addition, you must exclude
address space for the 82335 as described in “Excluding Address Space for
the 82335 Card (Windows 95/98 Only)” on page 219.

Only logical units 14, 15, 17, and 18 are supported for National GPIB cards
on the PC. These GPIB cards are not supported for HP 9000 Series 700
computers.

I/0 Addressing

Addressing schemes for various types of devices are described in the
following sections.

Serial ports are supported by using the logical units that you assign to them
using I/0 Config. Normally, the COMI serial port is assigned logical unit
9 (see Table 5-2). In this case, use 9 as the address of the device connected to
COMI.

GPIO devices are supported by using the logical unit that you assign to the
GPIO interface using 1/0 Config. Normally, the logical unit 13 is used
for GPIO. In this case, use 13 as the address for the GPIO device.

Chapter 5 215

To Address GPIB
Interfaces and
Devices

Advanced /O Topics
Logical Units and 1/0 Addressing

GPIB devices are addressed using the following scheme:

SPA[SA]
Where:
S is the logical unit of the GPIB interface.
PA is the primary address of a GPIB device (the valid range is
00 through 30).
SA is the optional secondary address (the valid range is 00

through 31).

Two examples are:

B For a GPIB device at logical unit 7, primary address 01, enter 701 in the
Address field of the Instrument Properties dialog box.

B For a GPIB device at logical unit 14, primary address 09, secondary
address 02, enter 140902 in the Address field of the Instrument
Properties dialog box.

GPIB Logical Units. GPIB interfaces are supported by using the logical
units that you assign to them using I/0 Config. The recommended logical
units for GPIB interfaces are as listed in Table 5-2. If the recommended
logical units (1 through 8) are configured by the I/O libraries for GPIB
interfaces, VEE can theoretically access up to eight GPIB cards, which can
be a mix of the supported cards:

B For an E2070 or HP E2071 (for Series 700 computers), the logical unit is
assigned by the software. The logical units are assigned in the order: 7, 8,
1,2,3,4, 5, and 6. However, each card must be set to a unique base

address. (See the owner's manual for information on setting the base
address.)

B For an 82340 or 82341 (for PCs), the logical unit is assigned by the
software. The logical units are assigned in the order: 7, 8, 1, 2, 3,4, 5, and
6. However, each card must be set to a unique base address. (See the
owner's manual for information on setting the base address.)

216 Chapter5

To Address VXI
Devices on the
GPIB

Advanced /O Topics
Logical Units and I/O Addressing

B For an 82335 (for PCs, Windows 95/98 only), the logical unit is
determined by switch settings on the card (the default is 7). If you install
more than one 82335 card, each card must be set for a unique logical unit
in the range 3 through 7. (See the owner's manual for instructions.) Also,
you must exclude address space for each card. See “Excluding Address
Space for the 82335 Card (Windows 95/98 Only)” on page 219.

GPIB Logical Units (PCs Only). The National Instruments GPIB driver
configures up to four GPIB cards with the designations GPIB0, GPIBI,
GPIB2, and GPIB3. To access these GPIB cards, you must assign the logical
units 14, 15, 17, and 18 to the GPIB cards (see Table 5-2) using 1/0
Config. VEE does not support any other logical units for GPIB cards.
Otherwise, the addressing is the same as for any other GPIB card.

To access VXI devices through the GPIB with an HP-IB command module,
you can use secondary addresses. If you are using an HP E1406 Command
Module in a VXI card cage, the primary address is set by a switch on the
command module (default = 09) and the secondary address is the individual
VXI device's logical address divided by eight.

For example, suppose you have an HP E1406A Command Module (address
= 09) in a C-Size Mainframe, with the HP E1406A connected to the GPIB
interface at logical unit 7. For an HP E1326B Multimeter in a VXI slot with
its logical address set to 24, the multimeter address is 70903.

Two instrument drivers are provided to help you find the correct addresses
for VXI devices connected by means of a GPIB command module:

B Use the hpel140x.cid driver to locate VXI devices connected by means
of an HP E1405 or HP E1406 GPIB Command Module in a C-size VXI
mainframe.

B Use the hpe1300a.cid driver to locate VXI devices connected by
means of an HP E1306 GPIB Command Module in a B-size VXI
mainframe. (This driver also supports the HP E1300 and HP E1301
B-Size VXI Mainframes, which include built-in command modules.)

Chapter 5 217

Note

To Set Address/Sub
Address Values

Note

Advanced /O Topics
Logical Units and 1/0 Addressing

To use either of these drivers, add an instrument panel for the driver using
the Instrument Manager as described in Chapter 3, “Configuring
Instruments”.

Do not enter a sub address value for VXI devices, except for modules in a
VXI switch box. See the next section for details.

Most GPIB and VXI instruments do not use sub addresses. Do not enter a
sub address value unless you are accessing a VXI switch box or one of the
mainframe instruments that use sub addresses, such as the HP 3235A
Switch/Test Unit or the HP 3488 A Switch/Control Unit.

Sub address values are used only if you are using an HP Instrument Driver
for a device that supports sub addresses. Do not use sub address values if
you are using Direct 1/O.

Two examples follow:

B To access a module in an HP 3235A Switch/Test Unit, enter the GPIB
address (for example, 701) of the HP 3235A itself in the Address field
of the Instrument Properties dialog box, using the Instrument
Manager as described in Chapter 3, “Configuring Instruments”.

Enter the sub address of the individual module in the Sub Address field
of the Advanced Instrument Properties dialogbox (onthe Panel
Driver tab). For information on entries in the Sub Address field, see
online help for the HP 3235A instrument driver (Help =
Instruments).

B To access a module in a VXI switch box, enter the GPIB address of the
switch box (for example, 70902) in the Address field and the sub
address of the individual module in the Sub Address field. For
information on entries in the Sub Address field, see online help for
the VXI switch box instrument driver.

218 Chapter5

To Address the VXI
Backplane Directly

Note

Advanced /O Topics
Logical Units and I/O Addressing

VEE can address the VXI backplane directly for the following systems:
B An HP 623x VXI Pentium Controller.

B An EPC-7 or EPC-8 VXI Controller, provided the EPConnect software is
installed.

B A PC connected to a VXI card cage using an HP E1383A or HP E1483A
VXLink (ISA-to-VXI) interface, provided the EPConnect software is
installed.

B An HP V743 VXI Embedded Controller.

B An HP 9000 Series 700 computer connected to a VXI mainframe using
an HP E1489C EISA/ISA-to-MXIbus interface.

Assuming recommended logical units have been set using I/0 Config
(see Table 5-2), VEE accesses the VXI backplane via logical unit 16. The
address for a VXI device is the logical unit (16) with the logical address of
the VXI device appended.

For example, suppose an HP EPC-7 VXI Controller and an HP 1411B
Digital Multimeter are installed in a VXI mainframe. If the logical address
of the HP 1411B is set to 24, the VXI address is 16024. You do not divide
the logical address by 8 as you would if you were accessing the VXI device
via GPIB.

Excluding Address Space for the 82335 Card (Windows
95/98 Only)

For an 82335 card, which uses memory-mapped I/O addressing, you must
exclude the address space required by the GPIB interface so memory
manager programs will not try to use that space.

The 82340 and 82341 cards and the National Instruments GPIB cards do not
use memory-mapped I/O addressing, so this section does not apply to those
cards. Also, this section does not apply to the built-in GPIB interface for an
embedded controller.

Chapter 5 219

Advanced /O Topics
Logical Units and 1/0 Addressing

The 82335 card is supported for Windows 95/98 only, not for Windows NT.

To exclude address space:

L.

Install the 82335 card. The card is pre-set at the factory for logical unit 7.
Normally, you should use logical unit 7. However, if there is more than
one 82335 card, each card must be set for a different logical unit in the
range 3 through 7.

. Add the appropriate line for your logical unit to the [386Enh] section of

your SYSTEM.INI file (in the C:\Windows directory):

For Logical Unit: Add to SYSTEM.INI:

3 EMMEXCLUDE=0CC00-0CFFF
4 EMMEXCLUDE=0D000-0D3FF
5 EMMEXCLUDE=0D400-0D7FF
6 EMMEXCLUDE=0D800-0DBFF
7 (default) EMMEXCLUDE=0DC00-0DFFF

. If there is a memory manager DEVICE line (for example,

DEVICE=EMM386.EXE) in the CONFIG.SYS file (in the root directory),
you will need to modify the file. Add a parameter to exclude the address
space (for example, x=DC00-DFFF for logical unit 7), as shown in the
following table:

For Logical Unit: Modify in CONFIG.SYS:

3 DEVICE=EMM386.EXE X=CCO0-CFFF
4 DEVICE=EMM386.EXE X=D000-D3FF
5 DEVICE=EMM386.EXE X=D400-D7FF
6 DEVICE=EMM386.EXE X=D800-DBFF
7 (default) DEVICE=EMM386.EXE X=DCOO-DFFF

220 Chapter5

Note

Advanced /O Topics
Logical Units and I/O Addressing

If multiple 82335 cards are installed, you must exclude address space
for each card. For example, for two cards installed (logical units 3 and 7),
add the following lines to the [386Enh] section of SYSTEM.INI:

EMMEXCLUDE=0CCO00-0CFFF
EMMEXCLUDE=0DCO0-0DFFF

Also, if your CONFIG.SYS file contains the DEVICE line for
EMM386.EXE, add parameters to it as shown:

DEVICE=EMM386.EXE X=CCOO-CFFF X=DCOO-DFFF

4. Reboot your computer (select Start = Shut Down) and restart
Windows.

Chapter 5 221

Advanced /O Topics
Logical Units and 1/0 Addressing

222 Chapter5

Using Panel Driver and Component
Driver Objects

Using Panel Driver and Component Driver
Objects

This chapter describes how to use Panel Driver and Component
Driver objects with VEE.

224 Chapter6

Panel Driver Files

Components

Using Panel Driver and Component Driver Objects
Understanding Panel Driver and Component Driver Objects

Understanding Panel Driver and
Component Driver Objects

This section explains some background and details that will help you use
Panel Driver and Component Driver objects more effectively.

Inside Panel Drivers

The VEE Panel Driver and Component Driver objects both require
that the appropriate Panel Driver ("ID") be present, and that

the instrument be configured to that driver. These instrument drivers are
sometimes called "VEE drivers" or "Instrument Drivers". The

Panel Driver file (the. cid file) must be present and configured to use
Panel Driver and Component Driver objects. However, these files are
not used for Direct 1/0 or VXIplug&play operations.

Each Panel Driver describes the unique personality of a particular test
instrument. A driver file is required to control any instrument using a
Panel Driver or Component Driver object.

Panel Driver files (. cid files) are optionally copied onto your system disk
when VEE is installed. Each driver file contains two basic types of
information:

B A description of the instrument's functions and the commands used to set
and query them.

B A description of the appearance and behavior of the graphical control
panel visible in the open view of a Panel Driver object.

Internally, Panel Driver and Component Driver objects represent each
instrument function as a component. Component names are analogous to
variable names in programming languages; components are used to hold the
value of instrument function settings or measured values.

Figure 6-1 shows some of the components in the HP 3478A voltmeter.

Chapter 6 225

Using Panel Driver and Component Driver Objects
Understanding Panel Driver and Component Driver Objects

Component Name Instrument Function

ARANGE Autoranging is on or off.

FUNCTION The measurement function is voltage, current, or
resistance.

TRIGGER The trigger source is internal, external, fast, or single.

READING The most recent measured value.

Access components interactively or through a program. To access a
component interactively, click a labeled button or display in the open view
of a Panel Driver. To access components using a graphical program, add
them as input or output terminals. Figure 6-1 shows an example. For detailed
procedures on using components, see “Selected Techniques” on page 231
and “Using Component Driver Objects in a Program” on page 232.

TIME_SENS

Main Panel

G

Trig Level

TIME_SENS

Figure 6-1. Accessing Driver Components

226

Chapter6

States

Using Panel Driver and Component Driver Objects
Understanding Panel Driver and Component Driver Objects

An instrument state is a specific set of values for all components in a
particular driver. You set all the components in a voltmeter driver to
particular values for AC voltage measurements. You use a different set of
component values to measure DC current. These are two states for the
voltmeter. Figure 6-2 shows two voltmeter states.

—| chvm = —| chvm =

Main Panel

Function ACY

Ndigits m Ndigits m
Trigeger Trigeger
Auto Zero Auto Zero

Figure 6-2. Two Voltmeter States

In VEE, each instance of a Panel Driver represents a separate measurement
state. (Panel Driver objects are often called "state drivers".) It is common to
have more than one Panel Driver in a program, where each Panel Driver
programs the same physical instrument to a unique measurement state.

Each Panel Driver object you create using the same instrument Name
communicates with the same physical instrument.

How Panel Driver-Based I/O Works

When you place a Panel Driver or Component Driver objectina
program, VEE establishes a state record in memory. This state record is
specific to a particular instrument Name. Names are discussed in greater
detail in “The Importance of Names” on page 229.

All driver-based objects that reference a particular Name share a single state
record. The state record reflects the current values of each of the
instrument's components. When you write to components using Panel
Driver or Component Driver objects, VEE updates both the physical
instrument and the state record.

Chapter 6 227

Component Driver
Operation

Using Panel Driver and Component Driver Objects
Understanding Panel Driver and Component Driver Objects

If you write to the instrument using Direct I/0, VEE marks the state
record as invalid because the state record no longer matches the true state of
the physical instrument. However, subsequent use of a Panel Driver or
Component Driver object causes VEE to recall the instrument's state,
which resynchronizes the physical instrument state and state record.

Important differences occur when the Panel Driver and Component
Driver objects operate.

Panel Driver Operation

When a Panel Driver operates, it sends only those commands necessary
to make the state of the physical instrument match the state defined in the
graphical control panel.

If necessary, a Panel Driver sends commands to reset and update all
settings in the corresponding physical instrument. This behavior is affected
by the Incremental Mode setting described in Chapter 3, “Configuring
Instruments”.

If you set Incremental Mode to ON, VEE compares the current state
record to the desired state defined in the Panel Driver and determines
which components must be changed. VEE sends only those commands
required to update the affected components.

If you set Incremental Mode to OFF, or if the current state record is
marked as invalid, VEE explicitly sends commands to update each
component in order to guarantee synchronization between the desired state
and the state of the physical instrument.

A panel Driver operates when its sequence input pin is activated or when
you click one of the control panel buttons visible in the open view.

When a Component Driver operates, it writes only to those components
that appear as input terminals and reads only from those components that
appear as output terminals. That is why Component Driver objects
generally operate faster than Panel Driver objects. A Panel Driver
potentially writes to many components to achieve a particular state; a
Component Driver writes to only the components specified.

228 Chapter6

Multiple Driver
Objects

Using Panel Driver and Component Driver Objects
Understanding Panel Driver and Component Driver Objects

Components are read and written in the order they appear as terminals, from
top to bottom. This order of operation is important in cases where you want
the instrument to change the value of one component, based on the value of
another. This interaction is called coupling. With component drivers you
must do this manually.

Some situations that can be confusing when using multiple objects that:
B Use the same instrument Name.
B Use the same instrument address.

B Use the same driver file.

The Importance of Names. The Name field in the Instrument
Properties dialog box logically maps each instrument object to the
address of a physical instrument and the other configuration information. To
determine the Name of an instrument object, click Show Config in the
object menu. The text in the object title is not necessarily the same as the
Name.

In general, only one configured Name should reference a particular physical
instrument. Multiple Name references to the same instrument address causes
unpredictable results in a program using Panel Driver objects. VEE's
internal records of instrument states are organized by Names. Two

Panel Driver objects with different names will blindly write to the same
address, invalidating each other's state records.

In some cases involving Direct I/0,you may need more than one Name
for the same physical instrument. This may be necessary if certain settings in
the Direct 1/0 tabofthe Advanced Instrument Properties dialog
box need to be varied depending on the direct I/O operation.

For example, you may want to send some commands to an oscilloscope with
EOI asserted on the last character of data and some commands without EOL.
In this case, you can configure one instrument with the Name Scope EOI
and another instrument with the Name Scope. Both Scope and Scope EOI
have the same Address setting but different settings for END on EOL.

Chapter 6 229

Using Panel Driver and Component Driver Objects
Understanding Panel Driver and Component Driver Objects

The configured Name appears as the default title in instrument objects when
you select them from the menu. Editing the title in no way affects the
relationship to the Name.

Names are also important for saving and opening programs containing
instruments. When you save a program, the Name of each instrument object
in the program is saved. When you open a program, VEE looks in the
current I/O configuration for the Name of each instrument being loaded.

For example, if you saved a program containing a Direct I/0 object with
aname of My Scope, there must be an instrument named My Scope in the
current I/O configuration. If the object under consideration is a Panel
Driver or Component Driver,the ID Filename (driver file) in the
current I/O configuration must match the one used in the saved program.

Names must match exactly, including spaces, except that Name is not case-
sensitive.

Reusing Driver Files. It is valid (and not uncommon) to have several
objects with different names that use the same driver file. For example, you
might have a test system that uses three programmable power supplies
named Supplyl, Supply2, and Supply3 at three separate addresses that
all use the hp665x. cid driver file. Since the Names are different, VEE
maintains a separate state record for each name; a Panel Driver for
Supplyl will have no effect on anything related to Supply2 or Supply3.

230 Chapter6

Note

Using Panel Driver and Component Driver Objects
Selected Techniques

Selected Techniques

This section describes some techniques for using Panel Driver and
Component Driver objects interactively or in a program.

Using Panel Driver Objects Interactively

The open view of a Panel Driver object provides a graphical control
panel that you can use to interactively construct a measurement state. If you
connect the corresponding physical instrument to your computer and turn
Live Mode on, you can control the physical instrument interactively as you
build the measurement state.

To change an individual setting, click the corresponding field in the
graphical control panel and complete the resulting dialog box. To make a
measurement and view the result, click the display region of a numeric or
XY display. XY displays may take a few seconds to update.

Using Panel Driver Objects Programmatically

To add a Panel Driver object to your program:

1. Click I/0 = Instrument Manager.... The Instrument Manager
dialog box appears.

2. Click the desired instrument to highlight it and then click the
Panel Driver button.

The Panel Driver button is inactive ("grayed out") if the instrument has
not been configured with a Panel Driver file. See Chapter 3, “Configuring
Instruments” for configuration procedures.

3. When the object outline appears, position the cursor and click once to
place the object in the work area.

Chapter 6 231

Note

Using Panel Driver and Component Driver Objects
Selected Techniques

To use Panel Driver objects in a program, you will often use input or
output terminals to set the values of components. Each input or output
terminal actually corresponds to a component in the driver. There are two
ways to add a terminal:

B Select Add Terminal = Data Input or Add Terminal =
Data Output from the Panel Driver object menu. A list box appears
that lists all the valid driver components not yet used as terminals.
Double-click the component in the list that you wish to add as a terminal.

B Sclect Add Terminal by Component =
Select Input Component or Add Terminal by Component =
Select Output Component from the Panel Driver object menu.
After making this selection, click one of the fields or display areas in the
graphical control panel to add the corresponding component as a
terminal.

In general, it is more convenient to use the first method listed above because
you do not need to guess the name of the component you want to use.
However, some components are not visible on any part of the graphical
control panel. You must access these using the second method.

Using Component Driver Objects in a Program

To add a Component Driver object to a program:

1. Click 1/0 = Instrument Manager.... A list of configured instruments
appears.

2. Click the desired instrument to highlight it and then click the
Component Driver button.

The Component Driver button will be inactive ("grayed out") if the
instrument has not been configured with a Panel Driver file. See Chapter 3,
“Configuring Instruments” for configuration procedures.

3. When the object outline appears, position the pointer and click once to
place the object in the work area.

232 Chapter6

Using Panel Driver and Component Driver Objects
Selected Techniques

Component Driver objects are generally used when you need to
repeatedly execute an instrument control object while changing only a few
components. Component Driver objects are preferred over

Panel Driver objects in these situations because Component Driver
objects write and read only the components you specify and execute
somewhat faster.

Figure 6-3 illustrates this type of situation. This program measures the
frequency response of a filter by sweeping the input frequency sourced by
fgen and measuring the response using dvm. Since the subthread attached
to For Log Range executes repeatedly, component drivers are used to
improve execution speed. Note that Panel Driver objects are still
appropriate for the initial set up of fgen and dvm.

- Freguency Response =]
- fgen = T
—1 FREQUENCY | | FREQUENCY | Freq
For Log Range l
: = chvm L]
| | READING | Filter 1
| 1)
|
|
|
———— —i[Auto Scale

Figure 6-3. Using Panel Drivers and Component Drivers

The program shown in Figure 6-3 is stored in the file manuall5.vee in the
examples directory.

Chapter 6 233

Using Panel Driver and Component Driver Objects
Selected Techniques

Getting Panel Driver Help

To obtain help about an Panel Driver, select He1p from the object menu of a
Panel Driver or Component Driver object. Then, open the appropriate
help topic from the resulting dialog box.

234 Chapter6

Using VXlIplug&play Drivers

Note

Using VXIplug&play Drivers

To use a VXIplugdplay driver to communicate with an instrument, you must
install the appropriate VXlplug&play driver files and the VISA I/O library.
See “Introduction to VXIplug&play” on page 46 for VISA installation
information. You must also configure VEE for the instrument as described in
“Configuring for a VXIplug&play Driver” on page 79.

The primary means of communicating with a VXlIplug&play driver in

VEE is the To/From VXIplugsplay object, described in the following
section. You can also call VXIplug&play functions from VEE Ccal1 objects
(see “Using VXlplug&play Functions from Call Objects” on page 252.) The
latter method is provided for backward compatibility with VEE Version 3.1.

Program Compatibility:

Previous versions of VEE have supported VXIplug&play drivers.
VEE Version 3.2 provided the To/From VxIplug&play object. VEE 3.2
programs using this object are compatible with later versions of VEE.

VEE Version 3.1 provided only direct Call access to VXlIplug&play drivers.
If you used Ccal1l objects to control VXlplug&play instruments in VEE
Version 3.1, your program will work in later versions of VEE after you make
certain changes to use the 32-bit version of the driver.

You must install the Windows 95/98 version of VISA and the 32-bit version
of the VXIplug&play driver, and you may have to change the Import objects
to use the new location of the VXlIplug&play driver files. For more
information on using Cal1l objects to access VXlplug&play drivers, see
“Using VXIplug&play Functions from Call Objects” on page 252.

236 Chapter7

Using VXIplug&play Drivers
Using the To/From VXlplug&play Object

Using the To/From VXIplug&play Object

After you have added VXlplug&play instruments to the VEE instrument
configuration, you can use the VXlplug&play drivers in your program.
Access the instruments by the functions contained in the drivers. The
To/From VXIplug&play object provides access to the VXlIplug&play
function panels.

To get the To/From VXIplugs&play object:
1. Select I/0 = Instrument Manager. The Instrument Manager

appears and displays all currently configured VXIplug&play instruments
(as well as any other instruments that are configured).

2. Select the instrument with which you want to communicate, and click the
Plugsplay Driver button. The outline of the object appears.

3. Place the outline of the To/From VxIplugsplay object where you

want it in the work area and click the mouse button. The object appears
as shown in Figure 7-1.

— TofFram HPE1 4138 =

= Double-Click to Add Function =

Figure 7-1. To/From VXIplug&play Object

Chapter 7 237

Using VXIlplug&play Drivers
Using the To/From VXIplug&play Object

Selecting a Function

Select the VXlIplug&play functions from the To/From VXIplug&play
object.

1. Double-click an empty transaction or select Add Trans or Insert
Trans from the object menu. The Select a Function Panel dialog
box appears. It displays function panels grouped into logical categories,
such as Measure or Configure, as shown in Figure 7-2. Each driver
has different categories.

Select a Function Panel

|»

(L1 HPE1410

-3 High Level Control

-1 Measure

-1 Configure Cument Settings
Read using Current Settings
-1 Low Level Control

Initiate Measurement
Ahort Measurement

Fetch Diata from Instrument
Execute Immediate Trigger
-1 Configure

&[] Calibration

[7 VPPN

L

Places the multimeter in the wait-for-trigger state and transfers L
readings directly to the output buffer after receiving a trigger.
Because multimeter memory is not used to store the readings,

there is no restriction on the sample count and trigger count.

0K | Cancell

L 1

Figure 7-2. Select a Function Panel Dialog Box

Q Click the [+] icons to view the hierarchical structure of function
panels.

QO Click the [-] icons to hide the function panels in the hierarchical
structure.

238 Chapter7

Note

Using VXIplug&play Drivers
Using the To/From VXlplug&play Object

QO Click the [£ (x)] icons to select the function panel. You will see a
short description of the function panel in the lower part of the dialog
box.

To completely expand a branch of the tree, select the item to expand and
press the * key.

Generally, you will see only function panels that adhere to the
VXlplug&play version 3.x specification and are allowed by VEE.

VEE automatically calls init () at the appropriate time. However, there
may be other initialization functions, such as init all(), init next(),
orinit first () in the list. These functions are not defined in the
VXlplug&play specification and are not supported by VEE.

Do not select these functions. If you must use these functions, you need to
create your program differently and call the VXIplug&play driver from a
Call object as described in “Using VXIplug&play Functions from Call
Objects” on page 252.

There are no entries for PREFIX init () or PREFIX close ().
These functions are performed automatically by VEE.

2. Click ok on the Select a Function Panel dialog box.

3. You see a tabbed dialog box called Edit a Function Panel that
allows you to specify the parameters for the function panel.

Chapter 7 239

Using VXIlplug&play Drivers
Using the To/From VXIplug&play Object

Editing Function The Edit a Function Panel dialog box allows you to set controls and
Panel Parameters variables to pass to the selected VXIplug&play driver's function. There are
two tabs, Panel and Configuration.

The Panel Tab. The Panel tab, shown in Figure 7-3, allows you to specify
the constant (control) values to pass to the function.

Edit Function Panel for hpe1410_measure_Qf)

Fanel | Configuration |

function reading
Frequency ,70 Q0E+000
Petiod :

4-Wire Resistance
2-Wire Resistance

AC Voltage
AC+DC Voltage
D Voltage
X Errar
wi
#H0

’07

hpeld10_measure_QdinstrHandle, hpel410_COMNF_YOLT_DC, reading

ok | mop | cancel | Help | mnstrHelp|

Figure 7-3. Panel Tab of Edit Function Panel Dialog Box

B Controls - The top part of this dialog box contains controls to specify
constant parameters. The names of the controls are labels specified from
the function panel file.

B vi - Displays the unique "virtual instrument" handle (also called the
"session handle") of the instrument. Depending on the driver version,
the name of this field may change, but the location is always in the lower-
left corner of the function panel.

240 Chapter7

Using VXIplug&play Drivers
Using the To/From VXlplug&play Object

B Error - Displays a non-zero value if an error occurred when executing
this function panel. Depending on the driver version, the name of this
field may change, but the location is always in the lower-right corner of
the function panel.

B Function call - At the bottom of the dialog box is the C function and the
parameters that are sent to the driver when the object executes. This
command string is also shown as a transaction on the open view of the
object.

Getting Help on a VXIplug&play Function Panel. In the Edit
Function Panel dialog box, click the right mouse button on the
background of the Panel tab for help on the function panel. A dialog box
containing a description of the function appears.

Click the right mouse button on a control (not the label) for an explanation
of the parameter.

For complete help on the VXlplug&play driver, select Instrument Help
from the object menu of the To/From VxIplugs&play object.

Chapter 7 241

Using VXIlplug&play Drivers
Using the To/From VXIplug&play Object

The Configuration Tab. The Configuration tab, shown in Figure 7-4,
allows you to specify the variables to pass to the function. This allows you to
set the parameter values programmatically.

Edit Function Panel for hpe1410_measure_Qf)

Panel |Configuration |

~function

Farameter Type: Int32 {nput Only)

Parameter Yalue: <% Constant < Variable

Mame: hpeld410_CONF_WOLT_DC I™ Create Input Terminal

~reading

Farameter Type: Realdd (Qutput Only)

Parameter Yalue: < Constant 4 Variable

Mame: |reading V Create Output Terminal
ok | mop | cancel | Help | mnstrHelp|

Figure 7-4. Parameter Tab of Edit Function Panel Dialog Box

Parameter values are shown in groups. The name of each group is the label
name of the parameter as specified in the VXIplug&play function panel. In
Figure 7-4, function and reading are labels. Each group may contain the
following information.

B parameter Type - This provides information about the parameter data
type and whether the parameter is Input Only, Input/Output, or Output
Only.

B pParameter Value - When Constant is selected, this parameter is
passed as a constant value that is set on the Panel tab. When variable
is selected, this parameter is passed as a variable. The value of the
parameter may be changed programmatically. Some fields are always
variables, such as the output for a reading.

242 Chapter7

Using VXIplug&play Drivers
Using the To/From VXlplug&play Object

B Name - When the Parameter Type is set to Variable, this field is
editable. By default, the name of the variable is set to its label name (or a
similar name to make it a valid VEE variable name). You can change this
to any valid variable name in VEE. If the variable is an input variable,
you can also put an expression, function call, or global variable in this
edit field.

B Create Terminal - When the Parameter Type issetto Variable,
this field is editable. When the check box is checked and Name does not
currently exist as a terminal name, pressing OK creates the terminal (with
the name specified in Name) as an input, output, or input/output terminal,
as indicated in the dialog box. To delete a terminal once it is created, you
must use Delete Terminal from the object menu.

If the Name is changed and Create Terminal is checked, a new
terminal is added.

If the Name is set to an invalid terminal name, Create Terminal is
grayed out.

B Auto-Allocate Input - This appears on Input/Output parameters that have
been set to Variable, not Constant. The next section provides more
information.

Press the NOP button to save the latest settings shown in this dialog box and
make this transaction a "no operation". This is the same as commenting out a
line of code in a text-based computer program.

Press the He1p button for help about the To/From VxIplugs&play object.
Press the OK button when you have finished editing.

Press the Instr Help button to get instrument-specific help written by the
driver developer.

Chapter 7 243

Using VXIlplug&play Drivers
Using the To/From VXIplug&play Object

The Auto-Allocate Feature (Passing Arrays and Strings). Some
VXlplug&play functions want to return data in an array or Text string.

The VXlplug&play specification requires that the application (VEE) allocate
the memory for the array or string since the VXlplug&play function cannot
pass back allocated memory. VEE must allocate the memory, and the
function can write to that memory.

The Auto-Allocate feature lets you easily tell VEE how much memory to
allocate. VEE allocates the correct data type and shape, in the size required.

If a parameter to a function is a variable that requires an array or a Text
string, the Parameters tab displays an additional field: Auto-Allocate
input. For example, in the dialog box in Figure 7-5 readings can input an
array. The Parameters tab shows Auto-Allocate input selected:

Edit Function Panel for hpe1410_read_QX)

Panel |Configuration |

readings
Farameter Type: Array of Real64, size unknown {InputOutputy

Parameter Yalue: < Constant 4 Variable

Mame: |readings V Create Output Terminal

[¥ Auto-Allocate input Size: [5000

ok | mop | cancel | Help | mnstrHelp|

Figure 7-5. Selecting the Auto-Allocate Input Feature

When Auto-Allocate input is selected, the Size field becomes active.
The default size is 5000, but you can enter any appropriate size to allocate
the input data. You must determine how large an array or string needs to be

244 Chapter7

Note

Using VXIplug&play Drivers
Using the To/From VXlplug&play Object

passed. An input terminal is not created for this parameter and VEE
automatically allocates the memory for the parameter.

For an array, Size denotes the number of elements in the array. For a text
string, Size denotes the number of characters (bytes). See Instrument
Help or click the right mouse button on the Panel background or on the
parameter for more information on the size of array or string the function
requires.

If you use the Auto-Allocate input feature, a data input terminal is not
created for the function. If the data input terminal already exists, you should
delete it from the To/From VXIplugé&play object.

If you do not select ("check") Auto-Allocate input, both input and
output terminals are created for the function by default. You must create an
object to allocate the correct type, shape, and amount of memory and
connect it to the input terminal. See “Passing Parameters” on page 248 for
information on how to manually allocate the memory needed for inputs.

Be sure to allocate enough memory for all the values the function wants to
return. If insufficient memory is allocated, this action will overwrite
memory and cause a General Protection Fault or Segmentation Violation.
Since the VXIplug&play DLL is linked directly into VEE, this situation can
cause VEE to crash and exit.

Getting Help on a VXIplug&play Driver

From the object menu of the To/From VXIplugsplay object, select
Instrument Help to access the help file provided by the instrument
manufacturer. This help topic contains information about using the
VXlplug&play driver including the data types required for the parameters.

For help on each particular function, see “Getting Help on a VXIplug&play
Function Panel” on page 241.

Chapter 7 245

Initializing and
Closing Drivers

Advanced
Initialization
Information

Using VXIlplug&play Drivers
Using the To/From VXIplug&play Object

Running a VEE Program

The transactions in the To/From VxIplugs&play object execute from top
to bottom. This section explains what happens when To/From
VXIplugé&play objects execute.

The first time you run a program after you load or create it, a delay occurs
to initialize each instrument controlled with To/From VXIplugs&play
objects. This initialization sets the instrument to a known initial state. Each
subsequent time you run the program, your program executes normally,
without performing the initialize actions.

Each instrument controlled by the program must be initialized once in a
VEE session. The VXIplug&play Resource Manager does an "instrument
find" to verify the instrument is connected to the address and to set the
instrument to a known state. This will take an indeterminate amount of time,
possibly up to 10 seconds per instrument. This delay happens the first time
the To/From VXIplug&play object for each instrument is executed.

Because the initialization is only performed once per VEE session, you
should execute functions (such as clear or reset) that set an instrument to a
known state every time the program runs. When you load another program
or exit VEE, the VXIplug&play drivers are automatically closed.

This section explains some of the details behind some of the VEE
implementation of VXlplug&play initialization. Understanding these
concepts is not required to successfully write a VEE program that uses
VXlplug&play drivers.

Each VXlplug&play driver is required to have a PREFIX init () and a
PREFIX close () function. These functions are called automatically by
VEE.

The purpose of the init () function is to set your instrument to a known
state and to get a "session handle". Each instrument specified by a VEE
Name, when configured, will have a unique session handle assigned the first
time it is executed in a program. That session handle is used through the
program to uniquely identify that instrument.

All To/From VXIplug&play objects communicating with the same
instrument (with the same VEE Name) are identified by the same session

246 Chapter7

Error and Caution
Checking

Using VXIplug&play Drivers
Using the To/From VXlplug&play Object

handle. The session handle is shown in the vi field in the lower left corner
of Panel tab of the function panel. VEE automatically takes care of passing
this session handle between the various To/From VXIplugé&play objects.

Because the init () call is usually a lengthy operation, it is only called
when necessary. When the first To/From VxIplugs&play objectis
executed in a program, the appropriate init () function is called. When
init () is called, it may also perform an Identification Query
and/or a Reset depending on how you configured the driver.

The purpose of the close () function is to close the session handle (there

are a limited number of them), take the instrument off-line, clear any data

associated with the instrument, and perform instrument-specific actions, if
needed. VEE calls the close () function at the following times:

B After New, Open, or Exit is selected.

B When all To/From VXIplugsplay objects for a single VEE Name
(such as dvm) are deleted.

B When the Address or init () parameter values are changed in the
VXIplugsplay Instrument Properties dialog box. In this case,
close () is called so that init () will be called again with the new
values.

After each transaction is executed, the function returns a status value to
VEE, which automatically checks this value. If the value indicates that the
function executed successfully, the next transaction executes.

Error Checking. If the status value returned indicates an error, VEE stops
the program and reports the error. If you have an error output pin to trap the
error, the error output pin propagates instead of stopping the program. Use
the errorInfo () object to get the details of the error message.

VEE automatically calls the PREFIX error message () function to get as
much error information from the VXlplug&play driver as the manufacturer
includes. This information is output in the VEE error message or from
errorInfo ().

Chapter 7 247

Note

Note

Passing Parameters

Caution

Using VXIlplug&play Drivers
Using the To/From VXIplug&play Object

After an error occurs the instrument is left in an unknown state. Unless you
call specific reset or clear functions at the beginning of your program, you
will not know the state of your instruments the next time you start the
program.

Caution Checking. If the status value returned is a caution, the program
pauses and displays a caution dialog box. The caution dialog box contains
information from the instrument manufacturer and lets you choose to
continue running the program or stop.

Caution messages cannot be trapped programmatically. However, if you are
aware of the common caution messages from the driver, you can handle
them in the VEE program. For example, if you get a caution message that
the instrument is not ready to let you read data, you can use a Delay object
or put the To/From VXIplug&play objectin aloop to retry reading.

If you handle a known caution condition in the VEE program, you may want
to suppress the caution message dialog box. To do this, from the

To/From VXIplugs&play object's Properties dialog box select the
check box for Ignore Cautions Returned.

Generally, ignoring caution messages (by checking the Ignore Cautions
Returned check box) is not necessary and, unless you are sure of how to
handle the caution condition in your program, is discouraged.

According to the VXIplug&play specification, you must allocate memory
and pass it to the driver before requesting data. Some VXlplug&play
functions place the data read into an array. Most of these VXIplug&play
functions also have a parameter that specifies the size of the array sent in and
will error if the array is not big enough. In this case, you may allocate an
array of any size and tell the function how big it is. The function will then
write data into the array only to the size specified.

Other VXlplug&play functions assume the array passed in is big enough for
the data read and write to it regardless of its size. This is especially common
for Text strings. If insufficient memory is allocated, this action will
overwrite memory and cause a General Protection Fault or Segmentation

248 Chapter7

Note

Using VXIplug&play Drivers
Using the To/From VXlplug&play Object

Violation. Since the VXIplug&play DLL is linked directly into VEE, this
situation can cause VEE to crash and exit.

The most straightforward method to allocate memory for an array or string
data input is to use the Auto-Allocate feature. See “Getting Help on a
VXIplug&play Function Panel” on page 241. You still need to determine the
size to allocate, but once you specify the size, the memory is allocated
automatically.

Find out how much memory you need for your data by reading the driver's
help file. Select Instrument Help from the To/From VXIplugsplay
object's object menu. This help file tells you how large the array must be.

If you do not use Auto-Allocate, you must create an object to allocate
the memory and connect it to the data input terminal of the To/From
VXIplug&play object:

B For an array input, use an Alloc Array object of the appropriate type,
and set the size appropriately.

B For a string input, use a Formula object. Delete the data input terminal
from the Formula object and enter an expression like 256*"a™". This
creates a string that is 256 characters long (plus a null byte) filled with
a’s. Most VXlIplug&play functions will not write more than 256
characters into a Text parameter. However, it is best to check the help
on each function panel that requires a Text input to be sure.

Chapter 7 249

An Exam
Program

ple

Using VXIplug&play Drivers

Using the To/From VXIplug&play Object

Figure 7-6 shows a simple program that uses To/From VXIplug&play
objects to communicate with the HP E1410A VXI Multimeter:

|

ToiFram bp el410

hpeld410_resetlinstrtHandla)

hpel410_configurefinstrHandle, hpe1 1 0_CONF_VOLT_DC)

hpeld1 0 walDcRangdinstrtHandle, VI_TRUE, hpe1410_WOLT_RARG 300y,
hpel410_sample(instrHandle, 1, hpel410_SAMP_SOUR_IMM, 1)

= Diouhle-Click to Add Function =

To/From hp e1410

[=]

—1 Readings

hpel410_read_Q(instrHand =
= Dguble-Click to Add Functi M

=

]

| Alloc Realfd
Mum Dims | 1 VI
|lnRamp =] | 1 | 10
Dim Size

Array

= —| AlphaMumeric | -
00; 2,965
01: 2987
02: 2968
03: 2968
04: 2955
05: 2,959
05; 2,980
07: 2,980
08: 2,881
09: 2982
- ¥ Trace =
3 - _I T T T T T T I_
Y name 2998 d
2.995
2.994 7
2.992
2.99
- (_/ -
Tracel 2388 |7]
2.986
2 984 L L L L L L L L L
4 [»]
o 4 8 12 16 20
Hname

Figure 7-6. A Program Using To/From VXIplug&play Objects

250

Chapter7

Limitations to
VXIplug&play

Note

Using VXIplug&play Drivers
Using the To/From VXlplug&play Object

There are some limitations to using VXIplug&play drivers in VEE.

B Because the Bus I/0 Monitor object only shows I/O to and from
VEE itself, it does not show any I/O from VXlIplug&play drivers.
VXlplug&play drivers are C programs that are linked into VEE. We
recommend that you use a hardware bus monitor, if needed.

B Some optional features that are not required by the VXIplug&play
specification, such as callbacks, are not supported by VEE.

B All 1/0 = Advanced I/0 objects (including Interface
Operations, Instrument Event (SPOLL), and Interface Event)
are not supported for VXlplug&play.

B VXlplug&play does not support the concept of LIVE MODE/NOT LIVE
MODE. When you run a program, all instruments used in your program
must be connected to your computer. However, you can open a program
without the instruments used in the program being connected. Also, you
can create a program without having the instruments connected. You can
use To/From VXIplugé&play objects and specify the function calls as
long as the VXIplug&play driver is installed.

B You cannot use VXlplug&play drivers and any of the other VEE
instrument control methods (Direct I1/0,Panel Driver, or
Component Driver objects) to communicate with the same instrument
in the same program. However, you can use VXlplug&play drivers for
one instrument and other instrument control methods for other
instruments in the same program.

The VXlplug&play specification is continually being updated and enhanced.
New features may be voted into the specification by the VXIplug&play
consortium between revisions of VEE. Because the VXIplug&play
specification does not specify that revision information should be included
in the driver library, VEE cannot check the driver for compatibility.
Therefore, you need to check with the instrument manufacturer to make sure
the driver conforms to the currently supported VXlplugdplay specification.

Chapter 7 251

Using VXIlplug&play Drivers
Using VXIplug&play Functions from Call Objects

Using VXlIplug&play Functions from Call
Objects

You may want to use VXIplug&play with a VEE Ccal1l object for the
following reasons:

B Existing Program Compatibility.

If you have existing programs using VXlplug&play that were created
using VEE Version 3.1, you may want to continue to use them with
minimal modifications. However, if you plan to maintain these programs
over the long term, it would be better to rewrite them using the standard
function panel access in the To/From VXIplug&play object as
described in “Using the To/From VXIplug&play Object” on page 237.

B Access to Older Drivers.

Some earlier versions of non-HP VXlIplug&play drivers (1995 and earlier)
were written to earlier versions of the VXlplug&play specification. You
can still access these drivers through the VEE Call object.

Except for the reasons listed above, you should use VXlplugdplay drivers
with the methods described in “Using the To/From VXIplug&play Object”
on page 237.

Using a Dynamic Link Library or Shared Library in
VEE

This section will show you the steps in loading a VXlIplug&play driver into
VEE once the required files are installed.

To use a VXIplug&play driver in a VEE program, do the following:
1. Import the library.
2. Run the routines which use the library.

3. Delete the library when the program is done.

252 Chapter7

Importing the Library

Calling a
VXlplug&play Driver
from VEE

Using VXIplug&play Drivers
Using VXIplug&play Functions from Call Objects

The three VEE objects associated with these steps are ITmport Library,
Call, and Delete Library.

Before you can use a Call object (or Formula object) to execute the driver,
you must import the function into the VEE environment via the
Import Library object.

In the Import Library object, under Library Type, select Compiled
Function. Enter the path and name of PREFIX.h using the Definition
File button. See Table 2-2, “Location of WIN95 and WINNT Framework
Driver Files,” on page 47 and Table 2-3, “Location of HP-UX Framework
Driver Files,” on page 48 for the location of these files.

Then, select the path and name of PREFIX 32.DLL (PREFIX.s1 on
HP-UX) using the File Name button. The Library Name button assigns
a logical name to a set of functions. It is recommended that the name be
PREFIX, where PREFIX refers to the name of the instrument, such as

HP E1410.

Before using a driver with the Call object, you must configure the Call
object. The easiest way to do this is to select Load Lib from the

Import Library object menu to load the driver file into the VEE
environment. Bring up a Call object from the Device menu. Then, select
Select Function onthe Call object menu. VEE will bring up a dialog
box with a list of all the functions listed in the header file that are exported
from driver file.

Use a Call object to make the calls to a VXIplug&play driver.

Sequence of Calls. The sequence of calls for a VXIplugdplay driver is very
important. The sequence is:

1. Call the initialize function. (This function returns a session handle.)

2. Perform calls to the driver using the handle returned by the initialization
function.

3. Call the close function.

Chapter 7 253

Using VXIlplug&play Drivers
Using VXIplug&play Functions from Call Objects

Initialize Function. The initialize function PREFIX init has three input
pins and two output pins.

The three input parameters are:

B [nstrument Address

See “Configuring for a VXIplug&play Driver” on page 79 for
information about VXlIplug&play addressing.

Identification Verification Flag

If the verification flag is 1, the initialize function checks the identity of
the instrument. This is to be done by checking the manufacturer ID and
model number, using the "*IDN?" query, or other means specified by the
instrument manufacturer. Set the flag to 0 if the check should not be
done.

Reset Flag

The reset flag should be 1 if the initialize function is to place the
instrument in a pre-defined state. Set the flag to 0 if the reset should not
be done.

The two output parameters are:

Return Value

VXlplug&play defines the return value from a VXlplug&play driver to

be the status of the operation performed. The integer returned can be
translated into a meaningful message by calling PREFIX error query
from a separate Call object. If the return value is 0, the init () call was
successful.

Handle for VXIplug&play Functions

If the return value from the initialize function is 0, the output parameter
contains an instrument handle. An instrument handle is simply a number
which associates a function call with this initialization. Most
VXlplug&play functions require this handle as an input parameter.

254 Chapter7

Deleting the Library

Using VXIplug&play Drivers
Using VXIplug&play Functions from Call Objects

Each initialization returns a unique handle in the output parameter vi.
The parameter may be called by a different name, such as session
handle, but it is always the last parameter returned from the init ()
function. When the close () function is called, the handle is returned to
the system.

Calling VXIplug&play Functions. Other functions can be called using the
Call object. For each function called, the handle from the PREFIX init
function must be provided to the instrID input pin of the Call object.

Using Other Common VXIplug&play Functions. Besides the
PREFIX init and PREFIX close functions, VXIplug&play drivers may
implement other common driver functions. These functions are

PREFIX reset, PREFIX self test, PREFIX revision query,
PREFIX error query,and PREFIX error message.

Using Arrays As Parameters. The VXIplug&play specification states that
the caller must allocate space for an array or text parameter. This means that
VEE must allocate the array before passing it as a parameter to the
VXlplug&play function, as shown in Figure 7-8.

Using the Close Function. The close function PREFIX close has one
input parameter and no output parameters. The input parameter is the handle
returned from PREFIX init. Executing PREFIX close takes the
instrument off-line and clears any data associated with the instrument
handle. There may also be some other driver-specific actions related to
closing the instrument. The handle cannot be used again by instrument
functions. The PREFIX init routine must be called again to obtain a

new handle.

After you finish using the VXIplug&play driver, the Delete Library
object needs to be invoked for each driver loaded. After the library is
unloaded, the library must be loaded again using the Import Library
object before any functions using that library can be called.

Chapter 7 255

Using VXIplug&play Drivers
Using VXIplug&play Functions from Call Objects

A Simple Example Figure 7-7 is an example program using a VXIplug&play driver in VEE. This
program imports the library, initializes the device, closes the device, and
deletes the library. (Each program thread is started independently with
a Start button.)

= Impart Library =

Library Type | Compiled Function =l

Library Mame | hpe1410

File Mame CywHipnpwin25sbinthpe1410_32.dll |

Definition File Cywripnpwind&iincluderhpe1410.h |
—| Address || Sta
|GPIBD:9:7

1 = Initialize = _
—~| 1D Guery || InstrDesc B Retvalue 1al=0
|D id_guery —

— | hpe1410.hpe1410_init v

[Reset [« |f Raise Errar |
b = Close =]

Function Mame

Fﬂ| hpe1a10pelal0_close | | ReLvalue |

= Delete Library =

Library Name [hpeTdio

Figure 7-7. Simple Example: Using VXIplug&play Drivers

256 Chapter7

Using VXIplug&play Drivers
Using VXIplug&play Functions from Call Objects

A More Complete Figure 7-8 shows a more complete example program that uses a
Example VXlplug&play driver and allocates an array to be used as an output
parameter.

- Start “
Address T | Alphanumeric | « Start Start
- 0

ID Queryb—1 Inifialize

Import Library | Delste Liorary |

Reset
—|Text] <] = Call Function =
IDC yi _
Function MName
voltFune Retvalue |
—|Real
Reall <] (oA | [hpe 1410 hpe1410_confvolt
F1 voltRes -
T JeT al=0
= Call Function = —
—|Integer| | i | Function Mame Retvalus |
7 sampcoun | | hpe1410.hpe1410_sampCoun Raise Error |
L
=] (Gl FUITEDE B —| Logging Alphaiumeric | «
Function Name
— i — Retvalue | 43.864
i | | hpei410.hpe1d10_initmm 43088
43.08p
= Call Function = 43.208
: / 43,392
i Function Marme RetValue
readings —J—| 32 '?25#
Alloc Reall—i readings I hpet410.npet410_fet G numReadings @ AP
= Close =
Function Name =
— | Alphakumeric | «
[vi | [Fpetdi0npeldn_close | |-oaie | £ = |

Figure 7-8. More Complete Example: Using VXIplug&play Drivers

Chapter 7 257

Using VXIlplug&play Drivers
Using VXIplug&play Functions from Call Objects

Some Helpful Hints Keeping Track of Handles. The handle returned by PREFIX init must
be used by successive driver functions. There are two ways to accomplish
this:

B Connecting Pins

The value of a handle can be passed by connecting the PREFIX init
routine data output pin to the vi data input pins on each function.

B Keeping Track of Handles Globally

The handle can be kept as a global variable. The handle from
PREFIX init routine is connected to a Set Global object. Each
function that uses this handle, takes it from a Get Global object.

Control Flow. The driver needs to perform actions in a certain sequence
(initialization, calling functions, and closing). The VEE program must be
written to ensure that the handle is valid for all functions that require its
usage.

258 Chapter7

Data Propagation

Data Propagation

You can create VEE programs by applying textual programming language
techniques, visually recreating a written program. However, you may find it
more efficient to produce the program with VEE objects, thinking in terms
of data propagation between the objects. This chapter explains data
propagation techniques for VEE, including:

B Understanding Propagation

B Propagation in UserObjects

B Controlling Program Flow

B Handling Propagation Problems

260 Chapter 8

Data Propagation
Understanding Propagation

Understanding Propagation

Propagation is the general flow of execution through a VEE program. The
propagation guidelines define the order in which VEE objects operate. In
general, propagation is determined by data flow - the flow of data from
object to object within an VEE program.

How Objects Operate

A VEE object operates by accepting the data on its input pins, processing
that data, and returning the resulting data on its output pins. A VEE object
will not operate until all of its data input pins are activated with data on
them. (There is one exception. The JCT object will operate when one of its
data input pins is activated with data.)

In the program in Figure 8-1, the a+b object will not operate until there is
data on both of its data input pins. Both of the Real constant objects must
operate first (in no particular order).

—|Realsd
Z

athb——kH &

—3 Realdd| - J—l— -

—| Alpharlumeric| |

Figure 8-1. The a+b Object Propagates When Both Inputs Have Data

When the a+b object operates, it adds the data and activates its output pin
with the resulting data. The AlphaNumeric object does not operate until its
data input pin has data so it operates last, displaying the result.

As you can see, data flow has determined the order of operation of the
objects in the above program. That is, data flow determines the propagation
order.

Chapter 8 261

Data Propagation
Understanding Propagation

The sequence pins also can be used as a hold-off to control when an object
operates. This is useful when you want to prevent the object from operating
until valid data is available. In the program in Figure 8-2, a Confirm OK
object has been added to the previous example.

—|Realsd] 4|

—

— | Alphaklumeric | 4

—|Reald] l_J
B

Figure 8-2. Controlling Propagation Using a Sequence Input Pin

The sequence output pin of the Confirm OK object is connected to the
sequence input pin of the a+b object. Sequence input pins need not be
connected. If a sequence input pin is not connected, it is ignored by the
object. However, if a sequence input pin is connected, the object will not
operate until it has been activated. In the above example the a+b object will
not operate until you press (click) the ok button. Then the data input pins
accept the data and the object executes.

The XEQ pin has the opposite effect on object operation. An object
propagates immediately when the XEQ pin is activated using any data present
on its data input pins. This is important to consider when using both the XEQ
pin and sequence input pin on an object. The XEQ pin must be connected and
the object will not propagate until the XEQ pin is activated. Figure 8-3 is an
example.

—| AlphaMumeric | =

—|For Count| - =| Collectar = 0o

|] Data | Qutput Shape | ;: ;
Array :

e | M1 Dim Array| [5 g

44

Figure 8-3. Controlling Propagation Using the XEQ Pin

262 Chapter 8

Note

Data Propagation
Understanding Propagation

The For Count object repeats five times, outputting data to the Data input
terminal on the Collector. The Collector collects the five values into an
array, which it propagates when the xEQ terminal is activated by the
sequence output pin of the For Count object.

You can use Properties from the object menu to turn on Show
Terminals. With Show Terminals turned on the data input and output
pins become “terminals”, showing their names.

Basic Propagation Order

Based on the propagation rules, the objects in a VEE program executing in
VEE 4 mode and higher operate in the following basic order when you press
Run:

1. Objects that have no data input pins and no sequence input pins
connected operate first.

2. Other objects operate in the order determined by data flow. In other
words, objects with data input pins operate only when data is present on
all data inputs, except for JCT, XEQ and sequence pins as noted in “How
Objects Operate” on page 261.

3. The order of propagation can be modified by connecting sequence pins.

The next section, “Pins and Propagation” on page 263, describes how
various pins work.

Pins and Propagation

This topic summarizes all types of pins and their effect on propagation. In an
object’s open view you can view pin labels and get terminal information
when Show Terminals inthe Properties dialog box is on, as Figure 8-4
shows. Objects may not contain all of the pins described here.

Chapter 8 263

Data Propagation
Understanding Propagation

Sequence In

= Callector =
— 1 Dat
Data In 31" output shape | Aray | Data Out
Control— E |
n+1 Dim Array | | Error Error
XEQ | ¥EQ | |

Sequence Qut

Figure 8-4. Pins Available on Objects
B Data pins input or output a data container.

O An object will not operate until all of its data input pins are activated.
(Except the JCT object, which operates when any data input pin is
activated.)

U After an object operates, its data output pins propagate (if no error
conditions have occurred).

Some objects may not propagate all of their data output pins, which can
cause confusing behavior. Such objects include 1f/Then/Else,
DeMultiplexer, Comparator, and all Data = Dialog Box objects.
Please see “Handling Propagation Problems” on page 286 for more
information.

B Control pins (optional) are inputs that affect the state of the object but
have no effect on propagation. Common control pins include Clear,
Reset and Default Value. Outputs from other objects to control pins
are connected with dashed lines to indicate that propagation is not
affected.

Since control pins do not affect propagation, there are some conditions
where your program may not run correctly. See “Handling Propagation
Problems” on page 286 for more information about control pins.

B Sequence pins are used only to specify the order of execution. They are
useful to resolve ambiguity in a program’s propagation. Sequence pins

264 Chapter 8

Note

Data Propagation
Understanding Propagation

generally are not necessary and can be overused so you should not use
them as a substitute for clear data flow.

U An object operates only after all data input pins and sequence input
pins (if connected) are activated.

A sequence input pin is activated by the presence of a data container,
but the data in the container is ignored.

U A sequence output pin propagates after all the data output pins have
activated and data flow has propagated as far as possible.

A sequence output pin propagates an empty (nil) container when it
activates.

B Error pin (optional). You can add an Error pin to trap an error condition
the object generates. The Error pin propagates the appropriate error
number if an error condition occurs.

If an error occurs, the Error pin and the sequence output pin (if
connected) propagate. Data output pins stop propagating immediately
when an error occurs. You should be aware of this potentially confusing
behavior since some data output pins may propagate before the error
condition occurs.

B XEQ pin is a pin that forces an object to operate immediately (even if a
data input pin has not yet been activated). Only the Collector and
Sample & Hold objects use an XEQ pin to force the object to execute
immediately and propagate its data.

The xEQ pin is activated by the presence of a data container, but the data
in the container is ignored.

Do not leave any data input pins or the XEQ pin unconnected or an error will
occur when you run your program.

You may leave data output pins, control pins and Error pins unconnected.
Sequence pins should be left unconnected except when needed to resolve
ambiguous program propagation.

Chapter 8 265

Data Propagation
Understanding Propagation

See “Handling Propagation Problems” on page 286 for more information.

Propagation of Threads and Subthreads

A very simple VEE program usually contains only one thread. Programs that
are more complicated contain additional threads and subthreads that affect
the program’s propagation.

B Threads — Objects connected through data and sequence lines, which are
solid, form a thread. Objects connected only through control lines, which
are dashed, are not considered to be in a thread. A program can contain
several threads. For example, the program in Figure 8-5 contains two
parallel threads. The threads are independent because they are not
connected by data or sequence lines.

Lo

—|Realsd] =
2 = :
- 1 — | AlphaMumeric| «
- a+h 3
—|Realgd « =
2

= Texd = — | AlphaMumearic | -
[Maw is the time. i 1 Mow is the time.

Figure 8-5. A Program with Two Parallel Threads

B Subthreads — A branch of a thread is called a subthread. When two
subthreads begin at the same data output pin of the same object and there
are no sequence or data lines between them, they are parallel subthreads.
The program in Figure 8-6 shows two parallel subthreads branching from
the data output pin of the Real64 constant object:

266 Chapter 8

Data Propagation
Understanding Propagation

—| Realbs | | ~| Mphatiumeric | -|

"niﬁ(x)'l 1 D._H

_ —| alphaNumeriz | «|
- ——man) 12.1

Figure 8-6. A Program with Two Parallel Subthreads

Parallel threads and subthreads operate in random order relative to each
other. One or more objects (or all objects) in a thread will operate, then one
or more in another thread operate. However, there are two exceptions to this:

B [f athread contains an Interface Event or Instrument Event
object, it takes over execution when an event is trapped. For example, if
Interface Event detects a GPIB SRQ message, the thread will
continue to completion before any other thread can continue. Other
threads are held off to allow the event to be serviced. For further
information, see Interface Event and Instrument Event in
VEE Online Help.

B [fathread has a Start object and if you start the thread by pressing the
Start button, that thread will run to completion before you can start any
other threads. The Start object is not recommended for VEE 4 mode
and higher.

Propagation Summary

The following is a summary of the propagation rules VEE uses when a
program executes in VEE 4 Execution Mode or higher:

B Data flows through objects from left-to-right — sequence flows from
top-to-bottom.

B All data and XEQ input pins must be connected.

B Objects with no data input pins or sequence input pin connections operate
first.

Chapter 8 267

Data Propagation
Understanding Propagation

B All data input pins must be activated before an object operates (except for
the JCT object).

B [f the sequence input pin is connected it must be activated before an
object can operate.

B Objects operate only once unless connected to a repeat object (for
example, For Count) or unless forced to operate by an XEQ pin.

B Control pins execute immediately and do not cause the object to operate
or propagate. See “Capturing Control Pin Errors” on page 287.

B When an error is generated from an object with an Error pin, the Error
pin propagates instead of the data output pins. However, the sequence
output pin is activated. (If there is no Error pin, an error message is
displayed.)

B Parallel subthreads may operate in any order.

B Multiple threads may operate in any order.

268 Chapter 8

Data Propagation
Propagation in UserObjects

Propagation in UserObjects

A UserObject provides the means for you to encapsulate a group of
objects that perform a particular task into a single, custom object. This
encapsulation allows you to:

B Use modular design techniques in building your VEE program. This
allows you to solve a complex problem through an organized approach.
UserObjects allow you to use top-down design techniques to create a
more flexible and maintainable program.

B Build user-defined objects that you can save in a library for later re-use.
Once a UserObject is created and saved, you can Merge it in other
programs.

UserObject Features

When you add a UserObject to the Main Window, it appears in an icon view
and remains that way in your program. When you double-click the icon, the
UserObject’s edit window pops up presenting the work area where you can
build a specific program segment by adding objects and connecting them.
The terminal areas accommodate data and control terminals so the
UserObject can communicate with the rest of your program. Figure 8-7
shows the UserObject named UserObjectl in its icon view and edit
window.

Chapter 8 269

lcon View
Edit Window

Object Menu
Button

Data Propagation
Propagation in UserObjects

Minimize Button

—TUserChject | Maximize Button

Close Button
2 Malel EY
UserObject
UserChjectz | work Area
4] %]
Input Terminal —— —— QOutput Terminal
Area Area

Figure 8-7. UserObject Features

Contexts and UserObjects

The Main Window and UserObjects represent separate contexts within a
VEE program, just as subprograms represent separate contexts within a C or
BASIC program. As shown in Figure 8-7, you can nest UserObjects in a
VEE program, which results in additional contexts. In Figure 8-7, there are
three contexts. More objects can be added to each context.

