HP VEE Advanced
Programming
Techniques

Notice

The information contained in this document is subject to change without
notice.

Hewlett-Packard Company (HP) shall not be liable for any errors contained
in this document. HP makes no warranties of any kind with regard to this
document, whether express or implied. HP specifically disclaimsthe implied
warranties of merchantability and fitness for a particular purpose. HP shall
not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory, in
connection with the furnishing of this document or the use of the
information in this document.

Warranty Information

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

U.S. Government Restricted Rights

The Software and Documentation have been developed entirely at private
expense. They are delivered and licensed as commercial computer software

as defined in DFARS 252.227-7013 (Oct 1988),

DFARS 252.211-7015 (May 1991) or DFARS 252.227-7014 (Jun 1995),

as a “commercial item” as defined in FAR 52.101(a), dRextricted

computer software as defined in FAR 52.227-19 (Jun 1987) (or any
equivalent agency regulation or contract clause), whichever is applicable.
You have only those rights provided for such Software and Documentation
by the applicable FAR or DFARS clause or the HP standard software
agreement for the product involved.

Copyrightd 1991—1998 Hewlett-Packard Company. All rights reserved.

This document contains information which is protected by copyright. All
rights are reserved. Reproduction, adaptation, or trand ation without prior
written permission is prohibited, except as allowed under the copyright laws.

Microsoft®, MS-DOS®, Windows®, MS Windows®, and Windows NT®
are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of The Open Group.

Printing History

Edition 1 - September 1993
Edition 2 - January 1995
Edition 3 - March 1997
Edition 4 - May 1998

ConventionsUsed in This M anual

This manual uses the following typographical conventions:

Getting Sarted

Dialog Box

File

di r filename

File O QOpen

Sm | Med | Lrg

PressEnter

PresCtrl + O

[talicized text is used for book titles and for
emphasis.

Bold text is used for the first instance of aword
that is defined in the glossary.

Computer font represents text that you will see
on the screen, including menu names, features,
buttons, or text that you have to enter.

In this context, the text in computer font
represents an argument that you type exactly as
shown, and the italicized text represents an
argument that you must replace with an actual
value.

The “00 " is used in a shorthand notation to show
the location of HP VEE features in the menu. For
example, File O Open” means to select the

Fi | e menu and then sele@pen.

Choices in computer font, separated with bars
(1), indicate that you should choose one of the
options.

In this context, bold represents a key to press on
the keyboard.

Represents a combination of keys on the
keyboard that you should press at the same time.

Contents

1. Introduction

ADOUL ThISMANUAL.......ooeiieeeiee e 2
HP VEE EXxample Programs.........ccccccceeieeieese e eseesessieestesseenseeseeens 3
UsiNg the EXaMPIES....c.ciceeiie et 3
RUNNING EXGMPIES ... 3
EXample DIrECLONES.ccveeeeeciiciiee e e 3

Using Library OBJECESccuviiiiecice et 4

2. Variables

About Undeclared Variables ... 6
About Declared Variables ... 7
PN 1o 1810 = o 4 1 oo [8

Naming PreCedencCeooeeee et 8
Setting INitial ValUES.......cceeiieee et 9
Accessing Variable ValUEScccecceiivevinie et 11
Deleting Variablescoooeeiiiiiicee e 12
Using Variablesin Libraries.........cccooveeveieieeveseecs e 12

3. Using Records and DataSets

RECOId CONAINEISoeiieeeeeeeeie et eeas 15
ACCESSING RECOIMS.......ocviceieiie ettt s ene 17
Programmatically Building RECOFAS...........cccevvieevviecie e 20

Editing ReCOrd Fields........cooieeeiicicececese e 21
USING DA@SELS......ccceeciecieere ettt e ettt e ere e 23

4. Using User-Defined Libraries

ADOUL USEIFUNCLIONS.......coiiiieiiiie et 27
Converting Between UserObjects and UserFunctions...................... 27
Calling a UserFunction from an EXPressioncccoceeeeeeeceeveeeneeennen. 28
Creating a UserFunction Library.........cccccoeeveeccinniesceeneeseesee e 29
Differences Between Merging and Importing...........ccoceeeeveveeninnnnne 31

About Compiled FUNCLIONS..........cccccceviiiiciesese e 33

Contents-1

Design Considerations for Compiled Functions...........cccccceeeevueneeee. 34

Importing and Calling a Compiled Function............ccccccveevvsieieennenne. 35
Creating a Compiled Function (UNIX)......ccocoevienieevciencieeceeciee e 37
The Definition File........oooie e 38
Building aC FUNCLION.......cocvciieie et 39
Creating aShared Librarycococoeeveveieeniese e 42
Binding the Shared Library.........cccccoovvviieiineece e 43
Creating a Dynamic Linked Library (MSWindows)............cccceeu.e. 44
Creating the DLL ..ot ee st sne s 44
Declaring DLL FUNCLiONS.......cccccoveve v 45
Creating the Definition File......ccovviee v, 45
EXAMPIES....ceeee e s 46
Parameter LimitalionsS........ccccoeerrrreerene e 46
The Import Library ODJEC........ccccv e 47
The Call ObJECL.....c.iie e 47
The Delete Library ObJECtcocvevveceeiiiceece e 48
Using DLL Functionsin Formula Objects.........cccccccevieveeieieseennn, 48
AbOUt REMOLE FUNCLIONS........oiieieieee et 49
UNIX Security, UIDs, and NamesS..........ccccvveeveeveesiensen e e 52
RESOUICE FIlES ... e 54
EITOIS. e s 54
ADbout CallabIE VEEooiieieree et 56
ADbout the VEE RPC AP ..ot 57
Starting and StOPPINg & SENVENccceecevveereeree e e 57
Loading and Unloading aLibraryccccccevevvinicvciecceeveeseeen, 58
Salecting USErFUNCLIONSccevieiee e 59
Calling USerFUNCLIONS..........ccoccviiiiie e 60
Other FUNCLIONS.......ciiiiieericsie e 61
Error Codesfor the VEE RPC APccoveiiininineneneeeeene 62
About the VEE DATA APl ... 63
Data Types, Shapes and MappingS......c.cceecueeveeneeseesieesieesensnens 64
Scalar DataHandlingccoevieveenie e 65
Array Data Handling.........cccoeveviiieeesece e 67
ENUM TYPES ..ottt st 74
Mapping FUNCLIONSccoiiiieririe et 75
Other FUNCLIONS......cuciieiei e 76
About the Callable VEE ActiveX Controlccccvoveenineeneneiieeee 77

Contents-2

5. Using Transaction 1/0O

USING TraNSACLIONSc..ccveeieiicieeie st eee ettt re e st reeeesne 81
Creating and Editing Transactions —cccceveveeve e, 82
Editing the Data Fieldcccooveieieeiccece e 85
Adding TEMMINAIS........cooie e 87
REAAING DALA.......ccco ettt ree s 88
Transactions that Read a Specified Number of Data Elements ...89
Read-To-End TranSaCtionS..........ocerererenierieesesesee s s 91
Non-Blocking REadS...........cccceviiiciesese e 93
Suggestions for EXperimentationcccccoveveveveevesieecie s eeesie e, 96
Details About Transaction-Based ObjeCts..........cccccovvceevinviensiensee s 97
EXECULION RUIES. ...ttt 97
Object Configuration..........cccveieeieere e see e 97
ENd Of LiNE (EOL) ..oviviiierieieiere ettt 99

ATTAY SEPAELON ...eeiivieiiiiecee ettt sree s sre e 99
Multi-Field FOrMat.........coeoeiiiirieieisee s 100

F N - Y] 1 17 S 100
READ and WRITE Compatibility........ccccovviienieeiensiere e, 101
Choosing the Correct TranSactionccccceeceevieeseesieesiee e e 102
Selecting the Correct Object and Transaction............cccceevveeeienene 104
Example of Selecting an Object and Transaction 105

Using To String and From Stringccoceeeevenecce s 106
Communicating With FIleS ... 107
Details About File POINTENScocviieiiieeee e 107
REA0 POINLES.....cceieeeee et 108
WIILE POINEES. ...ttt 108
CloSING FIlES....c.oc e 108

The EOF Data OULPUL.........ccceiieiieeeciesie e eae s 110
Common Tasks for Importing Data...........ccccccvevieeieevieesieescesieeens 111
IMPOrting X-Y VAUES......cccccieiice ettt 111
Importing Waveforms.........ccoooveve e 113
Fixed-Format HEaderccooveriienini e 113
Variable-Format Headercccoovereneninine e 115
Communicating With Programs (UNIX) ..o 117
Execute Program (UNIX) ..o 117
Execute Program (UNIX) Fields.......ccccocevivivnicienecee e, 118

SHEIL .. 118

Wait fOr Prog EXit......ccooeeeieieeeeseese e 118

Contents-3

Prog With Params...........ccceeveiiiicieee e 119

Running a Shell Command............ccooveeevivieieenc e 120
RUNNING @ C Program.........cccceeceieieesese e 122
To/From Named Pipe (UNIX) ..ot 123
Hintsfor Using Named PipesS........ccccccvveeveeieesien e eee e 124
TO/FIOM SOCKEL......cceiieieeieiesieee e 125
TO/From SOCKet FIeldS........covveiririerieieeeese s 126
Connect/Bind Port MOde..........cceveieeeiininenerie e 126
HOSEINBIME ... 127
TIMEOUL ...t 127
TrANSACHIONS.ceuieieiieie e 127
Data Organi Zationccceeeiieeieeiiese e eeesese e e see e 128
ODbJECt EXECULION.....ceeceieiecie et 128
e 0] = 128
HP BASIC/UX OBJECtS (HP-UX) ..o 130
INIt HP BASICIUX .ottt te e 131
To/From
HP BASICIUX ..ot 131
Examples Using
To/From
HP BASICIUX ...ttt sttt 132
Sharing Scalar Data........ccccveeeeiieveecee e 132
Sharing Array Data........cccceeeevieeiie e eesee e 133
Sharing Binary Dataccceevveeeveeiie e 133
Communicating With Programs (PC)ccovvreieeieecee e 134
Execute Program (PC).......cceeveiiieeieeie et sne e snens 134
Execute Program (PC) Fields.........cccoveeeviiiviese e 135
RUN SEYIE ..o 135
Wait fOr Prog EXit........cccoceeiiiiieceeese e 135
Prog With Params..........cccceeveiiieciece e 136
WOrKing DIir€CLONYccueivveieieieese e 136
Using Dynamic Data Exchange (DDE)ccccceveevveveeceieeie e 137
TO/From DDE ODJECL.......ccocirceecee e see e 138
DDE EXAMPIES....ccceeiieciecie et cesste s see e ee e e st e e s sreesnee s 141
Dynamic Linked LibrarieS (DLL)cccevevieeeveeerie e e cee e see e 143
Related REAAING.........ccoueiiiiriee e 144

Contents-4

6. Using the Sequencer Object

SeqUENCE TraNSACLIONS.........cceeie e ettt 147
LOgging TeSt RESUILS.......cceiiiiieiice ettt s 153
LOgging t0 aDalaSELcceccveveeieiiie e 156
Some Restrictionsin Logging Test Results.........cccoceevvcveeveenienninnn, 157
A Practical Test EXaMPIEcccuvcevciee et 158

7. Using ActiveX
Automation Objects
and Controls

Using ActiveX AULOMELIONc.cceeiieeiee e e e e see e see e s snee s 169
To Make Automation Objects Availablein HP VEE...................... 169
To Declare Automation Object Variables........ccoevveevevvcciecieciee 171

Handling Automation Object EVENtS..........cccccevvieeveecicieieene, 172
To Create an Automation Object in aProgram...........ccccceeeevvennee. 175
To Get an Existing Automation ObjeCtcccceveevieeeveeccieene e, 175
To Manipulate Automation ObJECES.......cecveeveevieever e 176

Getting and Setting Properties..........ccovvececieeven e ces e 176

About Default Properties ..o 177

Calling MethOdS........cccoceeieesr e 178

USING ENUMErELioNS.......ccocvieeeieie et 179

Using the ActiveX Object BrOWSEScccceevevieceeiiese e, 179
Data Type Compatibilitycceceevieeieerieeie e 184
To Delete Automation Objects.........cccccvcvvceeviccec s 185

UsiNg ACtiVEX CONLIOIScovveeiieeesec e 186
To Select ACtiVEX CONLIOIS.......ooveieeeririerise e 186
To Add aControl tOHP VEE..........ccooiiiiieecesc e 187

Differencesin the ActiveX Control HOSt..........cccoveveienncninn 188
To Usean ActiveX Control inHPVEE..........cccocooeiiiiieiiirieee 189

Using the Assigned Local Variable.........ccocevvevieevieevenvcenneenee, 189

Declaring aGlobal Variable for aControlcccoceevcieveecnnene 190
To Manipulate ActiveX ControlS.........cceeveveieevesecieie e, 190

Recommended Readingcccevvveieecieie e 191

Contents-5

8. KeysTo Faster Programs
9. Troubleshooting Problems

A. Using the Compatibility Mode

ADOUt The COMPITES ... 203
Compatibility Mode Changes:
VEE 3BtOVEE 4 ...t 204
LiNE COlONS.. .ttt 204
Compiling EXisting Programs...........cccccecvieevesveeceseseese e 205
Program ChangeScoeieeieinee e ee e te e st sre e e 205
Time-Slicing UserFunctions.........cccccvvvveceeve i, 206
UL = @ o= £ T 206
FUNCLiON PreCedencCe ..o 206
AULO EXECUte and SEAITooveeeiriirierieeeceerie s 207
OK Buttons and Wait for INpUL............cceeeevieveiiesene e 207
Collectors Without Data...........ccevereieeeeenerereee e 207
Sample & Hold Without Data...........cccceeeeveenee e cciecieeeniees 207
LT 00 O o]=o: AR 207
FeedbaCk CYCIES ...t 208
Parallel Threads...... ..o 208
LOOP BOUNGS.......coeeiiiiiciiesiesie ettt s 209
UserObjects and Calls With XEQ Pins........cccocevvvveeicveve e 209
OK Buttons With XEQ PiNS.......ccccvveveeieererre e 209
From File With EOF PiNSccooeiiiieee e 209
Parallel JUNCLIONS ..o s 210
INtErsECting LOOPS.......ccveiiiieieie et st 211
Intersecting Loops Via JUNCLiONS..........ccccovveeeveieeie e 212
Open View Object ChangesS.........ccvevevreieesieeseesieesee st 212
Array SyntaX in EXPreSSiONS.......ccceeveereeiieeereeseeeseessesseessessnees 213
Compatibility Mode Changes:
VEE 410 Standard.........ccoeiuirieeeininiene et 214
About the Standard MOdeccvirirereinee s 214
Converting Programsto Standard Mode...........cccoceevenieeviesiennnnns 214
MENU CRANQJES......ccreeeeeieerieeieeseseeeeeseeesteenre e reeseesaeeneesneeenes 215
EXPrESSIONSoeiieeieeieetee e et e te et te e te et e re e sre e te et e reens 215
VaBDIES ... e 216

Contents-6

Global NameSPaCE........cccvvveceeese et 216

READ TEXT TranSaCtioNSeviveveieeieeeeeiieeeesssieeesseiaeesssseees 218
Interaction Between To/ From Fi | e and To/ Fr om Dat aSet 219
Using Standard Modein HP VEE for HP-UXcccccceviivevneiennee. 219

B. ConfiguringHP VEE

Color and FONt SELINGS.......ccvieeiee et 223
Changing X11 Attributes (UNIX) ...ooiieeiieiccee e 224
Configuring HP VEE for Windows..........ccceciieieccecsee e 225

General HP VEE SEttings........coovvircie vt 225
Customizing 1€oN BitMapscceiviieireenieiieee e 226
Selecting aBitmap for aPanel Viewccccvevvveeceiecveese e 227
If You See Colors Changing On Your Screen (UNIX) . 228

TOO MaNY COlOIS.....cciieiiiieiieseesee e e sre e e e te e e sreeeeereas 228

Applications that Use aLocal Color Map (UNIX)ccccoeeveeiieeninnne 230
Using Non-USASCII Keyboards (UNIX)ccceecvevieiceeviecee e 232
Using HP-GL Plotters (UNIX) ..o 233

C. ASCII Table

D. 1/O Transaction Reference

WRITE TranSaCtioNSccoceeeeiereenieneeeesieeiee e seesee e e enee e enes 246
Path-Specific BENaVIOrS.........coov i 246
TEXT ENCOAING.....ccieiieiieieese et siteesteetessteeseesae e seeseesneesnnens 249

DEFAULT FOMMELcveiiiiiisiesieiieiesiesie et 250
STRING FOIMMEL ..o 251
Field Width and Justification.............ccocoveeeeninienenc e 251
NUumber of CharaCters..........cooeeeirierinireeeees e 253
Writing Arrays With Direct /Occooovevevecievececee e 254
QUOTED STRING FOIMELcveuerviriirieieieiesiesiesie e 255
Field Width and Justification............cccceveveeeeeienenn e 255
Number of CharaCters........coooeveieeeere e 257
Embedded Control and Escape Characters.........cccccvevueennenne. 258
INTEGER FOIMAELcceeiiiiiieieeie et 260
IN[8Tail o= o) D T] £ 261
SIgN PrefiXES..iiei e 262
OCTAL FOIMMAEL.....eeiieeieeiie ettt 263

Contents-7

NUMbEr Of DIgItS....ccciiiiiiecese e e 263

OCtal PrefiXeS.....ovveieeceiiesie e 264

HEX FOIMEL......ccoiiiieieeeeee e s 266
Hexadecimal PrefiXes........coovvvirinineneneeee e 266
REAL FOIMEL.......coiiiiieieeiie e 267
Notations and DigitS........cccccevieeiierniicniee e 268
COMPLEX, PCOMPLEX, and COORD Formats.................... 270
COMPLEX FOIMAEL........coiiiiiiiiee e 270
PCOMPLEX FOIMELcc.coiiiiiiiii e 272
COORD FOIMMEL......cceiieeiieiiiesiee et 273
TIME STAMP FOrMaLccooeiieeiiee et 273
A I =g To oo [o 276
CASE ENCOUINGoveceeeiecie ettt 276
BINARY ENCOAINGccveiiiiieiee e 277
BINBLOCK ENCOUINGccverieiierieieeieiteereesiesesteeeesie e eeeseessesneas 279
NON-HP-IB BINBLOCKc.coo i 279
HP-IB BINBLOCKooiieceee e see e 280
CONTAINER ENCOAINGooeivieieesieiitee e seestee e ses e sieesaeeneeeneeens 281
STATE ENCOUING ..c.vecveeieiticeesee ettt 282
REGISTER ENCOAING .vooveeeececeece e 283
MEMORY ENCOUING ...oovevieieiecieeeete et 284
IOCONTROL ENCOUING ...cccvveiiieieesieeieesieerie et te e et 285
READ TranSaClioNS ccceoeeeereiese e eiese st eeesee et e e see e eeenee e 286
TEXT ENCOAINGcovieiiiiee e tee e et steesne e e 287
General Notesfor READ TEXT ..o 289
R0 10 EN.....ocviiiicie e 289
Number of Characters Per READ..........ccooivenvieninineieens 289
Effects of Quoted StriNgS.......cccccevvveeveveveese e 291
CHAR FOIMELciiiiiiieieirie e 293
TOKEN FOIMAEL........coiieiiisiisienieise e 294
SPACE DELIM ..ot 295
INCLUDE CHARS ...ttt 296
EXCLUDE CHARS......oo ot 298
STRING FOIMAL........coiiiiiiiie e 299
Effects of Control and Escape Characters.........c.coceveeevenennee. 299
QUOTED STRING FOrmMatccoeecveveiee e esieeseeesee e 301
Effects of Control and Escape Characters...........ccccvevvennenee. 301
INTEGER FOIMELccoiriieeiiniinienieee st 303
OCTAL FOIMMELc.eiiriiriiierieriisiesie et 305

Contents-8

[| G 0 1 = 306

REAL FOMEL......cciiiiiiiiieeiie et 308
COMPLEX, PCOMPLEX, and COORD Formats.........c..ccc.c.... 311
COMPLEX FOrM@tcoveeeeeireeieeeiesiesesieseseseseeseeesseseennens 311
PCOMPLEX FOrMEL......cccoeeiiee et see e 311

COORD FOIMELeveeicieecieeeee e et 312
BINARY ENCOUING ...ooeovieiieiecite ettt 313
BINBLOCK ENCOUING ..eocveeivieiieesieeseesiee e ee et sre et 314
CONTAINER ENCOUING.....ccuteiriirieirieriesiiieesesie e 316
REGISTER ENCOAING ..vocvececeee e 316
MEMORY ENCOOING ..ocvviieiiie ettt 317
OIS AN J WIS =g Tece o 1o R 318
EXECUTE TranSaCtioNS.......cccccveeieeieeseenieeseesieeseesteessesseeeseessessseenns 320
DetaillsS ADOUL HP-IBccoeeiieeeeee e 324
DetailS ADOUL VX1 ...oviiiiicieeseee e 326
WAIT TranSaCtioNSccceveiieeieiesie et resne s 329
SEND TranSaClionNSc.ecviieeerieieseeseeseesesteesee e ste e saesse e neensesnens 332
WRITE(POKE) TranSaCtionS.......ccccccieveeneriieesieeesessreeseeseessvesseesnens 334
READ(REQUEST) TranSaCtionS..........c.ccveevueseesiieeseeesieeseesnessseeseesnes 335

. HP VEE for UNIX and
HP VEE for Windows

Differences

EXECULE Program.......cccuie it see e e et 339
DLL versus Shared Libraryccccccoevieiecciecceeses e e e 340
DT = T =S OSSPSR 341
Index

Contents-9

Figures

Figure 2-1. A Simple Variable EXample........cccvcvrieevieevieeser e 9
Figure 2-2. Setting Array ValUES.........coeceeveeniesie e sie et siee e 10
Figure 2-3. Accessing a Variable Multiple Ways.........ccccovceeeveecieenienne 11
Figure 3-1. A Simple Record CONtaiNerccceeeeveenieesieesen e e eneens 16
Figure 3-2. Retrieving Record Fields with Get Field.............ccceveeneeee. 17
Figure 3-3. Using Array Syntax in Get Fieldccoeveveevieccincceeniens 18
Figure 3-4. Retrieving Record Fields with UnBuild Record.................. 19
Figure 3-5. The Effect of Output Shapein Build Record....................... 20
Figure 3-6. Mixing Scalar and Array Input Data............ccccceevveeiieennne. 21
Figure 3-7. Using Set Field to Edit aRecord..........ccccoveveeeviecceciieeniens 22
Figure 3-8. Using To DataSet to Save a Recordcccccoevevccivriecniene 23
Figure 3-9. Using From DataSet to Retrieve aRecordccocecveeneee. 24
Figure 4-1. Calling a UserFunction from Expressions............cccccceeuueae. 28
Figure 4-2. Creating UserFunctionsfor aLibrary........ccccccoevicivnieennene. 29
Figure 4-3. Importing a UserFunction Librarycccccceveecienieccennnnns 30
Figure 4-4. Using Import Library for Compiled Functions.................... 36
Figure 4-5. Using Call for Compiled Functions..........c..cccocvevveniennnnnne. 36
Figure 4-6. Program Calling a Compiled Function.........c.c.cccceevvveennenne. 42
Figure 4-7. Import Library for Remote Functions...........cccccecevvvveenenne. 50
Figure 5-1. Default TransaCtion inTo Stri NG coocvcvveveceveeseereeeceeenen, 81
Figure5-2. A Simple Program Using To StriNgcceveeveeieeneeenen. 81
Figure 5-3. Editing the Default TransactioninTo String 84
Figure 5-4. READ Transaction Using aVariable in the Data Field 85
Figure 5-5. WRI TE Transaction Using an Expression in the Data Field 85
Figure 5-6. Terminals Correspond to Variablescccocovceeveeiieennenne 88
Figure 5-7. Select Read Dimension from Listcccceeeeevieeieevieevnnennnn, 89
Figure 5-8. Transaction Dialog Box for Multi-Dimensiona Read 90
Figure 5-9. Transaction Dialog Box for Multi-Dimensional Read-To-End
92
Figure5-10.Using READ | OSTATUS DATAREADY foraNon-Blocking Read
95

Figure 5-11. Experimenting With To String ...cccecvvevvcevieeneccecceenn, 96
Figure 5-12. The Properti es Diadog BOXcccccceveeveeiecincveesennienns 98
Figure 5-13. Using the EXECUTE CLOSE Transactionc.cueuu... 109
Figure 5-14. Typical Use of EOF to Read aFilecccccovevvevveveenen, 111
Figure 5-15. Importing XY ValUESccccoevcveee e e e 112
Figure 5-16. Importing aWaveform File ..., 114

Contents-10

Figure 5-17. Importing aWaveform Fileccccovvvevviieve e, 116

Figure 5-18. The Execut e Program (UNI X) Objectcccuene. 117

Figure 5-19. Execut e Program (UNI X) Running a Shell Command ..
120

Figure 5-20. Execut e Pr ogram (UNI X) Running a Shell Command us-

ING REAA-TO-ENGovveieceeee e 121
Figure 5-21. Execut e Progr amRunning aC Program 122
Figure 5-22. C Program LiSting........ccceeeeueveeeesesesee e eseesveeee e 123
Figure 5-23. The To/ From Socket Object........ccocvvvvicieeceviiecnenee, 126
Figure 5-24. To/ From Socket Binding Port for Server Process....... 129
Figure 5-25. To/ Fr om Socket Connecting Port for Client Process..130
Figure 5-26. To/ From HP BASI ¢/ UX SEttiNgS......ccccovevvevesieeieenieenns 132
Figure 5-27. The Execut e Program (PC) Objectccccveeeennnene 135
Figure 5-28. The To/ Fr om DDE ObJECtcccvevvvviviieiiieieiece e 138
Figure 5-29. The To/ Fr om DDE EXamplecccccevevvveceseccie e, 139
Figure 5-30. Execute PC before TO/FTrom DDE...........cccccvvevvivieennen, 140
Figure 5-31. I/O Terminasand To/From DDE...........ccccccovveviviivieennen, 140
Figure 5-32. Lotus 123 DDE EXample........cccocvveevivveeceeie e 141
Figure 5-33. Excel DDE EXample........ccoceviviveevieveece e 141
Figure 5-34. Reflections DDE Example........cccooovveevieveniece e, 142
Figure 5-35. Word for Windows DDE Example..........cccccoeveviveieeinenen, 142
Figure 5-36. WordPerfect DDE Example.........cooeevvveeieneceesieseene, 143
Figure 6-1. A Simple Sequencer Program..........ccceeveeveeceeseeseeneenesnens 147
Figure 6-2. Running the Programccccccovvvevesieveesc e 150
Figure 6-3. A Logged Record of RECOIASccevvvvveieesiiiiene e, 151
Figure 6-4. A Simple Logging Example........ccccevieveeveicecceeseseeen 153
Figure 6-5. A Logged Array of Records of Records..........c.cccceeeenennee. 154
Figure 6-6. Analyzing the Logged Test ResUlts..........ccccceveecevviieennnn, 155
Figure 6-7. Logging to aDataSetcccovevvveeieveveece e 156
Figure 6-8. Simple Bin Sort Example..........cccccvevivveeienicceece e 159
Figure 6-9. Improved Bin Sort EXamplecccccevvvveevevie e, 161
Figure 7-1. Selecting ActiveX Automation Type Libraries................. 170
Figure 7-2. Declaring an ActiveX Automation Variable...................... 171
Figure 7-3. Specifying the Automation Object Type......cccccevvvvvrnnnee 172
Figure 7-4. Using the ActiveX Object BrowWSercccccceeveveerenienenn, 180
Figure 7-5. Elements Displayed in the Function & Object Browser180
Figure 7-6. Selecting ActiveX ControlS........cccevvveeveevesiece e 186
Figure 7-7. Adding ActiveX Controls from the Device Menu............. 187
Figure 7-8. Accessing Properties and Help in an ActiveX Control......188
Figure A-1. Feedback in Previous Versions..........ccccevvvvieesieseeinennns 208
Figure A-2. Feedback in Compiled Mode..........ccccovveveieieeceiesee, 208

Contents-11

Figure A-3. EOF DIfferenCeS.......ccoceveiieie e 210

Figure A-4. Parallel JUNCLIONS.........ccoveiieeiiceece e 210
Figure A-5. INtersecting LOOPS.......c.coveeeiiiiiiee st 211
Figure A-6. Intersecting Loops Via JUNCtions..........cccccveveveseeneenneene, 212

Figure A-7. READ TEXT Transaction with TOKEN in VEE 4 Mode 218
Figure A-8. READ TEXT Transaction with TOKEN in Standard Mode..

219
Figure B-1. Color Map File Using Words...........cccccevvvveveseciecie e 230
Figure B-2. Color Map File Using Hex Numbers...........cccceevvivennnee. 230
Figure D-1. A VWRI TE TEXT Transaction.........cccccevvvveeveseceeniesieennens 250
Figure D-2. TWo WRI TE TEXT STRI NG Transactions...........cccceeueenee. 251
Figure D-3. TWo WRI TE TEXT STRI NG Transactions...........cccceeueenee. 252
Figure D-4. AWRI TE TEXT STRI NG TransaCtion..........cccccecveveenenne 253
Figure D-5. TwWo WRI TE TEXT STRI NG Transactions...........cccceeueenee. 253

Figure D-6. Two WRI TE TEXT QUOTED STRI NG Transactions........ 255
Figure D-7. Two WRI TE TEXT QUOTED STRI NG Transactions........ 256

Figure D-8. A WRI TE TEXT QUOTED STRI NG Transaction.............. 257
Figure D-9. Two WRI TE TEXT QUOTED STRI NG Transactions........ 257
Figure D-10. A WRI TE TEXT QUOTED STRI NG Transaction 259
Figure D-11. TwWoWRI TE TEXT | NTEGER Transactions................... 261
Figure D-12. AVRI TE TEXT | NTEGER Transactioncccceeuvnee. 261
Figure D-13. TWoWRI TE TEXT | NTEGER Transactions................... 262
Figure D-14. AWRI TE TEXT OCTAL Transaction..........ccccceevvrvvenenne. 264
Figure D-15. AWRI TE TEXT OCTAL Transaction..........cccccevvevvennenne. 265
Figure D-16. A VWRI TE TEXT HEX Transaction.........cccceeeevevrveeeennenne 266
Figure D-17. AVRI TE TEXT HEX Transaction.........cccceeeevvvrvveeennenne. 267
Figure D-18. Three WRI TE TEXT REAL Transactions...........cccceeuenee. 268
Figure D-19. ThreeWRI TE TEXT REAL Transactions...........cccceeuenee. 269
Figure D-20. Three WRI TE TEXT REAL Transactions...........cccceeuenee. 269
Figure D-21. A WRI TE TEXT COMPLEX Transactioncccceeueenee. 270
Figure D-22. Two WRI TE TEXT PCOVPLEX Transactions................. 272
Figure D-23. A WRI TE TEXT PCOVPLEX Transaction...........c.ccc.c..... 272
Figure D-24. TWOWRI TE BYTE Transactions.........c.ccceeveeeveseesneennnn. 276
Figure D-25. TWO WRI TE CASE Transactions.........c.ccceeveeeveseesneennnnns 277
Figure D-26. Quoted and Non-Quoted Data..........cccceevveeeciecieceennnne 292
Figure D-27. Datafor READ TOKEN.t 295
Figure D-28. Datafor READ TOKEN.vuu.. 297
Figure D-29. Datafor READ TOKEN., 298

Contents-12

Tables

Table 5-1. Editing Transactions WithaMouse.........c.cccceeeecveeveecieenen, 82
Table 5-2. Editing Transactions With the Keyboardcccccuvenneeee. 83
Table 5-3. Typical Data Field ENtHescccevevecerce e, 86
Table 5-4. ESCape CharaCters ccccccevieeviereve et se e 87
Table 5-5. Summary of Transaction-Based Objectsccceeeeeneee 103
Table 5-6. Summary of Transaction TYPES .evcvveevciecie e 104
Table 5-7. Range of Integers Allowed for Socket Port Numbers......... 127
Table 7-1. Conversions from Automation to HP VEE Data Types......184
Table 7-2. Conversions from HP VEE to Automation Data Types...... 185
Table 9-1. Problems, Causes, and SOIULIONS..........coveveeeeeeeeeeeeeeeeeeeeees 198
Table C-1. ASCI 7-Dit COUESccerieerieeeeeee e 236
Table D-1. Summary of Transaction TYPEScccceveevresereieeenieeneeens 244
Table D-2. Summary of 1/0 Transaction Objects.........ccccoceevievrceennnne 245
Table D-3. WRI TE Encodings and FOrmats............cccceeeciecceeenieeseesienn, 247
Table D-4. Formatsfor WRI TE TEXT Transactions.........ccecceveeveeneene. 249
Table D-5. Escape CharaCters........ccocveveevieeiiee s e e seeeseesiee e 259
Table D-6. Sign PrefiXeS......coiciiiiee et 262
Table D-7. Octal PrefiXeS......coviieieieeee e 264
Table D-8. Hexadecimal PrefiXes.........cooveevieieeniene e 266
Table D-9. REAL NOLaLIONS.........ceieierieeesie e 268
Table D-10. PCOVPLEX Phase UNits.........ccovveeninene e 272
Table D-11. READ Encodings and FOrmats............cccoceecveerieenieeseeesinnnns 286
Table D-12. Formats for READ TEXT Transactions..........cccccceevveeneene. 287
Table D-13. Suffixesfor REAL NUMDEXS..........ccoovvovieeiinene e 310
Table D-14. | OSTATUS VAIUESooeeeeeteeecteectee ettt eaens 319
Table D-15. Summary of EXECUTE Commands...........cccceeeeevueennenne. 320
Table D-16. EXECUTE ABORT HP-IB ACtiONS........cccoeoeeneeiencnreeenees 324
Table D-17. EXECUTE CLEARHP-IB ACtiONS........cccoeeeneienenrreenees 324
Table D-18. EXECUTE TRI GGER HP-IB ACLIONSccceeveeeieienees 325
Table D-19. EXECUTE LOCAL HP-IB ACtiONS........ccoeeeeeneeienesrneenens 325
Table D-20. EXECUTE REMOTE HP-IB ACLIONS......cccccooeeireeienenieene 325
Table D-21. EXECUTE LOCAL LOCKOUT HP-IB Actions................... 326
Table D-22. EXECUTE CLEARVXI ACHONS......cccovoeiiieeeeeee e 327
Table D-23. EXECUTE TRI GGER VXI ACLIONS.......ccccveeeeeenirsereenees 327
Table D-24. EXECUTE LOCAL VXI ACHONS......cccoveieeeeeeiese e 327
Table D-25. EXECUTE REMOTE VXI ACIONS......ccoceivieeeeiee e 328
Table D-26. SEND BUS COMMANGS........cccorvereereeeierienieseeeesieeeeneesee e 332

Contents-13

Contents-14

| ntroduction

I ntroduction

About ThisManual

This manual gives detailed information about using advanced features of
HP VEE. This manual is meant to be used as needed, rather than read from
beginning to end.

Note Throughout this manual, references to HP VEE apply to both HP VEE for
HP-UX and HP VEE for Windows except where noted otherwise.

2 Chapter 1

Running Examples

Example Directories

Introduction
HP VEE Example Programs

HP VEE Example Programs

HP VEE includes many examples programs to help you understand

HP VEE. HP VEE also includes a library of objects that you can “Merge"
into your programs. The example programs and library objects are installed
as part of the normal HP VEE installation process.

Using the Examples

The examples referenced from the manuals are included éx éngl es/

manual directory (with file names likeanual 01. vee, etc). Other

examples, not referenced in any of the manuals, are available to illustrate
specific HP VEE concepts, or to illustrate solutions to engineering problems.
To help you find the example you want, theanpl es directory is divided

into several subdirectories.

You load and run example programs usingHélep menu. First, click on

Hel p O Open Exanpl e on the menu bar. This presents a list of
subdirectories which group similar examples together. Double-click on the
desired subdirectory to see the list of available example programs in that
group. Scroll through the list until you find the desired example. Click on
the example name, then click 0K to open the program. You will be
prompted to save the any existing program in the work area. To run the
program, press theun button on the tool bar.

You can also usEi | e 0 Cpen to load HP VEE examples.
For HP VEE for Windows, the default directory is:
C.\Program Fi |l es\ Hew ett - Packar d\ VEE 5. 0\ exanpl es\

For HP VEE for HP-UX, running on HP-UX 9.x the examples are installed
in subdirectories under:

/usr/1lib/veetest/exampl es/
For 10.x, the directory is:

/ opt/ veet est/ exanpl es/

Chapter 1 3

Introduction
HP VEE Example Programs

Using Library Objects

The object library provides objects that you can merge into your own
program. Just select Mer ge from the Fi | e menu and alist box will appear
for the appropriate library directory:

C:\Program Fi | es\ Hew ett - Packard\ VEE 5. 0\ | i b\
-or-

lusr/libl/veetest/lib/
-or-

[opt/veetest/lib/

Most of the library objects are UserObjects that encapsul ate individual
objects. You can create your own UserObjects for the library, but you must
savethem inthecont ri b subdirectory (HP-UX only):

lusr/libl/veetest/|ib/contrib/
Or
/opt/veetest/lib/contrib/

(You can't writeto thel i b directory unless you are logged on as "root" on
HP-UX platforms.)

Thecont ri b subdirectory is empty at installation — it provides a place for
your own library of "contributed" objects.

There is another subdirectory unéiéb, namecconvert . This

subdirectory contains formula objects that you iainge into your

program. Each of these objects performs a useful conversion function such
as degrees to radians. The files are located in:

C.\Program Fi | es\ Hew ett - Packard\ VEE 5. 0\l i b\ convert\
_Or-

fusr/lib/veetest/lib/conversions/
Or

[opt/veetest/|ib/conversions/

4 Chapter 1

Variables

Note

Variables

There are two types of variablesin HP VEE, undeclared and declared. Both
types of variables can contain any data type, including complex datatypes
such as waveforms and records. They can also be any data shape, including
scalars and arrays.

For information about using variables with ActiveX automation objects and
controls, see Chapter 7, “Using ActiveX Automation Objects and Controls,”

About Undeclared Variables

Undeclared variables are the easiest to use, but execute slower and do not
allow scoping. Undeclared variables include the following:

B Global variables that can be used anywhere in the program. They are
created with th&et Vari abl e object. They are deleted before the
program is run if th@®el et e Vari abl es at PreRun property is set.
Global variables must be created before they can be accessedGéa the
Vari abl e object or used in expressions, or else your program will
generate an error.

Undeclared global variables are useful if you don't know what data type
or shape your values will be. Also if the values may change the type or
shape, use an undeclared global variable. If you want a scoped variable
(i.e. local), then use declared variables (see “About Declared Variables”
on page 7).

B Temporary variables that are used onlyan nul a objects. To create a
temporary variable, such asp, in aFor mul a by adding an output
terminal. For example, to swap the values input in the terménaisib,
use the temporary variabiep. The expression would look like
t np=a, a=b, b=tnp;

For more information about temporary variables,/Aeg gnment in
HP VEE Help underRef erence O Math Functions and
Operat ors.

6 Chapter2

Variables

B Terminal names that are used as variables within objects (such asin
transaction or For nul a objects).

About Declared Variables

Declared variables are defined before they are used. They have the
additional feature of scoping, which allows HP VEE to run faster because
the data type and shape are known before run time. However, if you attempt
to set adeclared variable with values that are different than the data type or
shape of the values set in the declaration, the program will error.

To declare avariable, usethe Dat a [0 Decl are Vari abl e object. When
placed in acontext, it declares the variable before any of the other objects
execute. When the variable has been declared, it has no value until it is set
viaaSet Vari abl e or aFor nul a object.

The scope of a declared variable must be specified in the Decl ar e
Vari abl e object. The scopings are as follows:

B d obal - Thevariable can be used anywhere in the program.

B Local to Context - Thevariablecan only beusedinasingle
UserObject or UserFunction, or in Main. This variable can be used in the
context that the Decl are Vari abl e objectisin, and in UserObjects
nested inside the context. The variable cannot be used in UserFunctions
called from the context.

B Local to Library - Thevariable can only be used within the library
of UserFunctionswherethe Decl ar e Vari abl e object isused.
Decl are Vari abl e must be located in one of the UserFunctions.

You cannot define multiple variables with the same name and scope. If this
happens, you will get an error.

Chapter 2 7

Naming Precedence

Variables

About Naming

You can use any valid variable name for avariable. Thefirst character must
be aletter. Letters, numbers and the underscore character may be used in the
rest of the name. Variable names are not case sensitive (uppercase and
lowercase |etters are equivalent). Special characters, including spaces, are
not allowed.

To retrieve the value of the variable, you must use the name that you
specified when the variable was declared or set.

When Conpatibility MdeinDefault Preferences issetto

St andar d, some hames must be unique. See Appendix A, “Using the
Compatibility Mode,” for information about using variable names in

Standard mode. Whetonpati bility Mde is setto VEE 4 or VEE 3

mode, the question of precedence comes up when you have named a variable
the same name as another variable. The order of precedence (from highest to
lowest) is:

1. Input terminal name (such as iff@ nul a or a transaction object)

2. Temporary variable (as inFar mul a object)

3. Local to Context declared variable

4, Local to Library declared variable

5. d obal declared variable

6. Global undeclared variable

In other words, if you have two variables with the same name in an object,
there is a conflict. The variable that has the highest precedence is used.

8 Chapter2

Variables

Setting I nitial Values

You must have set initial values before accessing any variables or HP VEE
generates an error.

—| Setvariable | |

Name

Data | = iopaia

—| Alphaiumeric | «
012
1: 34

—| Getvarable | | 222
Name 31
| glokbalé, -EEEd d: B

Figure 2-1. A Simple Variable Example

TheSet Vari abl e must set the global variable beforethe Get Vari abl e
attempts to retrieve it. To ensure this, the sequence output pin of the Set
Vari abl e object is connected to the sequence input pin of the Get

Vari abl e object. If thisisnot done, the Get Var i abl e may try to access
anon-existent global variable, and an error will occur.

If the property Del et e Vari abl es at PreRun isnot set, you may not
receive an error and may receive old datainstead.

When declared variables are created, they are not initialized and must have a
value set in them before they are accessed viathe Get Var i abl e object or
used in expressions, or else your program will generate an error. You set
valuesviathe Set Vari abl e object or by using the For mul a object.

Chapter 2 9

Variables

If the variable is an array or arecord, when using the For mul a object, you
must set the values of the entire array or record before trying to access any
of the elements. The following example shows two different ways to

initialize values from a For mul a object.

= Declare Wariable = = EarlE = T s
Name: | giopall [oiobalt = [0, 0,0,0,0] || Resuthy [0:80
Scope; [Gilohal | 1 10
Type: [Real | —| Getvariahle || é E
Num Dims: | 1 | Mame :
Data | 4.0
[giohar
—| Declarevariable | <] || Formuia 4] =L Alphahiumeric | «
MBS [giobaiz Jglobal2 = ramp(s, 0, 0) | Result ? E
Scope: | Global =] 1 50
Type: [rea =l —| Getvariable || g
) Marne | :
Num Dirns: | 1 vl Data 4.0
[giobalz !

Figure 2-2. Setting Array Values

10

Chapter2

Accessing Variable Values

Variables

Once you have named a variable, you can access its value as many times as
you want in your program. You can use several methodsto retrieve the
variable value. In the following example, the value stored in the global
variable gl obal Aisretrieved oncewithaGet Vari abl e object, a second
time by including the name gl obal Ainan expression in aFor nul a object,
and athird time by including the name gl obal Ain atransactioninaTo

Fi | e object:

—| setvariahle

| 4

Mame
 Data | [globalA

—| Get‘variahle

]

Mame

| globals

—| Alphanumeric | « ||

0: 12 o
1. 34
2022
31
4. 6 -

—| Alphanumeric | «|

=| Formula =
|surt(glubalA) Result
= To File =
To Flle: friyFile |

¥ Clear File At PreRun & Open

YWRITE TEXT globala

0: 1 -
1.6
212
3: 22
4: 34 -

Figure 2-3. Accessing a Variable Multiple Ways

Note You can include the name of any global variablein any expression in a
For mul a object, or in any other expression that is evaluated at run time.

Chapter 2

11

Variables

Deleting Variables

To improve memory usage, usethe Del et e Vari abl e object to free up
memory space when a variable is no longer needed. When undeclared
variables are deleted, their values and definitions are both deleted. When
declared variables are del eted, the values are reset to uninitialized values, but
the definition remains.