1. The Main Window is one context that contains UserObjectl.
2. UserObjectl is a context and contains UserObject2.

3. UserObject?2 is a context that can contain other objects.

Propagation and UserObjects

Propagation in a program containing UserObjects is affected by the fact that
a UserObject is a separate context. The UserObject propagation rules are as
follows:

270 Chapter 8

Note

Data Propagation
Propagation in UserObjects

The propagation rules for UserObjects also apply to UserFunctions. For
detailed information about UserFunctions see Chapter 12, “User-Defined
Functions/Libraries”.

B All data input terminals (and the sequence input terminal if connected)
of the UserObject must be activated before any objects within the
UserObject operate.

B When the data input terminals (and the sequence input terminal if
connected) of the UserObject have been activated the UserObject
operates. The objects within the UserObject operate following the rules
of propagation.

B UserObjects in programs written before VEE Version 4.0 may contain an
optional XEQ terminal. If it is activated, the UserObject immediately
begins operation of the objects within it, using whatever “old” data may
be on the inactivated input terminals of the UserObject.

In most cases, you need not use the xEQ terminal for a UserObject.
It is not available in VEE 4.0 and later versions and existing programs
with XEQ pins on UserObjects will not compile if run in

the VEE 4 or higher Execution Modes.

B The UserObject data output terminals do not propagate until all objects
within the UserObject finish operating (unless the UserObject is
exited prematurely by an error or an Exit UserObject). Only those
output terminals activated from inside the UserObject pass data to
objects outside the UserObject. When activated, each data output
terminal propagates only one data container.

B In programs written before VEE Version 4.0 (running in the VEE 3
Execution Mode) the objects within the UserObject time-share in
operation with external objects on different subthreads. This is time-
slicing. The UserObject does not block the operation of objects outside
the UserObject. In programs running in the VEE 4 or higher Execution
Modes, the UserObject will time-slice only when invoked from
separate threads.

Chapter 8 271

Note

Data Propagation
Propagation in UserObjects

For a review of the basic propagation rules see “Propagation Summary” on
page 267.

If there is a Start object in a UserObject, pressing Start runs only the
objects connected to the same thread as the Start object. No data will be
read from the input terminals of the UserObject, nor will its output
terminals propagate. Therefore, no propagation outside the UserObject
takes place.

Data OQutput from a UserObject

When the objects within the UserObject finish propagating, each data
output terminal of a UserObject propagates only one data container (the
last received by the terminal) to the context outside the UserObject. This
can lead to unexpected results in your program if you neglect to account for
it. The example in Figure 8-8 illustrates this situation:

— | Alphakumeric | «
- 9
UserOhject
. — —| AlphaMumeric |
B UserObject oo
1:1
—|For count| - 29
| 10 Count 33
44
5 &
—| Collectar = I
Data | Qutput Shape fic T
Array| e
weq | +1 Dim Array le %9

Figure 8-8. Data Propagation from a UserObject

Although the For Count object sends 10 data containers (the numbers 0
through 9) to the Count output terminal, only one data container (the last
number) propagates from the UserObject. However, you can use a

Collector object to collect the data from the For Count object into an

272 Chapter 8

Data Propagation
Propagation in UserObjects

array. The Array output terminal also propagates only one data container,
but that container is a one-dimensional array of 10 values (0 through 9).

Chapter 8 273

Data Propagation
Controlling Program Flow

Controlling Program Flow

Though propagation rules in VEE are logical, it is not always obvious how a
program will propagate. The examples in this section will help you
understand and apply propagation concepts when you write your own
programs. First, here are some rules of VEE programming style:

B Build a program using program flow that is clear and propagates in a
hierarchical fashion. If you can visualize the flow easily, you normally
will not have problems.

B [f the execution order between objects is important but ambiguous,
connect sequence input and sequence output pins. Though you should not
need to use them often, there are cases when they are necessary to ensure
the execution order required for your program.

B Avoid using feedback loops for iterations. Such constructs cause
unpredictable results. Loops are intended for passing back containers
with data to the start of a thread. If you must use feedback, JCT
(Junction) objects are required in feedback loops.

B Avoid parallel threads fed by a looping object. It is difficult to tell which
thread will be executed.

B Avoid using Gate and Sample & Hold objects. These objects are
mainly used as patches for poor knowledge of propagation rules. Good
programming style helps avoid the need for these objects.

Basic Program Control

It is important to understand how basic combinations of objects work
together to control program flow. The program in Figure 8-9 shows how to
generate a simple count useful for a loop, a common program control. The
For Count object counts from 0 through 9 when the program runs.

274 Chapter 8

Data Propagation
Controlling Program Flow

—-|F|:|r5|:|unt| .-|| —| Logging AlpﬁaNumeric a

ITN\L

Figure 8-9. A Simple Loop Counter

WO -1 N s LR O

You can nest For Count objects to create nested loops. In the program in
Figure 8-10, the inner loop’s For Count counts from 0 through 9 for each
count sent to its sequence input pin by the outer loop’s For Count. The
outer For Count does not send its next output count until the inner For
Count finishes its entire loop.

When the outer For Count sends its last count, it outputs a pulse from its
sequence output pin, activating the Beep object. This is an important feature
of such looping objects. They do not generate a sequence-out pulse until
after the threads they are driving have executed.

—-|F|:|r51:|unt| r || = Cnuntej r
I 10 H 10

—|For count] | —-|C|:|LTnter1 A

| 10 N—|| 100 N

o=

Beep

Figure 8-10. A Simple Nested Loop Counter

Chapter 8 275

Data Propagation
Controlling Program Flow

Continuous Loops To generate a continuous loop, you can use an Until Break object as
shown in the program in Figure 8-11. The Delay object controls the
program to update once per second. A better approach is to replace the
Until Break with an On Cycle, which can generate a container with any
delay setting to drive the now () object. You can set the AlphaNumeric
display format in its Properties dialog box on the Number tab.

BVl

LIrtil Break

= AIphaN-umeric = ||

L:‘-.I'I:II—| Tue 09/Fek/1999 15:03:38 ||

Figure 8-11. A Simple Continuous Loop

A continuous loop is useful to repeat a program’s action until a certain
condition is met. To end this loop at any time, add the OK, Break and Next
objects as shown in the program in Figure 8-12.

276 Chapter 8

Data Propagation
Controlling Program Flow

=l

LIntil Break

_.| ﬁ.lphaN_umeric | - ||

L&.ﬂ—u Tue 09/Feh/1999 15:58 51 ||

Doy =
Elre-akl !

[ext

Figure 8-12. Stopping a Continuous Loop

This example illustrates another feature of control constructs in two parallel
threads. The program is intended to update the time continuously, until you
press the OK to force the Break. Without the Next object, Until Break
would generate a container, then wait until everything downstream from it
executes. The time would update and the program would wait until OK is
pressed. The Next object forces Until Break to output containers
continuously until OX is pressed.

In this case, a Stop object could be used in the place of the Break object
without making any difference.

To provide more direct control over the continuous loop, you can use a
Toggle object. The program in Figure 8-13 shows how to use a Toggle
(in its But ton format) to break a loop.

Chapter 8 277

Data Propagation
Controlling Program Flow

T

LIntil Break

—[WThen/Else | «|

Then
% Elreakl

= Alphaturmetic =

L:ml_' Tue OFebM999 16:56:58

Figure 8-13. Using If/Then/Else to Stop a Continuous Loop

The Toggle output is connected to its Reset control input. The default
initial value is 0, which is output to the If/Then/E1se during each loop.
While the Toggle value remains 0, program flow continues to the Now
object. Clicking the Toggle’s Button toggles the value to 1, which satisfies
the expression’s condition in the Tf/Then/Else and activates the Break
object.

Making Programs Given the previous techniques for loops, the program in Figure 8-14 shows

Interactive how to create a general architecture for interactive programs. Consider a
simple program where the user can select one of two actions or exit the
program by clicking the appropriate Toggle buttons:

278 Chapter 8

Data Propagation
Controlling Program Flow

)|

LIntil Break

—| ThenElse | «|

o ﬂ IZ—=1 ThEﬂl
L

Else Else |

— Test |4

_— .

[vou pressed Key 1.

—| ThenElse | «|

o ﬂ IZ—=1 ThEﬂl
L

Else Else |

=l Ted || e
[rou pressed Key 2. 1

_— .

—| IThenElse | «|

_[rEe ﬂ [r==1 Then | —| AlphaMumeric |

Elze Elze | 1 OU pressed Key 2.

Elreakl

Figure 8-14. Using the Until Break Loop to Select a Program’s Subthread

| —

The concept is that each separate action has its own parallel thread. The loop
continuously checks each Toggle object’s output (initial value is 0) in each
I1f/Then/Else expression. When a button is pressed, the Toggle’s output
changes to 1, which sends the corresponding Text output to the
AlphaNumeric display or ends the program. You can add as many parallel
threads as you like to perform I/O and computation as needed.

Chapter 8 279

Example: Initiating
Program Tasks

Data Propagation
Controlling Program Flow

The implication of this architecture is that the executing thread must finish
before another thread can execute. If the executing thread takes a long time
to finish, you will have to wait until this thread is finished before another
thread can execute.

Advanced Program Control

Your programs can perform more complicated control tasks if you expand
the previous techniques.

As an example, the program in Figure 8-15 lets the user select one of several
tasks or lets a service request (SRQ) from an instrument initiate a task.

When the program runs, you click the Task 1 or Task 2 buttons to get the
appropriate display output. If you press the Clear Status on the Panel
Driver’s Status Panel, you get the SRQ! message output, then return to
perform another task. The program stops when you click the Quit button.

280 Chapter 8

Data Propagation
Controlling Program Flow

LIntil Break [fA==1

Elre-akl
. Dning-'l'ask1 |

Dning’l’aakzl

ITA = EI|

I -
1ICT 1hMessage Box
1 | _I

Spoll; scope2hp54501a (@ 717)

Doing SRa |

Figure 8-15. Using the Until Break Loop to Detect an Instrument’s Service Request

The Until Break object drives the four parallel threads within the
program that are controlled by three Toggle buttons (Task 1, Task 2,
Quit)and the Interface Event object (SRQ:GPIB7).

The two threads defined by the Task 1 and Task 2 buttons display the text
Doing Task 1and Doing Task 2 inthe Message dialog box. The thread
defined by the Quit button stops the program and clears the display.

The interesting thread involves the SRQ. The HP 54501 A Panel Driver,
connected to the Until Break object, is set with its SPol1 Enable (on
the Status Panel) set to request service. A service request is sent when the

Chapter 8 281

Calling Functions

Data Propagation
Controlling Program Flow

Clear Status button is pressed on the Status Panel. With the mask set,
the thread that handles the SRQ uses the Interface Event object to wait
for the SRQ by using the settings in Figure 8-16.

~] SRQ: GPIBT Ir]
Interfan:e:l GFIBT :I*
Action: WaIT | event i

Event: cCRO

Figure 8-16. SRQ Settings

When an SRQ occurs, the Interface Event object pings the
Instrument Event object to do a serial poll, which clears the SRQ on the
scope, as Figure 8-17 shows.

= Spoll: scope? {hp-545EI1 a@iT =
Device: | scope? thpdds5Ma @710 ;l
Event: | Spoll |
statusz NI
Action: NO WAIT |
hask: I #HO

Figure 8-17. Clearing SRQ

Since NO WATT is set, this object does the serial poll and then pings the Text
object. The SRQ! message is sent to the Message dialog box announcing
that an SRQ has occurred. The Message dialog is configured to wait for the
operator to respond. The mask value is irrelevant.

The program in Figure 8-18 is similar. You can call one of three user-defined
functions — A, B, or C — to initiate an action, then have the program continue
to execute the selected function.

282 Chapter 8

Data Propagation
Controlling Program Flow

]

LIntil Break
L —
|
N Break|
,—iE}{ecutel_:unctinnH-Tllfﬁ.:ﬂ
— | Radio Buttons | - = asTesxti =]
4 FunctionA % | [asTextod Result l—]
< FunctionB
< Function _J|

H= Call Function =

Function Mame
FunctionC

'y Function Mame | |

Figure 8-18. Using the Until Break Loop to Call a UserFunction

The Radio Buttons object lists the available functions. The Toggle
buttons let you execute the selected function or quit the program. If you
choose to execute a function, the function name is output to the asText
Formula object. AsText is a built-in function that converts inputs to the
Text data type.

The text function name is output to the Call Function object’s control
input, Function Name, so the selected function is called. When the
program runs, the operator chooses a function name in the Radio Buttons
object and presses the Execute Function button.

Chapter 8 283

Note

Clearing Strip
Charts

)

Until Break

Data Propagation
Controlling Program Flow

Control inputs have no effect on objects’ propagation. The asText sequence
output is connected to the Call Function sequence input to hold off the
Call Function propagation until after receiving the Function Name.

In a related program flow problem, the program in Figure 8-19 generates a
strip chart that is cleared after counting a certain number of points or
whenever the user clicks a button:

,—.l_cin_ﬂj_.m:q _
[Elreakl = Strip Chart =]
by

N P 1
03
1 YHame os
Randorm Murnber 'I Tracel 03
05
r — 1 — = [fTheniElse = 0.4
03
1 Clear Chart | A | Je==1ORE==100 | Then T Tracel o2
| B | Eise Else | D',;
F |\— 1 Clear
=| Counter =] | Step Size: 1 B EmE
Data I—
— Clear i QCDUHT I

- _

Figure 8-19. Using the Until Break Loop to Control a Strip Chart’s Data Collection

The Until Break object drives the program. It controls the Quit Toggle,
the Random Number, Clear Chart Toggle, and Counter objects through
the sequence input and output pins. Random Number (the random (high,
low) built-in function) object feeds values to the Strip Chart display.
The counter counts each loop iteration and outputs the count to the
If/Then/Else. The If/Then/Else clears the Strip Chart and the
Counter when a user presses the Clear Chart button or Count equals
100.

284 Chapter 8

Data Propagation
Controlling Program Flow

The Toggle Control object is driven continuously by Until Break,
generating a 0 most of the time. Clicking Toggle Control toggles itto 1
and it is then reset by the feedback connection. The 1 is an input to the 1£/
Then/Else. You can change the default appearance of the Toggle

Control object by using Properties (object menu) to hide the Title Bar
and then adding the Reset terminal.

Chapter 8 285

ntil Break

o b

Data Propagation
Handling Propagation Problems

Handling Propagation Problems

Sometimes program results are not what you might expect due to control pin
usage, the way some objects propagate inside loops, or how parallel threads
propagate. The following guidelines can help identify such problems.

Error Handling

Error handling is an important concept in VEE. It lets you perform an action
then either repeat the action or continue after an error occurs. The program
in Figure 8-20 demonstrates this with a dialog box to represent an action that
can have different outcomes.

Int-32|—1_l—| Farmula A8 =
A Fesult
B

Int32

"

r— = Alphahumeric =
Formula; errarinfod H —
{511, "Division/Modulo by Zero", <Text Array 103

[e | o
=l Message Box = [_ n
Message VO Error stop |
Symbaol P [Exclamation > J
. Retry i
Buttons
[=custom.= =] anara 1 o @
Default | Stop =] & Stop
= Elre-akl
= Message Box =
MESSaE [The errar is ignored. Contin ves I
Symbal Question ¥ -
- Program continues.
uttons =
Yes Mo =] N
Default Mo = L
- Program stops

Figure 8-20. Using the Until Break Loop to Handle Error Conditions

286 Chapter 8

Data Propagation
Handling Propagation Problems

This program pops up the Exclamation Message Box

asking if you want to Stop, Retry, or Ignore.
B stop pings the Stop object to stop the program.

B Retry pings Next to reiterate the loop and redisplay the same
Message Box.

B Ignore pings the Break object to stop the Until Break loop.

When Until Break stops, it pings the Question Message Box to offer
more program-control options.

Notice that the element(s) to be executed sequentially after the “I/O” loop
are connected to the sequence-out pin of the Until Break; they are not
connected to any of the loop elements.

Avoid using error-handling as a standard practice, particularly with a
Transaction object whose transactions contain complicated math formulas.
VEE allocates memory to execute these formulas, and if an error occurs
during execution that memory is not released, causing an incremental
memory leak.

Capturing Control Pin Errors

Since control pins execute immediately and do not cause an object to
propagate, certain conditions may cause your program to work incorrectly.
If a control pin causes an error, you must use special programming
techniques to capture the error programmatically.

In situations where a control pin causes an object to error, the program stops
and VEE displays an error dialog. To capture and resolve the error
programmatically, the typical solution is to add an Error output to the
object. This solution works in most cases except when a control pin causes
the error. Since control pins do not affect an object’s propagation, the object
does not propagate the error information. That is, because the control pin
does not cause the object to execute, the object cannot propagate. It is not
allowed to propagate any output pins, including the Error pin, until it has
executed. To capture an error caused by a control pin you must add an
Error output to the context that contains the object.

Chapter 8 287

=

111
LAY

Function Generatar

03 —
Y hame g
Tracel oy

Data Propagation
Handling Propagation Problems

The program in Figure 8-21 shows the wrong way to capture an error caused
by a control pin. The program displays a waveform in the XY Trace
display. The XY Trace has a Scales control input that requires a Record
data type to change a scale on the display. Text and Integer provide
values to the Build Record for the Scales control input. An Error
output on the XY Trace is intended to capture any error condition, sending
it to the errorInfo () function.

This program handles the error by displaying the error number and message.
The program will capture any error generated in the XY Trace except when
the Scales control input causes an error.

= v Trace =

0E
0.8

| Tt o4 -
_l['r;Lll 03 -I—I errarinfiad) |—~
- Trace! 22
0.1
i, D
1 Scales
= Int-32 = Build Recordl
¥ name
10 —
- —| WEE Errar Mumber | +|
— UnBuild Record =

Humber |—I_I -

= VEE Error Message =]

Record Data Meszane ——A

More -
— = YEE Errar Message =]

Figure 8-21. The Incorrect Way to Capture Control Pin Errors

Running the program reveals the problem of trying to programmatically
capture an error caused by a control pin. The Scales control pin expects a
Record containing, at a minimum, the value identifying the scale being
changed. Allowed values are X, Y, Y1, Y2 and Y3.

288 Chapter 8

Data Propagation
Handling Propagation Problems

The control pin generates an error because it receives the incorrect value T
from Text. Since it is a control pin error, there is no further propagation in
XY Trace and the Error output does not receive the error information. The
program stops abruptly and VEE displays the error dialog in Figure §-22.

Record field 'Scale'was not found

Scales Record must contain:

Text field 'Scale'with value X, Y (or¥1), %2, ory3

AND One ar more af the fields: Name, Min, Max, Mapping
(Mapping value may be "Linear" or"Log")

Ohjecttitle: ¥ Trace
Ohjecttype: ¥ Plot

Etror number: 405

GoTo | calstack| [Ciose |

Figure 8-22. Error Dialog Box

“EE Run Time Errar

Record field 'Scalewas not found

Scales Record must contain:

Text field 'Scale'with value ¥, % {or¥1), ¥2, ar¥'3

AND One ar mare ofthe fields: Mame, Min, Max, Mapping
{Mapping value may he "Linear" or"Log")

Object title: ¥y Trace
Object type: ¥ Plot

Error number: 405

Go To | Close |

As explained previously, the correct way to capture a control pin error is to
add an Error output to the context containing the object. The program in
Figure 8-23 shows a solution where the Build Record and XY Trace are
put into a UserObject. Notice that the XY Trace display’s Error output has
been deleted and an Error output is added to the UserObject. Also, the
UserObject’s Error output has been connected to the errorInfo ().

Chapter 8 289

Data Propagation
Handling Propagation Problems

AN - -
W [—:UserObject | deraa —| WEE Error Mumber | 4|
Function Generatar — —I 425
= Teud] 4] = VEE Error Message =
_ i = UnBuild Record = f Fecord field 'Scale’ was not found
- Humber
— | Int32] « Record Data Message -
TR — - YEE Error Message =
- - 0: Seales Record must contain:
10 Testfield Scale with value =¥ (or'¥1), 2,
2 AMD One or more af the fields: Mame, Min,

(TEFy

Trace |
¥ name
Tracel @2

EE 2 (Mapping value may be "Linear" ar"Log")

<| | 3

= ¥ Trace =

Tracel RN ERE
1 Scales 0 4m 8m1Zm 20m

Hname

Figure 8-23. A Correct Way to Capture Control Pin Errors

Data Propagation on Control Pins

When an object’s control pin receives data, such as a file name or default

value, you should connect the object’s sequence input pin or the program

might fail. Since a control pin does not affect an object’s propagation, the
object will propagate when the data inputs receive data even if the control
pin’s value is not set.

The program in Figure 8-24 shows this sequencing problem. Alloc Array
sends data to To File before the dataFile?2 file name is sentto the File
Name control pin. When To File receives the data, it immediately changes
the contents in dataFilel instead of the intended dataFile2. To File
does receive the new file name on its control pin but it is too late.

290 Chapter 8

Data Propagation
Handling Propagation Problems

=] TaFile =

- Tao File: (i fzjez] = =4 |
Alloc A A
WQ ¥ Clear File At PreRun & Open

—| Filerame | | WIRITE TEXT 3 EOL

|dataFiI92_) File Mame

Figure 8-24. Sequencing Problems on Objects with Control Pins

To fix this problem, use To File’s sequence input to hold off the object’s
operation until after the control pin receives its data. The program in Figure
8-25 shows that connecting File Name’s sequence output to To File’s
sequence input ensures data is written to the correct file.

=] Ta File =

- To File: il 1 |
Alloc A A
M—Q ¥ Clear File At PreRun & Open

—| FileName | 4] VWRITE TEXT a EOL

W File Mame

Figure 8-25. Using the Sequence Input on Objects with Control Pins

Building a Record

When trying to build a record of three waveforms as shown in the program
in Figure 8-26, the Build Record object will never propagate. After the
Function Generator sends its output to the DeMultiplexer, the

For Range object starts its loop counting from 0 through 2. Each count
sends the corresponding Addr out from the DeMultiplexer to the
respective Build Record input.

Chapter 8 291

Note

Data Propagation
Handling Propagation Problems

Within a loop, when an object with multiple outputs, such as the
DeMultiplexer, sends data from one output on each loop iteration the
other output values are invalidated at the beginning of each loop. This
prevents propagating possibly old, incorrect data to the next object. This is
also true for an object with multiple inputs, such as the Build Record.

When one input receives data on each loop iteration, values on all of its other
inputs are invalidated at the beginning of each loop. VEE works this way to
prevent a program from working with previous rather than current values,
which can cause incorrect results.

AR —[Dawuipiener] =] =| Build Record =
W Data | Addr 0 | 4 | Output Shape:

Function Generatar Addr 1 | B Record

Addr| | Addr2 | c | _Amayin |
|

—|For Range| =
Frarm |D [lghal]
T — | AlphaNumeric | -
Step |1

Figure 8-26. Invalid Data Inputs Stops Propagation on Build Record in a Loop

The Build Record object never propagates its Record output due to the
way VEE loops work. In this program, each For Range iteration
invalidates the data put on the Build Record’s inputs from the previous
iteration. Since the Build Record object receives only one input on each
loop iteration, only one input is valid at a time so there is no Record output.

Build this program yourself and turn on Show Data Flow to see how the
DeMultiplexer only propagates one data output each time through the loop.

The program in Figure 8-27 makes this solution work as expected by using a
UserObject. This solution works because a UserObject’s output terminals
hold the data until the iterations are done. The data are valid on the Build
Record inputs since the UserObject sends the three outputs at the same

292 Chapter 8

Data Propagation
Handling Propagation Problems

time. When all three inputs contain valid data, the Build Record object
outputs the expected results.

B hain = O] x|
=] Build Record =
- A | Output Shape:
UzerOhject B Record
S S Array 10 |
B UserObject
LAA Addr 0 2l -
. —_ phatumeric i
e _l_| — | DeMultiplexer| « | | | DD|D'{D 00 | ‘“
Function Senerator Data | Addr 0 | 001 {98,02m, 98.02m, 98.02m}
Addr 1 | . g fa
002:{0.1951, 0.1951, 0.1951}
—|For Range| = Addr | Addr 2 |—Ll Addr 1 003:{0.2903, 0.2903, 0.2903}
B ID— 004:{0.3827, 0.3827, 0.3827} -
Thru |2
Step |1 Addr 2

Figure 8-27. Maintaining Propagation When Data Inputs are Invalid

The program in Figure 8-28 solves the problem by replacing the
DeMultiplexer witha Shift Register. Unlike the DeMultiplexer
that has only one valid output at a time, the Shift Register’s three
outputs are valid simultaneously since they are all sent at the same time to
the Build Record’s three inputs. Shift Register outputs that contain
no data propagate a nil.

This particular program clocks three waveforms into the Shift Register
and then pings the Build Record to generate a record of them. If you
prefer an array instead of a record output, you can use a Collector.

Chapter 8 293

Data Propagation
Handling Propagation Problems

= Fl:urR_ange| F
From IEI—
Thtu IE— ——
Step |1—

= Build Record =]

— | shift Register| - |

T[S Current A | Qutput Shape:
WO TS ‘ Data | 1Prev |

Fecord

N
Function Generatar 2 Prey C Array 10 |

= AlphaMurneric =]
ooo:{o, o, 0} -
001:{98.02m, 98.02m, 98.02m}
0021019451, 0.1951, 0.1951}

003 {0.2603, 0.2803, 0.2903} .

Figure 8-28. Maintaining Propagation by Preventing Invalid Data Inputs

Multiple Inputs to a Formula

Sending values to multiple inputs on a Formula object inside a loop can
cause propagation problems if the values are sent during separate loop
cycles. As shown previously with the Build Record object, the Formula
will not operate if any input terminals contain invalid data. Using a
DeMultiplexer object inside the loop adds to the confusion. The program
in Figure 8-29 shows the problem.

294 Chapter 8

—[For Count| - Data
Addr2 |

Data Propagation
Handling Propagation Problems

—|Alphakumeric| -
0

— [Alphahlumeric| ~
— 1

— [DeMultiplexer| « |

Addr —|Alphatumeric| -

% Addr 3 F—

—|Alphakumeric| -
&

= Farmula =

ﬂ F"B Result |

= | Alphaklumeric | =«

Figure 8-29. Invalid Data Inputs Stop Propagation on a Formula in a Loop

Working with Loops

The DeMultiplexer is driven by the For Count object to output a single
value (0 through 3) for each cycle of the count. Only one value is output per
cycle so the inputs to the Formula object are made invalid after each cycle.
Since the two Formula inputs A and B are never valid at the same time, the
Formula never executes and there is no Formula output.

You may have decided that the value of 2 on pin A is still useful during the
next loop iteration, but VEE does not have that insight. The loop might be
calculating several coefficients for the same formula. There is no logical
reason to solve a formula with half old coefficients and half new
coefficients. As a general rule, it is safest for a programming language to
assume that data from a previous iteration is “stale.” That is why VEE
invalidates an object’s inputs at the start of each loop iteration.

There are ways to work with a situation where unchanged input values are
invalidated after a loop iteration. An example in the previous section showed
how a Shift Register delivers multiple valid outputs simultaneously. A
direct way to accomplish most tasks involves using variables.The program

Chapter 8 295

Data Propagation
Handling Propagation Problems

in Figure 8-30 shows how to use variables to supply valid values to a
Formula object.

- = Set hval =
—| Int32 |4 N
ame -
0 Drat — | Alphat i
| ata [e |Alpha I:|umer||:| r
1 —|Alphakiumeric | «
— | Demultiplexer | « | — 1

—|Far Count| 4 M -
I [Data Addr1 —— — | Alphaklurmeric |

addr Addr 2 | 2

Addr 3 —,

— | Alphalumeric | «
3

=l Sethival | 4|

Marme

Diat
] EIEI|| Mwal

—| Formula =] — |AlphaMumeric| -

—lﬂ I.E+Nva| Result | g

Figure 8-30. Using a Variable to Prevent Invalid Data Inputs on a Formula

There are two important points about the way the global variable Nval is
used in this program. First, Nval is initialized when the program starts
running. It is not necessary to do so in this particular program, since VEE
initializes it before it is used, but it's a good programming practice. Second,
Nval is always set with a new value before the Formula uses it.

You must be sure always to set a variable before an object must use it, or
your program will have a problem similar to those with invalid data. If the
variable is initialized, its value might be incorrect. If the variable is not
initialized, your program will cause an error, such as Variable was not
found.

296 Chapter 8

Data Propagation
Handling Propagation Problems

Timing Events

The Timer object can display odd (possibly bad) results depending on how
it is connected in a program. The program in Figure 8-31 demonstrates how
VEE propagation issues should influence the way you connect objects in a
program.

Black 1 |

= Timer =
Timed | airam
Block 2 Timez2 | TN ESE
1 Block 3 | 1 Block4 |

Figure 8-31. Uncontrolled Timer Inputs can Cause Timing Errors

The “Blocks” in this program are arbitrary threads containing some
combination of VEE objects. The Timer has been added to time how long
Block 2 takes to execute. This program may run or cause an error.

If it runs, the Timer may produce an erroneous result. There are two
problems that affect when the Timer starts timing and when it ends.

First, the Block 1 sequence output “pings” both Block 2 and the Timer’s
Timel input. The program does not specify which to ping first so it can
choose either. If it chooses Block 2 first, it will not ping Time1 until
Block 2 is done. This condition can cause a bad timing result or an error if
Block 2’soutput pings Time2 before Timel is pinged.

Even if you turn on the Show Data Flow debugging feature to help
identify the problem, the data flow indicators may not fully indicate the
actual propagation. In this situation, propagation depends on the order in

Chapter 8 297

Data Propagation
Handling Propagation Problems

which you connected the lines from Block 1’s sequence output to Timel
and Block 2.

The second problem concerns the Block 2 output connection to the
Timer’s Time2 input. Since it is also connected to the inputs of Block 3 and
4, there is no guarantee which input operates first. This can cause a bad
timing result.

Figure 8-32 shows a way you can revise the program to ensure correct
propagation and accurate timing. Insert a Do object between Block 1 and
Block 2 and connect the Block 2 sequence output to the Time?2 input.
The Do object forces the order in which objects operate as shown by the
numbers surrounding it in the program.

The output pins on Block 2 operate in the order shown by the numbers
around it. By connecting the Block 2 sequence output pin to the Time2
input, the Timer displays its result after Block 2 and all the blocks its
output pin is driving have completed. Likewise, if there are other blocks
connected to Block 2’s sequence output pin, insert another Do object to
ensure correct propagation.

Black 1 |

1 —| Tirmer =]

=t s :
Cio 1 Time1
3_I { Times 220 T2-T1n

Bloclk 2

2 1 Block 3 | 1 Block 4 |

Figure 8-32. Using the Do Object with Timer for Accurate Results

298 Chapter 8

Math Operations

Math Operations

This chapter describes math operations on scalars and arrays, including:

B Understanding Data Containers
B Data Type Conversions

B Processing Data

B Array Operations in VEE

300 Chapter9

Math Operations
Understanding Data Containers

Understanding Data Containers

Propagation of data through a VEE program consists of movement of data
containers from one object to another. The data container is the VEE internal
data format. Every data container has both a data type (text, real, etc.) and a
data shape (scalar, one-dimensional array, etc.).

Data Container Operation

A data container may have only a single value in it, or it may have an array
of several values. In either case, only one data container propagates from a
particular data output pin when an object operates.

For the example program in Figure 9-1, the Real 64 constant object is
configured as a one-dimensional array. The Int32 constant object is
configured as a scalar.

—| Realss |- —| AlphaNurmeric | |
- 0: 24
0002: 3.21 | . fazed
0003: 2.11 A+ Bl—a2: .21
0004:1.03 -
= —|Intaz| 4 3311
= 1 _|::| 4203

Figure 9-1. VEE Automatically Converts Data Types as Needed

When the program runs, the Real64 constant object propagates a data
container that is a one-dimensional real array. The Int32 constant object
outputs a data container that is an integer scalar (the value 1). VEE provides
automatic data type conversion to add these two containers.

VEE “promotes” the integer value 1 to become an equivalent Real value
(1.0). The a+b object then adds the Real value 1.0 to every element in the
one-dimensional real array and outputs the resulting one-dimensional real
array, as shown above.

Chapter 9 301

Math Operations
Understanding Data Containers

If you are interested in the specific container that has been passed on any
VEE data line, you can use Line Probe to look at that information. Move
the mouse pointer over the desired line so the line is highlighted and click
the left mouse button. The Line Value box appears. For example, the
container passed on the data output line from the Real64 constant object of
our example appears as shown in Figure 9-2.

—| Realfd | —| AlphaNumeric | «|
oooo: 1.1 - 021

0001:1.54 _

0002 3.21 - (2254

o003 2.1 Q A+ BpE—ma2: 421

ooo4:1.03 r—l_
Timamnl Tl 3311

Container Infarmation

Type: Realfd | 011
Sh ,W 1:1.54
dape:; Fra
i - Data: |4 3.21

SEE (5] 3o
Mappings: | Mane 41.03

Figure 9-2. Left-Click a Line to View Its Data Container

In general, VEE converts data types automatically and resolves data shapes
if possible. You normally do not need to worry about how this is done.
However, for technical information about the conversion process

see “Data Type Conversions” on page 304.

Terminals Information

Terminals show the object input type and shape requirements and display
information about the input or output container. Pins are the connection
points for terminals. You can display terminals if they are present but not
visible on the object menu. Click Properties and, on the General tab,
check Show Terminals.

302 Chapter9

Math Operations
Understanding Data Containers

To view or modify the attributes of a terminal, double-click the terminal's
information area (not the pin). You'll see a dialog box showing terminal
information.

If all the fields in the dialog box are grayed out, the terminal cannot be
modified. However, if some of them are entry fields (white backgrounds) or
buttons, you can change the values.

Terminals have the following characteristics:

B Name is the name of terminal. You can usually modify this field. In
formula expressions the terminal name can be used in the expression.

B Mode displays the terminal type, such as Data, Control, Trigger, or
Error. You cannot modify this field.

B Required Type and Required Shape (input terminals only) specify
information about the input data that the object expects. On some objects,
you can modify the Required Type or Shape, but you normally will
not need to do this.

B Container Information contains information about the container
that the object will process (according to the input requirements on an
input terminal) or has processed (on an output terminal). This
information includes the data type, data shape, the size (if data is an
array), any mappings, and the data itself.

Chapter 9 303

Note

Note

Data Type
Descriptions

Math Operations
Data Type Conversions

Data Type Conversions

Conventional programming languages typically require manual conversion
between data types. VEE automatically converts most data types on the
input terminals of objects and when using built-in type-conversion functions
and objects.

Data shapes are not converted on input terminals, but data types and shapes
may be converted automatically when used in math functions. See
“Processing Data” on page 314. The conversion of data types for instrument
I/0O transactions is a special case. See “Instrument I/O Data Type
Conversions” on page 312 for more information.

VEE Data Types

VEE provides 15 data types. For more information on data types and data
type conversions, see “Data Type Conversions” on page 304. For more
information on VEE support of ActiveX Automation and Controls, see
Chapter 14, “Using the Sequencer Object”.

If an input terminal on a VEE object specifies Any (the default in many
cases), it will accept containers of any VEE data type. Composite data types
(Waveform, Spectrum, Record, Coord and Object) are associated with
particular data shapes.

The data types shown in Table 9-1 are used for all VEE operations. That is,
every VEE data container sent between VEE objects is one of these types.

304 Chapter9

Math Operations
Data Type Conversions

Table 9-1. VEE Data Types

Type

Description

Complex

A rectangular or Cartesian complex number. Each complex
number has a real and an imaginary component in the form
(real, imag). Each component is Real64. For example,
the complex number 1 +21i is represented as (1,2).

Coord

A composite data type that contains at least two
components in the form (x, vy, ...). Each component is
Real 64. The data shape of a Coord must be a Scalar or an
Array 1D.

Enum

A text string that has an associated integer value. The
Enum data type is propagated by the objects found under
Data = Selection Control (for example, the Radio
Buttons object).

You can access the integer value with these objects’
ordinal output pin or by using the ordinal (x) function.
The data shape of an Enum must be Scalar. Enum cannot
be a required data input type.

UInt8

An 8-bit two’s complement unsigned integer (0 to 255).

Intlo6

16-bit two's complement integer (-32768 to 32767).

Int32

32-bit two's complement integer (-2147483648 to
2147483647).

Object

A data type reserved for variables used for ActiveX
Automation Objects and Controls when using VEE 5 or
higher Execution Modes. Objects can be passed as inputs
to and outputs from UserObjects and UserFunctions, but
not to remote UserFunctions nor compiled functions.

An Object variable contains values for the name of the
Dispatch interface such as “Range” or “Application” and
the pointer value of Dispatch which are exported from an
Automation Object. Object data shape must be Scalar.

Chapter 9

305

Math Operations
Data Type Conversions

Table 9-1. VEE Data Types

Type

Description

PComplex

A magnitude and a phase component in the form (mag,
@phase) . Phase is in the currently active trigonometric
units. For example, the PComplex number 4 at 30
degrees is represented as (4, @30) when Trig Mode
is set to Degrees. Each component is Real64.

Real32

32-bit Real that conforms to the IEEE 754 standard
(approximately 8 significant decimal digits:
13.40282347E+38).

Realo4

64-bit Real that conforms to the IEEE 754 standard
(approximately 16 significant decimal digits:
1+1.7976931348623157E308).

Record

a data type composed of fields. Each field has a name and
a container which can be of any type (including Record)
and a data shape of Scalar or 1D Array.

Spectrum

A composite data type of frequency domain values that
contains the PComplex values of points and the minimum
and maximum frequency values. Spectrum allows the
domain data to be uniformly mapped as log or linear. The
data shape of a Spectrum must be an Array 1D.

Text

A string of alphanumeric characters.

Variant

The Variant data type is not “fixed” as a specific kind of
data. It can be one of the other data types as needed. Used
for ActiveX automation methods that use ByRef Variant
parameters.

Waveform

A composite data type of time domain values that contains
the Real64 values of evenly-spaced, linearly-mapped
points and the total time span of the waveform. The data
shape of a Waveform must be an Array 1D (a one-
dimensional array).

Line Colors for Data In VEE 4 or higher Execution Modes, VEE assigns different colors to the
Types data lines based on the type of data flowing through the line. Here are the

306

Chapter9

Note

VEE Data Shapes

Math Operations
Data Type Conversions

default colors along with the names of the color properties (changeable via
File = Default Preferences):

B Blue: numeric (Integer or Real type)

B Blue: complex (Complex and PComplex type)

B Orange: string (String type)

B Gray: sequence out (nil value, usually from a sequence out line)

B Black: unknown type or type that is not optimized (for example, Record
types).

If the data type is an array, VEE displays a wider line. To increase speed,
check your program for colored lines. The more non-black lines, the faster
the program runs.

Composite data types (Waveform, Spectrum, Record, Coord, Enum, and
Object) are associated with particular data shapes:

B The Waveform and Spectrum data types are always one-dimensional
arrays.

B The Record and Coord data types can be either scalars or one-
dimensional arrays. (They cannot be arrays of two or more dimensions.)

B The Object and Enum data types are always a scalar.

All other data types may have either a Scalar or an Array data shape:

B Scalar is asingle number such as 10 or (32, @10).
B Array is an array with one to ten dimensions.

Arrays may be mapped. (A mapping is a set of continuous or discrete values
that express the independent variables for an array.)

In many cases, a VEE object has data pins with an input data shape
requirement of Any, meaning that the object accepts containers of more than
one of the data shapes.

Chapter 9 307

Converting Data
Types on Input
Terminals

Math Operations
Data Type Conversions

Converting Data Types

This section shows how to convert data types on input terminals, how to
convert data types with objects and functions, and instrument I/O data type
conversions.

Most objects accept any data type on their data input terminals, but a few
objects require a particular data type or shape. For these objects, the data

input terminal automatically attempts to convert the input container to the
desired data type.

For example, a Magnitude Spectrum display needs Spectrum data. If the
output of a Function Generator (a Waveform) is connected to the
Magnitude Spectrum display, the input terminal of the Magnitude
Spectrum automatically does an FFT to convert time-domain data to
frequency-domain data (Waveform to a Spectrum).

The type conversion can be a promotion or demotion. A promotion is the
conversion from a data type with less information to one with more. For
example, a conversion from an Int32 to Realé64 is a promotion. Such
promotions take place automatically as needed.

A demotion is a conversion that may lose part of the data. For example, the
conversion from a Real64 to an Int32 is a demotion because the fractional
part of the Real number is lost. A demotion of data type occurs only if you
force it by specifying a certain data type for an input on an object.

Once you have specified a data type, the demotion will occur automatically
if it is needed and is possible.

For example, if you change the required type or input on a Formula object
to Int32 and another object supplies a Real64 number to that input (such
as 28.2), the value will be demoted to an Int32 (28). To change the data
type on the Formula input from Any to Int32, double-click the input
terminal's information area (not the pin) and then click the Required Type
field. Click Int32 in the drop-down list to change types.

VEE attempts to convert the data the next time the program runs. If the
supplied data is a type that cannot be converted to the data type you select on
the input, VEE returns an error.

308 Chapter9

Converting Data
Types with Objects
and Functions

Note

Math Operations
Data Type Conversions

VEE provides objects and built-in functions that convert data from one type
to another. These are available to handle special type conversions that VEE
cannot handle on its input terminals.

The type conversion functions built into VEE can be added to a program by
using the Function & Object Browser, or by entering the function
name into any object that accepts expressions. In the Browser, select
Type: Built-in Functions and Category: Type Conversion for
the available functions.

As an example, the function asText (x) converts the input x to the data
type Text and returns the same data shape as x. x can be any shape and any
type. In the expression asText (3. 4), the result is the Text value "3.4".

Prior to VEE 5.0, an Integer was converted to a Real when it was entered
directly into expressions in an object such as Formula. In VEE 5.0 and later,
an Integer in an expression is no longer converted to a Real when the
Execution Mode is set to VEE 5 or higher. This change does not affect data
type conversions on input terminals. For example, the Formula expression
“274” will produce the Real64 value 16.0 in VEE 4 and prior modes, but
the Int32 value 16 in VEE 5 and higher modes.

The Record data type has the highest priority. However, VEE does not
automatically promote to or demote from the Record data type. To convert
between Record and non-Record data, use the objects Build Record and
Unbuild Record.

Similar results are possible in expressions using syntax described in “Using
Records in Expressions” on page 318. For more information about Records,
see Chapter 11, “Using Records and DataSets”.

The Coord data type has some special rules associated with it:

B Although arrays of Int 32 and Real data types can be promoted to Coord,
a Coord cannot be converted to any other numeric type.

B When unmapped arrays are converted to Coord, the independent Coord
values (the first Coord fields) are created from the array indexes while
the dependent Coord value (the last Coord field) contains the element
value. For example, if array A is converted to a Coord and A contains

Chapter 9 309

Automatic Data
Type Conversions

Math Operations
Data Type Conversions

[1,5,7],itis converted to a Coord array with [(0, 1), (1,5), (2,7)]
in it.

B When mapped arrays are converted to Coord, the independent Coord
parameter ranges from the low value of the mapping to the value
Xmin+ (Xmax-Xmin/N) * (N-1).

The Object data type also has no automatic promotion or demotion and it
cannot be converted to other data types. ActiveX automation objects use the
Object data type. You can create and use automation objects by using the
functions CreateObject and GetObject. For more information about
VEE support for ActiveX Automation and Controls, see Chapter 14, “Using
the Sequencer Object”.

Table 9-2 shows the data type conversions that can occur automatically on
input terminals and by using functions and which conversions cause an error.
A “yes” means VEE can do the conversion, while a “no” means VEE returns
an error. Demotions are indicated by the shaded areas.

The new “Variant” data type is not a distinct data type. It is used in
expressions to indicate that the value it represents can be one of a number of
other data types. It is the data type it holds at the moment. Any data type can
promote or demote to a Variant, and a Variant can promote or demote
according to the data it holds and the rules that data would follow. It does not
appear in Table 9-2.

310 Chapter9

Math Operations
Data Type Conversions

Table 9-2. Promotion and Demotion of Data Types

To = » o E §

o o o [@ [S |4 [B |@ |8 |3

=] H H [+ ~ &) (-1 = 7] O] 3]
UInt8 nfa | yes yes yes no® no no no no no no no
Intlé yes n/a yes yes ves | yes? | yes? no no yesd | no | yes
Int32 yes | yes n/al yes ves | yes? | yes? no no yes® | no | yes
Real32 yes | yes | yes? n/a ves | yes? | yes? no no yes® | no | yes
Realé64 yes | yes yes yes n/a yes? | yes? no no yes® | no | yes
Complex no no no no® no® n/a yes no no no no | yes
PComplex no no no no® no® yes n/a no no no no | yes
Waveform no | yes* | yes* | yes® | no® no no nfa | yes’ | ves no | yes
Spectrum no no no no no® | yes® | yes® | yes’ n/a no no | yes
Coord no no no no no® no no no no n/a no | yes
Enum no no8 no8 no no® no no no no no nfa | yes
Text no | yes? | yes? | yes? | yes® | yes® | yes® no no yes® | no | n/a

1. n/a=Not applicable.

2. An Int32, or Real value promotes to Complex (value, 0) or to PComplex (value, @0).

3. The independent component(s), which are the first n-1 field(s) of an n-field Coord, are the
array indexes of the value unless the array is mapped. If the array is mapped, the independent
component(s) are derived from the mappings of each dimension. The dependent component, y,
is the array element. If the container is a Scalar (non-array), conversion fails with an error.

4. These demotions will cause an error if the value is out of range for the destination type.

5. This demotion is not done automatically, but can be done with the re(x), im(x), mag(x) and
phase(x) objects or the Data = Build Data/UnBuild Data = objects.

6. These demotions keep the Waveform and Spectrum mappings.

7. An FFT or inverse FFT is automatically done.

8. This demotion is not done automatically, but can be done with the ordinal (x) object.

Chapter 9 311

Math Operations
Data Type Conversions

9. This demotion causes an error if the text value is not a number (such as 34 or 42.6) or is not in
an acceptable numerical format. The acceptable formats are as follows (spaces, except within
each number, are ignored):

« Text that is demoted to an Int32 or Real type may also include:

- A preceding sign. For example, -34.
- A suffix of e or E followed by an optional sign or space and an integer. For example, 42.6E-
3.

* Text demoted to Complex must be in the following format: (number, number).

* Text demoted to PComplex must be in the following format: (number, @number). The phase
(the second component) is considered to be radians for this conversion, regardless of the
Trig Mode setting.

* Text demoted to a Coord type must be in the following format: (number, number, ...).

Instrument I/0O Data On instrument 1/O transactions involving integers, VEE performs automatic

Type Conversions data type conversions in VEE 5 and earlier Execution Modes. See “Using
VEE Execution Modes” on page 17 for an example of how this could change
program behavior. VEE performs automatic data type conversions in the
following ways:

B On a READ transaction in VEE 5 and earlier Execution Modes, Int16 or
Byte values from an instrument are converted to Int 32 values,
preserving the sign extension. Also, Real32 values from an instrument
are converted to 64-bit Real numbers. Vee 6 Execution Mode produces
true Intl16, Int32, and Byte (UInt8) values.

B On a WRITE transaction in Vee 5 and earlier Execution Modes, Int32 or
Real values are converted to the appropriate output format for the
instrument, as described in the following bullets. VEE 6 Execution Mode
writes true Int16, Int32, and Byte (UInt8) values.

U If an instrument supports the Rea132 format, VEE converts 64-bit
Real values to Real32 values, which are output to the instrument. If
the Real value is outside of the range for Real32 values, an error
occurs.

U If an instrument supports the Int16 format, VEE truncates Int32
values to Int16 values, which are output to the instrument. Real
values are first converted to Int 32 values, which are then truncated
in VEE 5 Execution Mode and output. VEE 6 Execution Mode
outputs the number without truncating it. If a Real value is outside
the range for an Int32, an error occurs.

312 Chapter9

Math Operations
Data Type Conversions

QO If an instrument supports the Byte format, VEE 5 Execution Mode
truncates Int32 values to Byte values, which are output to the
instrument. Real values are first converted to Int 32 values, which
are then truncated in VEE 5 Execution Mode and output. VEE 6
Execution Mode outputs the number without truncating it. If a Real
value is outside the range for an Int 32, an error occurs.

Chapter 9 313

Math Operations
Processing Data

Processing Data

To process data, you operate on it with the operators and functions available
in the Function & Object Browser. Use the Function & Object
Browser toolbar button to open the browser. You can combine the functions
to create mathematical expressions.

The Function & Object Browser

The Function & Object Browser contains a set of mathematical
functions to process your data in numerous ways. Each of these functions are
expressions entered in a Formula object with the corresponding title, inputs
and outputs. You can change the expressions in the open view of each
Formula object and change their properties also.

All the functions that are listed in Function & Object Browser can be
used in any object in other menus that allows expressions. The objects in
other menus that allow expressions are:

Data = Access Array = Set Values
Data = Access Array = Get Values
Data = Access Record = Get Field
Data = Access Record = Set Field
Device = Sequencer

Flow = If/Then/Else

Flow = Conditional (all conditional objects)
1/0 objects that use transactions

General Concepts

You can process data before running a program by using numeric entry
fields such as those in Constant objects. Numeric entry fields on some
objects support the use of arbitrary formulas. The formula is immediately
evaluated and the resulting value is used for the field. You cannot use
variables in Constants.

The typed-in formula must evaluate to a scalar value of the proper type or of
a type that can be converted to that which the object expects. In general, you

314 Chapter9

Expressions and
Functions

Note

Math Operations
Processing Data

can use any of the dyadic operators, parentheses for nesting, function calls
and the predefined numeric constant PT (3.1416...) in numeric entry fields.

Expressions may contain the names of data input terminals, data output
terminals (I/0 transactions and Formulas only), variables (declared, of any
scope, and undeclared), user-defined functions (compiled, remote and
UserFunctions), and any mathematical expression from the Function &
Object Browser. Data input terminal names are used as variables.

VEE is not case-sensitive about names of input variables within expressions
for USASCII keyboards. For non-USASCII keyboards, VEE is case-
insensitive for 7-bit ASCII characters only. Expressions are evaluated at run
time.

If you pass an array to a function, the function operates on each element of
the array, unless stated otherwise. For example, sqrt of a scalar returns a
scalar; sqrt (4) returns 2. But sgrt of an array returns an array of the same
size; sqrt ([1, 4,9, 64]) returns the array [1,2,3,8].

In VEE 5 or higher Execution Modes, all numbers entered as integers in an
expression field are considered to be Int32. In VEE 3 and VEE 4
Execution Modes, all such numbers are considered Real64 values, unless
you use parentheses to specify Complex or PComplex values. Therefore,

2 is considered to be a Real number or an Int32, depending on the
Execution Mode. (1, @2) is a PComplex number, while (1, 2) isa
rectangular Complex number.

VEE interprets any value contained within parentheses as a Complex or
PComplex value. If you need to use a Coord value in an expression, use the
coord (x, vy) function. The coord function takes two or more parameters.
coord (1, 2) returns a Scalar Coord container with two fields.

All functions that operate on Coord data operate only on the dependent (last)
field of each Coord. For example, abs (coord (-1, -2, -3)) returns the
Coord (-1, -2, 3).

An Enum container is always converted to Text before every math operation
except the function ordinal (x). Enum arrays are not supported. If you try
to create an Enum array, a Text array is created instead.

Chapter 9 315

Using Strings in
Expressions

Using Variables in

Expressions

Math Operations
Processing Data

For information on specific data type definitions, see “VEE Data Types” on
page 304.

Strings within expressions must be surrounded by double quotes. You may
use the escape sequences in Table 9-3 within strings:

Table 9-3. Escape Sequences Characters

Escape Meaning
Character
\n Newline
\t Horizontal Tab
\v Vertical Tab
\b Backspace
\r Carriage Return
\f Form Feed
\ Double Quote
v Single Quote
\ Backslash
\ddd Character Value. d is an octal digit.

You can create and set variables by using the Declare Variable and Set
Variable objects, and you can access variables by using the Get
Variable object. See Declare Variable, Set Variable, and Get
Variable in VEE Online Help for more information.

In addition, you can access a variable by including its name in a
mathematical expression. You can include a variable in a mathematical
expression in a Formula object, or in any object with a delayed-evaluation
expression field.

These objects include I1£f/Then/Else, Get Values, Get Field, Set
Field and all instruments using expressions in transactions, including To

316 Chapter9

Note

Math Operations
Processing Data

File, From File, From DataSet, From Stdin, To/From Named
Pipes, To/From Socket, Sequencer, and Direct I/0

To include a variable in an expression, just use the variable name as if it
were an input variable. For example, suppose a program uses a Set
Variable object to define the variable numFiles. Elsewhere in the
program, a Formula object with input A may use the expression
numFiles+3*A.

Variable names are case-insensitive. Either upper-case or lower-case letters
may be used. Thus, GLOBALA is equivalent to globalA.

To avoid errors or unexpected results, be aware of two limitations when you
include variables in an expression:

1. Local input variables have higher precedence than global variables. This
means that in case of duplicate variable names, the local variable is
chosen over the global variable. For example, if the expression Freg*10
is included in a Formula object that has a Freq input (a local variable)
and there is also a global variable named Freq, the expression will be
evaluated with the local variable Freq, not the global one. No error will
be reported regarding this duplication.

2. Depending on the flow of your program, an object that evaluates an
expression containing a variable may execute before the variable is
defined. For example, suppose the variable globalAa is set with a Set
Variable object and the expression globalA*x~2 is included in a
Formula object.

Depending on the flow of your program, the Formula object may
execute before the Set Variable object executes. In this case, the
Formula object won't be able to evaluate the expression because
globalA is undefined. An error message will appear.

It is important that you take steps to ensure correct propagation — that
Set Variable executes first. You can do this by connecting the
sequence output pin of the Set Variable object to the sequence input
pin of the Formula object, in this case, or of any other object that
includes the variable in an expression to be evaluated.

Chapter 9 317

Note

Using Records in
Expressions

Math Operations
Processing Data

IfaGet variable object is used, its sequence input pin should also be
connected to the sequence output pin of Set Variable. Also, if you
declare a variable using the Declare Variable object, you must
initialize it using Set Variable. For more information, see

Chapter 10, “Variables”.

By default, Delete Variables at PreRun inthe Default
Preferences dialog box is checked (enabled) so values are deleted from
variables when you run a program. This prevents variables from containing
“old” data and causing unexpected results.

Variables can be arrays. Just access a variable array as if it were an input
variable using array syntax, for example: GlobAry[2]. Ifa variable is a
Record, use the record access syntax, such as globRecord.numFiles.

You can use expressions to access a field or sub-field of a record. Use the
A.B sub-field syntax to access the B field of a record A. If A is a record with
a field B, which itself is a record which has a field c, you may use the 2.8
syntax recursively to access the C field. That is, use the expression A.B.C. If
A does not have a B field, or B does not have a C field, an error will result.

There is no limit on the number of recursions of A.B.C.D.E. F that may be
used in expressions. Field names are not case-sensitive (lowercase and
uppercase letters are equivalent). Field names may be duplicated in sub-
Records, so you may use the expression A.a.A.

Records are very useful as variables so one variable may hold several
different values. A Formula object can be used in place of a Get
Variable. Thus, you can accomplish the GlobRec.numFiles access in
one object, instead of using both a Get vVariable and a Formula object to
unbuild the record.

The record and array syntax may be combined in expressions to access a
field of a record array (for example A[1] .B), or to access a portion of an
array that is a field of a record (for example, A.B[1]). Note the difference
betweenA[1].band A.b[1] (both are supported):

318 Chapter9

Note

Using Assignment
Operations

Note

Math Operations
Processing Data

U You would use the first for a record 1D with a scalar field b. A[1] .b
accesses the field b of the second record element of the record array A.

 You would use the second for a scalar record with a field b, which is a
1D array. A.b[1] accesses the second element of the field b of the
record A.

To change a field in a record, use the assignment operator in a Formula
object. For example, suppose you have a record R with a field 2 and you
wish to change the value of R. A to be sin (R.A). Just change the expression
toR.A = sin(R.A). You can continue to use the record R (with the new
value for field) later in your VEE program.

For information about using Objects in expressions to manipulate ActiveX
automation objects and controls, see Chapter 14, “Using the Sequencer
Object”.

The Formula object allows expressions that use assignment operations to
change values in parts of arrays and records and assign values to local and
global variables. The Result output terminal contains that part of the array
or record that changed, not the entire array or record.

For example, in a Formula with the expression A[2] = 4 the Result
terminal contains array element A [2] with a value of 4. It does not contain
all of array A. Formula objects preset with assignments are available in the
Function & Object Browser in Type: Operators,Category:
Assignment.

Assignment operations are allowed only in Formula objects.

For information about using assignment operations to manipulate ActiveX
automation objects and controls, see Chapter 14, “Using the Sequencer
Object”.

Allowed Syntax. Multiple expressions, separated by semi-colons, are
allowed in Formulas. The left-hand side of expressions allow syntax that
change the values for array and record elements and for variables. The right-

Chapter 9 319

Math Operations
Processing Data

hand side must match exactly the part of the left-hand side that is being
modified. For records, the schema (a field's type, shape, or size) cannot be
changed, only its values.

The following examples show left-hand syntax that work for arrays:

A[2]=

A2, 3, 4:5]=

A[2:4, 4:6, 3:*, *]=

The following examples show left-hand syntax that work for records:

RecA.B=

RecA.B.C.D=

RecA[l] .B=
RecA.B[1l]=
RecA.B.C.D[1]=
RecA[1l].B[2].C[3].D=
RecA.B[2:3].C[3:4]=

The following left-hand syntax is allowed to directly set global and local
variables and initialize declared local variables:

GLOBAL=2
TMP LOCAL=4

Examples. Here are examples of assignments showing how the right-hand
side must match the part of the left-hand side that is being modified. The
data type of the right-hand side must be coercible to the data type of the left-
hand side, such as Integer to Real or Real to String. A coercion such as
Complex to Real cannot be done.

B ArrayA[2:4] = ArrayB
(ArrayB must be a one-dimensional array with three elements.)

B ArrayA([2, 3, 4:5, 7, 8:9] = ArrayB
(ArrayB must be a two-dimensional array, of size 2 by 2.)

M Rec[3:4].field = ArrayB
(ArrayB must be a one-dimensional array with two elements.)

M Rec[3:4].field[4:5] = ArrayB
(ArrayB must be a two-dimensional array, of size 2 by 2.)

320 Chapter9

Note

Error Recovery

Note

Math Operations
Processing Data

Non-explicit use of arrays of records on the left-hand side of assignments is
not allowed. If Rec is an array of records, the expression Rec . A=2 will
cause an error, prompting a request that you use the full explicit syntax,
Rec [*] .A=2. A similar error results with Rec.B=2 if Rec is a scalar record
and B is an array. The resulting prompt will request that you use the explicit
Rec.B[*]=2.

In VEE 4.0 and later versions, the Set Values and Set Field objects are
actually Formula objects with assignment expressions. These objects have
been changed from their definitions in prior versions of VEE. Existing
programs written with VEE 3.x and older that use the Set vValues and Set
Field objects will retain the prior definition if they continue to run in the
VEE 3 Execution Mode.

Since a Formula can contain a series of expressions, including assignments
and other operations, errors are handled in certain ways. If an assignment or
other operation is done and a following expression errors, previous
expressions are not undone.

Consider the expressions, Global [2]1=24; 2/0, ina Formula.

First, Global[2] issetto 24. Then, the division by zero causes an
error. VEE will not set G1obal [2] back to its previous value.

For procedures about using assignment operations, see VEE Online Help
(Help = Contents). Inthe How Do T ... section, open the Work with
Data section, then look at the topics under Working with Arrays (such
as To Change Values in an Array) and at topics under Working
with Variables.

Using Global and Local Variables

Assignments in Formula objects can change values in global and local
variables with expressions such as A=2 or Globala [5]=2. Since variables
can be undeclared globals, declared globals or locals, or directly-set locals,
the Formula object will look for the variable A using the following order of
precedence:

Chapter 9 321

Global and Local
Variables in
Assignments

Note

Math Operations
Processing Data

1. A local variable which is an input terminal. This overwrites the input
terminal value, including its type and shape.

2. A local variable which is an output terminal. This variable is created and
placed on the output terminal.

3. A global variable. The variable must already exist. Its value is completely
changed, including its type and shape.

Given these rules, an error results if Formula contains an assignment such
as tmp=2 where tmp does not meet one of these criteria.

Assigning values to global arrays and records requires added attention since
these variables may be undeclared or declared. A global exists when it is
created using an object such as Set Variable, or when it is declared using
Declare Variable.

An undeclared global’s type and shape can be changed by an assignment
expression. However, for a declared global the right-hand side of the
assignment must be coercible to the global’s declared type.

Very Important! When you declare a global array or record variable using
the Declare Variable object, the entire variable must be initialized
collectively before you can change part of the global. The program in
Figure 9-3 shows the variable G1obalary declared and initialized before an
individual part is changed by the assignment in Formula.

322 Chapter9

Data Container
Contents on
Terminals

Math Operations
Processing Data

—| Ceclare Globalary | =

MHame: | Glahalany

Scope: m
Type: [z 7]
Mum Dirns: Iﬁ

—| SetGlobaltny | 4|

Marme

M IGInbaIAr\;

=] Formula = —|AlphaMurme.. |

IGIDbaIAw[D]ﬂ Result} 1

Figure 9-3. Initializing a Declared Global Variable

Formula object input and output terminals affect how the values for
variables are changed by assignments. The data container on the Result
output terminal contains the modified part of an assignment expression’s
left-hand side, including any changes to the data type and shape.

In a Formula with the expression ArrayA[2:4] = ArrayB[5:6], the
Result output terminal contains ArrayA[2:4] with the values from

ArrayB[5:6].In an expression such as ArrayA[2]=4, where the ArrayA

data type is Complex, the value for ArrayA[2] in the output terminal is
converted to Complex (4, 0).

The following output terminal names can be used:

B Result. This is the default output terminal on Formula. It is a reserved

name and contains the result of an assignment expression. You can delete
Result to use other outputs, then add it back if needed, but you cannot
rename an output terminal Result.

Chapter 9 323

Dyadic Operators
Categories

Math Operations
Processing Data

B An input terminal name. This value is copied from the input. If changed
in an assignment, the new value is used on the output. The variable must
exist and have a value before it can be used as an input terminal name.

B A local variable name. This is a name, such as Tmp, that is created by an
assignment expression, such as tmp=2.

You can use additional output pins on a Formula to get various parts of a
modified array or record out of the object. This lets you pass the modified
part of a variable out one terminal and the whole variable out another
terminal. To get the whole array or record on the output terminal, use a
global variable in an assignment expression or add an output terminal to the
Formula object for the array or record. If an output terminal exists that does
not get a value assigned, an error occurs.

Mappings on arrays are ignored unless the entire container is modified. For
example, ArrayA[2:4] = ArrayB[2:4] does not modify the mappings
on ArrayA. ButA = ArrayB[2:4] will set the mappings on A since it is

replaced by ArrayB.

Using Dyadic Operators

The set of dyadic operators have several additional conditions and
guidelines. The dyadic operators are visible in the following categories of
the Function & Object Browser in Type: Operators.

B Category: Arithmetic
a +

O o o O

~ b (exponentiation)

mod b (modulo - returns remainder of division)
a div b (integer division - no remainder)
ategory: Comparison

a ~=b

S R R)
~

QUUUUODDD

b
b

oooo

a
a !=
a

A

b

324 Chapter9

Precedence of
Dyadic Operators

Dyadic Operators
Data Type
Conversion

Note

Math Operations
Processing Data

Qa>b

Ua<=0b

da>=b

B Category: Logical

O a aND b

Qaorb

O a XO0R b

U ~oT a (a monadic that follows the same guidelines as dyadics)

When using dyadic operators on arrays, the array size, array shape, and array
mappings (if they exist) must match. For Coords, the values of the
independent variable for each Coord must match.

This list is the order of precedence of the dyadic operators. They are listed
from highest to lowest, with operators of the same precedence listed on the
same level.

parentheses (and) used to group expressions
unary minus -

* / MOD DIV

+ _

AND
OR XOR

VXN W=

For the dyadic operators, the input values are promoted to the highest data
type, then the operation is performed. The data type of the output is the
highest input data type. For example, when the complex number (2, 3) is
added to the String "Dog", "Dog"+ (2, 3), the result is the String "Dog (2,
3)".

There is one exception to this rule. When you multiply a Text string by an
Int32, the result is a repeated string. For example, "He11lo" *3 returns
HelloHelloHello. No data type promotion occurs in this case.

Chapter 9 325

Dyadic Operators
Considerations

Math Operations
Processing Data

The data type order (from highest to lowest) is:

Object

Record

Text (Enum is treated as Text)
Spectrum

PComplex

Complex

Coord (no conversion to any other numeric type possible)
Waveform

9. Real64

10.Real32

11.Int32

12.Int16

13.UInt8

14. Variant

PN R LD

The Variant data type is not “fixed” as a specific kind of data. It can be one

of the other data types as needed. In the function sin(var), data in the Variant
data type (var) could be an integer, a real, or a waveform, depending on the

value it is assigned to. In the expression a=sin(var), a will have the data type
of whatever data (var) contained.

Object Considerations. Objects will not automatically demote to other
types. No dyadic operations are supported on Objects themselves, but since
most Objects have a default property which is a String or Integer value, most
operations can be performed on Objects.

The difference is that you end up performing the operation on the default
property. For more information about Objects and their use with ActiveX
automation in VEE, see Chapter 14, “Using the Sequencer Object”.

Record Considerations. Records have the highest precedence of all data
types, but other data types can be converted to the Record data type only by
using special objects such as Build Record. Records will not
automatically demote to other types, nor will other types automatically
promote to the Record type. Objects and Variants cannot be Record fields.

The dyadic operators do support combining records and other data types, but
they will always return a record in this case. A dyadic operation on a record

326 Chapter9

Math Operations
Processing Data

and non-record will apply the operation with the non-record to every field of
the record.

For example, consider a record R with two fields 2, a scalar Real value (2.0)
and B, a scalar Complex value (3,30). The expression R+2 will produce a
record R with two fields 2, a scalar Real with value 4 and B, a scalar
Complex with value (5,30). If the operation cannot be performed on every
field in the record, an error occurs.

Dyadic operations on a record and any other type will return a record with
the same “schema”, so the resulting record will have the same fields with the
same names, types, and shapes. The dyadic operation may not change the
type or shape of a record field.

For example, consider a record R with two fields: 2, a scalar Real and B, a
scalar Complex. The expression R+ (2, 3) will cause an error. VEE will first
try to add (2, 3) to R.A, then do the same with R. B.

The error occurs because the R. A field is a Real and the result of
R.A+ (2, 3) would be a Complex. The Complex cannot be demoted to a
Real to be stored back into R. A.

Dyadic operations on records using arrays treat the record as having higher
precedence than the array. For example, [1,2,3] + [3,4,5] produces
[4,6,8],so the arrays are combined piece by piece. But, records have
higher precedence than arrays. This means that if R is a record with two
fields: A and B, the expressionR + [1,2] will try to add the array [1, 2]
to each field of R. It will not add 1 to R.A and 2 to R.B.

Things get even more complicated when you combine arrays with record
arrays. For example, suppose R is a record 1D array, two long, with three
fields: A, B and C. The expressionR + [1,2,3], or the expression R +

[1, 2] will add the entire array to each field a, B and ¢ for every element of
R. Even though R is an array, the fact that it is a record is more important.

A dyadic operation on two records will combine them field by field so the
two records must have the same “schema”. That is, each record must have
the same number of fields and each field must have the same name, type,
and shape, in the same order.

If you want to add 1 to field 2, add 2 to field B, etc., the easiest way is to use
multiple assignments (see Assignment in VEE Online Help). In a Formula

Chapter 9 327

Math Operations
Processing Data

object, enter the expression R.A=R.A+1,R.B=R.B+2. YoucanthenuseR.A
and R. B with their new values in your program.

Spectrum Considerations. If you choose to use dB scaling, you must keep
track of it yourself. Although dB-scaled data displays correctly (except on
the waveform (Time) display), many math functions such as £ft (x),
ifft (x), and those involving PComplex numbers do not operate correctly
on dB-scaled data.

If you need to use these operations, convert the dB-scaled data to linear
scaling before operating on it. VEE supplies library programs for dB
conversions in its installation location, typically:

For Windows:

C:\Program Files\Agilent\VEE Pro 6.0\lib\convert
For UNIX:
/opt/veetest/lib/convert (HP-UX 10.20)

When you are using particular dB units, some math functions give
meaningful results, but only within the confines of those units. For example,
if you add 20 to a dBW-scaled Spectrum, 20 is added to the magnitude of
each element (which has the same effect as converting the Spectrum to a
linear scale, multiplying each element by 100, and converting back to
dBW.).

Data Shape Considerations. For dyadic operations where both operands
(inputs) are arrays, the size and shape of the arrays must match. The result of
the operation is an array with the same size and shape as the input arrays,
except for the relational operators (==, <, etc.), which always return a scalar.
If arrays have a different number of dimensions or are of different sizes,
VEE returns an error. For example, [1,2] + [1,2, 3] returns an error.

If you are operating on a scalar and an array, the scalar is treated as if it were
a constant array of the same size and shape as the array operand. For
example, 2 + [1,2,3] istreatedas [2,2,2] + [1,2,3].Theresultis
[3,4,5].

When an n-dimensional array is converted to a Coord, the Coord data shape
is an Array 1D with n+1 fields in each Coord element.

328 Chapter9

Math Operations
Processing Data

Variant Considerations. The result of dyadic (+-*/, etc.) evaluations and
functions cannot be a Variant.

[TP% 1]

In the expression, “b=a”, “b” will be the same type as “a”, even if it was a
Variant.

In the expression, “b=a+2”, “b” will never be a Variant, regardless of

[P 2]

what “a” is.

In the expression, “b=sin(a)”, “b” will never be a Variant, regardless of

€9

what “a” was.

The function “func(2+a)” will always be sent a non-Variant, regardless of

(P2l

what “a” was.

[IP 4]

Just a variable name, “a”, a monadic operator, “-a”, or parentheses, (a), will
not change the data type of “a”.

The function “func(a)” will be sent a Variant if “a” is a Variant.

Chapter 9 329

Note

Comparison of Array
Operation
Techniques

Math Operations
Array Operations in VEE

Array Operations in VEE

VEE is optimized for array math. While you can perform array operations
using traditional loop constructs, they tend to degrade program speed. This
section shows ways to use the Formula and other objects to perform math
operations on arrays. Assignment operators, discussed in “Using
Assignment Operations” on page 319, also let you change values in parts
of arrays.

You can adapt the examples in this section and use assignment operators to
avoid using time-consuming computational loops. Since these techniques
are not always obvious, be careful about using them and be sure to document
your programs thoroughly.

Array Operations Techniques

This section shows some array operations techniques for VEE, including
comparison of array operation techniques, accessing arrays in expressions,
performing array math operations, and using variables in expressions.

The program segments in Figure 9-4 and Figure 9-5 compare techniques for
generating an array containing all the values of sine and cosine for each
degree from 0 to 360. If you try each of these techniques, you will find that
the first technique takes more time.

—| ForCount | = =| singd =
360 H Ism(}{) Result —— Callzior |

| IE— JCT - |
Collector
=] cost) | -

R |c05(}{) | Result [t——— Collectar
| I

Figure 9-4. Generating an Array Using Individual Objects

330 Chapter9

Accessing Arrays in
Expressions

Note

Math Operations
Array Operations in VEE

Converting the logic contained in this series of objects to a mathematical
operation, results in the expression shown in the Formula object in Figure
9-5. This technique does the same calculations in less time:

= Farmula =)

I[sin(ramp(SED, 0, 38930, cos{ramp(3a0, 0, 359 Result ||

Figure 9-5. Generating an Array Using a Mathematical Expression

Though this technique is much faster, it is not obvious that it does the same
calculations. Here is an explanation of the expression’s operation:

1. The ramp () function generates an array of 360 values, increasing from 0
through 359.

2. The two ramp functions generate identical arrays, each operated on by
the sin () and cos () trigonometry functions. Most VEE functions that
normally accept and return a scalar value can accept and return an array
as a parameter.

3. Though the Formula object actually contains two formulas, their outputs
are converted to an array format because they are contained in the square
brackets.

This technique may not be the best choice for all programs. The sine and
cosine operations are done on the entire arrays produced by the ramp ()
functions, not on each value as it is generated. If your program must operate
on each value as it is generated, use a loop structure instead of an expression
that operates on the entire array.

Arrays in expressions can be used just like scalars. Refer to them by their
name. Array constants can be entered directly into an expression (such as
[1,2,31). VEE requires that you insert commas between array elements.

Array indices are 0-based. The indices start with zero and continue to n-1,
where 7 is the number of elements in that particular dimension.

Chapter 9 331

Note

Examples: Values
Returned from Array

Math Operations
Array Operations in VEE

You can use expressions to access portions of an array. Once you have
specified the sub-array in the expression, you can output the sub-array or use
it in further expression calculations.

You can access only contiguous sub-arrays from each array. To access sub-

arrays, you must specify a parameter for each dimension in the array. Use

the following characters to specify array parameters:

B A comma “,” separates array dimensions. Each sub-array operation must
have exactly one specification for each array dimension.

B A colon “:” specifies a range of elements from one of the array
dimensions.

B An asterisk “*” is a wildcard to specify all elements from that particular
array dimension.

Waveform time spans, spectrum frequency spans, and array mappings are
adjusted according to the number of points in the sub-array. For example, if
you have a 256 point waveform (Wr) and ask for Wr[0:127], you will get
the first half of the waveform and a time span that is half the old span.

The following expressions show values returned where A is a one-
dimensional array (Array 1D) ten elements long.

B A [1] accesses the second element in A and outputs a scalar.

B A[0:5] returns a one-dimensional sub-array that contains the first six
elements of A.

B A[1:1] returns a one-dimensional sub-array that contains one element,
which is the second element of A. Note the difference between this and

the first example, A[1].

B A [2:*] returns a one-dimensional sub-array that contains the third
through the tenth elements of A.

B 2 or A[*] returns the entire array A.

332 Chapter9

Building Arrays in
Expressions

Math Operations
Array Operations in VEE

B A[1,2] returns an error because it specifies parameters for a two-
dimensional array.

B is a 5x5 matrix (an Array 2D).

B B[*] returns an error because it specifies only one parameter and B is a
two-dimensional array.

B B[1,2] returns a scalar value from the second row, third element.
B B[1, *] returns all of row one as an Array 1D.

B B[1,1:*] returns all of row one, except for the first element, as an
Array 1D.

B B[4,1:4] returns an Array 1D that contains four elements: the second
through fifth values from row 4.

B B[5, 5] returns an error because arrays are zero-based. The array can
only be accessed through B[4, 4].

B B[1 1] returns an error because a comma must separate the dimension
specifiers.

You can build an array from elements of other arrays or sub-arrays. Each
element in the expression must specify the same number of dimensions and
contain the same number of values in each dimension.

For example, the following expressions show values returned where A is a
one-dimensional array (Array 1D) ten elements long and B is a 5x5 matrix.

B [1,2, 3] returns a three-element Real Array 1D that contains the values
1,2, and 3.

B [A[0], A[5:7], A[9]] causes an error because both scalar and Array
1D elements are specified.

M [A[0:4], B[O, *]] returns a ten element Array 2D (of size 2 by 5) that
contains the first five elements from 2 as the first row and the first row
from B as the second row.

Chapter 9 333

Performing Array
Math Operations

Array Functions
Operations

Math Operations
Array Operations in VEE

B [A[0], A[1], BI[2,3], A[5]] returns a four element Array 1D that
contains the first and second element of 2, the element from the third row
and fourth column of B and the sixth element of A.

Math operations on arrays uses another set of simple rules. Elementary
scalar arithmetic operations on arrays simply perform their operations on
each element in the array:

B A*2 multiplies each element in the array by 2.
B A-4 subtracts 4 from each element in the array.

B Arrays used in functions, like sin ([1,2,3]), have the sin function
applied to every element of the array.

Math operations between two arrays that have the same size and dimensions
perform the operation between corresponding elements of the arrays:

B A*B multiplies each element of the array A by the corresponding
element of array B. This does not perform a “matrix multiply”, which is a
relatively complicated multiplication of rows times columns and
summation that results in a scalar. VEE has a built-in matrix function to
do that, called matMultiply (A, B).

Basic Array Operations

VEE has a very flexible scheme for accessing and manipulating arrays. For a
review of extracting portions of an array and performing simple array math
operations see “Using Variables in Expressions” on page 316 and
“Performing Array Math Operations” on page 334.

Most elementary math functions in VEE, such as 1og (), sin ()and cos ()
can accept an array as a parameter and return an array. Some specialized
functions are handy for performing array math and manipulations. Other
functions are not useful with arrays. Functions that are useful in array
operations include:

B ramp () can be used to generate “loop” counts.
B concat () concatenates two arrays and returns a one-dimensional array.

334 Chapter9

Changing Values in
an Array

Math Operations
Array Operations in VEE

B totSize () gives total number of elements in an array.
B signof () detects a value’s sign (-1if<0,0if=0, 1 if > 0).
B abs (x) sets the absolute value.

B rotate () rotates elements in array.

B sum () sums all elements in an array.

B sort () sorts an array.

B randomize () generates array of random numbers.

B nmin () finds the minimum value of a data set.

B max () finds the maximum value of a data set.

B clipUpper () clips below the maximum given value.
B clipLower () clips above the minimum given value.

A useful feature in Formula objects is the ability to define expressions as
arrays. Notice that you must insert commas between array elements. The
following expression generates an array containing the double, reciprocal,
square, and natural log of the input named B:

[2*B, 1/B, B*B, log(B)]

The following examples show how to manipulate arrays using expressions in
a Formula object. Just connect an object containing the array to the
Formula object's input pin.

You can take an existing array and perform math calculations on selected
elements using an assignment expression. The example in Figure 9-6
changes the values in one row of a two-dimensional array. The expression in
the Formula object performs this task on the input array A=[1,2,3,4], where
row O contains 1 and 2 and row 1 contains 3 and 4.

The expression multiplies the elements in the second row by 4, then assigns
the results to array A. Notice that the Result terminal outputs only the
changed values and the A terminal outputs the entire array with the new
values.

Chapter 9 335

Splitting a Large
Array

Math Operations
Array Operations in VEE

—| Alphatlumeric | -
= Formula = e _— |

=4 Result | —| AlphaMumeric | «

A | L= ATAN s . .

A : :

| 01 2

1.12 16

JET [—"

Figure 9-6. Using an Assignment Expression to Change Array Values

You can display the elements of a single 2048-clement array as 16 sets of
128 elements each. While the problem focuses on the display of the data,
rather than its generation, it may help to approach a solution that involves
breaking up the array.

The program in Figure 9-7 shows how to break up the array in order to
achieve the display goal.

—| rampi{numElem,start,stop) | .-|

Iramp(2048,0,204?) Result

= Formula =]
—|For Count| « A | BT ze0E+ 1 2810
— = IA : Result

Figure 9-7. Reorganizing Values in a Large Array Using an Expression

The ramp () function simply generates a 2048-element array with values
from 0 to 2047 for test purposes. The For Count object ticks off each of the
16 individual arrays to be generated, while the Formula box selects the
appropriate sub-array using indexes generated from the count:

A[0:127], A[128:255], A[256:384], ..., A[1920:2047]

Of course, this assumes a fixed array size, number of subarrays and size of
subarrays. An error occurs if any of these are mismatched.

336 Chapter9

Combining Arrays

Multiplying a Vector
by a Matrix

Math Operations
Array Operations in VEE

The next example shows how to concatenate multidimensional arrays. The
concat (x,y) function is useful for this task when used in a Formula
object, even though it can generate only a one-dimensional output. However,
it will work only if the number of rows or columns is fixed (a constraint that
is usually met in practice). The Formula object in Figure 9-8 contains an
expression that concatenates a pair of arrays that have two rows:

= Farmula =

A | [concatia[0,*],BI0,*T, concatial1,*,801,*7] RESUHI

(o

Figure 9-8. Combining Two Arrays Using an Expression

The concat () function concatenates two arrays and produces a one-
dimensional array. The expression strips out the rows of each of the arrays,
concatenates them and then joins them back together into a two-dimensional
array with two rows containing the combined number of elements in each
TOw.

The following example shows how to multiply a vector
[X1, X2, X3, X4]
times a matrix

[[y11, y12, y13, y14],
[v21, y22, y23, y24],

[y51, y52, y53, y54 1]
to get the result
[[Xx1*yll, X2*yl2, X3*yl3, X4*yld 1,
[X1*y2l, X2*y22, X3*y23, X4*y24 1,
[X1*y51, X2*y52, X3*y53, X4*y54 1]

VEE can multiply a scalar times a vector and can perform matrix

multiplication. A scalar multiplication multiplies every element in a matrix
by a scalar to give a result matrix of the same size as the original. A matrix
multiplication is an operation between an MxN matrix and an NxM matrix

Chapter 9 337

Inserting Elements
into an Array

Math Operations
Array Operations in VEE

that yields a scalar. The required operation for this example does not match
either case.

The operation here is effectively a scalar multiplication of each row of the
matrix by each element of the vector. The implementation uses array
manipulation techniques. Consider a data set consisting of a vector V of the
form

(1, 2, 3, 4]

and a matrix M of the form

[1, 2, 3, 4, 5, 6, 7, 8 1,
(10, 20, 30, 40, 50, 60, 70, 80 1,
(100, 200, 300, 400, 500, 600, 700, 800 1,
[1000,2000, 3000, 4000, 5000, 000, 7000, 8000]]

The desired result is

[11, 2, 3, 4, 5, 6, 7, 8 1,
[20, 40, 60, 80, 100, 120, 140, 160 1,
[300, 600, 900, 12K, 15K, 18K, 21K, 24K 1,
[4000,8000, 12K, 16K, 20K, 24K, 28K, 32K]]

The expression in the Formula object in Figure 9-9 does the multiplication.
The matrix array is connected to terminal M and the vector array is connected
to terminal v. Tests indicate that this is only about 50% slower than a scalar
multiplication of the same array.

= Farmula =

LN I[M[D.*]*‘%-“[D]. M T, MIZTVIZL MR TV | et ||
i

Figure 9-9. Multiplying a Vector Array by a Matrix Array

Figure 9-10 shows an expression that inserts one or more data elements into
an existing array. The inputs are

A is the Index Value
B is the New Data
C is the Original Array

338 Chapter9

Math Operations
Array Operations in VEE

The revised array is output on Result.

_.| Farmula | -'|
A (A==07 cancat(B, C) : (A==totsize(C) ? concat(C, BY : concatiC[0:A-1], concatiB, clAtotsizedC)- 1100
B Result |
|

Figure 9-10. An Expression that Inserts Elements into an Existing Array

The Index Value on 2 indicates what the starting index of the new data
should be. If A 1s O or less, the New Data on B is concatenated to the
beginning of the Original Array on C.

If A is greater than or equal to the length of the Original Array, the New Data
is concatenated to the end of the Original Array. If A is some value in
between, the Original Array is broken into segments around the Index Value
and the New Data is spliced into it.

The example in Figure 9-11 is similar to the previous one. It builds a data
queue with array operations. A queue is essentially an array of fixed length,
where new elements are added at one end and numbers shift down to the
other end, where numbers fall off and are lost.

L
=] Formula = L.
| JeT
|ramp(1D, 0,0y | Result (s
J. —| Formula: Queue =
‘ O ! Iz Iconcat(O|dData[1:(totsize(0|dData)-1)1,NewData) Result b—

MNewDat
On Cycle J. ewbata
Random Mumber

Figure 9-11. Using a Loop to Insert Elements into an Existing Array

The ramp () expression allocates an initial empty array of ten elements to
act as a queue. The on Cycle loop (cycle is set to 1 second) begins and
sends random numbers to the head of the queue every second. The
Formula: Queue takes the last nine elements of the 01dData input and
concatenates it with a new random number on the NewData input. The array
output on Result is fed back as the next set of 01dData and sent to the next
program segment. A new random number is sent to NewData on the next
cycle.

Chapter 9 339

Converting a Vector
to a Matrix

Math Operations
Array Operations in VEE

There are occasions when you can get the results you need by using
transaction objects in place of array functions. The example in Figure 9-12
uses a From String object to convert a vector (one-dimensional array) into
a matrix (two-dimensional array). Run the vector through the From String
and specify the array format you like as an output as shown in the next
program. The conversion between Real and Text data types is automatic in
VEE.

=l Farmula =

rarnp(,0,8) Result j

— Fram String =

READ TEXT x REALEA ARRAY™ 3

= Diouhle-Click to Add Transaction =

AString

Figure 9-12. Converting a One-Dimension Array to Two Dimensions

For example, let us convert a one-dimensional 9-element array into a 3x3
two-dimensional array:

The vector output from the ramp () function is
0,1,2,3,4,5,6,7,8

The From String transaction converts it to the row-ordered matrix

o W O

Ill
141
I7I

o U1 N

If you prefer a column-ordered matrix, use the transpose () (transpose
matrix) function to get the following result

N~ O

131
141
151

O J o

Another way to convert a vector to a matrix is with the Formula build array
syntax. You know that the syntax [1,2,3] generates a one-dimensional array
with three elements. Similarly, if a is a one-dimensional array 10-long, the

340 Chapter9

Math Operations
Array Operations in VEE

syntax [a] generates a 1x10 two-dimensional array. Again transpose ()
can be used if you want a 10x1 matrix.

Advanced Array Operations

This section shows some advanced array operations, including those
involving comparisons on entire arrays of data.

Combining The program in Figure 9-13 shows the method required to take several data
Disparate Elements = sets from a device and get a resulting data set that consists of the maximum
into One Array values from all the individual data sets:
_ =] setvariable | «| —| AlphaMumeric | «
1A~ |I_| Mame 00: 72.44
Diata .
Nuﬁgeﬂtnr | | Im phesl
02: 95.58
03: 68.73
O 04: 99 35
Lintil Break 05:-99.33
0B: 65.43
| 07:81.02
BETDATA | 09: 58,56
09: 84.27
10:91.17
Stop 11:97.98
Moise aneratnr — 19-93.92
—| Getvariahle = Formula [« [
e JA cliploweria, b | Result I— 14:69.39
Data [—1 & | 15: 75.45
| sumdata
—| Setvariahle | 4|
Mame
— Data
4 | sumdata
Mext

Figure 9-13. Collecting Maximum Values from Many Arrays

Chapter 9 341

Comparing Two
Arrays

Math Operations
Array Operations in VEE

This program simulates input data by using a Noise Generator. It gets an
initial data set and puts it in the global variable sumdata, then enters a loop
to obtain new data or quit the program.

Pressing the Get Data button gets a new waveform from a Noise
Generator, then recovers the data in sumdata with a Get Variable
object; these two waveforms are summed into a Formula object, which
processes them and puts the result back into sumdata using a Set
Variable object.

The Formula object accepts the new array data on pin A and the array
sumdata on pin B. The expression cliplower (a,b) outputs a result array
with the value of A if A > B and the value of B otherwise. If you use
clipUpper instead, you would obtain minimum values.

The example in Figure 9-14 compares two arrays of random numbers and
determines how many numbers in the first array are greater than those in the
second array. Comparisons between values typically use relational operators
(such as ==, !=and <=) and the triadic operator (A <B ? C : D), but these
will not solve this problem. Though they accept any data shape, they only
return scalar results. You can still perform relational operations by other
means that yield an array result.

=l randomSeed(seed) [=

|randumSeed((1D"B)’fracPan(nowoﬂUD)) Result

— randarnize s, low, high)

Jiansomizegarnot 000, 0, 8993, 0. 7 I—‘RESHIt 1—‘ Formula [<] —| Formua |« —|Alphaumeric | «

L A [elflower, signarls B3 Result jf— % | [pumeo | Resuit

= randomizegglow, high) J_'ﬂ
Irandumlze(ramp(mﬂﬂ 0,888, 0, 1) | Result

Figure 9-14. Comparing Values in Two Arrays

The randomSeed () function seeds the random-number generator with a
seed that varies rapidly with time. This ensures that the data varies between
different runs of the program. The two randomize () functions each
generate an array of 1000 random numbers in the range 0 to 1. Finally, the
expressions in the Formula objects perform the summation

sum(clipLower (0, signof (A-B)))

342 Chapter9

Using Alternate
Expressions

Math Operations
Array Operations in VEE

Here is how each part of the expression works:

1. a-B provides an array where values are positive if A > B, zero if A == B,
and negative if A <B.

2. signof (A-B) converts positive numbers into 1, negative numbers into
-1, and leaves 0 at 0.

3. clipLower (0, signof (A-B)) strips all the -1 values out of the array,
resulting in an array that is 1 if A > B and 0 otherwise.

4. sum () then adds up the 1s and outputs the number of comparisons where
A>B.

The previous section shows how conventional relational operators can be
implemented for array operations using other techniques:

M A ==B: (l-abs(signof(A-B)))

M A !=B: abs(signof (A-B))

M A > B: clipLower (0,signof (A-B))

M A < B: clipLower (0,-signof (A-B))

H 2 >= B: (1-clipLower (0, —signof (A-B)))
B 2 <= B: (1-clipLower (0, signof (A-B)))

Notice how subtracting an array of 1s and Os from 1 performs a NOT
operation on the array. Similar techniques can be used for comparison with
scalar values, rather than other arrays. You can also perform Boolean
operations on the resulting arrays of 1s and 0s.

For example, suppose that A1 and A2 are two such arrays. The following
logic operations hold:

B NOT Al: 1 - Al

B A1 AND A2: Al * A2

M A1 OR A2: signof (Al + A2)

M Al XOR A2: 1 - abs(signof((Al + A2) - 1))

You can use the results of these computations to perform “masking” on
arrays of the original values through multiplication. Those values that match
to 0 are removed and those that match to 1 are retained.

Chapter 9 343

Choosing Efficient
Techniques

Math Operations
Array Operations in VEE

Applying the previous techniques could result in programs with Formula
objects containing huge logic operations that are difficult to maintain. While
the goal is to eliminate or reduce loops by replacing multiple objects with
Formula objects, you could also use UserFunctions. A good understanding
of array-manipulation techniques allows you to bypass complicated formal
logic operations for more direct solutions.

The following example shows the choices you can make in array
manipulation. Suppose an array of 8-bit unsigned data received from an I/O
device is converted by VEE into 32-bit signed integer data and you want to
get the real values back. You can do this in a single expression by adding 256
to each value of the return array:

(A + (clipLower (-1,clipUpper (0,A))) * (-256))

This expression performs the following operations:
1. clipUpper (0,A) converts all positive values to 0.

2. clipLower (-1, clipUpper (0, A)) converts all negative values to -1
(recall that the inputs are integers, not reals). This creates an array that
has -1 for each negative value and 0 otherwise.

3. clipLower (-1,clipUpper (0,A)) * (-256) multiplies that array
by -256 creating an array that has 256 for each negative value and 0
otherwise. This array is then added to the original array to offset all the
negative values to their “true” positive value.

Another solution could have used relational operations as shown previously,
but it would have been much more complicated than this direct solution.

A very useful object for array computations is the Comparator, which
allows extraction of array elements that meet specific criteria. Suppose you
want to determine the transitions in the following data stream:

00001100110

The solution shown in Figure 9-15 is the easiest way to find the indexes of
the array elements where the value makes a transition from 0 to 1 and the
reverse.

344 Chapter9

Math Operations
Array Operations in VEE

—| intaz |«
0ooo: 0 A
ooo1:0
000z 0
0003 0
004 1 —| Formula =]
0005: 1 A | [alltotsizeda)-1]-a(0:totsizeda)-2 | Result
000e: 0 J I |
ooo7: 0
000a: 1
0004: 1
0010:0 — —|int32] 4] =] Comparatar =]
|D Ref¥alue Passed
L Testvalue [== =| Refvalue | Failed
TestValue Failures T
—| UnBuild Coord | «| —| Formula =] ;lAlphaNume... =
¥ Data [l—1 A | [L5§gu '
Coord Data a | 1.8
f Data 28
3:10

Figure 9-15. Finding Transition Points in an Array of Values

Although the program contains a Comparator, the key is the Formula
object containing the expression

A[l: (totSize(A)-1)] - A[O: (totSize(A)-2)]
To see how this works, add array indexes to the data stream:
BO:0 1:0 2:0 3:0 4:1 5:1 6:0 7:0 8:1 9:1 10:0

The array indexes are marked where a transition occurs. The expression
above performs a subtraction of the input array from itself, staggered by one
index, to yield the following new array:

0:0 1:0 2:0 3:0 4:1 5:1 6:0 7:0 8:1 9:1 10:0
- 0:0 1:0 2:0 3:0 4:1 5:1 6:0 7:0 8:1 9:1 10:0
0:0 1:0 2:0 3:1 4:0 5:-1 6:0 7:1 8:0 9:-1

The Comparator checks the Result array to see which elements are equal to
0. Array elements that fail the test are the indexes and are returned on the
Failures terminal as an array of X-Y coordinates giving the index and
value of the failure. To retrieve only the index values, the Unbuild Coord
object separates the x and v values. Then the X index values are incremented
by 1 to eliminate the effects of the staggered subtraction.

Chapter 9 345

Math Operations
Array Operations in VEE

The data obtained in the subtraction not only indicates the index of the
transaction, but its direction: 1 for a positive transition, -1 for a negative.
This operation is basically a difference-equation approach to performing a
differentiation.

346 Chapter9

10

Variables

Variables

This chapter describes variables in VEE, including;

B About Variables
B Using Variables

Note For information about using variables with ActiveX automation objects and
controls, see Chapter 14, “Using the Sequencer Object,”.

348 Chapter10

Variables
About Variables

About Variables

There are two types of variables in VEE: undeclared and declared. Both
types of variables can contain any data type, including complex data types
such as waveforms and records. They can also be any data shape, including
scalars and arrays.

About Undeclared Variables

Undeclared variables are the easiest to use but execute slower and do not
allow scoping (described in About Declared Variables, below). Undeclared
variables include the following:

B Global variables that can be used anywhere in the program. They are
created with the Set Variable object. They are deleted before the
program is run if the Delete Variables at PreRun property is set.
Global variables must be created before they can be accessed via the Get
Variable object or used in expressions, or else your program will
generate an error.

Undeclared global variables are useful if you do not know what data type
or shape your values will be or if the values may change type or shape. If
you want a scoped variable (i.e., local), use declared variables (see
“About Declared Variables” on page 350).

B Temporary variables that are used only in Formula objects. You can
create a temporary variable, such as tmp, in a Formula by adding an
output terminal. For example, to swap the values input in a Formula
object’s terminals a and b, use the temporary variable tmp. The
expression would look like tmp=a, a=b, b=tmp. For more
information about temporary variables, see Assignment in VEE Online
Help under Reference = Math Functions and Operators.

B Terminal names that are used as variables within objects (such as in
transaction or Formula objects).

Chapter 10 349

Variables
About Variables

About Declared Variables

Declared variables are defined before they are used. They have the
additional feature of scoping and allow VEE to run faster because the data
type and shape are known before run time. However, if you attempt to set a
declared variable with values that are different from the data type or shape of
the values set in the declaration, the program will error.

To declare a variable, use the Data = Variable = Declare Variable
object. When placed in a context, it declares the variable before any of the
other objects execute. When the variable has been declared, it has no value
until it is set via a Set Variable ora Formula object.

The scope of a declared variable must be specified in the Declare
Variable object. The scopings are as follows:

B Global - The variable can be used anywhere in the program.

B Local to Context - The variable can only be used in a single
UserObject or UserFunction, or in Main. This variable can be used in the
context that the Declare Variable object is in and in UserObjects
nested inside the context. The variable cannot be used in UserFunctions
called from the context.

B Iocal to Library - The variable can only be used within the library
of UserFunctions where the Declare Variable object is used.
Declare Variable must be located in one of the UserFunctions.

You cannot define multiple variables with the same name and scope. If this
happens, you will get an error.

About Variables Naming

You can use any valid variable name for a variable. The first character must
be a letter. Letters, numbers, and the underscore character may be used in the
rest of the name. Variable names are not case sensitive (uppercase and
lowercase letters are equivalent). Special characters, including spaces, are
not allowed.

To retrieve the value of the variable, you must use the name that you
specified when the variable was declared or set.

350 Chapter10

Variables
About Variables

When Execution Mode in Default Preferences is setto VEE 5 mode
or higher, some names must be unique. See “Using VEE Execution Modes”
on page 17 for information about using variable names in VEE 5 mode.
When Execution Mode is setto VEE 4 or VEE 3 mode the question of
precedence arises when you have named a variable the same name as
another variable. The order of precedence (from highest to lowest) is:

1.

2.

6.

Input terminal name (such as in a Formula or a transaction object)

Temporary variable (as in a Formula object)

. Local to Context declared variable

Local to Library declared variable
Global declared variable

Global undeclared variable

If two variables with the same name are in an object, there is a conflict.
The variable with the highest precedence is used.

Chapter 10 351

Variables
Using Variables

Using Variables
This section gives guidelines for using variables in VEE, including setting

initial values, accessing variable values, deleting variables, and using
variables in libraries.

Setting Initial Values

You must have set initial values before accessing any variables or VEE
generates an error. See Figure 10-1 for a variable example.

~| Realfs | - ~| setvariable | 4|

: Dat Mame
. ata i
oo 2L o = taline.-
0003: 1 T o -
a0o4: 6 B
- i 222
- —| GetVarahle |« 31
Mame 4.6 ﬂ
Data -
globala

Figure 10-1. A Variable Example

The set Variable must set the global variable before the Get variable
attempts to retrieve it. To ensure this, the sequence output pin of the Set
Variable object is connected to the sequence input pin of the Get
Variable object. If this is not done, the Get Variable may try to access
a non-existent global variable and an error will occur.

If the property Delete Variables at PreRun is not set, you may not
receive an error and may receive old data instead.

When declared variables are created, they are not initialized and must have a
value set in them before they are accessed via the Get Variable object or
used in expressions. If they do not, your program will generate an error. You
set values via the Set Variable object or by using the Formula object.

352 Chapter10

Variables
Using Variables

If the variable is an array or a record, when using the Formula object you
must set the values of the entire array or record before trying to access any of
the elements. The example in Figure 10-2 shows two different ways to
initialize values from a Formula object.

= Declare Variahle = -] T B = Alphafiurme..| =
Name: [global [pioball =0.00.00] | Resuty |0:0 -
Scope: | Global -] 1:0
. 20
Type: | Real64 vl _| Get globall | "| e
MNum Dims: | 1 vl e 40 =
Data |
| aloball
—| Formula =
— Declare Yariahle F
| |gl0bal2: rarp(5,0,0 | Result | G
Mame: | global2 — 4]
Scope: | Global vl | oetgonaz || ot
Type: Realtd =~ Mame l—l2: 1]
. Data 30
Num Dims: [] [alabalz | e =

Figure 10-2. Setting Array Values

Chapter 10 353

Variables
Using Variables

Accessing Variable Values

Once you have named a variable, you can access its value as many times as
you want in your program. You can use several methods to retrieve the
variable value. In the example in Figure 10-3, the value stored in the global
variable globalA is retrieved once with a Get Variable object, a second
time by including the name globalA in an expression in a Formula object,
and a third time by including the name globala in a transaction in a To
File object:

—| Setvariable | 4|

Mame
Data
| glabalA
—|Alpha... | =
012
—| Getvariahle | 4| 1:34

Marme 2:22
Data '

| glabalA 31

4.6
=] Forrriula =] _laphan.. | -
Isnr‘[(glnbalﬁ) Result 0:1 -

1.6

2:12

= To File & >
14:34 bt

To File: myFile |

[ClearFile At PreRun & Cpen
WRITE TEXT glohala

= Double-Click to Add Transaction =

Figure 10-3. Accessing a Variable Multiple Ways

Note You can include the name of any global variable in any expression in a
Formula object or in any other expression that is evaluated at run time.

354 Chapter10

Variables
Using Variables

Deleting Variables

To improve memory usage, use the Delete Variable object to free up
memory space when a variable is no longer needed. When undeclared
variables are deleted, their values and definitions are both deleted. When
declared variables are deleted, the values are reset to uninitialized values but
the definition remains.

When you set Delete Variable to By Name, the closest variable of the
specified name is deleted. The closest variable is defined by the precedence.

When you set Delete Variable to All, all declared and undeclared
variables in all scopings are affected, even the variables that are in imported
libraries. Declared variables are uninitialized and undeclared variables are
deleted (as described previously).

Deleting all Variables may not cause all memory to be freed or all ActiveX
Automation pointers to be released. See “Deleting Automation Objects” on
page 425 for more information.

To delete all variables before each execution of the program, select File =
Default Preferences and click the check box Delete Variables at
PreRun. If this check box is not selected, the values of all variables will
remain and the declarations of declared variables will not reinitialize the
values

Using Variables in Libraries

Because only UserFunctions are loaded when the library is imported, when
you use Declare Variable objects you must put them in one of the
UserFunctions, not in the Main window of the library.

When a variable is scoped as a G1obal, it is only used in the local program.
It cannot be used in any Remote Function that is called.

When a library is imported, all variables declared (via Declare Variable
objects) in the imported UserFunction are defined at that time for the scope
specified. For example, if the variable is scoped as a Global, it can be
accessed from any part of the program until the library is deleted. When a
library is deleted, all variables declared in its UserFunctions are deleted as
well.

Chapter 10 355

Variables
Using Variables

356 Chapter10

11

Using Records and DataSets

Using Records and DataSets

This chapter introduces two concepts: the Record data type and the DataSet.
A data set is a collection of Record containers saved into a file for later
retrieval. The chapter contents are:

B Using Records
B Using DataSets

358 Chapter11

Using Records and DataSets
Using Records

Using Records

This section gives guidelines for using objects to create and manipulate
records, It includes understanding record containers, accessing records,
programmatically building records, and editing record fields.

Understanding Record Containers

There are several VEE objects that allow you to create and manipulate
records, including Record, Build Record, UnBuild Record, Merge
Record, SubRecord, Set Field, and Get Field. All these objects are
located in the Data menu.

A container of the Record data type has named fields which represent data.
You can have as many named fields as you like in a record. Each field can
contain another record, a scalar, or an array.

The Record object allows you to create records by manually entering a
value for each field. Just configure the Record object as a scalar (array
elements = 0) or as an array (array elements = non-zero) with the
Properties dialog box, accessed from the object menu.

The Record object in Figure 11-1 is configured as a record array with four
array elements. The record consists of five fields: the Text fields (Name,
Address and City) and the Int32 fields (Emp1No and zip). The Record
object allows you to step through the record from one array element to the
next by using the First, Prev, Next, and Last buttons. You can edit each
field as you go.

Chapter 11 359

Using Records and DataSets
Using Records

=] Record =

‘ |] in: [0 .. 3] |
Field name Yalue

Mame ||J0hn Srmith

EmplMo ||555333 |

Address ||401 E. First 5t.
City ||Cer‘|tral City, UZA
zip |[paszi

First | Preyv | Mext | Last |

= Alphakumeric =
0: {"John Srmith", 555333, "401 E. First St.", "Central City, USA", 54321}

{
1. {"Don Jones", 554433, "9000 SE County Rd. 12", "Central City, USA", 84321}
{
{

S {"Susan Smith", 332244, "121 Second St "Central City, USA", 54321}

2
30 {"Joe Baker", 121212, "8838 M. Apple St.", "Middietown, USA", 34322}

Figure 11-1. Example: A Record Container

When the program is run, the entire record is output on the Record output
pin. The AlphaNumeric display shows the entire record with four array
elements (0 through 3) each consisting of five record fields enclosed in
braces ("{1}").

Accessing Records

The example programs in Figure 11-2 and Figure 11-3 show one way to
access a record and extract individual fields.

Use the Get Field object to extract an individual field from the record.
Get Fieldis located under Data = Access Record. For the example
in Figure 11-2, Get Field objects are used to extract the entire Name and
EmplNo fields: The Get Field objectis a Formula object with the default
expression rec.field.

360 Chapter11

= Record =

‘ [i in; [0 .. 3] ‘
Field name Yalue

Name |Pohnsmith
EmpiNo_|[5g333 |
Address |01 E.Firstst.

city |[Central City, USA
zip |42t

First | | Prev | Next | | Last |

Using Records and DataSets
Using Records

—| AlphaMumeric | «
0: John Smith

rec field =

rec IREC[*].NamE |Result—|

1. Don Jones

20 Susan Smith

3. Joe Baker

—| AlphaMumeric | «
0: 555333

rec field =

rec IREC[*].EmpIND |Result—|

1. 954433

20332244

3121212

Figure 11-2. Retrieving Record Fields with Get Field

Use the "dot" syntax to access individual fields, for example: Rec [*] . Name
and Rec[*] .Emp1No. This syntax is described in Mathematically
Processing Data => General Concepts under Tell Me About in

VEE Help.

Rec [*] .Name means "get the Name field from all elements of the record
array on the Rec input pin." This syntax can be used in an expression in a
Formula object or in any other expression that is evaluated at run time. For
example, you could use this syntax in a transaction in the To String

object.

Chapter 11

361

Using Records and DataSets
Using Records

Use the syntax Rec[1] .Name and Rec[1] .Emp1No to obtain just the
second element ("element 1") of each field, as shown in Figure 11-3.

— Alphabumeric | =
=l Recard [= = rec field =]
| 5 N0 | — ree | Wll?esult' Don Jones
Field name Walue
Mame HW
Empino_|[5esszs | |)
Address |IW
City HW —|_Alphalumeric |«
7 ||545‘?1— = rec.field =
4iec | ReciiEmpio || Resutf—{ 554433
First | Prey | HExt | Last | -

Figure 11-3. Using Array Syntax in Get Field

362 Chapter11

Using Records and DataSets
Using Records

To retrieve several or all fields from a record use the UnBuild Record
object, as shown in Figure 11-4.

—| MName List |« —| Type List | «
0: Name 0 Text
= Record [= 1: EmpiNa 1: Int32
‘ 0 & ‘ 2. Address 2 Text
I n- 03] 3 City 3 Text
Field name Walue 4 Zip 4. Int32
Mame Hjuhn Smith
Empitio_| [555333 = MName |-
OTE Frster ~| UnBuild Record | +| 0: John Smith
Address | 01 E. First 5t. Narne List 1- Don Janes
City ||Centra| City, USA Type List [2° Susan Smith
Zip ||54321 Marne 3: Joe Baker
First | | Prev | Next | | Last | Record Data| | Empiio
Address
City —| EmplMo [«
Zip 0: 555333
_] 1. 554433
20332244
3121212
= _Zp |« = City = = Address =
0: 54321 0: Central City, USA 0: 401 E. First 5t.
1. 54321 1. Central City, USA 1. 8000 SE County Rd. 12
2 54321 20 Central City, USA 20121 Second St
T 549922 3 Middletown, USA 30888 N. Apple 5t

Figure 11-4. Retrieving Record Fields with UnBuild Record

The UnBuild Record object allows you to add outputs for every field in
the record and provides Name List and Type List outputs. These outputs
list the name and type of each field in the record.

The program is saved in the file manual38.vee in your examples
directory.

Note Data cannot be automatically converted to and from the Record data type.
For example, to send Record data into a Real input terminal you must extract
the field from the Record with the Unbuild Record object or use Get
Field with the Rec.A syntax as described previously.

Chapter 11 363

Using Records and DataSets
Using Records

Programmatically Building Records

The Record object is useful for creating and editing simple records.
However, it is cumbersome for creating large records. You may also want to
create a record from existing data. In such cases, use Build Record to
build a record.

When you build a record from individual data components with Build
Record, you must define the data shape of the output Record container.
The Build Record object gives you two Output Shape choices: Scalar
and Array 1D. In most cases you will find that Scalar, the default, is the
appropriate choice for Output Shape.

The example in Figure 11-5 shows the difference between Scalar and
Array 1D in the output record built from two input arrays:

= Build Record =]
1 A

Cutput Shape:

DDD1; Second Scalar Record
0002 Third ' — 4 B

0004 Last -
= = L—| Alphakurneric =

{«Text Array 10=, <Fealsd Array 10z}

~| Realbd | -
: - Alphar\Tume... F
DDDSE : 0:A"First', 1}
00%. 8 = Build Record = o e, 2
= U A | utput Shape: 2:{“Th|rd ',.3}
At 1D | Record 3:{"Fourth”, 4}
Iray 4:{"Last’, a1

Figure 11-5. The Effect of Output Shape in Build Record

In Figure 11-5, when Scalar is selected the output record is a scalar record
consisting of two fields, each being one of the input arrays. On the other
hand, when Array 1D is selected for the same input data, the output record
is a record array with the same number of elements as the two input arrays.
The data is matched, element for element, in the output record.

If two input arrays have different numbers of elements, only Scalar is
allowed as the output Shape. To create an Array 1D output record, all

364 Chapter11

Using Records and DataSets
Using Records

input arrays must have the same number of elements or an error will occur.
However, you can mix scalar and array input data, as shown in the example
in Figure 11-6.

= Build Record =
ﬂ Qutput Ehape:

Record
Scalar |
— B |

L—-| AlphahMumeric F
[«Text Array 10=, 1}
—| Realbd | 4]
|1 —
—|AlphaMume...|
0:{"First', 1}
= Build Recard =] 1:{"Gecond", 1}
A . 2 {"Third", 1}
Output Shape:
Record —I_|3:{"Fnur1h",1}
Array 10 | o \
— B | 4 {"Last' 1}

Figure 11-6. Mixing Scalar and Array Input Data

In this case, the scalar Real value 1 is repeated five times in the output
record array if Array 1D is selected.

Editing Record Fields

You can use the Set Field object to modify a field in a record. The
Set Field object is an assignment statement consisting of a left-hand
expression set equal to a right-hand expression. The left-hand expression
specifies the field that you want to modify and the right-hand expression
specifies the new data.

Chapter 11 365

Using Records and DataSets
Using Records

The right-hand expression is evaluated and the record field specified by the
left-hand expression is assigned that value. See Figure 11-7 for an example.

—|AlphaMurme.. |
=| Build Record = 0:42,1}
ﬂ Cutput Shape: | ;{j:}
Array 1D |M| AT
B | 342, 1)
449 1}
—~| Realfd || —|Alphaume.. |
I— 0421}
1 1:4330, 1}
= rec.field=h = 247 1)
Rec — e
—| Real64 | .-| 4 Rec[1].A=A%10 - j3:{2| 1
’ ec
[33 A 4:49,1}

Figure 11-7. Using Set Field to Edit a Record

In this example, a five-element record array is built with Build Record.
The Set Field object (titled rec.field = b) specifies that the field
Rec[1].A (the A field of record element 1) is to be assigned the value A*10.

There is a potential for confusion here. In the left-hand expression, the A in
Rec[1] .A refers to the A field of the record. However, in the right-hand
expression the A in A*10 refers to the value at the A input of the Set Field

object. This exemplifies the need for good names for variables and Record
fields.

The variable A has the value 33, so 2*10 is evaluated as 330, which is
assigned to Rec [1] .4, as shown in Figure 11-7. Note that none of the other
values of the record have changed.

Set FieldisaFormula object. See Assignment inMath Functions
and Operators under Reference in VEE Online Help for more
information.

366 Chapter11

Using Records and DataSets
Using DataSets

Using DataSets

VEE data (including waveforms) can be built into records and later
retrieved. You can also store records into a file, called a DataSet. The To
DataSet and From DataSet objects allow you to store and retrieve
records to and from DataSets. They are located in the T/0 menu.

A DataSet is a collection of Record containers saved into a file for later
retrieval. The To DataSet object collects Record data on its input and
writes that data to a named file (the DataSet). See Figure 11-8 for an
example.

—| Function Generatar =

Function | Sine |
Freguent 100
quency | Build Record =]
Amplitude | 1
1 -
DeOffset | o Func | SineWave | Output Shape:
Fhase | Deg vl | i

Time Span 20m Record
Nurm Points 286 Scalar |
Moise
= MNoise Generatar =]
Amplitude [05 | =1 To Data Set =
Time Span 20m | | noise ' | ol MO AIASEE myData_ |
Mum Points 256 ¥ Clear File At PreRun

Figure 11-8. Using To DataSet to Save a Record

Two waveforms, a sine wave and a noise waveform, are output to the Build
Record object which builds a record. The record is then output to the To
DataSet object which writes the data to the file myData. Clear File at
PreRun is checked so any data previously stored in myData is cleared.

Once the data has been saved as a DataSet, use From DataSet to retrieve
the record, which can then be unbuilt if desired. The program in Figure 11-9
shows this technique.

Chapter 11 367

Using Records and DataSets
Using DataSets

= From Data Set = = Sine VWave r
15
From DataSet: myData | 1=
Y name
Get records: One
Rec |
Search Specifier (eg: Rec.A<10)
[1 i
Tracel 5 I
4] [+
il 20m
—| UnBuild Recard | «|
X name
MName List
= T Type List
ecord Data
Sinetiave —{ = Noise =
MNoise L 15
4 Y name
— Sine + Moise F] _
15 Tracel | . T
= 4] [+
Y name] 20
X name
Tracel 5 I
4] [+
il 20m
X name

Figure 11-9. Using From DataSet to Retrieve a Record

The From DataSet object retrieves the record data from myData and
outputs the data to Unbuild Record, which separates out the sine wave
and noise data fields. In this example, the sine wave, the noise waveform,
and the sum of the two waveforms are each displayed in a separate xy
Trace object.

The pair of programs of this last example are saved in the files
manual40.vee and manual4l.vee in the examples directory.

368 Chapter11

12

User-Defined Functions/Libraries

User-Defined Functions/Libraries

VEE provides 19 categories of built-in functions you can use in programs.
When one of these built-in functions is not exactly right for your program,
you can define your own function.

This chapter describes how to create custom functions with/using
UserFunctions.

VEE Pro supports threetwo kinds of user-defined functions:

B UserFunctions
B Compiled Functions
B Remote Functions

This chapter describes UserFunctions, Compiled Functions, and Remote
Functions, in the following sections:

B About UserFunctions

B Using a Library of Functions
B About Compiled Functions
B About Remote Functions

370 Chapter 12

User-Defined Functions/Libraries
About UserFunctions

About UserFunctions

A UserFunction is specifically designed for creating a user-defined function.
You create a UserFunction by selecting it from the Device menu or by
converting existing objects or an existing UserObject into a UserFunction.
This section describes how to create a UserFunction. The next section
describes how to convert a UserObject into a UserFunction.

To create a UserFunction, click Device = UserFunction. An empty
UserFunction window appears in the work area. Create your function by
adding terminals and objects as needed. Change the name to whatever you
want (spaces not allowed). See the VEE User s Guide or How Do I in VEE
Online Help for additional details.

When the UserFunction is complete, you can iconify it or close it to get it out
of the way of the rest of your program. You can call your UserFunction using
a Call object in your program (Device = Call) or other objects identified
below. A UserFunction can be saved in a library and imported into a
program with the Import Library object.

The advantage of creating a UserFunction over using a UserObject is that
you can call a single UserFunction several times in your program. Thus,
there is only one UserFunction to edit and maintain, rather than several
instances of a UserObject.

When executed in VEE 4, or higher Execution Mode, a UserFunction will
time-slice when called from Call, Formula, or If/Then/Else, or
Sequencer objects (only from the Function field).

A UserFunction will not time-slice when called from a To File, To
String, or similar object or if the Formula object’s formula is supplied via a
control pin.

Converting Between UserObjects and UserFunctions

To convert a UserObject into a UserFunction, select Make UserFunction
from the UserObject's object menu. The UserObject window is replaced by a
UserFunction window with the same input and output terminals. The
UserObject object is replaced by a UserFunction Call object.

Chapter 12 371

User-Defined Functions/Libraries
About UserFunctions

To reconvert the UserFunction back into a UserObject, select Make
UserObject from the object menu of the UserFunction window. Any calls
to the UserFunction remain (you will have to manually delete them), but
the UserFunction is automatically converted into a UserObject.

Calling a UserFunction from an Expression

You can call a UserFunction from an expression in a Formula object or
from any expression evaluated at run time, such as from a ToFile object.
The program in Figure 12-1 demonstrates several ways to call a
UserFunction.

—| ampl |- —| Setvariable |«

| 0.495
MName —| ¥ Trace F

— ot
j —

—| Call Function = I
[— Function Name
— ¥ ¥+hoi
v [noiseur G
J- =| ¥ Trace |«

- —| Farmula =
WA I
AT | v |/fabstnaiseUF(v)) Result [-—

Function Generator J-

—| Farmula =

‘—1 ¥ | [abs{noiseUF(Y))-1.5 Result|\L

MMM

Figure 12-1. Calling a UserFunction from Expressions

—| ¥ Trace =

In the program, the cal1 object calls the UserFunction noiseUF and
returns a sine wave with an added noise component. The expression
abs (noiseUF (Y)) in the first Formula object returns the absolute value

372 Chapter 12

User-Defined Functions/Libraries
About UserFunctions

of the waveform returned by the UserFunction. Thus, the displayed noisy
sine wave is rectified in the positive direction.

The expression abs (noiseUF (Y))-1.5 in the second Formula object
also calls the UserFunction but adds a negative dc offset to the waveform.
The sequence pins are used to ensure correct propagation because the
UserFunction uses the global variable.

This program is saved in the file manual43.vee in the examples
directory.

Chapter 12 373

User-Defined Functions/Libraries
Using a Library of Functions

Using a Library of Functions

Methods for creating each type of user-defined function and using it in a
VEE program are similar. All these functions are called using the call
object or from certain expressions, such as in Sequencer or Formula
objects. You can use any of the three kinds of user-defined functions in a
library. To use a library of functions, follow these steps:

1. Import the library.

Use the Device = Import Library object. Select the Library
Type (UserFunction, Compiled Function, or Remote Function)
and fill in the appropriate fields. Specific information about these fields
is explained in the associated section in this chapter.

2. Call one or more functions that are contained in the library.

Use the call, Formula, or Sequencer objects from the Device menu.
You can also use other objects that call expressions at run time, such as
If/Then/Else or To File.If you want to have multiple values
returned from the function, you must use a Call object.

3. Delete the library.

If memory management or program execution speed is a concern, use the
Device = Delete Library object to programmatically free the
library from memory. Otherwise, libraries are automatically deleted
when VEE exits.

Specific information about using different kinds of libraries is listed in the
following sections.

The ability to call a UserFunction from an expression is very useful —
especially when you include such an expression in a transaction in the
Sequencer object. See Chapter 13, “Using ActiveX Automation Objects
and Controls,” for more information about this topic.

374 Chapter 12

Note

User-Defined Functions/Libraries
Creating a UserFunction Library

Creating a UserFunction Library

So far we have looked at local UserFunctions that are created and used
within the same program. You can also create a library of multiple
UserFunctions stored externally and later imported into a program.

To create a library of UserFunctions, create the UserFunctions in the empty
VEE work area and save them to a file. For example, to create a library of
two UserFunctions, myRandl and myRand?2 (which add random numbers to
an input value), create the two UserFunctions as shown in Figure 12-2.

2 rmyRand1

! random(low, high)

B |
= Formula | <]
ﬂ IW Result | ﬂ
= Farmula |~ IJ
ﬂ ﬁ W Result |

yRandz

ﬂ‘l\\A‘—J Formula |A|j
| 4 |[Js+20 Result | x|
_ Formula |-|J
= ﬁ (ST (GEET

Figure 12-2. Creating UserFunctions for a Library

To create a UserFunction library, save the program with a name that
identifies it as a library. For example, use a .vlb extension instead of .vee.

Normally, the program should contain only UserFunctions. If other objects
are in the program (e.g., in Main), they are ignored when the library is
imported. If you use Declare Variable objects, put them in one of the
UserFunctions, not in the Main window of the library.

Chapter 12 375

User-Defined Functions/Libraries
Creating a UserFunction Library

Importing and Calling a UserFunction

To import the UserFunction library into a program, use the Import
Library object. The program in Figure 12-3 imports the library from the
file user func 1ib and calls the UserFunctions myRand1l and myRand2.

= Import Library =

Library Type |UserFunction vl
Likrary Mame | Lk

File Mame user_func_lik |

= Call myRand1 =] _
Function Marme s T
A H | 1.319
A | ryRand —
—|Reals4| 4 |
|1
= Call myRand?2 =
Function Marne —|AIphaNumeric| =
A H | 89,64
A | ryRand2 —

Figure 12-3. Importing a UserFunction Library

The Import Library object allows you to specify a type of library: User
Function, Compiled Function, or Remote Function. If you select
UserFunction, you also specify a Library Name and File Name.

The Library Name field specifies a local name for the library within the
program. This makes it possible for the Delete Library object to delete
the library from the program. In this case, Import Library attaches the
name myLib to the library imported from the file user func 1lib.

The File Name field specifies the file from which to import the library,
user func lib in this case. If you click on the File Name field you can
select from a list of all library files.

This program is simple so it is not necessary to delete the UserFunction
library after it is used. In a large program with calls to large libraries,
deleting a library when you no longer need it reduces the program’s memory
requirements.

376 Chapter 12

Note

User-Defined Functions/Libraries
Creating a UserFunction Library

You cannot edit UserFunctions imported with Device = Import
Library, but you can view their contents and set breakpoints for
debugging. To view imported UserFunctions, use the Program Explorer.

You can merge a library of UserFunctions using File = Merge Library.
Once the library is merged into your program, you can edit the individual
UserFunctions with Edit = Edit UserFunction.