When you set Del et e Vari abl e toBy Name, the closest variable of the
specified name is deleted. The closest variable is defined by the precedence
listed in “Naming Precedence” on page 8.

When you sebel et e Vari abl e toAl |, all declared and undeclared
variables in all scopings are affected, even the variables that are in imported
libraries. Declared variables are uninitialized and undeclared variables are
deleted (as described previously).

To delete all variables before each execution of the program, Belect]

Def aul t Pref erences and click on the check b@el et e Vari abl es

at PreRun. If this check box is not selected, the values of all variables will
remain and the declarations of declared variables will not reinitialize the
values

Using Variablesin Libraries

Because only UserFunctions are loaded when the library is imported, when
you useDecl are Vari abl e objects, you must put them in one of the
UserFunctions, not in theai n window of the library.

When a variable is scoped aS§labal , it is only used in the local program.
It can not be used in any Remote Function that is called.

When a library is imported, all variables declared Pgal are Vari abl e
objects) in the imported UserFunction are defined at that time for the scope
specified. For example, if the variable is scoped @soaal , it can be
accessed from any part of the program, until the library is deleted. When a
library is deleted, all variables declared in its UserFunctions are deleted as
well.

12 Chapter 2

Using Records and DataSets

Using Records and DataSets

This chapter introduces two concepts: the Record data type and the DataSet,
whichisacollection of Record containers saved into afilefor later retrieval.
There are several HP VEE objects that allow you to create and manipulate
records, including: Recor d, Bui | d Record, UnBui | d Record, Mer ge
Record, SubRecord, Set Fiel d,and Get Fi el d. All of these objects
are located under the Dat a menu.

TheTo Dat aSet and Fr om Dat aSet objects allow you to store and
retrieve records to and from DataSets; they are located under the | / O menu.

14 Chapter 3

Using Records and DataSets
Record Containers

Record Containers

A container of the Record data type has named fields which represent data.
You can have as many named fields as you like in arecord. Each field can
contain another record, ascalar, or an array. Let'slook at a simple record,
created with the Recor d object.

The Recor d object allows you to create records by manually entering a
value for each field. Just configure the Recor d object as a scalar (array
elements = 0) or as an array (array elements = non-zero) with the

Pr operti es dialog box, accessed from the object menu. The Recor d
object in the following example is configured as a record array with four
array elements. The record consists of five fields: the Text fields (Nane,
Addr ess, and G t y), and the Int32 fields (Enpl No and Zi p). The Record
object allows you to step through the record, from one array element to the
next, with theFi r st , Pr ev, Next , and Last buttons. You edit each field as
you go.

Chapter 3 15

Using Records and DataSets
Record Containers

= Recard =

‘ | 0 in: [0 .. 3]
Field name “alle

Mame | Hohn Smith

Emplia ||555333

Address ||4m E. First 5t.
City ||Centra| City, USA,
Zip ||54321

First | Prev | | Nest | Last

=] AlphaMumeric =
0 {"John Smith", 255333, "401 E. First 56", "Central City, USA", 54321}

1:4"Don Jones", 554433, "9000 SE County Rd. 12", "Central City, USA", 54321}
20 {"Susan Smith", 332244, "121 Second St.", "Central City, USA", 34321}
30 {"Joe Baker", 121212 "854 N. Apple 56", "Middletown, USA", 54322}

Figure 3-1. A Simple Record Container

When the program is run, the entire record is output on the Recor d output
pin. The Al phaNuner i ¢ display shows the entire record, with four array
elements (0 through 3), each consisting of five record fields enclosed in
braces ("{}").

16 Chapter 3

Using Records and DataSets
Accessing Records

Accessing Records

The following examples show how to access arecord and extract individual
fields.

Usethe Get Fi el d object to extract an individual field from the record.
Get Fi el dislocated under Dat a [0 Access Recor d. Inthe following
example Get Fi el d objectsare used to extract the entire Name and Enpl No
fields: Notethat the Get Fi el d objectisreally just aFor nmul a object titled
rec.field.

—| AlphaMumeric | -
0 John Smith
- Record = i
| = | rec field = 1 Don Jones
. — rec | [Rec[*l.Name |Result 4
| [0 in: [0 3] | = 2: Susan Smith
Field name walue 3 Joe Baker
MName |[ahn Smith
EmplMo 555333
|| -
Address |07 E. First t. —| Alphahumeric | «
city |[Central City, USA | - o 0: 555333
= rec fie z
Zip ||54321 1. 854433
— rec | [Rec[*l.EmpiNG |Resu\t =
First | prev | Mest | Last | 20332244
3121212

Figure 3-2. Retrieving Record Fields with Get Field

Usethe"dot" syntax to accessindividual fields, for example: Rec[*] . Nanme
and Rec[*] . Enpl No. Thissyntax is described in detail in

Mat hematical |y Processing Data [General Concepts under
Tell Me About in HP VEE Help.

Rec[*] . Narre means "get the Nane field from the record on the Rec input
pin." This syntax can be used in an expression in aFor mul a object, or in
any other expression that is evaluated at run time. For example, you could
use thissyntax in atransactioninthe To Stri ng object.

Chapter 3 17

Using Records and DataSets
Accessing Records

Usethe syntax Rec[1] . Nane and Rec[1] . Enpl No to obtain just the
second element ("element 1") of each field:

Record =

| [0 in: [0 .. 3] |

Field name

Walue

Name HW
Empio_|[55333 |
Address |[OTE. Firstst |

city |[Central City, USA__|
F I | ZE

First | Prewv | Mext | Last |

k

—| AlphaNumeric

rec field =

— rec IRec[1].Name |Resun

——

Don Jones

k

—| AlphaNumeric

rec field =

— rec

IREC[1].EmpIND | Result

—|

554433

Figure 3-3. Using Array Syntax in Get Field

18

Chapter 3

Note

Using Records and DataSets
Accessing Records

To retrieve severa or all fields from arecord use the UnBui | d Record
object, as shown in the next example:

—| MameList [« —| Type List | =
0: Mame 0: Text
= Record [= 1: EmpiNg 1: Int3z
‘ 0 T ‘ 2. Address 20 Text
I [0 3] 3 City 3 Text
Field name valle 4 Zip 4. Int32
Mame ||30hn Smith
Empiho_| [555333 ~ MName |-
GOTE Frstst ~| UnBuild Recard |+ | 0: John Smith
Address | 01 E. First St. Narme List 1- Don Janes
City ||Centra| City, USA Type List [2° SUsan Smith
Zip |54321 MName 3. Joe Baker
First | prev | Nest | Last | Recard Datal | EmpiNo
Addrass
City —| EmpiNo | =
Zip 0: 555333
_] 1: 554433
20332244
I 121212
= Zip |- =] City = =] Address =
0: 84321 0: Central City, USA 0: 401 E. First 5t.
1. 54321 1. Central City, USA 1: 9000 SE County Rd. 12
254321 20 Central City, USA 2121 Second St
T 547322 3 Middletown, USA 3888 M. Apple St

Figure 3-4. Retrieving Record Fields with UnBuild Record

The UnBui | d Recor d object not only alows you to add outputs for every
fieldin the record, but provides Nane Li st and Type Li st outputs. These
outputs list the name and type of each field in the record.

The program is saved in the file manual 38. vee inyour exanpl es
directory.

Data cannot be automatically converted to and from the Record data type.
For example, to send Record datainto a Real input terminal, you must
extract the field from the Record with the Unbui | d Recor d object, or use
Get Fi el d with the Rec. A syntax as described previously.

Chapter 3 19

Using Records and DataSets
Programmatically Building Records

Programmatically Building Records

The Recor d object is useful to create and edit simple records, however it is
cumbersome to create large records. You also may want to create a record
from existing data. In such cases, you useBui | d Recor d to build arecord.

When you build arecord from individual data components with Bui | d
Recor d, you must define the data shape of the output Record container. The
Bui | d Recor d object givesyou two Qut put Shape choices: Scal ar and
Array 1D. Inmost casesyou will find that Scal ar, the default, isthe
appropriate choice for Qut put Shape.

The following example shows the difference between Scal ar and
Array 1Din theoutput record built from two input arrays:

= Text [« = Build Record 1]
- First

- Output Shape:
D001: Second & | OututsShape: | o |
0002; Third —t 8 _ scalar |
0003 Fourth
0004: Last L
d L = Alphalumeric =
{=Text Array 1D>, <Real Array 1D>}

| AlphaMumeric |«

- 0: {"First", 1}
=] Build Recard =) 1 ('Secanch, 2)
ﬂ Output Shape: = 2 ("Third", 3}
5| _ AmayiD | I s prourtne 4y
4 {'Last", 5)

Figure 3-5. The Effect of Output Shape in Build Record

In the figure above, when Scal ar is selected, the output record is a scalar
record consisting of two fields, each being one of the input arrays. On the
other hand, when Array 1Disselected for the same input data, the output
record isarecord array with the same number of elements as the two input
arrays. The datais matched, element for element, in the output record.

20 Chapter 3

Using Records and DataSets
Programmatically Building Records

If two input arrays have different numbers of elements, only Scal ar is
alowed asthe Qut put Shape. To create an Array 1D output record, all
input arrays must have the same number of elements or an error will occur.
However, you can mix scalar and array input data, as shown in the next
example:

—| Build Record =]
A | Output Shape:
B Scalar |MT
L_| Alphalureric =
{<Text Array 1D=, 1}
—| Real| «|
I —| AlphaMumeric | -
0 {"First", 1
= Build Record 1=/ i,,SEwr}df "
Output Shape: T 1)
—iA frra 1DF3 Recard [—{2 {"Third", 1}
— B 4” 3 {"Fourth”, 1}
4: {"Last", 1}

Figure 3-6. Mixing Scalar and Array Input Data

In this case, the scalar Real value 1 isrepeated five timesin the output
record array if Array 1Disselected.

Editing Record Fields

You can usethe Set Fi el d object to modify afield in arecord. The
Set Fi el d object is an assignment statement consisting of aleft-hand
expression set equal to aright-hand expression. The left-hand expression
specifies the field that you want to modify, and the right-hand expression

Chapter 3 21

Using Records and DataSets
Programmatically Building Records

specifiesthe new data. The right-hand expression is evaluated and the record
field specified by the left-hand expression is assigned that value.

—| Alphahumeric |«
0421
=| Build Record [2.1
1 (4, 1)
A | output Shape: | 2 7.1)
Record '
=
g Array 10 32, 1)
4: (9, 1)
—| Real |]
I —| AlphaWumeric |«
02, 1
=| rec field = b =
1: {330, 1)
Rec |
~| Real| <] Rec[1]A=A10 Rec —{2 {7, 1}
Fa | A | 32 1)
4 (9, 1)

Figure 3-7. Using Set Field to Edit a Record

In this example, afive element record array is built with Bui | d Record.
TheSet Fi el d object (titledrec. fi el d = b) specifiesthat the field
Rec[1] . A(the Afield of record element 1) isto be assigned the value A* 10.
Note that there is potential for confusion here. In the |eft-hand expression,
the Ain Rec[1] . Arefersto the A field of the record, however, in the right-
hand expression, the Ain A* 10 refers to the value at the A input of the

Set Fi el d object. This exemplifies the need for good names for variables
and Record fields.

The variable A has the value 33, so A* 10 is evaluated as 330, which is
assigned to Rec[1] . A, as shown in the figure. Note that none of the other
values of the record have changed.

Notethat Set Fi el d isaFor mul a object, see Assi gnment inMat h
Functions and Qper ators, under Ref er ence in HP VEE Help for
more information.

22 Chapter 3

Using Records and DataSets
Using DataSets

Using DataSets

Aswe have seen, HP VEE data (including waveforms) can be built into
records and later retrieved. But you can also store recordsinto afile, called a
DataSet.

A DataSet is a collection of Record containers saved into afile for later
retrieval. The To Dat aSet object collects Record data on itsinput and
writes that datato a named file (the DataSet). Let's look at an example of
how thisis done.

= Function Generatar =

Function | Sine 'i
Freguenc 100

quency | = Build Record =
Amplitude | 1
DcOffset | 0 Funs | Sinewave | Output Shape:
Phase | Deg =] | o

Time Span 20m | Record |
Mum Points 266 Scalar |
= Moise Generator =]
Amplitude [05 =l 1o Data Set =l
i ; Tao DataSet: rmyData |
Time Span 20m noise YWF input
Num Poirits 256 ¥ Clear File At PreRun

Figure 3-8. Using To DataSet to Save a Record

Two waveforms, a sine wave and a noise waveform, are output to the Bui | d
Recor d object, which builds arecord. The record is then output to the To
Dat aSet object, which writes the datato the file nyDat a. Note that Cl ear
File at PreRun ischecked sothat any data previously stored in myDat a
is cleared.

Chapter 3 23

Using Records and DataSets
Using DataSets

Once the data has been saved as a DataSet, you use Fr om Dat aSet to
retrieve the record, which can then be unbuilt if desired. The following
program shows this technique.

From Data Set

From DataSet: myData |

Get records: One

Search Specifier: (eg; Rec.A<10)

1

Sine Wave =

Y harme

Tracel

1.8

-1.5

4

—| UnBuild Recard | «|
Mame List
Type List
Record Data It
Sinevave i
Moise L
+
- Sine + MNoise =
15
Y harme
Tracel . T
4] >
i 20m
Hhame

Moige =

Y name

Tracel

-1.5

| v

4|

Figure 3-9. Using From DataSet to Retrieve a Record

TheFr om Dat aSet object retrieves the record data from nyDat a, and
outputs the datato Unbui | d Recor d, which separates out the sine wave
and noise data fields. In this example, the sine wave, the noise waveform,
and the sum of the two waveforms are each displayed in a separate XY

Tr ace object.

The pair of programs of this last example are saved in the files
manual 40. vee and manual 41. vee inyour exanpl es directory.

24

Chapter 3

Using User-Defined Libraries

Using User-Defined Libraries

HP VEE supports three kinds of user-defined functions:

B UserFunctions
B Compiled Functions
B Remote Functions

The methods for creating each type of user-defined function, and for using it
in the HP VEE program, are similar. All of these functions are called using
the Cal | object, or from certain expressions such asin Sequencer or

For mul a objects. You can use any of the three kinds of user-defined
functionsin alibrary. To use alibrary of functions, generally follow these

steps:
1. Import thelibrary.

UsetheDevi ce [0 | nport Library object. Select thelLi brary
Type (User Functi on, Conpi | ed Functi on, or Renot e Functi on)
and fill in the appropriate fields. Specific information about these fields
is explained in the associated section in this chapter.

2. Call one or more functions that are contained in the library.

UsetheCal | , For mul a, or Sequencer objectsfrom the Devi ce menu.
You can also use other objects that expressions at run time, such as| f /
Then/ El se or To Fil e. If you want to have multiple values returned
from the function, you must use aCal | object.

3. Deletethelibrary.

If memory management or program execution speed is a concern, use the
Devi ce O Del et e Li brary object to programmaticaly free the
library from memory. Otherwise the libraries are automatically deleted
when the program ends.

Specific information about using the different kinds of librariesislistedin
the following sections.

26 Chapter4

Using User-Defined Libraries
About UserFunctions

About User Functions

UserFunction is a user-defined function selected from the Devi ce menu. It
can aso be created from an existing UserObject.

The advantage of creating a UserFunction over using a UserObject is that
you can call asingle UserFunction several timesin your program. Thus,
thereis only one UserFunction to edit and maintain, rather than several
instances of a UserObject. A UserFunction can be created and called locally
within an HP VEE program, or it can be saved in alibrary and imported into
aprogram with thel nport Li br ary object.

UserFunctions, when executed in Standard or VEE 4 mode, will time-slice
when called from Cal | , For mul a, | f/ Then/ El se, or Sequencer objects
(only from the Funct i on field). UserFunctions will not time-slice when
calledfromaTo File, To String,or similar object, or if the formulais
supplied viaacontrol pin.

For information about creating, editing, and calling a UserFunction, refer to
How Do | in HP VEE Help.

Converting Between User Objects and User Functions

To convert a UserObject into a UserFunction, select Make User Functi on
from the UserObject’s object menu. The UserObject window will be
replaced by a UserFunction window with the same input and output
terminals. The UserObject object is replaced by a UserFunction Cal |
object.

To reconvert the UserFunction back into a UserObject, select Make

User Obj ect from the object menu of the UserFunction window. Any calls
to the UserFunction remain (you'll have to manually delete them), but the
UserFunction is automatically converted into a UserObject.

Chapter 4 27

Using User-Defined Libraries
About UserFunctions

Calling a User Function from an Expression

You don't need to usethe Cal | object to call aUserFunction. In fact you can
call aUserFunction from an expression in aFor nmul a object, or from any
expression evaluated at run time such asfrom a Sequencer object. The
following program demonstrates several waysto call a UserFunction.

—| ampl |« ~| Setvariahle | «|
0435
! Marme —| ¥ Trace ||
| — Data
j [ampl
= Call Function =
| — Function MName
—A¥ Y+Moi
5 [noiselUF [eitorse]
- XY Trace | 4|
- = Formula =
TAA S
LAVA Inipty ¥ | [abs(noiseUF () Result |
Function Generatar
= Farmula =
—| ¥ Trace a
i v |/JabsinoiseUF(v))-1.5 Resultq

Figure 4-1. Calling a UserFunction from Expressions

In the program, the Cal | object callsthe UserFunction noi seUF and returns
a sine wave with an added noise component. The expression

abs(noi seUF(Y)) inthefirst For mul a object returns the absolute value
of the waveform returned by the UserFunction. Thus, the displayed noisy
sinewaveisrectified in the positive direction. The expression

abs(noi seUF(Y)) - 1. 5 inthe second For mul a object also callsthe
UserFunction, but also adds a negative dc offset to the waveform. Note that
the sequence pins are used to ensure correct propagation, because the
UserFunction uses the global variable.

28 Chapter4

Using User-Defined Libraries
About UserFunctions

This program is saved in the file manual 43. vee inyour exanpl es
directory.

The ability to call a UserFunction from an expression is very useful —
especially when you include such an expression in a transaction in the
Sequencer object. Refer to Chapter 6, “Using the Sequencer Object,” for
more information about this topic.

Creating a User Function Library

So far we have looked at local UserFunctions, which are created and used
within the same program. However, you can create a library of multiple
UserFunctions which are stored externally, and later imported into a
program.

To create a library of UserFunctions, create the individual UserFunctions in
the empty HP VEE work area, and then save to a file. For example, to create
a library of two UserFunctionsyRand1 andmyRand2 (which add random
numbers to an input value), you would start by creating two UserFunctions.

B myRand1

8 |
= Formula | -]
A | |E+1D Result o
—| Formula |-« |J/
ﬂ % IE+EI Result |

=] Farmula =
A | F\+QD Result

% |
Formula | = IJ
A
— IK+EF Result |

Figure 4-2. Creating UserFunctions for a Library

Chapter 4 29

Note

Using User-Defined Libraries
About UserFunctions

To create a UserFunction library, save the program containing the
UserFunctions.

Generally you want the program to contain only the UserFunctions, however
if there are other objects in the program (e.g. in Mai n), they will be ignored
when the library isimported.

Because only the UserFunctions are loaded when the library isimported, if
you useDecl are Vari abl e abjects, put them in one of the UserFunctions,
not in the Mai n window of the library.

To import the UserFunction library into your program, usethe | npor t
Li br ary object. The following program imports the library from the file
user _func_Ii b and callsthe UserFunctions nyRand1 and myRand2.

= Import Library =
Liorary Type | User Function =l
Library Name | myLibrary
File Name user_func_lib |
= Call Function =

—|Alphatumeric | -
Function Mame

ﬂ| nyRand 1 S 1.319

—|Reall «|

—

= Call Function =)

—|Alphatlumeric | -
Function Mame

A | | ryRand2 i 89.64

Figure 4-3. Importing a UserFunction Library

Thel nport Li brary object allowsyou to specify the type of library:
User Functi on, Conmpil ed Function, or Renote Function. Fora
User Funct i on library, you also specify aLi brary Nanme andFil e
Narme. TheFi | e Name field specifiesthe file from which to import the
library, user _func_li binthiscase. TheLi brary Name just specifiesa
local name by which thelibrary can beidentified within the program. Inthis

30 Chapter4

Note

Using User-Defined Libraries
About UserFunctions

case, | nport Li brary attachesthe namenyLi br ary to thelibrary
imported from the fileuser _func_Ii b. Thismakesit possible for the
Del et e Li br ary object to delete the library from the program.

This program is simple, so it isn't necessary to delete the UserFunction
library after itisused. However, in alarge program with callsto large
libraries, the ability to delete alibrary when you no longer need it, reduces
the memory requirements of the program.

You cannot edit the UserFunctions imported with Devi ce O | nport

Li br ary, but you can view their contents and set breakpoints for
debugging. To view imported UserFunctions, use the Pr ogr am Expl or er
oruseEdit [Edit User Functi on.

You can merge alibrary of UserFunctionsusing Fi | e 0 Merge Library.
Once the library is merged into your program, you can edit the individual
UserFunctionswith Edi t [0 Edit User Functi on.

Differences Between Merging and Importing

You can bring existing, external UserFunctions into your program in two
different ways.

B Importing UserFunctions
U Can be done programmatically or manually.
U Can be programmatically deleted after use (saving memory).

O Allowsyou to use UserFunctions from a single source. For example a
single set of common UserFunctions can be used by multiple HP VEE
programs. None of the HP V EE programs can change the
UserFunctions so the UserFunctions remain consistent, which
simplifies maintenance.

U Imported UserFunctions are not saved with the HP V EE program and
therefore saves disk space and improves load time.

Chapter 4 31

Using User-Defined Libraries
About UserFunctions

B Merging UserFunctions
U Isdonemanually (viaFil e O Merge Library).

U Allowsyou to make the UserFunctions a part of your program and
modify them as you need to.

U Merged UserFunctions are saved with the HP VEE program.

32 Chapter4

Note

Using User-Defined Libraries
About Compiled Functions

About Compiled Functions

The second type of user-defined function isthe Compiled Function, whichis
created by dynamically linking alibrary, writtenin C, C++, FORTRAN, or
Pascal, into the HP VEE process. A library of compiled functionsiscalled a
shared library on UNIX® and a dynamically linked library (DLL) on
Microsoft® Windows.

To use a Compiled Function, you:
1. Write the external program.

2. Create the DLL (Windows) or shared library (UNIX), and a definition
file.

3. Import the library and call the function from HP VEE.

4. Delete the library from HP VEE's memory when you're done.

Pascal shared libraries are supported only for HP 9000 Series 700
computers.

Basically, the methods for importing a Compiled Function library and for
calling the function are very similar to what was discussed for UserFunction
libraries. Thd nport Li brary object attaches the shared library to the

HP VEE process and parses the definition file declarations. The definition
file defines the type of data that is passed between the external library and
HP VEE. This file will be discussed later in this section. The Compiled
Function can then be called with t@al | object, or from certain objects

such agor nul a andSequencer. You'll find that creating a Compiled
Function is considerably more difficult than creating a UserFunction. Once
you have written a library of functions in C or another language, you need to
create the shared library and definition file for the program to be linked.

Before we look at the process of creating and using Compiled Functions,
let's look at some design considerations.

Chapter 4 33

Using User-Defined Libraries
About Compiled Functions

Design Considerations for Compiled Functions

There are several reasons for using Compiled Functions in your HP VEE
program. You can develop time-sensitive routines in another language and
integrate them directly into your HP VEE program by using Compiled
Functions. Also, you can use Compiled Functions as a means of providing
security for proprietary routines. Because Compiled Functions do not
timedlice (i.e. they execute until they are done without interruption) they are
only useful for specific purposes that are not available in HP VEE.

Although you can extend the capabilities of your HP VEE program by using
Compiled Functions, it is at the expense of adding complexity to the

HP VEE process. The key design goal should be to keep the purpose of the
external routine highly focused on a specific task, and to use Compiled
Functions only when the capability or performance that you need is not
available using an HP VEE UserFunction, or an Execut e Program
escape to the operating system.

You can use any facilities available to the operating system in the program
to belinked. These include math routines, instrument 1/0, and so forth.
However, you cannot access any of the HP VEE internal functions from
within the external program to be linked.

Although the use of Compiled Functions provides enhanced HP VEE
capabilities, there are some pitfalls. Here are afew key ones:

B HP VEE can not trap errors originating in the external routine. Because
your external routine becomes part of the HP VEE process, any errorsin
that routine will propagate back to HP VEE, and afailure in the external
routine may cause HP VEE to "hang" or otherwise fail. Thus, you need
to be sure of what you want the external routine to do, and provide for
error checking in the routine. Also, if your external routine exits, so will
HP VEE.

B Your routine must manage all memory that it needs. Be sureto
deall ocate any memory that you may have allocated when the routine
was running.

34 Chapter 4

Using User-Defined Libraries
About Compiled Functions

B Your external routine cannot convert data types the way HP VEE does.
Thus, you should configure the datainput terminals of the Cal | object to
accept only the type and shape of datathat is compatible with the
external routine.

B |f your external routine accepts arrays, it must have avalid pointer for the
type of datait will examine. Also, the routine must check the size of the
array onwhich it isworking. The best way to do thisisto pass the size of
the array from HP VEE as an input to the routine, separate from the array
itself. If your routine overwrites values of an array passed to it, use the
return value of the function to indicate how many of the array elements
arevalid.

B System |/O resources may become locked. Your externa routine is
responsible for timeout provisions, and so forth.

B |f your externa routine performs an invalid operation, such as
overwriting memory beyond the end of an array or dereferencing anil or
bad pointer, this can cause HP VEE to exit or error with a General
Protection Fault (MS Windows) or a segmentation violation (UNIX).

Importing and Calling a Compiled Function

Once you have created a dynamically linked library, you can import the
library into your HP VEE program with thel nport Li brary object and
then call the Compiled Function with the Cal | object. The processis very
much like that of importing alibrary of UserFunctions and then calling the
functions, as described at the beginning of this chapter.

Thel mport Li brary object was explained in the “UserFunctions”
section at the beginning of this chapter. To import a Compiled Function
library, selecConpi | ed Functi onintheLi brary Type field. Just as
for a UserFunction, thiei br ary Nane field attaches a name to identify the
library within the program, and th& | e Nane field specifies the file from

Chapter 4 35

Using User-Defined Libraries
About Compiled Functions

which to import the library. In addition, thereisafourth field, which
specifiesthe name of the Defi niti on Fil e:

~| Import Library =
Liorary Type | Compiled Function |
Library Mame | myLibrary

File Mame myFile |
Definition File myFile.h |

Figure 4-4. Using Import Library for Compiled Functions

The definition file defines the type of datathat is passed between the
external routine and HP VEE. It contains the prototypes for the functions.

Once you have imported the library with | nport Li brary, you can call
the Compiled Function by specifying the function namein the Cal | object.
For example, the Cal | object below calls the Compiled Function named
myFuncti on.

- Call Function =]
1 anySize Functian Name FetYalue |I

= | myF Linction iy ||

Figure 4-5. Using Call for Compiled Functions

You select a Compiled Function just as you would select a UserFunction.
You can either select the desired function using Sel ect Functi on from
the Cal | object menu or from the Functi on & Obj ect Browser (under
Devi ce O Function & Object Browser), or youcantypethenamein
the Cal | object. In either case, provided HP V EE recognizes the function,

36 Chapter4

Using User-Defined Libraries
About Compiled Functions

the input and output terminals of the Cal | object are configured
automatically for the function. (The necessary information is supplied by
the definition file) Or, you can reconfigure the Cal | input and output
terminals by selecting Conf i gur e Pi nout inthe object menu. Whichever
method you use, the HP VEE will configure the Cal | object with the input
terminals required by the function, and with aRet Val ue output terminal
for the return value of the function. In addition, there will be an output
terminal corresponding to each input that is passed by reference.

You can also call the Compiled Function by name from an expressionin a
For mul a object, or from other expressions evaluated at run time. For
example, you could call a Compiled Function by including its namein an
expression in aSequencer transaction. Note, however, that only the
Compiled Function'sreturn value (Ret Val ue intheCal | object) can be
obtained from within an expression. If you want to obtain other parameters
from the function, you have to usethe Cal | object.

Creating a Compiled Function (UNIX)

There are several stepsto the process of creating a Compiled Function. First
you must write aprogram in C, C++, FORTRAN, or Pascal (HP 9000 Series
700 only), and write adefinition file for the function. Then you must create a
shared library containing the Compiled Function, and bind the shared library
into the HP VEE process. Welll look at each step in turn. But firgt, let's look
at the structure of the definition file.

Chapter 4 37

The Definition File

Using User-Defined Libraries
About Compiled Functions

The Cal | object determines the type of datait should passto your function
based on the contents of the definition file you provide. The definition file
defines the type of data the function returns, the function name, and the
arguments the function accepts. The function definition is of the following
general form:

<return type> <functi on nane> (<type> <par amane>, <type>
<paramane>, ...) ;

Where:
B <return type>canbe int,short,| ong, doubl e, char*, orvoi d.

B <function name> can be astring consisting of an alpha character
followed by alphanumeric characters, up to atotal of 512 characters.

B <type>canbe int,short,|ong,doubl e,int*,char*,short*,
| ong*, doubl e*, char**, or voi d.

B <par ammane> can be astring consisting of an alpha character followed
by aphanumeric characters, up to atotal of 512 characters. The
parameter names are optional, but it isrecommended to include them. If a
parameter is to be passed by reference, the parameter name must be
preceded by the indirection symbol (*).

Thevdid return types are character strings (char *, corresponding to the
HP VEE Text datatype), integers (I ong, i nt, short, corresponding to the
HP VEE Int32 data type), and double-precision floating-point real numbers
(doubl e, corresponding to the HP VEE Real datatype).

If you specify "pass by reference” for a parameter by preceding the
parameter name with *, HP VEE will pass the address of the information to
your function. If you specify "pass by value" for a parameter by leaving out
the*, HP VEE will copy the value (rather than the address of the value) to
your function. You'll want to pass the data by reference if your external
routine changes that data for propagation back to HP VEE. Also, all arrays
must be passed by reference.

Any parameter passed to a Compiled Function by reference will be available
as an output terminal on the Cal | object. That is, the output terminals will

38 Chapter 4

Note

Buildinga C
Function

Using User-Defined Libraries
About Compiled Functions

beRet Val ue for the function’s return value, plus an output for each input
parameter that was passed by reference.

HP V EE pushes 144 bytes on the stack. This means that it allows up to 36
parameters to be passed by reference to a Compiled Function. Thiswould
aso imply that up to 36 long integer parameters, or up to 18 double-
precision floating-point parameters, may be passed by value.

For HP-UX, you must have the ANSI C compiler in order to generate the
position independent code needed to build a shared library for a Compiled
Function.

You may include commentsin your definition file. HP VEE allows both
"enclosed" comments and "to-end-of-line" comments. "Enclosed" comments
use the delimiter sequence/ * conment s*/ , where/ * and */ mark the
beginning and end of the comment, respectively.

"To-end-of-line" comments use the delimiting characters/ / to indicate the
beginning of a comment that runsto the end of the current line.

Now let'slook at an example of building an external routine. We'll use the C
language in this example.

The following C function accepts areal array and adds 1 to each element in
the array. The modified array isreturned to HP VEE on the Ar r ay terminal,
whilethe size of the array is returned onthe Ret Val ue terminal. This
function, once linked into HP V EE, becomes the Compiled Function called
in the HP VEE program shown in Figure 4-6.

Chapter 4 39

Using User-Defined Libraries
About Compiled Functions

/*

C code from manual 49.c file
*/
#i ncl ude <stdlib. h>

#i fdef W N32

define DLLEXPORT __decl spec(dl Il export)
el se

define DLLEXPORT

#endi f

/* The description will showup on the ProgramExpl orer when you sel ect
"Show Description" fromthe object menu and the Function Sel ection
dial og box in the snmall wi ndow on the bottom of the box.
*

/

DLLEXPORT char myFunc_desc[] = "This function adds 1.0 to the array
passed in";

DLLEXPORT | ong nmyFunc(long arraySize, double *array) { long i;
for (i =0; i < arraySize; i++, array++) { *array += 1.0; }
return(arraySi ze); }

The definition file for this function is as follows:

/*
definition file for nanual 49.c
*/

I ong nyFunc(long arraySi ze, double *array);

(Thisdefinition is exactly the same asthe ANSI C prototype definitionin the
Cfile)

You must include any header files on which the routine depends.

Thelibrary should link against any other system libraries needed to resolve
the system functionsit calls.

The example program uses the ANSI C function prototype. Thisisn't
necessary, but it makes things alittle easier to understand. The function
prototype declares the data typesthat HP VEE should passinto the function.
The array has been declared as a pointer variable. HP VEE will put the
addresses of the information appearing on the Cal | datain terminalsinto
this variable. The array size has been declared as along integer. HP VEE
will put the value (not the address) of the size of the array into this variable.
The positions of both the data input terminals and the variable declarations
are important. The addresses of the data items (or their values) supplied to

40 Chapter4

Using User-Defined Libraries
About Compiled Functions

the data input pins (from top to bottom) are placed in the variablesin the
function prototype from left to right.

Note that one variablein the C function (and correspondingly, one datainput
terminal inthe Cal | object) is used to indicate the size of the array. The
arraySi ze variable is used to prevent data from being written beyond the
end of the array. If you overwrite the bounds of an array, the result depends
on the language you are using. In Pascal, which performs bounds checking, a
run-time error will result, stopping HP VEE. In languages like C, where
there is no bounds checking, the result will be unpredictable, but intermittent
data corruption is probable.

Our example has passed a pointer to the array, so it is necessary to
dereference the data before the information can be used.

Thear r aySi ze variable has been passed by value, so it won't show up asa
data output terminal. However, here we've used the function’s return value to
return the size of the output array to HP VEE. Thistechnique is useful when
you need to return an array that has fewer elements than the input array.

Chapter 4 41

Creating a Shared
Library

Using User-Defined Libraries
About Compiled Functions

The following HP VEE program calls the Compiled Function created from
our example C program:

= Impart Librany =
Library Type | Compiled Function =l
Library Name | myLibrary
File Name fusrilibiveetestiexamples/manuaimanualag sl |
Ciefinition File fusrilibiveetestiexamples/manualimanualdd b |
[= o Trace r
= Function Generator = 4 . ¢ J
. : ¥ name L Co i
Function | Cosine vI —A : oo .
1 s o,
Frequency | 100 o ! . Jr' ;
WA ' Vot :
. \ [K s
Amplitude | 1 Tracel Vel \,, ;
— oo h H
DcOffset | 0 Func [t— .
Phase [Deg =] © = L
: Trace?2 4] [+]
Time Span 20m I b T
Mum Points 256 |
| Hname
| T
o J
= Call Function =
totSize(x) |—| arraySize Function Mame Retvalue —— .
Formula
| anay | I rmyFunc anay [—

Figure 4-6. Program Calling a Compiled Function

The examplein Figure 4-6 is saved in the file manual 49. vee in your
exanpl es directory. The Cfileis saved as manual 49. c, the definition file
asmanual 49. h, and the shared library asmanual 49. sl .

To create a shared library, your function must be compiled as position-
independent code. This means that, instead of having entry points to your
routines exist as absolute addresses, your routine's symbol table will hold a
symbolic reference to your function’s name. The symbol table is updated to
reflect the absolute address of your named function when the function is

42

Chapter4

Binding the Shared
Library

Using User-Defined Libraries
About Compiled Functions

bound into the HP VEE environment. It must be linked with a special option
to create a shared library.

Let’s suppose that our example C routineisin the file named dLi nk. c. To
compile thefile to be position independent, you use the +z compiler option.
You also need to prevent the compiler from performing the link phase by
using the - ¢ option. Thus, the compile command would look like this:

cc -Aa -c +z dLink.c

This produces an output file named dLi nk. o, which you can then link asa
shared library with the following command:

Id -b dLink.o

The - b option tellsthe linker to generate a shared library from position-
independent code. This produces a shared library named a. out .
Alternatively, you could use the command:

Id -b -0 dLink.sl dLink.o
to obtain an output file (through the use of the - o option) called dLi nk. sl .

HP VEE binds the shared library into the HP VEE process. All you need to
doisincludean | mport Li brary objectinyour program, specifying the
library to import, and then call the function by name (i.e., withaCal |
object). When | nport Li brary executes, HP VEE binds the shared
library and makes the appropriate input and output terminals available to the
Cal | object. Then you use the object menu choices from the Cal | object
(Configure Pinout andSel ect Functi on) to configurethe Cal |
object correctly. The shared library remains bound to the HP VEE process
until HP VEE terminates, or until the library is expressly deleted.

You delete the shared library from HP VEE either by selectingDel et e Li b
fromthel nport Li brary object menu, or by including the Del et e

Li br ary object in your program. Note, however, that you may have more
than one library name pointing to the same shared library file. In this case,
you usethe Del et e Li brary object to delete each library, but the shared
library remains bound until the last library pointing to it is deleted. However,
theDel et e Li b sdlectioninthel nport Li brary object menu will
unbind the shared library without regard to other | mport Li br ary objects.

Chapter 4 43

Note

Creating the DLL

Using User-Defined Libraries
About Compiled Functions

When HP VEE binds a shared library, it defines the input and output
terminals needed for each Compiled Function. When you select a Compiled
Function for aCal | object, or when you execute a Conf i gure Pi nout,
HP VEE automatically configures Cal | with the appropriate terminals. The
algorithm is as follows:

B Theappropriate input terminals are created for each input parameter to be
passed to the function (by reference or by value).

B Anoutput terminal labeled Ret Val ue isconfigured to output the return
value of the Compiled Function. Thisis always the top-most output pin.

B An output terminal is created for every input that is passed by reference.

The names of the input and output terminals (except for Ret Val ue) are
determined by the parameter names in the definition file. However, the
values output on the output terminals are afunction of position, not name.
Thus, the first (top-most) output pin is always the return value. The second
output pin returnsthe value of the first parameter passed by reference, and so
forth. Thisis normally not a problem unless you add terminals after the
automatic pin configuration.

Creating a Dynamic Linked Library (M SWindows)

HP VEE for Windows provides access to Dynamic Linked Libraries (DLL)
through the Cal | object and through formula objects. Only DLLs
specifically written for HP VEE will work because HP VEE does not
support 8-hit characters or 32-bit reals.

This section tellsyou how to call aDLL, not how to writeaDLL.

HP VEE version 3.2 and greater only calls 32-bit DLLSs, not 16-bit DLLs.

Create your DLL before writing your HP VEE program. Create your DLL
as you would any other DLL except that only a subset of C types are
allowed. (See “Creating the Definition File” on page 45.)

44 Chapter 4

Using User-Defined Libraries
About Compiled Functions

If you are using Microsoft Visual C++ version 2.0 or greater, the function
definition should be:

__decl spec(dll export) long nyFunc (...);

This definition eliminates the need for a. DEF file to export the function
fromthe DLL. Use the following command line to compile and link the
DLL:

cl /DWN32 $file.c /LD

/ LDcreatesaDLL. Use/ Zi to generate debug information. Notethe MS
linker links to the C multi-threaded Runtime Library by default. If you use
functions like Get Conput er Name() , you need to link against

Ker nel 32. | i b. Then the compilée/link line would look like:

cl /DWN32 file.c /LD /link Kernel32.1ib

Declaring DLL Functions. To work with HP VEE, DLL functions can be
declaredas__decl spec(dl | export) using Microsoft C++ version 2.0 or
greater. Thisapplication eiminatesthe need for a. DEF file. For example, a
generic function could be created as follows:

__decl spec(dl |l export) | ong generic Func(long a) {return (a*2); }

If you are not using Microsoft Visual C++, then the . DEF file contains:
EXPORTS generi cFunc

And the function definition looks like:

| ong generic Func(long a) {return(a*2);}

Creating the Definition File. The definition file contains alist of
prototypes of the imported functions. HP VEE usesthisfileto configure the
Cal | objects and to determine how to pass parameters to the DL L function.
The format for these prototypesis.

<return type> <nodifier> <function nane> (<type> <paramane>, <type>
<parammane>, ...) ;

Where:

M <return type>canbe int,short,|ong,doubl e, char*,orvoid.

Chapter 4 45

Parameter
Limitations

Using User-Defined Libraries
About Compiled Functions

B <function name> can be astring consisting of an alpha character
followed by alphanumeric characters, up to atotal of 512 characters.

B <nodifier>canbe_cdecl, pascal,or _stdcall.

B <type>canbe int,short,|ong,doubl e,int*,char*,short*,
| ong*, doubl e*, char**, or voi d.

B <par ammane> can be a string consisting of an apha character followed
by aphanumeric characters, up to atotal of 512 characters. The
parameter names are optional, but it isrecommended to include them. If a
parameter is to be passed by reference, the parameter name must be
preceded by the indirection symbol (*).

Examples.
Passin four parameters, return along:
| ong aFunc(doubl e *,|ong paran®, | ong *paranB, char *);
No input parameters, return a double:
doubl e aFunc();
Passin astring, return along:
| ong aFunc(char *aString);
Passin an array of strings, return along:

| ong aFunc(char **aString);

A DLL function pushes 144 bytes on the stack. This limitsthe number of
parameters used by the function. Any combination of parameters may be
used as long as the 144-byte limit is not exceeded. A long uses four bytes, a
double uses eight bytes and a pointer uses four bytes. For example, a
function could have 36 longs, or 18 doubles, or 20 pointers and 8 doubles.

46 Chapter4

The Import Library
Object

The Call Object

Using User-Defined Libraries
About Compiled Functions

Before you can useaCal | object or For mul a box to execute aDLL
function you must import the function into the HP VEE environment viathe
I mport Library object. Onthel nport Li brary object select

Conpi | ed Function underLi brary Type. Enter the correct definition
filename using the Def i ni ti on Fi | e button. Finally, select the correct
fileusingtheFi | e Name button. TheLi brary Nane button assigns a
logical name to a set of functions and does not need to be changed.

Before using aDLL function with the Cal | object you must configure the
Cal | object. The easiest way to do thisisto select Load Li b onthe

I mport Li brary object menutoload the DLL fileinto the HP VEE
environment. Then select Sel ect Functi on ontheCal | object menu.
HP VEE will bring up adialog box with alist of all thefunctionslisted in the
definitions file. When you select afunction, HP VEE automatically
configuresthe Cal | object with the correct input and output terminals and
function name.

You can also configurethe Cal | object manually by modifying the function
name and adding the appropriate input and output terminals. First, configure
the input terminal's, with the same number of input terminals as there are
parameters passed to the function. Thetop input terminal isthe first
parameter passed to the function. The next terminal down from thetop isthe
second parameter, and so on. Next, configure the output terminals so that
the parameters passed by reference appear as output terminals on the Cal |
object. Note that parameters passed by value cannot be assigned as output
terminals. The top output terminal is the value returned by the function.
The next terminal down is the first parameter passed by reference, etc.
Finally, enter the correct DLL function namein the Functi on Nane field.
For example, for aDLL function defined as

| ong foo(double *x, double y, long *z);

you need three input terminalsfor x, y, and z and three output terminals, one
for the return value and two for x and z. The Funct i on Nane field would
contain f oo. If the number of input and output terminals do not exactly
match the number of parameters in the function HP VEE generates an error.

If the DLL library has already been loaded and you enter the function name
inthe Functi on Nane field you can also use the Conf i gure Pi nout
selection on the Cal | object menu to configure the terminals.

Chapter 4 47

The Delete Library
Object

Using User-Defined Libraries
About Compiled Functions

If you have very large programs you may want to delete libraries after you
usethem. TheDel et e Li br ary object deletes libraries from memory just
astheDel et e Li b selectiononthel nport Li brary object menu does.

Using DLL Functionsin Formula Objects

You can also use DLL functionsin formula objects. With formula objects,
only thereturn value is used in the formula; the parameters passed by
reference cannot be accessed. For example, the DLL function defined above
inaformula

4.5 + foo(a, b, ¢c) * 10

where a isthe top input terminal on the formula object, b isnext and ¢ is
last. The call tof oo must have the correct number of parameters or
HP VEE generates an error.

48 Chapter4

Using User-Defined Libraries
About Remote Functions

About Remote Functions

The third type of user-defined function is the Remote Function. A Remote
Function isaUserFunction that runsin another HP V EE process on aremote
host computer. Because Remote Functions are a special case of a
UserFunction, refer to “About UserFunctions” on page 27 for general
information that applies to UserFunctions.

The Remote Function is called from the local HP VEE process over the
LAN (Local Area Network). Just as for UserFunctions and Compiled
Functions, you import a library of Remote Functions withi timgor t

Li br ary object.

Once one or more Remote Functions have been imported, they are called by
either using th&€al | object, or by including function names in expressions.
You include Remote Function calls in your program just as you would
UserFunctions. However, there are some differences, and some networking
technicalities, which are described in this section.

You create a library of Remote Functions just as you would a library of
UserFunctions (as described earlier in this chapter). However, instead of
saving the library file on your local computer, you'll need to save it on the
intended remote host computer. The intended remote host computer must
also have HP VEE installed on it. When you import the library of Remote
Functions, it is actually imported, not into the local HP VEE process, but
rather in a special invocation of HP VEE, called a "service", which runs on
the remote host. The local HP VEE process is called the "client.”

The client HP VEE process imports the Remote Function library using the
I mport Li brary object. When you seleBenot e Functi on for the
Li brary Type field, some new fields appear as shown in the next figure:

Chapter 4 49

Using User-Defined Libraries
About Remote Functions

—| Import Library G
Library Type | Remote Function =]
Library Mame myLio

Femote Host Mame localhost

Remote File Name AusersfmyDir/myFile vee
60

hipkivp

Remote Timeout

Display Server
Geometry (800x500+0-0)
REemote Debug r

Figure 4-7. Import Library for Remote Functions

Theli brary Type andLi brary Nane fields function the same as for
UserFunctions and Compiled Functions. The other fields are as follows:

B Renpte Host Nane - Thisisthe name of the host on which the
"service" HP VEE processisto run (the "remote host"). This nhame can
be the common or symbolic name of the host (for examplenyhost). On
the other hand, you can enter the IP address of the host in this field (for
example 14. 13. 29. 99).

B Renpote File Nane - Thisisthe name of the Remote Function library
file. TheRenot e Fi |l e Name isanalogoustotheFi | e Nane fieldfor a
UserFunction library. However, you must specify the absolute path to the
file. Hence the path and file name can be rather long. You may want to
have all users place remote function library filesin a common place, for
example: / user s/ renfunc/ or C: \ USERS\ REMFUNC.

50 Chapter4

Note

Using User-Defined Libraries
About Remote Functions

Theremote HP VEE service invoked by the client is dependent on the Host
Nare specified inthel nport Li brary object. Thus, if you have two

| mport Li brary objects using the same Host Nane only one service
process will be invoked. Even if two different Li brary Names and
Renote Fil e Names are used, each will communicate with the same
service. Onthe other hand, if each | nport Li br ary usesadifferent Host
Nare, two separate services will be invoked.

B Renote Ti neout - Thisfield specifies atimeout period in seconds for
communication with the HP VEE service. If the HP V EE service has not
returned the expected results of a Remote Function within thistime
period, an error occurs.

B Di spl ay Server - Enter aresolvable host name or | P address. The host
must have an X Server running and permissions must be set to have an X
client display on the specified machine. If the serviceis instantiated on a
MS Windows machine, the Di spl ay Ser ver field must be the same as
the Renot e Host Name. On HP-UX, they can be different.

B Ceonetry - Enter theinitial geometry for the window that contains the
view of the remote HP VEE, in the standard geometry format. For
example, 800x500+0- 0.

B Renot e Debug - When this check box is selected, al of the
UserFunctions within the library will execute in debug mode (i.e., you
will be able to perform debugging on them such as setting breakpoints
and doing line probes). This setting works with UserFunctions whether
or not they have panel views.

Whenthel nport Li brary object isexecuted (either by selecting Load

Li b from the object menu, or during normal program execution), aHP VEE
server process is started on the remote host specified in the Host Nane
field. The client process and the server process are connected over the
network, and are able to communicate. When aCal | object in the client
HP VEE calls a Remote Function, the arguments (the data input pins on the
Cal | object) are sent over the network to the remote service, the Remote
Function is executed, and the results are sent back to the Cal | object and
output on its data output pins. If your program deletes the library of Remote

Chapter 4 51

Using User-Defined Libraries
About Remote Functions

Functionswith the Del et e Li br ary object, the Remote Functions
associated with the library are removed. You can load multiple librariesin a
HP VEE server process, then delete each one as needed without canceling
the service connection. The HP VEE server exists while the HP VEE client
process continues to run.

The service HP V EE process can exist on the same computer or "host" asthe
client, or on another host as long as there is a network connection between
them. The most common connection is between two hosts on aLAN.
However, if anetwork path exists, the two hosts could be a continent apart.

The HP VEE service process has some attributes that are different than a
normal HP VEE process.

1. The HP VEE service process will execute only Remote Functions that
are contained in the Remote Function library named by | npor t
Li brary.

2. Remote Functions have views associated with them. When you call a
remote functions, you can have a HP V EE window appear if the
UserFunction displays a panel view.

3. Global variables (declared and undeclared) are not shared between the
processes.

4. Remote Functions will not time-slice when called.

5. Objects cannot be passed to or from a Remote Function
(includes Automation objects or pointersto ActiveX controls).

UNIX Security, UIDs, and Names

When your client HP VEE process runs a service HP VEE process on a
remote host, some security requirements must be satisfied. The basic
requirement isthat, in order to invoke the service HP V EE process, you must
have auser name on the remote host which is the same as your user name on
the computer running the client HP VEE process. (However, the passwords
need not be the same.) Also, you must have adirectory inthe/ user s
directory. In addition, in order to establish network communication between
the two hosts, either the remote host must havean/ et ¢/ host s. equi v file

52 Chapter 4

Note

Using User-Defined Libraries
About Remote Functions

with an entry for the client host, or the user must have an . r host s filein
the $HOVE directory on the remote host, which contains an entry for the
client host.

Let'slook at an example. Suppose the client host can be identified as
follows:

Client host: myhost
User: m ke
Password: t woheads
And the service host can be identified as follows:
Service host: r emhost
User: m ke
Password: ar ebet t er
Directory: /users/ mi ke

In this case, you must have one of the following on the service host:
B An/etc/ hosts. equi v filewith the entry: myhost

or

B A/users/mke/.rhosts filewiththeentry: nyhost mni ke

The/ et c/ host s. equi v file can be modified only by a super-user (usually
the system administrator), while the . r host s file can be modified by the
user. It isacommon practice to usethe same/ et ¢/ host s. equi v fileon
al computersin a particular subnet, listing all of those computers as entries.
The/ et ¢/ host s. equi v fileis checked first for the proper entry for the
client host. If no entry for the client host isfound there, the. r host s fileis
checked.

In calling a service HP V EE process, the password is not required or called
for. You must have the correct entry for the client in either the
host s. equi v fileor the. r host s file on the remote host.

Chapter 4 53

Using User-Defined Libraries
About Remote Functions

Another factor in UNIX security isthe user id and group id, called the UID
and GID, respectively. The UID isaunique integer supplied to each user on
ahost by the/ et ¢/ passwd file. The GID isaunique integer supplied to
groups of users. All UNIX processes have a UID and GID associated with
them. The UID and GID determines which files or directories a user can
read, write, and execute.

The HP VEE service on the service host will have the GID and UID of the
user who invoked the process from the client host. This means that the file
permissions are the same as if the user was running a normal interactive
HP VEE session.

Resource Files

The VEE.IO or .veeio, and VEE.RC or .veerc files used by the HP VEE
service process are those that belong to the user who invokes the process on
the remote host. Thus, for the user i ke in our previous example, the

HP VEE service process will read the following fileson host r emhost :

[/ users/ m kel .veei o /users/ nm ke/.veerc

(HP VEE only readsthe VEE.IO or .veeiofile. The VEE.RC or .veerc fileis
used for trig preferences only.)

Errors

There are two classes of errors that can occur in aremote HP VEE service:

B Fatal Errors- These are errors, like the timeout violation discussed
previoudy, that mean that the serviceis most likely in a unusable state.
When afatal error occursin an HP VEE service, an error message is
displayed, advising the user that the error was fatal. If this occurs, you'll
need to re-import the Remote Function library. The HP VEE client will
attempt to terminate the remote service.

In most cases, afatal error will only occur if something has gone wrong
with the network, or in calling the remote service. Normally, afata error
won't be caused by a problem in the Remote Function itself.

54 Chapter 4

Note

Using User-Defined Libraries
About Remote Functions

B Non-Fatal Errors - These errors are almost exclusively errors that occur
within the Remote Function itself (for example a divide-by-zero error).
Such errors would normally occur regardless of whether the function
werelocal or remote. The normal error message display occurs, and gives
the name of the Remote Function in which the error occurred.

It is possible to write a Remote Function that will hang, such as an infinite
loop. In this case, the Remote Function will time out with afatal error
message. The HP VEE client will attempt to remove the service, but will fail
since the service will never respond. You then need to terminate the process
on the remote machine. For example, in HP VEE for HP-UX you log onto
the remote host and determine the process id with ps and terminate the
processwithki I | .

Chapter 4 55

Using User-Defined Libraries
About Callable VEE

About Callable VEE

In some cases you may want to build an application in another language, and
till use HP VEE UserFunctions. Just as Remote Functions alow one

HP V EE to access UserFunctions of another HP VEE, Callable VEE allows
you to call UserFunctions from a C program, or any language that can access
C routines.

Note that the server system needs to have HP VEE present and accessible to
run the UserFunctions; they cannot be executed on their own. UserFunctions
have to be organized into alibrary that HP VEE can load and execute.

Thetools needed to support Callable VEE are provided with HP VEE:

B A Clibrary, named | i bvapi . aisfoundinthel i b subdirectory of the
HP VEE ingtalation. Thislibrary isto belinked to your C program.

Thislibrary supports two Application Program Interfaces (APIs). One
APl (VEE RPC) sets up and controls the Remote Procedure Call (RPC)
between the C program and HP VEE. The prototypes for the functionsin
this APl areinveeRPC. h and perform the following actions:

U Loading and unloading HP VEE servers.

U Loading and unloading HP VEE libraries.

O Listing UserFunctionsin HP VEE libraries.

U Calling and receiving data from UserFunctions.
U Performing related status and housekeeping.

The second APl (VEE DATA) performs conversions between C and
HP VEE data types. The prototypes for the functionsin this APl arein
veeDat a. h.

Note Thel i bvapi . a library cannot link to programs when using the Borland
compiler.

56 Chapter 4

Starting and
Stopping a Server

Using User-Defined Libraries
About Callable VEE

B The HP VEE Service Manager, veesm exe (veesmon HP-UX) is
located with the other HP VEE executables in the HP VEE installation
directory. It handles running the target HP VEE with its UserFunctions,
and allows aremote client to bring up HP VEE as a server.

On HP-UX systems, veesmis automatically run by thei net daemon
process. On aPC, either run veesm exe or put it into the Windows
Startup Group so it is started when the PC is started.

There are example programsin the escapes directory that demonstrate
Callable VEE. They arenamed cal | VEE. ¢ and cal | VEE. vee.

About the VEE RPC API

The VEE RPC API handles setting up, maintaining, and closing the
connection between the C client program and the HP VEE server.

The VEE RPC API's routines use one of three handles in their operation:

VRPC SERVICE; // Handle to a VEE server.
VRPC LI BRARY; // Handle to a VEE User Function library.
VRPC FUNCTION;, // Handle to a VEE User Functi on.

The API calls are organized as described in the following subsections.

The most essential API functions are the two that start and stop aHP VEE
server. Toload aHP VEE server use:

VRPC_SERVI CE vr pcCreat eService(char *host Nane,
char *di spl ay,
char *geonetry,
doubl e aTi neout | nSeconds,
unsigned long flags);

Thisfunction starts an HP VEE server on the host given by host Nane. The
host Nane can bein text form (for example, myconput er @ vl d. hp. com)
or numeric form (15. 11. 55. 105). The function returns a server handle.
You get aNULL (effectively azero) back if something goeswrong; you can
then get the precise error information with theveeGet Er r or Nunber () and
veeGet Error String() functionsasoutlined in the next section.

Chapter 4 57

Loading and
Unloading a Library

Using User-Defined Libraries
About Callable VEE

Thedi spl ay argument specifies aremote display using a network address
in text (babyl on: 0. 0) or numeric form (15. 11. 55. 101: 0. 0) ona
networked X Windows system.

Thegeonet ry argument specifiesthe HP VEE window size and placement.
For example 800x500+0+0 puts an 800x500 HP V EE window in the lower-
left corner of the display.

TheaTi meout | nSeconds argument gives the number of seconds to wait
when starting the service. Thisvalueisused for dl later callsin the session
unless changed by vr pcSet Ti meout ().

Thef | ags argument is not normally used; you can, however, set it to the
value VEERPC CREATE_NEWto start a new copy of HP VEE on a server
instead of using the one already started.

To stop aHP VEE server you use:
VRPC_SERVI CE vr pcDel et eServi ce(VRPC_SERVI CE aService);

The only argument is the server handle obtained when you originally started
the server. You get aNULL pointer back if all is OK, otherwise you get a
non-NULL pointer.

Once you have started the server, you then need to load alibrary into the
remote copy of HP VEE; thisis done with:

VRPC LI BRARY vr pcLoadLi brary(VRPC SERVI CE aServi ce,
char *LibraryPath);

This function accepts as arguments a server handle and the pathname of a
library of UserFunctions specified by Li br ar yPat h; it returns alibrary
handle. If it fails, you get aNULL back.

Once loaded, you can specify either normal or debugging execution mode
for the library with:

voi d vrpcSet Executi onMbde(VRPC_LI BRARY ali brary,
unsi gned | ong executi onMbde);

In this function, you specify the handle for the library and an

execut i onMbde flag, which can be set to VRPC_DEBUG_EXECUTI ON
(which specifies single-stepping through the UserFunction on the target
system) and then set back to the default VRPC_NORMAL_EXECUTI ON.

58 Chapter4

Selecting
UserFunctions

Using User-Defined Libraries
About Callable VEE

You can similarly unload the library with:
VRPC_LI BRARY vr pcUnLoadLi brary(VRPC_LIBRARY alLibrary);
The only argument is the library handle.

Now that you are connected to the server and have alibrary loaded, you need
to get a handle to a UserFunction.

You get a function handle with:

VRPC_FUNCTI ON vr pcFi ndFuncti on(VRPC_LI BRARY aLi brary,
char *aFuncti onNane);

You specify the library handle and a string giving the UserFunction name as
arguments, and get back the function handle, or aNULL if something goes
wrong.

To get information on the function, use:

struct VRPC_FUNC_| NFO*
vr pcFuncti onl nfo(VRPC_FUNCTI ON aFunction);

This returns a data structure or aNULL if something goes wrong. The data
structureis of the form:

typedef struct VRPC_FUNC | NFO

{
char *functi onNang; /1 Name of function.
| ong numAr gument s; [l # of input pins on function.
enum veeType *argumnent Types; // List of argument types.
veeShape *ar gument Shapes; /1 List of argunent shapes.
| ong nunResul ts; /1 # of output pins on function.
enum veeType *result Types; /1 List of output types.
veeShape *result Shapes; /1 List of output shapes.

b

If you get aNULL, the memory for thisistaken up in your process space, so
if you want to get rid of it you use:

struct VRPC_FUNC | NFO*
vr pcFreeFuncti onl nfo(struct VRPC _FUNC I NFO *funci nfo);

You can determine what functions are in the library with:

char** vrpcGet Functi onNanes(VRPC_LI BRARY alLi brary,
| ong *nunber O Functions);

Chapter 4 59

Using User-Defined Libraries
About Callable VEE

This accepts alibrary handle as an argument; it returns a pointer to an array
of null-terminated strings giving the function names directly, and the
number OF Funct i ons inthelibrary asaargument. You get aNULL
pointer back if an error occurs. The string array existsin your process space.

Calling Now you can call the UserFunction.

UserFunctions
You call and receive in asingle function using:

VDC* vrpcCal | AndRecei ve(VRPC_FUNCTI ON aFuncti on,
VDC *argunents);

This function blocks, waiting for the function to complete or until atimeout
occurs. You specify afunction handle and an input array of HP VEE Data
Containers (VDCs). Handling VDCs isthe function of the VEE DATA API
and is covered in “About the VEE DATA API” on page 63.

Or to call a UserFunction in blocking mode, you can invoke:

I ong vrpcCall (VRPC_FUNCTI ON aFuncti on,
VDC *argunents);

This function does not "block”, it returns immediately, whether it worked on
not; it returns O if all is OK, and an error code if not.

Of course, since most UserFunctions will return sometime, you will want to
get a value back, and for that you use:

VDC* vrpcRecei ve(VRPC_FUNCTI ON aFuncti on,
unsi gned | ong wai t Mode) ;

You specify a function handle andvai t Mode flag, which can have one of
three values:

B VRPC_NO WAI TI NG The call returns immediately with or without
results.

B VRPC WAl T_SLEEPI NG Wait for data until timeout (server sleeps).
B VRPC WAI T_SPI NNI NG Wait for data until timeout (server busy).

If the function fails, a NULL is returned.

60 Chapter 4

Using User-Defined Libraries
About Callable VEE

Other Functions This section lists other utility functionsin the VEE RPC API:

B Thisfunction allows you to change the timeout. You specify aserver
handle and the timeout in seconds. You get back a zero if all isOK, and
an error code if not.

| ong vrpcSet Ti meout (VRPC_SERVI CE aServi ce,
doubl e aTi neout | nSeconds);

B Thisfunction allowsyou to set the default C client behavior for receiving
data:

| ong vrpcSet Behavi or (VRPC_SERVI CE aServi ce,
unsi gned long flags);

You specify aserver handle and the flag, and get back O or an error code.
The flags are as follows:

VRPC_WAI T_SLEEPI NG Wait for data until timeout (client sleeps).
VRPC_WAI T_SPI NNI NG Wait for data until timeout (client busy).

You can also OR in aflag, VRPC_BUFFER_EXPAND, to specify that the C
client will allocate and retain larger buffersin response to increasing
sizes of datareturned from the server.

B You can query the revision number of the remote veesmwith:

| ong vrpcGet Server Versi on(VRPC SERVI CE aService);

You givethisaserver handle and get back either arevision code or a0 (if
you have an error).

Chapter 4 61

Error Codes for the
VEE RPC API

Using User-Defined Libraries
About Callable VEE

The following error codes are returned when a connection to the HP VEE
server cannot be made:

Error Code

850: eUnknownHost

851: eNoServi ceManager
861: eServi ceManager TO
863: eServi ceNot Found
864:

eServi ceNot St art ed

866: eConnect Ref used
868: eFail edSecurity

Meaning

The host name or IP address is
unresolvable.

veesmcannot be found on the server
host.

The service manager timed-out.
Unable to find the HP VEE service.

Unable to start the HP VEE service.

The connection to veesmor i net d was
refused.

Failed the security check on UNIX.

Thefollowing are fatal errorsthat occur after connection to aHP VEE server
(the connection has been terminated):

Error Code Meaning
852: eHost Down The HP VEE server host is down.
853: eConnect Ti medCQut The connection has timed out.
855: eConnect Br oken The connection has broken.
62 Chapter4

Using User-Defined Libraries
About Callable VEE

The following errors reflect an internal non-fatal state within the service:

Error Code Meaning
865: eSonel nternal Error A non-fatal internal error occurred.

869: eVeeServiceError There is an error within the
UserFunction.

870: eWul dBl ock Returned for non-blocking RPC.

871: eDebugTerm nation The user pressed stop during a debug
session.

Thefollowing error is returned by a RPC function call:

Error Code Meaning

851: el nval i dArgunent There is an invalid argument.

About the VEE DATA API

As shown in the previous section, performing a Call or Receive with a
UserFunction requires handling data in the VEE Data Container (VDC)
format, which is a set of data structures required by HP VEE for itsinternal
operation. Communicating with HP VEE from your C program requires an
ability to trandate between VDCs and conventional C data types. The VEE
DATA API providesthis ahility (and afew others).

Chapter 4 63

Data Types, Shapes
and Mappings

Using User-Defined Libraries

About Callable VEE

The fundamental VDC types arelisted in the veeDat a. h header file as:

enum veeType

VEE_TYPE_ANY=0,
VEE_NOT_DEFI NEDL,
VEE_LONG,
VEE_NOT_DEFI NED2,
VEE_DOUBLE,
VEE_COMPLEX,
VEE_PCOMPLEX, /
VEE_STRI NG, !
VEE_NIL, /
VEE_NOT DEFI NED3, /
VEE_COORD, /
VEE_ENUM !
!
!
/
!

/1
/1
11
/1
/1
11

VEE_RECORD,
VEE_NOT_DEFI NED4,
VEE_WAVEFCORM
VEE_SPECTRUM /

/
/
/
/
/
/
/
/
/

}s

A 1D array of VEE PCOWPLEX with

The default w thout constraints.

Leave space.

32-bit signed integer (no 16-bit INTs in VEE).
Leave space.

| EEE 754 64-bit floating-point nunber.

Conpl ex nunber: 2 doubles in rectangular form
Conpl ex nunber: 2 doubles in polar form
8-bit ASCII null-term nated string.

Enpty contai ner returned by function call.
Leave space.

2 or nore doubles give XY or XYZ or
An ordered list of strings.
VEE record-structures data.
Leave space.

A 1D array of VEE DOUBLE with

dat a.

ti me mapping.
ti me mappi ng.

o D

For convenience, the veeDat a. h file defines C data types for translation

with HP VEE data types:

typedef short int16;

typedef long int32;

typedef struct {double rval, ival;} veeConpl ex;
typedef struct {doubl e nag, phase;} veePConpl ex;
typedef struct {double xval, yval;} vee2DCoord;
typedef struct {double xval, yval, zval;} vee3DCoord;
typedef voi d veeDat aCont ai ner;

t ypedef veeDat aCont ai ner* VDC;

The data types can al so have a specified number of dimensions, or nunDi ns,

given by:

enum veeShape

{
VEE_SHAPE_SCALAR,
VEE_SHAPE ARRAY1D,
VEE_SHAPE ARRAY2D,
VEE_SHAPE ARRAY3D,
VEE_SHAPE_ARRAY,
VEE_SHAPE_ANY

/1
/1

A single data el ement.

A one-di nensi onal array.

/1 A two-di mensional array.

/1 A three-di mensional array.

/!l An array with from4 to 10 di nensi ons.
/1 Pl acehol der for undefined shape.

64

Chapter4

Using User-Defined Libraries
About Callable VEE

Arrays can be "mapped”. Normally they aren't, but the VEE_WAVEFORMand
VEE_SPECTRUMdata types are mapped types where the array elements
correspond to time intervals. Mappings are given by:

enum veeMapType
{

VEE_MAPPI NG_NONE, /1 No mappi ng.
VEE_MAPPI NG LI NEAR, // Linear mapping.
VEE_MAPPI NG_LOG /1 Log mappi ng.
s
Generally you don't need to worry about specifying mappings.
Scalar Data To create VDC scalars from C data, use the following functions:
Handling

VDC vdcCreat eLongScal ar(i nt32 alLong);
VDC vdcCr eat eDoubl eScal ar (doubl e aReal);
VDC vdcCreateStringScal ar(char *aString);

VDC vdcCr eat eConpl exScal ar (doubl e real Part,
doubl e i magi naryPart);

VDC vdcCr eat ePConpl exScal ar (doubl e nagni t ude,
doubl e phase);
VDC vdcCr eat e2DCoor dScal ar (doubl e xval
doubl e yval);

VDC vdcCr eat e3DCoor dScal ar (doubl e xval
doubl e yval,
doubl e zval);

VDC vdcCreat eCoordScal ar(int16 aFi el dCount,
doubl e *val ues);

All these functions return apointer toaVDC, or aNULL if they fail. There
are, of course, no scalars of VEE WAVEFORM or VEE_SPECTRUM
types as they are always 1D arrays by definition.

Chapter 4 65

Using User-Defined Libraries
About Callable VEE

You can change the values in the VDCs with another set of routines:

i nt 32 vdcSet LongScal ar (VDC aVD,

nt 32

nt 32

nt 32

nt 32

nt 32

nt 32

nt 32

int32 alLong);

vdcSet Doubl eScal ar (VDC aVD,
doubl e aReal);

vdcSet StringScal ar (VDC aVD,
char *asStr);

vdcSet Conpl exScal ar (VDC aVD,
doubl e real Part,

doubl e i magi naryPart);

vdcSet PConpl exScal ar (VDC aVD,
doubl e nagni t ude,
doubl e phase);

vdcSet 2DCoor dScal ar (VDC aVD,
doubl e xval
doubl e yval);

vdcSet 3DCoor dScal ar (VDC aVD,
doubl e xval
doubl e yval
doubl e zval);

vdcSet Coor dScal ar (VDC aVD,
int 16 aFi el dCount,
doubl e* val ues);

As described above, these functions return either O or an error code.

66

Chapter4

Array Data Handling

Using User-Defined Libraries
About Callable VEE

When you have created a scalar VDC or returned one from afunction, you
can get the C data type out of it with another set of routines:

i nt 32 vdcGet LongScal ar Val ue(VDC aVD,
int32 *along);

i nt 32 vdcGet Doubl eScal ar Val ue(VDC aVD,
doubl e *aReal);

char* vdcGet StringScal ar Val ue(VDC aVD);

i nt 32 vdcGet Conpl exScal ar Val ue(VDC aVD,
veeConpl ex *aConpl ex);

i nt 32 vdcGet PConpl exScal ar Val ue(VDC aVD,
veePConpl ex *aPConpl ex);

i nt 32 vdcGet 2DCoor dScal ar Val ue(VDC aVD,
vee2DCoord *aCoord);

i nt 32 vdcGet 3DCoor dScal ar Val ue(VDC aVD,
vee3DCoord *aCoord);

doubl e* vdcGet Coor dScal ar Val ue(VDC aVD,
intl6 *aFi el dCount);

In general, these functions take the data out of the first argument, aVDC,
and put it into the second, with isa C variable (with some types as defined at
the beginning of this section); they return 0 if no error and an error code if
thereisan error.

The exceptions arethe vdcGet St ri ngScal ar Val ue() function, which
returns a string directly from the function (or aNULL string if something
goeswrong), and the vdc Get Coor dScal ar Val ue() function, which
returns a pointer to an array of N-dimensional coordinate data (with N
returned as an argument).

Finally, you can interrogate coordinate types for their number of coordinate
dimensions or set the coordinate dimensionsto new valuesif desired:

i nt 16 vdcNumCoor dbDi ms(VDC aVD);
i nt 32 vdcCoor dSet NunCoor dbDi ns(VDC, intl16);

These functions create array VDC of HP VEE types. The values you supply
are copied into the VDC, the callers memory isnever used. If an error occurs
anull pointer is returned. You create VDC arrays with the following set of
functions:

Chapter 4 67

Using User-Defined Libraries
About Callable VEE

B Thisfunction returns aVDC of type VEE_LONGwhich isalocated to a
size equal to the argument, nunPt s. The array of data pointed to by the
argument, val ues, must be of the same specified size. The type of the
argument, i nt 32, istype defined to type | ong inveeDat a. h.

VDC vdcCreat eLonglDArray(int32 nunPts,
i nt32 *val ues);

B ThisfunctionreturnsaVDC of type VEE_STRI NGwhichisallocated to a
size equal to the argument, nunPt s. The argument, strings, points to an
array of pointers which in turn point to null terminated strings. The
number of stringsin the array must equal the specified size. The type of
the argument, i nt 32, istype defined to typel ong inveeDat a. h.

VDC vdcCreateStringlDArray(int32 nunPts,
char **strings);

B Thisfunction returnsaVDC of type VEE_DOUBLE whichisallocatedto a
size equal to the argument, nunPt s. Theargument, val ues, pointsto an
array of data. The number of doublesin the array must equal the
specified size. The type of the argument, i nt 32, istype defined to type
| ong inveeDat a. h.

VDC vdcCr eat eDoubl elDArray(int32 nunPts,
doubl e *val ues);

B Thisfunction returnsaVVDC of type VEE_COVPLEX which is
preallocated to a size equal to the argument, nunft s. The type of the
argument, i nt 32, istype defined to typel ong inveeDat a. h. The
argument, values, pointsto an array of structures of type veeConpl ex.
This structure is defined in veeDat a. h as:

typedef struct {double rval, ival;} veeConpl ex;

VDC vdcCreat eConmpl ex1DArray(int32 nunPts,
veeConpl ex *val ues);

68 Chapter 4

Using User-Defined Libraries
About Callable VEE

B Thisfunction returnsaVDC of type VEE_PCOVPLEX which is
preallocated to a size equal to the argument, nunft s. The type of the
argument, i nt 32, istype defined to typel ong inveeDat a. h. The
argument, val ues, pointsto an array of structures of type
veePConpl ex. Thisstructureis defined in veeDat a. h as:

typedef struct {double mag, phase;} veePConpl ex;

VDC vdcCr eat ePConpl ex1DArray(int32 nunPts,
veePConpl ex *val ues);

B Thisfunction returnsaVDC of type VEE_COORD which is preallocated
to asize equal to the argument, nunPt s. The type of the argument,
i nt 32, istype defined to typel ong inveeDat a. h. The argument,
val ues, pointsto an array of structures of typevee2DCoor d. This
structureis defined in veeDat a. h as:

typedef struct {double xval, yval;} vee2DCoord;

VDC vdcCr eat e2DCoor d1DArray(int32 nunPts,
vee2DCoord *val ues);

B Thisfunction returnsaV DC of type VEE_COORD which is preallocated
to asize equal to the argument, nunPt s. The type of the argument,
i nt 32, istype defined to typel ong inveeDat a. h. The argument,
val ues, pointsto an array of structures of type vee3DCoor d. This
structureis defined in veeDat a. h as:

typedef struct {double xval, yval, zval;} vee3DCoord;

VDC vdcCr eat e3DCoor d1DArray(int32 nunfts,
vee3DCoord *val ues);

Chapter 4 69

Using User-Defined Libraries
About Callable VEE

B ThisfunctionreturnsaVDC of type VEE_COORDwhich is preallocated to
asize equal to the argument, nunPt s. The argument, aFi el dCount , is
the number of fieldsin the coordinates. The type of the argument, i nt 32,
istype defined to typel ong inveeDat a. h. The argument, val ues,
pointsto an array of type doubl e. The length of thisarray must be equal
to the product of nunPt s and aFi el dCount .

VDC vdcCreat eCoordlDArray(int32 nunPts,
int16 aFi el dCount,
doubl e *val ues);

B Thisfunction returns aVDC of type VEE_WAVEFORMwith a number of
samples equal to the argument, nunPt s. The starting and ending times
for the waveform are the arguments, f r omand t hr u. The argument,
mapType, isof type VM, defined inveeDat a. h; it declareswhat type of
mapping is used. Refer to “Data Types, Shapes and Mappings” on
page 64 for more information. The array of doubles pointed to by the
argumentdat a, must be equal in size to the argumentyPt s. The
type of the argumeni,nt 32, is type defined to typleong in
veeDat a. h.

VDC vdcCreat eWaveforn(int32 nunPfts,
doubl e from
doubl e thru,
VMl mapType,
doubl e *data);

B This function returns a VDC of typ¢eE_ SPECTRUMWith a number of
samples equal to the argumenipPt s. The starting and ending
frequencies for the spectrum are the argumémntsmandt hr u. The
argumentpapType, is of typeVMT, defined inveeDat a. h; it declares
what type of mapping is used. Refer to “Data Types, Shapes and
Mappings” on page 64 for more information. The array of type
veePConpl ex pointed to by the argumentat a, must be equal in size
to the argumenhunPt s. Type. veePConpl ex is a structure defined in
veeDat a. h:

typedef struct {double mag, phase;} veePConpl ex.

70 Chapter 4

Using User-Defined Libraries
About Callable VEE

The array of structuresis copied. The type of the argument, i nt 32, is
type defined to typel ong inveeDat a. h.

VDC vdcCreat eSpectrum(int32 nunPts,
doubl e from
doubl e thru,
VMl mapType,
veePConpl ex *data);

In the functions listed above, you specify an array size, any additional data
needed to represent the array (such as mapping datafor VEE_ WAVEFORMand
VEE_SPECTRUMLtypes), and the array data, and get back aVDC (or aNULL
if something goes wrong).

You can convert back from VDCsto C arrays with:

B Thisfunction returns a pointer to an array of typei nt 32. The argument,
aVD, must be of type, VEE_LONG and be an array. The value returned in
the pass-by-reference argument, nunt s, is the length of the array.

i nt 32* vdcGet Longl1DArray(VDC aVD,
int32 *nunPts);

B Thisfunction returns a pointer to an array of type doubl e. The
argument, aVvD, must be of type, VEE_DOUBLE. The value returned in the
pass-by-reference argument, nunPt s, is the length of the array.

doubl e* vdcGet Doubl elDArray(VDC aVD,
int32 *nunPts);

B Thisfunction returns a pointer to an array of pointers each pointing to a
null terminated string. The argument, aVD, must be of type VEE_STRI NG
The vaue returned in the pass-by-reference argument, nunft s, isthe
number of strings.

char** vdcGet StringlDArray(VDC aVD,
int32 *nunPts);

B Thisfunction returns a pointer to an array of structures of type,
veeConpl ex. Thisstructureis defined in veeDat a. h as:

typedef struct {double rval, ival;} veeConpl ex;

Chapter 4 71

Using User-Defined Libraries
About Callable VEE

The argument, aVD, must be of type VEE_COVPLEX. The value returned
in the pass-by-reference argument, nunt s, isthe length of the array.

veeConpl ex* vdcGet Conpl ex1DArray(VDC aVD,
int32 *nunPts);

B Thisfunction returns a pointer to an array of structures of type,
veePConpl ex. Thisstructureis defined in veeDat a. h as:

typedef struct {double mag, phase;} veePConpl ex;

The argument, aVD, must be of type VEE_PCOVPLEX. The value returned
in the pass-by-reference argument, nunPt s, isthe length of the array.

veePConpl ex* vdcCGet PConpl ex1DArray(VDC aVD,
int32 *nunPts);

B Thisfunction returns a pointer to an array of structures of type,
vee2DCoor d. This structure isdefined in veeDat a. h as:

typedef struct {double xval, yval;} vee2DCoord;

The argument, aVD, must be of type VEE_COORD. The value returned in
the pass-by-reference argument, nunt s, isthe length of the array.

vee2DCoor d* vdcGet 2DCoor d1DArray(VDC aVD,
int32 *nunPts);

B Thisfunction returns a pointer to an array of structures of type,
vee3DCoor d. This structure is defined in veeDat a. h as:

typedef struct {double xval, yval, zval;} vee3DCoord;

The argument, aVD, must be of type VEE_COORD. The value returned in
the pass-by-reference argument, nunt s, isthe length of the array.

vee3DCoor d* vdcGet 3DCoor d1DArray(VDC aVD,
int32 *nunPts);

72 Chapter4

Using User-Defined Libraries
About Callable VEE

B Thisfunction returns a pointer to an array of type doubl e. The
argument, aVvD, must be of type VEE_COORD. The value returned in the
pass-by-reference argument, nunPt s, isthe number of coordinate tuples
in the array. The value returned in the pass-by-reference argument,
aFi el dCount , isthe number of fieldsin each coordinate tuple. The
length of thereturned array isthe product of nunPt s and aFi el dCount .

doubl e* vdcGet Coor d1DArray(VDC aVD,
i nt 32 *nunPts,
intl6 *aFi el dCount);

B Thisfunction returns a pointer to an array of type doubl e. The
argument, aVvD, must be of type VEE_WAVEFORM The pass-by-reference
arguments nunPt s, fromt hr u, and mapType return, respectively, the
length of the array, the start time, the end time, and the type of mapping.

doubl e* vdcGet Wavef orm(VDC aVD,
int32 *nunPts,
doubl e *from
doubl e *thru,
VMl *mapType);

B Thisfunction returns a pointer to an array of structures of type
veePConpl ex. This structureisdefined inveeDat a. h as:

typedef struct {double mag, phase;} veePConpl ex;

The argument, aVD, must be of type VEE_WAVEFORM The pass-by-
reference arguments nunPt s, f rom t hr u, and mapType return,
respectively, the length of the array of structures, the starting frequency,
the ending frequency, and the type of mapping.

veePConpl ex* vdcGet Spectrun(VDC aVD,
int32 *nunPts,
doubl e *from
doubl e *thru,
VMl *mapType);

These functions take a VDC, return a pointer to the array of data directly,
and return the size of the array (or any other relevant information) as
arguments.

Chapter 4 73

Enum Types

Using User-Defined Libraries
About Callable VEE

Once the arrays are created, you can also check, interrogate, or manipulate
the arrays with the following functions:

i nt 32 vdcSet NunDi ns(VDC, intl6);
int16 vdcGet NunDi ns(VDC);

i nt 32 vdcSet Di nSi zes(VDC, int32*);
i nt32 *vdcGet Di n5i zes(VDC);

i nt 32 vdcCur Nuntl enents(VDC);

HP VEE enumerated types, as noted, are ordered lists of strings; they are
handled by the following routines:

B Thisfunction creates an empty VEE_ENUMstructure with the given
number of string-ordinal pairs. It returnsaNULL VDC on error.

VDC vdcCreat eEnuntscal ar (i nt 16 nunberOfPairs);

B Thisfunction places an enumerated pair in the defined VEE ENUM
structure, returns the updated structure, and returns O or an error code.

i nt 32 vdcEnumAddEnuntai r (VDC aVD,
char* aString,
i nt 32 aval ue);

B Thisfunction deletes an enumerated pair as given by the ordinal value
argument. It returns O or an error code.

i nt 32 vdcEnunDel et eEnunPai r Wt hOrdi nal (VDC aVb,
int32 anOrd);

B Thisfunction sets an ordinal value for use by other vdc Enumroutines. It
returns O or an error code.

i nt 32 vdcSet Enunfscal ar (VDC aVD,
i nt32 anOrdinal);

74 Chapter4

Using User-Defined Libraries
About Callable VEE

B Thisfunction placesa string in the VEE_ENUM structure with the
ordinal value assigned by vdc Set Enuntcal ar () .

i nt 32 vdcEnunDel et eEnunPai rWthStr(VDC aVD,

char* aString);

B Thisfunction returns the current ordinal number selection assigned by
vdcSet EnuntScal ar () .

i nt 32 vdcCGet EnunOr di nal (VDC aVD);

B Thisfunction returns the string associated with the current ordinal
number, or aNULL string if something goes wrong.

char* vdcGet Enuntstri ng(VDC aVD);

Mapping Functions The VEE DATA API allows you to manipulate the mappings of arrays with
the following functions:

int32

/1
i nt32

11

int32

11

i nt32

11
int32

11
int32

vdcAt Di nPut Lower Limit (VDC aVD,
intlé6 aDim
doubl e aVal ue);
Specify mapping for lower limt.

vdcAt Di nPut UpperLimt(VDC aVD,
intl6 aDim
doubl e aVal ue);
Speci fy mapping for upper limt.

vdcAt Di nPut Range(VDC aVD,
intl6 aDm
double lowerLimt,
doubl e upperLimt);
Conbi nes "vdcAt D nPut LowerLimt" &
"vdcAt Di nPut UpperLimt".

vdcAt Di nPut Mappi ng(VDC aVD,
intl6 aDim
VMI aMappi ng) ;
Set the mapping between limts as defined above.

vdcMakeMappi ngsSanme(VDC VDL,
VDC VD2);
Map two containers in the same way.

vdcUnMap(VDC aVD);
Del et e mapping i nformation from cont ai ner.

Chapter 4

75

Using User-Defined Libraries
About Callable VEE

Other Functions Other VEE DATA API functions include:

B Get thetype of VDC. Return VEE_NOTDEFI NED1 on error.
enum veeType vdcType(VDC aVD);

B Makeacopy of aVDC. Return NULL on error.
VDC vdcCopy(VDC ol dVD);

B Destroy acontainer and release its memory. Return NULL on error.
VDC vdcFree(VDC aVvD);

B Get error number/message of last error.

intl6 veeGet ErrorNunber(void);
char *veeGetErrorString(void);

76 Chapter4

Using User-Defined Libraries
About the Callable VEE ActiveX Control

About the Callable VEE ActivexX Control

HP VEE includes an ActiveX control that encapsulates the functionality of
Callable VEE. Instead of a C program calling HP VEE UserFunctions, the
UserFunctions are called from OL E-compliant applications such as Visual
Basic or Microsoft Excel. The control islocated at

%8y st enRoot % syst enB2\ cal | . ocx (Windows NT) or

W ndows 95\ Syst em cal | . ocx (Windows 95).

Use the control to:

B Explore the network domain, looking for the UserFunction to call.
B Get information about the UserFunction’s input and output pins.

B Build the VEE Data Container (VDC) needed.

B Call the UserFunction.

Online help is available from the control. It explains the specific use of the
control.

Chapter 4 77

Using User-Defined Libraries
About the Callable VEE ActiveX Control

78 Chapter4

Using Transaction I/O

Using Transaction |/O

HP VEE for Windows includes the capabilities of communicating with files,
printers, other programs, and various hardware interfaces and the
instruments connected to them.

HP VEE for UNIX includes objects for communicating with files, printers,
named pipes, and other processes, plus the ability to communicate with

HP BASIC, and various hardware interfaces and the instruments connected
to them.

All of these types of communication are controlled by 1/0 abjects using
transactions. This chapter explains the general concepts common to all
objects using transactions and the details of how to use each type of object.
For information on how to use transactions in instrument 1/O, refer to
Controlling Instruments with HP VEE.

80 Chapter5

Using Transaction 1/O
Using Transactions

Using Transactions

All 1/O objects discussed in this chapter contain transactions. A transaction
issimply a specification for alow-level input or output operation, such as
how to read or write data. Each transaction appears as aline of text listed in
the open view of an 1/O object. To view atypical transaction, click on
I/00 To O StringtocreateaTo String object.

=l To String =

WWRITE TEXT & EOL

A result

Figure 5-1. Default Transaction in To Stri ng
The default transactionin To Stringis:

VWRI TE TEXT a ECQL

Before exploring too many details, consider a simple program using the

To String object toillustrate how transactions operate. The program in
Figure 5-2 uses two transactions, one to write astring literal and one to write
anumber in fixed decimal format.

—| Real Slider | = = To String =]
721 WRITE TEXT "Value is "
I 10— WRITE TEXT a REAL FIx:1 EOL

_J/—lﬂ result \‘
0= L—| Alphalumeric |«
Value is 7.2

Figure 5-2. A Simple Program Using To String

Chapter 5 81

Using Transaction 1/O
Using Transactions

To accomplish something useful with atransaction-based 1/0 object, you

generaly need to do at least two things:

1. Modify the default transaction or add additional transactions as required.

2. Add input terminals, output terminals, or both.

The following sections explain how to edit transactions and add terminals.

Creating and Editing Transactions

Table 5-1. Editing Transactions With a Mouse

To Do This...

Click On This...

Add another transaction to the end of the list.

Add Tr ans in the object menu. Or
double-click in the list area immediately
below the last transaction.

Move the highlight bar to a different transaction.

Any non-highlighted transaction.

Insert a transaction above the highlighted
transaction.

I nsert Trans inthe object menu.

Cut (delete) the highlighted transaction, saving it
in the transaction "cut-and-paste" buffer.

Cut Trans in the object menu.

Copy the highlighted transaction to the
transaction "cut-and-paste" buffer.

Copy Trans in the object menu.

Paste the transaction currently in the buffer above
the highlighted transaction.

Past e Trans in the object menu.

Edit the transaction.

Double-click on the transaction.

82

Chapter5

Using Transaction 1/O
Using Transactions

Table 5-2. Editing Transactions With the Keyboard

To Do This... Press This Key...
Move the highlight bar to the next transaction. CTRL+N
Move the highlight bar to the previous CTRL+P
transaction.
Move the highlight bar to a different transaction. t, 1, Home

Insert a transaction above the highlighted
transaction.

Insert line or CTRL+O

Cut (delete) the highlighted transaction, saving it
to the transaction “cut-and-paste" buffer.

Delete line or CTRL+K

Paste the transaction currently in the buffer above | CTRL+Y
the highlighted transaction.
Edit the highlighted transaction. space bar

Chapter 5

83

Using Transaction 1/O
Using Transactions

To edit the fields within a transaction, double-click on the transaction to
expandittoan! /O Transacti on dialog box.

WWRITE TEXT a EOL

= To String = |I
|

/0 Transaction

[wrRITER] [TEXT =]
[DEFAULT FORMAT x| EOLOM |

ok | wnop | cancell

Figure 5-3. Editing the Default Transaction in To Stri ng

Thefieldsshowninthel /O Transact i on dialog box will be different for
the different types of 1/O operations. To edit any field, click on thefield and
type in information or complete the resulting dialog box. Detailed
information about these fieldsis provided later in this chapter and in
Appendix D, “l/O Transaction Reference”.