Merging UserFunctions

Merging a UserFunction lets you make it part of your program. Since it is
not imported, you can modify it as needed. A merged UserFunction is saved
with the VEE program and does not change if the original library changes.

To merge a UserFunction into a program, select File = Merge Library.
A dialog box opens displaying the files in the library directory. Select the file
containing the UserFunction library you want and click Open.

Chapter 12 377

Note

User-Defined Functions/Libraries
About Compiled Functions

About Compiled Functions

A Compiled Function is created by dynamically linking a library written in
C, C++, FORTRAN, or Pascal, to the VEE process. A library of compiled
functions is called a shared library in UNIX and a dynamic link library
(DLL) in Microsoft Windows.

Creating a Compiled Function is considerably more difficult than creating a
UserFunction. Once you have written a library of functions in C or another
language, you will need to compile the functions into a DLL or shared
library. You will also have to create a definition file that will provide VEE
with information it needs to call your function.

Using a Compiled Function

To use a Compiled Function, you:
1. Write the external program.

2. Create the DLL (Windows) or shared library (UNIX) and a definition
file.

3. Import the library and call the function from VEE.

4. Delete the library from VEE memory when you are done.

Pascal shared libraries are supported only for HP 9000 Series 700
computers.

The methods for importing a Compiled Function library and for calling the
function are very similar to those for UserFunction libraries. The Import
Library object attaches the DLL to the VEE process and parses the
definition file declarations.

The definition file defines the type of data passed between the external
library and VEE. (This file is discussed later in this section.) The Compiled
Function can then be called with the Ca11 object or from such objects as
Formula and If/Then/Else.

378 Chapter 12

User-Defined Functions/Libraries
About Compiled Functions

Design Considerations for Compiled Functions

Using Compiled Functions, you can develop time-sensitive routines in
another language and integrate them directly into your VEE program. You
can also use Compiled Functions to keep proprietary routines secure.

Because Compiled Functions do not timeslice (i.e., they execute until they
are done without interruption) they are only useful for specific purposes that
are not otherwise available in VEE.

You can extend the capabilities of your VEE program by using Compiled
Functions, but it adds complexity to the VEE process. The key design goals
should be:

B Keep the purpose of the external routine highly focused on a specific task

B Use Compiled Functions only when the capability or performance you
need is not available using a VEE UserFunction or an Execute
Program escape to the operating system.

You can use any operating system facilities available in the program to be
linked, including math routines, instrument I/O, etc. However, you cannot
access any VEE internal functions from within the external program to be
linked.

Although the use of Compiled Functions provides enhanced VEE
capabilities, some problems can occur. A few key ones are:

B VEE cannot trap errors originating in the external routine. Because your
external routine becomes part of the VEE process, any errors in that
routine propagate back to VEE. A failure in the external routine may
cause VEE to "hang" or otherwise fail. You need to be sure of what you
want the external routine to do and provide for error checking in the
routine. If your external routine exits so will VEE.

B Your routine must manage all memory that it needs. Be sure to deallocate
any memory that you may have allocated when the routine was running.

Chapter 12 379

User-Defined Functions/Libraries
About Compiled Functions

B Your external routine cannot convert data types the way VEE does. You
should configure the data input terminals of the Cal1 object to accept
only the type and shape of data that is compatible with the external
routine.

B [fyour external routine accepts arrays, it must have a valid pointer for the
type of data it will examine. The routine also must check the size of the
array on which it is working. The best way to do this is to pass the size
of the array from VEE as an input to the routine, separate from the array
itself. If your routine overwrites values of an array passed to it, use the
return value of the function to indicate how many of the array elements
are valid.

B System I/O resources may become locked. Your external routine is
responsible for timeout provisions, etc.

B [f your external routine performs an invalid operation, such as
overwriting memory beyond the end of an array or dereferencing a null
or bad pointer, this can cause VEE to exit or error with a General
Protection Fault (MS Windows) or a Segmentation Violation (UNIX).

B [f your external routine has arrays or char* parameters, the memory
passed to these routines must be allocated in VEE. You should allocate
this memory by doing the following:

U For an array input, use an A11loc Array object of the appropriate
type, and set the size appropriately.

U For a string input, use a Formula object. Delete the data input
terminal from the Formula object and enter an expression like
256*"a", This creates a string that is 256 characters long (plus a null
byte) filled with a’s. Most VXIplug&play functions will not write
more than 256 characters into a Text parameter. However, it is best to
check the Help on each function panel that requires a Text input to be
sure.

380 Chapter 12

User-Defined Functions/Libraries
About Compiled Functions

Importing and Calling a Compiled Function

You can import a DLL into your VEE program with the Import Library
object, then call the Compiled Function with the Cal1l object. The process is
very much like importing a library of UserFunctions and calling the
functions, as described at the beginning of this chapter.

To import a Compiled Function library, select Compiled Function in the
Library Type field.

Just as for a UserFunction, the Library Name field attaches a name to
identify the library within the program, and the File Name field specifies
the file from which to import the library. For a Compiled Function, there is a
fourth field, which specifies the name of the Definition File, shown in
Figure 12-4.

- Impnrt-l_ibrar'g.f =

Library Type |Compiled Function =]

Library Mame | triyLib
File Mame myFile.dl| |
Definition File rryFileh |

Figure 12-4. Using Import Library for Compiled Functions

The definition file defines the type of data passed between the external
routine and VEE. It contains prototypes for the functions.

After importing the library with Import Library, you can call the
Compiled Function by specifying the function name in the Call object. For
example, the Call object in Figure 12-5 calls the Compiled Function named
myFunction.

Chapter 12 381

User-Defined Functions/Libraries
About Compiled Functions

= Call Function =
1 anSize Function Name Ret%alue |I

= | myFunction iy ||

Figure 12-5. Using Call for Compiled Functions

Select the desired function using Select Function from the Call object
menu or from the Function & Object Browser (under Device =
Function & Object Browser), or type the name in the Call object.

If VEE recognizes the function, the input and output terminals of the Call
object are configured automatically for the function. (The necessary
information is supplied by the definition file.) You can reconfigure the Call
input and output terminals by selecting Configure Pinout in the object
menu.

VEE configures the Call object with the input terminals required by the
function and with a Ret Value output terminal for the return value of the
function. There also will be an output terminal corresponding to each input
that is passed by reference.

You can also call the Compiled Function by name from an expression in a
Formula object or from other expressions evaluated at run time. For
example, you could call a Compiled Function by including its name in an
expression in a Sequencer or ToFile transaction.

However, only the Compiled Function's return value (Ret Value in the
Call object) can be obtained from within an expression. If you want to
obtain other parameters from the function, you have to use the Call object.

382 Chapter 12

The Definition File

User-Defined Functions/Libraries
About Compiled Functions

The call object or Formula expression determines the type of data it should
pass to the function based on the contents of the definition file. The
definition file defines the type of data the function returns, the function
name, and the arguments the function accepts. The data has the following
form:

<return type> <function name> (<type> <paramname>, <type>
<paramname>, ...) ;

Where:

B <return type>canbe: int, short, long, float, double, char*,
or void.

B <function name> can be a string consisting of an alpha character
followed by alphanumeric characters, up to a total of 512 characters.

B <type>canbe: int, short, long, float, double, int*, char*,
short*, long*, float*, double*, char**, or void.

B <paramname> can be a string consisting of an alpha character followed
by alphanumeric characters, up to a total of 512 characters. The
parameter names are optional, but recommended. If a parameter is to be
passed by reference, the parameter name must be preceded by the
indirection symbol (*).

The valid return types are:
B character strings (char*, corresponding to the VEE Text data type)

B integers (short, int, long, corresponding to the VEE Int16 and
Int32 data types)

B single and double precision floating point real numbers (f1oat and
double corresponding to the VEE Real132 and Real64 data types).

If you specify "pass by reference" for a parameter by preceding the
parameter name with *, VEE will pass the address of the information to your
function. If you specify "pass by value" for a parameter by leaving out the *,
VEE will copy the value (rather than the address of the value) to your
function. You will want to pass the data by reference if your external routine

Chapter 12 383

Note

Buildinga C
Function

User-Defined Functions/Libraries
About Compiled Functions

changes that data for propagation back to VEE. All arrays must be passed by
reference.

Any parameter passed to a Compiled Function by reference is available as an
output terminal on the Cal1 object. The output terminals will be Ret
Value for the function's return value, plus an output for each input
parameter that was passed by reference.

VEE pushes 144 bytes on the stack. This allows up to 36 parameters to be
passed by reference to a Compiled Function. Up to 36 long integer
parameters or 18 double-precision floating-point parameters may be passed
by value.

For HP-UX, you must have the ANSI C compiler in order to generate the
position independent code needed to build a shared library for a Compiled
Function.

VEE allows both "enclosed" comments and "to-end-of-line" comments in
the definition file.

"Enclosed" comments use the delimiter sequence /*comments*/, where /*
and */ mark the beginning and end of the comment, respectively.

"To-end-of-line" comments use the delimiting characters // to indicate the
beginning of a comment that runs to the end of the current line.

The following C function accepts a real array and adds 1 to each element in
the array. The modified array is returned to VEE on the Array terminal,
while the size of the array is returned on the Ret Value terminal. This
function, once linked into VEE, becomes the Compiled Function called in
the VEE program shown in Figure 12-6.

384 Chapter 12

User-Defined Functions/Libraries
About Compiled Functions

/%
C code from manual49.c file

*/
#include <stdlib.h>

#ifdef WIN32

define DLLEXPORT __declspec(dllexport)
#else

define DLLEXPORT

#endif

/* The description will show up on the Program Explorer when you select
"Show Description" from the object menu and the Function Selection
dialog box in the small window on the bottom of the box.

*/

DLLEXPORT char myFunc _desc[] = "This function adds 1.0 to the array
passed in";

DLLEXPORT long myFunc (long arraySize, double *array) {
long 1i;

for (1 = 0; i < arraySize; i++, array++) { *array += 1.0; }

return (arraySize);

The definition file for this function is as follows:

/*
definition file for manual49.c

*/

long myFunc (long arraySize, double *array);

(This definition is the same as the ANSI C prototype definition in the C file.)

You must include any header files on which the routine depends. The library
should link against any other system libraries needed to resolve the system
functions it calls.

Chapter 12 385

User-Defined Functions/Libraries
About Compiled Functions

The example program uses the ANSI C function prototype. The function
prototype declares the data types that VEE should pass into the function.

The array has been declared as a pointer variable. VEE will put the addresses
of the information appearing on the Cal1 data in terminals into this variable.
The array size has been declared as a long integer. VEE will put the value
(not the address) of the size of the array into this variable. The positions of
both the data input terminals and the variable declarations are important. The
addresses of the data items (or their values) supplied to the data input pins
(from top to bottom) are placed in the variables in the function prototype
from left to right.

One variable in the C function (and correspondingly, one data input terminal
in the Call object) is used to indicate the size of the array. The arraySize
variable is used to prevent data from being written beyond the end of the
array. If you overwrite the bounds of an array, the result depends on the
language you are using. In Pascal, which performs bounds checking, a run-
time error will result, stopping VEE. In languages like C, where there is no
bounds checking, the result will be unpredictable, but intermittent data
corruption is probable.

This example has passed a pointer to the array so it is necessary to
dereference the data before the information can be used.

The arraysize variable has been passed by value so it will not show

up as a data output terminal. However, here we have used the function's
return value to return the size of the output array to VEE. This technique is
useful when you need to return an array that has fewer elements than the
input array.

386 Chapter 12

User-Defined Functions/Libraries
About Compiled Functions

The program in Figure 12-6 calls the Compiled Function created from the
example C program:

= Impart Library =
Library Type | Compiled Function =l
Library MName | myLibrary
File Name justilibiveetestexamples/manualimanualdasl |
Definition File jusriibivestestexamples/manualimanualds.n |
= HY Trace r
=] Function Generatar = 4 i s .
. = ¥ name \ o !
Function | Cosine vl — \ oo .
RPN
Freguency | 100 I rf I ,r' ;
- P ;
Amplitude | 1 Tracel Vel \\,r H
Dcoffset | 0 Func— [| Lo P
rhase — . TR = | = [»]
Time Span 20m - 5 o
Mum Points 256 |
| X name
| T
W J
—| Call Function =
totSizex) arraySize Function Mame Ret Yalue |—| .
Formula
array | myFunc array [—

Figure 12-6. Program Calling a Compiled Function

The example in Figure 12-6 is saved in the file manual49.vee in the
examples directory. The C file is saved as manual49. c, the definition file
as manual49.h and the shared library as manual49.s1.

Creating a Compiled Function (UNIX)

To create a Compiled Function you must write a program in C, C++,
FORTRAN, or Pascal (HP 9000 Series 700 only) and write a definition file
for the function. Then you must create a shared library containing the
Compiled Function and bind the shared library into the VEE process.

Chapter 12 387

Creating a Shared
Library

Binding the Shared
Library

User-Defined Functions/Libraries
About Compiled Functions

To create a shared library, your function must be compiled as position-
independent code. This means that, instead of having entry points to your
routines exist as absolute addresses, your routine's symbol table will hold a
symbolic reference to your function's name.

The symbol table is updated to reflect the absolute address of your named
function when the function is bound into the VEE environment. It must be
linked with a special option to create a shared library.

Suppose the example C routine is in the file named dLink. c. To compile
the file to be position independent, use the +z compiler option. You also
need to prevent the compiler from performing the link phase by using the -c
option. The compile command would look like this:

cc -Aa -c +z dLink.c

This produces an output file named dLink. o, which you can then link as a
shared library with the following command:

1d -b dLink.o

The -b option tells the linker to generate a shared library from position-
independent code. This produces a shared library named a . out.
Alternatively, you could use the command:

1ld -b -o dLink.sl dLink.o

to obtain an output file (using the -o option) called dLink.s1.

VEE binds the shared library into the VEE process. All you need to do is
include an Import Library object in your program, specifying the library
to import, then call the function by name (i.e., with a Call object). When
Import Library executes, VEE binds the shared library and makes the
appropriate input and output terminals available to the Cal1 object.

Use the object menu choices from the Call object (Configure Pinout
and Select Function) to configure the Call object correctly. The shared
library remains bound to the VEE process until VEE terminates or until the
library is expressly deleted.

Delete the shared library from VEE either by selecting Delete Lib from
the Import Library object menu, or by including the Delete Library
object in your program. You may have more than one library name pointing
to the same shared library file. If so, use the Delete Library object to

388 Chapter 12

Note

User-Defined Functions/Libraries
About Compiled Functions

delete each library. The shared library remains bound until the last library
pointing to it is deleted.

The Delete Lib selection in the Import Library object menu unbinds
the shared library without regard to other Tmport Library objects.

When VEE binds a shared library, it defines the input and output terminals
needed for each Compiled Function. When you select a Compiled Function
for a call object, or when you execute a Configure Pinout, VEE
automatically configures Call with the appropriate terminals. The
algorithm is as follows:

B The appropriate input terminals are created for each input parameter to be
passed to the function (by reference or by value).

B An output terminal labeled Ret Value is configured to output the return
value of the Compiled Function. This is always the top-most output pin.

B An output terminal is created for every input that is passed by reference.

The names of the input and output terminals (except for Ret Value) are
determined by the parameter names in the definition file. However, the
values output on the output terminals are a function of position, not name.
The first (top-most) output pin is always the return value.

The second output pin returns the value of the first parameter passed by
reference, etc. This is normally not a problem unless you add terminals after
the automatic pin configuration.

Creating a Dynamic Link Library (MS Windows)
VEE for Windows provides access to DLLs through the cal1l object and

through formula objects.

This section describes how to call a DLL, not how to write a DLL. VEE
Version 3.2 and greater only calls 32-bit DLLs, not 16-bit DLLs.

Chapter 12 389

Creating the DLL

User-Defined Functions/Libraries
About Compiled Functions

Create the DLL before writing the VEE program. Create the DLL as you
would any other DLL, except that only a subset of C types are allowed. (See
“Creating the Definition File” on page 390.)

Declaring DLL Functions. If you are using Microsoft Visual C++ Version
2.0 or greater, the function definition should be:

__declspec(dllexport) long myFunc (...);

This definition eliminates the need for a . DEF file to export the function
from the DLL. Use the following command line to compile and link the
DLL:

cl /DWIN32 S$file.c /LD

/LD creates a DLL. Use /71 to generate debug information.

The MS linker links to the C multi-threaded Runtime Library by default. If
you use functions like GetComputerName (), you need to link against
Kernel32.1lib. The compile/link line would look like:

cl /DWIN32 file.c /LD /link Kernel32.1lib

Declaring DLL Functions. To work with VEE, DLL functions can be
declared as declspec (dllexport) using Microsoft C++ version 2.0 or
greater. This eliminates the need for a . DEF file. For example,

a generic function could be created as follows:

__declspec(dllexport) long genericFunc(long a) {return (a*2); }
If you are not using Microsoft Visual C++, the . DEF file contains:

EXPORTS genericFunc
And the function definition looks like:

long genericFunc (long a);

Creating the Definition File. The definition file contains a list of
prototypes of the imported functions. VEE uses this file to configure the
Call objects and to determine how to pass parameters to the DLL function.
The format for these prototypes is:

<return type> <modifier> <function name> (<type> <paramname>, <type>

<paramname>,

.

390 Chapter 12

Parameter
Limitations

User-Defined Functions/Libraries
About Compiled Functions

where:

B <return type>canbe: int, short, long, float, double, char¥,
or void.

B <function name> can be a string consisting of an alpha character
followed by alphanumeric characters, up to a total of 512 characters.

| <modifier>Canbe_pdecl,_pascal,or_stdcalL

B <type>canbe: int, short, long, float double, int*, char*,
short*, long*, float*, double*, char**, or void.

B <paramname> can be a string consisting of an alpha character followed
by alphanumeric characters, up to a total of 512 characters. The
parameter names are optional, but recommended. If a parameter is to be
passed by reference, the parameter name must be preceded by the
indirection symbol (*).

For example:
Pass in four parameters, return a long:
long aFunc (double *,long param2, long *param3, char *);
No input parameters, return a double:
double aFunc();
Pass in a string, return a long:
long aFunc(char *aString);
Pass in an array of strings, return a long:

long aFunc (char **aString);

A DLL function called from VEE pushes a maximum of 144 bytes on the
stack. This limits the number of parameters used by the function. Any
combination of parameters may be used as long as the 144-byte limit is not
exceeded. A long uses four bytes, a double uses eight bytes and a pointer
uses four bytes. For example, a function could have 36 longs, or 18 doubles,
or 20 pointers and 8 doubles.

Chapter 12 391

The Import Library
Object

The Call Object

User-Defined Functions/Libraries
About Compiled Functions

Before you can use a Call object or Formula box to execute a DLL
function you must import the function into the VEE environment via the
Import Library object. On the Import Library object, select
Compiled Function under Library Type. Enter the correct definition
file name using the Definition File button. Finally, select the correct
file using the File Name button. The Library Name button assigns a
logical name to a set of functions and does not need to be changed.

Before using a DLL function with the Call object you must configure the
Call object. The easiest way to do this is to select Load Lib on the
Import Library object menu to load the DLL file into the VEE
environment. Then, select Select Function onthe Call object menu.

VEE will bring up a dialog box with a list of all the functions listed in the
definitions file. When you select a function, VEE automatically configures
the Call object with the correct input and output terminals and function
name.

You can also configure the Cal1l object manually by modifying the function
name and adding the appropriate input and output terminals:

1. Configure the same number of input terminals as there are parameters
passed to the function. The top input terminal is the first parameter
passed to the function. The next terminal down from the top is the second
parameter, etc.

2. Configure the output terminals so the parameters passed by reference
appear as output terminals on the Call object. Parameters passed by
value cannot be assigned as output terminals. The top output terminal is
the value returned by the function. The next terminal down is the first
parameter passed by reference, etc.

3. Enter the correct DLL function name in the Function Name field.

For example, for a DLL function defined as
long foo(double *x, double y, long *z);

you need three input terminals for x, y, and z and three output terminals,
one for the return value and two for x and z. The Function Name field
would contain foo. If the number of input and output terminals does not

392 Chapter 12

The Delete Library
Object

User-Defined Functions/Libraries
About Compiled Functions

exactly match the number of parameters in the function, VEE generates an
error.

If the DLL library has already been loaded and you enter the function name
in the Function Name field, you can also use the Configure Pinout
selection on the Call object menu to configure the terminals.

If you have very large programs you may want to delete libraries after you
use them. The Delete Library object deletes libraries from memory just
as the Delete Lib selection on the Tmport Library object menu does.

Using DLL Functions in Formula Objects

You can also use DLL functions in formula objects. With formula objects,
only the return value is used in the formula. The parameters passed by
reference cannot be accessed. For example, the DLL function defined above
is a formula:

4.5 + foo(a, b, c) * 10

where a is the top input terminal on the formula object, b is next, and c is
last. The call to £oo must have the correct number of parameters or VEE
generates an error.

Chapter 12 393

User-Defined Functions/Libraries
About Remote Functions

About Remote Functions

A Remote Function is a UserFunction that runs in another VEE process on a
remote host computer. Remote Functions are a special case of UserFunction.
See “About UserFunctions” on page 371 for general information that applies
to UserFunctions.

Using Remote Functions

The Remote Function is called from the local VEE process over the LAN.
Just as for UserFunctions and Compiled Functions, import a library of
Remote Functions with the Tmport Library object.

When one or more Remote Functions have been imported, they are called by
using the Call object or by including function names in expressions. You
include Remote Function calls in your program just as you would
UserFunctions. However, some differences and some networking
technicalities are described in this section.

Create a library of Remote Functions just as you would a library of
UserFunctions, but save it on the intended remote host computer. The
intended remote host computer must also have VEE Pro or VEE Pro Run
Time installed on it.

The library of Remote Functions is imported not into the local VEE process
but in a special invocation of VEE called a "service" that runs on the remote
host. The local VEE process is called the "client."

The client VEE process imports the Remote Function library using the
Import Library object. When you select Remote Function for the
Library Type field, some new fields appear as shown in Figure 12-7.

394 Chapter 12

User-Defined Functions/Libraries
About Remote Functions

~| Import Library G
Lirary Type | Remote Function =]
Library Mame Lk

Femote Host Mame localhost

Femote File Name Ausers/myDirfmyFile vee
B0

hplvivp 1

Remote Timeout

Display Serser
Geometry (800x500+0-07
Remote Debug r

Figure 12-7. Import Library for Remote Functions

The Library Type and Library Name fields function the same as for
UserFunctions and Compiled Functions. The other fields are as follows:

B Remote Host Name - The name of the host on which the "service" VEE
process is to run (the "remote host"). This name can be the common or
symbolic name of the host (for example myhost) or the IP address of the
host in this field (for example 14.13.29.99).

B Remote File Name - The name of the Remote Function library file.
The Remote File Name is analogous to the File Name field for a
UserFunction library. However, you must specify the absolute path to the
file. Hence the path and file name can be rather long. You may want to
have all users place remote function library files in a common place, such
as:

/users/remfunc/ or C: \USERS\REMFUNC.

Chapter 12 395

Note

User-Defined Functions/Libraries
About Remote Functions

The remote VEE service invoked by the client is dependent on the Host
Name specified in the Import Library object. If you have two Import
Library objects using the same Host Name, only one service process is
invoked. Even if two different Library Names and Remote File Names
are used, each communicates with the same service. On the other hand, if
each Import Library uses a different Host Name, two separate services
are invoked.

B Remote Timeout - A timeout period in seconds for communication
with the VEE service. If the VEE service has not returned the expected
results of a Remote Function within this time period, an error occurs.

B Display Server - Enter a resolvable host name or IP address. The host
must have an X Server running and permissions must be set to have an X
client display on the specified machine. If the service is instantiated on an
MS Windows machine, the Display Server field must be the same as
the Remote Host Name.On HP-UX, they can be different.

B Geometry - Enter the initial geometry for the window that contains
the view of the remote VEE, in the standard geometry format. For
example, 800x500+0-0.

B Remote Debug - When this check box is selected, all UserFunctions
within the library execute in debug mode (i.e., you will be able to
perform debugging on them, such as setting breakpoints and doing line
probes). This setting works with UserFunctions whether or not they have
panel views.

When the Import Library object is executed (either by selecting Load
Lib from the object menu or during normal program execution), a VEE
server process is started on the remote host specified in the Host Name
field. The client process and the server process are connected over the
network and are able to communicate.

When a call object in the client VEE calls a Remote Function, the
arguments (the data input pins on the Call object) are sent over the network
to the remote service, the Remote Function is executed, and the results are
sent back to the Call object and output on its data output pins.

396 Chapter 12

User-Defined Functions/Libraries
About Remote Functions

If your program deletes the library of Remote Functions with the Delete
Library object, the Remote Functions associated with the library are
removed. You can load multiple libraries in a VEE server process, then
delete each one as needed without canceling the service connection. The
VEE server exists while the VEE client process continues to run.

The service VEE process can exist on the same computer or "host" as the
client or on another host as long as there is a network connection between
them. The most common connection is between two hosts on a LAN.
However, if a network path exists, the two hosts could be a continent apart.

The VEE service process has some attributes that are different from a normal
VEE process:

1. The VEE service process executes only Remote Functions that are
contained in the Remote Function library named by Import Library.

2. Remote Functions have views associated with them. When you call a
remote function, you can have a VEE window appear on the remote host
if the UserFunction displays a panel view.

3. Global variables (declared and undeclared) are not shared between the
processes.

4. Remote Functions do not time-slice when called.
5. Parameters of type object cannot be passed to or from a Remote
Function (includes ActiveX Automation objects or pointers to ActiveX

controls).

6. The Execution Mode used by the service VEE process is that of the
user’s .veerc file, not that saved in the file that is imported.

7. Embedded .veeio file configurations in the file imported by the service
VEE process are ignored. Only the global /O configuration file is used.

If you are running Windows, you have to start the VEE Service Manager
manually, as follows:

1. Go to the VEE installation directory

Chapter 12 397

User-Defined Functions/Libraries
About Remote Functions

2. Execute veesm.exe

3. When the console window appears, you can minimize it to get it out of
the way

4. To stop the VEE Service Manager process, open the console window and
press Ctrl+C.

To automate the VEE Service Manager startup:
1. Create a shortcut to veesm.exe
2. Select Start = Programs

3. Move the shortcut to the Startup folder.

UNIX Security, UIDs, and Names

When your client VEE process runs a service VEE process on a remote host,
some security requirements must be satisfied. The basic requirement is that
in order to invoke the service VEE process, you must have a user name on
the remote host which is the same as your user name on the computer
running the client VEE process. (However, the passwords need not be the
same.)

Also, you must have a directory in the /users directory on the remote host.
In addition, in order to establish network communication between the two
hosts, either the remote host must have a /etc/hosts.equiv file with an
entry for the client host, or the user must have a . rhosts file in the SHOME
directory on the remote host that contains an entry for the client host.

An example follows.

Suppose the client host can be identified as follows:
Client host: myhost
User: mike
Password: twoheads

And the service host can be identified as follows:

398 Chapter 12

Note

User-Defined Functions/Libraries
About Remote Functions

Service host: remhost
User: mike

Password: arebetter
Directory: /users/mike

In this case, you must have one of the following on the service host:
B An /etc/hosts.equiv file with the entry: myhost

or

B A /users/mike/.rhosts file with the entry: myhost mike

The /etc/hosts.equiv file can be modified only by a super-user (usually
the system administrator), while the . rhosts file can be modified by the
user. It is a common practice to use the same /etc/hosts.equiv file on
all computers in a particular subnet, listing all of those computers as entries.
The /etc/hosts.equiv file is checked first for the proper entry for the
client host. If no entry for the client host is found there, the . rhosts file is
checked.

In calling a service VEE process, the password is not required or called for.
You must have the correct entry for the client in either the hosts.equiv
file or the . rhosts file on the remote host.

Another factor in UNIX security is the user id and group id, called the UID
and GID, respectively. The UID is a unique integer supplied to each user on
a host by the /etc/passwd file. The GID is a unique integer supplied to
groups of users. All UNIX processes have a UID and GID associated with
them. The UID and GID determines which files or directories a user can
read, write, and execute.

The VEE service on the service host will have the GID and UID of the user
who invoked the process from the client host. This means that the file
permissions are the same as if the user was running a normal interactive
VEE session.

Chapter 12 399

Note

User-Defined Functions/Libraries
About Remote Functions

Resource Files

The VEE.IO or .veeio and VEE.RC or .veerc files used by the VEE service
process are those that belong to the user who invokes the process on the
remote host. For the user mi ke in our previous example, the VEE service
process reads the following files on host remhost:

/users/mike/.veeio /users/mike/.veerc

(VEE only reads the VEE.IO or .veeio file. The VEE.RC or .veerc file is
used for trig preferences and Execution Mode only.)

Errors

Two classes of errors can occur in a remote VEE service:

B Fatal Errors - Errors, like the timeout violation discussed previously, that
mean that the service is most likely in a unusable state. When a fatal error
occurs in a VEE service, an error message appears advising the user that
the error was fatal. If this occurs, you need to re-import the Remote
Function library. The VEE client will attempt to terminate the remote
service.

In most cases, a fatal error only occurs if something has gone wrong with
the network or calling the remote service. Normally, a fatal error is not
caused by a problem in the Remote Function itself.

B Non-Fatal Errors - Almost exclusively errors that occur within the
Remote Function itself (for example a divide-by-zero error). Such errors
normally occur whether the function is local or remote. The normal error
message display occurs with the name of the Remote Function in which
the error occurred.

It is possible to write a Remote Function that hangs, such as an infinite loop.
In this case, the Remote Function times out with a fatal error message. The
VEE client attempts to remove the service but fails since the service never
responds. You need to terminate the process on the remote machine. In VEE
for UNIX you log onto the remote host, determine the process id with ps,

and terminate the process with ki11.

400 Chapter 12

13

Using ActiveX Automation Objects and
Controls

Note

Using ActiveX Automation Objects and Controls

VEE for Windows supports ActiveX automation and controls on PCs
running Windows 95, 98, 2000, or NT 4.0. ActiveX technology is not
supported on UNIX. This chapter explains how to use ActiveX automation
and controls in VEE, but does not describe ActiveX technology. The chapter
contents are:

B Using ActiveX Automation in VEE
B Using ActiveX Automation Objects
B Using ActiveX Automation Controls

Recommended Reading

Microsoft Office 97 Visual Basic Programmer s Guide.
Microsoft Press, 1997. ISBN 1572313404.

Microsoft Office 2000 Visual Basic Programmer s Guide.
Microsoft Press, 1999. ISBN 1572319526.

VEE implements ActiveX support using the standard established by
Microsoft Visual Basic. If you are not familiar with ActiveX technology,
review the chapters in these books that discuss Object Models and ActiveX
Controls. Understanding these concepts will help you use VEE’s ActiveX
features.

402 Chapter13

Note

Using ActiveX Automation Objects and Controls
Using ActiveX Automation in VEE

Using ActiveX Automation in VEE

ActiveX automation lets you use VEE as an automation controller to control
other Windows applications such as Microsoft Word, Excel, Access, and
Seagate Crystal Reports. You can perform such activities as sending data to
the applications for report generation and reading data back from them. For
automation-capable applications, this supersedes Dynamic Data Exchange
(DDE).

ActiveX controls are available from various vendors. They extend VEE
functionality by providing domain-specific services via ActiveX automation
properties, methods, and events. Most ActiveX controls also provide a user
interface that lets you manipulate a control such as a "slider" to input a value
into a program, just as you would do with an VEE slider object.

To enable ActiveX support, you must set VEE to VEE 5 or VEE 6 Execution
Mode in the Default Preferences dialog box, under the General tab.
VEE 6 is the default mode for new programs. The status bar at the bottom of
VEE’s window displays the current mode. If you are adding ActiveX
functionality to a program developed in VEE Versions 3.x, 4.x, or 5.x, make
sure your program runs in VEE 5 or VEE 6 Execution Mode before adding
new features. See “Using VEE Execution Modes” on page 17 for more
information.

Several examples are available that demonstrate the use of ActiveX
automation and ActiveX controls. They are located in the VEE installation
directory under \examples\ActivexXAutomation and
\ActiveXControls. To open and run these examples use Help = Open
Example....

Chapter 13 403

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Using ActiveX Automation Objects

Set VEE to VEE 5 or VEE 6 Execution Mode (in Default Preferences)
to enable ActiveX support.

Making Automation Objects Available in VEE

When you install Windows applications, it is very likely that ActiveX type
libraries are also installed that allow the applications to act as automation
servers. Type libraries describe the capabilities of an ActiveX object and are
available for use if they exist on your system.You may prefer to select
specific type libraries in VEE for the following reasons:

B To have VEE perform type checking on variables declared for ActiveX
objects where the object type is defined (see “Declaring Automation
Object Variables” on page 406).

B To catch events generated by an automation object (see “Handling
Automation Object Events” on page 425).

B To view information in the ActiveX Object Browser (see “Using the
ActiveX Object Browser” on page 413).

To select the type libraries you want to reference in a program, click Device
= ActiveX Automation References... The ActiveX Automation
References dialog box appears listing all type libraries registered by the
Windows Registry. Figure 13-1 shows the dialog box with the Microsoft
Access library selected for use.

404 Chapter13

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Registered Automation Servers:

[]Acrokbat Scan Type Library

[CIADaM sutomation Serer Type Library
[IInternet Explorer Scripting Ohject Maodel Cancel
[lw&uto 1.0 Type Library
[JLicensemar 1.0 Type Library
[IMarguee Control Libra
Picrosofnt Ar Wi d o
[CIicrosoft Activex Plugin
[IMicrosoft DAD 2.503.58 Compatibility Library
I Microsoft DAD 3.5 Ohject Library
[IMicrosoft Excel 5.0 Ohject Library
[IMicrosoft HTML Intrinsic Controls Help
[IMicrosoft Internet Controls
[IMicrosoft Jet SQL Help Topics
[IMicrosoft Office 84 Object Library
[IMicrosoft Remote Data Object 2.0

] 0OLE Automation Binder 1.0 Type Library
gPuwerPnint.ApplicatiDn.? =

rMicrosoft Access far Windows 95
Location: CiMSOficelaccess\WSACCESS TLE

Ok

| »

ek

Browse...

Figure 13-1. Selecting ActiveX Automation Type Libraries

Your list is probably different, depending on the applications you have
installed. When you highlight a library name, its location appears in the
dialog box status area. When you find the automation server you want to
use, click the check box by the library name (or double-click the name itself)
so a check mark appears. Then, click OK.

This loads the selected type library and searches it for the object classes,
dispatch interfaces, and events that it exports. You can select multiple
libraries, but you should select only the ones you plan to use since selected
libraries use memory.

If you know a type library file exists for an automation server, but it does not
appear in the list, it is possible the type library was not registered when the
associated application was installed. Press the Browse button to find the
type library missing from the list. When you locate and open the type library
file, VEE will attempt to register the type library and add it to the list.

Chapter 13 405

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Declaring Automation Object Variables

You can declare a variable for an ActiveX automation object using the new
Object data type (Data = Variable = Declare Variable). The
declared variable is a reference to an object that lives in another process. For
instance, it might point to a ComboBox in Access. As shown in Figure 13-2,
when you set the variable Type to Object the dialog box expands to list the
library name, class, and enabled events.

= Declare cormbo =

Marme: | cormbo ¥ Specify Object Type —
Library. Access

Stope: I Global ;I Clags: ComhboBox

Type: | Object 7| | Events: Enabled

Mum Dims: |] = Edit.. |

Figure 13-2. Declaring an ActiveX Automation Variable

You can specify the object variable’s type further by clicking Specify
Object Type so a check mark appears. Then, click the Edit button to
access the Specify Object Type dialog box that lets you set the library
and class names and enable events available for the class.

If you are using the Access Object Library, you can declare a variable
combo, then specify the object type as Library: Access and Class:
ComboBox as shown in Figure 13-3. In this example, the class ComboBox
contains events. To use the events, click Enable Events. If events are
not available for a class, the checkbox is grayed out.

After specifying the object type, click OK to dismiss the dialog box and
return to Declare Variable, which displays the information.

406 Chapter13

Note

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Library: 3
Class: | ComboBox =]
¥ Enahle Events

OK | Cameﬂ HMpl

Figure 13-3. Specifying the Automation Object Type

If you enable events, you can create an event-handler UserFunction for each
event that you want to catch. For information about using events, see
“Handling Automation Object Events” on page 425.

As with any VEE variable, declaring a variable is optional and doing so does
not create the automation object in the program. However, if you declare
variables for automation objects and specify the object type details, VEE
does type checking automatically to assure that only objects of the specified
Library and Class type are assigned to the declared variable.

If you declare a variable for an ActiveX object when developing a program
in Windows and then open the program in HP-UX, the program still contains
the variable declaration but ignores the object type specifications. The
Declare Variable object maintains the object type specifications and
does not let you change them.

Creating an Automation Object in a Program

To control a server application from VEE, you need to create an automation
object in your program. The CreateoObject function lets you do that. To
put the function in your program, click the fx toolbar button to get the
Function & Object Browser and then select:

Type: Built-in Functions
Category: ActiveX Automation
Member: CreateObject

Chapter 13 407

Note

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Click Create Formula and place the Formula object in your program.
The Formula contains the expression

CreateObject (ProgID)

which you need to modify to perform the desired action.

ProgIDis a human-readable string that identifies the Automation object
that you want to create. To determine the ProgID for an automation object,
refer to the vendor’s documentation.

Most of the time you want a new instance of an automation object created in
a new instance of the server application. For example, the following VEE
expression starts a new instance of Excel (even if Excel is already running)
and returns a reference to a new "Workbook" object tied to the excel
variable.

SET excel = CreateObject ("Excel.Sheet")

Using Distributed Component Object Model (DCOM)

DCOM allows the Automation client (VEE) to control the Automation
server (Excel, Access, etc.) remotely. You can run VEE on one computer and
control Excel, for example, running on another computer. The second
computer does not need VEE installed, just the application VEE is
controlling.

To do this, the CreateObject function takes an optional second parameter
that specifies the name of a remote host computer (server) on which to
instantiate the object. (This functionality requires that DCOM be installed on
both the client and server computers and that the proper security settings
have been configured using dcomcnfg. exe.) With this additional
parameter, the definition of CreateObject () looks like the following:

CreateObject ("ProgID", ["hostName"])

where hostName has to be of type Text. hostName can be specified as
either a valid UNC or DNS domain name. Valid hostName specifications
are shown below:

Set obj = CreateObject ("ProgID", "server"
Set obj = CreateObject ("ProgID'", "\\\\server")

408 Chapter13

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Set obj = CreateObject ("ProgID", "server.domain.com")
Set obj CreateObject ("ProgID", "135.5.33.19")

VEE does not provide any programmatic control over the security settings
used to instantiate objects on remote computers. This can be accomplished
statically via the dcomcnfg.exe program.

Getting an Existing Automation Object

If you already created an automation object, you can get an active object or
load an existing object from a file by using the GetObject function. To put
the function in your program, click the fx toolbar button to get the
Function & Object Browser, then select:

Type: Built-in Functions
Category: ActiveX Automation
Member: GetObject

Click Create Formula and place the Formula object in your program.
The Formula contains the expression

GetObject ("fileName', "ProgID")
which you need to modify to perform the desired action.

The following expression gets an active object and returns a reference to a
currently running Excel application's Application object. This call will
fail if Excel is not running.

SET excel = GetObject ("","Excel.Application")

The following expressions load an existing object from file. The ProgID
parameter is optional:

SET excel = GetObject ("d:/tmp/TestData.xls","Excel.Sheet")
or
SET excel = GetObject ("d:/tmp/TestData.xls")

They return a reference to the sheet object associated with
d:/tmp/TestData.xls in the currently running Excel application. If
Excel is not already running, it will be started before loading the object. If
ProgID is omitted, VEE uses the Component Object Model (COM) library
to determine what application the file is associated with.

Chapter 13 409

Getting and Setting
Properties

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Manipulating Automation Objects

After creating an automation object, you can manipulate the object to control
server applications. Manipulating automation objects involves three basic
operations: getting properties, setting properties, and calling methods. This
section demonstrates these using previously initialized object variables
named cell, sheet, and excel. The VEE keywords SET and ByRef are
introduced.

The expressions in this section are examples of getting and setting a property
of an object. The following expression gets a property, where the value
property returns the contents of the ce11:

contents = cell.value
In the next expression, the value property returns the contents of the cell:
contents = sheet.cells(1l,1) .value

The next expression does the same property-getting action as the previous
expression by implying the . value property because of default properties
(explained below):

contents = sheet.cells(1,1)

Sometimes you want the contents, value and default property of the right-
hand side (which happens by default) and sometimes you want a pointer to
the object on the right-hand side, not its value. To get the object pointer you
need to use SET to tell VEE not to get the default value. The next expression
sets an object reference, where the ce11 variable is set to reference one cell
out of the "collection" of cells:

SET cell = sheet.cells(1l,1)

The difference between this example and the second example is that SET
specifies that the left-hand-side wants the right-hand-side object itself, not
its default property.

410 Chapter13

Calling Methods

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

The following expressions are examples of setting a property of an object.
The following three expressions are identical because of default properties:

cell.value = "Test Data2:"
sheet.cells(1l,1) .value = "Test Data2"
(1

1
sheet.cells 1) = "Test Data2"

About Default Properties. Most automation objects support the concept of
a default property or method. You can use this concept when manipulating
automation objects as shown in the previous examples. In the case of cel11,
its default property is value. So, the first example above in getting a
property could use this concept to imply the . value property and be entered
as

contents = cell
This means that the expression
contents = sheet.cells(1l,1)

would not only return a cell from the collection of cells, but it would also
evaluate the default property (.value) on that cell as in the expression

contents = sheet.cells(l,1) .value

To get a cell itself from the collection of cells, you must use the keyword
SET in the expression such as

SET cell = sheet.cells(1l,1)

This sets cell to be a pointer to that cell in Excel. Compare this to the
expression

contents = sheet.cells(1l,1)

(mentioned above) where contents gets the contents of that cell in Excel.
Also, the .value property is implied on Set Property, such that the
following two expressions perform the identical function:

cell.value = "Test Data”

cell = "Test Data"

Calling a method is similar to getting a property, but methods have
parenthesis-like () functions and can take parameters. Properties are

Chapter 13 411

Using Enumerations

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

generally used to get or set the value of an attribute of the object. Methods
are generally used to perform an action.

The following expression is an example of calling a method on an object:
result = excel.CheckSpelling ("aardvark")

By default, parameters are passed by value. For example, cel1ls (1, 1)
actually calls a method and passes two parameters (1 and 1). Passing by
value simply sends the parameter values to Excel and a return value comes
back. The parameter values are unchanged.

Some automation methods have parameters that are passed by reference.
The parameter’s value is changed by the automation server and a new value
for the parameter is passed back to VEE. For example, an ActiveX
instrument control might contain an automation method called by this
expression

passed = Scanner.GetReading (ByRef Reading)

where the method’s return value for passed is true if the getReading
worked or false if it did not, and any other values are returned in the ByRef
parameter Reading. You should initialize the variable Reading before
passing it to the function and have an output terminal on the Formula object
containing the expression so you can use any returned values.

The ByRef keyword is supported in VEE, and the Function & Object
Browser displays in its information area the parameters passed using
ByRef. ByRef does not support all data types. See Table 13-4, “Converting
from VEE Data Types to Automation Scalar Data Types in VEE 5 Execution
Mode,” on page 421.

Type libraries can provide enumerations that appear in the Class area of
VEE’s Function & Object Browser. Enumerations make using object
methods and properties easier. For instance, the window object in Excel has
aWindowState property. The WindowState property is of type
X1WindowState enumeration. There are three values for this enumeration:

x1Maximized (-4137)
x1IMinimized (-4140)
x1Normal (-4143)

412 Chapter13

Using the ActiveX
Object Browser

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

VEE supports enumerations, which allows you to use the following
expression when using object methods and properties:

Window.WindowState = x1Minimzed

The ActiveX Object Browser is part of the Function & Object Browser
that opens when you press fx on the toolbar. The browser configuration
changes when you select Type: ActiveX Objects. The browser lets you
explore the properties, methods, and events that an ActiveX object provides.
ActiveX information appears here only if you selected automation or control
type libraries (Device = ActiveX Automation References or
ActiveX Control References). Figure 13-4 shows the Function &
Object Browser with ActiveX information for the Access type library.

Function &
Type: Library: Memhbers:
Operators [
Built-in Functions & CodeContextOhject
MATLAE Functions DIRECTLIb &' CurrentObjecttame
Lacal User Functions Effectlibrary & CurrentOhjectType
Impoarted User Functions FPAFILIb &' DoCmd
Remaote User Functions e & Forms —
Compiled Functions : &' MenuBar
Activex Objects B sgpiication ISR R
YEE Objects 1 BoundObjectFrame & Repors
Instruments 1 CheckBuox & Screen
1 ComboBox & ShortcutMenuBar
B CommandButtan & UserContraol
1 Contral & Visible
1 CustomContral =@ AccessErrar
1 DoCmd =& BuildCriteria
1 Form =& CloseCurrentDatabase
21 Grouplevel =& CodeDb
™1 _lmane LI =& CraateCnntrnl L'
FROFERTY Application As Application
read-only
Create GetFurmuIal SrEAte SetFnrmuIal Close | Help

Figure 13-4. Using the ActiveX Object Browser

Chapter 13 413

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

When a Library name is selected, the Class area displays dispatch
interfaces (dispinterfaces) and enumerations that are available. For a
selected dispinterface, the available properties, methods, and events appear
in the Member area. For enumerations, the constants are listed. Figure 13-4
displays some of the functionality available for the Access library. The
selected ComboBox dispinterface contains properties, a method, and many
events that are listed in the Member area. Figure 13-5 shows the relationship
between entries in the browser’s Classes and Members areas, including
their identifying icons:

Classes Members
' Properties
™ Dispinterfaces =& Methods
F Events
£ Enumerations @ Constants

Figure 13-5. Elements Displayed in the Function & Object Browser

The browser’s information area (just above the buttons) displays a help
string associated with the property, method, event, or constant if this
information is provided by the automation object. This syntax contains the
object’s type information in the parameter list. Parameters surrounded by
square brackets [] are designated as optional. Some applications may not
provide these short help strings.

Type information is provided for an ActiveX object’s properties, method
parameters, and return type. If no parameter type is specified, the default
type is VI _VARIANT. In most cases, VEE automatically handles type
conversion for VT _VARIANT. See Table 13-1 and following for more
information about Automation data type and VEE data Type conversion.

For a property, the browser displays type information about the property,
such as whether it is a read-only or write-only property and whether it is the
default property. You can create a Formula object to perform a get or set of
that property. The following is an example of what the browser displays in
the information area for a property:

DEFAULT PROPERTY Name as Text

414 Chapter13

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

For a method, the browser displays type information about each parameter in
the parameter list and the return value. Methods can also be the default
member, so the browser also indicates this. You can create a Formula
object for a method that is configured to call that method. The following is
an example of what the browser displays in the information area for a
method:

METHOD Void SetData (vValue, vFormat)

For events, the browser displays the same type information as for a method.
However, the event handler associated with an event is usually called by the
client application. In the case of controlling Access by automation, Access
calls the event handler UserFunction. In the case of using an ActiveX
control, the ActiveX control calls the event handler UserFunction.

Since your program or VEE does not call these callback event handlers, the
Create Formula button is grayed out. You can only view information
about an event. The Function & Object Browser does not let you
create event-handler UserFunctions because events must be tied to a
particular ActiveX automation variable or an ActiveX control.

To create an event handler, go to the object menu of the appropriate
Declare Variable or ActiveX control. The following is an example
of what the browser displays in the information area for an event:

EVENT Void Click()

For constants in an enumeration, the browser displays the value of the
constant. The following is an example of what the browser displays in the
information area for a constant:

CONSTANT tvwRootLines = 1

For constant values less than 0 and greater than 1024, VEE also displays the
hexadecimal value of the constant. This information appears as:

CONSTANT x1Normal = -4143 (#HFFFFEFDI1)

Clicking the He1p button opens the help file and topic associated with the
selected ActiveX object member if that information is provided by the
object. If no information is available, a dialog box appears, indicating that no
help is available for the selected member. This help information is provided
by the application vendor and is not part of VEE Online Help.

Chapter 13 415

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Data Type Compatibility

ActiveX automation provides support for certain data types. This section
describes the type conversion that takes place between VEE data types and
ActiveX automation data types. Type conversion occurs automatically.

Table 13-1 indicates the automation data types that are supported and the
corresponding VEE 6 Execution Mode data type.

Table 13-1. Converting from Automation Scalar Data Types to VEE Data
Types in VEE 6 Execution Mode

Convert from Convert to VEE Notes
Automation Data Type Data Type
VT_EMPTY Text Text with empty string
(") is returned. Use
isVariantEmpty ()

to determine if variant
was of type VT_EMPTY

VT_NULL Text Text with empty string
(") is returned. Use

isVariantNull ()
to determine if variant
was of type VT_NULL

VT_UN UInt8

VT_I2 Int16

VT_l4 Int32

VT_R4 Real32

VT_R8 Real64

VT_CY Real64 8-byte fixed point integer

with 4 digits to right of
decimal is converted to
VEE Real64. Use
isVariantCurrenc
y () to determine if
variant was of type
VT_CY.

416 Chapter13

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Table 13-1. Converting from Automation Scalar Data Types to VEE Data
Types in VEE 6 Execution Mode

Convert from

Automation Data Type

Convert to VEE
Data Type

Notes

VT_DATE

Real64

Days since 12/30/1899
converted to VEE’s
representation of date/
time in seconds since
Jan 1, 0001.

VT_BSTR

Text

VT_DISPATCH

Object

VT_ERROR

Int32

An Int32 with value of
the scode is returned.
Use
isVariantError ()
to determine if variant
was of type VT_ERROR.

VT_BOOL

Int16

Use
isvariantBool ()
to determine if variant
was of type VT_BOOL.

VT_VARIANT

Only valid in ByRef case
(VT_VARIANT | BYREF)
In this case, the variant
points to another variant.
VEE creates a container
based on the embedded
variant’s type.

VT_UNKNOWN

Object

Chapter 13

417

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Table 13-2 shows the automation data types that are supported and the
corresponding VEE 5 Execution Mode data type.

Table 13-2. Converting from Automation Scalar Data Types to VEE Data
Types in VEE 5 Execution Mode

Convert from Convert to VEE Notes
Automation Data Type Data Type
VT_EMPTY Text (empty string)
VT_NULL Text (empty string)
VT_UN <generates error> unsigned char
VT_I2 Int32
VT_l4 Int32
VT_R4 Real64
VT_RS8 Real64
VT_CY Real64 8-byte fixed point integer

with 4 digits to right of
decimal is converted to
VEE Real64.

VT_DATE Real64 Days since 12/30/1899
converted to VEE’s
representation of date/
time in seconds since

Jan. 1, 0001.
VT_BSTR Text
VT_DISPATCH Object
VT_ERROR <generates error>
VT_BOOL Int32
VT_VARIANT * Only valid in ByRef case

(VT_VARIANT | BYREF)
In this case, the variant
points to another variant.
VEE creates a container
based on the embedded
variant’s type.

418 Chapter13

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Table 13-2. Converting from Automation Scalar Data Types to VEE Data
Types in VEE 5 Execution Mode

Convert from Convert to VEE Notes
Automation Data Type Data Type
VT_UNKNOWN Object

Table 13-3 indicates the VEE 6 Execution Mode data types supported and
the corresponding automation data types. Unlike the inverse mappings
shown in the previous table, these are not fixed one-to-one mappings. Most
automation server objects are capable of coercing data to the required data

type.

For example, if the target property is a long integer, such as the X coordinate
of a point, you can pass not only an Int32 which is the exact match, but also
a real or even a text string, as long as it is a string of digits. However, in
case of an array, which is always passed as a VARIANT, acceptable data
type and array shape depends on the implementation of the target COM
object.

Table 13-3. Converting from VEE Data Types to Automation Scalar Data
Types in VEE 6 Execution Mode

Convert from VEE | Convertto Automation Notes
Data Type Data Type

Uint8 VT_UI1

Int16 VT_I2

Int32 VT 14

Real32 VT_R4

Real64 VT_RS8

Text VT_BSTR

<scalar of type *> VT_BOOL Use
asVariantBool () on
any scalar VEE data type
that can be cast to an
Int16, (UInt8, Int16, Int32,
Real32, Real64, Text).

Chapter 13 419

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Table 13-3. Converting from VEE Data Types to Automation Scalar Data
Types in VEE 6 Execution Mode

Convert from VEE | Convertto Automation Notes
Data Type Data Type
<scalar of type *> VT_CY Use

asVariantCurrency
() on any scalar VEE
data type that can be cast
to a Real64 (UInt8, Int16,
Int32, Real32, Real64,

Text).

<scalar of type *> VT_DATE Use
asVariantDate () on
any scalar VEE data type

that can be castto a
Real64 (UInt8, Int16,
Int32, Real32, Real64,
Text).

<scalar of type *> VT_ERROR Use asVariantError() on
any VEE data type that
can be cast to an Int32
(UInt8, Int16, Int32,
Real32, Real64, Text).
Value of Int32 is assigned
as the scode (error
number) for the error.

Variant <scalar of variant type *> The current type of the
VEE container is
converted to the
appropriate variant type.
For instance, if the Variant
container holds a VEE
Int32, VEE will create a
variant of type VT_l4.

Object VT_DISPATCH If VEE holds an IDispatch
pointer to the object.

Object VT_UNKNOWN If VEE has an IlUnknown
pointer but not an
IDispatch pointer.

420 Chapter13

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Table 13-4 indicates the VEE 5 Execution Mode data types supported and
the corresponding automation data types.

Table 13-4. Converting from VEE Data Types to Automation Scalar Data
Types in VEE 5 Execution Mode

Convertfrom VEE | Convertto Automation Notes
Data Type Data Type

Int32 VT_l4

Real64 VT_R8

Text VT _BSTR

Object VT_DISPATCH If VEE holds an IDispatch
pointer to the object.

Object VT_UNKNOWN If VEE has an IlUnknown
pointer but not an
IDispatch pointer.

Table 13-5 shows array conversions from Automation data type to VEE 6
Execution Mode data type.

Table 13-5. Converting from Automation Array Data Types to VEE Data
Types in VEE 6 Execution Mode

Convert from Convert to VEE Notes

Automation Data Type Data Type

VT_UN UInt8 Array

VT_12 Int16 Array

VT_l4 Int32 Array

VT_R4 Real32 Array

VT_RS8 Real64 Array

VT_BSTR Text Array

VT_BOOL Int16 Array UseisVariantBool ()
to determine if variant
array was of type
VT_BOOL.

Chapter 13

421

Using ActiveX Automation Objects and Controls

Using ActiveX Automation Objects

Table 13-5. Converting from Automation Array Data Types to VEE Data
Types in VEE 6 Execution Mode

Convert from
Automation Data Type

Convert to VEE
Data Type

Notes

VT_CY

Real64 Array

8-byte fixed point integer
with 4 digits to right of
decimal is converted to
VEE Real64. Use
isVariantCurrency (
) to determine if variant
array was of type
VT_CY.

VT_DATE

Real64 Array

Days since 12/30/1899
converted to VEE’s
representation of date/
time in seconds since
Jan. 1, 0001. Use
isVariantDate() to
determine if variant is of
type VT_DATE.

VT_ERROR

Int32 Array

An Int32 with value of
the scode is returned.
Use isVariantError() to
determine if variant array
was of type VT_ERROR.

VT_VARIANT

<array of
homogeneous type
OR a record>

If the array elements are
all of the same
fundamental data type,
VEE creates an array of
the type indicated by the
scalar mapping in Table
13-1. A VEE record is
created for a variant
containing a mixed data
type array.

VT_DISPATCH

N/A

Arrays of type Object not
supported.

422

Chapter13

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Table 13-5. Converting from Automation Array Data Types to VEE Data
Types in VEE 6 Execution Mode

Convert from Convert to VEE Notes
Automation Data Type Data Type
VT_UNKNOWN N/A Arrays of type Object not
supported.

Table 13-6 shows array conversions from Automation data type to VEE 5

Execution Mode data type.

Table 13-6. Converting from Automation Array Data Types to VEE Data
Types in VEE 5 Execution Mode

Convert from Convert to VEE Notes

Automation Data Type Data Type

VT_Ul1 Int32 Array

VT_I2 Int32 Array

VT_l4 Int32 Array

VT_R4 Real64 Array

VT_RS8 Real64 Array

VT_BSTR Text Array

VT_BOOL Int32 Array

VT_CY Real64 Array 8-byte fixed point
integer with 4 digits to
right of decimal is
converted to VEE
Real64.

VT_DATE Real64 Array Days since 12/30/1899
converted to VEE’s
representation of date/
time in seconds since
Jan. 1, 0001.

VT_ERROR <generates error>

Chapter 13

423

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Table 13-6. Converting from Automation Array Data Types to VEE Data
Types in VEE 5 Execution Mode

Convert from Convert to VEE Notes

Automation Data Type Data Type

VT_VARIANT Record A VEE record is created
for a variant containing
a mixed data type array.

VT_DISPATCH N/A Arrays of type Object
not supported.

VT_UNKNOWN N/A Arrays of type Object
not supported.

Table 13-7 shows Automation Data Type modifiers.

Table 13-7. Automation Data Type Modifiers

Automation

Type
Modifiers

VEE Type

Notes:

VT_BYREF

Either scalar or array of
the type indicated by the
scalar mapping table
above.

For instance,

VT_BYREF | VT_BSTR
would generate a VEE Text
container. In the case of a
scalar VT_VARIANT, the
variant points to another
variant. VEE creates a
container based on the
data type of the embedded
variant.

424

Chapter13

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Deleting Automation Objects

Automation objects are responsible for deleting themselves when VEE
releases its reference to them. When VEE no longer holds a reference to an
automation object, it tells the object that the reference has been released. The
object then deletes itself unless other ActiveX automation controller
applications are still using it. VEE releases references to automation objects
in the following cases:

B The Delete Variable object is executed on the automation object’s
variable name. However, VEE may also have other pointers to these
Automation objects. See "Delete Variable" in VEE Online Help for more
information.

B Delete Variables at Prerun is enabled in Default
Preferences and you restart the program.

B VEE exits, or the commands File = New or File = Open are used.

Handling Automation Object Events

Automation objects can generate events. VEE, as an automation controller,
lets you catch events via UserFunctions. You can create event-handler
UserFunctions for an automation object that generates events if you have
declared a variable of the specific type and have enabled its events. You can
create an event-handler UserFunction for each event an object can generate.

You can create an event-handler UserFunction when you declare a variable
for the object and enable its events (if they are available).

1. After declaring the variable and specifying its type, including enabling
events, open the Declare Variable object menu.

2. In the object menu, click Create Event Handler... The Create
Event Handler UserFunction browser appears. See Figure 13-6

The Member area lists all of the events available for the dispatch interface
listed in the Class area.

Chapter 13 425

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Create Event Handler UserFunction

Type: Library: Member:
" " . 7 =
£ BeforeUpdate
F Change
£ Click
F DhiClick
) # Enter
Class: F Exit
ComboBox F GotFocus
F KeyDown
F KeyPress
A =
EVEMT WT_HRESLUILT AfterlUpdater)
"combo_AfterUpdate” UserFunction will be created
Create Handler Close | Help

Figure 13-6. Create Event Handler UserFunction browser
3. Click an event name to select it.

When you select an event, the browser information area presents event
details and the status area shows the UserFunction title VEE will create.
Press the He1lp button to get information about using the event. Not all
events have online help as the library vendor is responsible for providing
it. Online help for events is not part of VEE Online Help.

4. Click create Handler. The new UserFunction window appears.
If you open this dialog box again to create another event handler, you will
notice the icons change color next to events with existing handlers.

Each new event-handler UserFunction is empty except for any required
inputs or outputs. You must program it to handle the event appropriately.
To edit an existing event, in the Declare Variable object menu, click
Edit Event Handler...

Events are tied to the declared variable’s name. The UserFunction title
combines the variable name with the event name. For example, if you
declared a variable named combo and specified its type as

426 Chapter13

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Access.ComboBox you could create event-handler UserFunctions with
names such as:

combo AfterUpdate
combo Change
combo_ DblClick
combo_ KeyDown

Events are callback functions. You must program the generated
UserFunctions (the callback functions) to handle each event appropriately.
If the automation object generates an event, it calls the related UserFunction
to handle the event. Automation objects sometimes expect a return value
from VEE when they fire an event. If so, you must program the
UserFunction to return a value.

When the object expects a return value, it waits until VEE provides this
return value. You should write an event-handler UserFunction to work
quickly, since both VEE and the automation server, such as Access, wait
until the event-handler UserFunction returns.

Since the automation server waits until the event-handler UserFunction
returns, the UserFunction is executed in non-timeslicing mode. That is, the
UserFunction runs to completion without timeslicing with the rest of the
VEE program. Because it is not timeslicing, breakpoints do not work in an
event-handler UserFunction. Also, errors do not stop VEE. Errors are turned
into Cautions and execution continues.