Notice that the fields in they O Tr ansact i on dialog box map directly to
the mnemonics that appear in the transaction listed in the open view.

TheNCP button is unique to thie/ O Tr ansact i on dialog box. Clicking

on NOP saves the latest settings shown in the dialog box, but it also makes
that transaction a "no operation" or a "no op." Its effect is the same as
commenting out a line of code in a text-based computer program.

84 Chapter5

Editing the Data
Field

Using Transaction 1/O
Using Transactions

Most of the I/O specificationsin atransaction are easy to edit because a
dialog box helps you select the proper choice. However, the data field does
not use adialog box; you can type in many different combinations of
variables and expressions.

/0 Transaction |‘
I Data
TEXT =] N

Field

|READ =] |
[REALFORMAT =] | MAXNUMCHARS. |

|ARRAY2D -] =izE |(|2 : |2 J

ok | wnop | cancell

Figure 5-4. READ Transaction Using a Variable in the Data Field

10 Transaction |‘
S Data

WRITE = TEXT = !
| = =] Field
| REAL FORMAT =] DEFAULT FIELD WIDTH]

[~ =] | FxeD =] | MUMFRACT DIGITS: [3 EOLONl

ok | noep | cancell

Figure 5-5. WRI TE Transaction Using an Expression in the Data Field

You must type in the proper list of what you wish to read or write. Table 5-
3liststypical entriesfor the datafield. Notethat WRI TE transactions allow
you to specify an expression list (variables, constants, and operators), but
READ allows only avariable list.

Chapter 5 85

Note

Using Transaction 1/O

Using Transactions

Table 5-3. Typical Data Field Entries

Data Field Entry

Meaning

X (READ) Read data into the variable X.

A (WRITE) Write the value of the variable A.

X, Y (READ) Read data into the variable X and then read data into the
variable Y.

A B (WRITE) Write the value of the variable A and then write the value
of the variable B.

nul | (READ only) Read the specified value and throw it away. nul | is a
special variable defined by HP VEE.

A A1 1 (WRITE only) Write the value of A and then write the value of A
multiplied by 1.1.

"hel | o\ n" (WRITE) Write the Text literal hel | o followed by a newline

character.

"FR ", Fr," MAZ"

(WRITE) Write a combination of Text literals and a numeric value. If
the transaction is WRI TE TEXT REAL and Fr has the Real value
1.234, then HP VEE writes FR 1. 234 MHZ.

The expressions allowed in aWRl TE datafield are the same as those allowed
in For nul a objects. Note that you may include the escape characters shown
in Table 5-4 in any field that accepts Text input in the form of astring
delimited by double quotes.

READ transactions allow a specia variable named nul | inthe datafield.
Reading datainto the null variable simply throws the data away; thisis
useful when you need to strip away unneeded datain a controlled fashion.

86

Chapter5

Using Transaction 1/O
Using Transactions

Table 5-4. Escape Characters

Escape Character ASCII Code Meaning
(decimal)
\n 10 Newline
\t 9 Horizontal Tab
\v 11 Vertical Tab
\b 8 Backspace
\'r 13 Carriage Return
\ f 12 Form Feed
\ " 34 Double Quote
39 Single Quote
\\ 92 Backslash
\ ddd The ASCII character corresponding
to the three-digit octal value ddd.

Adding Terminals

Most often, you will want to add input or output terminals to a transaction-
based 1/0 object. To add terminals, click on the corresponding featuresin the
object menu, or use the keyboard short cuts. (Use CTRL-A to add aterminal
or CTRL-D to delete aterminal.)

For WRI TE transactions, you will generally add a data input terminal. In a
WRI TE transaction, data is transferred from HP V EE to the destination
associated with the object.

For READ transactions, you will generally add a data output terminal. In a
READ transaction, data is transferred from the source associated with the
object to HP VEE.

The variable names that appear on the terminal must match the variable
names in the transaction specification. This may be easy to overlook,
because HP VEE automatically assigns variable namessuch as X, Y, or Z
when you add aterminal.

Chapter 5 87

Using Transaction 1/O
Using Transactions

= To File = = From File =
| 4 | TOFile: myFile | From File: myFile | %
[" Clear File At PreRun & Open READ TEXT %, y REAL
YWRITE TEXT a, h EOL
[l
These data input terminals. . These transaction variahles. ..
...map to these ..map ta these
transaction variables. data outputs.

Figure 5-6. Terminals Correspond to Variables

To edit the variable name of atermina

1. Double click on the terminal to expand it into a
Terni nal | nformation dialog box.

2. Edit the Nane field in the dialog box.

Recall that variable namesin HP VEE are not case-sensitive. Thus, s isthe
sameasSand Si gnal isthesameassi gnal .

Reading Data

In order to read datainto avariable, HP VEE must know either the number
of data elements to read, or what specific terminating condition, such as
EOF (end-of-file), isto be satisfied. Let’s begin by looking at how to
configure atransaction to read a specified number of data elements.

88 Chapter5

Transactions that
Read a Specified
Number of Data
Elements

Using Transaction 1/O
Using Transactions

When you are editing atransaction, the last field in the transaction dialog
box has the default value SCALAR. This specifiesthat the READ transaction is
to read only one element. To change this, just click on the SCALAR field to
reveal alist of available choices.

=] From File =

Fram File: fyFile

FEAD BINARY ¥,y INT32

I/Q Transaction

| READ =] | BINARY =] pvy

I INT32 VI

ARRAY 10
ARRAY 90 Ok | WNORP | Cancell
ARRAY 30
"B ARRAY 4D
ARRAY G0
ARRAY B0
ARRAY TD
ARRAY B0
ARRAY 90
ARRAY 100

Figure 5-7. Select Read Dimension from List

The choicesin the list indicate the number of dimensions for the READ
transaction. For example, SCALAR indicates adimension of 0, ARRAY 1D
indicates a one-dimensional array, ARRAY 2D indicates atwo-dimensional
array, and so forth.

Chapter 5 89

Using Transaction 1/O
Using Transactions

When you click on adimension in the list, the transaction dialog box will
reconfigure itself with afill-in field for each of the dimensions specified.
Figure 5-8 shows the transaction dialog box configured to read athree-
dimensional array of binary integers into the variable named nat ri x. Each
of the three fields after SI ZE: contains the number of integers for the
corresponding dimension. (In this case, each dimension has two elements.)

From File =

From Filg:

ryFile

READ BINARY matrix INT32 ARRAN: 2, 2 2

If/0 Transaction

| READ =] [BINARY =] |matrix

I INT32 "I

SIZE: |(12 2 2)

oK | nOoP | cancel

Figure 5-8. Transaction Dialog Box for Multi-Dimensional Read

Note that when more than one dimension is specified, the rightmost or
"innermost” dimension isfilled first. Thus, in this example, the elements are

read in this order:

matri x[0, O,
matri x[0, O,
matrix[O, 1,
matri x[0, 1,
matrix[1,0,
matrix[1,0,
matrix[1,1,
matrix[1,1,

0] readfirst
1]
0]
1]
0]
1]
0]
1] readlast

90

Chapter5

Read-To-End
Transactions

Using Transaction 1/O
Using Transactions

When you click on the OK button in the transaction dialog box, the resulting
transaction appears with the ARRAY: keyword followed by the dimension
sizes, for example:

READ BI NARY nmatri x | NT32 ARRAY: 2, 2, 2

If the transaction is configured to read a scalar value, the transaction appears
asfollows:

READ BI NARY x | NT32

You can use variable namesin the SI ZE: fields to specify array dimensions
programmatically. For example, the following transaction would read a
three-dimensional matrix:

READ BI NARY matri x | NT32 ARRAY: xsi ze, ysi ze, zsi ze

Inthiscase, xsi ze, ysi ze, and zsi ze could be either the names of input
terminals, or the names of output terminals set by previous transactionsin
the same object.

Certain HP V EE objects support READ transactions that will read to the end-
of-file (EQF). Thus, it is possible to read the contents of afile with asingle
transaction. Such transactions are called read-to-end transactions. Note that
EOF, besides indicating end-of-file for a standard disk file, can also indicate
closure of a named-pipe or pipe.

The following HP V EE objects support read-to-end transactions:

FromFile

From String

From Stdin (UNI X)

To/ From Naned Pi pe (UNI X)
To/ From HP BASI ¢/ UX (UNI X)
Execut e Program (UNI X)

To/ Fr om DDE (PC)

Chapter 5 91

Using Transaction 1/O
Using Transactions

Figure 5-9 shows the transaction dialog box of aFr om Fi | e object, reading
athree dimensional array of binary integers, but configured for read-to-end:

= Fraom Filg =

From File: myFile

FEAD BINARY matrix INT32 ARRAY:*2 2

YO Transaction

| READ =] | BINARY =] |matrix

—
| INT32 -I

[arraY 30 =] FOENGY(© . |2 |2)

ok | mop | cancel

Figure 5-9. Transaction Dialog Box for Multi-Dimensional Read-To-End

Note that read-to-end transactions are not supported for scalars. The
transaction must be configured for at least a one-dimensional array in order
to be configured as read-to-end. If an HP V EE abject supports read-to-end,
the SI ZE: field will appear as a button in the transaction dial og box.
Clicking on the SI ZE: field will enable read-to-end — the field will now
appear a3O END: .

The trivial case of reading a one-dimensional array to end simply means that
the number of elements in the array is equal to the number of elements read
until ECF is found. The unknown size of the array is denoted by an asterisk
(*) in the transaction.

On the other hand, reading a multi-dimensional array to end is somewhat
more complicated. In this case the number of elements must be supplied for
each dimension, except the left-most or "outer" dimension. Figure 5-9 shows
that this dimension has ah)(in place of a size in the transaction. This
dimension size is unknown until the read-to-end is transaction complete.

To better understand this concept, consider that a three-dimensional array is
nothing more than a number of two-dimensional arrays grouped together. A
two-dimensional array has the dimensions of "rows" and "columns".

92 Chapter5

Note

Non-Blocking Reads

Using Transaction 1/O
Using Transactions

Stacking two-dimensional arrays, like cards, adds the third dimension,
"depth". In aread-to-end transaction of athree-dimensional array, the
number of "rows" and "columns" is specified, but the "depth" is unknown
until EOF is encountered. The sameistrue for al multi-dimensional read-to-
end transactions. If the array has n dimensions, the size of n- 1 of those
dimensions must be specified. Only one (the left-most) dimension can be of
unknown size.

A further restriction on read-to-end transactions of dimensions greater than
an ARRAY 1Disthat the number of total elements read hasto be evenly
divisible by the product of the known dimensions. For example, let's assume
that our read-to-end example of athree-dimensional array isfrom afile with
16 total elements. This means that the transaction will read four two-by-two
arrays since the transaction specifies the number of "rows" and "columns" is
equal to 2. Hence, the unknown dimension size, "depth", is4 when the read
is complete.

If the file actually contained 18 elements, one of the two-by-two arrays

would be incomplete — it would contain only two elements. A read-to-end
of this file would result in an error, and no data would be read, if you
specified a size df for the "row" and "column" dimensions. On the other
hand, you could read this file if the number of "rows" is equaland the
number of "columns" is equal & A read-to-end of this file would then
result in a "depth" of.

If you don't know the absolute number of data elements in a file, you can
always use a read-to-end usigRAY 1D.

The read-to-end transaction is useful withEkecut e Pr ogr amobject for
a program that is a shell command that will return an unknown number of
elements.

A READ transaction finishes when the read is complete. Until the read is
done, the transaction is said to block. When reading disk files the blocking
action is not apparent since data is always available from the disk. However,
for named-pipes, and for pipes where data is being made available from
another process,READ transaction could block, thereby effectively halting
execution of an HP VEE program. In some caseREA® transaction could
block indefinitely.

Chapter 5 93

Note

Using Transaction 1/O
Using Transactions

The READ | OSTATUS DATAREADY transaction provides a means to peek at
anamed-pipe or pipein order to seeif thereis data available for a READ
transaction. The READ | OSTATUS DATAREADY transaction isavailablein
the following HP V EE objects:

B To/ From Naned Pi pe (UN X)
B To/ From Socket

B To/ From HP BASI C/ UX (UNI X)
B From Stdin (UNI X)

A READ | OSTATUS DATAREADY transaction, when executed, will block
until the named pipe has been opened on the other end by the writing
process. The transaction will then return the status of the pipe.

If the pipe has been closed by the writing process, effectively writing an
EOF into the pipe, the READ | OSTATUS DATAREADY transaction will return
al, indicating that an EOF isin the pipe. A subsegquent READ transaction
will generate an EOF error. Use an error pin on the object reading the datato
trap the EOF error.

Figure 5-10 shows a program where READ | OSTATUS DATAREADY is used
to detect data on the Stdin pipe.

94 Chapter5

Using Transaction 1/O
Using Transactions

<)

Until Break

=] From Stdin =]

JEAD [OSTATUS DATAREADY X = =
READ IOSTATUS DATAREADY P IT e I\‘
——
e
= From Stdin
_} = Meter =

ID 200

= AlphaNumeric = O

| 81

4]
READ TEXT x 3TR ><

Figure 5-10. Using READ | OSTATUS DATAREADY for a Non-Blocking
Read

This program is saved in the file manual 47. vee inyour exanpl es
directory.

The program in Figure 5-10 shows the use of a

READ | OSTATUS DATAREADY transactioninFr om St dl n. Thetransaction
returns azero (0) if no datais present on the stdin pipe. If datais present, a
one (1) isreturned. Thel f/ Then/ El se isused to test the returned value of
the READ | OSTATUS DATAREADY transaction. If theresultis 1, then the
second Fr om St dI n is allowed to execute, reading the data typed into the
HP VEE start-up termina window. If no data has been typed into the start-up
terminal window (or aRet ur n has not been typed), execution continues
again at the start of the thread. Note the use of Unti | Br eak to iterate the
thread so the Fr om St dI n with the READ | OSTATUS DATAREADY
transaction is continually tested.

To view complete programs that illustrate how to read arrays from files,
open and run the programs nanual 27. vee and manual 28. vee in your
exanpl es directory.

Chapter 5 95

Using Transaction 1/O
Using Transactions

Suggestionsfor Experimentation

Many times the best way to devel op the transactions you heed is by using
trial and error. A large portion of the data handled by I/O transactionsis text
(as opposed to some type of binary data). Datawritten as TEXT isvery
useful for experimenting because it is human-readable. Whileusing TEXT is
not the most compact or fastest approach, you can use it to do just about

anything.

You can usethe To St ri ng object to accurately simulate the output
behavior of other 1/0O objects writing text. The following program shows
how you might do this.

To String

[4]

WHITE TEXT "HELLOW1Wn" EOL

WRITE TEXT 255 HEX PREFIX EOL
WRITE BYTE 65, 66, 67, 63, 69, 10
WRITE CASE 2, 1, 0 OF "dogwn”, "catin”, "birdn" EOL

result

—| Logging AlphaMumeric | =

HELLO

Oxff
ABCDE
bird
cat
dog

4

Figure 5-11. Experimenting with To Stri ng

96

Chapter5

Using Transaction 1/O
Details About Transaction-Based Objects

Details About Transaction-Based Objects

Execution Rules

Transaction 1/O objects obey all of the genera propagation rules for HP
VEE programs. In addition, there are afew simple rules for the transactions
themselves:

1. Transactions execute beginning with the top-most transaction and
proceed sequentialy downward.

2. Each transaction in the list executes completely before the next one
begins. Transactions within a given object do not executein an
overlapped fashion. Similarly, only one transaction object has accessto a
particular source or destination at atime.

3. Transaction-based I/O objects accessing the same source or destination
may exist in separate threads within the same program.

Note that for file-related objects, thereis only one read pointer and one
write pointer per file. The same pointers are shared by all objects
accessing a particular file.

Object Configuration

In the most general case, the result of any transaction is actually determined
by two things:

B The specifications in the transaction
B The settings accessed via Pr oper t i es in the object menu

In most cases you do not need to be concerned about the Pr operti es
settings; the default values are generally suitable.

Chapter 5 97

Note

Using Transaction 1/O
Details About Transaction-Based Objects

All transaction-based 1/0O objects that write data (except Di rect 1/ O)
include an additional tab in the Pr oper ti es dialog box that lets you edit
the dataformat. The resulting dialog box alowsyou to view and edit various
settings.

Di rect |/ Oobjects behave differently than described above.

Di rect |/ Oobjectsinclude aShow Confi g featurein their object menu
that alows you to view (but not edit) configuration settings. To edit the
configuration of aDi r ect |/ Oobject, you must use

I/00 Instrument Manager. Referto Controlling Instruments with
HP VEE for moreinformationonDi rect 1/0Q.

Clicking on Proper ti es inthe object menu of atransaction /O object
yieldsaPr operti es dialog box like the one in Figure 5-12.

=] To File =

To File: myFile

" Clear File At PreRun & Open

GBI RITE TEXT 2 EOL

Ta File Properties |
General T Colors T Fonts DataFumlaﬁIL
- Separator Sequence

End Of Line (EOL): |"\r'|"
Array Separator: |" "

~ Multi-Field Format— |'A.I'T‘a\j Format—

< Data Only < Linear
4 [..) Byntax % Block

OK | Cancell Help |

Figure 5-12. The Properti es Dialog Box

98 Chapter5

End Of Line (EOL)

Array Separator

Using Transaction 1/O
Details About Transaction-Based Objects

TheProperties dialog box hasaDat a For mat tab containing settings
that affect the way certain datais written by WRI TE transactions. The

End OF Line (EQL) affectsany WRI TE inwhich EOL ONisset. The
remaining Dat a For mat fields affect only WRI TE TEXT transactions.

The sections that follow explain the fieldsinthe Dat a For mat tab in detail.

TheEnd O Line (EQL) field specifiesthe charactersthat are sent at the
end of WRI TE transactions that use EOL ON. The entry in this field must be
zero or more characters surrounded by double quotes. "Double quote"
means ASCII 34 decimal. HP V EE recognizes any ASCI| characters within
End O Line (EQL) including the escape characters shown previously in
Table 5-4.

TheArray Separ at or field specifies the character string used to separate
elements of an array written by WRI TE TEXT transactions. The entry in this
field must be surrounded by double quotes. "Double quote” means ASCII 34
decimal. HP VEE recognizes any ASCII character asan

Array Separ at or aswell asthe escape characters shown previously in
Table 5-4.

WRI TE TEXT STRtransactionsinDi rect |/ Oobjectsthat write arraysare
aspecia case. Inthiscase, thevalueinthe Array Separator fiddis
ignored and the linefeed character (ASCII 10 decimal) is used to separate the
elements of an array. This behavior is consistent with the needs of most
instruments.

Chapter 5 99

Multi-Field Format

Array Format

Using Transaction 1/O
Details About Transaction-Based Objects

TheMil ti-Field Fornmat section specifiesthe formatting style for multi-
field datatypesfor WRI TE TEXT transactions. The multi-field datatypesin
HP VEE are Coord, Complex, PComplex, and Spectrum. Other datatypes
and other formats are unaffected by this setting.

Specifying amulti-field format of (. ..) Synt ax surrounds each multi-
field item with parentheses. Specifying Dat a Onl y omits the parentheses,
but retains the separating comma. For example, the complex number 2+2j
could bewrittenas (2, 2) using(...) Syntaxoras2, 2 using

Dat a Onl y syntax.

Note that HP VEE allows arrays of multi-field data types; for example, you
can create an array of Complex data. In such acase, if

Mul ti-Field Format issetto(...) Syntax,thearray will bewritten
as.

(1,1)array_sep(2,2)array_sep ...

where ar r ay_sep isthe character specified inthe Array Separ at or
field.

TheArray Format determinesthe manner in which multidimensional
arrays are written. For example, mathematicians write amatrix like this:

123
456
789

HP VEE writes the same matrix in one of two ways, depending on the
setting of Array For mat . In the two examples that follow,

End O Line (EQL) issetto"\n" (newline) and Array Separator is
setto" " (space).

12 Block Array Format
4 5
7 8

o o w

123456789 Linear Array Format

Either array format separates each element of the array with the

Array Separ at or character. Bl ock Array Format takesthe additional
step of separating each row inthe array usingtheEnd O Li ne (EQL)
character.

100 Chapter5

Using Transaction 1/O
Details About Transaction-Based Objects

In the more general case (arrays greater than two dimensions), Bl ock
Array Format outputsanEnd O Line (EQL) character eachtimea
subscript other than the right-most subscript changes.

For example, if you write the three-dimensional array A[x, y, z] using
Bl ock array format with this transaction:

VRI TE TEXT A

anEnd O Line (EQL) character will be output eachtimex ory changes
value.

If the size of each dimension in A is two, the e ements will be written in this
order:

A[0,0,0] AO0,0,1]<EQL Character>
A[0,1,0] AO0,1,1]<EQL Character>
<EQOL Character>

A[1,0,0] Al1,0,1]<EQL Character>
A[1,1,0] A1, 1,1]<EQL Character>

Notice that after A[0, 1, 1] iswritten, x andy change simultaneously and
consequently two <EQOL Char act er >Sare written.

READ and WRITE Compatibility

In general, you must know how data was written in order to read it properly.
Thisis particularly true when the datain question isin some type of binary
format that cannot be examined directly to determine its format. You must
read data in the same format it was written.

Chapter 5 101

Using Transaction 1/O
Choosing the Correct Transaction

Choosing the Correct Transaction

This section summarizes the various 1/O objects and the transactions they
support. It also suggests a procedure for determining the correct object and
transaction for a particular purpose. For details on transaction encodings
and formats, please refer to Appendix D, “I/O Transaction Reference”.

The two tables that follow summarize the transaction-based objects available
in HP VEE and the actions they support. Use these tables together with the
following section, “Selecting the Correct Object and Transaction” on

page 104, to determine the proper object and transaction for your needs.

102 Chapter5

Using Transaction 1/O
Choosing the Correct Transaction

Table 5-5. Summary of Transaction-Based Objects

From String

Object Description
To File Writes data to a file.
FromFile Reads data from a file.
To String Writes text to an HP VEE container.

Reads text from an HP VEE container.

Execute Program
(UNI X)

Spawns an executable file; writes to standard input and reads from
standard output of the spawned process. Note that Execut e
Program (PC) is not transaction based.

To Printer

Writes text to the HP VEE text printer.

To StdQut

To StdError

From Stdln

Writes data to HP VEE standard output. (A file on the PC)
Writes data to HP VEE standard error. (A file on the PC)

Reads data from HP VEE standard input. (A file on the PC)

Direct 1/0

Ml ti pl e Device
Direct 1/0

Interface
Operati ons

Communicates directly with HP-IB, VXI, serial, or GPIO
instruments.

Communicates directly with multiple HP-IB, VXI, serial, or GPIO
instruments in the same object.

Transmits low-level bus commands and data bytes on an HP-IB or
VXI interface.

To/ Fr om Naned
Pi pe (UNI X)

To/ From HP
BASI C/ UX (UNI X)

Transmits data to and from named pipes to support interprocess
communications.

Transmits data to and from an HP BASIC/UX process via HP-UX
named pipes.

To/ From DDE (PC)

Dynamically exchanges data between programs running under
Microsoft Windows.

To/ From Socket

Uses interprocess communication to exchange data within
networked computer systems.

Chapter 5

103

Using Transaction 1/O
Choosing the Correct Transaction

Table 5-6. Summary of Transaction Types

Action Description

EXECUTE Executes low-level commands to control the file, device, or interface
associated with the transaction-based object. This action is used to adjust
file pointers, clear buffers, close files and pipes, and provide low-level
control of hardware interfaces.

VWAI T Waits for a specified period of time before executing the next transaction.
In the case of Di rect |/ Oto HP-IB, message-based and I-SCPI-
supported register-based VXI devices, WAl T can also wait for a specific
serial poll response.

READ Reads data from the associated object.

WRI TE Writes data to the associated object.

SEND Sends IEEE 488-defined bus messages (commands and data) to an HP-IB

interface.

Selecting the Correct Object and Transaction

1. Determinethe source or destination of your 1/0O operation and theformin
which datais to be transmitted.

2. Determine the type of object that supports the source or destination using

Table 5-5.

3. Determine the correct type of transaction using Table 5-6.

4. To determine the remaining specifications for the transaction, such as
encodings and formats, consult Appendix D, “I/O Transaction
Reference”.

For information about using transaction for instrument I/O, refer to
Controlling Instruments with HP VEE.

104

Chapter5

Example of
Selecting an Object
and Transaction

Using Transaction 1/O
Choosing the Correct Transaction

Assume you need to read a file containing two columns of text data. Each
row contains atime stamp and a real number separated by a white space.
Each line ends with a newline character. Hereisapartial listing of the
contents of the file.

14:18: 00 1.001
14:18: 30 -2.002
14:19: 00 1. OE-03 .

Based on the previous procedure for selecting objects and transactions, here
are the steps to solve this problem:

1. The sourceisatext file. The data consists of atime stamp in 24-hour
hours-minutes-seconds notation and signed real numbersin scientific and
decimal notation.

2. Consulting Table 5-5, note that the object used to read afileis
From Fil e.

3. Consulting Table 5-6, note that the type of transaction used to read data
from afileis READ.

4. Thedesired transactions are;

READ TEXT x TI ME
READ TEXT y REAL

Chapter 5 105

Using Transaction 1/O
Using To String and From String

Using To Sring and From Sring

UseTo String to create formatted Text by using transactions. The Text is
written to an HP V EE container.

UseFrom St ri ng to read formatted Text from an HP VEE container.

If only one string is generated by all the transactionsinaTo Stri ng
object, the output container is a Text scalar. If more than one string is
generated by the transactionsinaTo St ri ng, the output is aone-
dimensional array of Text.

VRI TE transactions using EOL ON always terminate the current output
string. This causes the next transaction to begin writing to the next array
element in the output container.

WRI TE transactions ending with EOL OFF will not terminate the output
string, causing the characters output by the next WRI TE transaction to
append to the end of the current string. Thelast transactioninaTo String
always terminates the current string, regardless of that transaction's EOL
setting.

For most situations, the proper type of transaction for usewith To Stri ng
iISWRI TE TEXT. For details about encodings other than TEXT, please refer to
Appendix D, “I/O Transaction Reference”.

From String can read a Text scalar or an array depending on the
configuration of tha(READ TEXT transactionREAD TEXT will either

terminate a read upon encounteringCh or will consume th&OL and
continue with the read. This is dependent on the format. For details about
formats, please refer to Appendix D, “I/O Transaction Reference”.

106 Chapter5

Using Transaction 1/O
Communicating With Files

Communicating With Files

Source or Destination Object

Data Files To File,FromFile
Standard Input From Stdin
Standard Output To StdQut

Standard Error To StdErr

Details About File Pointers

HP V EE maintains one read pointer and one write pointer per file regardless
of how many objects are accessing thefile. A read pointer indicates the
position of the next data item to be read. Similarly, awrite pointer indicates
the position where the next item should be written. The position of these
pointers can be affected by:

B A READ, WRI TE, or EXECUTE action

B TheC ear File at PreRun & Open setting in the open view of
To File

All objects accessing the same file share the same read and write pointers,
even if the objects are in different threads or different contexts.

A fileis opened for reading and writing when either of these conditionsis
met:

B Thefirst object to access a particular file operates for the first time after
PreRun. Thisisthe most common case.

B New data arrives at the optional control input terminal that specifies the
file name. This case occurs less frequently.

Chapter 5 107

Read Pointers

Write Pointers

Note

Closing Files

Using Transaction 1/O
Communicating With Files

At thetime From Fi | e opens afile, the read pointer is at the beginning of
the file. Subsequent READ transactions advance the file pointer as required
to satisfy the READ. You can force the read pointer to the beginning of the
file at any time using an EXECUTE REW ND transactioninaFrom Fi |l e
object; datain thefileis not affected by this action.

Theinitial position of awrite pointer depends on the

Clear File at PreRun & Open setting inthe openview of To Fil e.
If youenableCl ear File at PreRun & Open, thefile contents are
erased and the write pointer is positioned at the beginning of the file when
thefileisopened. Otherwise, thewrite pointer is positioned at the end of the
fileand datais appended. You can force the write pointer to the beginning of
the file at any time using an EXECUTE REW ND or EXECUTE CLEAR
transaction. REW ND preserves any data already in the file. However, new
datawill overwrite old data starting at the new position. CLEAR erases data
aready inthefile.

TheTo Dat aSet and Fr om Dat aSet objects also share one read and one
write pointer per filewiththe To Fi | e and Fr om Fi | e objects. However,
mixing To Dat aSet and Fr om Dat aSet operationswithTo Fil e and
From Fi | e operations on the same file is not recommended.

HP VEE guarantees that any datawritten by To Fi | e iswritten to the
operating system when the last transaction completes execution and all
output terminals have been activated.

The UNIX operating system physically writes data buffered by the operating
system to disk periodically, typically every 15-30 seconds. This buffered
operation is part of the operating system; it is not unique to HP VEE.

HP VEE automatically closes al files at PostRun. PostRun occurs when all
active threads finish executing.

Files may be closed programmatically by using the EXECUTE CLOSE
transaction in both To Fi | e and From Fi | e. This provides a means to
continually read or write afile that may have been created by another
process.

108 Chapter5

Using Transaction 1/O
Communicating With Files

Files may also be deleted programmatically by using the EXECUTE DELETE
transaction. Thisis useful for deleting temporary files.

Figure 5-13 shows an example of how to use EXECUTE CLOSE.

—| ForCount | =

I 10
= |
Stop I Delay I\‘
= Execute Program (UNX) =]

Shell: | sh vl Wait for prog exit: Yes
Snell command: [date » tmp/daterile

J- = Logging Alphalumeric =
Tue Cct 11 12:20:58 MOT 1054

= A A El Tue Oct 11 12:20:59 MDT 1394
From File: /mp/dateFile | Tue Gct 11 12:21:00 MDT 1994

Tue Cct 11 12:21:01 MOT 1994

READ TEXT X STR | Tue Oct 11 12:21:02 MDT 1994

EXECUTE CLOSE

Tue Oct 11 12:21:03 MOT 1984
Tue Qct 11 12:21:04 MOT 1994
Tue Oct 11 12:21:05 MDT 1994
Tue Oct 11 123106 MOT 19584

Figure 5-13. Using the EXECUTE CLOSE Transaction

This program is saved in the file manual 48. vee inyour exanpl es
directory.

In Figure 5-13 Execut e Pr ogr amexecutes a shell command (dat e) that
creates and writesthe date and timeto afile (/ t np/ dat eFi | e). Within the
same thread, aFFr om Fi | e reads the date from that fileusing a

READ TEXT x STRtransaction. The EXECUTE CLOSE transactionis
necessary because the subthread is executed multipletimes by For Count .
Succeeding executions of Execut e Pr ogr amwill overwrite thefile.
However, since Fr om Fi | e only opens the file once, upon the second
execution of Fr om Fi | e the read pointer will be stale — it will no longer
point to the file sinc&xecut e Pr ogr amhasre-created the file. An error
will occur.

Chapter 5 109

Using Transaction 1/O
Communicating With Files

From Fi | e must close the file after reading the data by using an
EXECUTE CLOSE transaction. The EXECUTE CLGSE transaction forces
From Fi | e to re-open the file on every execution.

In the example of Figure 5-13, the error can be shown by using aNOP to
"comment out" the EXECUTE CLOSE transaction. The error will state End
of file or no data found. Removing the NOP will allow the program
to run normally.

The EOF Data Output

Fr om Fi | e supportsaunique dataoutput terminal named EOF (end-of-file).
Thisterminal is activated whenever you attempt to read beyond the end of a
file. The EOF terminal is useful when you wish to read a file of unknown
length.

The read-to-end feature, discussed in “Reading Data” on page 88, also
provides a means of reading a file of unknown length. However, the contents
of the file will be in a single HP VEE container. If the file is to be read an-
element-at-a-time, with each element residing in its own container, use the
EOF terminal.

Figure 5-14 illustrates a typical usegf~. The file being read contains a
list of X-Y data of unknown length. Here are typical contents of the file:

1.0
5.5
2.1
8

110 Chapter5

Using Transaction 1/O
Communicating With Files

)

Until Break —| Logging AlphaMumeric | =
1
54

= Fraom File =] 2.1
g
From File: myFile [| % | 13
READ TEXT x REAL 25.1

EQF |-—J

Break |

Figure 5-14. Typical Use of EOF to Read a File

Common Tasksfor Importing Data

Because HP VEE provides a convenient environment for analyzing and
displaying data, you may wish to import datainto HP V EE from other
programs. Thisisthe general procedure to use for importing data from
another software application:

1. Savethedatain atext file (ASCII file).

2. Examinethe datafile with atext editor to determine the format of the

data.
3. UseaFrom Fi | e object withaREAD TEXT transaction to read the data
file.
Importing X-Y One very common problem is reading atext file containing an unknown
Values number of X and Y values and plotting them. The program shown in Figure

5-15 solves this problem.

Chapter 5 111

Using Transaction 1/O

Communicating With Files

<

Until Break

From File

From File:

fustilibiveetestiexamples/manualimanual29 dat

|
| ®

LTTT

Hws Y Plot

— YDatal

— —1 Auto Scale

YDatal

<«

1 III:
I+

X name

Figure 5-15. Importing XY Values

The program shown in Figure 5-15 is saved in the file manual 29. vee in
your exanpl es directory.

Note that the READ TEXT REAL transaction easily handles all the different
notations used for Y valuesincluding signs, decimals, and exponents. Here
isaportion of the datafile:

8. 555555
9 9e0
10 1.05e+01
11 +11.
12 12.5
13 1.3El
112 Chapter5

Importing
Waveforms

Using Transaction 1/O
Communicating With Files

There are many different conventions used by other software applications
for saving waveforms astext files. In general, the file consists of a number
of individual values that describe attributes of the waveform and a one-
dimensional array of Y values. This section illustrates how to import
waveforms saved using one of these conventions:

B Fixed-format file header. Waveform attributes are listed in fixed
positions at the beginning of the file followed by aone-dimensional array
of Y data.

B Variable-format file header. A variable number of attributes are listed at
the beginning of the file followed by a one-dimensional array of Y data.
Their positions are marked by special text tokens.

Fixed-Format Header. Hereisaportion of the datafile read by the program
in Figure 5-16:

NAME Noi sel
START TIME 0.0
STOP_TI ME 1. 0E-03
SAMPLES 32
DATA
. 243545
. 2345776

Sincethisis afixed-format header, 1abels such as NAME and SAMPLES are
irrelevant. The waveform attributes always appear and are in the same
position. Figure 5-16 shows a program that reads the waveform datafile.

Chapter 5 113

Using Transaction 1/O
Communicating With Files

From File

=

From File: Justflibfveetestiexamples/manualmanualal.dat |

READ TEXT null TOKEN

READ TEXT Mame TOKEN

READ TEXT Tstart REAL

READ TEXT Tstop REAL

READ TEXT Samples REAL

READ TEXT Signal REAL ARRAY Samples

—| signal Name | ~
Narme j— Noise1
Tstart | -
Farmula
Tstop |
Signal |
Samples |

= Waveform (Tirme)

Trace

4]

-0.4

I»]

Time

im

Figure 5-16. Importing a Waveform File

The program shown in Figure 5-16 is saved in the file manual 30. vee in
your exanpl es directory.

114

Chapter5

Using Transaction 1/O
Communicating With Files

Thetransactionsin Fr om Fi | e do most of the work here. Here is how each
transaction works:

1. Thefirst transaction strips away the NAVE label. This must be done
before attempting to read the string that names the waveform, or else
NAVME and Noi sel would be read together as a single string.

2. The second transaction reads the string name of the waveform.

3. Thethird through fifth transactions read the specified numeric quantity.
Note that HP VEE simply reads and ignores any preceding "extra’
charactersin the file not needed to build a number.

4. The sixth transaction reads the one-dimensional array of Y data using the
ARRAY S| ZE determined by the previous transaction. Note that
Sanpl es must appear as an output terminal to be used in this transaction.

Variable-Format Header. Hereis a portion of the datafile read by the
program in Figure 5-17:

First Line O File
<MARKER1> 1 2 3
<MARKER2> A B C

<DATA>

1 1.1
2 2.2
3 2.9

In this case, the exact contents and position of datain the file is not known.
The only fact known about thisfileisthat alist of XY values follows the
special text marker <DATA>.

To simplify this example, the program in Figure 5-17 finds only the data
associated with <DATA>. In your own applications, you might need to
search for several markers.

Chapter 5 115

Using Transaction 1/O
Communicating With Files

= Text [+ [—'
O <DATA>

Until Ereak #1

Break |

—| Logging AlphaMumeric | -
First

Tine

of

File
<MARKER1>
READ TERT x TOKEN 1

= Fram File #1

From File: fusrlibiveetestiexamples/manual/manual31.dat |

<MAREKERZ >
A

<) :

Until Break #2 <DATA>

= Hwvs Y Plot -

= Fram File #2

From File: fusrflibiveetestiexamples/manual/manual31 dat |

|
READ TEXT ¥, y REAL |
|

Figure 5-17. Importing a Waveform File

The program shown in Figure 5-17 is saved in the file manual 31. vee in
your exanpl es directory.

From Fi | e #1 readstokens (words delimited by white space) one at a
time, searching for <DATA>. Once <DATA> isfound, Fr om Fi | e reads XY
pairs until the end of the fileis reached.

116 Chapter5

Using Transaction 1/O
Communicating With Programs (UNIX)

Communicating With Programs (UNI X)

Program Object(s)
Shell command Execut e Program (UN X)
C program Execut e Program (UN X)

To/ From Nanmed Pi pe (UN X)
To/ Fr om Socket

HP BASIC/UX Init HP BASI C/ UX (UNI X)
To/ From HP BASI ¢/ UX (UNI X)

Execute Program (UNI X)

At times you may wish to use an HP VEE program to perform atask that
you would normally do from the Operating System command line. The
Execut e Program (UNI X) object allows you to do this. You use
Execut e Program (UN X) torunany executable file including:

B Compiled C programs
B Shell scripts

B UNIX system commands, such asl s and gr ep

=| Execute Program (LK) =
Shell: [none~] ‘wait for prog et Yes

Prog with params: [WyProg -optiona -optionb

WRITE TEXT InData EOL Exit code

WRITE TEXT OutData ECL

Figure 5-18. The Execut e Program (UNI X) Object

Chapter 5 117

Execute Program
(UNIX) Fields

Using Transaction 1/O
Communicating With Programs (UNIX)

The following sections explain the fields visible in the open view of
Execute Program (UNI X) .

Shell. Shel | specifiesthe name of an UNIX shell, such assh, csh, or ksh.
If the Shel | field issetto none, thefirst tokeninthe Prog wit h parans
field is assumed to be the name of an executable file, and each token
thereafter is assumed to be a command-line parameter. The executableis
spawned directly as achild process of HP VEE. All other things being
equal, Execut e Program (UNI X) executes fastest when Shel | isset to
none.

If the Shel | field specifies ashell, HP VEE spawns a process
corresponding to the specified shell. The string contained in the

Prog with parans fieldispassed to the specified shell for interpretation.
Generally, the shell will spawn additional processes.

Wait for Prog Exit. Vait for prog exit determineswhen HPVEE
completes operation of the Execut e Pr ogr amobject and activates any
dataoutputs. If Wait for prog exit issetto Yes, HP VEE will:

1. Check to seeif achild process corresponding to the
Execut e Program (UNI X) objectisactive. If oneis not already
active, HP VEE will spawn one.

2. Execute al transactions specified in the Execut e Pr ogr amobject.

3. Closeall pipesto the child process, thus sending an end-of-file (EOF) to
the child.

4. Wait until the child process terminates before activating any output pins
of the Execut e Program (UNI X) object. If the Shel | field is not set
to none, it isthe shell that must terminate to satisfy this condition.

118 Chapter5

Using Transaction 1/O
Communicating With Programs (UNIX)

Ifvait for prog exit issettoNo, HPVEE will:

1. Check to seeif achild process corresponding to the
Execut e Program (UNI X) objectisactive. If oneis not already
active, HP VEE will spawn one.

2. Execute all transactions specified in the Execut e Pr ogr amobject.

3. Activate any data output pins onthe Execut e Pr ogr amobject. The
child process remains active and the corresponding pipes still exist.

All other things being equal, Execut e Program (UNI X) executes fastest
whenWait for prog exit issettoNo.

Prog With Params. Prog with par ans specifieseither:

1. The name of an executable file and command line parameters
(Shel I settonone).

2. A command that will be sent to a shell for interpretation
(Shel | not set to none).

Here are examples of what you typicaly typeintothe Prog wi t h par ans
field:
To run ashell command (Shel | settoksh):
Is -t *.dat | nore
To run acompiled C program (Shel | set to none):
MyProg -optionA -optionB

If you use shell-dependent featuresinthe Prog wi t h par ans field, you
must specify a shell to achieve the desired result. Common shell-dependent
features are:

B Standard input/output redirection (< and >)
B File name expansion using wildcards (*, ?, and [a- z])
B Pipes(|)

Chapter 5 119

Running a Shell

Command

Using Transaction 1/O
Communicating With Programs (UNIX)

Execut e Program (UNI X) can be used to run shell commands such as
I's, nkdi r, and r m Figure 5-19 shows one method for obtaining alist of
filesin adirectory using an HP VEE program.

= Execute Pragram =] —[Alphadumeric | -
zhell: | sh vI Walt for prog exit: Yes Extcodell —f 32
Shell command: [(1s /gmp | we -I; 15 dmp)
READ TEXT Lines INT Lines_[+— [AphaNumerc |-
FEAD TEXT x 3TR ARRAY:LiNES 00° BEEPdernn]
X |01 JingleBelis
02: Music.dat
03: README
04: SetValue bar
05: Songs

4 0B: catalog.hp
07: container
08: controld.c
09: dateFile
10: escape

11: hosts local
12 hosts smtp

I«

Figure 5-19. Execut e Program (UN X) Running a Shell Command

The program shown in Figure 5-19 is saved in the file manual 32. vee in
your exanpl es directory.

In Figure 5-19, the Execut e Program (UNI X) determinesthe number of
filenamesinthe/ t np directory by listing the namesin asingle column (I s
- 1) and piping thislist to aline counting program (wc -1). Becausethe
pipeis used, the command contained inthe Prog wi t h par ans field must
be sent to ashell for interpretation. Thus, the Shel | fieldissettosh. The
number of linesisread by the READ TEXT transaction and passed to the
output terminal named Li nes.

The second transaction readsthe list of filesinthe/ t mp directory. Note that
it reads exactly the number of lines detected in thefirst transaction. The shell
command is separated by a semicolon to tell the shell that it is executing two
commands.

Inthe Execute Program (UNI X),Wait for prog exit issettoYes.
In this case, this setting is not very important because these shell commands
are only executed once. The No setting is useful when you want the process

120 Chapter5

Using Transaction 1/O
Communicating With Programs (UNIX)

spawned by the Execut e Program (UNI X) to remain active while your
HP VEE program continues to execute.

Figure 5-20 shows another method for obtaining alist of filesin a directory
using an HP VEE program.

= Execute Program =] —| _ AlphaMumeric |«
Shell [none =] Wit for prog ext: Yes : 00 BEEPderno =]

: Exit code | 01 JingleBells

Prag with params: [is tmp 02 Music.dat

FEAD TEXT ¥ 3TR ARRAY:™* 03 README

X 04: Setvalue har
05 Songs
06: catalog.hp

07: container
08: controlA.c
09: dateFile
10: escape
11: hosts local
12 hosts.smtp =

—

Figure 5-20. Execut e Program (UN X) Running a Shell Command
using Read-To-End

This program is saved in the file manual 50. vee inyour exanpl es
directory.

In Figure 5-20 the HP VEE program displays the contents of the/ t np
directory in asimpler fashion than in Figure 5-19.

In Figure 5-20, Execut e Program (UNI X) hasintheProg with

par ans field the single shell command | s /t np. Thereisno need to first
obtain the number of filesin the directory, as was done in the program in

Figure 5-19, because thetransaction READ TEXT x STR ARRAY: * usesthe
read-to-end feature discussed in “Reading Data” on page 88. The shell
command, when it is done executing, will close the pipe that

Execut e Program (UN X) is using to read the list of files. This sends an
end-of-file €OF) which terminates the transaction.

Chapter 5 121

Using Transaction 1/O
Communicating With Programs (UNIX)

Runninga C The program shown in Figure 5-21 illustrates one way to share datawithaC
Program program using st di n and st dout of the C program. In this case, the C
program simply reads a real number from HP VEE, adds one to the number,

and returns the incremented value.