Chapter 13 427

Note

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Controls

Using ActiveX Automation Controls

Make sure VEE is set to VEE 5 or VEE 6 Execution Mode (in Default
Preferences) to enable ActiveX support. See “Using ActiveX
Automation in VEE” on page 403 for more information about ActiveX
support.

VEE does not support all ActiveX controls. If a control is incompatible with
VEE, an error may occur when you add the control to your program or while
you are using the control. Controls that are known to not work properly are
listed in VEE Online Help.

Selecting ActiveX Controls

Before you can use ActiveX controls in VEE, you need to inform VEE
which ActiveX controls you want to use. Click Device = ActiveXx
Control References... The resulting ActiveX Control References
dialog box lists the available control type libraries registered by the
Windows Registry. Figure 13-7 shows the dialog box with several selected
controls.

428 Chapter13

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Controls

ontrol References

Registered Contrals:

[Acrobat Contral for Actived
[Margquee Control Library
[Microsoft ActiveX Plugin Cancel
Micrasoft Calendar Contral 8.0
Microsoft Chart Cantral
[CIMicrosoft Cormm Control 5.0
Microsoft Commaon Dialog Contral 5.0 Browse. .
[IMicrasoft Data Bound Grid Control
[IMicrosoft Data Bound List Cantrals 5.0
[Micrasoft FlexGrid Contral 5.0

[Microsoft HTML Intrinsic Controls
hicraosatt Internet Transfer Cantral 5.0
Microsoft MAPI Controls 5.0

[Micrasoft Masked Edit Contral 5.0
[IMicrosoft Multimedia Control 5.0

[Microsoft PicturaClip Control 5.0
gMicmsnﬂ RemoteData Control 2.0 :'

~Microsaft Internet Transfer Contral 5.0
Location: COWMINMTSystem 3ZMSINET.OC

Ok

| »

E

Help

Figure 13-7. Selecting ActiveX Controls

Your list is probably different depending on the applications or controls you
have installed. Controls can be installed individually or as part of other
application installations. When you highlight a control name, its location
appears in the dialog box status area.

When you find the control you want to use, click the check box by the
control name (or double-click the name itself) so a check mark appears.
Then, click OK to load them into memory for use in VEE and to search for
their object classes, dispatch interfaces, and exported events. You can select
multiple controls, but you should select only the ones you plan to use since
selected libraries use memory.

If you know a control type library exists for a control, but it does not appear
in the list, it is possible the library did not get registered during its
installation. Press the Browse button to find the type library missing from
the list. When you locate and open the type library file, VEE will attempt to
register the type library and add it to the list.

Chapter 13 429

Note

Differences in the
ActiveX Control
Host

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Controls

Adding a Control to VEE

Adding a control to an VEE program is similar to adding any other object.
After you select the ActiveX control(s), as explained previously, you can add
them to your program. Click Device = ActiveX Controls to view a
cascading menu listing the selected controls. See Figure 13-8 for an
example.

Device

Formula

Function & Object Browser Chil+l
|Jzer0bject

Comparator

Activel futomation References...

Activel Control References. ..

A “antrals

MaPIMezsages
MaFIS ession
Inet
CommonDialog
M5 Chart
Calendar

Figure 13-8. Adding ActiveX Controls from the Device Menu

In Figure 13-7 and Figure 13-8, five controls are selected in the ActiveX
Control References dialog box, but six appear in the Device =
ActiveX Controls cascading menu. It is normal for some selections to
result in more than one ActiveX control being added to the resulting menu.

Select a control and place the resulting object in a detail view in the VEE
work area. You can place controls in any context — Main, UserObject, or
UserFunction. You can delete controls by selecting Cut from their object
menu or double-clicking the object's context menu button. See Figure 13-9.

ActiveX controls are different from any other VEE object. Unlike all other
VEE objects, ActiveX controls have no input or output pins nor do they have
any sequence input or output pins. Controls are not data flow oriented.

430 Chapter13

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Controls

To give you access to a control that is similar to the access available to other
objects, VEE creates a special container in the program that is the host for
the control. The container also gives you access to the control’s specific
properties built into it by the control’s developers. Regardless of the
combined features, we refer to these as ActiveX controls.

— Calendar; Calendart L
Eiestane vl I |
= 1998 -
Move
Size Thu | Fri | Sat
Minimize P 3 4
Clone B 10 11
izl g8 |17 |18
i — Hel

Host 0l_)|ec’r E el % I =

Properties and Help — Properties b =
Description
Ldd Tiemima

ActiveX Control Delets T

Properties and Help

Control Properties

Edit Event Handler...
Create Event Handler...

Cut

Figure 13-9. Accessing Properties and Help in an ActiveX Control

Some differences in the object menu follow. The Properties and
Control Properties menu items provide access to two different sets of
properties. The host container’s properties are separate from the control’s
properties. To see the typical properties associated with VEE objects, in this
case the host container, click Properties. To view and change the ActiveX
control’s properties that are provided by the control’s developer, click
Control Properties.

The Help button on the control’s Properties dialog box opens the online
help for that control if the developer provided one. The object menu’s Help
item opens the VEE Online Help topic for the host container. Create
Event Handler...and Edit Event Handler... provide the same
functionality as described for ActiveX automation objects in “Handling
Automation Object Events” on page 425.

Chapter 13 431

Using the Assigned
Local Variable

Declaring a Global
Variable for a
Control

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Controls

Using an ActiveX Control in VEE

When you add a control to the VEE work area, the control appears with an
assigned local variable name in its title bar. You can change the assigned
variable by double-clicking the control’s title bar to get the ActiveX
Control Properties dialog box. On the General tab, change the value
beside Name:.

Since the control has no pins to connect with lines to other objects in your
program, you must manipulate the control using expressions in Formula
objects that refer to the control by its variable name. These expressions must
appear in the same context as the control, since the control’s variable name is
scoped "local to context".

If you add a Calendar control to your program, it is assigned the local
variable name Calendar. The title bar contains Calendar. To interact with
the control, add a Formula object that is in the same context as the Calendar
control. The following examples demonstrate setting a property, getting a
property and calling a method on the ActiveX control referenced by the VEE
local variable called Calendar:

Calendar.Day = 24;
Month = Calendar.Month;
Calendar.AboutBox ()

If you want the variable name to be global, declare a new variable name
using Declare Variable (Data = Variable = Declare Variable).
This is similar to the variable declaration described in “Declaring
Automation Object Variables” on page 406. Since the control’s variable
name already exists, such as Calendar, you cannot declare it as global as
VEE does not allow such conflicts. A common naming convention is to
adapt the local variable name (as in g_localName), resulting in
g_calendar.

In Declare Variable, enter the new variable name, set Scope to Global
and set Type: to Object. You do not need to check Specify Object
Type to specify the particular Library and Class. However, if you do so,
VEE will do type checking automatically to assure that the Library and
Class are assigned only to the declared variable.

432 Chapter13

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Controls

After declaring the global variable, use a Formula expression to set the
control’s local variable name (such as Calendar) equal to the declared
variable name (such as g_calendar). It is important to use the SET
keyword, as shown in this expression:

SET g calendar = Calendar

Manipulating ActiveX Controls

Setting and getting properties, calling methods and handling events for an
ActiveX control uses the same mechanisms described for ActiveX
automation objects in “Manipulating Automation Objects” on page 410
and in “Handling Automation Object Events” on page 425.

Although VEE contains ActiveX controls in host objects so they are
accessible, the control’s behavior is slightly different when a program runs.
Basically, controls are viewable in only one place at a time — either the detail
view or panel view.

As an example, suppose a control is added to a program’s detail view and the
program dynamically displays a panel on which the control appears using
Show Panel on Execute or showPanel (). The control is blanked out in
the detail view until the panel closes. When the panel closes, the control
reappears in the detail view.

Chapter 13 433

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Controls

434 Chapter13

14

Using the Sequencer Object

Using the Sequencer Object

This chapter gives guidelines for using the Sequencer object, including:

B The Sequencer Object
B Using the Sequencer Object

436 Chapter14

Using the Sequencer Object
The Sequencer Object

The Sequencer Object

The Sequencer Object is in the Device menu. You should understand several
topics covered in this and other manuals to use the Sequencer object
effectively. These topics include:

B [nstrument I/O Operations (see Chapter 2, Instrument Control
Fundamentals

B Transactions (see Chapter 4, Using Transaction 1/O).
B UserObjects (see “Propagation in UserObjects” on page 269)
B Records and DataSets (see Chapter 11, Using Records and DataSets)

B UserFunctions (see Chapter 12, User-Defined Functions/Libraries)

What is the Sequencer Object?

The Ssequencer object controls the order of a series of tests. It does this by
executing a test, then comparing the results of each test to a specification and
using the comparison to determine the next action.

The sequencer object executes a series of predetermined sequence
transactions. Each transaction evaluates a VEE expression, which may
contain calls to UserFunctions, Compiled Functions, Remote Functions, or
other VEE functions. The transaction compares the value returned by that
expression to an existing test specification. Depending on whether the test
passes or fails, the transaction evaluates different expressions and selects the
next transaction to be executed. You specify transaction behavior in the
Sequence Transaction dialog box that appears when you click on a
transaction.

Transactions may log their results to the Log output pin or to a
UserFunction, Compiled Function, or Remote Function. Results can be read
as they occur or collected in a Log Record, or both. Logging actions are
specified in the Sequencer Properties dialog box on the Logging tab.

Chapter 14 437

Using the Sequencer Object
The Sequencer Object

Logging Test Results

For some situations, you must be careful about collecting Sequencer log
records into an array of records. As explained in Chapter 11, Using Records
and DataSets, to build an array of records all array elements of a given field
must be of the same type, shape, and size. For a record of records, as is
generated by the Log output terminal of the Sequencer, the type, shape,
and size of each field must match for sub-records as well.

For example, suppose you are collecting the logged results of several
executions of a Sequencer, either by using the Collector to build an
array or by sending the results to a DataSet. In either case, if any of the
logged values of a given transaction change type, shape, or size between
executions of the Sequencer, an error occurs. The error is generated by the
Collector or To DataSet object because the array of records cannot be
built.

This situation can easily occur if a transaction is not executed on every
execution of the Sequencer, such as an ENABLED IF condition specified.
If the transaction is not executed, a log record is still generated but the NAME
and DESCRIPTION fields are empty strings, and all the other fields contain a
Real scalar value of zero.

If the same transaction is executed on a subsequent execution of the
Sequencer, and logs a result that is not a Real scalar, an error occurs. (You
might want to consider, in this situation, writing each logged record out to a
file in container format with To File instead of using To DataSet.)

An error can also occur if your tests return arrays of different sizes, such as
an array of the failed data points. In this case, you might want to design the
test to pad the array to always return the same size array.

438 Chapter14

Using the Sequencer Object
Using the Sequencer Object

Using the Sequencer Object

Four examples using the Sequencer object follow, including:

B Example: Sequencer Transactions
B Example: Logging Test Results

B Example: Logging to a DataSet

B Example: Bin Sort

Example: Sequencer Transactions

The sequencer object in its open view shows a list of sequence
transactions. Each transaction is similar to the other types of transactions
shown in Chapter 4, Using Transaction I/O. The program in Figure 14-1
shows how the Sequencer uses transactions to execute expressions and call
functions.

Figure 14-1 does not show two UserFunctions in the background: myRand1,
which adds a random number from 0 to 1 to the value of its input, and
myRand2, which adds a random number from 0 to 100 to its input. You see
the calls to these UserFunctions when you expand the transactions. See
Chapter 12, User-Defined Functions/Libraries for further information on
creating and using UserFunctions.

—| Real6d] - | = Seguencer | |
It
4 A testt 1 ==(1.28)==145 Return
test? 1 == (26) == &1
_| T | 5 | test3 finish (simple EXEC trans.)
= Double-Click to Add Transaction =

IDune!

—_ Log Record F

—| Return value | 4

Figure 14-1. Example: Sequencer Transactions

Chapter 14 439

Note

Using the Sequencer Object
Using the Sequencer Object

When you click a transaction, a dialog box "expands" the transaction so you
can view and edit it. The dialog box in Figure 14-2 shows the first
transaction, test1:

Sequence Transaction

Test| B0 | [EnssleD =]

SPECNOMINAL: [r2s | [RaneE =] [= =hs
FUNCTION: [rryRand (%) | LOGGING ENABLED |

FPass | [THEN CONTINUELT]

FraL | [THEN ConTINUEL]

DESCRIFTION: |
OK | Cancell

Figure 14-2. testl Sequence Transaction Dialog Box

A sequence transaction can be either a TEST transaction or an EXEC
transaction. In this transaction, the type is TEST :, the name field is test1,
the nominal specification is 1.25, a RANGE : specification is used, and the
rangeis 1 <= ... <= 1.5.

Only values from 1 to 1.5 will pass the test. The expression myRand1 (A)
calls the UserFunction, using the value on the A input terminal of the
Sequencer as its input parameter.

The transaction has logging enabled so a local variable named Test1 is
automatically created to contain the log record of the results of this test. This
log record will also be available as part of the Log output terminal. The IF
pPASS and IF FAIL conditions are both set to THEN CONTINUE. This means
that, pass or fail, when test1 is done the next transaction, test2, is
executed.

The DESCRIPTION field is a comment area for this test.

The sPEC NOMINAL value is not used for RANGE or LIMIT tests except for
"documentation" purposes. However, if you use tests based on TOLERANCE
or $TOLERANCE values, the tolerance will be calculated relative to the SPEC
NOMINAL value.

440 Chapter14

Using the Sequencer Object
Using the Sequencer Object

The second transaction, test2, shown in Figure 14-3, is also a TEST
transaction.

Sequence Transaction

TesT | EEE | [EnesleD o

SPEC NOMINAL: o5 [rancE.] i =1 =k
FUNCTION: [ryRand2(®) | LOGGING ENABLED |
ﬂl [THEN CONTINUES]

FFAL | [THEN CONTINUES]

DESCRIFTION: |
OK | Cancell

Figure 14-3. test2 Sequence Transaction Dialog Box

This second test is similar to the first. The UserFunction myRand?2 is called
with the expression myRand2 (a) . The resulting value is tested to see if it is
in the range 1 through 51, with a nominal specification of 26. Again, pass or
fail, the Sequencer continues to the next transaction.

The third transaction is an EXEC transaction, as shown in Figure 14-4:

Sequence Transaction

exec:| MIER | [EneeleD
FUNCTION: i IOGEINEDIEARIED

| THEN RETURN: =] [B

DESCRIFTION: [(zimple EXEC trans.)

0K | Cancell

Figure 14-4. EXEC Transaction Dialog Box

An EXEC transaction, unlike a TEST transaction, performs no comparison
of the function result to a specification or range. EXEC transactions are used
to perform an action that does not require a pass/fail test.

Chapter 14 441

Using the Sequencer Object
Using the Sequencer Object

For example, an EXEC transaction could call a routine that sets up an
external configuration before a TEST transaction is performed, or it could
execute a power down procedure after a series of tests. (An EXEC
transaction is a shortcut for specifying an "always pass" test condition.)

In this example, the transaction named finish returns the value of B to
the Return output terminal of the Sequencer object. Since no test is
performed, logging does not occur for an EXEC transaction.

You can use the DESCRIPTION field to briefly describe any transaction.

When you run the program, the three transactions are executed in sequence
as shown in Figure 14-5.

—|Re§|54| -
h— = Sequencer | ..|
l 4 A test! 1 ==(1.28)==1.5 Return
J test? 1 == (26) == 51 4
=| e = finish (simple EXEC frans.)
|DDnE| 7 = Douhle-Click to Add Transaction = Lag

= Log Record = | aigh -
{{"testl™, 1.396, l},{"test2™,85.05, 01} —| Alphaliumerc | «

Daonel

Figure 14-5. Running the Program

The logged test results are output on the Log output terminal and displayed.
The results are logged as the Record data type, a record of records. In this
case, test1 has passed with a value of 1.396 and test2 has failed with a
value of 85 . 05. The third transaction returns the value on the B input, which
is the string Done!.

Each transaction that has logging enabled creates a log record named as the
transaction name. In this example, logging is enabled for the first two tests
so local variables named Test1 and Test2 contain the log records for those
transactions.

The fields contained in the log records are defined in the Properties
dialog box. To access the logging configuration, click Properties in the

442 Chapter14

Using the Sequencer Object
Using the Sequencer Object

Sequencer object menu, then click the Logging tab. By default, log
records contain Name, Result, and Pass fields.

The Test1 and Test2 local variable names can be used in any expression
within the Sequencer to access the results of the current or a previously
executed transaction. For example, Test 3 could have called a function with
Testl.Result as a parameter to pass the result of the first test. Or
Test2.Pass could be used as an expression that would evaluate to 1 if
Test2 passed, or 0 if Test2 failed.

There is one more local variable, thisTest, available to access the logging
records. The value of thisTest is always the same as the logging record
for the currently executing transaction. This allows you to write transaction
expressions that can be used in many transactions without having to include
the name of each transaction.

The data structure produced by the Log output terminal on the Sequencer
is a record of records, as shown in Figure 14-6.

Log.Testl.Results

Pass

Result V

Name

Log Testl Test2

Figure 14-6. A Logged Record of Records

The record produced by the Log output pin contains a field for each
transaction that has logging enabled, Test1 and Test2 in this example.
Each of these fields is the log record for the specified transaction, containing
the fields Name, Result, and Pass.

This record of records is available on the Log output pin and can be used by
other objects by using the record "dot" syntax. For example, the expression
Log.Testl.Result would, in this case, return the value 1.396, as shown

Chapter 14 443

Using the Sequencer Object
Using the Sequencer Object

in Figure 14-5. Likewise, Log. Test1.Name would return test1 and
Log.Testl.Pass would return 1.

The data logged on the Log output pin is always the data from the /as?
execution of each transaction. If you want to log the results of every
execution of each transaction, set Logging Mode to Log Each
Transaction To: onthe Logging tab of the Sequencer Properties
dialog box. This option calls the specified function (or expression) at the
completion of every transaction.

This option can also be useful if you want to log test results to a file or
printer as they happen, rather than waiting until the Sequencer has
completed. The local variable thisTest can be used as a parameter to the
logging function to pass the log record of the transaction that has just
completed.

Example: Logging Test Results

Figure 14-7 shows another example of logging test results, where an iterator
causes the Sequencer to repeat the tests over and over and to log the
results.

—|For Count| «
| 4
= Sequencer | -l|
testt 1 =={1.26)==1.4 Return

Cnllectorl

= Log Record = -
{{"testl™, 1.398, l},{"test2", 85.05, 0}} 1To File|
{{"testl”, 1.353, l},{"testa”, 45.66, 1}}
{{"testl™, 1.319, 1},{"testz", 89.64, 0}}
Data |{{"testl™, 1.016, l},{"testz”, 59.4L, O}}

Figure 14-7. Example: Logging Test Results

444 Chapter14

Using the Sequencer Object
Using the Sequencer Object

In this example, the For Count object causes the Sequencer to execute its
series of tests (test1 and test2 of the previous example) four times. For
example, if four "widgets" are being tested on an assembly line, each
execution of the Sequencer tests one widget.

The resulting series of records from the Log output terminal is collected by
the Collector and displayed as an array of records. You can use the To
File object to output this array to a file using a WRITE CONTAINER [/O
transaction, or you can use a DataSet.

You can think of the output of the Collector in this example as an array of
records of records, as Figure 14-8 illustrates.

Log[*].Test1.Result

Pass
Result V
Name
Log [0] Testl Test2
Log [1]
Log [2]
Log [3]

Figure 14-8. A Logged Array of Records of Records

Each array element (Log[0], Log[1], etc.) represents a single iteration of
the sequencer and is a record of records. The logged output is available for
analysis in expressions. In this case, Log[*] .Testl.Result is a "core
sample" from the array. In fact, Log[*].Test1.Result would return an
array of values (1.396, 1.353, 1.319, and 1.016 for the example results in
Figure 14-5).

Chapter 14 445

Note

Using the Sequencer Object
Using the Sequencer Object

The logged array is not a three-dimensional array but an array of records of
records. This is important because the individual fields of a record can be of
differing data types. While the Name field is Text, the Result field could be
a Waveform, etc. Also, the Test2.Result field could be a Waveform while
the Test1l.Result field is a Real value.

However, each individual field must be of a consistent data type throughout
the array. For example, the field Test1.Result cannot be a Real value for
Log[0] and a Waveform for Log[1].

The example in Figure 14-9 extends this example to 10 iterations of the
Sequencer and adds some analysis of the logged data. In Figure 14-9, the
expression log[*].testl.result inthe Formula object returns a
10-element Real Array that contains the results of test1. This array is then
statistically analyzed by means of the min (x), max (x), mean (x), and
sdev (x) objects.

= For Count =

| 10

=] Seguencer =]

test! 1 ==(1.28)==15 Return |

Log |—w
_ —| Minvalue |
[allales] |—| 1.015

_ —| Maxvalue |«
=| Formula =] i |—| 1.895
log Ilog[”].tesh result | Result |) _| E—— | -
rneanis |—| 1.541

—| StdDev |~

sdevi) |—| 0.2971

Figure 14-9. Analyzing the Logged Test Results

= Double-Click to Add Transaction #

Caollector

446 Chapter14

Using the Sequencer Object
Using the Sequencer Object

This example is saved in the file manual44.vee in the examples
directory.

Example: Logging to a DataSet

You can use a DataSet to store logged test results. In the program in Figure
14-10, the Sequencer object Log output terminal is connected to the To
DataSet object.

= For Count =
I 10
—| Sequencer =] =] To Data Set =]

testl 1 =={1.25 =15 Return | To DataSet: trmpirryData |
test? 1 == {26) == 51

input
= Douhble-Click to Add Transaction = Log |_j_| IV Clear File At PreRun

= From Diata Set = - —| Minvalue |-
ming |—| 1.152
From DataSet: ftmpimyData | 60
Get records: All Ret |_ | —— |‘
Search Specifier. (eq: Rec A=10) -
Rectest! pass AND Rectest2 pass MmaK(d I—l 1.485

—| Meanvalue |«

= Formula r meant |—| 1.318

Fec[®].test! result

—| stdDew |«

sdevi) |—| 0.2357

Figure 14-10. Example: Logging to a DataSet

When the For Count object is finished, it causes the From DataSet
object to retrieve the stored DataSet (myDataSet). From DataSet is
configured to retrieve ALL records from myDataSet but to test each record
against the condition Rec.testl.pass AND Rec.test2.pass. A
particular record is retrieved only if both test1 and test?2 passed for that
record.

Of the retrieved records, if any, the expression Rec[*] .testl.result
returns all of the test1.result record fields, which are then statistically

Chapter 14 447

Using the Sequencer Object
Using the Sequencer Object

analyzed. (This program will error if none of the records satisfy the
expression Rec.testl.pass AND Rec.test2.pass.)

This example is saved in the file manual45.vee in the examples
directory.

Example: Bin Sort

The next example measures the resistance value of carbon resistors.

Previously, carbon resistors were manufactured by a rather imprecise
process, then tested, sorted, and marked. The standard resistance values
(such as 2200, 2700, and 330Q2) were chosen to overlap at 10% tolerance
so each resistor could be used. If the resistor value is more than 10% greater
than 220€, it can be labeled as a 2709 ohm resistor, etc.

Figure 14-11 shows a program in which the Sequencer calls a
UserFunction, which returns a resistance value. The Sequencer then runs a
series of tests to determine which nominal resistance value and percent
tolerance the resistor satisfies. This is a "bin sort" problem. That is, the
sequencer returns a result that identifies the bin in which to put the resistor.

One of the advantages of using the Sequencer to call a UserFunction is that
different UserFunctions can be substituted. For this example, we use a
UserFunction (simResist) that returns a random resistance value in the
expected range during development. You could substitute another
UserFunction that executes Instrument I/O and returns real resistance values.

The simplest solution to the problem is to use an extended series of sequence
transactions, each testing the resistance value against a nominal value and
tolerance.

448 Chapter14

Using the Sequencer Object
Using the Sequencer Object

To String

= Sequencer =

teot2 (330) +5 "%
test3 (330 +10% -10% Return |
testd (270) +2% -2%
tests (270) +5% -5%

testé (270) +10% -10%

test? (220) +2% -2%

testd (2200 +5% -5%

testd (220) +10% -10% z Break |
Error Condition |

Figure 14-11. Bin Sort Example

=] Bin Sort =
330 Ohm, 2%

In this example, the first sequence transaction (test1) calls the
UserFunction simResist with the expression simResist (). (This
UserFunction requires no inputs). Figure 14-12 shows the first sequence
transaction.

Sequence Transaction

TEsT:| BB | [EnsBlED]

SPEC MOMINAL: |330 [%TOLERANCE: =] + |2 % -2 %

FUNCTION: [imResist() LOGGING ENABLED |

IF PASS | | THEM RETURN: =] [[330 2]
IF FAIL | [THEN CONTINUE =]

DESCRIPTION: |

Ok | Caneell

Figure 14-12. testl Transaction

testl tests to see if the resistance value returned by simResist is within
+2% of the nominal value, 330Q. If it is, the two-clement Real array [330
2] is returned on the Return output terminal, and the To String object
converts this value to the string 330 ohm, 2%. If the test fails, the
Sequencer goes to the next test.

Chapter 14 449

Note

Using the Sequencer Object
Using the Sequencer Object

The second transaction, test2, works like test1 except that instead of
calling simResist again the FUNCTION field contains the expression
testl.result. Figure 14-13 shows the second sequence transaction.

Sequence Transaction

TesT | BEE | [ENABLED]

SPEC NOMINAL: [330 |%TOLERANCE: x| + 5 % - |3 %
FUNCTION: ftestt result LOGGING ENABLED |

IF PASS | | THEN RETURN: =] [330 5]
IF FAIL | [THEN CONTINUE =]

DESCRIPTION: |

DK | Cancel|

Figure 14-13. test2 Transaction

Any transaction with logging enabled creates a "local" Record variable with
the same name as the test. This record contains the fields specified for the
logging record. For the transaction testl (Figure 14-12) the expression
testl.result returns the value returned by the function called in test1.

There are two reasons for using the expression testl.result in this
example. First, by using test1.result in transactions test2 through
test9 we can ensure that each transaction uses the same function result,
even if we later change test1 to call a different function.

More importantly in this example, each time you call the UserFunction a
new resistance value is returned. Instead of a new value, we want to continue
testing the original resistance value against successive nominal values and
tolerances. So, the transactions test?2 through test9 all include the
expression testl.result in the FUNCTION field. These transactions work
like the first, returning the appropriate array ([330 5], [330 10], [270
21, etc.) if passed.

The first eight tests continue to the next test if failed. However, we need an
indication if a// the tests are failed. Thus, test9 is configured IF FAIL

450 Chapter14

Using the Sequencer Object
Using the Sequencer Object

THEN ERROR. The Error output terminal causes the AlphaNumeric
display entitled Error Condition to execute, displaying the text Out of
Range.

Although this approach is simple, it is not very efficient. You would need to
create quite a large number of sequence transactions to test several resistance
values, with three tolerances in each case. Figure 14-14 shows an improved
version of the "bin sort" example.

—| RealBs | 4] =| HESIENINGS [—| Measured R | =

test! (0) == min{a)*9
test2 (0) == max{ay™ .1

Return | 234

—| setvariable | 4|

MName
% |g|0ba|0hrr

—| ForCount | «

totSizely 5 =
—()l Errar Condition I
—| Formula | 4] -
= Break |
! ’R[i]

Result |
R | St
To String
=] Test Value & Tolerance = —| BinSot |«
testl fnaorm) +2% -2% Return | 220 Ohrm, 10%
test? (nom) +5% -5%

testd (nom) +10% -10% L
= Double-Click to Add Transaction = -I Break |

Figure 14-14. Improved Bin Sort Example

This example is saved in the file manual46.vee in the examples
directory.

Chapter 14 451

Using the Sequencer Object
Using the Sequencer Object

Some key points for this program are:

B This program uses two Sequencer objects. The first one (labeled Test
Bounds) "re-uses" the tests in the second one (labeled Test vValue s
Tolerance).

B The Real64 array in the upper left corner of the program contains five
elements, each representing a standard resistance value. However, the list
of values is extensible in this example. Regardless of the number of array
elements, the TotSize (x) function returns that number so the For
Count object will iterate the correct number of times. The expression
R[i] in the Formula object takes care of the indexing.

B [n the Sequencer named Test Bounds, the first transaction (test1)
calls the UserFunction simResist with the expression simResist (),
as Figure 14-15. shows.

Sequence Transaction

TEsT| EEM | [EnsBLED =]
SPEC NOMINAL: [g [tmm = o [>= =] [min(ay 9

FUNCTION: [imResist() LOGGING ENABLED |

IF PASS | ITHEN CONTINUE vl

IF FAIL | | THEM ERROR: =] |0
OK | Cance||

DESCRIPTICN: |

Figure 14-15. Improved testl Transaction

A simulated resistance test value is returned and tested to see if it is at
least 90% of the lowest value (150Q) in the array. (Any value field in a
sequence transaction can contain an expression such as min (a) *.9.)

452 Chapter14

Using the Sequencer Object
Using the Sequencer Object

The second transaction (test?2) tests to see if the value
(testl.result)is less than or equal to 110% of the highest value
(330Q2) in the array. Figure 14-16 shows this transaction.

Sequence Transaction

TesT:| BE® | [EnABLED 5]

SPEC NOMINAL: [0 [omm = [e= = fnanay
FUNCTION: fiestt result LOGGING ENABLED |

IF PASS | | THEM RETURN: =] |thistest.result

IF FAIL | | THEN ERROR: =] [1
OK | Cance||

DESCRIPTICN: |

Figure 14-16. Improved test2 Transaction
If either test fails, an error occurs.

B [f an error does occur, the UserObject named Error Condition usesa
Triadic expression to ascertain whether to display out of Range:
LOWor Out of Range: HIGH. The UserObject is configured as Show
Panel on Exec so if either error condition occurs a display "pops up"
to show the error. This happens once every few times you run the
program because the UserFunction simResist returns random values
in the range 100—400. (To continue, press OK in the pop-up box.)

Chapter 14 453

Using the Sequencer Object
Using the Sequencer Object

B The transaction test1 in the first Sequencer is the only transaction that
calls the UserFunction simResist. (test2 includes the expression
testl.result instead of simResist.) This is necessary in this case
because we want to run multiple tests on just one resistance value.
Otherwise, a new value would be returned every time the UserFunction
was called. However, there is another reason.

Since the UserFunction simResist is only called once, you can replace
it with a call to a different UserFunction. The example (manual46.vee,
Figure 14-14) contains a second UserFunction, called measResist,
which uses a Panel Driver to call an HP 3478 A Digital Voltmeter
configured for resistance measurements. If you have an HP 3478 A meter,
connect it via GPIB, change the FORMULA field in test1 to the
expression measResist (), and run the program.

B Regardless of whether simulated or measured resistance values are taken,
the Test Bounds return value is displayed and is set as a global variable
(globalohms). For example, the three transactions in the Sequencer
labeled Test Value & Tolerance (Figure 14-14) each call this global
variable using the expression globalOhms. Figure 14-17 shows the first
transaction expanded.

Sequence Transaction

TesT| B | [EnABED 5]

SPEC NOMINAL: nom | [%TOLERANCE: =] + |2 % -2 %
FUNCTIOM: [3iobalOhms LOGGING ENABLED |

IF PASS | | THEN RETURN: =] [[nom 2]
IF FAIL | [THEN CONTINUE =]

DESCRIPTION: |

OK | Cancell

Figure 14-17. globalOhms Transaction

454 Chapter14

Using the Sequencer Object
Using the Sequencer Object

If a test passes, the appropriate real array (e.g., [220 21) is output. The
To String object converts the data to a string (e.g., 220 Ohm, 2%).
The sequencer is executed as many times as necessary until a Bin
Sort result is found.

B Since we are not using the Log output terminal in either Sequencer we
have deleted the terminal to speed up execution.

B [f you want to see the flow of this program, try running it a few times
with Show Execution Flow and Show Data Flow turned on.

For some further examples using the Sequencer, see the examples
directory.

Chapter 14 455

Using the Sequencer Object
Using the Sequencer Object

456 Chapter14

I/0 Transaction Reference

I/0 Transaction Reference

This appendix describes VEE 1/O transaction actions, encodings, and
formats. The contents are:

B]/O Transactions Summary
B WRITE Transactions

B READ Transactions

B Other Transactions

458 Appendix A

I/0 Transaction Reference
/0 Transactions Summary

I/O Transactions Summary

Table A-1 summarizes 1/O transaction types for VEE, and Table A-2
summarizes the I/O Transactions Objects for VEE.

Table A-1. Summary of I/O Transaction Types

Action Description
WRITE Writes data to the destination specified in the object.
READ Reads data from the source specified in the object.
EXECUTE Executes low-level commands to control the file,

instrument, or interface associated with the object.
EXECUTE is used to adjust file pointers, to close
pipes and files and to provide low-level control of
instruments and hardware interfaces.

WAIT Waits for the specified number of seconds before
executing the next transaction.

For Direct I/0 objects, WAIT can also wait for a
specific serial poll response, or for specific values in
accessible VXI instrument registers.

SEND Sends |IEEE 488-defined bus messages (bus
commands and data) to a GPIB interface.

READ (REQUEST) reads DDE data frrom another application.

RITE (POKE) Writes DDE data to another application.

Appendix A 459

I/0O Transaction Reference
/0 Transactions Summary

Table A-2. Summary of I/O Transaction Objects

Objects Supported Transactions
EXECUTE WAIT READ WRITE SEND
To File X X X
From File X X X
To Printer X
To String X
From String X X

To StdOut

Execute Program (UNIX)?
To/From Named Pipe
To/From Socket

Direct I/0

X
MultiInstrument Direct I/0 | X
X

Interface Operations

To/From Rocky Mountain

BasicP

To/From DDE®

a. Execute Program (PC) is not transaction based.
b. VEE for HP-UX only.
c. VEE for Windows only.

460 Appendix A

I/0 Transaction Reference
WRITE Transactions

WRITE Transactions

This section describes the WRITE transaction in Table A-3. Topics that apply
to all WRITE encodings are summarized at the beginning of this section.

Path-Specific Behaviors

Some WRITE transactions behave differently, depending on the 1I/0 path

of the destination. For example, WRITE TEXT HEX transactions format
hexadecimal numbers differently depending on whether the destination is a
UNIX file or an instrument. To distinguish these behaviors, this section uses
these terms:

B UNIX path is any destination other than an instrument, such as a UNIX
file, a string, the printer, or a UNIX pipe.

B MS-DOS path is any destination other than an instrument, such as an
MS-DOS file, a string, or the printer.

B Direct I/O path is any instrument accessed using Direct I/0.

Appendix A 461

I/0O Transaction Reference
WRITE Transactions

Behaviors for all Paths

The behaviors described in the following sections apply to all paths except
as specifically noted in Table A-3

Table A-3. WRITE Encodings and Formats

Encodings

Formats

TEXT

DEFAULT
STRING

QUOTED STRING
INT16, INT32
OCTAL

HEX

REAL32, REALG64
COMPLEX
PCOMPLEX
COORD

TIME STAMP

BYTE

Not Applicable

CASE

Not Applicable

BINARY

STRING
BYTE
INT16
INT32
REAL32
REALG64
COMPLEX
PCOMPLEX
COORD

BINBLOCK

BYTE
INT16
COMPLEX
INT32
PCOMPLEX
REAL32
REAL64
COORD

CONTAINER

Not Applicable

STATE?

Not Applicable

462

Appendix A

I/0 Transaction Reference

WRITE Transactions

Table A-3. WRITE Encodings and Formats

Encodings

Formats

REGISTERP

BYTE

WORD16
WORD32
REAL32

MEMORY®

BYTE
WORD16
WORD32
REAL32
WORD32*2
REALG64

IOCONTROLC

Not Applicable

a. Direct I/O to GPIB only.
b. Direct I/O to VXI only.
c. Direct I/O to GPIO only.

Appendix A

463

I/0O Transaction Reference
WRITE Transactions

TEXT Encoding

WRITE TEXT transactions are of this form:
WRITE TEXT ExpressionList [Format]

ExpressionList is a single expression or a comma-separated list of
expressions.

Format is an optional setting that specifies one of the formats listed in
Table A-4.

464 Appendix A

I/0 Transaction Reference
WRITE Transactions

Table A-4. Formats for WRITE TEXT Transactions

Format Description

DEFAULT VEE automatically determines an appropriate text representation
based on the data type of the item being written.

STRING Writes Text data without any conversion. Writes numeric data types as
Text with maximum numeric precision.

QUOTED Writes data in the same format as STRING, except the data is

STRING surrounded by double quotes (ASCII 34 decimal).

INT16 Writes data as a 16-bit two's complement integer in decimal form.

INT32 Writes data as a 32-bit two's complement integer in decimal form.

OCTAL Writes data as a 32-bit two's complement integer in octal form.

HEX Writes data as a 32-bit two's complement integer in hexadecimal form.

REAL32 Writes data as a 32-bit floating point number in a variety of notations
including fixed decimal and scientific notation.

REALG4 Writes data as a 64-bit floating point number in a variety of notations
including fixed decimal and scientific notation.

COMPLEX Writes a comma-separated pair of 64-bit floating point numbers that
represent a complex number. The first number represents the real
part and the second number represents the imaginary part.

PCOMPLEX Writes a comma-separated pair of 64-bit floating point numbers that
represent a complex number. The first number represents the
magnitude and the second number represents the phase angle in the
phase units specified in the transaction.

COORD Writes a comma-separated series of 64-bit floating point numbers that
represent a rectangular coordinate.

TIME Converts a real number (for example, the output of the now ()

STAMP function) to a meaningful form and writes it in a variety of combinations

of year, month, day and time.

Appendix A 465

DEFAULT Format

I/0O Transaction Reference
WRITE Transactions

WRITE TEXT (default) transactions are of this form:
WRITE TEXT ExpressionList

ExpressionList is a single expression or a comma-separated list of
expressions.

The transaction converts each item in ExpressionList to a meaningful
string and writes it. Consider the simple case of writing the scalar variable X
as shown in Figure A-1:

WRITE TEXT X

Figure A-1. AWRITE TEXT Transaction
If x in Figure A-1 contains text, such as:
bird cat dog
no conversion is performed and the transaction writes exactly 12 characters.
If x in Figure A-1 contains a scalar Integer, such as:
8923 the value of X (decimal notation)

the numeric value is converted to text and VEE writes exactly four
characters.

If x in Figure A-1 contains a scalar real value, such as:
1.2345678901234567 the value of X (17-digit scalar real value)

each significant digit up to 16 significant digits is written. The least
significant digit is approximate because of the conversion between VEE's
internal binary form and decimal notation. If you use this scalar real value
using the transaction:

WRITE TEXT a EOL
then VEE writes this:
1.234567890123457 16-digit value

If the absolute value of the number is sufficiently large or small, exponential
notation is used. The Reals that form the sub-elements of Coord, Complex,
and PComplex behave the same way.

466 Appendix A

STRING Format

I/0 Transaction Reference
WRITE Transactions

If EOL ON is specified for any WRITE TEXT DEFAULT transaction, the
character specified in the EOL Sequence field for that object is written
following the last character in ExpressionList.

WRITE TEXT STRING transactions are of this form:
WRITE TEXT ExpressionList STR

ExpressionList is a single expression or a comma-separated list of
expressions.

WRITE TEXT STRING transactions behave basically the same as WRITE
TEXT (default) transactions (one exception will be discussed). The
significant difference is that STRING allows you to specify additional details
about output formatting including field width, justification and number of
characters.

Field Width and Justification. If a transaction specifies DEFAULT FIELD
WIDTH, only those characters resulting from the conversion of items within
ExpressionList to Text are written.

If a transaction specifies FIELD WIDTH: F, the converted Text is written
right- or left-justified within a space F characters wide.

The transactions in Figure A-2 specify that all characters are to be written
within a field of twenty characters with left justification.

WRITE TEXT X STR FW:20 LJ EOL
WRITE TEXT Y STR FW:20 LJ EOL

Figure A-2. Two WRITE TEXT STRING Transactions

If x and Y in Figure A-2 have these values:

bird cat dog the Text value of X

12345678901234567 the Real value of Y
then VEE writes:

bird cat dog

12345678901234567

Appendix A 467

I/0O Transaction Reference
WRITE Transactions

The caret characters (*) are not actually written by VEE, but are shown to
help you visualize the field width. The characters to the right of dog and to
the right of the second 7 are spaces (ASCII 32 decimal).

If justification is changed to RIGHT JUSTIFY, the transactions appear as
shown in Figure A-3.

WRITE TEXT X STR FW:20 RJ EOL
WRITE TEXT Y STR FW:20 RJ EOL

Figure A-3. Two WRITE TEXT STRING Transactions

If x and Y in Figure A-3 have these values:

bird cat dog the Text value of X
12345678901234567 the Real value of Y
VEE writes:

bird cat dog
12345678901234567

A A

The caret characters (*) are not actually written by VEE, but are shown to
help you visualize the field width. The characters to the left of bird and to
the left of the first 1 are spaces (ASCII 32 decimal).

If the length of a string exceeds the specified field width, the entire string is
written. The field width specification never truncates as only MAX NUM
CHARS can truncate characters.

The transaction in Figure A-4 specifies that all characters are to be written in
a field width of four characters with left justification.

WRITE TEXT X STR FW:4 LJ

Figure A-4. AWRITE TEXT STRING Transaction
If x in Figure A-4 has this value:
bird cat dog the Text value of X, 12 characters
VEE writes:

bird cat dog all 12 characters

468 Appendix A

I/0 Transaction Reference
WRITE Transactions

Even though the specified field width is four characters, the transaction
writes all twelve characters of the string.

Number of Characters. If you specify ALL CHARS, all the characters
generated by the conversion of each item in ExpressionList are
written. If you specify MAX NUM CHARS: M, only the first M characters of
each item in ExpressionList are written.

The transactions in Figure A-5 specify that a maximum of seven characters
are written in each field, the field width is twenty characters and field entries
are left-justified.

WRITE TEXT X STR:7 FW:20 LJ EOL
WRITE TEXT Y STR:7 FW:20 LJ EOL

Figure A-5. Two WRITE TEXT STRING Transactions

If X and Y in Figure A-5 have these values:

bird cat dog the Text value of X

12345678901234567 the Real value of Y
VEE writes:

bird ca

1234567

A A

The numeric value of Y is first converted to Text and characters are
truncated. Numeric values are not rounded by MAX NUM CHARS.

The caret characters (*) are not actually written by VEE, but are shown to
help you visualize the field width. The characters to the right of bird and to
the right of the first 1 are spaces (ASCII 32 decimal).

Appendix A 469

Note

QUOTED STRING
Format

I/0O Transaction Reference
WRITE Transactions

Writing Arrays With Direct I/O. WRITE TEXT STR transactions that
write arrays to direct I/O paths ignore the Array Separator setting for the
Direct I/O object. These transactions always use linefeed (ASCII
decimal 10) to separate each element of an array (which is a string) as it is
written. This behavior is consistent with the needs of most instruments.

This special behavior for arrays does not apply to any other types of
transactions.

WRITE TEXT QUOTED STRING transactions are of this form:
WRITE TEXT ExpressionList QSTR

ExpressionList is a single expression or a comma-separated list of
expressions.

In general, the behaviors previously discussed for the STRING format apply
to QUOTED STRING format. There are two differences between STRING and
QUOTED STRING:

B For QUOTED STRING, a double quote (ASCII 34 decimal) is added to the
beginning and the end of the string. The double quotes are applied before
any padding spaces are added to justify the string within the specified
field width.

B Control characters (ASCII 0-31 decimal), escape characters (Table A-5)
and the characters ' (ASCII 39 decimal) and " (ASCII 34 decimal)
embedded inside a double-quoted string receive special treatment.

Field Width and Justification. If you specify DEFAULT FIELD WIDTH,
only those characters resulting from the conversion of items within
ExpressionList to Text and the surrounding double quotes are written.

If you specify FIELD WIDTH: F, the converted Text and the surrounding
quotes are written right or left justified within a space F characters wide.

470 Appendix A

I/0 Transaction Reference
WRITE Transactions

The transactions in Figure A-6 specify that all characters are to be written as
quoted strings in a field 20 characters wide with left justification.

WRITE TEXT X QSTR FW:20 LJ EOL
WRITE TEXT Y QSTR FW:20 LJ EOL

Figure A-6. Two WRITE TEXT QUOTED STRING Transactions

If x and Y in Figure A-6 have these values:

bird cat dog the Text value of X
12345678901234567 the Real value of Y
VEE writes:

"bird cat dog"
"12345678901234567"

A A

The caret characters (*) are not actually written by VEE, but are shown to
help you visualize the field width. The characters to the right of dog" and to
the right of 7" are spaces (ASCII 32 decimal).

If justification is changed to RIGHT JUSTIFY, the transactions appear as
shown in Figure A-7.

WRITE TEXT X QSTR FW:20 RJ EOL
WRITE TEXT Y QSTR FW:20 RJ EOL

Figure A-7. Two WRITE TEXT QUOTED STRING Transactions

If X and Y in Figure A-7 have these values:

bird cat dog the Text value of X
12345678901234567 the Real value of Y
VEE writes:

"bird cat dog"
"12345678901234567"

A A

The caret characters (*) are not actually written by VEE, but are shown to
help you visualize the field width. The characters to the left of "bird and to
the left of "1 are spaces (ASCII 32 decimal).

Appendix A 471

I/0O Transaction Reference
WRITE Transactions

If the length of a string exceeds the specified field width, the entire string is
output. The field width specification never truncates strings that are written
as only MAX NUM CHARS can truncate characters.

The transaction in Figure A-8 specifies that all characters are to be written
within a field of four characters with left justification.

WRITE TEXT X QSTR FW:4 LJ

Figure A-8. AWRITE TEXT QUOTED STRING Transaction
If x in Figure A-8 has this value:
bird cat dog the Text value of X, 12 characters
VEE writes:

"bird cat dog" all 12 characters

Number of Characters. If you specify ALL CHARS, all the characters
generated by the conversion of each item in ExpressionList as well as
the surrounding double quotes are written. If you specify MAX NUM CHARS:
M, only the first M characters of each item in ExpressionList plus the
surrounding double quotes are written. In other words, a total of M2
characters are written for each item in ExpressionList.

The transaction in Figure A-9 specifies MAX NUM CHARS: 7 (field width 20,
left-justified).

WRITE TEXT X QSTR:7 FW:20 LJ EOL
WRITE TEXT Y QSTR:7 FW:20 LJ EOL

Figure A-9. Two WRITE TEXT QUOTED STRING Transactions

If x and Y in Figure A-9 have these values:

bird cat dog the Text value of X

12345678901234567 theRealwduleY
VEE writes:

"bird ca"

"1234567"

A A

472 Appendix A

I/0 Transaction Reference
WRITE Transactions

The caret characters (") are not actually written by VEE, but are shown to
help you visualize the field width. The characters to the right of ca" and to
the right of 7" are spaces (ASCII 32 decimal).

Embedded Control and Escape Characters. In this discussion, the terms
control character and escape character have specific meaning. A control
character is a single byte of data corresponding to one of the ASCII
characters 0-31 decimal. For example, linefeed is ASCII 10 decimal and the
symbol <LF> denotes linefeed character in this discussion. The string \n is a
human-readable escape character representing linefeed that is recognized by
VEE. VEE uses escape characters to represent control characters within
quoted strings.

Appendix A 473

I/0O Transaction Reference
WRITE Transactions

See Table A-5 for Escape Characters.

Table A-5. Escape Characters

Escape Character ASCII Code Meaning
(decimal)

\n 10 Newline

\t 9 Horizontal Tab

\v 11 Vertical Tab

\b 8 Backspace

\r 13 Carriage Return

\f 12 Form Feed

\" 34 Double Quote

\! 39 Single Quote

A\ 92 Backslash

\ddd The ASCII character
corresponding to the three-
digit octal value ddd.

Consider the effects of various embedded escape characters on the
transaction in Figure A-10.

WRITE TEXT X QSTR EOL

Figure A-10. AWRITE TEXT QUOTED STRING Transaction

474 Appendix A

INTEGER Formats

I/0 Transaction Reference
WRITE Transactions

If X in Figure A-10 has this value:
bird\ncat dog
VEE writes this to UNIX paths:
"bird\ncat dog"
For the same transaction and data, VEE writes this to direct I/O paths:
"bird<LF>cat dog"
where <LF> means the single character, linefeed (ASCII 10 decimal).
If x in Figure A-10 has this value:
bird \"cat\" dog
VEE writes this to UNIX paths and Direct I/O paths for serial interfaces:
"bird \"cat\" dog"

For the same transaction and data, VEE writes this to direct I/O paths for
GPIB interfaces:

"bird ""Cat"" dog"

This unique behavior for GPIB interfaces is provided to support the
requirements of IEEE 488.2.

WRITE TEXT INTEGER transactions are of this form:

WRITE TEXT ExpressionList INT16
WRITE TEXT ExpressionList INT32

ExpressionList is a single expression or a comma-separated list of
expressions.

The type of integer generated by this transaction is a 16-bit or 32-bit two's
complement integer. The range of 16-bit integers is -32766 to +32767. The
range of 32-bit integers is -2 147 483 648 to +2 147 483 647.The
only characters written to represent these numbers are +—0123456789.

VEE attempts to convert each item in ExpressionList tothe Int32 or
Int16 data type before converting it to Text for final formatting. VEE
follows the usual conversion rules. See the Data Type Conversion topics
under Tell Me About... in VEE Online Help for more details.

Appendix A 475

I/0O Transaction Reference
WRITE Transactions

If a Real32 is written using INT16 or INT32 format;:
B Real values outside the valid range of Int16 generate an error.

B Real values within the valid range of Int32 or Int16 are converted by
truncating the fractional portion of the Real.

If a Real64 is written using INT16 or INT32 format:
B Real values outside the valid range of Int32 or Int16 generate an error.

B Real values within the valid range of Int32 or Int16 are converted by
truncating the fractional portion of the Real.

Number of Digits. If you specify DEFAULT NUM DIGITS, the transaction
writes only the digits required to express the value of the integer and leading
zeros are not used.

If you specify MIN NUM DIGITS: I, the transaction pads the output with
leading zeros as required to give a total of exactly M digits.

Consider the two Int16 or Int32 transactions in Figure A-11, which differ
only in their specification for the number of output digits.

WRITE TEXT X INT16 EOL default number of digits
WRITE TEXT X INT16:6 EOL six digits
or
WRITE TEXT X INT32 EOL default number of digits
WRITE TEXT X INT32:6 EOL six digits

Figure A-11. Two WRITE TEXT INTEGER Transactions
If x in Figure A-11 has this value:
4567
VEE writes:

4567
004567

476 Appendix A

I/0 Transaction Reference
WRITE Transactions

MIN NUM DIGITS never causes truncation of the output string. The
transaction in Figure A-12 specifies the minimum number of digits to be 1.

WRITE TEXT X INTl6:1 EOL
or
WRITE TEXT X INT32:1 EOL

Figure A-12. AWRITE TEXT INTEGER Transaction
If x in Figure A-12 has a value of:
12345678
VEE writes:
12345678 all eight digits

Sign Prefixes. You may optionally specify one of the sign prefixes listed in
Table A-6 as part of a WRITE TEXT INT transaction.

Table A-6. Sign Prefixes

Prefix Description

/= Positive numbers are written with no prefix, neither a + nor a
space. All negative numbers are written with a - prefix.

+/- All positive numbers are written with a + prefix. All negative
numbers are written with a - prefix.

/- All positive numbers are written with a space (ASCII 32
decimal) prefix. All negative numbers are written with a - prefix.

Any prefixed signs do not count towards MIN NUM DIGITS. The transaction
shown in Figure A-13 specifies explicit leading signs for positive and
negative numbers.

WRITE TEXT X INT16:6 SIGN:"+/-" EOL
WRITE TEXT Y INT32:6 SIGN:"+/-" EOL

Figure A-13. Two WRITE TEXT INTEGER Transactions

Appendix A 477

OCTAL Format

I/0O Transaction Reference
WRITE Transactions

If x and Y in Figure A-13 have values of:

123 the Integer value of X
-123 the Integer value of Y

VEE writes:

+000123 six digits plus sign
-000123

WRITE TEXT OCTAL transactions are of this form:
WRITE TEXT ExpressionList OCT

ExpressionList is a single expression or a comma-separated list of
expressions.

The type of integer written by this transaction is a 32-bit two's complement
integer. The range of these integersis -2 147 483 648to+2 147 483
647. The only characters written to represent these octal numbers are
01234567. An optional prefix may be specified which may include other
characters.

VEE attempts to convert any data written using OCTAL format to the Int32
data type before converting it to Text for final formatting. The usual VEE
conversion rules are followed.

If a Real is written using OCTAL format:
B Real values outside the valid range of Int32 generate an error.

B Real values within the valid range of Int32 are converted by truncating
the fractional portion of the Real.

Number of Digits. The behavior of DEFAULT NUM DIGITS and MIN NUM
DIGITS is the same as described previously in “Number of Digits” on
page 476 for WRITE TEXT INTEGER transactions.

478 Appendix A

I/0 Transaction Reference
WRITE Transactions

Octal Prefixes. You may specify one of the prefixes listed in Table A-7 as
part of a WRITE TEXT OCTAL transaction.

Table A-7. Octal Prefixes

Prefix Description
NO PREFIX VEE writes each octal number without any prefix. Only
the digits 01234567 appear in the output.
DEFAULT For direct I/O paths, VEE prefixes each octal number
PREFIX with #Q. This supports the octal Non-Decimal Numeric

data format defined by IEEE 488.2.

For UNIX paths, VEE prefixes each octal number with
a 0 (zero). If leading zeros are added to achieve the
specified MIN NUM DIGITS, DEFAULT PREFIX will
not add additional leading zeros.

PREFIX:string | VEE prefixes each octal number with the characters
specified in string.

The transaction in Figure A-14 specifies the default prefix and six digits:

WRITE TEXT X OCT:6 PREFIX EOL

Figure A-14. AWRITE TEXT OCTAL Transaction
If X in Figure A-14has this value:
15 the value 15 decimal
VEE writes this to direct I/O paths:
#0000017 exactly six digits plus prefix
Using the same transaction and data, VEE writes this to UNIX paths:

000017 exactly six digits

Appendix A 479

HEX Format

I/0O Transaction Reference
WRITE Transactions

The transaction in Figure A-15 specifies a custom prefix and ten digits:

WRITE TEXT X OCT:10 PREFIX:"oct>" EOL

Figure A-15. AWRITE TEXT OCTAL Transaction
If x in Figure A-15 has this value:
15 the Integer value 15 decimal
VEE writes this to UNIX paths and direct 1/O paths:
oct>000017

The prefix written by DEFAULT PREFIX depends on the destination, but the
prefix written by PREFIX: string is independent of the destination.

WRITE TEXT HEX transactions are of this form:
WRITE TEXT ExpressionList HEX

The type of integer written by this transaction is a 32-bit two's complement
integer. The range of these integersis -2 147 483 648 to +2 147 483
647. The only characters written to represent these hexadecimal numbers are
0123456789%abcdef. An optional prefix may be specified that may include
other characters.

The behavior of WRITE TEXT HEX is nearly identical to that of WRITE
TEXT OCTAL. The only difference is the set of prefixes available and the
behavior of DEFAULT PREFIX.

480 Appendix A

I/0 Transaction Reference
WRITE Transactions

Hexadecimal Prefixes. You may specify one of the prefixes listed in Table
A-8 as part of a WRITE TEXT HEX transaction.

Table A-8. Hexadecimal Prefixes

Prefix Description

NO PREFIX VEE writes each hexadecimal number without any
prefix. Only the digits 0123456789%abcdef appear in
the output.

DEFAULT For direct I/O paths, VEE prefixes each hexadecimal

PREFIX number with #H. This supports the hexadecimal
Non-Decimal Numeric data format defined by IEEE
488.2.

For UNIX paths, VEE prefixes each hexadecimal
number with 0x.

PREFIX:string | VEE prefixes each hexadecimal number with the
characters specified in string.

The transaction in Figure A-16 specifies the default prefix and six digits:

WRITE TEXT X HEX:6 PREFIX EOL

Figure A-16. A WRITE TEXT HEX Transaction
If x in Figure A-16 has this value:
15 the Integer value 15 decimal
VEE writes this to direct I/O paths:
#H00000£ exactly six digits plus prefix
Using the same transaction and data, VEE this to UNIX paths:

0x00000f exactly six digits plus prefix

Appendix A 481

REAL32 and
REAL64 Format

I/0O Transaction Reference
WRITE Transactions

The transaction in Figure A-17 specifies a custom prefix and three digits:

WRITE TEXT X HEX:3 PREFIX:"hex>" EOL

Figure A-17. AWRITE TEXT HEX Transaction
If x in Figure A-17 has this value:
15 the Integer value 15 decimal
VEE writes this to UNIX paths and direct 1/O paths:
hex>00f exactly three digits plus prefix

The prefix written by DEFAULT PREFIX depends on the destination, but the
prefix written by PREFIX: string is independent of the destination.

WRITE TEXT REAL32 transactions are of the form shown below:
WRITE TEXT ExpressionList REAL32

The type of Real number generated by this transaction is a 32-bit IEEE 754
floating-point number. The range of these numbers is:

-3.40282347E38
to
3.40282347E38
WRITE TEXT REALG64 transactions are of the form shown below:
WRITE TEXT ExpressionList REAL64

The type of Real number generated by this transaction is a 64-bit IEEE 754
floating-point number. The range of these numbers is:

-1.797 693 134 862 315E+308
to
1.797 693 134 862 315E+308

The only characters written to represent these numbers are
+-.0123456789E.

482 Appendix A

I/0 Transaction Reference
WRITE Transactions

Notations and Digits. You may optionally specify one of the notations in
Table A-9 as part of a WRITE TEXT REAL transaction.

Table A-9. REAL Notations

Notation

Description

STANDARD

VEE automatically determines whether each Real value
should be written in fixed-point notation (decimal points as
required, no exponents) or in exponential notation. Non-
significant zeros are never written.

FIXED

VEE writes each Real value as a fixed-point number.
Numbers with fractional digits are automatically rounded to
fit the number of fractional digits specified by NUM FRACT
DIGITS. Trailing zero digits are added as required to give
the specified number of fractional digits.

SCIENTIFIC

VEE writes each Real value using exponential notation.
Each exponent includes an explicit sign (+ or -) and the
upper-case E is always used. Numbers with fractional digits
are automatically rounded to fit the number of fractional
digits specified by NUM FRACT DIGITS. Trailing zero digits
are added as required to give the specified number of
fractional digits.

The transactions in Figure A-18 specify STANDARD notation and four
significant digits.

WRITE TEXT X REAL32 STD:4 EOL
WRITE TEXT Y REAL64 STD:4 EOL
WRITE TEXT Z REAL32 STD:4 EOL

Figure A-18. Three WRITE TEXT REAL Transactions

Appendix A

483

I/0O Transaction Reference
WRITE Transactions

If X, Y and z in Figure A-18 have these values:

1.23456E2 the Real32 value of X
1.23456E09 the Real64 value of Y

1.23 the Real32 value of Z

VEE writes:
123.5 mantissa rounded as required
1.235E+09 large numbers in exponential notation
1.23 never any trailing zeros

The transactions in Figure A-19 specify FIXED notation and four fractional
digits.

WRITE TEXT X REAL64 FIX:4 EOL
WRITE TEXT Y REAL32 FIX:4 EOL
WRITE TEXT Z REAL64 FIX:4 EOL

Figure A-19. Three WRITE TEXT REAL Transactions

If %, Y and z in Figure A-19 have these values:

1.2345678E2 the Real64 value of X

1.2345678E-09 the Real32 value of Y

1.23 the Real64 value of Z
VEE writes:

123.4568 mantissa rounded as required

0.0000 small numbers round to zero

1.2300 trailing zeros added as required

The transactions in Figure A-20 specify SCIENTIFIC notation and four
fractional digits.

WRITE TEXT X REAL32 SCI:4 EOL
WRITE TEXT Y REAL64 SCI:4 EOL
WRITE TEXT Z REAL32 SCI:4 EOL

Figure A-20. Three WRITE TEXT REAL Transactions

484 Appendix A

COMPLEX,
PCOMPLEX, and
COORD Formats

I/0 Transaction Reference
WRITE Transactions

If X, Y and z in Figure A-20 have these values:

1.2345678E2 the Real32 value of X

-1.2345678E-09 the Real64 value of Y

0 the Real32 value of Z
VEE writes:

1.2346E+02 exponent is E plus two signed digits
-1.2346E-09 last digit rounded as required
0.0000E+00 trailing zeros padded as required

COMPLEX, PCOMPLEX, and COORD correspond to the VEE multi-field data
types with the same names. The behavior of all three formats is very similar.
The behaviors described in this section apply to all three formats except as
noted.

Just as the VEE data types Complex, PComplex, and Coord are composed of
multiple Real numbers, the COMPLEX, PCOMPLEX, and COORD formats are
essentially compound forms of the REAL64 format. Each constituent Real
value of the multi-field data types is written with the same output rules that
apply to an individual REAL64 formatted value.

The final output of transactions involving multi-field formats is affected by
the Multi-Field Format setting for the object in question. Multi-
Field Format isaccessed viaI/0 = Instrument Manager for Direct
I/0 objects and via Config in the object menu for all other objects. The
two possible settings for Multi-Field Format are:

B Data Only. This writes multi-field data formats as a list of comma-
separated numbers without parentheses.

B (...) Syntax. This writes multi-field data formats as a list of comma-
separated numbers grouped by parentheses.

Subsequent examples will illustrate these behaviors.

Appendix A 485

I/0O Transaction Reference
WRITE Transactions

COMPLEX Format. WRITE TEXT COMPLEX transactions are of this form:
WRITE TEXT ExpressionList CPX

The transaction in Figure A-21 specifies a fixed-decimal notation, explicit
leading signs, a field width of 10 characters and right justification.

WRITE TEXT X CPX FIX:3 SIGN:"+/-" FW:10 RJ EOL

Figure A-21. AWRITE TEXT COMPLEX Transaction

Ifthe Multi-Field Formatissetto (...) SyntaxandXin
Figure A-21 has this value:

(-1.23456 , 9.8) the Complex value of X
VEE writes:

(-1.235 , +9.800)

Ifthe Multi-Field Formatissetto Data Only and X in Figure A-21 has
the same value, VEE writes:

-1.235, +9.800

A AA A

The caret characters (*) are not actually written by VEE, but are shown to
help you visualize the field width. The characters to the left of + are spaces
(ASCII 32 decimal).

With (...) Syntax,a space-comma-space sequence separates the ten-
character wide fields that contain the real and imaginary parts of the
Complex number. With either Multi-Field Format there is a separate
ten-character field for both the real and the imaginary part. Neither
parentheses nor the separating comma and spaces are included in the field.

486 Appendix A

I/0 Transaction Reference
WRITE Transactions

PCOMPLEX Format. WRITE TEXT PCOMPLEX transactions are of this
form:

WRITE TEXT ExpressionList PCX

PCOMPLEX format allows you to specify the phase units for the polar
complex number it writes. Phase units are independent of the units set by
Trig Mode in Properties. See Table A-10.

Table A-10. PcOMPLEX Phase Units

Unit Description
DEG Degrees
RAD Radians
GRAD Gradians

The first transaction in Figure A-22 specifies phase measurement in degrees
and the second transaction specifies phase measurement in radians.

WRITE TEXT X PCX:DEG STD EOL
WRITE TEXT X PCX:RAD STD EOL

Figure A-22. Two WRITE TEXT PCOMPLEX Transactions

Ifthe Multi-Field Format issetto Data Only and X in Figure A-22 has
this value:

(-1.23456, @90) the PComplex value of X, phase in degrees
VEE writes:

1.23456,-90
1.23456,-1.570796326794897

The transaction in Figure A-23 specifies phase measurement in radians,
fixed-decimal notation, three fractional digits, explicit leading signs, a field
width of ten characters and right justification.

WRITE TEXT X PCX:RAD FIX:3 SIGN:"+/-" FW:10 RJ EOL

Figure A-23. AWRITE TEXT PCOMPLEX Transaction

Appendix A 487

TIME STAMP
Format

I/0O Transaction Reference
WRITE Transactions

If the Multi-Field Formatissetto (...) Syntaxand X in
Figure A-23 has this value:

(-1.23456 , @9.8) the PComplex value of X, angle in radians
VEE writes:

(+1.235 , @ +0.375)

A A A A

VEE normalizes all PComplex numbers to yield a positive magnitude and a
phase between +m and -.

Ifthe Multi-Field Format issetto Data Only and X in Figure 12-23
has the same value, VEE writes:

+1.235, +0.375

A AN A

The caret characters (*) are not actually written by VEE, but are shown to
help you visualize the field width. The characters to the left of - and to the
left of + are spaces (ASCII 32 decimal).

COORD Format. WRITE TEXT COORD transactions are of this form:
WRITE TEXT ExpressionList COORD

COORD format has all the same behaviors of COMPLEX format. The only
difference is that COORD may contain an arbitrary number of fields while
COMPLEX has exactly two fields.

WRITE TEXT TIME STAMP transactions are of this form:
WRITE TEXT ExpressionList [DATE:DateSpec] [TIME:TimeSpec]

ExpressionList is a single expression or a comma-separated list of
expressions.

DateSpec is one of the following pre-defined date and time combinations:

B Date
Time
Date&Time
Time&Date
Delta Time

488 Appendix A

I/0 Transaction Reference
WRITE Transactions

If you specify a transaction that includes Date, you may also specify a
DateSpec of Weekday DD/Month/YYYY or
DD/Month/YYYY.

If you specify a transaction that includes Time, you may also specify a
TimeSpec. TimeSpec is a combination of the following pre-defined time
formats:

B HH:MM (hours and minutes)

B HH:MM:SS (hours, minutes and seconds)
B 12 HOUR

B 24 HOUR

Each item in ExpressionList is converted to a Real and interpreted as a
date and time. This Real number represents the number of seconds that have
elapsed since midnight, January 1, AD 1 UTC. The most common source for
this Real number is the output of a Time Stamp object. You use the TIME
STaMP format to convert this Real number to a meaningful string that
contains a human-readable date and/or time.

TIME STAMP supports a variety of notations for writing dates and times.
If a Real variable contains this value:

62806574669.31164

TIME STAMP can write it using any of the Time and Date notations in
Table A-11.

Appendix A 489

I/0O Transaction Reference
WRITE Transactions

Table A-11. Time and Date Notations

Notation

Result

Date with Weekday
DD/Month/YYYY

Thu 04/Apr/1999

Time with HH:MM:SS and 24 HOUR

15:44:29

Date&Time with Weekday
DD/Month/YYYY, HH:MM:SS,
and 24 HOUR

Thu 04/Apr/1999 15:44:29

Time&Date with HH:MM:SS, 24 HOUR
and Weekday DD/Month/YYYY

15:44:29 Thu 04/Apr/1999

Delta Time with HH:MM:SS

17446270:44:29

Date with Weekday

Thu 04/Apr/1999

DD/Month/YYYY

Date with DD/Month/YYYY 04/Apr/1999
Time with HH:MM:SS and 24 HOUR 15:44:29
TIME with HH:MM and 24 HOUR 15:44

TIME with HH:MM: SS and 24 Hour 15:44:29
TIME with HH:MM:SS and 12 Hour 3:44:29 PM

BYTE Encoding

BYTE transactions are of this form:

WRITE BYTE ExpressionList

ExpressionList is asingle expression or a comma-separated list of

expressions.

VEE 5 or earlier Execution Mode converts each item in
ExpressionList toan Int16 (16-bit two's complement integer) and
writes the least-significant 8-bits. VEE 6 Execution Mode converts each
item in ExpressionListtoaUInt8 (8-bit two’s complement integer)

490

Appendix A

I/0 Transaction Reference
WRITE Transactions

and writes it. This is a transaction for writing single characters to a
instrument. Each expression in ExpressionList must be a scalar.

In VEE 6 Execution Mode, a value greater than 256 causes an error. For
example, in VEE 5 and lower Execution Modes, the transactions in Figure
A-24 produce the following character data output:

ABCAA

WRITE BYTE 65,66,67
WRITE BYTE 65+1024,65+2048

Figure A-24. Two WRITE BYTE Transactions

In VEE 6 Execution Mode, the second transaction in Figure A-24 will cause
an error.

CASE Encoding

WRITE CASE transactions are of this form:
WRITE CASE ExpressionListl OF ExpressionListZ2

ExpressionList is asingle expression or a comma-separated list of
expressions.

VEE converts each item in ExpressionList] to an integer and uses it as
an index into ExpressionListZ2. The indexed item(s) in
ExpressionListZ2 are written in a string format that is the same as
WRITE TEXT (default).

Indexing of items in ExpressionListZ is zero-based.

The transactions in Figure A-25 illustrate the behavior of CASE format.

WRITE CASE 2,1 OF "Str0","Strl","Str2"
WRITE CASE X OF 1,1+A,3+A

Figure A-25. Two WRITE CASE Transactions

Appendix A 491

I/0O Transaction Reference
WRITE Transactions

If the variables in Figure A-25 have these values:

2 the Real32 value of X
0.1 the Real64 value of A

VEE writes:

Str2Strl
3.1

BINARY Encoding

WRITE BINARY transactions are of this form:
WRITE BINARY ExpressionList DataType

ExpressionList is a single expression or a comma-separated list of
expressions.

DataTypes is one of the following pre-defined VEE data types:

BYTE - 8-bit unsigned byte

INT16 - 16-bit two's complement integer

INT32 - 32-bit two's complement integer
REAL32 - 32-bit IEEE 754 floating-point number
REALG64 - 64-bit IEEE 754 floating-point number
STRING - null terminated string

COMPLEX - equivalent to two REAL64s
PCOMPLEX -equivalent to two REAL64s

COORD - equivalent to two or more REAL64s

492 Appendix A

Note

I/0 Transaction Reference
WRITE Transactions

VEE 5 and lower Execution Modes store and manipulate all integer values
as the TNT32 data type and all real numbers as the Real data type, also
known as REALG64. Thus, the INT16 and REAL32 data types are provided for
I/0 only. VEE 5 and lower Execution Modes perform the following data-
type conversions for instrument I/O on an output transaction.

INT32 values are individually converted to INT1 6 values, which are output
to the instrument. However, since the INT1 6 data type has a range of -32768
to 32767, values outside this range will be truncated to 16 bits.

REALG64 values are individually converted to REAL32 values, which are
output to the instrument. However, since the REAL32 data type has a smaller
range than REATL64 data type, values outside this range cannot be converted
to REAL32 and will result in an error.

In VEE 6 Execution Mode, the data is converted to the appropriate type, and
an error is generated if the data is out of range.

BINARY encoded transactions convert each of the values specified in
ExpressionList to the VEE data type specified by DataType. Each
converted item is then written in the specified binary format. However, since
the binary data written is a copy of the representation in computer memory,
it is not easily shared by different computer architectures or hardware.

BINARY encoded data has the advantage of being very compact. READ
BINARY transactions can read any corresponding WRITE BINARY data.

BINARY encoding writes only the numeric portion of each data type. For
example, the parentheses and comma that can be included when writing
Complex and Coord data with TEXT encoding are never written with
BINARY encoding.

Similarly, when writing arrays, BINARY encoding does not write any Array
Separators. WRITE BINARY transactions do allow you to specify EOL
ON. There is rarely a need to write EOL with BINARY transactions because
numeric data types are of fixed length and strings are null-terminated.

Appendix A 493

Non-GPIB
BINBLOCK

I/0O Transaction Reference
WRITE Transactions

BINBLOCK Encoding

WRITE BINBLOCK transactions are of this form:
WRITE BINBLOCK ExpressionList DataType

ExpressionList is a single expression or a comma-separated list of
expressions.

DataType is one of these pre-defined VEE data types:

BYTE - 8-bit unsigned byte

INT16 - 16-bit two's complement integer

INT32 - 32-bit two's complement integer
REAL32 - 32-bit IEEE 754 floating-point number
REALG64 - 64-bit IEEE 754 floating-point number
COMPLEX - equivalent to two REAL64S
PCOMPLEX -equivalent to two REAL64s

B COORD - equivalent to two or more REAL64s

BINBLOCK writes each item in ExpressionList as a separate data block.
The block header used depends on the type of object performing the WRITE
and the object's configuration.

If the object is not Direct I1/0to GPIB,aWRITE BINBLOCK always
writes an IEEE 488.2 Definite Length Arbitrary Block Response Data block.
This data format is primarily used for communicating with GPIB
instruments using Direct I/0, although it is supported by other objects.

Each Definite Length Arbitrary Block is of the form:
#<Num digits><Num bytes><Data>

where:
is literally the # character as shown.

<Num_digits> is an ASCII character that is a single digit (decimal
notation) indicating the number of digits in <Num bytes>.

<Num_bytes> is a list of ASCII characters that are digits (decimal
notation) indicating the number of bytes that follow in <Data>.

494 Appendix A

GPIB BINBLOCK

I/0 Transaction Reference
WRITE Transactions

<Data> is a sequence of arbitrary 8-bit data bytes.

If the object is Direct I/0 to GPIB, the behavior of WRITE BINBLOCK
transactions depends upon the Direct I/0 Configuration settings for
Conformance and Binblock; these settings are accessed via the 1/0 =
Instrument Manager menu selection

If Conformance is set to IEEE 488.2, WRITE BINBLOCK always writes
an IEEE 488.2 Definite Length Arbitrary Block Response Data block.

If Conformance is set to TEEE 488, the type of header used depends on
Binblock. Binblock may specify IEEE 728 #a, #T, or #1 block headers.
If Binblock is None, WRITE BINBLOCK writes an IEEE 488.2 Definite
Length Arbitrary Block Response Data block.

IEEE 728 block headers are of the following forms:

#A<Byte Count><Data>
#T<Byte Count><Data>
#I<Data><END>

where:
is the character as shown.
A,T, I are the characters as shown.
<Byte Count> consists of two bytes which together form a 16-bit
unsigned integer that specifies the number of bytes that follow in
<Data>. (VEE calculates this automatically.)

<Data> is a stream of arbitrary bytes.

<END> indicates that EOI is asserted with the last data byte transmitted.

Appendix A 495

I/0O Transaction Reference
WRITE Transactions

CONTAINER Encoding

WRITE CONTAINER transactions are of this form:
WRITE CONTAINER ExpressionList

ExpressionList is a single expression or a comma-separated list of
expressions.

A WRITE CONTAINER transaction writes each item in ExpressionList
using a special VEE text representation.

This representation retains all the VEE attributes associated with the data
type written, such as shape, size and name. Any WRITE CONTAINER data
can be retrieved without any loss of information using READ CONTAINER.

For example, this transaction:
WRITE CONTAINER 1.2345
writes:

(Real
(data 1.2345)
)

STATE Encoding

WRITE STATE transactions are of the form:
WRITE STATE [DownloadString]

DownloadStringis an optional string that allows you to specify a
download string if you have not previously specified one in the direct [/O
configuration for the corresponding instrument. This explained in greater
detail in the sections that follow.

WRITE STATE transactions are used by Direct I/0 objectsto download a
learn string to an instrument. There is exactly one learn string associated
with each instance of a Direct I/0 object. This learn string is uploaded by
clicking Upload inthe Direct I/0 object menu. The learn string contains
the null string before Upload is selected for the first time.

The behavior of WRITE STATE is affected by the Direct I/0
Configuration settings for Conformance and Download String

496 Appendix A

I/0 Transaction Reference
WRITE Transactions

These settings are accessed via the I/0 = Instrument Manager menu
selection. If Conformance is IEEE 488, the WRITE STATE transaction
writes the Download String followed by the learn string. If
Conformance is IEEE 488. 2, the learn string is downloaded without any
prefix as defined by IEEE 488.2. See Controlling Instruments with VEE for
information about WRITE STATE transactions.

REGISTER Encoding

WRITE REGISTER is used to write values into a VXI instrument's A16
memory.

WRITE REGISTER transactions are of this form:

WRITE REG: SymbolicName ExpressionList INCR
—or-
WRITE REG: SymbolicName ExpressionList

where:

SymbolicName is a name defined during configuration of a VXI
instrument. The name refers to a specific address within a instrument's
register space. Specific data types for WRITE REGISTER transactions are:

B BYTE - 8 bit unsigned byte

WORD16 - 16-bit two's complement integer

WORD32 - 32-bit two's complement integer

REAL32 - 32-bit IEEE 754 floating point number

WORD32*2 - two 32-bit two’s complement integers in adjacent elements
of an Int32 array.

B REALG4 - 64-bit

These data types are also specified during configuration of a VXI instrument
and do not appear in the transaction.

ExpressionList is a single expression or a comma-separated list of
expressions.

INCR specifies that array data is to be written incrementally starting at the
register address specified by SymbolicName. The first element of the
array is written at the starting address, the second at that address plus an
offset equal to the length in bytes of the data type, etc. until all array

Appendix A 497

I/0O Transaction Reference
WRITE Transactions

elements have been written. If INCR is not specified in the transaction, the
entire array is written to the single location specified by SymbolicName.

MEMORY Encoding

WRITE MEMORY is used to write values into a VXI instrument's A24 or
A32 memory.

WRITE MEMORY transactions are of this form:

WRITE MEM: SymbolicName ExpressionList INCR
—or-
WRITE MEM: SymbolicName ExpressionList

where:

SymbolicName is a name defined during configuration of a VXI
instrument. The name refers to a specific address within a instrument's
extended memory. Specific data types for WRITE MEMORY transactions are:

B BYTE - 8 bit unsigned byte

WORD16 - 16-bit two's complement integer

WORD32 - 32-bit two's complement integer

REAL32 - 32-bit IEEE 754 floating point number

WORD32*2 - two 32-bit two’s complement integers in adjacent elements
of an Int32 array.

B REALG64 - 64-bit IEEE 754 floating point number.

These data types are also specified during configuration of a VXI instrument
and do not appear in the transaction.

ExpressionList is a single expression or a comma-separated list of
expressions.

INCR specifies that array data is to be written incrementally starting at the
memory location specified by SymbolicName. The first element of the
array is written at that location, the second at that location plus an offset
equal to the length in bytes of the data type, etc. until all array elements have
been written. If INCR is not specified in the transaction, the entire array is
written to the single memory location specified by SymbolicName.

498 Appendix A

I/0 Transaction Reference
WRITE Transactions

IOCONTROL Encoding

WRITE IOCONTROL transactions are of this form:

WRITE IOCONTROL CTL ExpressionList
—-or-—
WRITE IOCONTROL PCTL ExpressionList

ExpressionList is a single expression or a comma-separated list of
expressions.

IOCONTROL encoding is used only for Direct I/0 to GPIO interfaces.
This transaction sets the control lines of a GPIO interface:
WRITE IOCONTROL CTL a

VEE converts the value of a to an Integer. The least X significant bits of the
Integer value are mapped to the control lines of the interface, where X is the
number of control lines.

For example, the HP 98622A GPIO interface uses two control lines, CTL0
and CTL1. See Table A-12.

Table A-12. HP 98622A GPIO Control Lines

Value Written CTL1 CTLO
0 0 0
1 0 1
2 1 0
3 1 1

In Table A-12, 1 indicates a control line is asserted and 0 indicates it is
cleared. This transaction controls the computer-driven handshake line of a
GPIO interface:

WRITE IOCONTROL PCTL a

If the value of a is non-zero, the PCTL line is set. If the value is zero, no
action is taken. PCTL is cleared automatically by the interface when the
peripheral meets the handshake requirements.

Appendix A 499

I/0O Transaction Reference
READ Transactions

READ Transactions

See Table A-13 for Read Encodings and Formats.

Table A-13. READ Encodings and Formats

Encodings

Formats

TEXT

CHAR

TOKEN
STRING
QUOTED STRING
INT16
INT32
OCTAL

HEX

REAL32
REALG64
COMPLEX
PCOMPLEX
COORD

TIME STAMP

BINARY

STR

BYTE
INT16
INT32
REAL32
REAL64
COMPLEX
PCOMPLEX
COORD

BINBLOCK

BYTE
INT16
INT32
REAL32
REAL64
COMPLEX
PCOMPLEX
COORD

CONTAINER

Not Applicable

500

Appendix A

I/0 Transaction Reference
READ Transactions

Table A-13. READ Encodings and Formats

Encodings Formats

IOSTATUS Not Applicable

REGISTER? BYTE
WORD16

WORD32
REAL32

MEMORY? BYTE
WORD16

WORD32
WORD32*2
REAL32
REAL64

a. Direct I/O to VXI only.

TEXT Encoding

READ TEXT transactions can read and discard what is irrelevant and
selectively read what is important. This works well most of the time, but
occasionally you must analyze very carefully what VEE considers to be
irrelevant and what it considers to be important.

This will rarely (if ever) be a problem if you are reading text files written by
VEE as long as you read them using the same format used to write them.
Problems are most likely to occur when you are trying to import a file from
another software application.

Table A-14 describes READ TEXT behavior in a general way only. Be sure to
read all the sections that follow to understand all the possible variations.

Appendix A 501

I/0O Transaction Reference
READ Transactions

Table A-14. Formats for READ TEXT Transactions

Format Description
CHAR Reads any 8-bit character.
TOKEN Reads a contiguous list of characters as a unit called a

token. Tokens are separated by specified delimiter
characters (you specify the delimiters). For example, in
normal written English, words are tokens and spaces are
delimiters.

STRING Reads a list of 8-bit characters as a unit. Most control
characters are read and discarded. The end of the string
is reached when the specified number of characters has
been read or when a newline character is encountered.

QSTRING Reads a list of 8-bit characters that conform to the IEEE
488.2 arbitrary length string defined by a starting and
ending double quote character (ASCII 34). Control
characters are not discarded. Escaped characters are
expanded to a corresponding control character. The end
of the string is reached when the double quote character
(ASCII 34) has been read.

INTEGER16 Reads a list of characters and interprets them as a
decimal or non-decimal representation of a 16-bit integer.
The only characters considered to be part of a decimal
INTEGER are 0123456789-+. VEE recognizes the
prefix 0x (hex) and all the Non-Decimal Numeric formats
specified by IEEE 488.2: #H (hex), #Q (octal), #B (binary).

INTEGER32 Reads a list of characters and interprets them as a
decimal or non-decimal representation of a 32-bit integer.
The only characters considered to be part of a decimal
INTEGER are 0123456789-+. VEE recognizes the
prefix 0x (hex) and all the Non-Decimal Numeric formats
specified by IEEE 488.2: #H (hex), #0 (octal), #B (binary).

OCTAL Reads a list of characters and interprets them as the
octal representation of an integer. The characters
considered to be part of an OCTAL are 01234567. VEE
also recognizes the IEEE 488.2 Non-Decimal Numeric
prefix #0 for octal numbers.

502 Appendix A

I/0 Transaction Reference
READ Transactions

Table A-14. Formats for READ TEXT Transactions

Format

Description

HEX

Reads a list of characters and interprets them as the
hexadecimal representation of an integer. The only
characters considered to be part of a HEX are
012345678%abcdefABCDEF. The character
combination 0x is the default prefix; it is not part of the
number and is read and ignored. VEE also recognizes 0x
and the IEEE 488.2 Non-Decimal Numeric prefix #H for
hexadecimal numbers.

REAL32

Reads a list of characters and interprets them as the
decimal representation of a Real 32-bit (floating-point)
number. All common notations are recognized including
leading signs, signed exponents and decimal points. The
characters recognized to be part of a REAL32 are
0123456789-+.Ee.

VEE also recognizes certain characters as suffix
multipliers for Real numbers (see Table 12-15).

REAL64

Reads a list of characters and interprets them as the
decimal representation of a Real 64-bit (floating-point)
number. All common notations are recognized including
leading signs, signed exponents and decimal points. The
characters recognized to be part of a REAL are
0123456789-+.Ee.

VEE also recognizes certain characters as suffix
multipliers for Real numbers (see Table 12-15).

COMPLEX

Reads the equivalent of two REAL64s and interprets
them as a complex number. The first number read is the
real part and the second number read is the imaginary
part.

PCOMPLEX

Reads the equivalent of two REAT64s and interprets
them as a complex number in polar form. Some
engineering disciplines refer to this as "phasor notation".
The first number read is considered to be the magnitude
and the second is the angle. You may specify units of
measure for phase in the transaction.

Appendix A

503

I/0O Transaction Reference
READ Transactions

Table A-14. Formats for READ TEXT Transactions

Format Description

COORD Reads the equivalent of two or more REAL64s and
interprets them as rectangular coordinates.

TIME STAMP | Reads one of the specified VEE time stamp formats
which represent the calendar date and/or time of day.

General Notes for ~ Read to End. The READ TEXT formats support a choice between reading

READ TEXT a specified number of elements or reading until EOF is encountered. In a
transaction, NumElements is a single expression or a comma-separated
list of expressions that specifies the dimensions of each variable in
VarList.

If the first expression is an asterisk (*), the transaction will read data until an
EOF is encountered. Read to end is supported only for:

From File

From String

From StdIn

Execute Program

To/From Named Pipe

To/From Socket

To/From Rocky Mountain Basic transactions.

Only the first dimension can have an asterisk rather than a number.
For example, the following transaction reading from a file:
READ TEXT a REAL ARRAY:*,10

will read until EOF is encountered resulting in a two dimensional array with
ten columns. The number of rows is dependent on the amount of data in the
file. The total number of data elements read must be evenly divisible by the
product of the known dimension sizes, in this example: 10. If this criteria is
not met, an error will occur.

504 Appendix A

I/0 Transaction Reference
READ Transactions

Number of Characters Per READ. These READ TEXT formats support a
choice between DEFAULT NUM CHARS and MAX NUM CHARS:

STRING
INT16
INT32
OCTAL
HEX
REAL32
REAL64

This section discusses the effects of DEFAULT NUM CHARS and
MAX NUM CHARS on these formats.

The basic difference between DEFAULT NUM CHARS and MAX NUM CHARS
is this:

B DEFAULT NUM CHARS causes VEE to read and ignore most characters
that do not appear to be part of the number or string it expects.

B MAX NUM CHARS allows you to read up fo the specified number of 8-bit
characters in an attempt to build the type of number or string specified.
VEE stops reading characters as soon as the READ is satisfied. All
characters are read and VEE attempts to convert them to the data type
specified in the transaction.

If you specify DEFAULT NUM CHARS, the transaction reads as many
characters as it requires to fill each variable. Characters that are not
meaningful to the specified data type are read and ignored.

If you specify Max NUM CHARS, VEE makes no attempt to sort out
characters that are not meaningful to the data type specified.

If non-meaningful characters are encountered, they are read and may later
generate an error.

In either case, newline and end-of-file are recognized as terminators for
strings or numbers. For numeric formats, white space encountered before
any significant characters (digits) is read and ignored. After reading
significant characters, white space or other non-numeric characters
terminate the current READ. These are the general behaviors. Read the
examples that follow for additional detail.

Appendix A 505

I/0O Transaction Reference
READ Transactions

Consider this example that distinguishes between the behaviors of DEFAULT
NUM CHARS and MAX NUM CHARS using INT32 format. Assume you are
trying to read a file containing this data:

bird dog cat 12345 horse

It is impossible to extract the integer 12345 from this data with a

READ TEXT INT32 transaction using MAX NUM CHARS no matter how
many characters are read. This is because the characters bird dog cat are
always read before the digits, they cannot be converted to an Integer and this
generates an error.

DEFAULT NUM CHARS will extract the integer 12345 by reading and
ignoring bird dog cat and treating the white space following 5 as a
delimiter.

Effects of Quoted Strings. The presence of quoted strings affects the
behavior of READ TEXT QSTR and READ TEXT TOKEN for all I/O paths and
READ TEXT STRING for instrument or interface 1/O. In this discussion, a
quoted string means a set of characters beginning and ending with a double
quote character and no embedded (non-escaped) double quote characters.
The double quote character is ASCII 34 decimal. The presence of double
quotes affects the way that these READ transactions group characters into
strings and tokens and how embedded control and escape characters are
handled.

In this discussion, the terms control character and escape character have
specific meaning. A control character is a single byte of data corresponding
to one of the ASCII characters 0-31 decimal. For example, linefeed is ASCII
10 decimal and the symbol <LF> denotes linefeed character in this
discussion. The string \n is a human-readable escape character representing
linefeed that is recognized by VEE.

The behavior of certain transactions when dealing with quoted strings is
dependent on the particular I/O path. For all I/O paths except instrument
I/O, READ TEXT QSTR treats quoted strings specially. For all I/O paths

except instrument I/O, READ TEXT STRING does not recognize quoted

strings.

For instrument 1/O there is no READ TEXT QSTR transaction. Instead, READ
TEXT STRING recognizes quoted stings and deals with them accordingly.
This is done since quoted strings have special meaning in the IEEE 488.2

506 Appendix A

I/0 Transaction Reference
READ Transactions

specification. For all I/O paths including instruments, READ TEXT TOKEN
treats quoted strings specially. In the following discussions, we will assume
the 1/0 path to be file 1/O.

When a string does not begin and end with double quotes, control characters
other than linefeed are read and discarded by READ TEXT STRING
transactions and by READ TEXT TOKEN transactions that specify SPACE
DELIM. In both STRING and TOKEN transactions, linefeed terminates the
READ. Escape character sequences, such as \n (newline) are simply read as
the two characters \ and n.

Within double quoted strings, READ TEXT QSTR and READ TEXT TOKEN
will read all enclosed characters (including control characters) and store
them in the input variable. Embedded linefeeds are read and treated like any
other character - they do not terminate the current READ. Escape character
sequences are read and translated to their single-character counterpart.

Grouping effects are best explained by using an example. For the discussion
in the rest of this section, the data being read is a file with the contents
shown in Figure A-26.

"This is in quotes." This is not.

Figure A-26. Quoted and Non-Quoted Data

Assume that you read the file shown in Figure A-26 using From File with
these transactions:

READ TEXT x QSTR
READ TEXT y QOSTR

After reading the file, the results are:

x = This is in quotes.
y = This is not.

The double quotes are interpreted as delimiters and do not appear in the
input variable.

Appendix A 507

CHAR Format

I/0O Transaction Reference
READ Transactions

Now assume that you read the file shown in Figure A-26 using From File
with these transactions:

READ TEXT x QSTR MAXEW:4
READ TEXT y QOSTR

After reading the file, the results are:

x = This
y This is not.

Here the double quotes are still acting a delimiters. The first transaction
reads from double quote to double quote and assigns the first four characters
to x. This leaves the file's read pointer positioned before the second
occurrence of This. The second transaction reads the same string as before.

Next, assume that you read the file shown in Figure A-26 using From File
with these transactions:

READ TEXT x TOKEN
READ TEXT y QSTR

After reading the file, the results are:

x = This is in quotes.
y = This is not.

Here, the double quotes effectively make the entire first sentence into a
single token. Even though default TOKEN delimiter is white space, the entire
quoted string is treated as a single token. In addition, TOKEN reads and
discards the double quote characters.

READ TEXT CHAR transactions are of this form:
READ TEXT VarList CHAR:NumChar ARRAY:NumStr

VarList is a single Text variable or a comma-separated list of Text
variables.

NumCha r specifies the number of 8-bit characters that must read to fill each
element of each variable in VarZList.

NumStr is a single expression or a comma-separated list of expressions that
specifies the dimensions of each variable in VarList. If the transaction is
configured to read a scalar, the ARRAY keyword does not appear in the
transaction.

508 Appendix A

I/0 Transaction Reference
READ Transactions

ARRAY:1 is a one-dimensional array with one element. VEE makes a
distinction between scalars and one-dimensional arrays containing only one
element.

CHAR format is useful when you wish to simply read one character at a time,
or when you need to read every character without ignoring any incoming
data.

This transaction reads two two-dimensional Text arrays. Each element in
each array contains two characters.

READ TEXT X,Y CHAR:2 ARRAY:2,2

If a file read by the previous transaction contains these characters:
<space>ABCDEFG"AB"<LF>'CD

the variables x and Y contain these values after the READ:

X = <space>A

= BC
= DE
= FG

= O B O

]
]
]
]

XXX

= "p
= B"
= <LE>'
= CD

KoK
P O K O

]
]
]
]

The symbol <space> means the single character, space (ASCII 32 decimal).
The symbol <LF> means the single character, linefeed (ASCII 10 decimal).

Space, linefeed and double quotes are read without any special consideration
or interpretation.

Appendix A 509

TOKEN Format

I/0O Transaction Reference
READ Transactions

READ TEXT TOKEN transactions are of this form:
READ TEXT VarList TOKEN Delimiter ARRAY:NumElements

VarList is a single Text variable or a comma-separated list of Text
variables.

Delimiter specifies the combinations of characters that terminate
(delimit) each token.

NumElements is a single expression or a comma-separated list of
expressions that specifies the dimensions of each variable in VarList. If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. ARRAY : 1 is a one-dimensional array with one
element. VEE makes a distinction between scalars and one-dimensional
arrays containing only one element.

TOKEN format allows you to define the delimiter (boundary) for tokens using
one of these choices for Delimiter:

B SPACE DELIM
B INCLUDE CHARS
M EXCLUDE CHARS

The following discussion of delimiters explains how the choice of delimiters
affects reading a file with the contents shown in Figure A-27:

A phrase.

"A phrase."

Tab follows.
XOXXOOXXXO00XXXX
XAXXBCXXXDEF

Figure A-27. READ TOKEN Data
The file contains only the letter 0, not the digit zero.

There is an invisible linefeed character at the end of each of the first four
lines of the file in Figure A-27 that shows the file as it would appear in a text
editor such as vi.

SPACE DELIM. If you use SPACE DELIM, tokens are terminated by any
white space. White space includes spaces, tabs, newline and end-of-file. This

510 Appendix A

I/0 Transaction Reference
READ Transactions

corresponds roughly to words in written English. Using SPACE DELIM, you
could read a file containing a paragraph of text and separate out individual
words.

Double quoted strings receive special treatment. Double quoted strings are
read as a single token and the double quotes are stripped away. Control
characters (ASCII 0-31 decimal) embedded in double-quoted strings are
returned in the output variable. Escape characters (such as \n) embedded in
double-quoted strings are converted into their equivalent control characters.

This special treatment of double-quoted strings applies only to SPACE
DELIM transactions. INCLUDE CHARS and EXCLUDE CHARS treat double
quotes, escapes and control characters the same as any other character.

If you read the data in Figure A-27 using SPACE DELIM with this
transaction:

READ TEXT a TOKEN ARRAY:8
the variable a contains these values:

= A

= phrase.

= A phrase.
= Tab

= follows

= XOXXO0OXXXO00XXXX
= XAXXBCXXXDEF

LRI O VR OB GBI
~ oy U W N O

INCLUDE CHARS. If you use INCLUDE CHARS, you can specify a list of
characters to be "included" in tokens returned by the READ. These specified
characters will be the only characters returned in any token. Any character
other than the specified INCLUDE characters terminates the current token.
The terminating characters are not included in the token and are stripped
away.

Appendix A 511

I/0O Transaction Reference
READ Transactions

If VEE reads the data shown in Figure A-27 using INCLUDE CHARS with
this transaction:

READ TEXT a TOKEN INCLUDE:"X" ARRAY:7
the variable a contains these values:

[0] =X

[1] = XX
[2] = XXX
[3] = XXXX
[4] = X

[5] = XX
[6] = XXX

If VEE reads the data shown in Figure A-27 using INCLUDE CHARS with
this transaction:

READ TEXT a TOKEN INCLUDE:"OXZ" ARRAY:4
the variable a contains these values:

= XOXXOOXXXOOOXXXX

=X

= XX

= XXX

The first character in the INCLUDE list is the letter O, not the digit zero.

Assume that you are trying to read a file containing the data in Figure A-28.

111 222 333 444 555

Figure A-28. READ TOKEN Data
If you try to read the file in Figure A-28 using this transaction:
READ TEXT x,y,z TOKEN INCLUDE:"1234567890"

the Text variables x, v and z will contain these values:

x = 111
y = 222
z = 333

512 Appendix A

I/0 Transaction Reference
READ Transactions

Another way to do this is to specify an ARRAY greater than one and read data
into an array. For example, if you read the data in Figure A-28 using this
transaction:

READ TEXT x TOKEN INCLUDE:"1234567890" ARRAY:3

the Text variable x contains these values:

x[0] = 111
x[1] = 222
x[2] = 333

EXCLUDE CHARS. If you use EXCLUDE CHARS, you can specify a list
of characters, any one of which will terminate the current token. The

terminating characters are not included in the token. They are read and
discarded.

If you read the data shown in Figure A-27 using EXCLUDE with this
transaction:

READ TEXT a TOKEN EXCLUDE:"X" ARRAY:S8
the variable a contains these values:

= A phrase.<LEF>"A phrase."<LF>Tab follows .<LEF>
=0

= 00

= 000

= <LF>

= A

= BC

= DEF<LE>

~ oUW NP O

U VR R

Assume the data shown in Figure A-29 is sent to VEE from an instrument.

++1.23++4.98++0.45++2.34++0.01++23.45++12.2++

Figure A-29. READ TOKEN Data

Appendix A 513

Note

STRING Format

I/0O Transaction Reference
READ Transactions

If VEE reads the data in Figure A-29 with this transaction:
READ TEXT x TOKEN EXCLUDE:"+" ARRAY:7
the variable x will contain these values:

= null string (empty)
1.23
4.98
0.45
= 2.34
0.01
23.45

Even though seven "numbers" were available, only six were read. At the end
of this transaction, VEE has read seven tokens terminated by the +, including
the first character which was terminated before it was filled with any data.

The behavior of EXCLUDE CHARS is different between VEE 5 Execution
Mode and later and VEE 4 Execution Mode and earlier. See “READ TEXT
Transactions” on page 33 for a description of this difference.

READ TEXT STRING transactions are of this form:

READ TEXT VarList STR ARRAY:NumElements

—or-

READ TEXT VarList STR MAXFW:NumChars ARRAY:NumElements
VarList is a single Text variable or a comma-separated list of Text
variables.

NumChars specifies the maximum number of §-bit characters that can be
read in an attempt to build a string.

NumElements is a single expression or a comma-separated list of
expressions that specifies the dimensions of each variable in VarList. If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. ARRAY : 1 is a one-dimensional array with one
element. VEE makes a distinction between scalars and one-dimensional
arrays containing only one element.

This transaction reads all incoming characters and returns strings. Leading
spaces are deleted. The following discussion pertains to instrument I/O paths

514 Appendix A

I/0 Transaction Reference
READ Transactions

only, such as GPIB or VXI. All other 1/O paths, such as files or name12-
pipes, will not treat Quoted Strings specially. See “Effects of Quoted
Strings™ on page 506 for details about the effects of double quoted strings
on READ TEXT STRING

Effects of Control and Escape Characters. In this discussion, the terms
control character and escape character have specific meaning. A control
character is a single byte of data corresponding to one of the ASCII
characters 0-31 decimal. For example, linefeed is ASCII 10 decimal and the
symbol <LF> denotes linefeed character in this discussion. The string \n is a
human-readable escape character representing linefeed that is recognized by
VEE. VEE uses escape characters to represent control characters within
quoted strings.

Control characters and escape characters are handled differently depending
on whether or not they appear within double quoted strings.

Outside double quoted strings, control characters other than linefeed are read
and discarded. Linefeed terminates the current string. Escape characters,
such as \n, are read as two individual characters (\ and n).

Within double quoted strings, control characters and escape characters are
read and included in the string returned by the READ. A linefeed within a
double quoted string does not terminate the current string. Escape characters,
such as \n, are interpreted as their single character equivalent (<LF>) and
are included in the returned string as a control character.

Assume you want to read the following string data using READ TEXT
STRING transactions:

Simple string.

Random \n % $ * ‘A

"In quotes."

"In quotes

with control."

"In quotes\nwith escape."

Appendix A 515

I/0O Transaction Reference
READ Transactions

If you read the string data using this transaction:
READ TEXT x STR ARRAY:5
the variable X contains these values:

al[0] = Simple string.

all] = Random \n % $ * ‘A!

al[2] = In quotes.

al[3] = In quotes<LF>with control.
al[4] = In quotes<LF>with escape.

If you read the same string data using this transaction:
READ TEXT x STR MAXFW:16 ARRAY:5
the variable x contains these values:

al[0] = Simple string.

all] = Random \n % $ *
al[2] = ‘A’

a[3] = In quotes.

al[4] = In quotes<LF>with c¢

The transaction terminates the current READ whenever 16 characters have
been read (a[1]) or when a non-quoted <LF> (a[2]) is read. Double-
quoted strings are read from double quote to double quote and the first 16
delimited characters are returned (a[41]).

QUOTED STRING READ TEXT QUOTED STRING transactions are of this form:

Format .
READ TEXT VarList QSTR ARRAY:NumElements

—or—

READ TEXT VarList QSTR MAXFW:NumChars ARRAY:NumElements
VarList is a single Text variable or a comma-separated list of Text
variables.

NumChars specifies the maximum number of 8-bit characters that can be
read in an attempt to build a string.

NumElements is a single expression or a comma-separated list of
expressions that specifies the dimensions of each variable in VarList. If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. ARRAY : 1 is a one-dimensional array with one

516 Appendix A

INT16 and INT32
Formats

I/0 Transaction Reference
READ Transactions

element. VEE makes a distinction between scalars and one-dimensional
arrays containing only one element.

This transaction reads all incoming characters and returns strings. The
following discussion pertains to all non-instrument I/O paths. Instrument
I/O paths do not implement the READ TEXT QSTR transaction. See “Effects
of Quoted Strings™ on page 506 for details about the effects of double quoted
strings on READ TEXT STRING.

Also see “Effects of Control and Escape Characters” on page 515.

READ TEXT INT16 and READ TEXT INT32 transactions are of this form:

READ TEXT VarList INT16(or INT32) ARRAY:NumElements

—or-

READ TEXT VarList INT16 (or INT32) MAXFW:NumChars
ARRAY: NumElements

VarList is a single Integer variable or a comma-separated list of Integer
variables.

NumChars specifies the maximum number of §-bit characters that can be
read in an attempt to build a number.

NumStris a single expression or a comma-separated list of expressions that
specifies the dimensions of each variable in VarList. If the transaction is
configured to read a scalar, the ARRAY keyword does not appear in the
transaction. ARRAY : 1 is a one-dimensional array with one element. VEE
makes a distinction between scalars and one-dimensional arrays containing
only one element.

READ TEXT INT16 transactions interpret incoming characters as 16-bit,
two's complement integers. The valid range for these integers is

32767 to -32768. Any numbers outside this range wrap around so there is
never an overflow condition. For example, 32768 is interpreted as -32768.

READ TEXT INT32 transactions interpret incoming characters as 32-bit,
two's complement integers. The valid range for these integers is

2 147 483 647 to -2 147 483 648. Any numbers outside this range wrap
around so there is never an overflow condition. For example, 2 147 483 648
is interpreted as -2 147 483 648.

As it starts to build a number, VEE discards any leading characters that are
not recognized as part of a number. Once VEE starts building a number, any

Appendix A 517

I/0O Transaction Reference
READ Transactions

character that is not recognized as part of a number terminates the READ for
that number. Table A-15 shows the only combinations of characters that are
recognized as part of an INT16 or INT32.

Table A-15. Characters Recognized as Part of an INT16 or INT32:

Notation Characters Recognized

Decimal Valid characters are £+0123456789. Leading zeros
are not interpreted as an octal prefix as they are in
VEE data entry fields.

VEE hexadecimal | VEE interprets 0x as a prefix for a hexadecimal
number. Valid characters following the prefix are
0123456789aAbBcCdDeEfF.

IEEE 488.2 binary | VEE interprets #b or #B as a prefix for a binary
number. Valid characters following the prefix are 0
and 1.

IEEE 488.2 octal VEE interprets #qg or #0Q as a prefix for an octal
number. Valid characters following the prefix are

01234567.
IEEE 488.2 VEE interprets #h or #H as a prefix for a
hexadecimal hexadecimal number. Valid characters following the

prefix are 0123456789%9aAbBcCdDeEfF.

All the following notations are interpreted as the Integer value 15 decimal:

15

+15
015
OxF
Oxf
#b1111
#Q17
#hF

518 Appendix A

OCTAL Format

I/0 Transaction Reference
READ Transactions

READ TEXT OCTAL transactions are of this form:

READ TEXT VarList OCT ARRAY:NumElements
—or-
READ TEXT VarList OCT MAXFW:NumChars

where:

ARRAY : NumElements

VarList is a single Integer variable or a comma-separated list of Integer
variables.

NumChars specifies the number of 8-bit characters that can be read in an
attempt to build a number.

NumElements is a single expression or a comma-separated list of
expressions that specifies the dimensions of each variable in VarList. If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. ARRAY : 1 is a one-dimensional array with one
element. VEE makes a distinction between scalars and one-dimensional
arrays containing only one element.

READ TEXT OCTAL transactions interpret incoming characters as octal
digits representing 32-bit, two's complement integers. The valid range for
these integers is 2 147 483 647 decimal to -2 147 483 648 decimal.

If the transaction specifies a MAX NUM CHARS (MAXFEW), the octal number
read may contain more than 32 bits of data. For example, assume VEE reads
the following octal data:

377237456214567243777
using this transaction:
READ TEXT x OCT MAXFW:21

VEE reads all the digits in octal data, but uses only the last 11 digits
(14567243777) to build a number for the value of x. This is because each
digit corresponds to 3 bits and the octal number must be stored in an VEE
Integer, which contains 32 bits. Eleven octal digits yield 33 bits and the most
significant bit is dropped to fit the value in an VEE Integer. There is no
possibility of overflow.

Appendix A 519

HEX Format

I/0O Transaction Reference
READ Transactions

If the transaction specifies DEFAULT NUM CHARS, it will continue to read
characters until it builds enough numbers to fill each variable in VarList.
Linefeed characters will not terminate number building early. For example,
this transaction:

READ TEXT x OCT ARRAY:4

interprets each line of the following octal data as the same set of four octal
numbers:

0345 067 003<LE>0377<LFE>
345 67 3 377<EQF>
345,67,3,377,45, 67<EQOF>

The symbol <LF> represents the single character linefeed (ASCII 10
decimal). The symbol <EOF> represents the end-of-file condition.

READ TEXT HEX transactions are of this form:

READ TEXT VarList HEX ARRAY:NumElements

—or-

READ TEXT VarList HEX MAXFW:NumChars ARRAY:NumElements
VarList is a single Integer variable or a comma-separated list of Integer
variables.

NumChars specifies the number of 8-bit characters that can be read in an
attempt to build a number.

NumElements is a single expression or a comma-separated list of
expressions that specifies the dimensions of each variable in VarList. If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. ARRAY : 1 is a one-dimensional array with one
element. VEE makes a distinction between scalars and one-dimensional
arrays containing only one element.

READ TEXT HEX transactions interpret incoming characters as hexadecimal
digits representing 32-bit, two's complement integers. The valid range for
these integers is 2 147 483 647 decimal to -2 147 483 648 decimal.

520 Appendix A

REAL32 and
REAL64 Format

I/0 Transaction Reference
READ Transactions

If the transaction specifies a MAX NUM CHARS (MAXFW), the hexadecimal
number read may contain more than 32 bits of data. For example, assume
VEE reads the following hexadecimal data:

ad2469Ff725BCdef37964 hexadecimal data
using this transaction:
READ TEXT x HEX MAXFW:21

VEE reads all the digits in the hexadecimal data, but uses only the last 8
digits (def37964) to build a number for the value of x. This is because each
digit corresponds to 4 bits and the hexadecimal number must be stored in an
VEE Integer, which contains 32 bits. Eight hexadecimal digits yields exactly
32 bits. There is no possibility of overflow.

Assume VEE reads the same hexadecimal data, but with a different MAX
NUM CHARS, as in this transaction:

READ TEXT x HEX MAXFW:3 ARRAY:7

In this case, the transaction reads the same data and interprets it as seven
Integers, each comprising three hexadecimal digits.

If the transaction specifies DEFAULT NUM CHARS, it will continue to read
characters until it builds enough numbers to fill each variable in VarList.
Each number will read exactly 8 hexadecimal digits. Linefeed characters
will not terminate number building early.

Assume VEE reads the same hexadecimal data, but with
DEFAULT NUM CHARS, as in this transaction:

READ TEXT x HEX ARRAY:2

In this case, the transaction reads the same data and interprets it as two
Integers, each comprising eight hexadecimal digits. The last five digits
(37946) are not read.

READ TEXT REAL32 and READ TEXT REAL64 transactions are of this form:

READ TEXT VarList REAL32 (or REAL64) ARRAY:NumEIements
—or-
READ TEXT VarList REAL32 (or REAL64) MAXFW:NumChars

Appendix A 521

I/0O Transaction Reference
READ Transactions

ARRAY: NumElIements

VarList is a single Real variable or a comma-separated list of Real
variables.

NumChars specifies the maximum number of §-bit characters that can be
read in an attempt to build a number.

NumElements is a single expression or a comma-separated list of
expressions that specifies the dimensions of each variable in VarList. If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. ARRAY : 1 is a one-dimensional array with one
element. VEE makes a distinction between scalars and one-dimensional
arrays containing only one element.

The decimal number read by this transaction is interpreted as a VEE
Real32, which is a 32-bit IEEE 754 floating-point number. The range of
these numbers is:

-1.175 494 35E-38
-3.402 823 47E+38
to

3.402 823 47E+38
1.175 494 35E-38

The decimal number read by this transaction is interpreted as a VEE
Real 64, which is a 64-bit IEEE 754 floating-point number. The range of
these numbers is:

-1.797 693 134 862 315E+308
-2.225 073 858 507 202E-307
to

2.225 073 858 507 202E-307
1.797 693 134 862 315E+308

If the transaction specifies a MAX NUM CHARS (MAXFW), the Real number
read may contain more than 17 digits of data. For example, assume VEE
reads the following real data:

1.234567890123456789 real number data
using this transaction:

READ TEXT x REAL64 MAXFW:19

522 Appendix A

I/0 Transaction Reference
READ Transactions

VEE reads all the digits in the real data, but uses only the 17 most-significant
digits of the mantissa to build a number for the value of x. This is because
each Real contains a 54-bit mantissa, which is equivalent to more than 16
but less than 17 decimal digits. As a result, x has the value
1.2345678901234567.

Text to Real conversions are not guaranteed to yield the same value to the
least-significant digit. Comparisons of the two least-significant bits is
inadvisable.

Assume VEE reads the same real number data, but with a different MAX NUM
CHARS, as in this transaction:

READ TEXT x REAL64 MAXFW:6 ARRAY:3

In this case, the transaction reads the same data and interprets it as 3 Real
numbers, each comprised of six decimal characters. The last two characters
are not read.

If the transaction specifies DEFAULT NUM CHARS, it will continue to read
characters until it builds enough numbers to fill each variable in VarList.
Each number will read at most 17 decimal digits. Linefeed characters, white
space and other non-numeric characters will terminate number building
before 17 digits have been read.

READ TEXT REAL64 and REAL32 transactions recognize most commonly
used decimal notations for Real numbers including leading signs, decimal
points and signed exponents. The characters +-.0123456789Ee are
recognized as valid parts of a Real number by a/l READ TEXT REAL
transactions. If the transaction specifies DEFAULT NUM CHARS, the suffix
characters shown in Table A-16 are also recognized. The suffix character
must immediately follow the last digit of the number with no intervening
white space.

Appendix A 523

I/0O Transaction Reference
READ Transactions

Table A-16. Suffixes for REAL Numbers

Suffix Multiplier
=) 1015
T 1012
G 10°
M 10°
k orK 103
m 1073
u 10
n 1079
P 10-12
f 10-15

The following Text data represents six real numbers:

1001
+1001.
1001.0
1.001E3
+1.001E+03
1.001K

If VEE reads the real text data with this transaction:

READ TEXT x REAL64 ARRAY:6
then each element of the Real variable x contains the value 1001.
If VEE reads the same data with this transaction:

READ TEXT x REAL64 MAXFW:20 ARRAY:6

the first five elements of the Real variable x contain the value 1001 and the
sixth element contains the value 1.001.

524 Appendix A

COMPLEX,
PCOMPLEX and
COORD Formats

I/0 Transaction Reference
READ Transactions

COMPLEX, PCOMPLEX and COORD correspond to the VEE multi-field data
types with the same names. The behavior of all three READ formats is very
similar. The behaviors described in this section apply to all three formats
except as noted.

Just as the VEE data types Complex, PComplex and Coord are composed of
multiple Real 64 numbers, the COMPLEX, PCOMPLEX and COORD formats are
compound forms of the REAL64 format. Each constituent Real value of the
multi-field data types is read using the same rules that apply to an individual
REAL64 formatted value.

COMPLEX Format. READ TEXT COMPLEX transactions are of this form:
READ TEXT VarList CPX ARRAY:NumElements

Each READ TEXT COMPLEX transaction reads the equivalent of two REAL
formatted numbers. The first number read is interpreted as the real part and
the second number read is interpreted as the imaginary part.

PCOMPLEX Format. READ TEXT PCOMPLEX transactions are of this
form:

READ TEXT VarList PCX:PUnit ARRAY:NumElements

PUnit specifies the units of angular measure in which the phase of the
PComplex is measured.

Each READ TEXT PCOMPLEX transaction reads the equivalent of two REAL
formatted numbers. The first number read is interpreted as the magnitude
and the second number read is interpreted as the phase.

If any transaction reading COMPLEX, PCOMPLEX, or COORD formats
encounters an opening parenthesis, it expects to find a closing parenthesis.

Assume you want to read a file containing the following data containing
parentheses:

(1.23 , 3.45 (6.78 , 9.01) (1.23 , 4.506)
If VEE reads the data with this transaction:
READ TEXT x,y CPX

the variables x and y contain these Complex values:

Appendix A 525

I/0O Transaction Reference

READ Transactions
x = (1.23 , 3.45)
y = (1.23 , 4.56)

The transaction read past 6.78 and 9. 01 to find the closing parenthesis. If
parentheses had been omitted from the data entirely, y would have the value
(6.78 , 9.01).

COORD Format. READ TEXT COORD transactions are of this form:
READ TEXT VarList COORD:NumFields ARRAY:NumElements

VarList is a single Coord variable or a comma-separated list of Coord
variables.

NumFields is a single variable or expression that specifies the number of
rectangular dimensions in each Coord value. This value must be 2 or more
for the READ to execute without error.

NumElements is a single expression or a comma-separated list of
expressions that specifies the dimensions of each variable in VarList. If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. ARRAY : 1 is a one-dimensional array with one
element. VEE makes a distinction between scalars and one-dimensional
arrays containing only one element.

BINARY Encoding

READ BINARY transactions are of this form:
READ BINARY VarList DataType ARRAY:NumElements

VarList is a single variable or a comma-separated list of variables.

DataType is one of the following pre-defined formats corresponding to the
VEE data type with the same name:

BYTE - 8-bit unsigned byte

INT16 - 16-bit two's complement integer

INT32 - 32-bit two's complement integer
REAL32 - 32-bit IEEE 754 floating-point number
REALG64 - 64-bit [IEEE 754 floating-point number
STRING - null terminated string

COMPLEX - equivalent to two REAL64s

526 Appendix A

Note

I/0 Transaction Reference
READ Transactions

B PCOMPLEX -equivalent to two REAL64s
B COORD - equivalent to two or more REAL64S

VEE 5 and lower Execution Modes store and manipulate all integer values
as the INT32 data type and all real numbers as the Real data type, also
known as REAL64. Thus, the INT16 and REAL32 data types are provided for
I/0 only. VEE 5 and lower Execution Modes perform the following data-
type conversions for instrument I/O on an input transaction.

INT16 values from an instrument are individually converted to INT32
values by VEE 5 and lower Execution Modes. This conversion assumes that
the INT16 data was signed data. If you need the resulting INT32 data in
unsigned form, pass the data through a formula object with the formula

BITAND (a, OxFFFF)

REAL32 values from an instrument are individually converted to REAL64
values by VEE 5 and lower.

VEE 6 Execution Mode retains the data type.

NumElements is a single expression or a comma-separated list of
expressions that specifies the dimensions of each variable in VarList. If
the first expression is an asterisk (*), the transaction will read data until an
EOF is encountered. Read to end is supported only for:

From File

From String

From StdIn

Execute Program

To/From Named Pipe

To/From Rocky Mountain Basic transactions.

Only the first dimension can have an asterisk rather than a number. If the
transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. ARRAY : 1 is a one-dimensional array with one
element. VEE makes a distinction between scalars and one-dimensional
arrays containing only one element.

Appendix A 527

I/0O Transaction Reference
READ Transactions

For example, the following transaction, reading from a file:
READ BINARY a REAL64 ARRAY:*,10

will read until EOF is encountered, resulting in a two dimensional array with
10 columns. The number of rows is dependent on the amount of data in the

file. The total number of data elements read must be evenly divisible by the
product of the known dimension sizes, in this example: 10.

READ BINARY transactions expect that incoming data is in exactly the same
format that would be produced by an equivalent WRITE BINARY
transaction. BINARY encoded data has the advantage of being very compact,
but it is not easily shared with non-VEE applications.

BINBLOCK Encoding

READ BINBLOCK transactions are of this form:
READ BINBLOCK VarList DataType ARRAY:NumElements

VarList is a single variable or a comma-separated list of variables.
DataType is one of these pre-defined VEE data types:

BYTE - 8-bit unsigned byte

INT16 - 16-bit two's complement integer

INT32 - 32-bit two's complement integer
REAL32 - 32-bit IEEE 754 floating-point number
REAL64 - 64-bit [IEEE 754 floating-point number
COMPLEX - equivalent to two REALS

PCOMPLEX -equivalent to two REALS

COORD - equivalent to two or more REALS

NumElements is a single expression or a comma-separated list of
expressions that specifies the dimensions of each variable in VarList. The
number of columns is equal to the number of channels contained by the
binblock. The number of rows is equal to the number of readings per
channel. Only the first dimension can have an asterisk rather than a number.

If the first expression is an asterisk (*), the transaction will read data until an
EOF is encountered. Read to end is supported only for:

528 Appendix A

I/0 Transaction Reference
READ Transactions

From File

From String

From StdIn

Execute Program

To/From Named Pipe

To/From Socket

B To/From Rocky Mountain Basic transactions.

If the transaction is configured to read a one-dimension array, for a single
channel, the single dimension represents rows and can have an asterisk.

For example, the following transaction, reading from a file:
READ BINBLOCK a REAL64 ARRAY:*, 10

will read until EOF is encountered, resulting in a two-dimensional array with
10 columns. Each column represents an instrument channel. The number of
rows is dependent on the amount of data in each channel. The total number
of data elements contained by the binblock must be evenly divisible by the
number of columns, in this example: 10.

You do not need to specify any additional information about the format of
incoming data as the block header contains sufficient information.

READ BINBLOCK can read any of the block formats described previously
with WRITE BINBLOCK transactions.

The following transaction reads two traces from an oscilloscope that formats
its traces as IEEE 488.2 Definite Length Arbitrary Block Response Data:

READ BINBLOCK a,b REALG4

CONTAINER Encoding

READ CONTAINER transactions are of the form:
READ CONTAINER VarList
VarList is a single variable or a comma-separated list of variables.

READ CONTAINER transactions reads data stored in the special text
representation written by WRITE CONTAINER transactions. No additional
specifications, such as format, needs to be specified with READ CONTAINER
since that information is part of the container.

Appendix A 529

I/0O Transaction Reference
READ Transactions

REGISTER Encoding

READ REGISTER is used to read values from a VXI instrument's A16
memory.

READ REGISTER transactions are of this form:

READ REG: SymbolicName ExpressionList INCR ARRAY:NumElements
—or-
READ REG: SymbolicName ExpressionList ARRAY:NumElements

where:

SymbolicName is a name defined during configuration of a VXI
instrument. The name refers to a specific address within a instrument's
register space. Specific data types for READ REGISTER transactions are:

B BYTE - 8 bit unsigned byte

B WORD16 - 16-bit two's complement integer

B WORD32 - 32-bit two's complement integer

B REAL32 - 32-bit IEEE 754 floating point number

These data types are also specified during configuration of a VXI instrument
and do not appear in the transaction.

ExpressionList is a single expression or a comma-separated list of
expressions.

INCR specifies that array data is to be read from the register incrementally
starting at the address specified by SymbolicName. The first element of
the array is read from the starting address, the second from that address plus
an offset equal to the length in bytes of the data type, etc. until all array
elements have been read. If INCR is not specified in the transaction, the
entire array is read from the single location specified by SymbolicName.

NumElements is a single expression or a comma-separated list of
expressions that specifies the dimensions of each variable in VarList. If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. ARRAY : 1 is a one-dimensional array with one
element. VEE makes a distinction between scalars and one-dimensional
arrays containing only one element.

530 Appendix A

I/0 Transaction Reference
READ Transactions

MEMORY Encoding

READ MEMORY is used to read values from a VXI instrument's A24 or A32
memory.

READ MEMORY transactions are of this form:

READ MEM: SymbolicName ExpressionList INCR ARRAY:NumElements
—or-
READ MEM: SymbolicName ExpressionList ARRAY:NumElements

where:

SymbolicName is a name defined during configuration of a VXI
instrument. The name refers to a specific address within a instrument's
extended memory. Specific data types for READ MEMORY transactions are:

B BYTE - 8 bit unsigned byte

WORD16 - 16-bit two's complement integer

WORD32 - 32-bit two's complement integer

REAL32 - 32-bit IEEE 754 floating point number

WORD32*2 - two 32-bit two’s complement integers in adjacent elements
of an Int32 array

REALG4 - 64-bit IEEE 754 floating point number.