=] Number |«
| 94.89
| 100 &=
=Il= Execute Program (UNI<) =]
Shell: |none vl Wait for prog exit: Yes
Exitcode|
Prog with params: lfusrflib!\feetest-’examples!manualfmanualsa.exe
1@ WRITE TEXT a REAL STD ECL
READ TEXT b REAL b |_1
I D —
= Result =
95.89

Figure 5-21. Execut e ProgramRunning a C Program

The program shown in Figure 5-21 is saved in the file manual 33. vee in
your exanpl es directory.

122 Chapter5

Using Transaction 1/O
Communicating With Programs (UNIX)

Figure 5-22 contains alisting of the C program called by the HP VEE
program in Figure 5-21.

The program listing in Figure 5-22 uses both set buf andf f | ush to force
datathrough st dout of the C program; in practice, either set buf or
fflush issufficient. Usingset buf (fil e, NULL) turns off buffering for
dl outputto fi/e. Usingfflush(file) flushesany already buffered
datato fil e.

#i ncl ude <stdi o. h>

main ()

{
int c;
doubl e val ;

set buf (st dout, NULL) ; /* turn stdout buffering off */

while (((c=scanf("%f",&val)) !'= ECOF) && c > 0){
fprintf(stdout, "%\ n", val +1);
fflush(stdout); /* force output back to VEE*/

}
exit(0);

Figure 5-22. C Program Listing

To/From Named Pipe (UNI X)

To/ From Nanmed Pi pe isatool for advanced userswho wish to implement
interprocess communication. Using hamed pipesin UNIX is not atask for
casua users; named pipes have some complex behaviors. If you wish to
learn more about named pipes and interprocess communication, refer to the
section “Related Reading” on page 144 at the end of this chapter.

All To/ From Named Pi pe objects contain the same default names for read
and write pipes. Be certain that you correctly specify the names of the pipes
you want to read or write. This can be a problem if you run HP VEE on a
diskless workstation. You must be sure that the named pipes in your
program are not being accessed by another user.

HP VEE creates pipes for you as they are needed; you do not need to create
them outside the HP VEE environment.

Chapter 5 123

Using Transaction 1/O
Communicating With Programs (UNIX)

Hints for Using B Be certain that HP VEE and the process on the other end of the pipe

Named Pipes expect to share the same type of data. In particular, be certain that the
amount of data sent is sufficient to satisfy the receiver and that unclaimed
datais not left in the pipe.

B Use unbuffered output to send datato HP VEE or flush output buffers to
force data through to HP VEE. This can be achieved by using non-
buffered I/0 (wr i t), turning off buffering (set buf), or flushing buffers
explicitly (f f1 ush).

Here are examples of the C function calls used to control buffered output to
HP VEE:
set buf (out _pi pel, NULL) Turns off output buffering.
or
fflush(out_pi pel) FlushesdatatoHP VEE.
or
write(out_pipe2, data, n) Whitesunbuffered data.

whereout _pi pel isafilepointer and out _pi peZ2isafiledescriptor for
the Read Pi pe specifiedin To/ From Naned Pi pe.

Note that HP VEE automatically performs similar flushing operations when
writing datato apipe. HP VEE does the equivalent of anf f | ush when
either of these conditionsis met:

B Thelast transaction in the object executes.
B A WRI TE transaction is followed by a non-WRI TE transaction.

To/ From Naned Pi pe supports read-to-end transactions as described in
“Reading Data” on page 880/ Fr om Naned Pi pe also supports
EXECUTE CLOSE READ PI PE andEXECUTE CLOSE WRI TE PI PE
transactions. These transactions can be used for inter-process
communications where the amount of data to read and write between
HP VEE and the other process is not explicitly known.

For example, suppose that HP VEE is using named-pipes to communicate
with another process. If HP VEE is writing data out on a namedapipthe

124 Chapter5

Using Transaction 1/O
Communicating With Programs (UNIX)

amount of dataislessthan that expected by the reading process, that reading
process will hang until such time as there is enough data on the named-pipe.

By using an EXECUTE CLOSE WRI TE PI PE transaction, the named-pipeis
closed when an ECF (end-of-file) is sent. Thus, an EOF will terminate most
read function calls (r ead’, fr ead, f get s, €tc...), thereby allowing the
reading process to unblock and still obtain the data written by HP VEE into
the pipe.

Conversely, if HP VEE isthe reading process, a READ transaction using the
read-to-end feature will allow HP VEE to read an unknown amount of data
from the named-pipeif the writing process performsacl ose() onthe pipe,
sending an EOF. Another way to avoid aread that will block indefinitely is

to usethe READ | OSTATUS transaction. See Appendix D, “I/O Transaction
Reference” for more information about usREAD | OSTATUS transactions.

To/From Socket

TheTo/ Fr om Socket object is foradvanced users who wish to implement
interprocess communication for systems integration. Using sockets is not a
task for casual users; sockets have some complex behaviors.

Sockets let you implement interprocess communication (IPC) to allow
programs to treat the LAN as a file descriptor. IPC implies that there are two
sockets involved between two or more processes on two different
computers. Instead of a simple open()/close() interface as used in the

To/ From Naned Pi pe object, sockets use an exported address and an
initial caller/receiver strategy, referred to as a connection-oriented protocol.

In a connection-oriented protocol, also known as a client/server
arrangement, the server must obtain a socket tilmeran address known as

the port number to the socket. After binding a port number, the server waits
in a blocked state to accept@nection request. To call for a connection,

the client must obtain a socket, then use two elements of the server's identity.
The elements include the particular port number the server bound to its
socket, and the server's host name or IP address. If the server's host name
cannot be resolved into an IP address, the afiest use the IP address
specifically. After the server accepts the client's connection request, the
connection is established and normal I/O activities can begin.

Chapter 5 125

To/From Socket
Fields

Using Transaction 1/O
Communicating With Programs (UNIX)

= To/From Socket = = To/From Socket =
Bin Part [soor ConnectPort |[— eoo1 |
Hast Mame: [nptmaz Host Mame [rptmz |
Timeout: IT ﬂ ﬂ Timeout, IT

READ TEXT x STR WRITE TEXT a STR ECL

Figure 5-23. The To/ From Socket Object

The To/ From Socket object contains fields that let you do the following;:
B Connect to a bound socket on aremote compuiter.

B Bind a socket on the computer on which HP VEE is running and wait for
aconnection to occur.

Of the four available fields, values of the following three fields can be input
as control pins to the object:

B Connect/Bind Port Mode
B Host name
B Timeout

The following sections explain the fields visible in the To/ Fr om Socket
open view.

Connect/Bind Port Mode. Connect/Bind Port M ode comprises two fields,
the mode button and the text field. The mode button toggles between Bi nd
Port and Connect Port. Thetext field letsyou enter the port number.
Allowed port numbers are integers from 1024 through 65535. Numbers
from 0 through 1023 are reserved and will cause arun-time error if you use

126 Chapter5

Using Transaction 1/O
Communicating With Programs (UNIX)

them. Port numbers above 5000 are commonly called transient, and are the
range of numbers you should use.

Table 5-7. Range of Integers Allowed for Socket Port Numbers

Number Range Reserved for ...
0—1023 operating system
1024—5000 commercial or global application?
5001—65535 internal or closed distributed applications

a. Usually involves a registration process.

Host Name. If the modeissettoBi nd Port, thisfield displays the name
of host computer on which HP VEE isrunning. You cannot changethisfield
to the host name of aremote computer, because it is not possible to bind a
port number to a socket on aremote computer.

If the modeissetto Connect Port, youarealowedto edit thisfield. Enter
the host name or | P address of the remote computer to which you want to
connect. You must know the host name and it must be resolvable to the IP
address. |f ahost name table is not available on the network to trans ate the
host name to an IP address, you must enter the specific address, such as
15.11.29.103.

Timeout. Ti meout letsyou enter an integer value that represents the
timeout period in seconds for all READ and WRI TE transactions. This
timeout period isalso in effect for theinitial connection when the To/ Fr om
Socket objectisset eitherintheBi nd Port modewaiting for aconnection
to occur, or inthe Connect Port mode waiting for a connection to be
accepted. Thisvalueisignored if the remote host does not exist or it is
down; in this case, the HP VEE interface is frozen until the connection fails,
which may take up to one minute.

Transactions. The To/ Fr om Socket object usesthe same hormal 1/O
transactions used by the To/ Fr om Naned Pi pe object. READ and
WRITE transactions support all data types. See Appendix D, “l/O
Transaction Reference” for detailed information about transactions.

Chapter 5 127

Data Organization

Object Execution

Example

Using Transaction 1/O
Communicating With Programs (UNIX)

All binary datais placed on the LAN in network-byte order. This
corresponds to Most Significant Byte (MSB) or Big Endian ordering.
Binary transactions will swap bytes on READs and WRI TES, if necessary.
Thisimpliesthat any other processthat HP VEE is connected to will need to
conform to this standard. In the previous example, the server process could
have been little endian ordered while the client could be big endian ordered.
The byte swapping done by HP VEE isinvisible.

A To/ Fr om Socket object set to bind a socket at a port number will usethe
timeout period waiting for a connection to occur. All concurrent threadsin
HP VEE will not execute during this period. The timeout value can be set to
zero which disables timeouts, potentially making the period waiting for a
connection infinitely long. Any timeout violation causes an error, and halts
HP VEE execution.

Once a connection has been established the devices perform the transactions
contained in the transaction list. All READ operations will block for the
timeout period waiting for the amount and type of data specified in the
transaction. To avoid potential blocked threads, use the READ | OSTATUS
transaction to detect when data is avail able on the socket.

To specifically terminate a connection, use the EXECUTE CLOSE transaction.
All socket connections established in aHP VEE program are broken when a
program stops executing. Whichever way connections are broken, the server
and client objects must repeat the bind-accept and connect-to protocols to
re-establish connections. EXECUTE CLOSE should be used as a mutually
agreed-upon termination method, and not merely an expedient way to flush
data from a socket.

Multiple To/ Fr om Socket objectswill share sockets. All objects that are
binding an identical port number will share the same socket. All objectsthat
are configured with identical port numbers and host names to attempt
connection to the same bound socket will share the same socket. The
overhead of establishing the connection isincurred in the first execution of
one of the commonly configured objects.

The following figure shows a HP VEE program which uses the To/ Fr om
Socket object to provide a separate server process for data acquisition using
the HPE 1413B. Thissimple server can honor client requeststo initialize
instruments, acquire and write data to disk, and shutdown and quit. During

128 Chapter5

<)

Until Break

Using Transaction 1/O
Communicating With Programs (UNIX)

the acquisition phase datais read from the Current Value Tablein the A/D
and sent to the client.

Thefirst To/ Fr om Socket object to execute, connected to the Unt i |

Br eak object, will bind a socket to port number 5001 on the host computer
named hpj t mxzz and wait 180 seconds for another process to connect to
that socket. Note the use of an error pinto avoid a halt dueto atimeout. In
this case that object isjust executed again and will wait another 180 seconds
for aconnection. After the connection has been made, the object will then
block on the READ transaction waiting for the client to send a command.
Again, if atimeout occurs on the READ, the object will execute again and
block on the READ transaction.

= /T hen/Else E _j—| Init Instruments |

Th
[strUp(A)=="init" =0

Else If ———— Shutdown

[strup(a)=="cuit"

To/From Socket [

Host Marme:

Timeout:

hpjtmxzz % |

A
“— BlrUp(A)=="Acquire" saerr| | ToiFrom Socket | «|
N — Ll
Bind Port 3001 Else Else |
I 180

BindPort |~ 5001
Hast Mame: hpjtmxzz

Timeout: 180

EXECUTE CLOSE

Actjuire ==

I 10
= To/From Socket =

—To Filel

Bind Port]
= mirrors (hpe 1413 @ 16032) = —l 5001
WRITE TEXT "Data Fifo Hali?" EOL) 1
READ BINBLOCK x REAL32 ARRAY:* ~—a] Timear [180
WRITE TEXT "Data CvT? (@100,105,107.116) EOL : B
READ BINBLOCK x REAL32 ARRAY:* WRITE BINARY a REAL32
Y '

Figure 5-24. To/ Fr om Socket Binding Port for Server Process

Chapter 5 129

Using Transaction 1/O
Communicating With Programs (UNIX)

The following figure shows the client side of the service described
previously. Thefirst To/ Fr om Socket object to execute will wait,
deeping, for the attempted connection to occur. Note that unlike the server,
any timeout error will cause the program to error and halt. The first object
sends over the commands| ni t and Acqui r e then executesthe loop to read
the CVT.

= To/From Socket =]

ConnectPort [[~ 001 | = To/From Socket [
N —— P ConnectPort [~ 5001
Timenaut I 50 Host MNarme: I hpjtrixz
WRITE TEXT "Init’ EOL TIHEENE [60 o
WRITE TEXT "Acquire” EOL READ BINARY ¥ REALT? ARRAY 2
—| For Count | = ~ Strip Chart =
o _ NN
= Al0] I—' Y name - 1
100mr = —
N R —]
- Tracel]
— —_7
| To/From socket |« e] | - ———]
Cannest Port |[~ 5001 Trace2
Host Name: hpjtmsa _ S —— L — 3
Timeaut;] — A2) |—- - 1
YWRITE TEXT "Quit’ EOL TEre 1
- — [———
- o b b i b B i B
— A[3] |—| 0 -0
Step Size: 1 H name 2

Figure 5-25. To/ Fr om Socket Connecting Port for Client Process

HP BASIC/UX Objects (HP-UX)

Thelnit HP BASI ¢/ UXand To/ From HP BASI ¢/ UX objects are
availablein al versions of HP VEE, and work only in programs that run on
HP 9000 Series 700 systems.

The HP BASIC/UX objects are tools for advanced users who wish to
communicate with HP BASIC processes. Refer to the section “To/From
Named Pipe (UNIX)” on page 123 earlier in this chapter for general
information about using pipes with HP VEE.

130 Chapter5

Init HP BASIC/UX

To/From
HP BASIC/UX

Using Transaction 1/O
Communicating With Programs (UNIX)

Init HP BASI C/ UX spawns an HP BASIC/UX process and runs a
specified HP BASIC program.

Enter the compl ete path and file name of the HP BASIC program you wish
to execute in the Pr ogr amfield. The program may be in either STOREd or
SAVEd format.

I nit HP BASI C/ UX does not provide any data path to or from the
HP BASIC process; use To/ Fr om HP BASI C/ UX for that purpose.

You can use morethanonel nit HP BASI C/ UX object in a program, and
you can use more than one in asingle thread.

Notethat thereis no direct way to terminate an HP BASIC/UX process from
an HP VEE program. In particular, PostRun does not attempt to terminate
any HP BASIC/UX processes. PostRun occurs when all threads complete
execution or when you press St op. Thus, you must provide away to
terminate the HP BASIC/UX process. Possible waysto do this are:

B Your HP BASIC program executes a QUIT statement when it receives a
certain data value from HP VEE.

B AnExecute Programobject killsthe HP BASIC/UX process using a
shell command, such asr nbki | | .

IfyouCut anlnit HP BASI ¢/ UXwhiletheassociated HP BASIC process
is active, HP VEE automatically terminates the HP BASIC process. When
you Exi t HP VEE, all HP BASIC processes started by HP VEE are
terminated.

TheTo/ From HP BASI ¢/ UX object supports communications between an
HP BASIC program and HP V EE using named pipes.

Type in the names of the pipes you wish to useinthe Read Pi pe and
Wite Pipe fields. Becertain that they match the names of the pipes used
by your HP BASIC/UX program and that the read and write names are not
inadvertently swapped relative to their usein the HP BASIC program. Use
different pipesfor the To/ Fr om HP BASI ¢/ UX objects in different threads.

Chapter 5 131

Examples Using
To/From
HP BASIC/UX

Using Transaction 1/O
Communicating With Programs (UNIX)

Sharing Scalar Data. Consider a simple case where you wish to:

1

2.

3.

4.

5.

Start HP BASIC.

Run a specific HP BASIC program.

Send a single number to HP BASIC for analysis.

Retrieve the analyzed data.

Terminate HP BASIC.

Here aretypical To/ Fr om HP BASI C/ UX settings and the corresponding
HP BASIC/UX program:

=] To/From HP BASIC/Ux =
Wirite Pipe Jtmp/to_rmb
Read Pipe ptmp/from_rmb
WRITE TEXT & REAL STD EOL

READ TEXT x REAL

Figure 5-26. To/ Fr om HP BASI C/ UX Settings

Hereisthe HP BASIC/UX program:

100
110
120
130
140
150

ASSI GN @romvee TO "/tnp/to_rnb"
ASSI GN @o_vee TO "/tnp/fromrnb"
I Your anal ysis code here

ENTER @rom vee; Vee_data

OQUTPUT @o_vee; Rb_dat a

END

To view an example program that solves this problem, open the
manual 34. vee example.

132

Chapter5

Using Transaction 1/O
Communicating With Programs (UNIX)

Sharing Array Data. To share array data between HP VEE and HP BASIC
using TEXT encoding, you must modify the default Ar ray Separ at or in
To/ From HP BASI ¢/ UX. Todothis, click on Properti es inthe

To/ From HP BASI C/ UX object menu and click on the Dat a For mat tab
inthe Properties dialog box. SettheArray Separator fieldto",
(acommafollowed by ablank).

Be sure that HP VEE and HP BASIC use the same size arrays.

Note that the order in which HP VEE and HP BASIC read and write array
elementsis compatible. If HP VEE and HP BASIC share an array using
READ and WRI TE transactionsin To/ Fr om HP BASI C/ UX, each element
will have the same valuein HP VEE asin HP BASIC.

To view an example program that shares arrays between HP VEE and
HP BASIC, open the manual 35. vee example.

Sharing Binary Data. It is possible to share numeric data between HP VEE
and HP BA SIC without converting the numbersto text. To do this, you must
select Bl NARY encoding in the To/ Fr om HP BASI C/ UX transactions and
FORMAT OFF for the ASSI GN statements that reference the named pipesin
HP BASIC.

There are only two cases where it is possible to share numeric datain binary
form:

B HPVEE BI NARY REAL isequivalentto HP BASIC REAL

B HPVEE BI NARY | NT16 isequivalent to HP BASIC | NTEGER

Chapter 5 133

Using Transaction 1/O
Communicating With Programs (PC)

Communicating With Programs (PC)

Program Object(s)
MS-DOS command Execut e Program (PC)
Windows Application® Execute Program (PC)

To/ From DDE (PC)
To/ Fr om Socket

C program Execut e Program (PC)
I mport Library

Call Function

For mul a

a. HP VEE for Windows supports ActiveX automation which lets
you control other Windows applications. For information about
using this feature, see Chapter 7, “Using ActiveX Automation
Objects and Controls”.

Execute Program (PC)

At times you may wish to use an HP V EE program to perform atask that
you would normally do from the Operating System command line. The
Execut e Program (PC) object allows you to do this. You use
Execut e Program (PC) torun any executable file including:

B Compiled C programs

B Any MS-DOS program (* . EXE or *. COMfiles)

W . BAT files

B MS-DOS system commands, such asdi r

134 Chapter5

Execute Program
(PC) Fields

Using Transaction 1/O
Communicating With Programs (PC)

=| Execute Program (PC) =]

Run Style: [Mormal =]

Wait for prog et Yes

Prog with params: |

working directory: |

Figure 5-27. The Execut e Program (PC) Object

The following sections explain the fields visible in the open view of
Execut e Program (PC).

Run Syle. If the program you want to execute runsin awindow, Run
St yl e specifies the window style:

H Nor mal runsthe program in a standard window.
B M ni m zed runsthe program in awindow minimized to an icon.

B Maxi mi zed runsthe program in awindow enlarged to its maximum size.

Wait for Prog Exit. Wait for prog exit determineswhen HP VEE
compl etes operation of the Execut e Program (PC) object and activates
any dataoutputs. If Wait for prog exit issettoYes, HP VEE will:

1. Execute the command specified inthe Execut e Pr ogr am (PC) object.

2. Wait until the process terminates before activating any output pins of the
Execut e Program (PC) object.

Chapter 5 135

Using Transaction 1/O
Communicating With Programs (PC)

Ifvait for prog exit issettoNo, HPVEE will:
1. Execute the command specified inthe Execut e Pr ogr am (PC) object.
2. Activate any data output pins on the Execut e Program (PC) object.

All other things being equal, Execut e Progr am (PC) executes fastest
whenWait for prog exit issettoNo.

Prog With Params. Prog wi th parans specifieseither:
1. The name of an executable file and command line parameters.
2. A command that will be sent to MS-DOS for interpretation.

If you have included the appropriate path in the PATH variable in your
AUTOEXEC. BAT file, you don't need to include the path in the

Prog with parans field. Here are examples of what you typically type
intotheProg with parans field:

To execute aMS-DOS command:
COVVAND. COM / C DI R *. DAT
To run acompiled C program:
MyProg -optionA -optionB
Working Directory. Wor ki ng di r ect ory pointsto adirectory where the

program you want to execute can find files it needs. So, if you want to run
the program nmake using the makefile in the directory c: \ pr ogs\ cpr ogl:

InProg with parans:, enter nnmake.

InWorking directory:,enterc:\progs\cprogl.

136 Chapter5

Note

Using Transaction 1/O
Communicating With Programs (PC)

Using Dynamic Data Exchange (DDE)

HP VEE for Windows supports ActiveX automation which lets you control
other Windows applications. For information about using this feature, see
Chapter 7, “Using ActiveX Automation Objects and Controls”.

Dynamic Data Exchange (DDE) defines a message-based protocol for
communication between Windows applications. This communication takes
place between a DDE client and a DDE server. The DDE client requests the
conversation with the DDE server. The client then requests data and
services from the server application. The server responds by sending data or
executing procedures.

A Windows application that supports DDE may act as either a client, a
server or both. HP VEE for Windows provides only client capabilities. It
implements DDE capabilities with tif@/ Fr om DDE object.

The HP VEE for Window3o/ Fr om DDE object uses four types of
transactions:

READ(REQUEST) Reads Data from a DDE transfer.
VRl TE(POKE) Writes (pokes) Data to a DDE transfer.

EXECUTE Sends a command to the DDE server that HP VEE for
Windows is communicating with. The server then
executes the command.

WAI T Waits for the specified amount of time (in seconds).
Note that théfo/ Fr om DDE object initiates and terminates DDE operations

as part of its function. You do not need to explicitly perform the initiate and
terminate functions.

Chapter 5 137

Note

To/From DDE
Object

Using Transaction 1/O
Communicating With Programs (PC)

Definitions:
Application - The DDE name for the application.

Topic - An application-specific identifier of the kind of data. For example, a
word processor’s topic would be the document name.

Item - An application-specific identifier for each piece of data. For
example, a spreadsheet data item might be a cell location; aword processor
data item might be a bookmark name.

=| To/From DDE =
Application: [Excel
Topic: [Sheett
Timeout: |5

—

Figure 5-28. The To/ Fr om DDE Object

The To/ Fr om DDE object hasthree main fields. Inthe Appl i cati on field
enter the application name for the Windows application that you want to
communicate with. Generally, thisisthe. EXE file name. See the manual
for each specific application to determine its DDE application name.

The Topi ¢ field contains the Topic name for the application.

TheTi meout field letsyou specify the timeout period for HP VEE to wait if
the application does not respond. The default valueis five seconds.

The last field contains transactions to communicate with the other
application. For READ(REQUEST) and WRI TE(POKE) transactions, you
must also fill in an | t emname in the transaction.

138 Chapter5

Using Transaction 1/O
Communicating With Programs (PC)

For example, the following To/ Fr om DDE object, communicating with the
M S Windows Program M anager, creates a program group, adds an item to
the group, displaysit for 5 seconds and then del etes the program group.

= TofFrom DOE =
Application: [Proghan
Topic: [progman
Timeout: |5

EXAECUTE CMND:"[CreateGroup(DDE Test)

EXECUTE CMND:"[Additemn(C WWEEWYEE EXE, DDE TEST))]"
WAIT INTERWVAL: S

EXECUTE CMND:"[DeleteGroupiDDE Test)]"

Figure 5-29. The To/ Fr om DDE Example

Note that if the server DDE application is not currently running, HP VEE
will attempt to start that application. Thiswill only be successful if the
application’s executable file name is the same as the name in the application
fiedld. The executable file's directory must also be defined in your PATH.

HP VEE will try to start the application for the amount of time entered in the
Ti neout field. Otherwise, use an Execut e Program (PC) object before
the To/ Fr om DDE object to run the application program, asillustrated in the
following example.

Chapter 5 139

Using Transaction 1/O
Communicating With Programs (PC)

= Execute Program (PC) =
Run Style: m
walt for prog exit Na |
Prog with params: |e:-:cel—
working directory: [hexcel

= To/From DOE [
Application: [Excel
Topic: [Sheett
Timeout: |5

some data" EOL

Figure 5-30. Execute PC before To/From DDE

The following example shows the use of input and output terminals with a
To/ Fr om DDE object.

=l To/Fram DDE =
| Interest | -] Application; [Excel
P A Topic: [Sheet1
Timeout: |5
—| wears |4 WRITE ITEM:"r1c1" TEXT a EQOL
Fi {8 [wRime mew e TexT d ol e

EXECUTE CMND:"[FORMULAN =PMT(r1C 112, 1c2712 r1ea iy Aricdv]”
READ ITEM:"r1cd" TEXT ¢ S3TR

—| Loan Amount | «|

95000 —— D |

—| Alphaiumeric | «

Figure 5-31. 1/0 Terminals and To/From DDE

140 Chapter5

DDE Examples

Using Transaction 1/O

Communicating With Programs

(PC)

The following figures are examples of how to communicate with various
popular Windows software. Read the Not e Pad in each example for
important information regarding each example.

Execute Program (PC)

=

Run Style: | Mormal v[
Walt for prog extt. o |

Prog with params: W
WWorking directary: W

- Mote Pad

Hote that DDE to Lotus 123 for Windows
iz documented for client only. To

ke it & server, you can execute s
command using the following synktax:

To/From DDE

Application: [1 23w

Topic: Jsystem

ﬂ Timeout: 5

EXECU

CMND:"[runi\" camrmandyy]"

"leun (Moommandy T]

Figure 5-32. Lotus 123 DDE Example

Note Pad -

Execute Program (PC)

I~}

Note that DDE to Excel
regquires that you use

R4C3 syntax to specify
cell C4 (row 4, col 3).

—| celvalue |«

Run sStyle: | Marmal vl
Wait for prog exit: M

|exce|

Working directory: [Céexcel

Prog with params:

Error [}

1

To/From DDE

Application: [Excel
Topic: |Sheett

—

ﬂ Timeaout: 5]

MRITE ITEM: "R

3" TEXT a EQOL

Figure 5-33. Excel DDE Example

Chapter 5

141

Using Transaction 1/O
Communicating With Programs (PC)

=] Execute Program (PC) =] ~- Nate Pad a
Run Style: I Normal 'l Note that DDE to Reflections can use
\Wait for prog exit: Mo the topic "System”, "RCL", or
. . i "Settings". This example requests data
Prog with params IR1W|n from item "SystemItem”. Other items
Wiorking directory: |C'fR'1Win are "Topics", "Formats", or "Statua”.
l=zo note that Reflections allows the
user to change the Application name
from "R1Win" to anything else.
=] To/From DDE =

Application: [R1¥vin

Topic: |System —~| Alphanumeric | =
Timeout [§ X |

Figure 5-34. Reflections DDE Example

=| Execute Program (PC) = - Mote Pad 4
Run Style: [Normal =] Mote that DDE to winword
. . uses bookmarks, like
WAV 7 (TR @A M i "Data" in this example.
Prog with params: o wirvvord/report.doc lso, Topic must be a

working directory: [Awinword full path name.

%

= To/From DDE =
Application: Wvinword
—| Datavalue | «| Topic: JC:twirmordireport.doc
[z1a2 | A | Timeout |5

ITE ITEM:"D

Figure 5-35. Word for Windows DDE Example

142 Chapter5

Using Transaction 1/O
Communicating With Programs (PC)

= Execute Program [PC) = = Mote Pad r

Run Style: | MNormal = Hote that DDE to WordPerfect can use
. o | the topics "Commands"” or "System”.
WHETIEHEI [ATEg) @HE io i Thiz example executes the WordPerfect
Prog with params |c:\wpwin\rep0rt item "MacroPlay". The program could have
. . 5 - - mlso requested data from items "SysItem”,

Working directony: |c.\pr|n PDopics”, or "Pormats”.

= To/From DDE =
Application: fivordPerfect
Topic: [Commancs

& | Timeout: |5

EXECUTE CMMD:"MacroPay

Figure 5-36. WordPerfect DDE Example

Dynamic Linked Libraries(DLL)

For information on using DLLs see “Creating a Dynamic Linked Library
(MS Windows)” on page 44.

Chapter 5 143

Using Transaction 1/O
Related Reading

Related Reading

1. Haviland, Keith and Salama, Ben, UNIX System Programming.
(Addison-Wed ey Publishing Company, Menlo Park, California, 1987).

This book contains information of general interest to programmers using
UNIX. In particular, it contains explanations of interprocess
communications and pipes that are applicable to with To/

From Narmed Pi pe, To/ Fr om Socket , To/ From HP BASI ¢/ UX, and
Execut e Program

For information on using transactions for instrument 1/O, refer to
Controlling Instruments with HP VEE.

144 Chapter5

Using the Sequencer Object

Using the Sequencer Object

You'll need to understand several topics covered in thisand other manualsin
order to use the Sequencer object effectively. These topics include

instrument |1/O operations (Controlling Instruments with HP VEE),

UserObjects (How Do | in HP VEE Help), Records and DataSets (Chapter

3, “Using Records and DataSets”), and UserFunctions (Chapter 4, “Using
User-Defined Libraries”). Also, for information on how to use a transaction,
refer to "Using Transactions" in Chapter 5, “Using Transaction 1/O”.

You can use th8equencer object, found under theevi ce menu, to

control the order of calling of a series of tests. Seguencer object

executes a series of sequence transactions. Each of these transactions
evaluates an HP VEE expression, which may contain calls to UserFunctions,
Compiled Functions, Remote Functions, or other HP VEE functions. After
evaluating the HP VEE expression, the transaction compares the value
returned by that expression against a test specification. Depending on
whether the test passes or fails, the transaction then evaluates different
expressions and selects the next transaction to be executed. Transactions
may optionally log their results to theg output pin, or to a UserFunction,
Compiled Function, or Remote Function. Logging actions are specified in
the Sequencer Properties dialog box on the Logging tab.

146 Chapter 6

Using the Sequencer Object
Sequence Transactions

Sequence Transactions

The Sequencer object, inits open view, shows alist of sequence

transactions. Each transaction is similar to the other types of transactions

shown in Chapter 5, “Using Transaction 1/0”. To see howstgiencer

uses transactions to execute expressions and call functions, let's look at a
simple example.

In the following program there are two UserFunctions in the background:
nmyRand1, which adds a random number from 0 to 1 to the value of its input,
andnyRand2, which adds a random number from 0 to 100 to its input.
(Refer to Chapter 4, “Using User-Defined Libraries”, for further information
on creating and using UserFunctions.)

w| = SEequencer =
L . == (1.281<=15
A | test? 1 <= (26) <= 51 Return |
= Text |4 test3 finish (simple EXEC trans.)
[Done! B |
= Log Record =
—| Returnalue |«

Figure 6-1. A Simple Sequencer Program

Chapter 6 147

Note

Using the Sequencer Object
Sequence Transactions

When you click on atransaction with the mouse, adialog box "expands' the
transaction so you can view and edit it. The following dialog box shows the
first transaction, t est 1:

Sequence Transaction

JesT| B | [EneBLED]
SPECNOMINAL: [125 | | RaNGE. =] i = =5
FUNCTION: |nyRand(A) | LOGGING ENABLED |

F pass | [THEN CONTINUE]

F FAIL | [THEN CONTINUE =]

DESCRIPTION: |

OK | Cancel|

A sequence transaction can either be a TEST transaction or an EXEC
transaction. In this transaction, the type is TEST: , the namefieldist est 1,
the nominal specificationis1. 25’, aRANGE: specification isused, and the
rangeisl <= ... <= 1.5.Thus, only valuesfrom 1to 1.5 will passthe
test. The expression myRand1(A) callsthe user function using the value on
the A input terminal of the Sequencer asitsinput parameter. The
transaction has logging enabled, so alocal variable named Test 1 will be
automatically created, which contains the log record of the results of this
test. Thislog record will also be available as part of the Log output terminal.
Thel F PASSand | F FAI L conditions are both THEN CONTI NUE. This
means that, pass or fail, oncet est 1 is done, the next transaction, t est 2,
will be executed.

The DESCRI PTI ONfield is simply acomment areafor this test.

For RANGE or LI M T tests, the SPEC NOM NAL valueis not used, except for
"documentation” purposes. However, if you use tests based on TOLERANCE
or % OLERANCE values, the tolerance will be calcul ated rel ative to the SPEC
NOM NAL value.

148 Chapter 6

Using the Sequencer Object
Sequence Transactions

The second transaction, t est 2, isalso a TEST transaction:

Sequence Transaction

JesT|EEE | [EneBLED]
SPEC NOMINAL: |26 [RanGE =] i = ==
FUNCTION: |nyRand2(4) = LOGGING ENABLED |

F pass | [THEN CONTINUE]

F FAIL | [THEN CONTINUE =]

DESCRIPTION: |

OK | Cancel|

This second test is similar to the first. The UserFunction myRand2 is called

with the expression myRand2(A) and theresulting value istested to seeif it
isin therange 1 through 51, with anominal specification of 26. Again, pass
or fail, the Sequencer continues to the next transaction.

Thethird transaction is an EXEC transaction:

Sequence Transaction

exec:| BN = [EnsBLED]
FUNCTION: [f LOGGING DISABLED

| THEN RETURN: =] |B
DESCRIPTION: [isimple EXEC trans.)

OK | Cancel|

An EXEC transaction, unlike a TEST transaction, performs no comparison
of the function result to a specification or range. EXEC transactions are used
to perform an action that does not require a pass/fail test. For example, an
EXEC transaction could call aroutine that sets up an externa configuration
before a TEST transaction is performed, or it could execute a power down

Chapter 6 149

Using the Sequencer Object
Sequence Transactions

procedure after a series of tests. (An EXEC transaction is a short cut for
specifying an "aways pass" test condition.)

In our example, the transaction named f i ni sh returns the value of B to the
Ret ur n output terminal of the Sequencer object. Sincenotestis
performed, logging does not occur for an EXEC transaction.

Note that you can use the DESCRI PTI ON field to briefly describe any
transaction.

When you run the program, the three transactions are executed in sequence:

—| Real || = Sequencer =
fi test1 1 <=(1.25]<=15
A test2 1 <= (26) <= &1 Retum |
e T2 o finish (simple EXEC trans.)
= “ =] Log
|D0ne! —J_|
= Log Record | —| Return valug [=
_|{{"test1", 1.396, 1}.{'test2",85.05, 0}}

Done!

Figure 6-2. Running the Program

The logged test results are output on the Log output terminal and displayed.
Note that the results are logged as the Record data type, in fact arecord of
records. Inthiscase, t est 1 has passed with avalue of 1. 396 andt est 2
has failed with avalue of 85. 05. The third transaction returns the value on
the B input, which isthe string Done! .

Let’'slook more closely at how logging works. Each transaction that has
logging enabled creates alog record and attaches it to the transaction name.
In our example, logging is enabled for the first two tests, so local variables
named Test 1 and Test 2 contain the log records for those transactions. The
fields contained in the log records are defined on the Pr oper t i es dialog
box. To access the logging configuration, click on Pr operti es inthe
Sequencer object menu, then on the Loggi ng tab. By default, log records
contain Nane, Resul t , and Pass fields.

150 Chapter 6

Using the Sequencer Object
Sequence Transactions

The Test 1 and Test 2 local variable names can be used in any expression
within the Sequencer to access the results of the current or a previously
executed transaction. For example, Test 3 could have called afunction with
Test 1. Resul t asaparameter to pass the result of the first test. Or

Test 2. Pass could be used as an expression, which would evaluateto 1 if
Test 2 passed, or 0 if Test 2 failed.

Thereisonemore local variable, t hi sTest , available to access the logging
records. Thevalue of t hi sTest isawaysthe same asthe logging record
for the currently executing transaction. This allows you to write transaction
expressions that can be used in many transactions without having to include
the name of each transaction.

Now let's examine the data structure produced by the Log output terminal on
the Sequencer, which isarecord of records:

Log.Test!l.Result

Pass

Result ¥ 4//7

Name

Log | Testl Test?

Figure 6-3. A Logged Record of Records

The record produced by the Log output pin contains afield for each

transaction that has logging enabledTest 1 andTest 2 in our example.

Each of these fields is simply the log record for the specified transaction,
containing the fieldslame, Resul t , andPass. This record of records is
available on th&og output pin and can be used by other objects by using the
record "dot" syntax. For example, the expressiog Test 1. Resul t

would, in this case, return the valle396 (see Figure 6-2). Likewise,

Log. Test 1. Name would returnt est 1 andLog. Test 1. Pass would

returni.

Chapter 6 151

Using the Sequencer Object
Sequence Transactions

Note that the datalogged on the Log output pin is always the data from the
last execution of each transaction. If you wish to log the results of every
execution of each transaction, set Loggi ng Mbde to Log Each
Transacti on To: onthelLoggi ng tab of the Sequencer Properties
dialog box. This option will call the specified function (or expression) at the
completion of every transaction. This option can also be useful if you wish
to log test resultsto afile or printer as they happen, rather than waiting until
the Sequencer hascompleted. Thelocal variablet hi sTest can beused as
a parameter to the logging function to pass the log record of the transaction
that has just completed.

152 Chapter 6

Using the Sequencer Object
Logging Test Results

L ogging Test Results

Now let'slook at amore practical example of logging test results, where an
iterator causes the Sequencer to repeat the tests over and over, and to log
the results:

—| For Count | =

[4
]
=| Sequencer =

test] 1 <= (1.25) <= 1.5 |WEEEU

test2 1 <= (26) <= 51

Log —
d Collector

= Lag Records =]
o0: M'test1", 1.3586, 11, "test2", 85.05, 01}
01: M'test1", 1.383, 11,"test2", 45 66, 111
02: M'test1", 1.318, 11 "test2", 83 .64, 011
03: M'test1", 1.016, 11 "test2", 5941, 011

Figure 6-4. A Simple Logging Example

Inthisexample, the For Count object causesthe Sequencer to executeits
series of tests (t est 1 and t est 2 of the previous example) four times. For
example, if four "widgets' are being tested on an assembly line, each
execution of the Sequencer tests one widget. The resulting series of
records from the Log output terminal is collected by the Col | ect or and
displayed as an array of records. Note, also, that you can usethe To Fil e
object to output this array to afile using aWRl TE CONTAI NER I/O
transaction or you could use a DataSet.

Chapter 6 153

Note

Using the Sequencer Object
Logging Test Results

Conceptually, the output of the Col | ect or in thisexample can be viewed
as an array of records of records, as shown below:

Log.Testl.Result

Pass
Result A

Name ///, 4//, ////
Logl@1 | Testl Test2 ////////
Logl1] //

9

Logl2] ////////
Log(3] -

Figure 6-5. A Logged Array of Records of Records

Each array element (Log[0] , Log[1], etc.) represents asingle iteration of
the sequencer, and is arecord of records as shown in Figure 6-3. As
mentioned before, the logged output is available for analysis in expressions.
Inthiscase, Log[*] . Test 1. Resul t isa"core sample' from the array. In
fact, Log[*] . Test 1. Resul t would return an array of values (1.396,
1.353, 1.319, and 1.016 for the example results shown in Figure 6-4).

The logged array is not athree-dimensional array, but is rather an array that
consists of records of records. Thisisimportant because the individual fields
of arecord can be of differing data types. For example, while the Narre field
is Text, the Resul t field could be a Waveform, and so forth. Also, the
Test 2. Resul t field could be aWaveform, whilethe Test 1. Resul t field
isaReal value.

However, each individual field must be of a consistent data type throughout
the array. For example, the field Test 1. Resul t can't be aReal value for
Log[0] and aWaveform for Log[1] .

154 Chapter 6

Using the Sequencer Object
Logging Test Results

Let’s extend our example to 10 iterations of the Sequencer, and add some
analysis of the logged data. In the following example, the expression

| og[*].testl. result intheFornul a object returns a10 element Real
Array, which contains the results of t est 1. Thisarray isthen statistically
analyzed by means of the m n(x) , max(x) , mean(x) , and sdev(x)
objects.

lTj

=| SeqUEnCcer =

test! 1<={1.28)<=148 Return

testz 1 <= (26) <= 51

Log —1
[_| Collctor _ = Min “alue i
— mingx) |—| 1.009
L = Faormula =] = hlax Value r
log | floglTtestTresuit || Result | 1 ma:c(x) 1.838
= Wean Yalue =
— mean(x) |—| 1.519
= Std Dew =
1 sdev(x) |—| 0.2533

Figure 6-6. Analyzing the Logged Test Results

Thisexampleis saved in the file manual 44. vee inyour exanpl es
directory.

Chapter 6 155

Using the Sequencer Object
Logging Test Results

L ogging to a DataSet

You can use a DataSet to store your logged test results. In the following
program, the Sequencer object Log output terminal is connected to the To
Dat aSet object.

—| Forcount |«

|TT

—| Sequencer =

test! 1 <=(1.25)<=15 Return | =] To Data Set =

test2 1 <= (26) <= 51
| To DataSet: AmpimyData |

X Clear File At PreRun

Log { input

=] From Data Set = = e
From DataSet: /tmpimyData | — mir:(x) | i 1.152
et records:
Al Ret [H—
Search Specifier: (eg: Rec.A<10) _ = Maxwvalue |-
|Rec test1 pass AND Rec test2 pass 1 max(x) |—| 1.485

—| Meanvaue |-
L—| Formula [<] }— meanp |—| 1.318

[RecTTtestT result
1 - swoew |-

soev(x) 0.2357

Figure 6-7. Logging to a DataSet

OncetheFor Count objectisfinished, it causesthe Fr om Dat aSet object
to retrieve the stored DataSet (nyDat aSet). Fr om Dat aSet is configured
to retrieve ALL records from my Dat aSet , but to test each record against the
condition Rec. t est 1. pass AND Rec. t est 2. pass. In other words, a
particular record isretrieved only if botht est 1 and t est 2 passed for that
record.

Of theretrieved records, if any, the expression Rec[*] . test 1. resul t
returnsall of thet est 1. resul t record fields, which are then statistically
analyzed. (Note that this program will error if none of the records satisfy the
expression Rec. t est 1. pass AND Rec.t est 2. pass.)

156 Chapter 6

Using the Sequencer Object
Logging Test Results

Thisexampleis saved in the file manual 45. vee inyour exanpl es
directory.

Some Restrictionsin Logging Test Results

There are some situations where you must be careful in collecting

Sequencer log recordsinto an array of records. As explained in Chapter 3,
“Using Records and DataSets”, to build an array of records, all of the array
elements of a given field must be of the same type, shape, and size. For a
record of records, as is generated bytLthg output terminal of the

Sequencer, the type, shape, and size of each field must match for sub-
records as well.

For example, suppose you are collecting the logged results of several
executions of &equencer, either by using theéol | ect or to build an

array (see Figure 6-6) or by sending the results to a DataSet (see Figure 6-7).
In either case, if any of the logged values of a given transaction were to
change type, shape, or size between executions 6&thencer, an error

will occur. The error will be generated by thel | ect or or To Dat aSet

object because the array of records cannot be built.

This situation could easily occur if a transaction is not executed on every
execution of the&equencer ; for example, if alENABLED | F condition is
specified. If the transaction is not executed, a log record will still be
generated, but theAVE andDESCRI PTI ON fields will be empty strings and

all the other fields will contain a Real scalar value of zero. If the same
transaction, on a subsequent execution oStwencer, is executed and

logs a result that is not a Real scalar, an error will occur. You might want to
consider, in this situation, just writing each logged record out to a file in
container format witfTo Fi | e, instead of usindo Dat aSet .

An error could also occur if your tests return arrays of different sizes; for
example, if the test returns an array of the failed data points. In this case, you
might want to design the test so that it pads the array so as to always return
the same size array.

Chapter 6 157

Using the Sequencer Object
A Practical Test Example

A Practical Test Example

So far, we've just looked at how the Sequencer works, and how you might
store, retrieve, and analyze the logged data. But normally, you'll want to use
the Sequencer to control aseries of "real world" tests. So let'slook at a
simple practical example.

In the old days, carbon resistors were manufactured by a rather imprecise
process, and then tested, sorted, and marked. The trick was that the standard
resistance values (for example, 220, 270, and 330 ohms) were chosen to
overlap at the 10 percent tolerance. Thus, you didn't need to throw any
resistors away. If aresistor was more than 10 percent greater than 220 ochms,
it could be labeled as a 270 ohm resistor, and so forth.

So our problem isto construct a program in which the Sequencer calsa
UserFunction, which returns aresistance value. The Sequencer will then
run a series of teststo determine which nominal resistance value and percent
tolerance the resistor satisfies. Thisisa"bin sort" problem. That is, the
sequencer returns aresult that identifies the bin in which to put the resistor.

One of the big advantages of using the Sequencer to call aUserFunctionis
that different UserFunctions can be substituted. For our problem, well just
use aUserFunction (si nResi st) that returns arandom resistance valuein
the expected range during development. You can easily substitute another
UserFunction that executes instrument 1/O and returns real resistance values
once you've tested your solution.

158 Chapter 6

Using the Sequencer Object
A Practical Test Example

The simplest solution to our problem is to use an extended series of
sequence transactions, each testing the resistance value against a nominal
value and tolerance.

To String

Sequencer =
testz +5% 5%

test3 (330) +10% -10% Return | - _
testd (270 +2% -2% | Bin Sort G
tests (270) +5% -5% 330 Ohm, 2%

)
B
tests (270) +10% -10%
I
]+
)

testy (2200 +2% -2%

testd (220) +5% -5%

test9 (220) +10% -10% ZI Break |
Error Condition |

Figure 6-8. Simple Bin Sort Example

In this example, the first sequence transaction (t est 1) callsthe
UserFunction si nResi st with the expression si nResi st () . (This
UserFunction requires no inputs.)

Sequence Transaction

TEsT| EBEE | [EmsBLED

SPEC NOMINAL: [330 |%TOLERANCE: =] + |2 % -2 °f‘E
FUNCTION: fimResist)) LOGGING ENABLED |

IF PASS | | THEN RETURN: =] 330 2]
IF FAIL | [THEN CONTINUE =]

DESCRIPTION: |

OK | Cancel|

Notethat t est 1 teststo seeif the resistance value returned by si nResi st

is within £2 percent of the nominal value 330. If it is, the two-element Real

array[330 2] is returned on thBet ur n output terminal, and theo
St ri ng object converts this value to the strggp Chm 2% If the test
fails, theSequencer goes on to the next test.

Chapter 6 159

Note

Using the Sequencer Object
A Practical Test Example

The second transaction, t est 2, works just like the first except that instead
of calling si mResi st again, the FUNCTI ON field contains the expression
testl.result:

Sequence Transaction

TEST| B | [EmsBLED

SPEC NOMINAL: [330 |%TOLERANCE: =] + 5 % - s %
FUNCTION: Eest1 result LOGGING ENAEILED|

IF PASS | | THEN RETURN: =] 330 5]
IF FAIL | [THEN CONTINUE =]

DESCRIPTION: |

OK | Cancel|

Key ldea

Any transaction with logging enabled creates a"local" Record variable with
the same name as the test. Thisrecord contains the fields specified for the
logging record. Thus, for the transaction t est 1, the expression

test 1. resul t returnsthe value returned by the function called int est 1.

There are two reasons for using the expressiont est 1. resul t inour
example. First, by usingt est 1. resul t intransactionst est 2 through

t est 9 we can ensure that each transaction uses the same function result,
even if we later changet est 1 to call adifferent function. More importantly
in this example, each time you call the UserFunction, a new resistance value
will be returned. Instead, we want to continue testing the original resistance
value against successive nominal values and tolerances. So the transactions
t est 2 throught est 9 all include the expressiont est 1. resul t inthe
FUNCTI ONfield. These transactions work like the first, returning the
appropriate array ([330 5],[330 10], [270 2], and so forth) if passed.

Thefirst eight tests simply continue to the next test if failed. However, an
indication is needed if all of the tests are failed. Thus, t est 9 is configured
IF FAIL THEN ERROR. TheError output terminal causesthe

160 Chapter 6

Using the Sequencer Object
A Practical Test Example

Al phaNuneri ¢ display entitled Er r or Condi t i on to execute, displaying
thetext Qut of Range.

Although this approach is simple, it is not very efficient. You would need to
create quite alarge number of sequence transactionsto test several resistance

values, with three tolerances in each case. Let'slook at an improved version
of our "bin sort" example.

= real] = Test Bounds =
ggg? g?g test1 (0} == min{a)*.9 Returr |
0002 220 a || testz (0] <= max(a)1.1

000z 180

0004: 150 | Error |

—| For count | =

" totsize(|—|

s

.

Formula

]

g

Result |

Error Condition

Break I

Test value &

Tolerance

=

test1 (nom) +2
test? (nom) +3
test3 (nom) +1

Return

e

ol

0% -10%

—| measured R |«
219

=] Set variable

[«]

Mame

B ™ vaionms

—1 To String h

Ein Sort
220 Ohm, 2%

BFJE-aK |

[i]

Figure 6-9. Improved Bin Sort Example

Thisexampleis saved in the file manual 46. vee inyour exanpl es

directory.

Chapter 6

161

Using the Sequencer Object
A Practical Test Example

You may want to load this program and explore how it works. Here are some
key points:

B Thisprogram usestwo Sequencer objects. Thefirst one (labeled Test
Bounds) "re-uses' the tests in the second one (labeled Test Val ue &
Tol er ance).

B TheReal array inthe upper left corner of the program contains five
elements, each representing a standard resistance value. However, the list
of valuesis extensible in this example. Regardless of the number of array
elements, the Tot Si ze(x) function returns that number so that the For
Count object will iterate the correct number of times. The expression
R[i] inthe For nul a object takes care of the indexing.

B |nthe Sequencer named Test Bounds, the first transaction (t est 1)
calls the UserFunction si nResi st with the expression si nResi st () :

Sequence Transaction

SPEC NOMINAL: [0 [umm = o = =] fmin(z) 3
FUNCTION: [simResist) | |LOGGING ENABLED |
F pass | [THEN CONTINUE]

IF FAIL | | THEMERROR: =] |0
OK | Cancell

DESCRIPTION: |

A simulated resistance test value is returned and tested to seeif itisat
least 90 percent of the lowest value (150 Ohms) in the array. (Note that
any valuefield in a sequence transaction can contain an expression such
asmn(a)*.9.)

162 Chapter 6

Using the Sequencer Object
A Practical Test Example

The second transaction (t est 2) teststo seeif the value
(test 1. resul t)islessthan or equal to 110 percent of the highest value

(330 Ohms) in the array.

Sequence Transaction

TEST| B | [EmsBLED

SPEC NOMINAL: [0 [owmm = <= =] fmanay s
FUNCTIOMN: Eest1 result LOGGING ENAEILED|
IF PASS | THEM RETURN: [=] fthistest.result

IF FAIL | | THEM ERROR: =] [1
OK | Cancell

DESCRIPTION: |

If either test fails, an error occurs.

W |f an error does occur, the UserObject named Er ror Condi ti on usesa
Tri adi ¢ expression to ascertain whether to display Qut of Range:
LOWor Qut of Range: HI GH. The UserObject is configured as Show
Panel on Exec, soif either error condition occurs, adisplay "pops up"
to show the error. You'll find that this happens once every few times you
run the program because the UserFunction si nResi st returns random
values in the range 100-400. (To continue, just poksa the pop-up
box.)

Chapter 6 163

Using the Sequencer Object
A Practical Test Example

B Thetransactiont est 1 inthefirst Sequencer isthe only transaction that
callsthe UserFunction si nResi st . (Instead, t est 2 includes the
expressiont est 1. resul t.) Thisis necessary in this case because we
want to run multiple tests on just one resistance value. Otherwise, a new
value would be returned every time the UserFunction was called.
However, thereis another reason. Since the UserFunction si nResi st is
only called once, you can easily replace it with a call to adifferent
UserFunction. The example (manual 46. vee) contains a second
UserFunction named neasResi st , which uses an HP Instrument Driver
to call an HP 3478A Digita Voltmeter configured for resistance
measurements. If you have an HP 3478A meter, just connect it to your
HP-IB, change the FORMULA field int est 1 to the expression
measResi st (), and run the program.

B Regardless of whether simulated or measured resistance val ues are taken,
the Test Bounds return value is displayed, and is set as a global
variable (gl obal Onhns). The three transactions in the Sequencer
labeled Test Val ue & Tol er ance each call thisglobal variable using
the expression gl obal Chns, for example:

Sequence Transaction

TEsT| EBEE | [EmsBLED

SPEC NOMINAL: nom [%TOLERANCE =] + |2 % - |2 %
FUNCTION: [globalOhms LOGGING ENAEILEDl

IF PASS | | THEN RETURN: =] |nom 2]
IF FAIL | [THEN CONTINUE =]

DESCRIPTION: |

OK | Cancel|

If atest passes, the appropriate rea array (e.g., [220 2]) isoutput. The
To String object convertsthe datato astring (e.g., 220 OGhm 2%.
The Sequencer will be executed as many times as necessary until aBi n
Sort resultisfound.

164 Chapter 6

Using the Sequencer Object
A Practical Test Example

B Notethat we are not using the Log output terminal in either Sequencer,
so we've deleted it to speed up execution.

W |f you want to see the flow of this program, try running it afew times
with Show Executi on Fl owand Show Data Fl owturned on.

For some further examples using the Sequencer, look in your exanpl es
directory.

Chapter 6 165

Using the Sequencer Object
A Practical Test Example

166 Chapter 6

Using ActiveX
Automation Objects
and Controls

Note

Using ActiveX Automation Objectsand Controls

HP VEE for Windows supports ActiveX automation and controls on PCs
running Windows 95 or NT 4.0 or greater. ActiveX technology is not
supported on UNIX. This chapter explains how to use ActiveX automation
and controlsin HP VEE; it does not describe the ActiveX technology.

ActiveX automation lets you use HP VEE as an automation controller. This
lets you control other Windows applications such as Microsoft Word, Excel,
Access, and Crystal Reports for activities such as sending datato the
applications for report generation, and reading data back from them. For
automation-capabl e applications, this fully supersedes our current
application-control solution, Dynamic Data Exchange (DDE).

ActiveX controls, available from various vendors, extend HP VEE's
functionality by providing domain-specific services via ActiveX automation
properties, methods and events. Most ActiveX controls also provide a user
interface that let you manipulate a control such as a "slider" to input a value
into a program, just as you would do with an HP VE&Eder object.

To enable ActiveX support, HP VEE must be sedttandar d compatibility

mode in theDef aul t Pr ef er ences dialog box on th&ener al tab. This

is the default mode for new programs. If HP VEE is in Standard mode, the
status bar at the bottom of HP VEE’s window will disp&ayp. If you are

adding ActiveX functionality to a program developed in an older version of
HP VEE, you should make sure your program runs in Standard mode before
adding new features. See Appendix A, “Using the Compatibility Mode” for
more information.

Several examples are available that demonstrate the use of ActiveX
automation objects, and ActiveX controls. To open and run these examples
useHel p 0 Open Exanpl e... They are located in the HP VEE installation
directory undek exanpl es\ Act i veXAut omat i on and

\Acti veXControl s.

168 Chapter7

Using ActiveX Automation Objects and Controls
Using ActiveX Automation

Using ActiveX Automation

Make sure HP VEE is set to Standard compatibility mode (in Def aul t
Pr ef er ences) to enable ActiveX support.

To Make Automation Objects Availablein HP VEE

When you install Windows applications, it isvery likely that ActiveX type
libraries are d'so installed that allow the applications to act as automation
servers. Typelibraries describe the capabilities of an ActiveX object, and are
available for useif they exist on your system. You may prefer to select
specific type libraries in HP VEE for the following reasons:

B To have HP VEE perform type checking on variables declared for
ActiveX objects where the object type is defined (see “To Declare
Automation Object Variables” on page 171).

B To catch events generated by an automation object (see “Handling
Automation Object Events” on page 172).

B To view information in the ActiveX Object Browser (see “Using the
ActiveX Object Browser” on page 179).

To select the type libraries you want to reference in a program, click on
Devi ce 0 ActiveX Aut omati on References... TheActiveX

Aut omat i on Ref er ences dialog box appears that lists all the type
libraries registered by the Windows Registry. The following figure shows
the dialog box with the Microsoft Access library selected for use:

Chapter 7 169

Using ActiveX Automation Objects and Controls
Using ActiveX Automation

Altomation References

Registered Automation Servers:

[Acrobat Scan Type Library

Ok
[JADAM Automation Server Type Library —I

| »

[CJInternet Explorer Scripting Object Model Cancel
[1eAuto 1.0 Type Library
[JLicensemgr 1.0 Type Library
Marguea Control Libra
Microsoft A forWind
[Microsoft Activex Plugin
[CIMicrosoft DAO 2.5/3.6 Compatibility Libirary
[IMicrosoft DAD 3.5 Object Library

I Microsoft Excel 5.0 Object Librany

[IMicrosoft HTML Infrinsic Contrals Help |
I Microsoft Internet Controls

[Microzoft Jet SQL Help Topics

[Microsoft Office 95 Ohject Library
CIMicrosoft Remote Data Object 2.0
[JOLE Automation Binder 1.0 Type Library
[PowerPoint Application.7 =
=

Mlmmd aredim W adim s mnden] L ilnvmn

Browsa... |

Lacation: CiamMSOfficeidccessiMSACCESSTLA

’—Micrusnﬂﬁccess for Windows 95

Figure 7-1. Selecting ActiveX Automation Type Libraries

Your list is probably different depending on the applications you have
installed. When you highlight alibrary name, itslocation appearsin the
dialog box status area. When you find the automation server you want to
use, click on the check box by the library name (or double-click the name
itself) so a check mark appears. Then, click on OK. This |oads the selected
type library and searchesit for the object classes, dispatch interfaces, and
eventsthat it exports. You can select multiple libraries, but you should select
only the ones you plan to use since selected libraries use memory.

If you know atype library file exists for an automation server, but it doesn't
appear in the list, it's possible the type library did not get registered when the
associated application was installed. Pres8tlese button to find the

type library missing from the list. When you locate and open the type library
file, HP VEE will attempt to register the type library and add it to the list.

170 Chapter7

Using ActiveX Automation Objects and Controls
Using ActiveX Automation

To Declare Automation Object Variables

You can declare a variable for an ActiveX automation object using the new
Object datatype (Dat a O Vari abl e O Decl are Vari abl e). The
declared variable is areference to an object that livesin another process. For
instance, it might point to a ComboBox in Access. As shown in the next
figure, when you set the variable Ty pe to Obj ect , the dialog box expandsto
list the library name, class, and enabled events.

—'| Declare combo a

Marme: | combao ¥ Specify Object Type —;
Library. Access

BBIpEE I Global = Class: ComboBox

Type: | Ohject =] | Events: Enabled

Num Dims: | 0 | Edit.. |

Figure 7-2. Declaring an ActiveX Automation Variable

You can specify the object variable’s type further by clickingeci f y

Obj ect Type so a check mark appears. Then clickEHit button to
access thepeci fy Obj ect Type dialog box. It lets you set the library
and class names, and enable events available for the class. If you are using
the Access Object Library, you can declare a variabhbo, then specify

the object type asi brary: Access, andCl ass: ConboBox as shown in
the next figure. In this example, the cl@ssboBox contains events. To use
the events, simply click oBnabl e Events. If events are not available for
a class, then the checkbox is grayed out. After specifying the object type,
click onK to dismiss the dialog box and returrtex| are Vari abl e

which displays the information.

Chapter 7 171

Note

Handling
Automation Object
Events

Using ActiveX Automation Objects and Controls
Using ActiveX Automation

Library: H

Class: | ComboBox vI

¥ Enahle Events

0K | Cancell Helpl

Figure 7-3. Specifying the Automation Object Type

If you enable events, then you must create an event-handler UserFunction
for each event that you want to catch. For information about using events,
see “Handling Automation Object Events” on page 172.

As with any HP VEE variable, declaring a variable is optional, and doing so
does not create the automation object in the program. However, by declaring
variables for automation objects, and specifying the object type details,

HP VEE will do type checking automatically to assure that the specified

Li brary andd ass are assigned only to the declared variable.

If you declare a variable for an ActiveX object when developing a program
in Windows, and then open the program in HP-UX, the program will still
contain the variable declaration, but will ignore the object type
specifications. Th®ecl are Vari abl e object will maintain the object

type specifications, and not let you change them.

Automation objects can generate events. HP VEE, as an automation
controller, lets you use events via UserFunctions. You can create event-
handler UserFunctions for an automation object that generates events if you
have declared a variable of the specific type and have enabled its events.
You can create an event-handler UserFunction for each event an object can
generate.

172 Chapter7

Using ActiveX Automation Objects and Controls
Using ActiveX Automation

It is easy to create an event-handler UserFunction when you declare a
variable for the object and enable its events (if they are available).

1. After declaring the variable and specifying its type, including enabling
events, opentheDecl are Vari abl e object menu.

2. Inthe object menu, click on Creat e Event Handl er ... TheCreate
Event Handl er User Functi on browser appears.

TheMenber area lists all of the events available for the dispatch interface
listed in thed ass area.

Create BEvent Handler UserFunction

Type: Library: hlember:
ActiveX Ohjects m
£ BeforelUpdate
£ Change
F Click
F Dhlclick
) £ Enter
Class: 5 Exit
IETTET (¢ corocus
F KeyDown
£ KeyPress
PR =
EVEMT WT_HRESULT AfterlUpdate()
"combo_AfterUpdate” UserFunction will be created
Create Handler| Close | Help

3. Click on an event name to select it.

When you select an event, the browser information area presents event
details, and the status area shows the UserFunction title HP VEE wiill
create. Press théel p button to get information about using the event.
Not all events have online help; the library vendor is responsible for
providing it. Online help for events is not part of thie VEE Help.

Chapter 7 173

Using ActiveX Automation Objects and Controls
Using ActiveX Automation

4. Click on Creat e Handl er. The new UserFunction window appears. If
you open this dialog box again to create another event handler, you'll
notice that the icons change color next to events with existing handlers.

Each new event-handler UserFunction is empty except for any required
inputs or outputs. You must program it to handle the event appropriately.
To edit an existing event, in tibecl are Vari abl e object menu, click
OnEdit Event Handler...

Events are tied to the declared variable’s name. The UserFunction title
combines the variable name with the event name. For instance, if you
declared a variable namednbo and specified its type as

Access. ConboBox, you could create event-handler UserFunctions with
names such as:

conbo_AfterUpdat e
conbo_Change
conbo_Dbl dick
conbo_KeyDown

Events are nothing more than callback functions. You must program the
generated UserFunctions (the callback functions) to handle each event
appropriately. If the automation object generates an event, it calls the related
UserFunction to handle the event. Automation objects sometimes expect a
return value from HP VEE when they fire an event. If so, you must program
the UserFunction to return a value. When the object expects a return value, it
waits until HP VEE provides this return value. You should write an event-
handler UserFunction to work quickly, since both HP VEE and the
automation server, such as Access, wait until the event-handler
UserFunction returns.

Since the automation server waits until the event-handler UserFunction
returns, the UserFunction is executed in non-timeslicing mode. That is, the
UserFunction runs to completion without timeslicing with the rest of the

HP VEE program. Because it is not timeslicing, breakpoints do not work in
an event-handler UserFunction. Also, errors do not stop HP VEE. Errors are
turned into Cautions, and execution continues.

174 Chapter7

Using ActiveX Automation Objects and Controls
Using ActiveX Automation

To Create an Automation Object in a Program

To control a server application from HP VEE, you need to create an
automation object in your program. The Cr eat ehj ect function letsyou
do that. To put the function in your program, click the fx toolbar button to
get the Function & Obj ect Browser, then select:

Type: Built-in Functions
Cat egory: ActiveX Automation
Member: Creat eObj ect

Click Creat e For nul a and place the For mul a object in your program.
The For mul a contains the expression

Cr eat eCbj ect (obj ect Nane)
which you need to maodify to perform the desired action.

Most of the time you want a new instance of an automation object created in
anew instance of the server application. For example, the following

HP VEE expression starts a new instance of Excel (even if Excel is already
running), and returns areference to a new "Workbook" object tied to the
excel variable.

SET excel = Createbject("Excel. Sheet")

To Get an Existing Automation Object

If you aready created an automation object, you can get an active object or
load an existing object from afile by using the Get Cbj ect function. To put
the function in your program, click the fx toolbar button to get the
Function & oj ect Browser, then select:

Type: Built-in Functions
Cat egory: ActiveX Autonmation
Menber: Cet Obj ect

Click Creat e For nul a and place the For mul a object in your program.
The For mul a contains the expression

Get Qbj ect (fil eName, obj ect Nane)
which you need to modify to perform the desired action.

Chapter 7 175

Getting and Setting
Properties

Using ActiveX Automation Objects and Controls
Using ActiveX Automation

The following expression gets an active object, and returns areferenceto a
currently running Excel application’s Appl i cat i on object. This call will
fail if Excel isnot running.

SET excel = Getbject("","Excel.Application")

The following expressions load an existing object from file. The
obj ect Nane parameter is optional:

SET excel = Gethject("d:/tnp/ TestData. x|l s","Excel . Sheet")
or

SET excel = Gethject("d:/tnp/ TestData. x| s")

They return areference to the sheet object associated with

d: / t np/ Test Dat a. x| s inthe currently running Excel application. If
Excel isnot already running, it will be started before loading the object. If
obj ect Nane is omitted, HP V EE uses the Component Object Model
(COM) library to determine what application the file is associated with.

To Manipulate Automation Objects

After creating an automation object, you can manipulate them to control
server applications. Manipulating automation objects involves three basic
operations. getting properties, setting properties, and calling methods. This
section demonstrates these using previously initialized object variables
namedcel | , sheet, and excel . The HP VEE keywords SET and By Ref
are introduced.

The expressionsin this section are examples of getting and setting a property
of an object. The following expression gets a property, where theval ue
property returns the contents of thecel | :

contents = cell.val ue
In the next expression, the val ue property returns the contents of the cell:

contents = sheet.cells(1,1).value

176 Chapter7

Using ActiveX Automation Objects and Controls
Using ActiveX Automation

The next expression does the same property-getting action as the previous
expression by implying the . val ue property because of default properties
(explained below):

contents = sheet.cells(1,1)

Sometimes you want the contents, value, and default property of the right-
hand side (which happens by default), and sometimes you want a pointer to
the object on the right-hand side, not its value. To get the object pointer you
need to use SET to tell HP VEE not to get the default value. The next
expression sets an object reference, wherethecel | variableis set to
reference one cell out of the "collection” of cells:

SET cell = sheet.cells(1,1)

Note the difference between this example and the second example, where
SET specifies that the left-hand-side wants the right-hand-side object itself,
not its default property.

The following expressions are examples of setting a property of an object,
which isidentica to the second example above because of default
properties:

cell.value = "Test Data:"
sheet.cells(1,1).value = "Test Data2"
sheet.cells(1,1) = "Test Data2"

About Default Properties. Automation supports the concept of a default
property or method. You can use this concept when manipulating
automation objects as shown in the previous examples. In the case of cel |,
its default property isval ue. So the first example above in getting a
property could use this concept to imply the .. val ue property, and be
entered as

contents = cell
This means that the expression
cell = sheet.cells(1,1)

would not only return a cell from the collection of cells, but it would also
evaluate the default property (. val ue) on that cell asin the expression

cell = sheet.cells(1,1).value

Chapter 7 177

Calling Methods

Using ActiveX Automation Objects and Controls
Using ActiveX Automation

To get acell from the collection of cells, you must use the keyword SET in
the expression such as

SET cell = sheet.cells(1,1)

Thissetscel | to be apointer to that cell in Excel. Compare thisto the
expression

cell = sheet.cells(1,1)

(mentioned above) wherecel | getsthe contents of that cell in Excel. Also,
the. val ue property isimplied on SET Pr oper ty, such that the following
two expressions perform the identical function:

cell.value = "Test Data”
cell = "Test Data"

The following expression is an example of calling a method on an object:
result = excel.CheckSpelling("aardvark")

By default, parameters are passed by value. For example, cells(1,1)

actually calls amethod and passes two parameters (1 and 1). Passing by
value simply sends the parameter values to Excel, and a return value comes
back. The parameter values are unchanged.

Some automation methods have parameters that are passed by reference.

The parameter’s value is changed by the automation server and a new value
for the parameter is passed back to HP VEE. For example, an ActiveX
instrument control might contain an automation method called by this
expression

passed = Scanner. CGet Readi ng (ByRef Readi ng)

where the method’s return value farssed is true or false, and any other
values are returned in tidg Ref parameteReadi ng. You should initialize
the variableReadi ng before passing it to the function, and have an output
terminal on theé=or nul a object containing the expression so you can use
any returned values. TiByRef keyword is supported in HP VEE and the
Function & oj ect Browser displays in its information area the
parameters passed usiBgRef . ByRef does not support all data types. See
Table 7-2, “Conversions from HP VEE to Automation Data Types,” on
page 185 for the list of supported data types.

178 Chapter7

Using ActiveX Automation Objects and Controls
Using ActiveX Automation

Using Enumerations Type libraries can provide enumerations that appear in the Cl ass area of
HP VEE'sFunction & Obj ect Browser. Enumerations make using
object methods and properties easier. For instanc&y tihdow object in
Excel has &V ndowsSt at e property. ThaN ndowSt at e property is of type
XI W ndowsSt at e enumeration. There are three values for this enumeration:

x| W ndowVaxi nmi zed (-4137)
x| W ndowM ni nmi zed (-4140)
x| W ndowNor mal (-4143)

HP VEE supports enumerations, which allows you to use the following
expression when using object methods and properties:

W ndow. W ndowSt at e = x| W ndowM ni nzed

Using the ActiveX The ActiveX Object Browser is part of tRanct i on & Obj ect Browser

Object Browser that opens when you prefsson the toolbar. The browser configuration
changes when you selétpe: ActiveX Obj ects. The browser lets you
explore the properties, methods, and events that an ActiveX object provides.
ActiveX information appears here only if you selected automation or control
type libraries Pevi ce O Acti veX Aut omati on Ref erences or
ActiveX Control References). The following figure shows the
Function & Chj ect Browser with ActiveX information for the Access
type library.

Chapter 7 179

Using ActiveX Automation Objects and Controls
Using ActiveX Automation

Function & Object Browser
Type: Library: Memhber:
Operators & -
Built-in Functions Excel 5 Farent
Local User Funetions MicrosoftOffice e Properties
Imparted User Functions StdType % SizeToFit
Remuote User Functions F AfterUpdate
Campiled Functions Class: F Beforelpdate
AL ot . £ Change
B Application F Click
21 BoundObjectFrame F DbiClick
#l CheckBox F Enter
2 F Ewxit
B CommandButton F GotFocus
2 Contral F KeyDown =
PROPERTY Application As Application
read-anky
Create Formula| close | Help |

Figure 7-4. Using the ActiveX Object Browser

When aLi brary nameis selected, the d ass areadisplays dispatch
interfaces (dispinterfaces) and enumerations that are available. For a

sel ected dispinterface, the available properties, methods, and events appear
inthe Menber area. For enumerations, the constants are listed. The previous
figure displays some of the functionality available for the Access library.
The selected ConboBox dispinterface contains properties, a method, and
many events that are listed in the Menber area.The following figure shows
the relationship between entries in the brows@rissses andMenber s
areas, including their identifying icons:

Classes Members

s Properties

™ Dispinterfaces =& Methods
£ Events
= Enumerations ®= Constants

Figure 7-5. Elements Displayed in the Function & Object Browser

180 Chapter7

Using ActiveX Automation Objects and Controls
Using ActiveX Automation

The browser’s information area (just above the buttons) displays a help
string associated with the property, method, event or constant if this
information is provided by the automation object. This syntax contains the
object’s type information in the parameter list. Parameters surrounded by
square brackets [] are designated as optional. Some applications, such as
Excel, may not provide these short help strings.

The type information provided for an ActiveX object's properties, methods,
and events are converted to HP VEE types where there is an exact match
with an automation type. For example, the following HP VEE types map
directly to automation types:

B Int32-VT_I4

Real - VT_R8

Text - VT_BSTR

Object - VT_UNKNOWN or VT_DISPATCH

Void - the function does not return anything

"' (no parameter specified) - corresponds to VT_VARIANT.
(HP VEE handles the conversion to the appropriate data type.)

Chapter 7 181

Using ActiveX Automation Objects and Controls
Using ActiveX Automation

The following automation types do not have an exact match; therefore, the
browser information area displays the actual automation type:

B VT _EMPTY (an HP VEE empty Text is used)
B VT _NULL (an HP VEE empty Text is used)
B VT |2 (an HP VEE Int32 type can be used without data | 0ss)

B VT _UI2 (an HP VEE Int32 can be used without data loss; negative
numbers are not allowed)

B VT _Ul4 (an HP VEE Int32 can be used)
B VT _R4 (an HP VEE Real can be used without loss of data)
B VT _CY (anHPVEE Real can be used but with some loss of precision)

B VT _DATE (an HP VEE Real can be used without loss of datafor dates
after Jan 1, 1970)

B VT _ERROR
B VT BOOL (an HPVEE Int32 can be used: 0 = False, Non-Zero = True)

For a property, the browser displays type information about the property,
such aswhether it is aread-only or write-only property, and whether it isthe
default property. You can create a For nul a object from a property that is
configured to do aread of that property. The following is an example of
what the browser displaysin the information area for a property:

DEFAULT PROPERTY Nane as Text

For amethod, the browser displaystype information about each parameter in
the parameter list and the return value. Methods can also be the default
member, so the browser also indicates this. You can create a For mul a
object for amethod that is configured to call that method. The following is
an example of what the browser displays in the information areafor a
method:

METHOD Voi d Set Dat a(vVal ue, vFornat)

182 Chapter7

Using ActiveX Automation Objects and Controls
Using ActiveX Automation

For events, the browser displays the same type information as for a method.
However, the event handler associated with an event isusually called by the
client application. In the case of controlling Access by automation, Access
calls the event handler UserFunction. In the case of using an ActiveX
control, the ActiveX control calls the event handler UserFunction. Since
your program or HP V EE does not call these callback event handlers, the
Creat e For nul a buttonisgrayed out. You can only view information
about an event. The Functi on & Obj ect Browser doesnot let you
create event-handler UserFunctions because events must be tied to a
particular ActiveX automation variable or an ActiveX control. To create an
event handler, go to the object menu of the appropriate Decl ar e

Vari abl e, or ActiveX control. The following is an example of what the
browser displaysin the information areafor an event:

EVENT Void dick()

For constants in an enumeration, the browser displays the value of the
constant. The following is an example of what the browser displaysin the
information area for a constant:

CONSTANT tvwRootLines =1

For constant values less than 0 and greater than 1024, HP VEE also displays
the hexadecimal value of the constant. This information appears as.

CONSTANT x| Normal = -4143 (#HFFFFEFD1)

Pressing the Hel p button opens the help file and topic associated with the
selected ActiveX abject member if that information is provided by the
object. If noinformation isavailable, adialog box appears, indicating that no
help isavailable for the selected member. This help information is provided
by the application vendor, and is not part of HP VEE Help.

Chapter 7 183

Using ActiveX Automation Objects and Controls

Using ActiveX Automation

Data Type Compatibility

ActiveX automation provides support for certain data types. This section
describes the type coercion that takes place between HP V EE data types and
ActiveX automation data types. Type coercion occurs automatically. The
following table indicates the automation data types that are supported and
the corresponding HP VEE data type.

Table 7-1. Conversions from Automation to HP VEE Data Types

Convert from Convertto HP VEE Notes
Automation Data Type Data Type
VT_EMPTY Text (empty string) Nothing
VT_NULL Text (empty string) SQL-style Null
VT_I2 Int32
VT 14 Int32
VT_R4 Real
VT _R8 Real
VT_CY Real 8 byte integer with 4
digits to right of decimal
VT_DATE Real Days since 12/30/1899
VT_BSTR Text
VT_DISPATCH COM Object
VT_ERROR No mapping
VT_BOOL Int32
VT_VARIANT Closest matching
HP VEE data type
VT_UNKNOWN COM Object
VT_Ull Int32 unsigned char
VT_ARRAY, VT_VARIANT Record

184

Chapter7

Using ActiveX Automation Objects and Controls
Using ActiveX Automation

The following table indicates the HP V EE data types that are supported and
the corresponding automation data types. Unlike the inverse mappings
shown in the previous table, these are not fixed one-to-one mappings. Most
automation server objects are capable of coercing datato the required data
type. For example, if the target property is along integer, such as the X
coordinate of a point, you can pass not only an Int32 which is the exact
match, but also afloat, real or even atext string aslong asit is a string of
digits. However, in case of an array, which is always passed asa VARIANT,
acceptable datatype and array shape depends on the implementation of the
target COM object.

Table 7-2. Conversions from HP VEE to Automation Data Types

Convert from HP VEE | Convertto Automation Other Possible
Data Type Data Type Data Types

Int32 VT 14

Real VT_R8

Text VT_BSTR

COM Object VT_DISPATCH VT_UNKNOWN

Record VT_VARIANT, VT_ARRAY

To Delete Automation Objects

Automation objects are responsible for deleting themselves when HP VEE
releases its reference to them. When HP VEE no longer holds areference to
an automation object, it tells the object that the reference has been released.
The abject then deletesitself unless other ActiveX automation controller
applications are till using it. HP VEE releases references to automation
objectsin the following cases:

B TheDel et e Vari abl e object is executed on the automation object’s
variable name.

B Delete Variables at Prerun is enabled imef aul t
Pr ef er ences and you restart the program.

B HP VEE exits, or the commanésl e [0 NeworFi | e 0 Open are used.

Chapter 7 185

Note

Using ActiveX Automation Objects and Controls
Using ActiveX Controls

Using ActiveX Controls

Make sure HP VEE is set to Standard compatibility mode (in Def aul t
Pr ef er ences) to enable ActiveX support. See “Using ActiveX
Automation” on page 169 for more information about ActiveX support.

HP VEE does not support all ActiveX controls. If a control is incompatible
with HP VEE, an error will probably occur when you add the control to your
program or while you are using it.

To Select ActiveX Controls

Before you can use ActiveX controls in HP VEE, you need to inform

HP VEE which ActiveX controls you want to use. Clickevi ce [
ActiveX Control References... The resultingicti veX Contr ol

Ref er ences dialog box lists the available control type libraries registered
by the Windows Registry. The following figure shows the dialog box with
several selected controls.

ontrol References

Registered Controls;

[1Acrabat Contral for Active: - QK
[IMarquee Contral Library — —I
[Microsoft ActiveX Plugin Cancel

[Microsoft Calendar Control 8.0 —I
[l Microsoft Chart Control

[Microsoft Comm Gontrol 5.0

Microsoft Common Dialog Control 5.0 ml

[Microsoft Data Bound Grid Caontrol
[CIMicrosoft Data Bound List Contrals 5.0
I Microsoft FlexGrid Control 5.0

I Microsoft HTML Intrinsic Controls
hicrosoft Internet Transier Control
Microsoft MAPI Contrals 5.0

[microsoft Masked Edit Contral 5.0
[Microsoft Multirmedia Control 5.0
[microsoft PictureClip Contral 5.0
I microsoft RemoteData Contral 2.0

-
1t ot Pinte, Tt oo bt & 1 hd

Help |

[

~Microsoft Internet Transfer Control 5.0
Laocation: COAIMNTSystem 32 SINET. O

Figure 7-6. Selecting ActiveX Controls

186 Chapter7

Using ActiveX Automation Objects and Controls
Using ActiveX Controls

Your list is probably different depending on the applications or controls you
have installed. Controls can be installed individually or as part of other
application installations. When you highlight a control name, its location
appearsin the dialog box status area. When you find the control you want to
use, click on the check box by the control name (or double-click the name
itself) so acheck mark appears. Then, click on OK to load them into memory
for usein HP VEE, and to search for their object classes, dispatch interfaces,
and exported events. You can select multiple controls, but you should select
only the ones you plan to use since selected libraries use memory.

If you know acontrol type library existsfor acontrol, but it doesn't appear in

the list, it's possible the library did not get registered during its installation.
Press th@®r owse button to find the type library missing from the list. When
you locate and open the type library file, HP VEE will attempt to register the
type library and add it to the list.

To Add a Control toHP VEE

Adding a control to an HP VEE program is similar to adding any other
object. After you select the ActiveX control(s) as explained previously, you
can add them to your program. Click#vi ce [0 ActiveX Control s to
view a cascading menu listing the selected controls.

Formula
Function & Object Browser Chrl+l
Uzer0bject

Comparator

Active Automation References...

Activer Control References...
< Controls &P essages
4P S ezsion
Inet
CommonDialog
tSChart
Calendar

Figure 7-7. Adding ActiveX Controls from the Device Menu

Chapter 7 187

Note

Differences in the
ActiveX Control
Host

Using ActiveX Automation Objects and Controls
Using ActiveX Controls

In the previous two figures, five controls are selected inthe Act i veX
Control References dialog box, but six appear in the Devi ce O
ActiveX Control s cascading menu. It is normal for some selections to
result in more than one ActiveX control being added to the resulting menu.

Select acontrol and place the resulting object in adetail view inthe HP VEE
work area. You can place controls in any context — Main, UserObject, or
UserFunction. You can delete controls by seledting from their object
menu or double-clicking on the object's context menu button.

ActiveX controls are different than any other HP VEE object. Unlike all

other HP VEE objects, ActiveX controls have no input or output pins, nor do
they have any sequence input or output pins. Controls are not data flow
oriented. To give you access to a control that is similar to the access
available to other objects, HP VEE creates a special container in the program
that is the host for the control. The container also gives you access to the
control’s specific properties built into it by the control’s developers.
Regardless of the combined features, we refer to these as ActiveX controls.

—_ Calendar: Calendarl -
frestone | I I
= | (1998 ~
Move
Size Thu | Fri | Sat
Minimize £ 3 B
Clone H 10 11
fiEnlace 6 |17 |18
i — Hel

Host OI:_)lect E Ll & = =

Properties and Help - pupeities T P—
Description
Aodd | Tiermmiral

ActiveX Control Usleiz Tominal
Properties and Help

Control Properties

Edit Event Handler...
Create Event Handler. .

Cut

Figure 7-8. Accessing Properties and Help in an ActiveX Control

188 Chapter7

Using the Assigned
Local Variable

Using ActiveX Automation Objects and Controls
Using ActiveX Controls

The object menu contains differences you should be aware of. The

Properties and Control Properties menuitems provide accessto

two different sets of properties. The host container’s properties are separate
from the control’s properties. To see the typical properties associated with
HP VEE objects, in this case, the host container, clicRraperti es. To
view and change the ActiveX control’s properties that are provided by the
control's developer, click o@ontrol Properties. TheHel p button on

the control'sPr oper ti es dialog box opens the online help for that control
if the developer provided one. The object metglkp item opens the

HP VEE Help topic for the host containgir eat e Event Handl er... and
Edit Event Handl er... provide the same functionality as described for
ActiveX automation objects in “Handling Automation Object Events” on
page 172.

To Usean ActiveX Control in HP VEE

When you add a control to the HP VEE work area, it appears with an
assigned local variable name in its title bar. You can change the assigned
variable by double-clicking the control’s title bar to get Meei veX

Control Properties dialog box. Onth€eneral tab, change the value
besideNane: . Since the control has no pins to connect with lines to other
objects in your program, you must manipulate the control using expressions
in For nul a objects that refer to the control by its variable name. These
expressions must appear in the same context as the control, since the
control's variable name is scoped "local to context".

If you add a Calendar control to your program, it is assigned the local
variable name&al endar 1. The title bar containGal endar: Cal endar 1.

To interact with the control, addrar nmul a object that is in the same

context as the Calendar control. The following examples demonstrate setting
a property, getting a property, and calling a method on the ActiveX control
referenced by the HP VEE local variable caldl endar 1:

Cal endar 1. Day = 24;
Mont h = Cal endar 1. Mont h;
Cal endar 1. About Box()

Chapter 7 189

Declaring a Global
Variable for a
Control

Using ActiveX Automation Objects and Controls
Using ActiveX Controls

If you want the variable name to be global, then declare anew variable name
using Decl are Vari abl e (Data O Vari abl e 0 Decl are Vari abl e).
This is similar to the variable declaration described in “To Declare
Automation Object Variables” on page 171. Since the control’s variable
name already exists, suchGs endar 1, you cannot simply declare it as
global; HP VEE does not allow such conflicts. A common naming
convention is to adapt the local variable name (as irocal Nane),
resulting ing_cal endar 1.

In Decl are Vari abl e, enter the new variable name, Sebpe to

d obal , and seType: toObj ect. You do not need to che&peci fy

Obj ect Type to specify the particulari br ary andd ass. However, by
doing so, HP VEE will do type checking automatically to assure that the
Li brary andd ass are assigned only to the declared variable.

After declaring the global variable, us€@ nul a expression to set the
control’s local variable name (such@d endar 1) equal to the declared
variable name (such gscal endar 1). It is important to use theeT
keyword, as shown in this expression:

SET g cal endarl = Cal endar1

To Manipulate ActiveX Controls

Setting and getting properties, calling methods, and handling events for an
ActiveX control uses the same mechanisms described for ActiveX
automation objects in “To Manipulate Automation Objects” on page 176,
and in “Handling Automation Object Events” on page 172.

Although HP VEE contains ActiveX controls in host objects so they are
accessible, the control's behavior is slightly different when a program runs.
Basically, controls are viewable in only one place at a time — either the detail
view or panel view. As an example, suppose a control is added to a
program’s detail view, and the program dynamically displays a panel on
which the control appears usiS8gjow Panel on Execut e or

showPanel (). The control is blanked out in the detail view until the panel
closes. When the panel closes, the control reappears in the detail view.

190 Chapter7

Using ActiveX Automation Objects and Controls
Recommended Reading

Recommended Reading

Microsoft Office 97 Visual Basic Programmer’s Guide.
Microsoft Press, 1997. ISBN 1-57231-340-4.

HP VEE implements its ActiveX support using the standard established by
Microsoft Visual Basic. If you are unfamiliar with ActiveX technology,
review the chapters in this book that discuss Object Models, and ActiveX
Controls. Understanding these concepts will help you use HP VEE'’s
ActiveX features.

Chapter 7 191

Using ActiveX Automation Objects and Controls
Recommended Reading

192 Chapter7

Keys To Faster Programs

Keys To Faster Programs

Keys To Faster Programs

For general tips to increase the performance of your program, refer to
I nproving the Performance of an HP VEE Progr amunder
How Do | in HP VEE Help.

If you developed programs on a version of HP VEE prior to HP VEE 4.0,
refer to Appendix A, “Using the Compatibility Mode”, for information on
converting your program to use the compiler.

The following constructs will help you get the most speed benefit from the
compiler (when th€onpati bility Mode is settast andard or VEE 4
inFileO Default Preferences):

B Use theProfil er (located awi ew Profil er) to categorize which
routines are taking more time than you want them to. To run the
Profiler:

1. ClickonStart Profiling and then run your program.

2. When you have finished running your program, clicRefrr esh to see
the results.

3. Click onSt op Profiling to stop the profiler. Click ofl ear to clear
the current results displayed.

B Look at line colors. Lines are colored when HP VEE can determine the
data type before execution. The more colored (non-black) lines, the faster
the program will run.

B Because UserFunctions can be called from multiple places, HP VEE can't
determine the input data types before the program runs. So to speed up
UserFunctions, wherever possible add terminal constraints on their data
input terminals.

194 Chapter 8

Keys To Faster Programs

W |f you use global variables, use Decl are Vari abl es (located on the
Dat a menu) when possible to declare the type and shape of your
variables so HP VEE can infer types for them prior to execution. This
technique also allows you to set the scope of your variables.

H A common programming practice is executing the Aut oscal e control
input on graphical displays more often than necessary. If you can wait to
execute Aut oscal e until after the display has finished updating, instead
of after each point is plotted, your program will execute faster. You can
eliminate the Aut oscal e control input by using the
Aut omat i ¢ Scal i ng property (seethe Scal es tab) which can further
improve execution speed.

B On graphical displays, when the Aut omat i ¢ Scal i ng property is
turned on (seethe Scal es tab), the program executes faster if acomplete
set of datais sent to the display. Then, the display automatically rescales
once. If a program sends one data point at atime to the display, the
display may automatically rescale after each data point, which will slow
down program execution. In this case, use a Col | ect or object to create
an array, then send the array to the display.