These data types are also specified during configuration of a VXI instrument
and do not appear in the transaction.

ExpressionList is a single expression or a comma-separated list of
expressions.

INCR specifies that array data is to be read from the memory location
incrementally starting at the location specified by SymbolicName. The
first element of the array is read from the starting location, the second from
that location plus an offset equal to the length in bytes of the data type, etc.
until all array elements have been read. If INCR is not specified in the
transaction, the entire array is read from the single memory location
specified by SymbolicName.

NumElements is a single expression or a comma-separated list of
expressions that specifies the dimensions of each variable in VarList. If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. ARRAY : 1 is a one-dimensional array with one

Appendix A 531

I/0O Transaction Reference
READ Transactions

element. VEE makes a distinction between scalars and one-dimensional
arrays containing only one element.

IOSTATUS Encoding

READ IOSTATUS transactions are of this form:

READ IOSTATUS STS Bits VarList

—or-

READ IOSTATUS DATA READY VarList
VarList is a single Integer variable or a comma-separated list of Integer
variables.

READ IOSTATUS transactions are used by Direct 1/0 for GPIO
interfaces, From StdIn, To/From Named Pipe, To/From Socket,
and To/From Rocky Mountain Basic.

READ IOSTATUS transactions for GPIO reads the peripheral status bits
available on the interface. The number of bits read is dependent on the
model number of the interface. A single integer value is returned that is the
weighted sum of all the status bits.

For example, the HP 98622A GPIO interface supports two peripheral status
lines, STI0 and STI1. Table A-17 illustrates how to interpret the value of x in
this transaction:

READ IOSTATUS STS Bits a

Table A-17. TOSTATUS Values

Value Read ST STIO
0 0 0
1 0 1
2 1 0
3 1 1

READ IOSTATUS transactions read the instantaneous values of the status
lines; the status line are not latched or buffered in any way.

532 Appendix A

I/0 Transaction Reference
READ Transactions

READ IOSTATUS transactions return a Boolean YES (1) if there is data
ready to read. If no data is present, a Boolean NO (0) is returned. The READ
IOSTATUS transaction can be used to avoid a READ that will block program
execution until data is available.

Appendix A 533

I/0O Transaction Reference
Other Transactions

Other Transactions

This section describes other VEE 1/0 transactions, including EXECUTE
transactions, WAIT transactions, SEND transactions, WRITE(POKE)
transactions, and READ(REQUEST) transactions.

EXECUTE Transactions

EXECUTE transactions send low-level commands to control the file,
instrument, or interface associated with a particular object. EXECUTE is used
to adjust file pointers, clear buffers and provide low-level control of
hardware interfaces. The various EXECUTE commands available are
summarized in Table A-18.

Table A-18. Summary of EXECUTE Commands

Commands Description

To File, From File

REWIND Sets the read pointer (From File) or write pointer (To File)
to the beginning of the file without changing the data in
the file.

CLEAR (To File only). Erases existing data in the file and sets
the write pointer to the beginning of the file.

CLOSE Explicitly closes the file. Useful when multiple processes
are reading and writing the same file.

DELETE Explicitly deletes the file. Useful for deleting temporary
files.

534 Appendix A

I/0 Transaction Reference
Other Transactions

Table A-18. Summary of EXECUTE Commands

Commands

Description

Interface Operations

CLEAR For GP1IB, clears all instruments by sending DCL
(Device Clear). For vXI, resets the interface and runs
the resource manager

TRIGGER For GPIB, triggers all instruments addressed to listen by
sending GET (Group Execute Trigger). For VX1 triggers
specified backplane trigger lines or external triggers on
an embedded controller.

LOCAL For GPIB, releases the REN (Remote Enable) line and
puts instrument into local mode.

REMOTE For Gp1B, asserts the REN (Remote Enable) line.

LOCAL For Gp1B, sends the LLO (Local Lockout) message.

LOCKOUT Any instrument in remote at the time LLO is sent will lock
out front panel operation.

ABORT Clears the GPIB interface by asserting the IFC (Interface
Clear) line.

LOCK In a multiprocess system with shared resources, lets one

INTERFACE process lock the resources for its own use during a
critical section to prevent another process from trying to
use them.

UNLOCK In a multiprocess system where a process has locked

INTERFACE shared resources for its own use, unlocks the resources

to allow other processes access to them.

Appendix A

535

I/0O Transaction Reference
Other Transactions

Table A-18. Summary of EXECUTE Commands

Commands

Description

Direct I/O to GPIB

CLEAR Clears instrument at the address of a Direct I/0
object by sending the SDC (Selected Device Clear).

TRIGGER Triggers the instrument at the address of a Direct
1/0 object by addressing it to listen and sending GET
(Group Execute Trigger).

LOCAL Places the instrument at the address of the Direct
I/0 object in the local state.

REMOTE Places the instrument at the address of the Direct

I/0 object in the remote state.

Direct I/O to GPIO

RESET

Resets the GPIO interface associated with the Direct
I/0 object by pulsing the PRESET line (Peripheral
Reset).

Direct I/O to message-based VXI

CLEAR

Clears the VXI instrument associated with the Direct
1/0 object by sending the word-serial command Clear
(Oxffff).

TRIGGER

Triggers the VXI instrument associated with the Direct
I/0 object by sending the word-serial command Trigger
(Oxedff).

LOCAL

Places the VXI instrument associated with the Direct
I/0 object into local state by sending the word-serial
command Clear Lock (Oxefff).

REMOTE

Places the VXI instrument associated with the Direct
I/0 object into local state by sending the word-serial
command Set Lock (Oxeeff). in the remote state.

536

Appendix A

I/0 Transaction Reference
Other Transactions

Table A-18. Summary of EXECUTE Commands

Commands

Description

Direct I/O to Serial Interfaces

RESET

Resets the serial interface associated with the Direct
I/0 object.

BREAK

Transmits a signal on the Data Out line of the serial
interface associated with the Direct I/0 objectas
follows:

A logical High for 400 milliseconds

A logical Low for 60 milliseconds

CLOSE

Close the connection with the serial interface associated
with the Direct I/O Object. A connection is reestablished
at the next connection, if any.

xecute Program, [o/From Named Fipe, 1o/From KockKy Mountain basic

CLOSE READ

CLOSE WRITE

oses the read named pipe associated wi e (To
From) object or the stdin pipe associated with the
(Execute Program).

oses the write named pipe assoclated wi e (To
From) object or the stdout pipe associated with the
(Execute Program).

ockets. To re-establish the connection, the client and
erver must repeat the bin12-accept and connect-to
protocols.

Appendix A

537

I/0O Transaction Reference
Other Transactions

Table A-18. Summary of EXECUTE Commands

Commands Description

Direct I/0O, Multilnstrument Direct I/O, Interface Operations to GPIB,
VXI, Serial, and GPIO

LOCK In a multiprocess system with shared resources, lets one
process lock the resources for its own use during a
critical section to prevent another process from trying to
use them.

UNLOCK In a multiprocess system where a process has locked
shared resources for its own use, unlocks the resources
to allow other processes access to them.

538 Appendix A

I/0 Transaction Reference
Other Transactions

Details About GPIB The EXECUTE commands used by Direct I/0 to GPIB instruments and
Interface Operations are similar but different.

B Direct I/0EXECUTE commands address an instrument to receive the
command.

B Interface Operations EXECUTE commands may affect multiple
instruments already addressed to listen.

Table A-19 through Table A-24 indicate the exact bus actions conducted by
Direct I/Oand Interface Operations EXECUTE transactions.

Table A-19. EXECUTE ABORT GPIB Actions

Direct I/O | Interface Operations
Not IFC (= 100 usec)
applicable.
REN
ATN

Table A-20. EXECUTE CLEAR GPIB Actions

Direct I/0 | Interface Operations
ATN ATN
MTA DCL
UNL
LAG
SDC

Appendix A 539

I/0O Transaction Reference
Other Transactions

Table A-21. EXECUTE TRIGGER GPIB Actions

Direct I/0 | Interface Operations
ATN ATN
MTA GET
UNL
LAG
GET

Table A-22. EXECUTE LOCAL GPIB Actions

Direct I/0 | Interface Operations
ATN REN
MTA ATN
UNL
LAG
GTL

Table A-23. EXECUTE REMOTE GPIB Actions

Direct I/0 | Interface Operations
REN REN
ATN ATN
MTA
UNL
LAG

540 Appendix A

Details About VXI

I/0 Transaction Reference
Other Transactions

Table A-24. EXECUTE LOCAL LOCKOUT GPIB Actions

Direct I/O | Interface Operations

Not ATN
applicable.

LLO

The EXECUTE commands used by Direct 1/0 to VXI instruments and
Interface Operations are similar, but different. References to message-
based VXI instruments apply to register-based instruments that are
supported

by I-SCPI.

B Direct I/0EXECUTE commands address a message-based VXI
instrument to receive a word-serial command.

B Interface Operations EXECUTE commands affect the VXI interface
directly and may affect VXI instruments within the interfaces servant
area.

EXECUTE TRIGGER transactions for the Interface Operations object
are of the form:

EXECUTE TRIGGER TriggerType Expression TriggerMode
TriggerType specifies which trigger group will be used by the
EXECUTE TRIGGER transaction. The groups are:

B TTL - Specifies the eight TTL trigger lines on the VXI backplane.
B ECL - Specifies the four ECL trigger lines on the VXI backplane.
B EXT - Specifies the external triggers on a embedded VXI controller.

Expression evaluates to a single Integer variable that represents a bit
pattern indicating which trigger lines for a particular TriggerType are to
be triggered. A value of 5, represented in binary as 101, indicates that TTL
lines 0 and 2 are to be triggered. A value of 255 triggers all eight TTL lines.
TriggerMode indicates the way the trigger lines are to be asserted:

Appendix A 541

I/0O Transaction Reference
Other Transactions

B PULSE - Lines are to be pulsed for a discreet time limit (TriggerType
dependent).

B ON - Asserts the trigger lines and leaves them asserted.

B OFF - Removes the assertion from trigger lines that were asserted by a
previous ON transaction.

Table A-25 through Table A-28 indicate the bus actions conducted by
Direct I/Oand Interface Operations EXECUTE transactions.

Table A-25. EXECUTE CLEAR VXI Actions

Direct I/O Interface Operations

Word-serial command Clear(0xffff) | Pulse SYSRESET line, rerun
Resource Manager

Table A-26. EXECUTE TRIGGER VXI Actions

Direct I/O Interface Operations
Word-serial command Triggers either the TTL or ECL
Trigger(Oxedff) trigger lines in the backplane or the

external trigger(s) on the
embedded VXI controller. You can
specify which lines are to be
triggered for each trigger type.

Table A-27. EXECUTE LOCAL VXI Actions

Direct I/0O Interface Operations

Word-serial command Set Not applicable.
Lock(Oxeeff)

542 Appendix A

I/0 Transaction Reference
Other Transactions

Table A-28. EXECUTE REMOTE VXI Actions

Direct I/O Interface Operations
Word-serial command Clear Not applicable.
Lock(0xefff)
WAIT Transactions

There are four types of WAIT transactions:
B WAIT INTERVAL

B wWAIT SPOLL (Direct I/0 to GPIB and message-based VXI
instruments only)

B WAIT REGISTER (Direct I/0 to VXI instruments only)
B WAIT MEMORY (Direct I/O to VXI instruments only)

WAIT INTERVAL transactions wait for the specified number of seconds
before executing the next transaction listed in the open view of the object.
For example, this transaction waits for 10 seconds:

WAIT INTERVAL:10
WAIT SPOLL transactions are of the form:
WAIT SPOLL Expression Sense

Expression is an expression that evaluates to an integer. The integer
will be used as a bit mask.

Sense is a field with two possible values.

B ANY SET
B ALL CLEAR

Appendix A 543

I/0O Transaction Reference
Other Transactions

WAIT SPOLL transactions wait until the serial poll response byte of the
associated instrument meets a specific condition. The serial poll response is
tested by bitwise ANDing it with the specified mask and ORing the resulting
bits into a single test bit. The transaction following WAIT SPOLL executes
when one of the following conditions is met:

B The transaction specifies ANY (ANY SET) and the test bit is true (1).
B The transaction specifies CLEAR (ALL CLEAR) and the test bit is false (0).

The following transactions show one way to use WAIT SPOLL:

WAIT SPOLL:256 ANY Wait until any bit is set.
WAIT SPOLL:256 CLEAR Wait until all are clear.
WAIT SPOLL:0x40 ANY Wait until bit 6 is set.

WAIT SPOLL:0x40 CLEAR Wait until bit 6 is clear.

WAIT REGISTER and WAIT MEMORY transactions are of the form:

WAIT REG:SymbolicName MASK:Expression Sense [Expression]
—or-
WAIT MEM:SymbolicName MASK:Expression Sense [Expression]

where:

SymbolicName is a name defined during configuration of a VXI
instrument. The name refers to a specific address within a instrument's
A16 or extended memory.

MASK: Expression is an expression that evaluates to an integer. The
integer will be used as a bit mask. The size in bytes of this mask value
depends on the data type for which Symbol i cName has been configured.

Sense is a field with three possible values.

B ANY SET
B ALL CLEAR
B *EQUAL

[Expression] is an optional compare value that evaluates to an integer.
The integer is used only when Sense is EQUAL.

WAIT REGISTER or MEMORY transactions wait until the value read from the
register or memory location specified by SymbolicNames in the
associated VXI instrument meets a certain condition.

544 Appendix A

I/0 Transaction Reference
Other Transactions

The value read is logically ANDed with the bit mask specified in
MASK: Expression, resulting in a test value. The size of the test value is
dependent on the data type configured for the specified register or memory

location. The transaction following WAIT SPOLL executes when one of the
following conditions is met:

B The transaction specifies ANY (ANY SET) and the test value has at least
one bit true (1).

B The transaction specifies CLEAR (ALL CLEAR) and the test value has all
bits false (0).

B The transaction specifies EQUAL and the test value is equal bit-for-bit
with the compare value specified in [Expression].

Appendix A 545

I/0O Transaction Reference
Other Transactions

SEND Transactions

SEND transactions are of this form:
SEND BusCmd
BusCmd 1s one of the bus commands listed in Table A-29.

SEND transactions are used within Interface Operations objects to
transmit low-level bus messages via a GPIB interface. These messages are
defined in detail in IEEE 488.1.

546 Appendix A

I/0 Transaction Reference
Other Transactions

Table A-29. SEND Bus Commands

Command

Description

COMMAND

Sets ATN true and transmits the specified data bytes. ATN
true indicates that the data represents a bus command.

DATA

Sets ATN false and transmits the specified data bytes.
ATN false indicates that the data represents instrument-
dependent information.

TALK

Addresses a instrument at the specified primary bus
address (0-31) to talk.

LISTEN

Addresses a instrument at the specified primary bus
address (0-31) to listen.

SECONDARY

Specifies a secondary bus address following a TALK or
LISTEN command. Secondary addresses are typically
used by cardcage instruments where the cardcage is at a
primary address and each plug-in module is at a
secondary address.

UNLISTEN

Forces all instruments to stop listening and sends UNL.

UNTALK

Forces all instruments to stop talking; sends UNT.

MY LISTEN ADDR

Addresses the computer running VEE to listen and sends
MLA.

MY TALK ADDR

Addresses the computer running VEE to talk and sends
MTA.

MESSAGE

Sends a multi-line bus message. Consult IEEE 488.1 for
details. The multi-line messages are:

DCL Device Clear

SDC Selected Device Clear
GET Group Execute Trigger
GTL Go To Local

LLO Local Lockout

SPE Serial Poll Enable
SPD Serial Poll Disable
TCT Take Control

Appendix A

547

Note

I/0O Transaction Reference
Other Transactions

WRITE(POKE) Transactions

WRITE (POKE) transactions are supported by VEE for Windows only.

The WRITE (POKE) transaction is very similar to the WRITE transaction,
except that it applies only to the To/From DDE object. The main difference
of WRITE (POKE) is that you must specify an item name. For example:

WRITE ITEM:"r2c3" TEXT a EOL

The following encodings are allowed:

H TEXT
H BYTE
B CASE
B CONTAINER

For more specific information about these formats see the WRITE
transaction.

READ(REQUEST) Transactions

The READ (REQUEST) transaction is very similar to the READ transaction,
except that it applies only to the To/From DDE object. The main difference
of READ (REQUEST) is that you must specify an item name. For example:

READ ITEM:"r2c3" TEXT a EOL
READ (REQUEST) transactions are supported by VEE for Windows only.
The following encodings are allowed:

B TEXT
B CONTAINER

For more specific information about these formats see the READ transaction.

548 Appendix A

Troubleshooting Techniques

Troubleshooting Techniques

This appendix describes instrument control troubleshooting andcommon
situations and possible recovery actions. Table B-1 addresses instrument
control troubleshooting.

Table B-1. Instrument Control Troubleshooting

Problem Remedy/Cause

Instruments do not The following conditions must be met:
respond at all.
* Instruments must be powered up and connected to the interface by a
functioning cable. The appropriate 1/O libraries must be installed.

* For To/From VXIplugé&play objects: You must have installed and
configured the appropriate VXlplug&play driver files for your
instrument. Also, the correct VXIplug&play address string must be
specified in the Advanced Instrument Properties dialog box for
each instrument. The address for each instrument must be unique.

* For Direct I/0,Panel Driver, and Component Driver
objects: The interface logical unit and instrument addresses must
match settings in the Address field of the Instrument Properties
dialog box. The address for each instrument must be unique. Also, the
Live Mode field inthe Advanced Instrument Properties dialog
box must be set to ON.

* You or your system administrator must properly configure VEE to
work with instruments. Normally this is done during VEE installation.
See the installation guide.

» For UNIX systems, the UNIX kernel must be configured with the
proper drivers and interface cards.

550 Appendix B

Troubleshooting Techniques

Table B-1. Instrument Control Troubleshooting

Problem Remedy/Cause
You cannot For GPIO and serial interfaces, the instrument address is the same as
determine the the interface logical unit. GPIB instrument addresses are set by
instrument address. hardware switches or front panel commands. See the instrument's

programming manual for details. VXI devices have logical addresses
set by switches on the outside of the cards (usually the cards must be
removed from the card cage to access the switches). See Chapter 3,
“Configuring Instruments,” for further information about configuring

addresses.
You cannot The interface logical units must be configured with the T/0 Config
determine the utility supplied with the HP 1/O libraries. See Installing the Agilent 1/0

interface logical unit. | Libraries (VEE for Windows) or Installing the Agilent I/O Libraries
(VEE for HP-UX) for further information. Table 5-2, “Recommended
I/0O Logical Units,” on page 213 for recommended logical unit settings.

Appendix B 551

Troubleshooting Techniques

Table B-2 addresses general VEE troubleshooting.

Table B-2. VEE Troubleshooting

Problem

Possible Cause

Suggested Solutions

When running a
program created in
versions prior to VEE
6.0 in VEE 6 Execution
Mode, the program does
not operate as expected

See “Using VEE Execution
Modes” on page 17 for possible
solutions.

Your UserObject does
not operate as expected.

You might be crossing the
context boundaries with
asynchronous data (such as
connecting to an XEQ pin on an
object inside the UserObject).

Possible Solution 1: Move any
asynchronous dependencies to
outside the UserObject.

Possible Solution 2: Enable
Show Execution Flow Or
Show Data Flow to view the
order of operation in your
program.

You want to change the
functionality of an object.

Use the object menu which
includes features that let you
add a control input terminal and
edit properties.

You only get one value
output from an iterator
within a UserObject.

A UserObject only activates its
outputs once.

Take the iterator out of the
UserObject.

An iterator only operates
once.

Your iteration subthread is
connected to the sequence
output pin, not the data output

pin.

Start the iteration subthread
from the data output pin.

For Count does not
operate.

The value of For Countis 0 or
negative.

Change the value. If you need a
negative value, negate the
output or use For Range.

552

Appendix B

Troubleshooting Techniques

Table B-2. VEE Troubleshooting

Problem

Possible Cause

Suggested Solutions

For RangeorFor Log
Range does not
operate.

You get the UNIX
message sh:name -
not found.

VEE appears to hang --
the pointer is an
hourglass.

The sign of the step size is
wrong. If From is less than
Thru, Step must be positive. If
Thru is less than From, Step
must be negative.

You mistyped the name of the

executable.

ariable is not set or is set to

display on a machine for which
permissions are not set up
correctly.

Possible Cause 1:VEE is
rerouting lines because you
have Auto Line Routing set
on and you moved an object.

Possible Cause 2: VEE is
printing the screen or the
program.

Possible Cause 3: You just Cut
a large object or a large number
of objects. VEE is saving the
objects to the Paste buffer.

Change step.

Retype veetest. YOu may neead
o specify the full path to the
executable.

export) your
environment variable DISPLAY.
Generally, this is set to
lhostname:0.0. To display on
a remote machine, set up
permissions with xhost on the
remote machine.

Wait. If the pointer does not
change back to the crosshairs
within a few minutes, type
CTRL+C (or what your intr
setting is in the terminal window
from which you started VEE
6.0), close the VEE window, or
kill the VEE process.

You cannot Open a
program, Cut objects, or
delete a line (the feature
is grayed).

The program is still running.

Press Sstop to stop the program,
then try the action again.

You cannot Paste (the
feature is grayed).

The pPaste buffer is empty.

Cut, Copy, or Clone the
object(s) again.

Appendix B

553

Troubleshooting Techniques

Table B-2. VEE Troubleshooting

Problem

Possible Cause

Suggested Solutions

You cannot Cut,
Create UserObject,
or Add to Panel (the
feature is grayed).

No objects are selected.

Select the objects and try the
action again.

A UserObject only
outputs the last data
element generated.

UserObjects do not
accumulate data in the output
terminal buffer. The buffer only
holds the last data element
received.

Use a Collector to gather all
of the data generated into an
array. Send this data to the
output terminal.

You cannot get out of
line drawing mode.

Double-click or press Esc to end
line drawing mode.

Yougeta Parse Error
object when you Open a
program.

Replace the Parse Error
object with a new object.

Your characters are not
appearing correctly.

You have a non-USASCII
keyboard.

See “Configuring VEE” on
page 5 for recovery information.

Your colors outside of
VEE are changing
(although when you are
in VEE , the VEE colors
look normal).

Your color map planes are all
used.

See “Configuring VEE” on
page 5 for recovery information.

554

Appendix B

Instrument I/0 Data Type Conversions

Instrument I/0 Data Type Conversions

For instrument I/O transactions involving numeric data, VEE performs an
automatic data-type conversion according to the rules listed below. (These
data-type conversions are completely automatic. Normally, you will not
need to be concerned with them.) These conversions only occur when
running in VEE 5 and prior Execution Modes.

B On an input transaction (read), Int16 or Byte values from an instrument
are converted to Int32 values, preserving the sign extension. Also,
Real32 values from an instrument are converted to 64-bit Real
numbers.

B On an output transaction (write), Int32 or Real values are converted
to the appropriate output format for the instrument:

QO If an instrument supports the Real32 format, VEE converts 64-bit
Real values to Real32 values, which are output to the instrument.
If the Real value is outside of the range for Real32 values, an error
will occur.

U If an instrument supports the Int16 format, VEE truncates Int32
values to Int16 values, which are output to the instrument. Real
values are first converted to Int32 values, which are then truncated
and output. However, if a Real value is outside the range for an
Int32, an error will occur.

U If an instrument supports the Byte format, VEE truncates Int32
values to Byte values, which are output to the instrument. Real
values are first converted to Int 32 values, which are then truncated
and output. However, if a Real value is outside the range for an
Int32, an error will occur.

556 AppendixC

Keys to Faster Programming

Note

Keys To Faster Programs

This appendix gives guidelines to help improve VEE program performance.
For general tips to increase the performance of your program, see
Improving the Performance of a VEE Program under

How Do I in VEE Online Help.

If you developed programs on a version of VEE prior to VEE 6.0, see
“Using VEE Execution Modes” on page 17 for information on converting
your program to use the compiler.

The following constructs will help you get the most speed benefit from the
compiler (when the Execution Modeissetto VEE 4, VEE 5 or
VEE 6inFile = Default Preferences):

B Use the Profiler

You can use the Profiler (located at View = Profiler) to categorize
which routines are taking more time than you want them to. To run the
Profiler:

1. Click start Profiling and then run your program.

2. When you have finished running your program, click Refresh to see
the results.

3. Click stop Profiling to stop the profiler. Click Clear to clear the
current results displayed.

B Look at line colors

Lines are colored when VEE can determine the data type before execution.
The more colored (non-black) lines, the faster the program will run.

558 Appendix D

Keys to Faster Programming

B Add Terminal Constraints

Because UserFunctions can be called from multiple places, VEE cannot
determine the input data types before the program runs. To speed up
UserFunctions, whenever possible add terminal constraints on their data
input terminals.

B Use Declared Variables

If you use global variables, use Declare Variable (located on the Data
menu) when possible to declare the type and shape of your variables so VEE
can infer types for them prior to execution. This technique also allows you to
set the scope of your variables.

B Eliminate the Autoscale control input

A common programming practice is executing the Autoscale control input
on graphical displays more often than necessary. If you can wait to execute
Autoscale until after the display has finished updating, instead of after
each point is plotted, your program will execute faster. You can eliminate the
Autoscale control input by using the Automatic Scaling property (see
the Scales tab) which can further improve execution speed.

B Send a complete set of data

On graphical displays, when the Automatic Scaling property is turned
on (see the Scales tab), the program executes faster if a complete set of
data is sent to the display. Then the display automatically rescales once. If a
program sends one data point at a time to the display, the display may
automatically rescale after each data point which will slow down program
execution. In this case, use a Collector object to create an array and then
send the array to the display.

B Execute the display only once

If a display is showing the final output of a loop, but not tracking data
generated for each iteration of the loop (for example, an AlphaNumeric
object not a Logging AlphaNumeric), do not have it execute every time
in the loop. Connect the iterator's sequence output pin to the display's
sequence input pin so the display only executes the last time.

Appendix D 559

Keys to Faster Programming

B Turn debugging features off

Once you know the program is running correctly, run the program with
debugging features off. Use File = Default Preferences and select
Disable Debug Features in the Debug group.

You can also use the -r option, or run VEE RunTime. Because no

debug instructions are generated in those modes, your program will run a
little faster. However, you will not be able to perform any debugging actions
such as, pausing, stepping, Breakpoints, Line Probe, Show Data
Flow and Show Execution Flow.

560 Appendix D

ASCII Table

ASCII Table

This appendix contains reference tables of ASCII 7-bit codes.

Table E-1. ASCII 7-bit Codes

Binary Oct | Hex | Dec GPIB Msg
NUL 0000000 | 000 00 0
SOH 0000001 | 001 01 1 GTL
STX 0000010 | 002 02 2
ETX 0000011 | 003 03 3
EOT 0000100 | 004 04 4 SDC
ENQ 0000101 | 005 05 5 PPC
ACK 0000110 | 006 06 6
BEL 0000111 | 007 07 7
BS 0001000 | 010 08 8 GET
HT 0001001 | 011 09 9 TCT
LF 0001010 | 012 0A 10
VT 0001011 | 013 0B 11
FF 0001100 | 014 ocC 12
CR 0001101 | 015 0D 13
SO 0001110 | Ole OE 14
ST 0001111 | 017 OF 15
DLE 0010000 | 020 10 16
DC1 0010001 | 021 11 17 LLO
DC2 0010010 | 022 12 18
562 Appendix E

Table E-1. ASCII 7-bit Codes

ASCII Table

Binary Oct | Hex | Dec GPIB Msg
DC3 0010011 | 023 13 19
DC4 0010100 | 024 14 20 DCL
NAK 0010101 | 025 15 21 PPU
SYN 0010110 | 026 16 22
ETB 0010111 | 027 17 23
CAN 0011000 | 030 18 24 SPE
EM 0011001 | 031 19 25 SPD
SUB 0011010 | 032 1A 26
ESC 0011011 | 033 1B 27
FS 0011100 | 034 1C 28
GS 0011101 | 035 1D 29
RS 0011110 | 036 1E 30
Us 0011111 | 037 1F 31
space | 0100000 | 040 20 32 listen addr O
! 0100001 | 041 21 33 listen addr 1
" 0100010 | 042 22 34 listen addr 2
0100011 | 043 23 35 listen addr 3
$ 0100100 | 044 24 36 listen addr 4
% 0100101 | 045 25 37 listen addr 5
& 0100110 | 046 26 38 listen addr 6
¢ 0100111 | 047 27 39 listen addr 7
(0101000 | 050 28 40 listen addr 8
) 0101001 | 051 29 41 listen addr 9

Appendix E

563

ASCII Table

Table E-1. ASCII 7-bit Codes

Binary Oct | Hex | Dec GPIB Msg
0101010 | 052 2A 42 listen addr 10
0101011 | 053 2B 43 listen addr 11
0101100 | 054 2C 44 listen addr 12
0101101 | 055 2D 45 listen addr 13
0101110 | 056 2F 46 listen addr 14
0101111 | 057 2F 47 listen addr 15
0110000 | 060 30 48 listen addr 16
0110001 | 061 31 49 listen addr 17
0110010 | 062 32 50 listen addr 18
0110011 | 063 33 51 listen addr 19
0110100 | 064 34 52 listen addr 20
0110101 | 065 35 53 listen addr 21
0110110 | 066 36 54 listen addr 22
0110111 | 067 37 55 listen addr 23
0111000 | 070 38 56 listen addr 24
0111001 | 071 39 57 listen addr 25
0111010 | 072 3A 58 listen addr 26
0111011 | 073 3B 59 listen addr 27
0111100 | 074 3C 60 listen addr 28
0111101 | 075 3D 61 listen addr 29
0111110 | 076 3E 62 listen addr 30
0111111 | 077 3F 63 UNL
1000000 | 100 40 64 talk addr O

564

Appendix E

Table E-1. ASCII 7-bit Codes

ASCII Table

Binary Oct | Hex | Dec GPIB Msg
A 1000001 | 101 41 65 talk addr 1
B 1000010 | 102 42 66 talk addr 2
C 1000011 | 103 43 67 talk addr 3
D 1000100 | 104 44 68 talk addr 4
E 1000101 | 105 45 69 talk addr 5
F 1000110 | 106 46 70 talk addr 6
G 1000111 | 107 47 71 talk addr 7
H 1001000 | 110 48 72 talk addr 8
I 1001001 | 111 49 73 talk addr 9
J 1001010 | 112 4A 74 talk addr 10
K 1001011 | 113 4B 75 talk addr 11
L 1001100 | 114 4C 76 talk addr 12
M 1001101 | 115 4D 77 talk addr 13
N 1001110 | 116 4F 78 talk addr 14
0 1001111 | 117 4F 79 talk addr 15
P 1010000 | 120 50 80 talk addr 16
0 1010001 | 121 | 51 81 talk addr 17
R 1010010 | 122 52 82 talk addr 18
S 1010011 | 123 53 83 talk addr 19
T 1010100 | 124 54 84 talk addr 20
U 1010101 | 125 55 85 talk addr 21
v 1010110 | 126 56 86 talk addr 22
W 1010111 | 127 57 87 talk addr 23

Appendix E

565

ASCII Table

Table E-1. ASCII 7-bit Codes

Binary Oct | Hex | Dec GPIB Msg
X 1011000 | 130 58 88 talk addr 24
Y 1011001 | 131 59 89 talk addr 25
VA 1011010 | 132 57 90 talk addr 26
[1011011 | 133 5B 91 talk addr 27
\ 1011100 | 134 5C 92 talk addr 28
] 1011101 | 135 5D 93 talk addr 29
~ 1011110 | 136 5E 94 talk addr 30
_ 1011111 | 137 5F 95 UNT
A 1100000 | 140 60 96 secondary addr 0
a 1100001 | 141 61 97 secondary addr 1
b 1100010 | 142 62 98 secondary addr 2
c 1100011 | 143 63 99 secondary addr 3
d 1100100 | 144 64 100 secondary addr 4
e 1100101 | 145 65 101 secondary addr 5
f 1100110 | 146 66 102 secondary addr 6
g 1100111 | 147 67 103 secondary addr 7
h 1101000 | 150 68 104 secondary addr 8
i 1101001 | 151 69 105 secondary addr 9
j 1101010 | 152 6A 106 secondary addr 10
k 1101011 | 153 6B 107 secondary addr 11
1 1101100 | 154 6C 108 secondary addr 12
m 1101101 | 155 6D 109 secondary addr 13
n 1101110 | 156 6E 110 secondary addr 14

566 Appendix E

ASCII Table

Table E-1. ASCII 7-bit Codes

Binary Oct | Hex | Dec GPIB Msg
o 1101111 | 157 6F 111 secondary addr 15
p 1110000 | 160 70 112 secondary addr 16
q 1110001 | 161 71 113 secondary addr 17
r 1110010 | 162 72 114 secondary addr 18
s 1110011 | 163 73 115 secondary addr 19
t 1110100 | 164 74 116 secondary addr 20
u 1110101 | 165 75 117 secondary addr 21
v 1110110 | 166 76 118 secondary addr 22
W 1110111 | 167 77 119 secondary addr 23
x 1111000 | 170 78 120 secondary addr 24
v 1111001 | 171 79 121 secondary addr 25
z 1111010 | 172 7A 122 secondary addr 26
{ 1111011 | 173 7B 123 secondary addr 27
| 1111100 | 174 7C 124 secondary addr 28
} 1111101 | 175 7D 125 secondary addr 29
~ 1111110 | 176 7E 126 secondary addr 30
[del] | 1111111 | 177 7F 127

Appendix E

567

ASCI| Table

568 Appendix E

VEE for UNIX and VEE for Windows
Differences

VEE for UNIX and VEE for Windows
Differences

In general, programs written in VEE on one platform will work on any other
supported platform. The only difficulties that may arise are when you use
programs that access features specific to the underlying platform, such as
DLLs on PCs or named pipes on UNIX. This appendix contains information
on the differences between VEE on UNIX and PC platforms.

Execute Program. There is an Execute Program object for both the
UNIX and PC platforms. You can determine on which platform you are
executing by using the whichPlatform(), whichOS (), or
whichPlatform () built-in functions (in the Function & Object
Browser). You can then programmatically determine which Execute
Program object to use.

DLL versus Shared Library. Differences when creating DLLs and Shared
Libraries for Compiled Functions are:

B From a Shared Library you do I/O through SICL, VISA, or TERMIO.
For DLLs use SICL or VISA. To avoid systemic resource conflicts, be
sure your source code uses library commands that support the platform
and interface system the compiled function will run on.

B Shared Libraries use X11 graphics while DLLs use Microsoft Windows
GDI calls. Link Shared Libraries against the X Windows Release 6 of the
library. While a compiled function runs in an X Window, VEE cannot
service its human interface.

Data Files. No binary files will work across platforms since byte ordering is
reversed between UNIX and PC platforms. However, ASCII data files
written using To File objects are readable by From File objects on other
platforms. Also, VEE program files are compatible since they are stored in
ASCIIL. When moving ASCII data files from one platform to another, UNIX
files use the linefeed character to terminate lines while MS Windows uses
the carriage return/linefeed sequence to terminate lines.

570 AppendixF

About Callable VEE

Note

About Callable VEE

In some cases you may want to build an application in another language and
still use VEE UserFunctions. Just as Remote Functions allow one VEE to
access UserFunctions of another VEE, Callable VEE allows you to call
UserFunctions from a C program or any language that can access C routines.

Previous versions of VEE provided two ways to execute VEE code from
other development environments: the VEE RPC API and the Callable VEE
ActiveX Control. VEE 6 replaces the Callable VEE ActiveX Control with
the Callable VEE Automation Server that allows you to easily access VEE
code from programming environments like Visual Basic.

For information about the Callable VEE Automation Server, click Help =
Contents and Index. Then open What’s New in Agilent VEE 6.0 and double-
click on Agilent VEE 6.0 New Features. Scroll down to the topic, Callable
VEE ActiveX Automation Server.

This appendix provides information about the VEE RPC API.

VEE must be accessible on the server system to run the UserFunctions. They
cannot be executed on their own. UserFunctions have to be organized into a
library that VEE can load and execute.

572 Appendix G

About Callable VEE
Using the VEE RPC API

Using the VEE RPC API
The tools needed to support the VEE RPC API are provided with VEE:

B A C library, named 1ibvapi.lib (1ibvapi.a on HP-UX) is found in
the 1ib subdirectory of the VEE installation. This library is to be linked
to your C program.

This library supports two Application Program Interfaces (APIs). One
API (VEE RPC) sets up and controls the Remote Procedure Call (RPC)
between the C program and VEE. The prototypes for the functions in this
API are in veeRPC. h and perform the following actions:

U Loading and unloading VEE servers.

U Loading and unloading VEE libraries.

U Listing UserFunctions in VEE libraries.

QO Calling and receiving data from UserFunctions.
O Performing related status and housekeeping.

The second API (VEE DATA) performs conversions between C and VEE
data types. The prototypes for the functions in this API are in
veeData.h.

Note The 1ibvapi.lib library cannot link to programs when using the Borland
compiler.

B The VEE Service Manager, veesm.exe (veesm on HP-UX) is located
with the other VEE executables in the VEE installation directory. It
handles running the target VEE with its UserFunctions and allows a
remote client to bring up VEE as a server.

On HP-UX systems, veesm is automatically run by the inet daemon
process. On a PC, either run veesm. exe or put it into the Windows
Startup Group so it is started when the PC is started.

Appendix G 573

Starting and
Stopping a Server

About Callable VEE
Using the VEE RPC API

There are example programs in the CallableVEE\RPC API directory that
demonstrate using the VEE RPC API. They are named callVEE. c and
callVEE.vee.

About the VEE RPC API

The VEE RPC API handles setting up, maintaining, and closing the
connection between the C client program and the VEE server.

The VEE RPC API's routines use one of three handles in their operation:

VRPC_SERVICE; // Handle to a VEE server.
VRPC LIBRARY; // Handle to a VEE UserFunction library.
VRPC_ FUNCTION; // Handle to a VEE UserFunction.

The API calls are organized as described in the following subsections.

The most essential API functions are the two that start and stop a VEE
server. To load a VEE server use:

VRPC SERVICE vrpcCreateService(char *hostName,
char *display,
char *geometry,

double aTimeoutInSeconds,

unsigned long flags);

This function starts a VEE server on the host given by hostName. The
hostName can be in text form (for example, mycomputer@lvld.hp.com)
or numeric form (15.11.55.105). The function returns a server handle.
You get a NULL (effectively a zero) back if something goes wrong. Thus,
you can then get the precise error information with the
veeGetErrorNumber () and veeGetErrorString () functions, as
outlined in the next section.

The display argument specifies a remote display using a network address
in text (babylon:0.0) or numeric form (15.11.55.101:0.0)ona
networked X Windows system.

The geometry argument specifies VEE window size and placement. For
example 800x500+0+0 puts an 800x500 VEE window in the lower-left
corner of the display.

574 Appendix G

Loading and
Unloading a Library

About Callable VEE
Using the VEE RPC API

The aTimeoutInSeconds argument gives the number of seconds to wait
when starting the service. This value is used for all later calls in the session
unless changed by vrpcSetTimeout ().

The f1ags argument is not normally used. However, you can set it to the
value VEERPC CREATE NEW to start a new copy of VEE on a server instead
of using the one already started.

To stop a VEE server use:
VRPC_SERVICE vrpcDeleteService (VRPC SERVICE aService
)7

The only argument is the server handle obtained when you originally started
the server. You get a NULL pointer back if all is OK, otherwise you get a
non-NULL pointer.

Once you have started the server, you then need to load a library into the
remote copy of VEE. This is done with:

VRPC_LIBRARY vrpcLoadLibrary(VRPC SERVICE aService,
char *LibraryPath);

This function accepts as arguments a server handle and the pathname of a
library of UserFunctions specified by LibraryPath and it returns a library
handle. If it fails, you get a NULL back.

Once loaded, you can specify either normal or debugging execution mode
for the library with:

void vrpcSetExecutionMode (VRPC LIBRARY alLibrary,
unsigned long executionMode) ;

In this function, you specify the handle for the library and an
executionMode flag, which can be set to VRPC DEBUG EXECUTION
(which specifies single-stepping through the UserFunction on the target
system) and then set back to the default VRPC NORMAL EXECUTION.

You can similarly unload the library with:

VRPC LIBRARY vrpcUnLoadLibrary(VRPC LIBRARY alLibrary
)

The only argument is the library handle.

Appendix G 575

Selecting
UserFunctions

About Callable VEE
Using the VEE RPC API

Now that you are connected to the server and have a library loaded, you need
to get a handle to a UserFunction.

You get a function handle with:

VRPC_FUNCTION vrpcFindFunction(VRPC LIBRARY alLibrary,
char *aFunctionName) ;

You specify the library handle and a string giving the UserFunction name as
arguments and get back the function handle or a NULL if something goes
wrong.

To get information on the function, use:

struct VRPC FUNC INFO*
vrpcFunctionInfo(VRPC_ FUNCTION aFunction);

This returns a data structure or a NULL if something goes wrong. The data
structure is of the form:

typedef struct VRPC FUNC INFO

{

char *functionName; // Name of function.

long numArguments; // # of input pins on function.
enum veeType *argumentTypes; // List of argument types.
veeShape *argumentShapes; // List of argument shapes.

long numResults; // # of output pins on function.
enum veeType *resultTypes; // List of output types.
veeShape *resultShapes; // List of output shapes.

bi
If you get a NULL, the memory for this is taken up in your process space, so

if you want to get rid of it you use:

struct VRPC_FUNC INFO*
vrpcFreeFunctionInfo (struct VRPC FUNC INFO *funcinfo);

You can determine what functions are in the library with:

char** vrpcGetFunctionNames (VRPC LIBRARY alibrary,
long *numberOfFunctions);

This accepts a library handle as an argument. It returns a pointer to an array
of null-terminated strings giving the function names directly and the
numberOfFunctions in the library as a argument. You get a NULL pointer
back if an error occurs. The string array exists in your process space.

576 Appendix G

Calling
UserFunctions

Other Functions

About Callable VEE
Using the VEE RPC API

Now you can call the UserFunction.
You call and receive in a single function using:

VDC* vrpcCallAndReceive (VRPC FUNCTION aFunction,
VDC *arguments) ;

This function blocks, waiting for the function to complete or until a timeout
occurs. You specify a function handle and an input array of VEE Data
Containers (VDCs). Handling VDCs is the function of the VEE DATA API
and is covered in “About the VEE DATA API” on page 580.

Or, to call a UserFunction in blocking mode, you can invoke:

long vrpcCall(VRPC FUNCTION aFunction,
VDC *arguments) ;

This function does not "block". It returns immediately, whether it worked or
not. It returns 0 if all is OK and an error code if not.

Since most UserFunctions will return sometime, you will want to get a value
back and for that you use:

VDC* vrpcReceive (VRPC FUNCTION aFunction,
unsigned long waitMode) ;

You specify a function handle and a waitMode flag, which can have one of
three values:

B VRPC NO WAITING The call returns immediately with or without
results.

B VRPC WAIT SLEEPING Wait for data until timeout (server sleeps).
B VRPC WAIT SPINNING Wait for data until timeout (server busy).

If the function fails, a NULL is returned.

This section lists other utility functions in the VEE RPC API:

B This function allows you to change the timeout. You specify a server
handle and the timeout in seconds. You get back a zero if all is OK and an
error code if not.

Appendix G 577

About Callable VEE
Using the VEE RPC API

long vrpcSetTimeout (VRPC_ SERVICE aService,
double aTimeoutInSeconds) ;

B This function allows you to set the default C client behavior for receiving
data:

long vrpcSetBehavior (VRPC SERVICE aService,
unsigned long flags);

You specify a server handle and the flag and get back 0 or an error code.
The flags are as follows:

VRPC_WAIT SLEEPING Wait for data until timeout (client sleeps).
VRPC_WAIT SPINNING Wait for data until timeout (client busy).

You can also OR in a flag, VRPC BUFFER EXPAND, to specify that the C
client will allocate and retain larger buffers in response to increasing
sizes of data returned from the server.

B You can query the revision number of the remote veesm with:
long vrpcGetServerVersion(VRPC SERVICE aService);

You give this a server handle and get back either a revision code or a 0 (if
you have an error).

578 Appendix G

About Callable VEE
Using the VEE RPC API

Error Codes for the The following error codes are returned when a connection to the VEE server

VEE RPC API cannot be made:

Error Code

850: eUnknownHost

851: eNoServiceManager

861: eServiceManagerTO
863: eServiceNotFound

864:
eServiceNotStarted

866: eConnectRefused

868: eFailedSecurity

Meaning

The host name or IP address is
unresolvable.

veesm cannot be found on the server
host.

The service manager timed-out.
Unable to find the VEE service.
Unable to start the VEE service.

The connection to veesm or inetd was
refused.

Failed the security check on UNIX.

The following are fatal errors that occur after connection to a VEE server
(the connection has been terminated):

Error Code
852: eHostDown
853: eConnectTimedOut

855: eConnectBroken

Meaning
The VEE server host is down.
The connection has timed out.

The connection has broken.

Appendix G

579

About Callable VEE
Using the VEE RPC API

The following errors reflect an internal non-fatal state within the service:

Error Code Meaning

865: eSomelInternalError A non-fatal internal error occurred.

869: eVeeServiceError There is an error within the
UserFunction.
870: eWouldBlock Returned for non-blocking RPC.

871: eDebugTermination The user pressed stop during a debug
session.

The following error is returned by a RPC function call:

Error Code Meaning

851: eInvalidArgument There is an invalid argument.

About the VEE DATA API

As shown in the previous section, performing a Call or Receive with a
UserFunction requires handling data in the VEE Data Container (VDC)
format, which is a set of data structures required by VEE for its internal
operation. Communicating with VEE from your C program requires an
ability to translate between VDCs and conventional C data types. The VEE
DATA API provides this ability (and a few others).

580 Appendix G

About Callable VEE
Using the VEE RPC API

Data Types, Shapes The fundamental VDC types are listed in the veeData.h header file as:
and Mappings

enum veeType

{

bi

VEE_TYPE ANY=0, //
VEE NOT DEFINED1, //

The default without constraints.
Leave space.

VEE_LONG, // 32-bit signed integer (no 16-bit INTs in VEE).

VEE_NOT DEFINED2, //

Leave space.

VEE DOUBLE, // IEEE 754 64-bit floating-point number.

VEE COMPLEX, // Complex number: 2 doubles in rectangular form.
VEE PCOMPLEX, // Complex number: 2 doubles in polar form.

VEE STRING, // 8-bit ASCII null-terminated string.

VEE_NIL, //
VEE_NOT DEFINED3, //

VEE_COORD, //
VEE_ENUM, //
VEE RECORD, //
VEE NOT DEFINED4, //
VEE WAVEFORM, //

Empty container returned by function call.
Leave space.

2 or more doubles give XY or XYZ or ... data.
An ordered list of strings.

VEE record-structures data.

Leave space.

A 1D array of VEE DOUBLE with a time mapping.

VEE_SPECTRUM // A 1D array of VEE PCOMPLEX with a time mapping.

For convenience, the veeData.h file defines C data types for translation
with VEE data types:

typedef short intlé6;

typedef long int32;

typedef struct {double
typedef struct {double
typedef struct {double
typedef struct {double
typedef void veeDataCo
typedef veeDataContain

The data types
given by:

rval, ival;} veeComplex;

mag, phase;} veePComplex;
xval, yval;} vee2DCoord;

xval, yval, zval;} vee3DCoord;
ntainer;
er* VDC;

can also have a specified number of dimensions, or numDims,

Appendix G

581

About Callable VEE
Using the VEE RPC API

enum veeShape

{

VEE SHAPE SCALAR, // A single data element.

VEE SHAPE ARRAY1D, // A one-dimensional array.

VEE SHAPE ARRAY2D, // A two-dimensional array.

VEE SHAPE ARRAY3D, // A three-dimensional array.

VEE SHAPE ARRAY, // BAn array with from 4 to 10 dimensions.
VEE SHAPE ANY // Placeholder for undefined shape.

Arrays can be "mapped". Normally they are not, but the VEE_ WAVEFORM and
VEE SPECTRUM data types are mapped types where the array elements
correspond to time intervals. Mappings are given by:

enum veeMapType

{

VEE MAPPING NONE, // No mapping.
VEE MAPPING LINEAR, // Linear mapping.
VEE MAPPING LOG // Log mapping.

}i

Generally, you do not need specify mappings.

Scalar Data To create VDC scalars from C data, use the following functions:

Handlin
g VDC vdcCreatelLongScalar(int32 alLong);

VDC vdcCreateDoubleScalar (double aReal);
VDC vdcCreateStringScalar (char *aString);

VDC vdcCreateComplexScalar (double realPart,
double imaginaryPart);

VDC vdcCreatePComplexScalar (double magnitude,
double phase);

VDC vdcCreate2DCoordScalar (double xval,
double yval);

VDC vdcCreate3DCoordScalar (double xval,
double yval,
double zval);

582 Appendix G

About Callable VEE
Using the VEE RPC API

VDC vdcCreateCoordScalar(intleo aFieldCount,
double *values);

All these functions return a pointer to a VDC, or a NULL if they fail.
There are no scalars of VEE_ WAVEFORM or VEE _SPECTRUM types as
they are always 1D arrays by definition.

You can change the values in the VDCs with another set of routines:

int32 vdcSetLongScalar (VDC aVvD,
int32 along);

int32 wvdcSetDoubleScalar (VDC avD,
double aReal);

int32 vdcSetStringScalar (VDC avVvD,
char *aStr);

int32 vdcSetComplexScalar (VDC aVD,
double realPart,
double imaginaryPart);

int32 vdcSetPComplexScalar (VDC aVvD,
double magnitude,
double phase);

int32 wvdcSet2DCoordScalar (VDC avD,
double xval,
double yval);

int32 vdcSet3DCoordScalar (VDC avD,
double xval,
double yval,
double zval);

int32 vdcSetCoordScalar (VDC avVD,
intl6 aFieldCount,
double* wvalues);

As described above, these functions return either 0 or an error code.

Appendix G 583

int32

int32

char*

int32

int32

int32

int32

About Callable VEE
Using the VEE RPC API

When you have created a scalar VDC or returned one from a function, you
can get the C data type out of it with another set of routines:

vdcGetLongScalarValue (VDC aVvD,
int32 *along);

vdcGetDoubleScalarValue (VDC aVvD,
double *aReal);

vdcGetStringScalarValue (VDC aVD);

vdcGetComplexScalarValue (VDC aVvD,
veeComplex *aComplex);

vdcGetPComplexScalarValue (VDC aVD,
veePComplex *aPComplex);

vdcGet2DCoordScalarValue (VDC aVvD,
vee2DCoord *aCoord);

vdcGet3DCoordScalarValue (VDC aVvD,
vee3DCoord *aCoord);

double* vdcGetCoordScalarValue(VDC aVD,

intl6 *aFieldCount);

In general, these functions take the data out of the first argument, a VDC,
and put it into the second, which is a C variable (with some types as defined
at the beginning of this section). They return 0 if no error and an error code if
there is an error.

The exceptions are the vdcGetStringScalarValue () function, which
returns a string directly from the function (or a NULL string if something
goes wrong) and the vdcGetCoordScalarValue () function, which
returns a pointer to an array of N-dimensional coordinate data (with N
returned as an argument).

Finally, you can interrogate coordinate types for their number of coordinate
dimensions or set the coordinate dimensions to new values if desired:

intl6 vdcNumCoordDims (VDC aVvD) ;
int32 vdcCoordSetNumCoordDims (VDC, intl6);

584 Appendix G

About Callable VEE
Using the VEE RPC API

Array Data Handling These functions create array VDC of VEE types. The values you supply are
copied into the VDC. The caller’s memory is never used. If an error occurs a
null pointer is returned. You create VDC arrays with the following set of
functions:

B This function returns a VDC of type VEE LONG which is allocated to a
size equal to the argument, numPts. The array of data pointed to by the
argument, values, must be of the same specified size. The type of the
argument, int32, is type defined to type long in veeData.h.

VDC vdcCreateLonglDArray(int32 numPts,
int32 *values);

B This function returns a VDC of type VEE_ STRING which is allocated to a
size equal to the argument, numPts. The argument, strings, points to an
array of pointers which in turn point to null terminated strings. The
number of strings in the array must equal the specified size. The type of
the argument, int32, is type defined to type 1ong in veeData. h.

VDC vdcCreateStringlDArray(int32 numPts,
char **strings);

B This function returns a VDC of type VEE DOUBLE which is allocated to a
size equal to the argument, numPts. The argument, values, points to an
array of data. The number of doubles in the array must equal the
specified size. The type of the argument, int32, is type defined to type
longin veeData.h

VDC vdcCreateDoublelDArray(int32 numPts,
double *values);

B This function returns a VDC of type VEE COMPLEX which is preallocated
to a size equal to the argument, numPts. The type of the argument,
int32, is type defined to type long in veeData.h. The argument,
values, points to an array of structures of type veeComplex. This
structure is defined in veeData.h as:

Appendix G 585

About Callable VEE
Using the VEE RPC API

typedef struct {double rval, ival;} veeComplex;

VDC vdcCreateComplexlDArray(int32 numPts,
veeComplex *values);

B This function returns a VDC of type VEE PCOMPLEX which is
preallocated to a size equal to the argument, numPts. The type of the
argument, int32, is type defined to type long in veeData.h. The
argument, values, points to an array of structures of type
veePComplex. This structure is defined in veeData.h as:

typedef struct {double mag, phase;} veePComplex;

VDC vdcCreatePComplexl1DArray(int32 numPts,
veePComplex *values);

B This function returns a VDC of type VEE COORD which is preallocated to
a size equal to the argument, numPts. The type of the argument, int32,
is type defined to type long in veeData.h. The argument, values,
points to an array of structures of type vee2DCoord. This structure is
defined in veeData.h as:

typedef struct {double xval, yval;} vee2DCoord;

VDC vdcCreate2DCoordlDArray(int32 numPts,
vee2DCoord *values);

B This function returns a VDC of type VEE COORD which is preallocated to
a size equal to the argument, numPts. The type of the argument, int32,
is type defined to type long in veeData.h. The argument, values,
points to an array of structures of type vee3DCoord. This structure is
defined in veeData.h as:

typedef struct {double xval, yval, zval;}
vee3DCoord;

VDC vdcCreate3DCoordlDArray(int32 numPts,
vee3DCoord *values);

B This function returns a VDC of type VEE_COORD which is preallocated to
a size equal to the argument, numPts. The argument, aFieldCount, is

586 Appendix G

About Callable VEE
Using the VEE RPC API

the number of fields in the coordinates. The type of the argument, int 32,
is type defined to type long in veeData.h. The argument, values,
points to an array of type double. The length of this array must be equal
to the product of numPts and aFieldCount.

VDC vdcCreateCoordlDArray(int32 numPts,
intl6e aFieldCount,
double *values);

B This function returns a VDC of type VEE WAVEFORM with a number of
samples equal to the argument, numPts. The starting and ending times
for the waveform are the arguments, from and thru. The argument,
mapType, is of type VMT, defined in veeData.h since it declares what
type of mapping is used. See “Data Types, Shapes and Mappings” on
page 581 for more information.

The array of doubles pointed to by the argument, data, must be equal in
size to the argument, numPts. The type of the argument, int32, is type
defined to type long in veeData.h.

VDC vdcCreateWaveform(int32 numPts,
double from,
double thru,
VMT mapType,
double *data);

B This function returns a VDC of type VEE SPECTRUM with a number of
samples equal to the argument, numPts. The starting and ending
frequencies for the spectrum are the arguments, from and thru. The
argument, mapType, is of type VMT, defined in veeData.h since it
declares what type of mapping is used. See “Data Types, Shapes and
Mappings” on page 581 for more information.

The array of type veePComplex pointed to by the argument, data, must
be equal in size to the argument, numPts. Type. veePComplex is a

structure defined in veeData.h:

typedef struct {double mag, phase;} veePComplex.

Appendix G 587

About Callable VEE
Using the VEE RPC API

The array of structures is copied. The type of the argument, int32, is
type defined to type long in veeData.h.

VDC vdcCreateSpectrum(int32 numPts,
double from,
double thru,
VMT mapType,
veePComplex *data);

In the functions listed above, you specify an array size, any additional data
needed to represent the array (such as mapping data for VEE WAVEFORM and
VEE_SPECTRUM types) and the array data and get back a VDC (or a NULL if
something goes wrong).

You can convert back from VDCs to C arrays with:

B This function returns a pointer to an array of type int32. The argument,
aVvD, must be of type, VEE LONG and be an array. The value returned in
the pass-by-reference argument, numPts, is the length of the array.

int32* vdcGetLonglDArray(VDC aVD,
int32 *numPts);

B This function returns a pointer to an array of type double. The
argument, avD, must be of type, VEE DOUBLE. The value returned in the
pass-by-reference argument, numPts, is the length of the array.

double* vdcGetDoublelDArray(VDC aVD,
int32 *numPts);

B This function returns a pointer to an array of pointers each pointing to a
null terminated string. The argument, avD, must be of type VEE STRING.
The value returned in the pass-by-reference argument, numPts, is the
number of strings.

char** vdcGetStringlDArray(VDC aVvD,
int32 *numPts);

B This function returns a pointer to an array of structures of type,
veeComplex. This structure is defined in veeData.h as:

typedef struct {double rval, ival;} veeComplex;

588 Appendix G

About Callable VEE
Using the VEE RPC API

The argument, avD, must be of type VEE COMPLEX. The value returned
in the pass-by-reference argument, numPts, is the length of the array.

veeComplex* vdcGetComplexlDArray(VDC aVD,
int32 *numPts);

B This function returns a pointer to an array of structures of type,
veePComplex. This structure is defined in veeData.h as:

typedef struct {double mag, phase;} veePComplex;

The argument, avD, must be of type VEE PCOMPLEX. The value returned
in the pass-by-reference argument, numPts, is the length of the array.

veePComplex* vdcGetPComplexlDArray(VDC aVvD,
int32 *numPts);

B This function returns a pointer to an array of structures of type,
vee2DCoord. This structure is defined in veeData.h as:

typedef struct {double xval, yval;} vee2DCoord;

The argument, avD, must be of type VEE COORD. The value returned in
the pass-by-reference argument, numPt s, is the length of the array.

vee2DCoord* vdcGet2DCoordlDArray(VDC avVvD,
int32 *numPts);

B This function returns a pointer to an array of structures of type,
vee3DCoord. This structure is defined in veeData.h as:

typedef struct {double xval, yval, zval;}
vee3DCoord;

The argument, avD, must be of type VEE_COORD. The value returned in
the pass-by-reference argument, numPt s, is the length of the array.

vee3DCoord* vdcGet3DCoordlDArray(VDC aVD,
int32 *numPts);

B This function returns a pointer to an array of type double. The
argument, avD, must be of type VEE COORD. The value returned in the

Appendix G 589

About Callable VEE
Using the VEE RPC API

pass-by-reference argument, numPts, is the number of coordinate tuples
in the array. The value returned in the pass-by-reference argument,
aFieldCount, is the number of fields in each coordinate tuple. The
length of the returned array is the product of numPts and aFieldCount.

double* vdcGetCoordlDArray(VDC aVvD,
int32 *numPts,
intl6 *aFieldCount);

B This function returns a pointer to an array of type double. The
argument, avD, must be of type VEE_WAVEFORM. The pass-by-reference
arguments numPts, from, thru and mapType return, respectively, the
length of the array, the start time, the end time and the type of mapping.

double* vdcGetWaveform(VDC aVD,
int32 *numPts,
double *from,
double *thru,
VMT *mapType)

B This function returns a pointer to an array of structures of type
veePComplex. This structure is defined in veeData.h as:

typedef struct {double mag, phase;} veePComplex;

The argument, avD, must be of type VEE WAVEFORM. The pass-by-
reference arguments numPts, from, thru and mapType return,
respectively, the length of the array of structures, the starting frequency,
the ending frequency, and the type of mapping.

veePComplex* vdcGetSpectrum(VDC aVvD,
int32 *numPts,
double *from,
double *thru,
VMT *mapType)

These functions take a VDC, return a pointer to the array of data directly and
return the size of the array (or any other relevant information) as arguments.

Once the arrays are created, you can also check, interrogate, or manipulate
the arrays with the following functions:

590 Appendix G

Enum Types

About Callable VEE
Using the VEE RPC API

int32 vdcSetNumDims (VDC, intlé6);
intl6 vdcGetNumDims (VDC) ;

int32 vdcSetDimSizes (VDC, int32*);
int32 *vdcGetDimSizes (VDC);

int32 vdcCurNumElements (VDC) ;

VEE enumerated types, as noted, are ordered lists of strings and are handled
by the following routines:

B This function creates an empty VEE ENUM structure with the given
number of string-ordinal pairs. It returns a NULL VDC on error.