W |f adisplay is showing the final output of aloop, but not tracking data
generated for each iteration of the loop (for example, an Al phaNuneri ¢
object, not aLoggi ng Al phaNumeri c), don't have it execute every
timein theloop. Hook the iterator's sequence output pin to the display’s
seguence input pin so the display only executes the last time.

B Once you know the program is running correctly, run the program with
debugging features off. UseFil e O Default Preferences and
select Di sabl e Debug Feat ur es inthe Debug group.

You can also usethe - r option, or run HP VEE RunTime. Because no
debug instructions are generated in those modes, your program will run a
little faster. However, you will not be able to perform any debugging
actions such as, pausing, stepping, Br eakpoi nt s, Li ne Pr obe, Show
Dat a Fl owand Show Execution Fl ow

Chapter 8 195

Keys To Faster Programs

196 Chapter 8

Troubleshooting Problems

Troubleshooting Problems

This chapter explains common situations and recovery actions.

Table 9-1. Problems, Causes, and Solutions

Problem

Cause

Solution

When running a program
created in versions prior to
HP VEE 4.0 in Standard or
VEE 4 compatibility mode, it
doesn’t operate when you
think it should.

Refer to Appendix A, “Using
the Compatibility Mode” for
possible solutions.

Your User Obj ect doesn't
operate when you think it
should.

You might be crossing the
context boundaries with
asynchronous data (such as
connecting to an XEQpin on
an object inside the

User (bj ect).

Possible Solution 1: Move
any asynchronous
dependencies to outside the
User Obj ect .

Possible Solution 2: Enable
Show Execution Fl owor
Show Dat a Fl owto view
the order of operation in your
program.

You want to change the
functionality of an object.

Use the object menu which
includes features that let you
add a control input terminal
and edit properties.

You only get one value
output from an iterator within
a User (bj ect .

A User Obj ect only
activates its outputs once.

Take the iterator out of the
User Obj ect .

An iterator only operates
once.

Your iteration subthread is
connected to the sequence
output pin, not the data
output pin.

Start the iteration subthread
from the data output pin.

For Count doesn't operate.

The value of For Count is
0 or negative.

Change the value; if you
need a negative value,
negate the output or use
For Range.

198

Chapter9

Troubleshooting Problems

Table 9-1. Problems, Causes, and Solutions

Problem

Cause

Solution

For Range or For Log
Range doesn't operate.

The sign of the step size is
wrong. If Fr omis less than
Thr u, St ep must be
positive. If Thr u is less than
From St ep must be
negative.

Change St ep.

You get the UNIX message
sh: nane - not found.

You mistyped the name of
the executable.

Retype veet est .

You get the UNIX message
Error: cannot open
di spl ay

Your DISPLAY environment
variable is not set or is set to
display on a machine for
which permissions are not
set up correctly.

Set (and export) your
environment variable
DISPLAY. Generally, this is
set to host nane: 0. 0. To
display on a remote
machine, set up permissions
with xhost on the remote
machine.

HP VEE appears to hang --
the pointer is an hourglass.

Possible Cause 1:HP VEE is
rerouting lines because you
have Aut o Li ne Routing
set on and you moved an
object.

Possible Cause 2: HP VEE
is printing the screen or the
program.

Possible Cause 3: You just
Cut alarge object or a large
number of objects. HP VEE
is saving the objects to the
Past e buffer.

Wait. If the pointer doesn't
change back to the
crosshairs within a few
minutes, type CTRL-C (or
whatever your i nt r setting
is in the terminal window
from which you started

HP VEE), close the HP VEE
window, or kill the HP VEE
process.

You can’t Open a program,
Cut objects, or delete a line
(the feature is grayed).

The program is still running.

Press St op to stop the
program, then try the action
again.

You can't Past e (the feature
is grayed).

The Past e buffer is empty.

Cut , Copy, or Cl one the
object(s) again.

You can't Cut , Creat e
User Cbj ect,or Add to
Panel (the feature is
grayed).

No objects are selected.

Select the objects and try
the action again.

Chapter 9

199

Troubleshooting Problems

Table 9-1. Problems, Causes, and Solutions

Problem

Cause

Solution

A User Qbj ect only outputs
the last data element
generated.

User Cbj ect s do not
accumulate data in the
output terminal buffer. It
only holds the last data
element received.

Use a Col | ect or to gather
all of the data generated into
an array. Send this data to
the output terminal.

You can't get out of line
drawing mode.

Double-click or press Esc to
end line drawing mode.

You get a Parse Error
object when you Open a
program.

Replace the Par se Error
object with a new object.

Your characters are not
appearing correctly.

You have a non-USASCII
keyboard.

Refer to Appendix B,
“Configuring HP VEE”", for
recovery information.

Your colors outside of

HP VEE are changing
(although when you're in
HP VEE, the HP VEE colors
look normal).

Your color map planes are
all used.

Refer to Appendix B,
“Configuring HP VEE”", for
recovery information.

200

Chapter9

Using the Compatibility Mode

Using the Compatibility Mode

When you have programs created in previous versions of HP VEE they will
open in VEE 3 or VEE 4 compatibility mode, depending on how they were
saved. You can still runthemin VEE 3 or VEE 4 mode and they will
execute the same as before.

However, if you want older programs to take advantage of the compiler’s
speed improvements introduced for HP VEE 4.0, seCtin@at i bility

Mode tOVEE 4 inFile d Default Preferences. To use the compiler

and include ActiveX automation and controls,@atpati bility Mde

to St andar d. If you want to convetVEE 3 programs tcst andar d mode,

you should make sure they workVBE 4 mode first. There are some
program execution differences between each mode that you should know
about if you convert programs to the newer modes. This appendix presents
these differences.

202 Appendix A

Using the Compatibility Mode
About The Compiler

About The Compiler

It is not necessary to understand the information in this section to use the
compiler. It explains the concepts behind the compiler for your information
only. The compiler works with programs that runin VEE 4 or St andar d
modes. For information about changes between VEE 3 and VEE 4 modes,
see “Compatibility Mode Changes: VEE 3 to VEE 4" on page 204. For
information about changes between VEE 4 and Standard modes, see
“Compatibility Mode Changes: VEE 4 to Standard” on page 214

The HP VEE compiler converts a HP VEE program into p-code, but there
isn't any machine language or executable generated.

The compiler allows HP VEE to predict at compile time (instead of
determining at run time) the order of execution of objects, determine what
data types will be flowing on certain data lines, optimize code generation,
and generate and execute the most optimal p-code for any given HP VEE
object.

One of the goals was to maintain the great level of interactiveness associated
with HP VEE, especially during development/debugging of programs. As
such, the compilation of HP VEE programs takes place transparently right
after you press theun button. Stepping and breakpoints are also fully
supported, as well &how Executi on Fl ow, Show Data Fl ow, and

Li ne Probe.

Subsequent runs of the same unmodified program do not require
recompilation. Also, when a program is modified, only the contexts needing
recompiling are recompiled (much like an incremental compiler).

Most programs benefit from the use of the compiler, though the actual
results vary. For example, a program using many levels of nested loops will
probably see a greater speedup than one that does a lot of I/O or screen
updates (e.g. displays).

In compiled mode, iterators and formulas gain the most execution speed
benefit.

Appendix A 203

Using the Compatibility Mode
Compatibility Mode Changes: VEE 3 to VEE 4

Compatibility M ode Changes:
VEE 3toVEE 4

HP VEE programs written with versions before HP VEE 4.0 run exactly the

same way as they used to when run in VEE 3 mode. To ensure this, the

interpreter is automatically enabled upon loading of older programs. It is

possible that a program written with an previous version of HP VEE isn't

going to run exactly the same way with the compiler. This could be dueto

specific programming techniques, the use of undocumented side-effects, or

even dlight changesin documented behavior. | nformation about the compiler

also apply to Standard mode, except for changes described in “Compatibility
Mode Changes: VEE 4 to Standard” on page 214

LineColors

In compiler mode, HP VEE assigns different colors to the data lines based
on the type of data flowing through the line. Here are the default colors,
along with the names of the color properties (changeabld Via (I

Def aul t Preferences):

B Blue: numeric (Integer or Real type)

B Blue: complex (Complex and PComplex type)

B Orange: string (String type)

B Gray: sequence out (nil value, usually from a sequence out line)

B Black: unknown type or type that is not optimized (for example, Record
types).
If the data type is an array, HP VEE displays a wider line.

To increase speed, check your program for colored lines. The more non-
black lines, the faster the program runs.

204 Appendix A

Using the Compatibility Mode
Compatibility Mode Changes: VEE 3to VEE 4

Compiling Existing Programs

To use the HP VEE compiler with older programs, change the
Conpatibility Mde checkbox ontheFil e O Def aul t
Pr ef er ences dialog box to VEE 4.

1. Open the old program, turn on compiler mode, and press St ep (or Run).
Thiswill PreRun the program. If there are unsupported constructs like
feedback without aJunct i on, intersecting loops, etc, HP VEE will error
now. These constructs must be changed. The most common situation is
feedback without Junct i on objects; simply insert aJuncti on fed by a
Const ant to initialize the value, refer to “Feedback Cycles” on
page 208 for more information.

2. Try running the program. Most everything will run the same way. The
most common problem is not realizing part of your program relied on
round-robin object order execution. Most of the time this will not matter.

In a few cases, where one thread sets a global variable and another thread
accesses it, programs may have "just worked" before and now may not if
there is nothing to ensure tBet Vari abl e executes before theet

Vari abl e object.

Most of the time, the program will either error at PreRun or run normally.

There is the potential that the program will not work but also will not error in
an obvious way, because of the way separate threads and parallel junctions
execute in the compiler. Refer to “Program Changes” on page 205 for the
details on these changes.

Program Changes

Old programs (written in versions before HP VEE 4.0) are automatically run
in VEE 3 mode. Programs written using HP VEE 4.x are automatically run
in VEE 4 mode. (New HP VEE programs are automatically run in

St andar d mode.)

You can manually change tldenpati bil ity Mde of a program at any
time.

The following areas are where compatibility problems could arise when
changing an existing program frovtBE 3 to VEE 4. The information about

Appendix A 205

Time-Slicing
UserFunctions

UserObjects

Function
Precedence

Using the Compatibility Mode
Compatibility Mode Changes: VEE 3 to VEE 4

using older versions of HP VEE is the same as when using interpreted mode
or VEE 3 mode. If you are creating new programs, you should use
St andar d mode.

In versions before HP VEE 4.0, UserFunctions did not time-slice with other
parts of the program. In compiled mode, UserFunctions will time-slice
when called from separate threads. Be sure to use sequence pins between
Cal | objectswhen paralelism isn't desired.

UserFunctions only time-slice when called from Cal | , For nul a, | f/
Then/ El se, or Sequencer objects (only when called from the Funct i on
field). Breakpoints also now work in UserFunctions when called from Cal |
or the other objects listed above.

UserFunctions will not time-slice, nor will breakpoints work, when called
fromaTo File, To String,or similar objects, or if the formulais
supplied viaacontrol pin.

If aUserFunction is executing and gets called again from another part of the
program, that call will be blocked until the original call returns.

UserObjects would always time-slice in previous versions, but in compiled
mode, they will only time-dlice when invoked from separate threads.

The precedence of functions called from the Formula object has changed to
the following:

1. Internal functions (likesi n() andt ot Si ze())

2. Local UserFunctions

3. Imported UserFunctions

4. Compiled Functions

5. Remote Functions

In versions before HP VEE 4.0, internal functions were last in precedence

(this allowed you to override internal functions such ast ot si ze() or
fft () withyour own).

206 Appendix A

Auto Execute and
Start

OK Buttons and
Wait for Input

Collectors Without
Data

Sample & Hold
Without Data

Timer Object

Using the Compatibility Mode
Compatibility Mode Changes: VEE 3to VEE 4

There are some subtle changes in behavior when using the Aut o Execut e
feature of certain objects. In compiled mode, the behavior isasif the object
was hooked directly toa St art object, and that St ar t button was pushed.
This change does not affect most programs.

Most asynchronous objects like the OK object or any object with\ai t f or
I nput enabled will work better in compiled mode in these two areas.

1. Stepping: In previous versions, stepping over such an object would
often result in the termination of the program. In compiler mode,
stepping works properly.

2. CPU usage: In previous versions, executing such an object usually
resulted in increased CPU usage. In compiler mode, the CPU staysin an
idle state.

In previous versions, hitting the XEQ pin of aCol | ect or that has never
been hit with data, outputsanil container. In compiler mode, if the datatype
isknown at compile time, you get a zero-element array of that data type.
Otherwise, you get a zero-element array of type Integer.

This change allows the type inferences to be more consistent, producing
better p-code downstream from the Col | ect or object.

Notethat t ot Si ze() of anil producesaone, whilet ot Si ze() of azero-
element array produces a zero.

In previous versions, hitting the XEQpin of aSanpl e & Hol d object that
has never been hit with datawill yield anil container. In compiler mode, the
following error is generated (error number 937):

Sanpl e & Hold was not given any data.

This change alows the type inferences to be more consistent, producing
better p-code downstream from the Sanpl e & Hol d object.

In previous versions, the Ti mer object output an undefined result if the

Ti me2 pin (the bottom data input pin) was hit before the Ti mel pin. In
compiler mode, the Ti mer object generates an error if the pins are executed
out of sequence.

Appendix A 207

Using the Compatibility Mode
Compatibility Mode Changes: VEE 3 to VEE 4

Feedback Cycles In compiler mode, aJunct i on object isrequired inside of afeedback cycle.
St art objects are no longer required. The following error is generated
when feedback without aJunct i on is detected (error number 935):

A Junction is required inside of feedback cycles.

Start ||

—|For Count| « = Formula |«

- [_,ﬁ) MT

Figure A-1. Feedback in Previous Versions

—|For 50unt| F

ITT

—|Inte-ger| 4] ﬂ |.a'-‘~+EI Result
. | B |
s

= Formulz 5=

Figure A-2. Feedback in Compiled Mode

Note that the current version does not allow invalid connections, such as an
object’s data input pin connected to its data output pin, and for most objects,
connecting a sequence output pin to adatainput pin.

Parallel Threads In previous versions, independent threads would round-robin between each
thread, meaning that one object will be executed in one thread, then an
object in the other thread, etc. In compiler mode, this behavior is not
guaranteed.

208 Appendix A

Loop Bounds

UserObjects and

Calls With XEQ Pins

OK Buttons With
XEQ Pins

From File With EOF
Pins

Using the Compatibility Mode
Compatibility Mode Changes: VEE 3to VEE 4

In order to increase looping performance, the bounds of iterators (such asthe
St ep fieldinaFor Range object) are examined only at the beginning of
thefirst iteration, and not at every iteration. The object’sfieldsare grayed at
run time to show the value is not changeable. Datainputs to the iterators
will beignored if the value changes while the loop is running

For example, if the St ep value of aFor Range object is changed viathe
datainput pin while the loop runs, it isignored in compiler mode. In
previous versions, the step value would have been checked on every
iteration.

In previous versions, you could have an XEQ pin on a UserObject or aCal |
object run the UserObject or UserFunction before al the datainput pins
were satisfied. In compiler mode, thisis not allowed. XEQ pins on those
objects will generate an error.

You can ho longer add an XEQ pin to those objects.

In previous versions, an OK abject with an XEQ pin was only executed once,
when either the OK button was pressed or when the XEQ pin was sent data.

In compiler mode, the OK button will execute every time the XEQpin is sent
data.

You can no longer add an XEQ pin to an OK object.

In previous versions, the data output pin on aFr om Fi | e object was treated
differently from other data output pinsin HP VEE. If theFrom Fi | e wasin
aloop, the data on the output pin remained valid when the EOF data output
pin was executed.

In compiled mode, the data output from aFr om Fi | e object isinvalidated
each time the loop executes (just like on al other objects). Therefore when
the ECF pin is executed, the datais already invalid and cannot propagate.

The following figure illustrates this situation. In previous versions, the data
fed into A on the For mul a would have remained valid even while another

Appendix A 209

Parallel Junctions

Using the Compatibility Mode
Compatibility Mode Changes: VEE 3 to VEE 4

iteration of the loop executed. To get valid datafed into B on the For ul a,
the ECF pin (on the bottom) executes and then the For mul a executes.

In compiled mode, the datafed into A isinvalidated as soon as the next
iteration of the loop begins. Because For nmul a does not get valid inputs on
the same iteration of the loop, it never executes.

ToFile
% —| Alphakumeric | =

Until Break
= Formula =
' A
Frofm File | —— |aiB Result |
j EI

=[Real4] Break|
|12

Figure A-3. EOF Differences

In versions before HP VEE 4.0, if you had unconstrained objects that were
connected in parallel to Junct i on objects, the order that you made the
connections affected the execution order. In compiled mode, the order of
connection does not matter.

—|For Count| -

I 10 AJCT

=l Formula =
Lu A ||—
a+h Result
—|Integer| «| [18]
JCT

T—

Figure A-4. Parallel Junctions

210 Appendix A

Using the Compatibility Mode
Compatibility Mode Changes: VEE 3 to VEE 4

Intersecting Loops In previous versions, you could intersect iteration objects. The execution
order was undefined, but was affected by the order the connections were
made. In compiler mode, only loopsthat intersect viaaJunct i on object are
allowed. Any other intersecting loops generate error 938.

VEE was unable to conpile this part of the program

—| Logging AlphaMumeric | =
—|For Count| «
I 2
=l Formula | «|
A *|
—|For Count| = f E i
ey

Figure A-5. Intersecting Loops

Appendix A 211

Intersecting Loops

Via Junctions

Open View Object

Changes

Using the Compatibility Mode
Compatibility Mode Changes: VEE 3 to VEE 4

In versions before HP VEE 4.0, the example shown below would execute
thel nt eger first, and when the program encountered the Br eak, it would
stop.

In compiled mode, the example below runsthe For Count objects after the
I nt eger objects because the Br eak does not stop the program.

—| Integer | «|

|1— i

—| For Count | =

I 10
= JCT [4] s
A
| Couriter | ﬂ Data | A -0 Mj_
= F
= el Break |

o L |

—| For count | = —| Counter | -

IT[—-#

Figure A-6. Intersecting Loops Via Junctions

In versions before HP VEE 4.0, you could change the datain open view
fieldswhile the program was running or paused. These changeswould affect
program behavior and the result was not guaranteed.

In compiler mode, many objects do not allow thistype of modification when
the program is running or paused (the input fields are grayed). Some
examples of thisare:

B Fornmulaandlf/Then

B Col |l ector

B All Transaction objects’ transactions

B Get Mappi ngs and Set Mappi ngs

212 Appendix A

Array Syntax in
Expressions

Using the Compatibility Mode
Compatibility Mode Changes: VEE 3to VEE 4

Get Val ues and Set Val ues

Const ant 'spropertiessuch assetting Scal ar or 1D Array,Wait for
I nput, or Aut o Execute.

Setting propertieslike d ear at PreRun
UserObject and UserFunction Tri g Mode

Di al og Boxes properties

Adding or deleting input or output terminals on objectsis grayed at run time
(but not when paused). If this action is done at pause time, the program is
stopped (thisis what versions before HP VEE 4.0 did).

Expressions with array syntax entered without commas, suchas[1 2 3],
will be reparsed when the program loads and automatically modified to use
commas, asin[1, 2, 3] . Thisistrue for programsin VEE 3 and VEE 4
modes.

Appendix A 213

Using the Compatibility Mode
Compatibility Mode Changes: VEE 4 to Standard

Compatibility Mode Changes:
VEE 4 to Sandard

InHP VEE 5.0, the VEE 4 and VEE 3 modes retain their compatibility
definitions set in HP VEE 4.0, which are described in “Compatibility Mode
Changes: VEE 3 to VEE 4” on page 204. There are minor changes,
described later in this section, that will not affect existing programs that run
in their original compatibility mode&EE 3 or VEE 4). These changes are
important to know if you plan to convert programs from older to newer
modes.

About the Sandard M ode

TheSt andar d mode is a superset of tREE 4 mode. This means that the

St andar d mode retains the compiler features described previously, and
introduces significant changes affecting program compatibility. Most of the
changes enable support for ActiveX automation and controls. Other changes
may impact your programming techniques if you use any of the features
described in this section — even if you do not use ActiveX. For information
about using ActiveX in HP VEE, see Chapter 7, “Using ActiveX

Automation Objects and Controls”.

Converting Programsto Sandard Mode

New HP VEE 5.0 programs will open 8t andar d mode. If you want to
change older programs to a newer mode, you must do this manually using
Def aul t Pref er ences. When you change a progranttcandar d mode,
errors can occur, and a list appears explaining problems. You need to fix
these before HP VEE accepts the switcBttandar d mode. HP VEE does
not automatically revise any part of your program to fix the errors. To help
you know how to fix errors, thét andar d mode compatibility changes are
described below.

214 Appendix A

Using the Compatibility Mode
Compatibility Mode Changes: VEE 4 to Standard

Note If you want to change HP VEE 3.x programsto St andar d mode, you
should be sure they work in VEE 4 mode first, then change them to
St andar d mode. See “Compatibility Mode Changes: VEE 3 to VEE 4” on
page 204 for help with that conversion.

Menu Changes As part of the ActiveX support added to HP VEE 5.0,0&ei ce menu has
changed slightly. These new menu items have been added:

Acti veX Automati on References...
ActiveX Control References...
ActiveX Control s

Also, the menu itenvat h & Funct i ons that opened thgel ect

Funct i ons dialog box, is now calleBuncti on & Obj ect Browser that
opens thé&uncti on & Obj ect Browser. You still use it the same way to
select math operators and functions for a program, and its expanded
functionality supports ActiveX.

Expressions The following changes affect objects suctrasmul a that contain
expressions:

B SET and ByRef are new keywords that are used for ActiveX automation.
They are reserved and cannot be used as names for terminals.

B New syntax is supported for ActiveX automation such as
excel . worksheets(1).cells(1,2) = 2.

B In VEE 3 andVEE 4 modes, expressions with array syntax entered
without commas, such &4 2 3], will be reparsed when the program
loads and automatically modified to use commas, 44,2, 3] . In
Standard mode, entering array syntax without commas, s(idh 2s3]
will cause an error whefor nul a loses focus.

B A value such as returns an Integet, 0 returns a Real. Previously, both
returned a Real.

Appendix A 215

Variables

Global Namespace

Using the Compatibility Mode
Compatibility Mode Changes: VEE 4 to Standard

B There are two new built-in functions for ActiveX automation:
Creat eObj ect () and Get Qbj ect ().

B There are two new built-in constants for ActiveX automation:
true andf al se.

The following changes affect variables:

B WhenDel ete Variabl es at PreRunisturnedon (in Def aul t
Pr ef er ences) global variables are not deleted if they reference
ActiveX controls.

B TheDecl are Vari abl e object hasanew variable type called Object
which is used for ActiveX automation.

B The new Object variable type is also available on input terminals as a
Requi red Type, though it can't be coerced from or to another type.

Global namespace rules have changed which affects names given to
variables, functions, and libraries in the following ways.

B | oca UserFunctions, Library names, global declared and undeclared
variables, and local-to-library declared variables are now all in the same
namespace, and must have unique names. This affects existing programs
if they contain more than one instance of a name. As an example, this
means you cannot have a UserFunction and a declared global variable
both named dai | y_r esul t s. Thiswill cause an error when you switch
the program to St andar d mode.

B Within aLibrary, local UserFunctions and local-to-library declared
variables are in the same namespace and must have unique names. This
will cause an error when you switch the program to St andar d mode, or
if you import aLibrary containing conflicting namesinto a St andar d
mode program.

216 Appendix A

Using the Compatibility Mode
Compatibility Mode Changes: VEE 4 to Standard

B New syntax isallowed in the For mul a object in al modes, such as
lib.func(a,b) = Ri ght HandExpr

This parses correctly in all modes. However, it executes correctly only in
St andar d mode, and causes arun-time error in VEE 3 and VEE 4
modes.

The changesin global namespace rul es al so changes the order of precedence
used in St andar d mode to the following order when HP VEE looks up
variable and function names used in a For nul a:

1. Local input/output terminals.
2. Declared local-to-context variables.

3. Declared local-to-library variables when inside a UserObject context
nested in a UserFunction context.

4. Global declared and undeclared variables, local UserFunctions, Library
names, which all must be unique names.

5. Built-in functions, such assi n() andt ot Si ze() .

6. ActiveX controls and automation constants depending on which libraries
have been referenced using Devi ce [Acti veX Aut omati on
Ref erences or Acti veX Control References (for example, many
constants exist in Excel’'s automation library sucklagaxi m zed).

7. Imported UserFunctions, Compiled Functions, and Remote Functions in
random order. To guarantee getting the correct one, include the imported
Library’s name, as inyLi b. f unc() .

Appendix A 217

READ TEXT
Transactions

Using the Compatibility Mode
Compatibility Mode Changes: VEE 4 to Standard

An unlikely example of how this new order can cause an older program to

fail might involve a For mul a containing the expression si n(90) with an

input terminal (avariable) named si n. In VEE 3 and VEE 4 modes,

HP VEE ignores the input terminal name and callsthe si n() built-in

function. However, St andar d mode uses the new precedence order to ook

up the function and variable names. So HP V EE looks up the terminal name,
assumes it has an ActiveX object on the input, and tries to call the object’s
default method. An example of an expression that calls an ActiveX object’s
default methodgel | s(1, 1), is similar tosi n(90) . For information about
ActiveX, see Chapter 7, “Using ActiveX Automation Objects and Controls”.

In VEE 3 andVEE 4 modes, th&kEAD TEXT transaction using thEOKEN
format withEXCLUDE CHARS does not advance the read pointer to exclude
the specified character. The following figure shows an example of this in
VEE 4 mode:

—| Text =
I'I'he first phrase *the next phrase *the end
=] AlphaNumeric P
The first phrase
=] From String =
X =] Alphaklumetic r
= READ TEXT y TOKEN EXCLUDE"™" |
ASHING | FLEAD TEXT Z 5TR %
=] Alphaklumetic =

* the next phrase * the end

Figure A-7. READ TEXT Transaction with TOKEN in VEE 4 Mode

This is an unexpected result. An expected result is for each phrase separated
by the excluded character™to appear in separas¢ phaNuner i c displays
as shown in the next exampleSnandar d mode:

218 Appendix A

Interaction Between
To/ From Fil e
and To/ From

Dat aSet

Using the Compatibility Mode
Compatibility Mode Changes: VEE 4 to Standard

= Text =

|The first phrase *the next phrase * the end

—| Alphakurmeric F
The first phrase

L

= Fram String

READ TEXT x TOKEN EXCLUDE"*

= AlphaMumeric r
the next phrase

ASHNG| | oeap TEXT 2 5TR

B | =2 | 3

= AlphaMumeric r
the end

Figure A-8. READ TEXT Transaction with TOKEN in Standard Mode

InVEE 3 and VEE 4 modes, aprogramusingaTo FileorFrom File
object with the EXECUTE REW ND transaction to access the same datafile as
aTo Dat aSet or Fr om Dat aSet object can cause unexpected interactions.
More specifically, if aprogram uses Fr om Fi | e (with EXECUTE REW ND)
to read datafrom afile, then usesTo Dat aSet to write data back into the
same file, the data can be written incorrectly. A similar interaction can
happen when using Fr om Dat aSet with To Fi | e. In St andar d mode,
this unexpected interaction is fixed so the datais written to the file correctly.
However, westill do not recommend mixing To/ From Fi | e with To/ Fr om
Dat aSet operations on the samefile.

Using Standard Modein HP VEE for HP-UX

Since St andar d mode provides ActiveX support for Windows only, there
are some conditionsto be aware of. In HP VEE for HP-UX, you can put
programs into St andar d mode. This affects the global namespace as
described previously. However, the ActiveX automation menu items will not
appear sinceit is not supported on HP-UX. If you develop a program using
HP VEE for Windows that uses ActiveX features, it can cause errors or not
run properly if you move the program to an HP-UX system. If the program
callsHP VEE functions supporting ActiveX automation (Cr eat eQObj ect ()
and Get Qbj ect ()), the program will cause an error. Programs that declare
Object variable types will load into HP VEE for HP-UX, but they will not
run properly.

Appendix A 219

Using the Compatibility Mode
Compatibility Mode Changes: VEE 4 to Standard

220 Appendix A

Configuring HP VEE

Configuring HP VEE

This appendix explains how to configure and customize HP VEE for your
environment by changing HP VEE options, and X11 options (in the UNIX
environment) or Windows options (in the MS Windows environment). This
appendix discusses the following topics:

Color and font settings

Changing X 11 attributes (such as window size and placement)
Changing M S Windows attributes

Customizing your icon bitmaps

Selecting a bitmap for a pandl view

Recovering from X 11 color plane limitations

Using non-USASCII keyboards

Using HP-GL Plotters

222 Appendix B

Configuring HP VEE
Color and Font Settings

Color and Font Settings

The HP VEE application contains default values for all color and font
settings. You can change color and font settings (and many other properties)
intheHP VEE Def aul t Pr ef er ences dialog box (useFi | e O Def aul t
Pr ef er ences). These properties are saved in the defaultsfile -- .veer c in
your UNIX $HOME directory, or VEE. RCinthe C:\ Progr am

Fi | es\ Hew et t - Packar d\ 5. O directory for MS Windows (or %home%if
it is defined). For colors and fonts, only the settings you change are saved in
this defaults file. See Getting Sarted with HP VEE and How Do | in

HP VEE Help for more information about changing colors and fontsin

HP VEE.

Appendix B 223

Configuring HP VEE
Changing X11 Attributes (UNIX)

Changing X11 Attributes (UNI X)

HP VEE provides an app-defaults file named Vee that you can use to
customize several attributes of HP VEE. Thisfileisin
lusr/lib/veetest/config/ for HP-UX 9.x. Itisin

opt/ veet est/confi g/ for HP-UX 10.x. In the same directory isthe
app-defaultsfile named Hel pvi ewwhich letsyou customize the appearance
of your Help windows. To use these files, you must install them into your
X11 resources database.

The color and font settings that you changein HP VEE using Fi | e O
Def aul t Pref erences are saved in the defaults file SHOVE/ . veer c.

If you are using xr db, install thefiles by typing xr db - mer ge fi | enane
(for each file) before starting HP VEE.

If you are not using xr db, merge the filesinto your X11 resources file.
Your X11 resourcesfileisusually . Xdef aul t s in your $HOVE directory,
but may bein afile identified with the environment variable

$XENVI RONMENT.

To change other X 11 resources, you can change or add to your X11
resourcesfile. For example, to change the default geometry of the HP VEE
window so that it always started in the lower right corner of your screen and
the window was sized to 640 by 480 pixels, you would add the following
lineto your X 11 resources file (probably . Xdef aul t s):

Vee*geonetry: =640x480-0-0.

For more information about customizing an X11 environment, refer to
Beginner’s Guide to the X Window System.

224 Appendix B

Configuring HP VEE
Configuring HP VEE for Windows

Configuring HP VEE for Windows

HP VEE for Windows uses the Windows Registry to store HP VEE
environment information.

The color and font settings that you changein HP VEE using Fi | e [
Def aul t Pref erences are saved in the defaults file VEE. RCin your
HP VEE installation directory if you do not have %home%defined.
Otherwise VEE. RC, VEE. | O, and V. | NI are saved in %hone%

General HP VEE Settings

The Maxi mi zed variable controls whether HP V EE for Windows starts up
as a maximized window or not. ThevaueO isfor not maximized, 1 isfor
maximized.

The Geonet ry variable controlsthe initial size of the HP VEE for
Windows window. For example:

Ceonet ry=630x470

Appendix B 225

Configuring HP VEE
Customizing Icon Bitmaps

Customizing I con Bitmaps

You can change the icon displayed on any iconized object to a bitmap or
pixmap of your choice. HP VEE provides many files, or you can create your
own. On UNIX platforms, HP VEE supports. bnp bitmap files, . gi f,
.icniconfiles, and. xwd X11 bitmap files. HP V EE for Windows supports
. BMP bitmap files, . G F, and . | CNicon files. To select an object’sicon,
click on the object menu's Pr oper t i es feature, then usethel con tab on
the Pr operti es dialog box.

To create your own bitmaps for object icons, you can use any editor that
outputs graphics formats that HP V EE supports. Examples of such editors
includethe | conEdi t or program on HP-UX, and the Pai nt program on
M S Windows. You should specify 48x48 asthe size for anicon. Larger
icons use more space in the HP VEE program area, smaller icons are
difficult to see. You can also use screen capture utilities such as X11
Window Dump (xwd) on UNIX, and Pri nt Screen with Pai nt onMS
Windows.

226 Appendix B

Configuring HP VEE
Selecting a Bitmap for a Panel View

Selecting a Bitmap for a Panel View

You can select abitmap to use as the background icon for apanel view. This
applies to UserObjects and to HP VEE programs displayed in their panel
views. Panel view icons must use the same formats HP V EE supports; . bnp
bitmap files, . gi f,and . i cn icon fileson al platforms; plus. xwd X11
bitmap fileson UNIX. You can aso use icons you create as described in the
previous section.

To select abitmap astheicon for apand view, first enable the panel view so
the Panel andDet ai | buttons appear in thetitle bar (by adding an object to
the panel). Click on the object menu, then click on Pr operti es. Usethe
Panel tabontheProperti es dialog box to choose abitmap.

Appendix B 227

Configuring HP VEE
If You See Colors Changing On Your Screen (UNIX)

If You See Colors Changing On Your
Screen (UNIX)

Your workstation is equipped with a certain number of color planes (usually
1,4, 6, or 8). X11 usestheinformation in these color planesto color your
application’s window. If you have more than one application running (each
in its own window), and you notice the screen colors changing as you move
from one application’s window to another, then one of two things may be
happening. Either all the applications, together, use more colors than your
display has available, or one or more of the applications allocates its own
private color map (for example, HP BASIC/UX).

HP VEE uses at least 39 colors (this varies depending on how you define the
colors and which colors HP VEE actually uses while running), so you may
experience this behavior when HP VEE is one of your applications. The
symptoms are: when you are in the HP VEE window, the HP VEE colors
will be correct for HP VEE, but may be wrong in other application’s
windows. When you move to another application’s window, the colors will
be correct for that application, but may be wrong for HP VEE. Thisistypical
X11 behavior -- it is not a problem with HP VEE.

This behavior does not affect the performance of HP VEE or any other
application. However, if it bothers you, there are some things you can do to
help, depending on the cause.

There are two causes of this behavior:

B You have requested more colors than your workstation can
simultaneously display.

B One of the applications you are running controls alocal color map.

Too Many Colors

Your workstation can display some number of colors at one time, based on
the number of color planes for your display. This number is:

2number of color planes

228 Appendix B

Configuring HP VEE
If You See Colors Changing On Your Screen (UNIX)

For example, if you have 4 color planes, you can use as many as 16 colors at
atime on your display.

=16

If you exceed this number, you may see the screen flashing as you change
from one window to another.

If you exceed your total available colors, the first step in eliminating the
"flashing" is to reduce your colors to be within the limits of your
workstation. Some tips on reducing colors are:

B Remove any extracolors. If two applications can use the same color
scheme, then customize them to do this.

B Usereduced-color color schemesin applications. For example, HP VEE
allows customization of colors. ClickonFi | e [Def aul t
Pref erences. IntheDef aul t Preferences diaog box, change
your default colorsto use only afew colors.

B Stop, or do not even start, any applications that you do not currently
need. Often, each application usesits own color scheme. Thiscan
quickly increase your requested colors to exceed your color map limit.
Once you have stopped other applications, you probably need to stop,
then re-start, HP VEE before the behavior goes away.

B Reduce the number of colors allocated by the xi ni t col or map
command. Because these colors remain permanently in the color map,
there isroom for fewer temporary colors.

Some X 11 window managers have a colormap focus directive (for example,
*col or mapFocusPol i cy). The valueto which thisis set may also
contribute to how colors are used on the screen. In particular, if you exceed
the total number of colors you can simultaneously display, do not set thisto
beexplicit oryoumay not see correct colorsin your application’s
window.

Appendix B 229

Configuring HP VEE
If You See Colors Changing On Your Screen (UNIX)

Applicationsthat Usea L ocal Color Map (UNIX)

Some applications use alocal color map. This meansthat when you run this
application, it savesthe current color map and switches over to its own, local
color map. When this happens you may see the "flashing" between
windows.

One way to circumvent thisis to pre-allocate the HP VEE colors using the
xi ni t col or map command. To do this, you create an ASCI| filelisting the
colors you wish to pre-allocate. Thisfileisdescribed in the man page for
xi ni t col or map. Basically, though, the file cannot contain blank lines,
must start with the colors Bl ack and Wi t e, and the color format can be
either pre-defined word colors or the actual RGB hex values, preceded by
the symbol -- #. For example, the following two examples contain black,
white, and a shade of light gray:

Bl ack
Wi te
Li ght G ay
Figure B-1. Color Map File Using Words

#000000
HEFFFFS

#a8a8a8
Figure B-2. Color Map File Using Hex Numbers

HP BASIC/UX isone application that uses alocal color map and
recommends that you pre-allocate the HP BASIC/UX colors at startup using
the xi ni t col or map command. Refer to the

[usr/1ib/rnmb/ newconfi g/ rgb. README

- or_
/ opt / r mb/ newconfi g/ r gb. README file).

Because of this, if you will use HP VEE with HP BASIC/UX (or other

applications that allocate colors in the same way HP BASIC/UX does), you
need to also pre-allocate HP VEE colors at startup. |f you do not, you may
see the colors flash on the screen as you move from one window to another.

230 Appendix B

Configuring HP VEE
If You See Colors Changing On Your Screen (UNIX)

To dothis:

1. Create a"colormap" file that contains all the different HP VVEE colors
you will use.

2. Change to your $HOVE directory:
cd $HOVE
3. Concatenate the HP BASIC/UX and the HP VEE colormap files:
cat /usr/lib/rmb/ newconfi g/ xrmbcol ormap vee-col ormapfile > . xveecol or map
-or-
cat /opt/rnb/ newconfi g/ xrmnbcol ormap vee-col ormapfile > . xveecol or map

Note that the HP BASIC/UX colors must go first, because HP BASIC/
UX assumes that they are the first 16 entries in the colormap. You can
mix the word colors and the hex number colorsin onefile.

4. You must usethexi ni t col or map command before you allocate any
colorsfor other applications. This meansthat it should be placed near the
beginning of your .x11start file.

For example, if you usethe. x11st art file, your colorsarein
$HOVE/ . xveecol or map, and you have 55 colorslisted in the file (16
from HP BASIC/UX + 39 from HP VEE), you would add the following
lineto. x11start:

/usr/bin/X11l/ xinitcolormap -c 55 -f $HOWE . xveecol or map
- or_
/ opt/ X11/ xi nitcolormap -c¢ 55 -f $HOVE/ . xveecol or map

5. Restart X11. To do this, stop the window manager by pressing the
following three keys at the same time: Shift-CTRL-Break, or selecting
Reset from your root menu (if it is configured for this choice), then
type:
x1llstart

Appendix B 231

Note

Configuring HP VEE
Using Non-USASCII Keyboards (UNIX)

Using Non-USASCI | Keyboards (UNI X)

If you are using a non-USASCII keyboard, you need to modify the SLANG
variable in your X 11 environment. As an example, to use a German
keyboard, use the command export LANG=ger man. i so88591 inthe
Korn Shell. Once the LANG variableis set, useFi | e O Def aul t

Pr ef er ences to change fonts.

If you are accessing datathat was created with the Roman8 character set, you
must translate any special characters (above ASCII 127) used.

Your terminal window may use Roman8; therefore TEXT written to stdout,
file names (such as specified by To Fi | e and From Fi | e), and programs
names must use ASCII characters 0-127 to match with those specified with
HP VEE.

232 Appendix B

Configuring HP VEE
Using HP-GL Plotters (UNIX)

Using HP-GL Plotters (UNIX)

HP VEE supports graphics output to plotters and files using HP-GL. Before
you can send plots to a plotter (either local or networked) your system
administrator must add the plotter as a spooled device on your system.

In addition to standard HP-GL plotters such asthe HP 7475, the HP
ColorPro (HP 7440), or the HP 7550, some printers can be used as plotters,
such as the PaintJet XL, and the LaserJet I11. The HP ColorPro plotter
requires the Graphics Enhancement Cartridge in order to plot polar or Smith
Chart graticules, or an Area-Fill line type. The PaintJet XL requiresthe HP-
GL/2 Cartridge in order to make any plots. In order to make plots on the
LaserJet 11, at least two megabytes of optional memory expansion is
required, and the Page Protection configuration option should be enabled.
Plots of many vectors, especially with Polar or Smith chart graticules, may
require even more optional memory in the LaserJet [11. Any plot intended for
aprinter requires the plotter type to be set to HP-GL/2, which causes the
proper HP-GL /2 setup sequence to be included with the plot information.

Any of the following graphical two-dimensional displays can be plotted to
an HP-GL or HP-GL/2 plotter, or to afile:

XY Trace

Strip Chart

Conpl ex Pl ane

X vs Y Plot

Pol ar PI ot

Wavef orm

Magni t ude Spectrum
Phase Spectrum
Magni t ude vs Phase

You can specify the appropriate default plotter configuration by selecting:
File O Default Preferences. ThenusethePrintingtabinthe
Def aul t Pref erences dialog box; click onthePl ott er Set up button
toeditthe Pl ott er Confi gurati on diaog box.

To generate a plot directly from a display object, just select Pl ot on the
display’s object menu, specify the required parametersin the Pl ot t er
Confi gurati on dialog box, and then pressOK. You canalso add Pl ot asa

Appendix B 233

Configuring HP VEE
Using HP-GL Plotters (UNIX)

control input to generate plots programmeatically. The entire view of the
display object will be plotted, and scaled to fill the defined plotting area,
while retaining the aspect ratio of the original display object. By re-sizing
the display object, you can control the aspect ratio of the plotted image. By
making the display object larger, you can reduce the relative size of the text
and numeric labels around the plot.

For an explanation of the plotter configuration parametersinthe Pl ot t er
Confi gur at i on dialog box, refer to the Def aul t Pr ef er ences section
inCoj ects and Menu | tens under Ref er ence in HP VEE Help. Also,
refer to the reference sections for the appropriate two-dimensional display
devices.

234 Appendix B

ASCII Table

ASCII Table

This appendix contains reference tables of ASCII 7-bit codes.