VDC vdcCreateEnumScalar (intl6 numberOfPairs);

B This function places an enumerated pair in the defined VEE ENUM
structure, returns the updated structure and returns 0 or an error code.

int32 vdcEnumAddEnumPair (VDC aVD,
char* aString,

int32 aValue);

B This function deletes an enumerated pair as given by the ordinal value
argument. It returns O or an error code.

int32 vdcEnumDeleteEnumPairWithOrdinal (VDC avVD,
int32 anOrd);

B This function sets an ordinal value for use by other vdcEnum routines. It
returns 0 or an error code.

int32 vdcSetEnumScalar (VDC aVD,
int32 anOrdinal);

B This function places a string in the VEE_ENUM structure with the
ordinal value assigned by vdcSetEnumScalar ().

int32 vdcEnumDeleteEnumPairWithStr (VDC avD,

Appendix G 591

About Callable VEE
Using the VEE RPC API

char* aString);

B This function returns the current ordinal number selection assigned by
vdcSetEnumScalar ().

int32 vdcGetEnumOrdinal (VDC aVD) ;

B This function returns the string associated with the current ordinal
number, or a NULL string if something goes wrong.

char* vdcGetEnumString(VDC aVD);

592 Appendix G

About Callable VEE
Using the VEE RPC API

Mapping Functions The VEE DATA API allows you to manipulate the mappings of arrays with
the following functions:

int32 vdcAtDimPutLowerLimit (VDC aVD,
intl6 aDim,
double aValue);
// Specify mapping for lower limit.

int32 vdcAtDimPutUpperLimit (VDC aVD,
intl6 aDim,
double aValue);
// Specify mapping for upper limit.

int32 vdcAtDimPutRange (VDC aVD,
intl6 aDim,
double lowerLimit,
double upperLimit);
// Combines "vdcAtDimPutLowerLimit" &
"vdcAtDimPutUpperLimit".

int32 vdcAtDimPutMapping(VDC aVD,
intl6 aDim,
VMT aMapping) ;
// Set the mapping between limits as defined above.
int32 vdcMakeMappingsSame (VDC VDI,
VvDC VD2);

// Map two containers in the same way.

int32 vdcUnMap(VDC aVD);
// Delete mapping information from container.

Other Functions Other VEE DATA API functions include:
B Get the type of VDC. Return VEE_NOTDEFINEDI1 on error.

enum veeType vdcType(VDC aVD);
B Make a copy of a VDC. Return NULL on error.

VDC vdcCopy (VDC oldvD) ;

Appendix G 593

About Callable VEE
Using the VEE RPC API

B Destroy a container and release its memory. Return NULL on error.
VDC vdcFree(VDC aVvD);
B Get error number/message of last error.

intl6 veeGetErrorNumber (void);
char *veeGetErrorString(void);

B Reset error number to zero.

void veeClearErrorNumber (void)

This function should be called to reset the error number to 0 before calling a
C to VEE function where the error code can be set as a side effect and where
you need to retrieve that error code with veeGetErrorNumber (). Calling
veeClearErrorNumber () first ensures that the call to
veeGetErrorNumber () returns an error code set only by functions
executed between the calls to veeClearErrorNumber () and
veeGetErrorNumber ().

594 Appendix G

Index

Symbols

#A block headers, 95, 495
#B notation

with READ INTEGER, 501
#H notation

with READ INTEGER, 501
#I block headers, 95, 495
#Q notation

with READ INTEGER, 501
#T block headers, 95, 495

$XENVIRONMENT, 7
*IDN?, 254
.DLL, 47
{p (HP-UX), 48
.FP (Windows), 47
.h (UNIX), 48
.H (Windows), 47
.hlp (UNIX), 48
HLP (Windows), 47
sl, 48
.veeio file
detailed explanation, 189

Numerics

0x notation
with READ INTEGER, 501

A

A16 Space tab, 104—107
A24/A32 Space tab, 108—111
ABORT
for EXECUTE, 534
accessing
examples, 14
library objects, 15
records, 360
variable values, 354
accessing older drivers, 252
ActiveX
adding control to program, 430
automation, 404, 425
automation and controls, 402
automation properties and methods,
410
automation type libraries, 404
browser, 413
control properties dialog, 430
control selection, 428
control variables, 432
controls, 402, 428
creating automation object, 407
data type compatibility, 416
declaring variables, 406, 432
default properties, 411

deleting automation objects, 425
enumerations, 412
event handling, 425, 431
examples, 403
getting existing automation object,
409
manipulating automation objects, 410
manipulating controls, 433
online help, 431
type library selection, 404
using controls, 432
ActiveX automation, 403
Add Location (VXI only)
in Direct I/O Configuration, 109
Add Register (VXI only)
in Direct I/O Configuration, 105
Add Trans, 116
adding
Component Driver, 72
instrument configuration, 67
Panel Driver, 72
address space, excluding, 219
addresses
configuring GPIB, 86
configuring GPIO, 86
configuring serial, 86
configuring VXI, 86
GPIB example, 88
GPIO example, 88
instrument, 254
of drivers, 98
programming, 192
serial example, 88
VXI example, 88
when changing, 247
addressing
GPIO, 215
1/0, 215-221
serial, 215
VXI, 217, 219
Advanced GPIB, 204
Advanced /0, 251
Advanced Instrument Properties, 69
A16 Space, 104—107
A24/A32 Space, 108—111

596 Index

Direct I/O, 91—96
General, 89—90
GPIO, 103
Panel Driver, 99—101
Plug&play Driver, 97—99
Serial, 102
Advanced Instrument Properties Dialog
Box
General Tab, 89
Advanced VXI, 204
AlnSingle method, 84
ALL CLEAR
in WAIT REGISTER or MEMORY
transactions, 544
in WAIT SPOLL transactions, 544
Allocate Array, 249
ANY SET
in WAIT REGISTER or MEMORY
transactions, 544
in WAIT SPOLL transactions, 544
API
VEE DATA, 580
app-defaults for VEE, 7
ARRAY
reading arrays, 121
reading scalars, 121
read-to-end, 121
array data
auto-allocation, 244
Array Format
in Direct I/O Configuration, 93
in transaction objects, 133
Array Separator
in Direct I/O Configuration, 93
in transaction objects, 132
array size, 249
arrays, 307, 314
reading with transactions, 121
sharing with Rocky Mountain Basic,
165
using commas, 29, 30
ASCII table, 562
assignment operator, 319
asynchronous objects, 23
attributes

changing, 7

location of file, 7
Auto Discovery, 59
Auto Execute, 22
auto-allocate feature, 244
automation (see ActiveX)
Autoscale, 559

B

backward compatibility, 236, 252
BINARY encoding
for READ, 526
for WRITE, 492
Binblock
in Direct I/O Configuration, 95
BINBLOCK Encoding
for READ, 528
BINBLOCK encoding
for WRITE, 494
binding
shared library, 388
bitmaps
customizing, 6
panel view, 6
selecting, 6
Block Array Format, 93, 133
block data formats, 494
block headers, 95, 494
blocking reads
IOSTATUS (READ), 532
bounds checking, 25
building records, 364
Bus I/O Monitor, 208, 251
Byte Access (VXI only)
in Direct I/O Configuration, 104, 108
BYTE encoding
for WRITE, 490
BYTE format
for READ BINARY, 526
for READ BINBLOCK, 528
for READ MEMORY, 531
for READ REGISTER, 530
for WRITE BINARY, 492
for WRITE BINBLOCK, 494
for WRITE MEMORY, 498

Index 597

for WRITE REGISTER, 497

C

C calls VEE, 572
C data types, 580
C programs, 154
communicating with, 149, 166
C Types allowed in DLL, 390
Call, 25, 253
time-slicing, 371
Callable VEE, 572—594
Callable VEE Automation Server, 572
callbacks, 251
calling
DLL Functions, 392
precedence, 22
UserFunctions, 372
CASE encoding
for WRITE, 491
changing
geometry, 7
X11 attributes, 7
CHAR format
for READ TEXT, 501, 508
checking
caution, 248
errors, 247
CLEAR
effect on write pointers, 140
CLEAR (Files)
for EXECUTE, 534
Clear File at PreRun & Open, 140
Client
DDE, 169
CLOSE
effect on files, 140
for EXECUTE, 534
CLOSE READ PIPE
for EXECUTE, 534
CLOSE WRITE PIPE
for EXECUTE, 534
close(), 239, 247, 255
closing drivers, 246
closing files, 140
Collector, 23

color maps
dealing with different, 8—11
colors
line, 21, 306, 558
colors flashing
correcting, 8—11
COMMAND
in SEND transactions, 185, 546
common problems, 550
Compiled Function, 378—393
DLL, 389
MS Windows, 389
Compiled Function, 378
Compiled Functions
precedence of, 22
Compiled mode, 17
compiler
object changes, 28
COMPLEX format
for READ BINARY, 526
for READ BINBLOCK, 528
for READ TEXT, 501, 525
for WRITE BINARY, 492
for WRITE BINBLOCK, 494
for WRITE TEXT, 464, 485
component, 225
Component Driver
adding, 72
Component Drivers
configuring, 70—74
detailed explanation, 225
example program, 233
how Component Drivers work, 227,
228
overview, 50
used in a simple program, 51
using in programs, 232
using multiple driver objects, 229
components
examples, 225
configuration
instrument details, 85—111
instruments, 56—57
programmatic, 192
configuring

598 Index

Component Drivers, 70—74
Direct I/O, 76—78
GPIB cards, 219
Panel Drivers, 70—74
transaction objects, 130
VXIplug&play driver, 79—82
configuring an interface, 111
configuring VEE, 5
Conformance
effects on learn strings, 496
effects on WRITE STATE, 496
in Direct I/O configuration, 95, 178,
179
Connect/Bind Port
in To/From Socket, 158
Constant, 242
constraining inputs, 559
container
record, 359
CONTAINER encoding
for READ, 529
for WRITE, 496
containers, 304
Contexts, 270
control pin
data propagation, 290
control pins, 264
Controls, 240
controls (see ActiveX)
converting
between UserObjects and
UserFunctions, 371
data types, 580
programs, 29
COORD format
for READ BINARY, 526
for READ BINBLOCK, 528
for READ TEXT, 501, 525
for WRITE BINARY, 492
for WRITE BINBLOCK, 494
for WRITE TEXT, 464, 485
Copy Trans, 116
correcting changing screen colors, 8—11
coupling, 229
Create Terminal, 243

CreateObject, 407
creating

bitmaps, 6

UserFunction library, 375
critical section

protecting, 198
CTL

for WRITE IOCONTROL, 499
CTLO line

on GPIO interfaces, 499
CTLI1 line

on GPIO interfaces, 499
cursor keys

for editing transactions, 117
customizing bitmaps, 6
Cut Trans, 116

D

DATA
in SEND transactions, 185, 546
data, 314
in transactions, 118
data containers, 301, 304, 580
data field
in transactions, 118
data flow. See propagation
Data Format dialog box, 130
Data Format tab, 131
data pins, 264
data shapes, 307
records, 364
data type
conversion, 35
data types, 304, 312
conversion for instrument I/0, 556
converting, 580
in ActiveX, 416
mapped, 582
record, 358
Data Width
in Direct I/O Configuration, 103
DataSet, 358, 367
logging to, 447
DCL (Device Clear), 185, 546
DDE, 169

Index 599

Client, 169

Server, 169
dealing with color maps, 8—11
Declare Variable

used in libraries, 375
Declare Variables, 559
declared variables, 350
default attributes

location of file, 7
DEFAULT format

for WRITE TEXT, 464, 466
DEFAULT NUM CHARS

effects on READ TEXT, 505
Definite Length Arbitrary Block

Response Data, 494

Definition File for DLL, 390
DEG phase units, 487
delay, 246
Delete Library, 255
Delete Location (VXI only)

in Direct I/O Configuration, 111
Delete Register (VXI only)

in Direct I/O Configuration, 106
Delete Variable

All, 355

By Name, 355
Delete Variables at PreRun, 352, 355
Deleting DLL Libraries, 393
delimiter

in READ TEXT TOKEN

transactions, 510

DeMultiplexer, 291
Description

in Instrument Properties, 90
Device Clear (DCL), 185, 546
Device Event, 204, 205, 251

serial poll, 204

service requests, 205
dialog box

Instrument Configuration, 85—88

Instrument Properties, 85—88
Differences in VEE platform

implementations, 570

Direct I/O

configuring, 76—78

EXECUTE transactions (GPIB), 539
EXECUTE transactions (VXI), 541
general usage, 176—181
overview of controlling instrument, 44
tab, 91-96
Direct I/0 Configuration
Add Location (VXI only), 109
Add Register (VXI only), 105
Array Format, 93
Array Separator, 93
Binblock, 95
Byte Access (VX1 only), 104, 108
Conformance, 95
Data Width, 103
Delete Location (VXI only), 111
Delete Register (VXI only), 106
Download String, 96
END On EOL, 94
EOL Sequence, 92
LongWord Access (VXI only), 105,
109
Multi-field As, 92
Read Terminator, 91
State, 96
Upload String, 96
Word Access (VXI only), 104, 109
Disable Debug Features, 560
Display Server, 396
Distributed Component Object Model
(DCOM), 408
DLL, 570
.DEF file, 390
C declarations, 390
C Types allowed, 390
Calling Functions, 392
Configuring Calling Functions, 392
creating, 389, 390
Definition File, 390
deleting libraries, 393
functions in formulas, 393
importing libraries, 392
parameters, 391
Download
general usage, 178, 179
Download String

600 Index

in Direct I/O Configuration, 96
downloading
to instruments, 210
driver files, 225
reusing, 230
drivers
accessing older, 252
function panel, 47, 48
header, 47, 48
help, 48
help on, 47, 234, 245
initializing and closing, 246
I-SCPI, 52
library, 47, 48
setting address, 98
dyadic operators, 324
Dynamic Data Exchange, 169
Dynamic Data Exchange (DDE), 403

E

editing
instrument configuration, 73
interface configuration, 75
transactions, 116
UserFunction libraries, 377

encodings
BINARY (WRITE), 492
BINBLOCK (WRITE), 494
BYTE (WRITE), 490
CASE (WRITE), 491
CONTAINER (READ), 529
CONTAINER (WRITE), 496
for READ transactions, 500
for WRITE transactions, 462
IOCONTROL (WRITE), 499
IOSTATUS (READ), 532
MEMORY (READ), 531
MEMORY (WRITE), 498
REGISTER (READ), 530
REGISTER (WRITE), 497
STATE (WRITE), 496
TEXT (WRITE), 464

END, 94

End of Line (EOL)
in transaction objects, 132

END On EOL
in Direct I/O Configuration, 94
EOF, 25
EOI, 94
EOL
in transaction objects, 132
EOL Sequence
in Direct I/O Configuration, 92
EQUAL
in WAIT REGISTER or MEMORY
transaction, 544
errhndl.bmp, 286
error 935, 24
error 937, 23
error 938, 27
error checking, 247
error checking in instrument driver
configuration, 100
error field, 241
error pin, 265
errors
parse, 554
remote function, 400
escape characters
listed, 92, 120
example programs
accessing, 14
communicating with Rocky
Mouintain Basic, 164
communicating with Rocky Mountain
Basic, 165
directories, 14
importing a waveform file, 146, 148
reading XY data from a file, 143
running C programs, 154
running shell commands, 152
using EOF to read files, 143
examples, 14
impact of I/O configuration, 190
using instrument learn strings, 180
VXIplugé&play, 48
EXCLUDE CHARS
for READ TEXT TOKEN, 510, 513
excluding address space, 219
EXECUTE, 534—543

Index 601

file pointers, 139
EXECUTE LOCK, 199
Execute Program, 166

general usage, 149

running C programs, 154

Wait for Prog Exit, 151
Execute Program (PC), 570

general usage, 166

Prog With Params, 168

Run Style, 167

Wait for Prog Exit, 167

Working Directory, 168
Execute Program (UNIX), 570

Prog With Params, 151

read-to-end, 153

running shell commands, 152

Shell, 150
EXECUTE transactions

ABORT, 534

ABORT (GPIB), 539

CLEAR (Files), 534

CLEAR (GPIB), 534, 539

CLEAR (VXI), 542

CLOSE, 534

CLOSE READ PIPE, 534

CLOSE WRITE PIPE, 534

LOCAL, 534

LOCAL (GPIB), 540

LOCAL (VXI), 542

LOCAL LOCKOUT, 534

LOCAL LOCKOUT (GPIB), 541

REMOTE, 534

REMOTE (GPIB), 540

REMOTE (VXI), 543

REWIND, 534

TRIGGER, 534

TRIGGER (GPIB), 540

TRIGGER (VXI), 542
execution

increasing speed of, 558
execution flow. See propagation
Execution Mode

Disable Debug Features, 560
Execution Modes, 17

compiler, 19

setting, 17
switching, 19
execution order, 25
Exit, 247
expression list
in transactions, 119
expressions, 314
calling UserFunctions, 372
changes for VEE 5 mode, 30

F

feedback, 24
fields
compiler mode, 28
editing records, 365
files
.veeio, 400
.veerc, 400
closing, 140
driver files, 225
From File, 139
From StdIn, 139
importing data, 143
installed, 47
pointers, 139
reading, 143
reading and writing with transactions,
139
To File, 139
To StdErr, 139
To StdOut, 139
using different attributes, 7
FIXED notation
for WRITE TEXT REAL, 483
flashing colors
correcting, 8—11
for EXECUTE, 534
For Log Range
not operating, 553
For Range
in compile mode, 25
not operating, 553
formats
BYTE (READ BINARY), 526
BYTE (READ BINBLOCK), 528

602 Index

BYTE (READ MEMORY), 531
BYTE (READ REGISTER), 530
BYTE (WRITE BINARY), 492
BYTE (WRITE BINBLOCK), 494
BYTE (WRITE MEMORY), 498
BYTE (WRITE REGISTER), 497
CHAR (READ TEXT), 501, 508
COMPLEX (READ BINARY), 526
COMPLEX (READ BINBLOCK),
528
COMPLEX (READ TEXT), 501, 525
COMPLEX (WRITE BINARY), 492
COMPLEX (WRITE BINBLOCK),
494
COMPLEX (WRITE TEXT), 464,
485
COORD (READ BINARY), 526
COORD (READ BINBLOCK), 528
COORD (READ TEXT), 501, 525
COORD (WRITE BINARY), 492
COORD (WRITE BINBLOCK), 494
COORD (WRITE TEXT), 464, 485
DEFAULT (WRITE TEXT), 464, 466
for READ MEMORY, 531
for READ REGISTER, 530
for READ TEXT transactions, 501
for WRITE MEMORY, 498
for WRITE REGISTER, 497
for WRITE TEXT, 464
for WRITE transactions, 462
HEX (READ TEXT), 501, 520
HEX (WRITE TEXT), 464, 480
INT16 (READ BINARY), 526
INT16 (READ BINBLOCK), 528
INT16 (WRITE BINARY), 492
INT16 (WRITE BINBLOCK), 494
INT32 (READ BINARY), 526
INT32 (READ BINBLOCK), 528
INT32 (WRITE BINARY), 492
INT32 (WRITE BINBLOCK), 494
INTEGER (READ TEXT), 501, 517
INTEGER (WRITE TEXT), 464, 475
OCTAL (READ TEXT), 501, 519
OCTAL (WRITE TEXT), 464, 478
PCOMPLEX (READ BINARY), 526

PCOMPLEX (READ BINBLOCK),
528
PCOMPLEX (READ TEXT), 501,
525
PCOMPLEX (WRITE BINARY), 492
PCOMPLEX (WRITE BINBLOCK),
494
PCOMPLEX (WRITE TEXT), 464,
485
QUOTED STRING (READ TEXT),
501, 516
QUOTED STRING (WRITE TEXT),
464, 470
REAL (READ TEXT), 501, 521
REAL (WRITE TEXT, 482
REAL (WRITE TEXT), 464
REAL32 (READ BINARY), 526
REAL32 (READ BINBLOCK), 528
REAL32 (READ MEMORY), 531
REAL32 (READ REGISTER), 530
REAL32 (WRITE BINARY), 492
REAL32 (WRITE BINBLOCK), 494
REAL32 (WRITE MEMORY), 498
REAL32 (WRITE REGISTER), 497
REAL64 (READ BINARY), 526
REAL64 (READ BINBLOCK), 528
REALG64 (WRITE BINARY, 492
REALG64 (WRITE BINBLOCK), 494
STRING (READ BINARY), 526
STRING (READ TEXT), 501, 514
STRING (WRITE BINARY, 492
STRING (WRITE TEXT), 464, 467
TIME STAMP (READ TEXT, 501
TIME STAMP (WRITE TEXT), 464,
488
TOKEN (READ TEXT), 501, 510
WORD16 (READ MEMORY), 531
WORDI16 (READ REGISTER), 530
WORD16 (WRITE MEMORY), 498
WORDI16 (WRITE REGISTER), 497
WORD32 (READ MEMORY), 531
WORD32 (READ REGISTER), 530
WORD32 (WRITE MEMORY), 498
WORD32 (WRITE REGISTER), 497

Formula, 249

Index 603

calling UserFunctions, 372

DLL Functions, 393
frameworks supported, 46
From File, 25

general usage, 139
From StdIn

general usage, 139

non-blocking reads, 139
From String

general usage, 138
Function & Object Browser

used for ActiveX, 413
function panels

help on, 241

required files, 47

UNIX files, 48

Windows files, 47
functions, 314

called from C, 572

handling scalar data, 582

merging, 377

precedence, 22

see also Compiled Functions, Remote

Functions, UserFunctions

selecting, 238

user, 371

user-defined, 370—400

using, 237

G

Gateway

in Instrument Configuration, 88
gateway for LAN, 193
General Protection Fault, 248
General tab, 89—90
geometry

changing, 7
Geometry, on Import Library, 396
GET (Group Execute Trigger), 185, 546
Get Field

accessing records, 360
Get Global, 258
Get Variable, 352
GetObject, 409
getting help

on function panel, 241
To/From VXIplug&play, 243
global namespace, 31
global variables, 316, 559
deleting, 355
scoping, 350
undeclared, 349
using, 348
Go To Local (GTL), 185, 546
GPIB
advanced features, 204
configuring, 219
Direct 1/0, 539
Interface Operations, 539
logical unit, 216, 217
low-level control, 184, 209, 539
serial poll, 204
service requests, 205
GPIB Bus Operations
detailed reference, 546
GPIB Msg, 562
GPIO
addressing, 215
Data Width, 103
tab, 103
GPIO interfaces
READ transactions, 532
WRITE transactions, 499
GRAD phase units, 487
grayed
features, 553—554
fields in compiler mode, 28
fields in iterators, 25
Group Execute Trigger (GET), 185, 546
Group name, 242
GTL (Go To Local), 185, 546

H

handle, 254

handling scalar data, 582

header file, 47, 48

help, 47, 48, 243
on function panel, 241
on HP Instrument Drivers, 234
on VXlIplug&play drivers, 245

604 Index

help file, 47
HEX format
for READ TEXT, 501, 520
for WRITE TEXT, 464, 480
Host Name
in To/From Socket, 159
HP 3325B
example Panel Drivers, 50
HP 3852A
downloading example, 210
HP Instrument Drivers
help on, 234
HP-GL
plotter support, 11
HP-1B
related documents, 38
standards, 38
HP-UX
location of files, 48

I

1/0
addressing, 215—221
Bus I/O Monitor, 208
configuration file, 189
programmatic configuration, 192
sub address, 218
supported interfaces, 16
icons
creating bitmaps for, 6
ID filename in instrument driver
configuration, 100
ID Query, 254
IEEE 488.1
bibliography, 38
IEEE 488.2
bibliography, 38
IEEE 728
bibliography, 38
block header formats, 95
block headers, 495
Ignore Cautions Returned, 248
Implementation Differences, 570
Import Library, 253, 376
Imported UserFunctions

precedence of, 22
importing data, 143
Importing DLL Libraries, 392
INCLUDE CHARS
for READ TEXT TOKEN, 510, 511
INCR
for READ MEMORY, 531
for READ REGISTER, 530
for WRITE MEMORY, 498
for WRITE REGISTER, 497
Incremental Mode
effects on Panel Drivers, 228
incremental mode
in instrument driver configuration,
100
Init Rocky Mountain Basic
general usage, 149, 162
init(), 239, 246, 247, 254
initializing drivers, 246
Insert Trans, 116
installed files, 47
instrID, 255
Instrument BASIC, 210
Instrument Configuration
Address field, 86
dialog box, 85—88
Gateway field, 88
Interface field, 86
Name field, 86
instrument configuration
adding, 67
editing, 73
instrument driver configuration
error checking, 100
ID filename, 100
incremental mode, 100
sub address, 100
instrument drivers
function panel, 47, 48
header, 47, 48
help, 48
help files, 47
library, 47, 48
instrument I/O, 312
instrument I/O logical units, 212

Index 605

Instrument Manager
an overview, 58
Auto Discovery buttons, 59
renaming an instrument, 65
using, 58—111
Instrument Properties
Description field, 90
dialog box, 85—88
Live Mode field, 90
Timeout field, 89
instrument state, 227
instruments
addresses, 254
Bus I/O Monitor, 208
Component Driver example, 233
configuration, 56—57
configuration details, 85—111
configuring, 229
details about Panel Drivers and
Component Drivers, 225
downloading, 210
driver files, 225
driver-based objects, 49
finding, 246
help, 234, 245
interrupts, 205
overview of Component Drivers, 50
overview of Direct I/O, 44
overview of Multilnstrument Direct I/
0, 44
overview of Panel Drivers, 49
serial poll, 204
service requests, 205
state records, 227
states, 227
troubleshooting, 550
using Component Drivers in
programs, 232
using Direct I/O, 176—181
using multiple driver objects, 229, 230
using Panel Drivers in programs, 231
using Panel Drivers interactively, 231
INT16 format
for READ BINARY, 526
for READ BINBLOCK, 528

for WRITE BINARY, 492
for WRITE BINBLOCK, 494
INT32 format
for READ BINARY, 526
for READ BINBLOCK, 528
for WRITE BINARY, 492
for WRITE BINBLOCK, 494
INTEGER format
for READ TEXT, 501, 517
for WRITE TEXT, 464, 475
Interface
in Instrument Configuration, 86
interface configuration
editing, 75
Interface Event, 205
service requests, 205
Interface Operations, 184—185, 209, 251
EXECUTE transactions (VXI), 539,
541
interface properties, 111
Interface Properties dialog box, 111
interface,user (see panel view)
interfaces
supported, 16
internal functions
precedence of, 22
Interpreted SCPI (I-SCPI), 52
interprocess communication
To/From Named Pipe, 155
To/From Socket, 157
interrupts, 205
intersecting loops, 27
Junction, 28
INTERVAL
for WAIT, 543
IOCONTROL encoding
for WRITE, 499
IOSTATUS encoding
for READ, 532
I-SCPIL, 52
I-SCPI drivers, 91
Iso, 11
iteration, 25
iterations, 25
iterators

606 Index

intersecting, 27
intersecting with Junction, 28

J

Junction, 24
intersecting loops, 28
parallel, 26

K

Katakana, 11
keyboards
non-USASCII, 11
keys
for editing transactions, 117

L

LAN gateway, 193
Learn Strings, 44
learn strings
with Direct 1/0O, 178, 179
libraries
editing imported, 377
general use of, 374
importing, 377
merging, 377
user-defined, 370—400
UserFunction, 375
using variables in, 355, 375
library file, 47, 48
library objects, 15
accessing, 15
limitations, 251
line colors, 21, 306, 558
Linear Array Format, 93, 133
LISTEN
in SEND transactions, 185, 546
LIVE MODE, 251
Live Mode
in Instrument Properties, 90
in Multilnstrument Direct I/0O, 184
LLO (Local Lockout), 185, 546
LOCAL
for EXECUTE, 534
LOCAL LOCKOUT

for EXECUTE, 534

Local Lockout (LLO), 185, 546
local scoping, 350
local UserFunctions

precedence of, 22

local variables

using, 348

location of HP-UX files, 48
location of Windows files, 47

logging

to a DataSet, 447

logging test results, 444

restrictions, 438

logical unit

GPIB, 216, 217

logical units

recommended, 212

LongWord Access (VXI only)

in Direct I/O Configuration, 105, 109

loop bounds, 25
loops, 25

intersecting, 27
intersecting with Junction, 28

M

Make UserFunction, 371
Make UserObject, 371
mapping arrays, 582
math processing, 314
MAX NUM CHARS

effects on READ TEXT, 505

MEMORY

for WAIT, 543

memory

auto-allocation, 244

MEMORY encoding

for READ, 531
for WRITE, 498

menu features

grayed, 553—554

Merge Library, 377
merging

xrdb, 7

MultiDevice Direct I/0

Object Menu, 184

Index 607

Multi-field As operation, 261—263

in Direct I/O Configuration, 92 pins, 263—266
multi-field data types, 92 pre-defined, 554
Multi-Field Format OCTAL format
in transaction objects, 132 for READ TEXT, 501, 519
Multilnstrument Direct I/O for WRITE TEXT, 464, 478
general usage, 181184 ODAS, 56, 57, 83
Live Mode, 184 OK, 23, 25
overview of controlling instrument, 44 OLE automation (see ActiveX)
MY LISTEN ADDR Open, 247
in SEND transactions, 185, 546 Open Data Acquisition Standard, 83
MY TALK ADDR Open Example, 14
in SEND transactions, 185, 546 open view changes
with the compiler, 28
N operators, 324
Name, 243
effects on instrument objects, 229, 230 P
in Instrument Configuration, 86 Panel Driver, 225
namespace, 31 adding, 72
naming variables, 350 tab, 99—101
New, 247 Panel Drivers
new data types - Int16, 35 adding terminals, 232
new data types - Real32, 35 configuring, 70—74
new data types - Ulnt8, 35 detailed explanation, 225
Non-blocking reads, 126 how Panel Drivers work, 227
Non-Decimal Numeric formats Incremental Mode, 228
with READ INTEGER, 501 overview, 49
non-USASCII keyboards, 11 two signal generator states, 50
NOP, 243 using in programs, 231
in transactions, 118 using interactively, 231
notations using multiple driver objects, 229
FIXED, 483 Panel tab, 240
for READ TEXT INTEGER, 518 panel view
for WRITE TEXT REAL, 483 selecting a bitmap, 6
SCIENTIFIC, 483 parallel junctions, 26
STANDARD, 4383 parallel threads, 25, 277
null Parameter Type, 242
in READ transactions, 119 parameters
passing, 248, 255
0} size, 249

Parameters tab, 242
parse errors, 554
passing parameters, 248, 255
fibrary, 15 Paste Trans, 116
> PC Plugln Card, 83

object changes
with the compiler, 28
objects

608 Index

PC Plugin card, 56, 83
PCOMPLEX format

for READ BINARY, 526

for READ BINBLOCK, 528

for READ TEXT, 501, 525

for WRITE BINARY, 492

for WRITE BINBLOCK, 494

for WRITE TEXT, 464, 485
PCPI, 57
PCTL

for WRITE IOCONTROL, 499
Perform Identification Query, 99
Perform Reset, 99
phase units

for WRITE PCOMPLEX, 487
pins

control, 264

data input and output, 264

effect on propagation, 261—263, 263—

266

error, 265

sequence, 264

XEQ, 265
platform support, 47
plotter support

HP-GL, 11
Plugé&play Driver

tab, 97—99
Plug&play driver

configuring, 79—82
pointers

relationship to transactions, 139
polling instruments, 204
precedence

functions, 22

variable names, 351
pre-defined objects, 554
PREFIX, 47, 48
PreRun

effects on file pointers, 140
Profiler, 558
Prog With Params

in Execute Program, 151, 168
Programmatic I/O Configuration, 190
programs

configuring, 5

example, 14

execution order, 25

running, 246

speeding up, 558

troubleshooting, 550
propagation, 261—273

affected by pins, 261—263, 263—266

basic order, 263

summary, 267

of threads and subthreads, 266—267

in UserObjects, 269—273
Properties

in transaction objects, 130

Q

Quad Access (D64), 110
QuadWord Access (D64), 110
QuadWord Access (D64) Field, 109
query functions, 37
querying instruments, 99
QUOTED STRING format
for READ TEXT, 501, 516
for WRITE TEXT, 464, 470
quoted strings
effects on READ TEXT STRING, 506
effects on READ TEXT TOKEN, 506

R

-1, 560
RAD phase units, 487
READ, 500—533
file pointers, 139
non-blocking, 126
reading arrays, 121
simplified usage, 119
TEXT, 501
read pointers, 140
Read Terminator
in Direct I/0O Configuration, 91
READ TEXT STRING
effects of quoted strings, 506
READ TEXT TOKEN
effects of quoted strings, 506

Index 609

Read to End
effects on READ TEXT, 504
Read to EOF
effects on READ BINARY, 527
effects on READ BINBLOCK, 528
READ transactions
TEXT, 181
READ(REQUEST) transactions, 548
reading files, 143
REAL format
for READ TEXT, 501, 521
for WRITE TEXT, 464, 482
REAL32 format
for READ BINARY, 526
for READ BINBLOCK, 528
for READ MEMORY, 531
for READ REGISTER, 530
for WRITE BINARY, 492
for WRITE BINBLOCK, 494
for WRITE MEMORY, 498
for WRITE REGISTER, 497
REALG64, 110
REALG64 format
for READ BINARY, 526
for READ BINBLOCK, 528
for WRITE BINARY, 492
for WRITE BINBLOCK, 494
Record data type, 318
Record Fields
editing, 365
records
accessing, 360
building, 364
container, 359
data shape, 364
data type, 358
editing fields, 365
unbuilding, 363

recovering from common problems, 550

REGISTER

for WAIT, 543
REGISTER encoding

for READ, 530

for WRITE, 497
REMOTE

for EXECUTE, 534
Remote Debug, 396
Remote Function, 394—400
errors, 400
precedence of, 22
required files, 47
reset flag, 254
resetting instruments, 99
Resource Manager, 246
restrictions
logging test results, 438
return value, 254
REWIND
effect on read pointers, 140
effect on write pointers, 140
for EXECUTE, 534
Rocky Mountain Basic
sharing colors with VEE, 8—11
Rocky Mountain Basic Objects, 162
Roman8 fonts, 11
round-robin, 25
Run Style
in Execute Program, 167
running
examples, 14
running programs, 246

S

Sample & Hold, 23
scalar data handling, 582
SCIENTIFIC notation

for WRITE TEXT REAL, 483
scoping, 350

global, 350

local, 350

SDC (Selected Device Clear), 185, 546

SECONDARY

in SEND transactions, 185, 546
security

UNIX, 398
Segmentation Violation, 248

Selected Device Clear (SDC), 185, 546

selecting
functions, 238
selecting a bitmap, 6

610 Index

SEND transactions, 546
sequence pins, 264
Sequencer
calling UserFunctions, 372
object, 437
Sequencer object, 437
Serial
tab, 102
serial addressing, 215
serial poll, 204
Serial Poll Disable (SPD), 185, 546
Serial Poll Enable (SPE), 185, 546
Server
DDE, 169
service request (SRQ), 280
service requests, 205
session handle, 240
session handles, 254, 258
set functions, 36
Set Global, 258
Set Variable, 352
shapes of data, 307
Shared Libraries, 570
shared library
creating, 388
Shell field
in Execute Program (UNIX), 150
SICL LAN gateway, 195
SPACE DELIM
for READ TEXT TOKEN, 510
SPD (Serial Poll Disable), 185, 546
SPE (Serial Poll Enable), 185, 546
speed
increasing execution, 558
SPOLL, 251
for WAIT, 543
SRQ, 205
srqtest.bmp, 281
STANDARD notation
for WRITE TEXT REAL, 483
Start, 22, 24
State
in Direct I/O Configuration, 96
STATE encoding
for WRITE, 496

state records
definition, 227
states
definition, 227
state records, 227
status
checking cautions, 248
checking errors, 247
Step, 25
STRING format
for READ BINARY, 526
for READ TEXT, 501, 514
for WRITE BINARY, 492
for WRITE TEXT, 464, 467
sub address, 218
in instrument driver configuration,
100
subthreads
propagation of, 266—267
supported frameworks, 46
supported I/O interfaces, 16

T

tab
A16 Space, 104—107
A24/A32 Space, 108—111
Direct I/0, 91—96
General, 89—90
GPIO, 103
Panel Driver, 99—101
Plugé&play Driver, 97—99
Serial, 102
Take Control (TCT), 185, 546
TALK
in SEND transactions, 185, 546
TCT (Take Control), 185, 546
temporary variables, 349
terminals, 304
name of variables, 349
using with transactions, 120
test sequencer, 437
TEXT encoding
for WRITE, 464
threads
propagation of, 266—267

Index 611

time delay, 246
TIME STAMP format
for READ TEXT, 501
for WRITE TEXT, 464, 488
Timeout
in Instrument Properties, 89
in To/From Socket, 159
timeouts
programming, 192
Timer, 23
time-slicing, 22, 371
Timing Events, 297
To File
general usage, 139
To StdErr
general usage, 139
To StdOut
general usage, 139
To String
as a debugging tool, 129
example program, 115
general usage, 138, 139
To/From DDE, 169
To/From Named Pipe
EXECUTE CLOSE READ PIPE, 156
EXECUTE CLOSE WRITE PIPE,
156
general usage, 155
non-blocking reads, 156
read-to-end, 156
To/From Rocky Mountain Basic
general usage, 149, 162
To/From Socket
Connect/Bind Port, 158
general usage, 157
Host Name, 159
Timeout, 159
To/From VXIplug&play, 237
getting help, 243
TOKEN format
for READ TEXT, 501, 510
totSize(), 23
transactions
adding terminals, 120
communicating with Programs, 149

configuring transaction objects, 130

creating, 116

debugging, 129

detailed reference, 458—548

details of operation, 130

editing, 116

EXECUTE, 209, 534

Execute Program, 149

execution rules, 130

file pointers, 139

Init Rocky Mountain Basic, 149

Multilnstrument Direct I/0, 181—184

non-blocking reads, 139

overview, 115

READ, 500, 501

READ(REQUEST), 548

selecting, 135

SEND, 546

summary of objects using, 460

summary of transaction objects, 135

summary of types, 136, 459

To String, 129

To String example, 115

To/From Named Pipe, 155

To/From Rocky Mountain Basic, 149

To/From Socket, 157

using From File, 139

using From StdIn, 139

using From String, 138

using To File, 139

using To StdErr, 139

using To StdOut, 139

using To String, 138

WAIT, 543

WAIT SPOLL, 204

with files, 139

WRITE, 461—499

WRITE(POKE), 548
TRIGGER

for EXECUTE, 534
troubleshooting

programs, 550
troubleshooting instruments, 550
types of data, 304

612 Index

U

unbuilding records, 363
unconstrained objects, 26
undeclared variables, 349
units

for PCOMPLEX phase, 487
UNIX

location of files, 48
UNIX security, 398
UNLISTEN

in SEND transactions, 185, 546
UNTALK

in SEND transactions, 185, 546
updated functions, 37
Upload

general usage, 178, 179
Upload String

in Direct I/O Configuration, 96
user interface (see panel view)
user-defined functions, 370—400
user-defined libraries, 370—400
UserFunction, 25, 371-373
UserFunction library, 375
UserFunctions, 559

calling from expressions, 372

converting to UserObjects, 371

merging, 377

time-slicing, 22, 371

used as ActiveX event handler, 425
UserObject, 269

propagation, 270
UserObjects

converting to UserFunctions, 371

problems with, 552

propagation in, 269—273

time-slicing, 22

with XEQ pins, 25
using

Call objects, 252

default attributes file, 7

examples, 14

functions, 237

non-USASCII keyboards, 11

VXIplug&play drivers, 236—258

xrdb, 7

using the Instrument Manager, 58—111

A\

Variable, 242
variables, 316, 348
accessing values, 354
changes for VEE 5 mode, 31
declared, 350
declaring for ActiveX, 406, 432
declaring in libraries, 375
deleting, 355
global, 350
in transactions, 119, 120
initializing, 352
local, 350
naming, 350
naming precedence, 351
null, 119
scoping, 350
temporary, 349
terminal names, 349
undeclared, 349
undeclared global, 349
using in libraries, 355
VDCs, 580
VEE
how to configure, 49
sharing colors with Rocky Mountain
Basic, 8—11
VEE 5 mode
defined, 29, 35
expressions, 30
global namespace, 31
in HP-UX, 34
variables, 31
VEE DATA API, 580
VEE Data Container (VDC), 580
VEE RPC API, 572
VEE RunTime, 560
VEE Service Manager, 573
starting in Windows, 397
VEE.IO file
detailed explanation, 189
veeData.h, 581
veeio file, 400

Index 613

veerc file, 400

verification flag, 254

vi, 240, 254, 258

VISA, 46, 236

VISA (Virtual Instrument Software

Architecture), 46

VXI
addressing directly, 219
addressing on GPIB, 217
advanced features, 204
Direct 1/0, 541
Interface Operations, 541
low-level control, 184, 209, 541
message- and register-based, 52

serial poll (message-based only), 204

service requests (message-based
only), 205
VXIplug&play
backward compatibility, 236, 252
configuring, 79—82
definition of, 46
Driver Name, 97
example, 48
introduction, 46
limitations, 251
related documents, 38
using, 236258
VXIplug&play drivers
help on, 245

W

WAIT, 543—545
Device Event, 204
INTERVAL, 543
MEMORY, 543
REGISTER, 543
SPOLL, 204, 543
Wait for Input, 23
Wait for Prog Exit
in Execute Program (PC), 167
in Execute Program (UNIX), 151
waveforms
importing, 144
Windows
location of files, 47

Word Access (VXI only)

in Direct I/O Configuration, 104, 109

WORD16 format
for READ MEMORY, 531
for READ REGISTER, 530
for WRITE MEMORY, 498
for WRITE REGISTER, 497
WORD?32 format
for READ MEMORY, 531
for READ REGISTER, 530
for WRITE MEMORY, 498
for WRITE REGISTER, 497
WORD?32%32, 109, 110
Working Directory
in Execute Program, 168
WRITE
BINBLOCK, 177
encodings and formats, 462
file pointers, 139
path-specific behaviors, 461
simplified usage, 119
STATE, 177
TEXT, 177
write pointers, 140
WRITE transactions, 461—499
BINBLOCK, 178
STATE, 178
WRITE(POKE) transactions, 548

X

X11 attributes
changing, 7
X11 colors flashing
correcting, 8—11
X11 resources
file location, 7
Xdefaults, 7
XEQ, 265
on Collector, 23

compatability mode changes, 23, 25

on OK, 25

on Sample & Hold, 23

on UserObject, 25
xrdb

using, 7

614 Index

	1. Introduction
	2. Instrument Control Fundamentals
	3. Configuring Instruments
	4. Using Transaction I/O
	5. Advanced I/O Topics
	6. Using Panel Driver and Component Driver Objects
	7. Using VXIplug&play Drivers
	8. Data Propagation
	9. Math Operations
	10. Variables
	11. Using Records and DataSets
	12. User-Defined Functions/Libraries
	13. Using ActiveX Automation Objects and Controls
	14. Using the Sequencer Object
	A. I/O Transaction Reference
	B. Troubleshooting Techniques
	C. Instrument I/O Data Type Conversions
	D. Keys to Faster Programming
	E. ASCII Table
	F. VEE for UNIX and VEE for Windows Differences
	G. About Callable VEE
	1 Introduction
	About This Manual
	Configuring VEE
	Configuring VEE for Windows
	Color and Font Settings
	Customizing Icon Bitmaps
	Selecting a Bitmap for a Panel View
	Configuring VEE for UNIX

	Color and Font Settings
	Changing X11 Attributes (UNIX)
	Screen Colors Change (UNIX)
	Attempt to Use Too Many Colors (UNIX)
	Applications that Use a Local Color Map (UNIX)
	Using Non-USASCII Keyboards (UNIX)
	Using HP-GL Plotters (UNIX)

	Using VEE Example Programs
	The Example Directories
	Running the Examples

	Using Library Objects
	Formula Objects

	Supported I/O Interfaces
	Using VEE Execution Modes
	Setting Execution Modes
	What is an Execution Mode?
	Why should I want to change Execution Modes?
	How do I know when to change Execution Modes?
	Guidelines to Switching Execution Modes
	About the Compiler
	Execution Mode Changes: VEE 3 to VEE 4

	Line Colors in Compiler Mode
	Potential Compatibility Problems
	Time-Slicing UserFunctions
	UserObjects
	Function Precedence
	Auto Execute and Start
	OK Buttons and Wait for Input
	Collectors Without Data
	Sample & Hold Without Data
	Timer Object
	Feedback Cycles
	Parallel Threads
	Loop Bounds
	UserObjects and Calls With XEQ Pins
	OK Buttons With XEQ Pins
	From File With EOF Pins
	Parallel Junctions
	Intersecting Loops
	Intersecting Loops Via Junctions
	Open View Object Changes
	Array Syntax in Expressions
	Execution Mode Changes: VEE 4 to VEE 5

	About the VEE 5 Execution Mode
	Converting Programs to VEE 5 Execution Mode
	VEE 5 Execution Mode Changes
	Menu Changes
	Expressions
	Variables
	Global Namespace
	READ TEXT Transactions
	Interaction Between To/From File and To/From DataSet

	Using VEE 5 Mode in HP-UX
	Execution Mode Changes: VEE 5 to VEE 6

	About the VEE 5 Execution Mode
	New Data Types
	Variant to VEE Data Type Conversion - Improved Array Handling
	Set Functions
	Query Functions

	Updated Functions

	Related Reading

	2 Instrument Control Fundamentals
	Introduction to Direct I/O
	An Example of Direct I/O
	MultiInstrument Direct I/O
	Introduction to VXIplug&play

	Getting Started
	What You Need
	Installing the VXIplug&play Driver Software
	Location of Files (WIN95 and WINNT Frameworks)
	Location of Files (HP-UX Framework)
	Summary of Terminology
	A VXIplug&play Example Program
	Further Information
	Introduction to Panel Drivers and Component Drivers

	Panel Drivers
	Component Drivers
	Further Information
	Support For Register-Based VXI Devices

	3 Configuring Instruments
	Using the Instrument Manager
	Overview
	Auto Discovery
	The Instrument List
	Instrument Configuration
	Renaming an Instrument
	Adding an Instrument Configuration
	Adding a Panel Driver or Component Driver

	Editing an Instrument Configuration
	Editing an Interface Configuration
	Configuring for a Direct I/O Object
	Configuring for a VXIplug&play Driver
	Configuring for a PC PlugIn Card

	Details of the Properties Dialog Boxes
	Instrument Properties Dialog Box
	Name Field
	Interface Field
	Address Field
	GPIB Address Example 1
	VXI Address Example 1
	VXI Address Example 2
	Serial Address Example
	GPIO Address Example

	Gateway Field
	Advanced... Button
	Advanced Instrument Properties Dialog Box: General Tab

	Timeout (sec) Field
	Live Mode Field
	Byte Ordering Field
	Description (optional) Field
	Advanced Instrument Properties Dialog Box: Direct I/O Tab

	Read Terminator Field
	Write EOL Sequence Field
	Write Multi-field As Field
	Write Array Separator Field
	Write Array Format Field
	Writing Arrays with Direct I/O

	Write END (EOI) On EOL Field (GPIB Only)
	Conformance Field
	Binblock Field
	State (Learn String) Field
	Upload String Field
	Download String Field
	Advanced Instrument Properties Dialog Box: Plug&play Driver Tab

	Plug&play Driver Name Field
	Parameters to init() call Field
	Address
	Perform Identification Query
	Perform Reset
	Download Drivers
	Advanced Instrument Properties Dialog Box: Panel Driver Tab

	ID Filename Field
	Sub Address Field
	Error Checking Field
	Incremental Mode Field
	Advanced Instrument Properties Dialog Box: Serial Tab
	Advanced Instrument Properties Dialog Box: GPIO Tab
	Advanced Instrument Properties Dialog Box: A16 Space (VXI Only) Tab

	Byte Access (D8) Field
	Word Access (D16) Field
	LongWord Access (D32) Field
	Add Register Field
	Delete Register Field
	An Example
	Advanced Instrument Properties Dialog Box: A24/A32 Space (VXI Only) Tab

	Byte Access (D8) Field
	Word Access (D16) Field
	LongWord Access (D32) Field
	QuadWord Access (D64) Field
	Add Location Field
	Delete Location Field
	Interface Properties

	Interface Field
	Address Field
	Gateway Field

	4 Using Transaction I/O
	Creating and Reading Transactions
	Creating and Editing Transactions
	Editing with Mouse and Keyboard
	Editing the Data Field
	Adding Terminals
	Reading Transaction Data

	Transactions that Read a Specified Number of Data Elements
	Read-To-End Transactions
	Non-Blocking Reads
	Suggestions for Developing Transactions

	Using Transaction-Based Objects
	Execution Rules
	Object Configuration
	End Of Line (EOL) Field
	Array Separator Field
	Multi-Field Format Field
	Array Format Field

	Choosing Correct Transactions
	Selecting Correct Objects and Transactions
	Example: Selecting an Object and Transaction
	Using To String and From String

	Communicating With Files
	Using File Pointers
	Read Pointers
	Write Pointers
	Closing Files
	EOF Data Output
	Importing Data

	Importing X-Y Values
	Importing Waveforms
	Fixed-Format Header
	Variable-Format Header

	Communicating With Programs (UNIX)
	Using Execute Program (UNIX)
	Execute Program (UNIX) Fields
	Shell
	Wait for Prog Exit
	Prog With Params

	Running a Shell Command
	Running a C Program
	Using To/From Named Pipe (UNIX)

	Hints for Using Named Pipes
	Using To/From Socket

	To/From Socket Fields
	Connect/Bind Port Mode
	Host Name
	Timeout
	Transactions

	Data Organization
	Object Execution
	To/From Socket Object Example
	Using Rocky Mountain Basic Objects (HP-UX)

	Initialize Rocky Mountain Basic
	To/From Rocky Mountain Basic
	Examples Using To/ From Rocky Mountain Basic
	Sharing Scalar Data
	Sharing Array Data
	Sharing Binary Data

	Communicating With Programs (PC)
	Using Execute Program (PC)
	Execute Program (PC) Fields
	Run Style
	Wait for Prog Exit
	Prog With Params
	Working Directory
	Using Dynamic Data Exchange (DDE)
	DDE Examples

	Using Transactions in Direct I/O and Interface Operations
	Using the Direct I/O Object
	Sending Commands
	WRITE TEXT Transactions
	WRITE BINBLOCK Transactions
	WRITE STATE Transactions
	Learn String Example

	Reading Data
	READ TEXT Transactions
	Using the MultiInstrument Direct I/O Object

	Transaction Dialog Box
	Instrument Field
	Address Field

	Editing Transactions
	Object Menu
	Using the Interface Operations Object

	The EXECUTE Transaction
	The SEND Transaction

	5 Advanced I/O Topics
	I/O Configuration Techniques
	The I/O Configuration File
	Changing the Configuration File
	Programmatic I/O Configuration
	LAN Gateways

	Configuration
	VEE Configuration
	LAN Hardware Configuration

	Execution Behavior
	Protecting Critical Sections

	Supported Platforms
	Execution Behavior
	Example: EXECUTE LOCK/UNLOCK Transactions - GPIB
	Example: EXECUTE LOCK/UNLOCK Transactions - VXI

	I/O Control Techniques
	Polling
	Service Requests
	Monitoring Bus Activity
	Low-Level Bus Control
	Instrument Downloading

	Logical Units and I/O Addressing
	Recommended I/O Logical Units for VEE
	I/O Addressing
	To Address Serial Ports
	To Address GPIO Devices
	To Address GPIB Interfaces and Devices
	GPIB Logical Units
	GPIB Logical Units (PCs Only)

	To Address VXI Devices on the GPIB
	To Set Address/Sub Address Values
	To Address the VXI Backplane Directly
	Excluding Address Space for the 82335 Card (Windows 95/98 Only)

	6 Using Panel Driver and Component Driver Objects
	Understanding Panel Driver and Component Driver Objects
	Inside Panel Drivers
	Panel Driver Files
	Components
	States
	How Panel Driver-Based I/O Works
	Panel Driver Operation

	Component Driver Operation
	Multiple Driver Objects
	The Importance of Names
	Reusing Driver Files

	Selected Techniques
	Using Panel Driver Objects Interactively
	Using Panel Driver Objects Programmatically
	Using Component Driver Objects in a Program
	Getting Panel Driver Help

	7 Using VXIplug&play Drivers
	Using the To/From VXIplug&play Object
	Selecting a Function
	Editing Function Panel Parameters
	The Panel Tab
	Getting Help on a VXIplug&play Function Panel
	The Configuration Tab
	The Auto-Allocate Feature (Passing Arrays and Strings)
	Getting Help on a VXIplug&play Driver
	Running a VEE Program

	Initializing and Closing Drivers
	Advanced Initialization Information
	Error and Caution Checking
	Error Checking
	Caution Checking

	Passing Parameters
	An Example Program
	Limitations to VXIplug&play

	Using VXIplug&play Functions from Call Objects
	Using a Dynamic Link Library or Shared Library in VEE
	Importing the Library
	Calling a VXIplug&play Driver from VEE
	Sequence of Calls
	Initialize Function
	Calling VXIplug&play Functions
	Using Other Common VXIplug&play Functions
	Using Arrays As Parameters
	Using the Close Function

	Deleting the Library
	A Simple Example
	A More Complete Example
	Some Helpful Hints
	Keeping Track of Handles
	Control Flow

	8 Data Propagation
	Understanding Propagation
	How Objects Operate
	Basic Propagation Order
	Pins and Propagation
	Propagation of Threads and Subthreads
	Propagation Summary

	Propagation in UserObjects
	UserObject Features
	Contexts and UserObjects
	Propagation and UserObjects
	Data Output from a UserObject

	Controlling Program Flow
	Basic Program Control
	Continuous Loops
	Making Programs Interactive
	Advanced Program Control

	Example: Initiating Program Tasks
	Calling Functions
	Clearing Strip Charts

	Handling Propagation Problems
	Error Handling
	Capturing Control Pin Errors
	Data Propagation on Control Pins
	Building a Record
	Multiple Inputs to a Formula
	Working with Loops
	Timing Events

	9 Math Operations
	Understanding Data Containers
	Data Container Operation
	Terminals Information

	Data Type Conversions
	VEE Data Types
	Data Type Descriptions
	Line Colors for Data Types
	VEE Data Shapes
	Converting Data Types

	Converting Data Types on Input Terminals
	Converting Data Types with Objects and Functions
	Automatic Data Type Conversions
	Instrument I/O Data Type Conversions

	Processing Data
	The Function & Object Browser
	General Concepts
	Expressions and Functions
	Using Strings in Expressions
	Using Variables in Expressions
	Using Records in Expressions
	Using Assignment Operations
	Allowed Syntax
	Examples.

	Error Recovery
	Using Global and Local Variables

	Global and Local Variables in Assignments
	Data Container Contents on Terminals
	Using Dyadic Operators

	Dyadic Operators Categories
	Precedence of Dyadic Operators
	Dyadic Operators Data Type Conversion
	Dyadic Operators Considerations
	Object Considerations
	Record Considerations
	Spectrum Considerations
	Data Shape Considerations
	Variant Considerations

	Array Operations in VEE
	Array Operations Techniques
	Comparison of Array Operation Techniques
	Accessing Arrays in Expressions
	Examples: Values Returned from Array
	Building Arrays in Expressions
	Performing Array Math Operations
	Basic Array Operations

	Array Functions Operations
	Changing Values in an Array
	Splitting a Large Array
	Combining Arrays
	Multiplying a Vector by a Matrix
	Inserting Elements into an Array
	Converting a Vector to a Matrix
	Advanced Array Operations

	Combining Disparate Elements into One Array
	Comparing Two Arrays
	Using Alternate Expressions
	Choosing Efficient Techniques

	10 Variables
	About Variables
	About Undeclared Variables
	About Declared Variables
	About Variables Naming

	Using Variables
	Setting Initial Values
	Accessing Variable Values
	Deleting Variables
	Using Variables in Libraries

	11 Using Records and DataSets
	Using Records
	Understanding Record Containers
	Accessing Records
	Programmatically Building Records
	Editing Record Fields

	Using DataSets

	12 User-Defined Functions/Libraries
	About UserFunctions
	Converting Between UserObjects and UserFunctions
	Calling a UserFunction from an Expression

	Using a Library of Functions
	Creating a UserFunction Library
	Importing and Calling a UserFunction
	Merging UserFunctions

	About Compiled Functions
	Using a Compiled Function
	Design Considerations for Compiled Functions
	Importing and Calling a Compiled Function
	The Definition File
	Building a C Function
	Creating a Compiled Function (UNIX)

	Creating a Shared Library
	Binding the Shared Library
	Creating a Dynamic Link Library (MS Windows)

	Creating the DLL
	Declaring DLL Functions
	Declaring DLL Functions
	Creating the Definition File

	Parameter Limitations
	The Import Library Object
	The Call Object
	The Delete Library Object
	Using DLL Functions in Formula Objects

	About Remote Functions
	Using Remote Functions
	UNIX Security, UIDs, and Names
	Resource Files
	Errors

	13 Using ActiveX Automation Objects and Controls
	Using ActiveX Automation in VEE
	Using ActiveX Automation Objects
	Making Automation Objects Available in VEE
	Declaring Automation Object Variables
	Creating an Automation Object in a Program
	Using Distributed Component Object Model (DCOM)
	Getting an Existing Automation Object
	Manipulating Automation Objects
	Getting and Setting Properties
	About Default Properties

	Calling Methods
	Using Enumerations
	Using the ActiveX Object Browser
	Data Type Compatibility
	Deleting Automation Objects
	Handling Automation Object Events

	Using ActiveX Automation Controls
	Selecting ActiveX Controls
	Adding a Control to VEE
	Differences in the ActiveX Control Host
	Using an ActiveX Control in VEE

	Using the Assigned Local Variable
	Declaring a Global Variable for a Control
	Manipulating ActiveX Controls

	14 Using the Sequencer Object
	The Sequencer Object
	What is the Sequencer Object?
	Logging Test Results

	Using the Sequencer Object
	Example: Sequencer Transactions
	Example: Logging Test Results
	Example: Logging to a DataSet
	Example: Bin Sort

	A I/O Transaction Reference
	I/O Transactions Summary
	WRITE Transactions
	Path-Specific Behaviors
	Behaviors for all Paths
	TEXT Encoding
	DEFAULT Format
	STRING Format
	Field Width and Justification
	Number of Characters
	Writing Arrays With Direct I/O

	QUOTED STRING Format
	Field Width and Justification
	Number of Characters
	Embedded Control and Escape Characters

	INTEGER Formats
	Number of Digits
	Sign Prefixes

	OCTAL Format
	Number of Digits
	Octal Prefixes

	HEX Format
	Hexadecimal Prefixes

	REAL32 and REAL64 Format
	Notations and Digits

	COMPLEX, PCOMPLEX, and COORD Formats
	COMPLEX Format
	PCOMPLEX Format
	COORD Format

	TIME STAMP Format
	BYTE Encoding
	CASE Encoding
	BINARY Encoding
	BINBLOCK Encoding

	Non-GPIB BINBLOCK
	GPIB BINBLOCK
	CONTAINER Encoding
	STATE Encoding
	REGISTER Encoding
	MEMORY Encoding
	IOCONTROL Encoding

	READ Transactions
	TEXT Encoding
	General Notes for READ TEXT
	Read to End
	Number of Characters Per READ
	Effects of Quoted Strings

	CHAR Format
	TOKEN Format
	SPACE DELIM
	INCLUDE CHARS
	EXCLUDE CHARS

	STRING Format
	Effects of Control and Escape Characters

	QUOTED STRING Format
	INT16 and INT32 Formats
	OCTAL Format
	HEX Format
	REAL32 and REAL64 Format
	COMPLEX, PCOMPLEX and COORD Formats
	COMPLEX Format
	PCOMPLEX Format
	COORD Format
	BINARY Encoding
	BINBLOCK Encoding
	CONTAINER Encoding
	REGISTER Encoding
	MEMORY Encoding
	IOSTATUS Encoding

	Other Transactions
	EXECUTE Transactions
	Details About GPIB
	Details About VXI
	WAIT Transactions
	SEND Transactions
	WRITE(POKE) Transactions
	READ(REQUEST) Transactions

	B Troubleshooting Techniques
	C Instrument I/O Data Type Conversions
	D Keys to Faster Programming
	E ASCII Table
	F VEE for UNIX and VEE for Windows Differences
	Execute Program
	DLL versus Shared Library
	Data Files

	G About Callable VEE
	Using the VEE RPC API
	About the VEE RPC API
	Starting and Stopping a Server
	Loading and Unloading a Library
	Selecting UserFunctions
	Calling UserFunctions
	Other Functions
	Error Codes for the VEE RPC API
	About the VEE DATA API

	Data Types, Shapes and Mappings
	Scalar Data Handling
	Array Data Handling
	Enum Types
	Mapping Functions
	Other Functions

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