Table C-1. ASCII 7-bit Codes

Binary Oct | Hex | Dec HP-IB Msg
NUL 0000000 | 000 00 0
SOH | 0000001 | 001 | O1 1 GTL
STX 0000010 | 002 02 2
ETX 0000011 | 003 03 3
EOT | 0000100 | 004 | 04 4 SDC
ENQ 0000101 | 005 05 5 PPC
ACK 0000110 | 006 06 6
BEL 0000111 | 007 07 7
BS 0001000 | 010 08 8 GET
HT 0001001 | 011 09 9 TCT
LF 0001010 | 012 | OA 10
VT 0001011 | 013 0B 11
FF 0001100 | 014 oC 12
CR 0001101 | 015 | OD 13
SO 0001110 | 016 OE 14
Sl 0001111 | 017 OF 15
DLE | 0010000 | 020 | 10 16
DC1 0010001 | 021 11 17 LLO
DC2 0010010 | 022 12 18
236 Appendix C

Table C-1. ASCII 7-bit Codes

ASCII Table

Binary Oct | Hex | Dec HP-IB Msg
DC3 0010011 | 023 13 19
DC4 | 0010100 | 024 | 14 20 DCL
NAK 0010101 | 025 15 21 PPU
SYN | 0010110 | 026 | 16 22
ETB 0010111 | 027 17 23
CAN 0011000 | 030 18 24 SPE
EM 0011001 | 031 19 25 SPD
SUB | 0011010 | 032 | 1A 26
ESC 0011011 | 033 1B 27
FS 0011100 | 034 | 1C 28
GS 0011101 | 035 | 1D 29
RS 0011110 | 036 1E 30
us 0011111 | 037 1F 31
space | 0100000 | 040 | 20 32 listen addr O
! 0100001 | 041 21 33 listen addr 1
" 0100010 | 042 | 22 34 listen addr 2
0100011 | 043 | 23 35 listen addr 3
$ 0100100 | 044 24 36 listen addr 4
% 0100101 | 045 | 25 37 listen addr 5
& 0100110 | 046 | 26 38 listen addr 6
' 0100111 47 27 39 listen addr 7
(0101000 (050 |28 40 listen addr 8
) 0101001 |[051 |29 41 listen addr 9

Appendix C

237

ASCII Table

Table C-1. ASCII 7-bit Codes

Binary Oct | Hex | Dec HP-IB Msg

* 0101010 | 052 2A 42 listen addr 10
+ 0101011 | 053 | 2B 43 listen addr 11
, 0101100 | 054 2C 44 listen addr 12
- 0101101 | 055 | 2D 45 listen addr 13

0101110 | 056 | 2E 46 listen addr 14
/ 0101111 | 057 2F 47 listen addr 15
0 0110000 | 060 | 30 48 listen addr 16
1 0110001 | 061 | 31 49 listen addr 17
2 0110010 | 062 32 50 listen addr 18
3 0110011 | 063 | 33 51 listen addr 19
4 0110100 | 064 | 34 52 listen addr 20
5 0110101 | 065 35 53 listen addr 21
6 0110110 | 066 | 36 54 listen addr 22
7 0110111 | 067 | 37 55 listen addr 23
8 0111000 | 070 38 56 listen addr 24
9 0111001 | 071 | 39 57 listen addr 25

0111010 | 072 | 3A 58 listen addr 26
; 0111011 | 073 3B 59 listen addr 27
< 0111100 | 074 | 3C 60 listen addr 28
= 0111101 | 075 | 3D 61 listen addr 29
> 0111110 | 076 3E 62 listen addr 30
? 0111111 | O77 3F 63 UNL
@ 1000000 | 100 | 40 64 talk addr 0

238 Appendix C

Table C-1. ASCII 7-bit Codes

ASCII Table

Binary Oct | Hex | Dec HP-IB Msg
A 1000001 | 101 | 41 65 talk addr 1
B 1000010 | 102 | 42 66 talk addr 2
C 1000011 | 103 | 43 67 talk addr 3
D 1000100 | 104 | 44 68 talk addr 4
E 1000101 | 105 | 45 69 talk addr 5
F 1000110 | 106 | 46 70 talk addr 6
G 1000111 | 107 | 47 71 talk addr 7
H 1001000 | 110 | 48 72 talk addr 8
I 1001001 | 111 | 49 73 talk addr 9
J 1001010 | 112 | 4A 74 talk addr 10
K 1001011 | 113 | 4B 75 talk addr 11
L 1001100 | 114 | 4C 76 talk addr 12
M 1001101 | 115 | 4D 77 talk addr 13
N 1001110 | 116 | 4E 78 talk addr 14
@] 1001111 | 117 | 4F 79 talk addr 15
P 1010000 | 120 | 50 80 talk addr 16
Q 1010001 | 121 | 51 81 talk addr 17
R 1010010 | 122 | 52 82 talk addr 18
S 1010011 | 123 | 53 83 talk addr 19
T 1010100 | 124 | 54 84 talk addr 20
U 1010101 | 125 | 55 85 talk addr 21
\Y 1010110 | 126 | 56 86 talk addr 22
w 1010111 | 127 | 57 87 talk addr 23

Appendix C

239

ASCII Table

Table C-1. ASCII 7-bit Codes

Binary Oct | Hex | Dec HP-IB Msg
X 1011000 | 130 58 88 talk addr 24
Y 1011001 | 131 59 89 talk addr 25
Z 1011010 | 132 5A 90 talk addr 26
[1011011 | 133 5B 91 talk addr 27
\ 1011100 | 134 | 5C 92 talk addr 28
] 1011101 | 135 5D 93 talk addr 29
n 1011110 | 136 5E 94 talk addr 30
_ 1011111 | 137 5F 95 UNT
‘ 1100000 (140 |60 96 secondary addr 0
a 1100001 [141 | 61 97 secondary addr 1
b 1100010 |142 | 62 98 secondary addr 2
c 1100011 |143 | 63 99 secondary addr 3
d 1100100 [144 | 64 100 secondary addr 4
e 1100101 [145 | 65 101 secondary addr 5
f 1100110 (146 |66 102 secondary addr 6
g 1100111 |147 | 67 103 secondary addr 7
h 1101000 [150 | 68 104 secondary addr 8
[1101001 (51 |69 105 secondary addr 9
] 1101010 (52 |6A 106 secondary addr 10
k 1101011 |153 | 6B 107 secondary addr 11
I 1101100 (54 |6C 108 secondary addr 12
m 1101101 | 155 | 6D 109 secondary addr 13
n 1101110 |[156 | 6E 110 secondary addr 14

240 Appendix C

ASCII Table

Table C-1. ASCII 7-bit Codes

Binary Oct | Hex | Dec HP-IB Msg
o] 1101111 | 157 | 6F 111 secondary addr 15
p 1110000 | 160 | 70 112 secondary addr 16
q 1110001 | 161 | 71 113 secondary addr 17
r 1110010 | 162 | 72 114 secondary addr 18
S 1110011 | 163 | 73 115 secondary addr 19
t 1110100 | 164 | 74 116 secondary addr 20
u 1110101 | 165 | 75 117 secondary addr 21
Y% 1110110 | 166 | 76 118 secondary addr 22
w 1110111 | 167 | 77 119 secondary addr 23
X 1111000 | 170 | 78 120 secondary addr 24
y 1111001 | 171 | 79 121 secondary addr 25
z 1111010 | 172 | 7A | 122 secondary addr 26
{ 1111011 | 173 | 7B 123 secondary addr 27
| 1111100 | 174 | 7C | 124 secondary addr 28
} 1111101 | 175 | 7D | 125 secondary addr 29
~ 1111110 | 176 | 7E 126 secondary addr 30
[del] 1111111 | 177 TF 127

Appendix C

241

ASCII Table

242 Appendix C

/O Transaction Reference

/O Transaction Reference

This appendix contains details about the behavior of all 1/0 transaction
actions, encodings, and formats. For general information about using
transactions for instrument 1/O, refer to Controlling Instruments with

HP VEE. This appendix is organized by the transaction actions summarized
in Table D-1. For example, if you need detailed information about TEXT

encoding, do this:

B Look inthe WRI TE section for details about WRI TE TEXT transactions.

B Look in the READ section for details about READ TEXT transactions.

Table D-1. Summary of Transaction Types

Action

Description

VWRI TE

Writes data to the destination specified in the object.

READ

Reads data from the source specified in the object.

EXECUTE

Executes low-level commands to control the file, device, or
interface associated with the object. EXECUTE is used to
adjust file pointers, to close pipes and files, and to provide
low-level control of devices and hardware interfaces.

VWAI T

Waits for the specified number of seconds before
executing the next transaction.

For Di rect |/ Oobjects, WAI T can also wait for a specific
serial poll response, or for specific values in accessible VXI
device registers.

SEND

Sends IEEE 488-defined bus messages (bus commands
and data) to an HP-IB interface.

READ(REQUEST) 2

Reads DDE data from another application.

VRl TE(POKE) &

Writes DDE data to another application.

a. HP VEE for Windows only.

244

Appendix D

I/0 Transaction Reference

Table D-2. Summary of I/O Transaction Objects

Objects Supported Transactions
EXECUTE VAI T READ VWRI TE SEND

To File X X X
FromFile X X X
To Printer X X
To String X X
From String X X
To StdQut X X
From Stdln X X
To StdErr X X
Execut e Program X X X X
(UNIX) 2
To/ From Nanmed Pi pe X X X X
To/ From Socket X X X X
Direct 1/0 X X X X
Mul ti Devi ce Direct X X X X
/0
Interface X X
Qperati ons
To/ From HP BASI ¢/ UX? X X X X
To/ Fr om DDE® X X X X

a Execute Program (PC) is nottransaction based.

b. HP VEE for HP-UX only.

c. HP VEE for Windows only.

Appendix D 245

I/0 Transaction Reference
WRITE Transactions

WRITE Transactions

This section is organized by the WRI TE encodings summarized in Table D-3.
Topics that apply to all WRI TE encodings are summarized at the beginning
of this section.

Path-Specific Behaviors

Some WRI TE transactions behave differently depending on the 1/O path of
the destination. For example, WRI TE TEXT HEX transactions format
hexadecimal numbers differently depending on whether the destination isa
UNIX fileor aninstrument. To distinguish these behaviors, this section uses
the following terms:

Term Meaning

UNIX paths Any destination other than an instrument, such as a
UNIX file, a string, the printer, or a UNIX pipe.

MS-DOS paths Any destination other than an instrument, such as
an MS-DOS file, a string, or the printer.

direct 1/O paths Any instrument accessed using Di rect 1/0QO.

The behaviors described in the following sections apply to al paths, except
as specifically noted.

246 Appendix D

I/0 Transaction Reference
WRITE Transactions

Table D-3. WRI TE Encodings and Formats

Encodings

Formats

TEXT

DEFAULT
STRI NG
QUOTED STRI NG
| NTEGER
OCTAL

HEX

REAL
COVPLEX
PCOVPLEX
COORD

TI ME STAWP

BYTE

Not Applicable

CASE

Not Applicable

Bl NARY

STRI NG
BYTE

I NT16

I NT32
REAL 32
REAL64
COVPLEX
PCOVPLEX
COORD

Bl NBLOCK

BYTE

I NT16
COWPLEX

I NT32
PCOVPLEX
REAL32
REAL64
COORD

CONTAI NER

Not Applicable

STATE?

Not Applicable

Appendix D

247

I/0 Transaction Reference
WRITE Transactions

Table D-3. WRI TE Encodings and Formats

Encodings

Formats

REG STERP

BYTE

WORD16
WORD32
REAL32

MEMORY?

BYTE

WORD16
WORD32
REAL 32

| OCONTROL®

Not Applicable

a. Direct I/O to HP-I1B only.
b. Direct /0O to VXI only.
c. Direct I/O to GPIO only.

248

Appendix D

I/0 Transaction Reference
WRITE Transactions

TEXT Encoding

VWRI TE TEXT transactions are of this form:

WRI TE TEXT ExpressionlList [Fornat]

Expressi onLi st isasingle expression or acomma-separated list of

expressions.
For mat isan optional setting that specifies one of the formats listed in
Table D-4.
Table D-4. Formats for WRI TE TEXT Transactions
Format Description

DEFAULT HP VEE automatically determines an appropriate text representation based
on the data type of the item being written.

STRI NG Writes Text data without any conversion. Writes numeric data types as Text
with maximum numeric precision.

QUQOTED Writes data in the same format as STRI NG except the data is surrounded by

STRI NG double quotes (ASCII 34 decimal).

| NTEGER Writes data as a 32-bit two's complement integer in decimal form.

OCTAL Writes data as a 32-bit two’s complement integer in octal form.

HEX Writes data as a 32-bit two’s complement integer in hexadecimal form.

REAL Writes data as a 64-bit floating point number in a variety of notations including
fixed decimal and scientific notation.

COWPLEX Writes a comma-separated pair of 64-bit floating point numbers that
represent a complex number. The first number represents the real part and
the second number represents the imaginary part.

PCOVPLEX Writes a comma-separated pair of 64-bit floating point numbers that
represent a complex number. The first number represents the magnitude
and the second number represents the phase angle in the phase units
specified in the transaction.

COORD Writes a comma-separated series of 64-bit floating point numbers that
represent a rectangular coordinate.

TI ME Converts a real number (for example, the output of the now() function) to a

STAWP meaningful form and writes it in a variety of combinations of year, month, day,

and time.

Appendix D

249

DEFAULT Format

I/0 Transaction Reference
WRITE Transactions

WRI TE TEXT (default) transactions are of this form:
WRI TE TEXT ExpressionlLi st

Expressi onLi st isasingle expression or acomma-separated list of
expressions.

The transaction converts each item in Expr essi onLi st to ameaningful
string and writesit. Consider the simple case of writing the scalar variable
X

VWRI TE TEXT X

Figure D-1. A WRI TE TEXT Transaction
If X in Figure D-1 contains text, such as:
bird cat dog

then no conversion is performed and the transaction writes exactly 12
characters.

If Xin Figure D-1 contains a scalar Integer, such as:
8923 thevalue of X (decimal notation)

then the numeric value is converted to text and HP V EE writes exactly four
characters.

If Xin Figure D-1 contains a scalar real value, such as:
1.2345678901234567 thevalue of X (17-digit scalar real value)

then each significant digit up to 16 significant digitsiswritten. The least
significant digit is approximate because of the conversion between

HP VEE'sinterna binary form and decimal notation. If you use this scalar
real value using the transaction:

WRI TE TEXT a EQOL
then HP VEE writes this;
1.234567890123457 16-digit value

If the absolute value of the number is sufficiently large or small, exponential
notation is used. The Reals that form the sub-elements of Coord, Complex,
and PComplex behave the same way.

250 Appendix D

STRING Format

I/0 Transaction Reference
WRITE Transactions

If EOL ONisspecified for any WRI TE TEXT DEFAULT transaction, the
character specified inthe EOL Sequence field for that object iswritten
following the last character in Expr essi onLi st.

WRI TE TEXT STRI NGtransactions are of thisform:
WRI TE TEXT ExpressionLi st STR

Expressi onLi st isasingle expression or acomma-separated list of
expressions.

WRI TE TEXT STRI NG transactions behave basically the same asWRI TE
TEXT (default) transactions (one exception will be discussed). The
significant differenceisthat STRI NG allows you to specify additional details
about output formatting including field width, justification, and number of
characters.

Field Width and Justification. If atransaction specifies DEFAULT FI ELD
W DTH, only those characters resulting from the conversion of itemswithin
Expressi onLi st to Text are written.

If atransaction specifiesFI ELD W DTH: F, then the converted Text is
written right- or left-justified within a space F characters wide.

Thetransactions in Figure D-2 specify that all characters are to be written
within afield of twenty characters with left justification.

VWRI TE TEXT X STR FW 20 LJ EQL
VWRI TE TEXT Y STR FW 20 LJ EQL

Figure D-2. Two WRI TE TEXT STRI NG Transactions

Appendix D 251

I/0 Transaction Reference
WRITE Transactions

If Xand Y in Figure D-2 have these values:

bird cat dog the Text value of X

12345678901234567 the Real value of Y
then HP VEE writes this:

bird cat dog

12345678901234567

N N

The caret characters (*) are not actually written by HP VEE; they are shown
to help you visualize the field width. The characters to the right of dog and
to the right of the second 7 are spaces (ASCII 32 decimal).

If justification is changed to RI GHT JUSTI FY, then the transactions appear
as shown in Figure D-3.

VWRI TE TEXT X STR FW 20 RJ ECL
VWRI TE TEXT Y STR FW 20 RJ ECL

Figure D-3. Two WRI TE TEXT STRI NGTransactions
If Xand Y in Figure D-3 have these values:

bird cat dog the Text value of X
12345678901234567 the Real value of Y

then HP VEE writes this;

bird cat dog
12345678901234567

AN AN

The caret characters () are not actually written by HP VEE; they are shown
to help you visualize the field width. The characters to the left of bi r d and
to the left of thefirst 1 are spaces (ASCII 32 decimal).

252 Appendix D

I/0 Transaction Reference
WRITE Transactions

If the length of a string exceeds the specified field width, the entire string is
written. The field width specification never truncates; only MAX NUM
CHARS can truncate characters.

Thetransaction in Figure D-4 specifiesthat all characters are to be writtenin
afield width of four characters with left justification.

WRI TE TEXT X STR FW 4 LJ

Figure D-4. AVWRI TE TEXT STRI NGTransaction
If Xin Figure D-4 hasthisvalue:
bird cat dog the Text value of X, 12 characters
then HP VEE writesthis:
bird cat dog all 12 characters

Even though the specified field width is four characters, the transaction
writes all twelve characters of the string.

Number of Characters. If you specify ALL CHARS, then all of the
characters generated by the conversion of each itemin Expr essi onLi st
are written. If you specify MAX NUM CHARS: M then only the first M
characters of eachitemin Expr essi onLi st are written.

The transactions in Figure D-5 specify that a maximum of seven characters
are written in each field, the field width is twenty characters, and field
entries are left justified.

VWRI TE TEXT X STR 7 FW 20 LJ ECQL
VWRI TE TEXT Y STR 7 FW 20 LJ ECQL

Figure D-5. Two WRI TE TEXT STRI NG Transactions

Appendix D 253

Note

I/0 Transaction Reference
WRITE Transactions

If Xand Y in Figure D-2 have these values:

bird cat dog the Text value of X

12345678901234567 the Real valueof Y
then HP VEE writes this;

bird ca

1234567

N N

Notice that the numeric value of Y isfirst converted to Text and characters
are truncated. Numeric values are not rounded by MAX NUM CHARS.

The caret characters () are not actually written by HP VEE; they are shown
to help you visualize the field width. The charactersto the right of bi r d and
to theright of thefirst 1 are spaces (ASCII 32 decimal).

Writing Arrays With Direct I/O. WRI TE TEXT STR transactions that
write arraysto direct 1/O pathsignorethe Ar r ay Separ at or setting for the
Di rect |/ Oobject. Thesetransactions always use linefeed (ASCI|
decimal 10) to separate each element of an array (which isastring) asit is
written. This behavior is consistent with the needs of most instruments.

This special behavior for arrays does not apply to any other types of
transactions.

254 Appendix D

QUOTED STRING
Format

I/0 Transaction Reference
WRITE Transactions

WRI TE TEXT QUOTED STRI NGtransactions are of thisform:
WRI TE TEXT ExpressionlList (STR

Expressi onLi st isasingle expression or acomma-separated list of
expressions.

In general, the behaviors previoudly discussed for the STRI NG format apply
to QUOTED STRI NGformat. There are two differences between STRI NG and
QUOTED STRI NG

B For QUOTED STRI NG adouble quote (ASCII 34 decimal) is added to the
beginning and the end of the string. Note that the double quotes are
applied before any padding spaces are added to justify the string within
the specified field width.

W Control characters (ASCII 0-31 decimal), escape characters (Table D-5),
and the characters’ (ASCII 39 decimal) and " (ASCII 34 decimal)
embedded inside a double-quoted string receive special treatment.

Field Width and Justification. If you specify DEFAULT FI ELD W DTH,
only those characters resulting from the conversion of items within
Expressi onLi st to Text and the surrounding double quotes are written.

If you specify FI ELD W DTH: F, then the converted Text and the
surrounding quotes are written right or left justified within a space F
characters wide.

Thetransactionsin Figure D-6 specify that all characters are to be written as
guoted stringsin afield 20 characters wide with left justification.

VWRI TE TEXT X QSTR FW 20 LJ ECL
VWRI TE TEXT Y QSTR FW 20 LJ ECL

Figure D-6. Two WRI TE TEXT QUOTED STRI NG Transactions

Appendix D 255

I/0 Transaction Reference
WRITE Transactions

If Xand Y in Figure D-6 have these values:

bird cat dog the Text value of X
12345678901234567 the Real value of Y

then HP VEE writes this;

"bird cat dog"
"12345678901234567"

AN AN

The caret characters (*) are not actually written by HP VEE; they are shown
to help you visualize the field width. The charactersto theright of dog" and
totheright of 7" are spaces (ASCII 32 decimal).

If justification is changed to Rl GHT JUSTI FY, then the transactions appear
as shown in Figure D-7.

VWRI TE TEXT X QSTR FW 20 RJ ECL
VWRI TE TEXT Y QSTR FW 20 RJ ECL

Figure D-7. Two WRI TE TEXT QUOTED STRI NG Transactions
If Xand Y in Figure D-7 have these values:

bird cat dog the Text value of X
12345678901234567 the Real value of Y

then HP VEE writes this;

"bird cat dog"
"12345678901234567"

AN AN

The caret characters () are not actually written by HP VEE; they are shown
to help you visualize the field width. The charactersto theleft of " bi r d and
to theleft of " 1 are spaces (ASCII 32 decimal).

256 Appendix D

I/0 Transaction Reference
WRITE Transactions

If the length of a string exceeds the specified field width, the entire string is
output. Thefield width specification never truncates strings that are written;
only MAX NUM CHARS can truncate characters.

Thetransactions in Figure D-8 that specifiesthat all characters are to be
written within afield of four characters with left justification.

VWRI TE TEXT X QSTR FW 4 LJ

Figure D-8. AWRI TE TEXT QUOTED STRI NG Transaction
If Xin Figure D-8 hasthisvalue:
bird cat dog the Text value of X, 12 characters
then HP VEE writesthis:
"bird cat dog" all 12 characters

Number of Characters. If you specify ALL CHARS, then all of the
characters generated by the conversion of each itemin Expr essi onLi st
as well as the surrounding double quotes are written. If you specify MAX
NUM CHARS: M then only the first Mcharacters of each itemin

Expressi onLi st plusthe surrounding double quotes are written. In
other words, atotal of M2 characters are written for each itemin
ExpressionLi st.

Thetransaction in Figure D-9 that specifies MAX NUM CHARS: 7 (field width
20, left justified).

VWRI TE TEXT X QSTR 7 FW 20 LJ ECL
VWRI TE TEXT Y QSTR 7 FW 20 LJ ECL

Figure D-9. Two WRI TE TEXT QUOTED STRI NG Transactions

Appendix D 257

I/0 Transaction Reference
WRITE Transactions

If Xand Y in Figure D-9 have these values:

bird cat dog the Text value of X

12345678901234567 the Real value of Y
then HP VEE writes this;

"bird ca"

"1234567"

N N

The caret characters (*) are not actually written by HP VEE; they are shown
to help you visualize the field width. The charactersto theright of ca" and
totheright of 7" are spaces (ASCII 32 decimal).

Embedded Control and Escape Characters. In this discussion, the terms
control character and escape character have specific meaning. A control
character is a single byte of data corresponding to one of the ASCI|
characters 0-31 decimal. For example, linefeed is ASCII 10 decimal and the
symbol <LF> denotes linefeed character in thisdiscussion. Thestring\ n is
a human-readabl e escape character representing linefeed that is recognized
by HP VEE. HP VEE uses escape characters to represent control characters
within quoted strings.

258 Appendix D

I/0 Transaction Reference
WRITE Transactions

Table D-5. Escape Characters

Escape Character ASCII Code Meaning
(decimal)
\'n 10 Newline
\ t 9 Horizontal Tab
\v 11 Vertical Tab
\'b 8 Backspace
\r 13 Carriage Return
\ f 12 Form Feed
\ " 34 Double Quote
\’ 39 Single Quote
\\ 92 Backslash
\ ddd The ASCII character

corresponding to the three-digit
octal value ddd.

Consider the effects of various embedded escape characters on the
transaction in Figure D-10.

VWRI TE TEXT X QSTR ECL

Figure D-10. AVWRI TE TEXT QUOTED STRI NG Transaction

Appendix D

259

INTEGER Format

I/0 Transaction Reference
WRITE Transactions

If Xin Figure D-10 has this value:
bi rd\ ncat dog
then HP VEE writes thisto UNIX paths:
"bi rd\ ncat dog"
For the same transaction and data, HP VEE writes this to direct |/O paths:
"bi rd<LF>cat dog"
Note that <LF> means the single character, linefeed (ASCII 10 decimal).
If X in Figure D-10 hasthis value:
bird \"cat\" dog

then HP VEE writes thisto UNIX paths and Direct /O paths for seria
interfaces:

"bird \"cat\" dog"

For the same transaction and data, HP V EE writes thisto direct 1/0 paths for
HP-1B interfaces:

"bird ""cat"" dog"

This unique behavior for HP-IB interfacesis provided to support the
requirements of |EEE 488.2.

VRI TE TEXT | NTEGER transactions are of this form:
WRI TE TEXT ExpressionLi st | NT

Expressi onLi st isasingle expression or acomma-separated list of
expressions.

Thetype of integer generated by this transaction is a 32-bit two's
complement integer. The range of theseintegersis2 147 483 647 to

-2 147 483 648. The only characterswritten to represent these numbers
are+- 0123456789.

HP VEE attempts to convert each itemin Expr essi onLi st to the Int32
datatype before converting it to Text for final formatting. HP VEE follows

260 Appendix D

I/0 Transaction Reference
WRITE Transactions

the usual conversion rules; refer tothe Dat a Type Conver si on topics
under Tel | Me About ... in HP VEE Help for more details.

If aReal iswritten using | NTEGER format:
B Real values outside the valid range of Int32 generate an error.

B Real values within the valid range of Int32 are converted by truncating
the fractional portion of the Real.

Number of Digits. If you specify DEFAULT NUM DI G TS, the transaction
writes only the digits required to express the value of the integer; leading
zeros are not used.

If you specify M N NUM DI G TS: M the transaction pads the output with
leading zeros as required to give atotal of exactly Mdigits.

Consider the two transactions in Figure D-11 which differ only in their
specification for the number of output digits.

WRI TE TEXT X | NT EQL default number of digits
WRI TE TEXT X INT: 6 EQOL six digits

Figure D-11. Two WRI TE TEXT | NTEGER Transactions
If Xin Figure D-11 has thisvalue:
4567
then HP VEE writes this:

4567
004567

M N NUM DI G TS never causes truncation of the output string. The
transaction in Figure D-12 specifies the minimum number of digitsto be 1.

WRITE TEXT X INT: 1 EQL

Figure D-12. AVRI TE TEXT | NTEGER Transaction

Appendix D 261

I/0 Transaction Reference
WRITE Transactions

If Xin Figure D-12 has avalue of:
12345678

then HP VEE writes this:
12345678 all eight digits

Sign Prefixes. You may optionally specify one of the sign prefixeslisted in
Table D-6 as part of aWRI TE TEXT | NT transaction.

Table D-6. Sign Prefixes

Prefix Description

/- Positive numbers are written with no prefix, neither a + nor a space. All
negative numbers are written with a - prefix.

+/ - All positive numbers are written with a + prefix. All negative numbers
are written with a - prefix.

"/ - All positive numbers are written with a space (ASCII 32 decimal) prefix.
All negative numbers are written with a - prefix.

Any prefixed signs do not count towardsM N NUM DI G TS. The transaction
shown in Figure D-13 specifies explicit leading signs for positive and
negative numbers.

WRI TE TEXT X INT: 6 SIGN:"+/-" EOL
WRITE TEXT Y INT: 6 SIGN:"+/-" EOL

Figure D-13. Two WRI TE TEXT | NTEGER Transactions
If Xand Y in Figure D-13 have values of:

123 thelnteger value of X
-123 thelnteger value of Y

then HP VEE writes this:

+000123 sixdigitsplussign
- 000123

262 Appendix D

OCTAL Format

I/0 Transaction Reference
WRITE Transactions

WRI TE TEXT OCTAL transactions are of this form:
WRI TE TEXT ExpressionLi st OCT

Expressi onLi st isasingle expression or acomma-separated list of
expressions.

Thetype of integer written by this transaction is a 32-bit two’s complement
integer. The range of theseintegersis2 147 483 647 to

-2 147 483 648. The only characters written to represent these octal
numbersare 01234567. An optional prefix may be specified which may
include other characters.

HP VEE attempts to convert any data written using OCTAL format to the
Int32 data type before converting it to Text for final formatting. The usual
HP VEE conversion rules are followed.

If aReal iswritten using OCTAL format:
B Real values outside the valid range of Int32 generate an error.

B Real valueswithin the valid range of Int32 are converted by truncating
the fractional portion of the Real.

Number of Digits. The behavior of DEFAULT NUM DI G TSand M N NUM
DI A TS is the same as described previously in “Number of Digits” on
page 261 foMRI TE TEXT | NTEGER transactions.

Appendix D 263

I/0 Transaction Reference
WRITE Transactions

Octal Prefixes. You may specify one of the prefixeslisted in Table D-7 as
part of aWRI TE TEXT OCTAL transaction.

Table D-7. Octal Prefixes

Prefix Description

NO PREFI X HP VEE writes each octal number without any prefix; only
the digits 01234567 appear in the output.

DEFAULT PREFI X | For direct I/O paths, HP VEE prefixes each octal number
with #Q. This supports the octal Non-Decimal Numeric data
format defined by IEEE 488.2.

For UNIX paths, HP VEE prefixes each octal number with a
0 (zero). If leading zeros are added to achieve the specified
M N NUM DI G TS, DEFAULT PREFI X will not add
additional leading zeros.

PREFI X:stri ng HP VEE prefixes each octal number with the characters
specified in st ri ng.

Thetransaction in Figure D-14 specifies the default prefix and six digits:

VWRI TE TEXT X OCT: 6 PREFI X ECL

Figure D-14. AVRI TE TEXT OCTAL Transaction
If Xin Figure D-14 has this value:
15 thevalue 15 decimal
then HP VEE writes this to direct |/O paths:
#Q000017 exactly six digits plus prefix
Using the same transaction and data, HP VEE writes thisto UNIX paths:
000017 exactly six digits

264 Appendix D

I/0 Transaction Reference
WRITE Transactions

The transaction in Figure D-15 specifies a custom prefix and ten digits:

VWRI TE TEXT X OCT: 10 PREFI X: "oct>" EQOL

Figure D-15. AWRI TE TEXT OCTAL Transaction
If X in Figure D-15 hasthis value:
15 thelnteger value 15 decimal
then HP VEE writes thisto UNIX paths and direct I/O paths:
oct >000017

Note that the prefix written by DEFAULT PREFI X depends on the
destination, but the prefix written by PREFI X: st r i ng isindependent of
the destination.

Appendix D 265

I/0 Transaction Reference
WRITE Transactions

HEX Format WRI TE TEXT HEX transactions are of thisform:
WRI TE TEXT ExpressionLi st HEX

The type of integer written by this transaction is a 32-bit two’s complement
integer. The range of theseintegersis2 147 483 647 to

-2 147 483 648. The only characterswritten to represent these
hexadecimal numbersare 0123456789abcdef . An optional prefix may be
specified that may include other characters.

The behavior of WRI TE TEXT HEX s nearly identical to that of WRI TE
TEXT OCTAL. Theonly differenceisthe set of prefixes available and the
behavior of DEFAULT PREFI X.

Hexadecimal Prefixes. You may specify one of the prefixeslisted in Table
D-8 aspart of aWRI TE TEXT HEX transaction.

Table D-8. Hexadecimal Prefixes

Prefix Description
NO PREFI X HP VEE writes each hexadecimal number without any
prefix; only the digits 0123456789abcdef appear in the
output.

DEFAULT PREFI X | For direct I/O paths, HP VEE prefixes each hexadecimal
number with #H. This supports the hexadecimal Non-
Decimal Numeric data format defined by IEEE 488.2.

For UNIX paths, HP VEE prefixes each hexadecimal
number with 0X.

PREFI X:stri ng HP VEE prefixes each hexadecimal number with the
characters specified in St rj ng.

Thetransaction in Figure D-16 specifies the default prefix and six digits:

WRI TE TEXT X HEX: 6 PREFI X EOL

Figure D-16. A WRI TE TEXT HEX Transaction

266 Appendix D

REAL Format

I/0 Transaction Reference
WRITE Transactions

If Xin Figure D-16 hasthis value:
15 thelnteger value 15 decimal

then HP VEE writes this to direct |/O paths:
#H00000f exactly six digits plus prefix

Using the same transaction and data, HP VEE thisto UNIX paths:
0x00000f exactly six digits plus prefix

The transaction in Figure D-17 specifies a custom prefix and three digits:

VWRI TE TEXT X HEX: 3 PREFI X: "hex>" EOL

Figure D-17. AVRI TE TEXT HEX Transaction
If Xin Figure D-17 hasthis value:

15 thelnteger value 15 decimal
then HP VEE writes thisto UNIX paths and direct I/O paths:

hex>00f exactly three digits plus prefix

Note that the prefix written by DEFAULT PREFI X depends on the
destination, but the prefix written by PREFI X: st r i ng isindependent of
the destination.

VRI TE TEXT REAL transactions are of thisform:
WRI TE TEXT ExpressionlLi st REAL

Thetype of Real number generated by this transaction is a 64-bit IEEE 754
floating-point number. The range of these numbersis:

-1.797 693 134 862 315E+308
-2.225 073 858 507 202E-307
0

2.225 073 858 507 202E- 307
1.797 693 134 862 315E+308

The only characters written to represent these numbers are
+-.0123456789E.

Appendix D 267

I/0 Transaction Reference
WRITE Transactions

Notations and Digits. You may optionally specify one of the notationsin
Table D-9 as part of aWRI TE TEXT REAL transaction.

Table D-9. REAL Notations

Notation Description

STANDARD HP VEE automatically determines whether each Real value
should be written in fixed-point notation (decimal points as
required, no exponents) or in exponential notation. Non-
significant zeros are never written.

FI XED HP VEE writes each Real value as a fixed-point number. Numbers
with fractional digits are automatically rounded to fit the number of
fractional digits specified by NUM FRACT DI G TS. Trailing zero
digits are added as required to give the specified number of
fractional digits.

SCI ENTI FI C | HP VEE writes each Real value using exponential notation. Each
exponent includes an explicit sign (+ or -) and the upper-case Eis
always used. Numbers with fractional digits are automatically
rounded to fit the number of fractional digits specified by NUM
FRACT DI A TS. Trailing zero digits are added as required to
give the specified number of fractional digits.

Thetransactions in Figure D-18 specify STANDARD notation and four
significant digits.

VWRI TE TEXT X REAL STD: 4 ECL
WRI TE TEXT Y REAL STD: 4 ECL
WRI TE TEXT Z REAL STD: 4 ECL

Figure D-18. Three WRI TE TEXT REAL Transactions
If X,Y,and Z in Figure D-18 have these values:

1. 23456E2 the Real value of X
1. 23456E09 the Real value of Y

1.23 the Real value of Z
then HP VEE writesthis:
123.5 mantissa rounded as required
1. 235E+09 large numbersin exponential notation
1.23 never any trailing zeros

268 Appendix D

I/0 Transaction Reference
WRITE Transactions

The transactionsin Figure D-19 specify FI XED notation and four fractional
digits.

VWRI TE TEXT X REAL FI X: 4 EQOL
VWRI TE TEXT Y REAL FI X: 4 EQOL
VWRI TE TEXT Z REAL FI X: 4 EQOL

Figure D-19. Three WRI TE TEXT REAL Transactions
If X,Y,and z in Figure D-19 have these values:

1. 2345678E2 the Real value of X
1. 2345678E- 09 the Real value of Y
1.23 the Real value of Z

then HP VEE writes this:
123. 4568 mantissa rounded as required
0. 0000 small numbers round to zero
1. 2300 trailing zeros added as required

Thetransactions in Figure D-20 specify SCI ENTI FI C notation and four
fractional digits.

VWRI TE TEXT X REAL SCl: 4 EQOL
VWRI TE TEXT Y REAL SCl: 4 EOL
VWRI TE TEXT Z REAL SCl: 4 EOL

Figure D-20. Three WRI TE TEXT REAL Transactions
If X,Y,and Z in Figure D-20 have these values:

1. 2345678E2 the Real value of X

-1.2345678E- 09 the Real value of Y

0 the Real value of Z
then HP VEE writes this;

1. 2346E+02 exponent is E plus two signed digits
-1.2346E-09 last digit rounded asrequired
0. 0000E+00 trailing zeros padded as required

Appendix D 269

COMPLEX,
PCOMPLEX, and
COORD Formats

I/0 Transaction Reference
WRITE Transactions

COVPLEX, PCOVPLEX, and COORD correspond to the HP VEE multi-field
datatypes with the same names. The behavior of al three formatsisvery
similar. The behaviors described in this section apply to all three formats
except as noted.

Just as the HP VEE data types Complex, PComplex, and Coord are
composed of multiple Real numbers, the COVPLEX, PCOVPLEX, and COORD
formats are essentially compound forms of the REAL format. Each
constituent Real value of the multi-field data types is written with the same
output rules that apply to an individual REAL formatted value.

Thefinal output of transactions involving multi-field formats is affected by
themul ti-Fi el d Format setting for the object in question. Mul ti -

Fi el d For mat isaccessedvial / OO | nstrunment Manager forDir ect
| / Oobjects and via Conf i g in the object menu for all other objects. The
two possible settingsfor Mul ti - Fi el d For mat are:

B Data Only. Thiswrites multi-field dataformatsasalist of comma-
separated numbers without parentheses.

W (...) Syntax. Thiswritesmulti-field dataformats asalist of comma-
separated numbers grouped by parentheses.

Subsequent examples will illustrate these behaviors.

COMPLEX Format. WRI TE TEXT COWPLEX transactions are of thisform:
WRI TE TEXT ExpressionLi st CPX

Thetransaction in Figure D-21 specifies a fixed-decimal notation, explicit
leading signs, afield width of 10 characters, and right justification.

WRI TE TEXT X CPX FIX:3 SIGN. "+/-" FW10 RJ ECL

Figure D-21. AVRI TE TEXT COVPLEX Transaction

270 Appendix D

I/0 Transaction Reference
WRITE Transactions

IftheMul ti-Field Format issetto(...) Syntax,andXin FigureD-
21 hasthisvalue:

(-1.23456 , 9.8) the Complex value of X
then HP VEE writes this:
(-1.235,

AN

+9. 800)
N

AN

IftheMul ti-Field Format issettoData Only and Xin Figure D-21
has the same value, then HP V EE writes this:

-1. 235, +9. 800

AN NN N

The caret characters (*) are not actually written by HP VEE; they are shown
to help you visualize the field width. The charactersto the left of + are
spaces (ASCII 32 decimal).

Notethat with (. ..) Synt ax, a space-comma-space sequence separates
the ten-character wide fields that contain the real and imaginary parts of the
Complex number. With either Mul ti - Fi el d For mat thereis aseparate
ten-character field for both the real and the imaginary part. Neither
parentheses nor the separating comma and spaces are included in the field.

Appendix D 271

I/0 Transaction Reference
WRITE Transactions

PCOMPLEX Format. WRI TE TEXT PCOVPLEX transactions are of this
form:

WRI TE TEXT ExpressionLi st PCX

PCOVPLEX format allows you to specify the phase units for the polar
complex humber it writes. Notethat phase units are independent of the units
setby Tri g Mode inProperti es.

Table D-10. PCOVMPLEX Phase Units

Unit Description
DEG Degrees
RAD Radians
GRAD Gradians

Thefirg transaction in Figure D-22 specifies phase measurement in degrees,
and the second transaction specifies phase measurement in radians.

VWRI TE TEXT X PCX: DEG STD ECL
VWRI TE TEXT X PCX: RAD STD ECL

Figure D-22. Two WRI TE TEXT PCOVPLEX Transactions

IftheMul ti-Field Format issettoData Only, and Xin Figure D-22
has this value:

(-1.23456 , @0) the PComplex value of X, phase in degrees
then HP VEE writesthis:

1. 23456, -90
1. 23456, -1.570796326794897

The transaction in Figure D-23 specifies phase measurement in radians,
fixed-decimal notation, three fractional digits, explicit leading signs, afield
width of ten characters, and right justification.

WRI TE TEXT X PCX: RAD FI X:3 SIGN "+/-" FW10 RJ ECL

Figure D-23. AWRI TE TEXT PCOVPLEX Transaction

272 Appendix D

TIME STAMP
Format

I/0 Transaction Reference
WRITE Transactions

IftheMul ti-Field Format issetto(...) Syntax,andXin FigureD-
23 hasthisvalue:

(-1.23456 , @.8) the PComplex value of X, angle in radians
then HP VEE writes this:
(+1.235 , @ +0.375)

AN AN N

Note that HP VEE normalizes all PComplex numbers to yield a positive
magnitude and a phase between +1tand -1t

IftheMul ti-Field Format issettoData Only,and Xin Figure D-23
has the same value, then HP VEE writes this:

+1. 235, +0. 375

AN NN AN

The caret characters () are not actually written by HP VEE; they are shown
to help you visualize the field width. The charactersto theleft of - and to the
left of + are spaces (ASCII 32 decimal).

COORD Format. WRI TE TEXT COORD transactions are of this form:
WRI TE TEXT ExpressionLi st COORD

COORD format has all the same behaviors of COVPLEX format. The only
difference is that COORD may contain an arbitrary number of fields while
COVPLEX has exactly two fields.

WRI TE TEXT TI ME STAMP transactions are of thisform:
WRI TE TEXT ExpressionLi st [DATE: Dat eSpec] [Tl ME: Ti meSpec]

Expressi onLi st isasingle expression or acomma-separated list of
expressions.

Dat eSpec is one of the following pre-defined date and time combinations:

Dat e

Ti me

Dat e&Ti nme
Ti ne&Dat e
Delta Tine

Appendix D 273

I/0 Transaction Reference
WRITE Transactions

If you specify atransaction that includes Dat e, you may also specify a
Dat eSpec of Weekday DD/ Mont h/ YYYY or
DD/ Mont h/ YYYY.

If you specify atransaction that includes Ti me, you may also specify a
Ti meSpec. Ti meSpec isacombination of the following pre-defined time
formats:

B HH: MM(hours and minutes)

B HH: MM SS (hours, minutes, and seconds)
B 12 HOUR

H 24 HOUR

Eachitemin Expr essi onLi st isconverted to aRea and interpreted asa
dateand time. ThisRea number represents the number of secondsthat have
elapsed since midnight, January 1, AD 1 UTC. The most common source for
this Real number isthe output of aTi me St anp object. You use the TI ME
STANP format to convert this Real number to a meaningful string that
contains a human-readabl e date and/or time.

274 Appendix D

I/0 Transaction Reference
WRITE Transactions

TI ME STAMP supportsavariety of notations for writing datesand times. If a

Real variable contains this value;
62806574669. 31164

then TI ME STAMP can write it using any of these Ti me and Dat e nhotations:

Notation

Dat e with Weekday
DD/ Mont h/ YYYY

Ti me with HH: MM SS and 24 HOUR

Dat e&Ti e with Weekday
DD/ Mont h/ YYYY, HH: MM SS,
and 24 HOUR

Ti me&Dat e with HH: MM SS, 24
HOUR, and Weekday
DD/ Mont h/ YYYY

Del ta Ti me with HH: MM SS

Dat e with Weekday
DD/ Mont h/ YYYY

Dat e with DD/ Mont h/ YYYY

Ti me with HH: MM SS and 24 HOUR
TI ME with HH: Mand 24 HOUR

TI ME with HH: MM SS and 24 Hour
TI ME with HH: MM SSand 12 Hour

Result

Thu 04/ Apr/ 1991

15:44: 29
Thu 04/ Apr/ 1991 15: 44: 29

15: 44: 29 Thu 04/ Apr/ 1991

17446270: 44: 29
Thu 04/ Apr/ 1991

04/ Apr/ 1991
15: 44: 29
15: 44

15: 44: 29
3:44:29 PM

Appendix D

275

I/0 Transaction Reference
WRITE Transactions

BYTE Encoding

BYTE transactions are of this form:
WRI TE BYTE ExpressionlLi st

Expressi onLi st isasingle expression or acomma-separated list of
expressions.

HP VEE convertseachitemin Expr essi onLi st toan Intl6 (16-bit twao’'s
complement integer) and writes the least-significant 8-bits. Thisisa
transaction for writing single characters to a device. Each expression in
Expressi onlLi st must be ascaar.

Thetransactionsin Figure D-24 produce the following character data output:

ABCAA

WRI TE BYTE 65, 66, 67
WRI TE BYTE 65+1024, 65+2048

Figure D-24. Two WRI TE BYTE Transactions

CASE Encoding

WRI TE CASE transactions are of thisform;
WRI TE CASE ExpressionListl OF ExpressionList2

Expressi onLi st isasingle expression or acomma-separated list of
expressions.

HP VEE convertseach item in Expr essi onLi st 1 to aninteger and uses
itasanindex into Expr essi onLi st 2. Theindexed item(s) in
Expressi onLi st 2 arewritten in astring format that is the same as

WRI TE TEXT (default).

Note that the indexing of itemsin Expr essi onLi st 2 is zero-based.

276 Appendix D

I/0 Transaction Reference
WRITE Transactions

The transactions in Figure D-25 illustrate the behavior of CASE format.

WRITE CASE 2,1 OF "StrQO","Str1","Str2"
WRI TE CASE X OF 1, 1+A, 3+A

Figure D-25. Two WRI TE CASE Transactions
If the variablesin Figure D-25 have these values:

2 the Real value of X
0.1 the Real value of A

then HP VEE writes this:

Str2Strl
3.1

BINARY Encoding

V\RI TE Bl NARY transactions are of this form:
VRI TE BI NARY ExpressionlLi st DataType

Expressi onLi st isasingle expression or acomma-separated list of
expressions.

Dat aTypesisone of the following pre-defined HP V EE data types:

BYTE - 8-bit byte

| NT16 - 16-bit two’s complement integer

I NT32 - 32-bit two's complement integer
REAL32 - 32-bit |IEEE 754 floating-point number
REAL64 - 64-bit |EEE 754 floating-point number
STRI NG - null terminated string

COVPLEX - equivalent to two REALS

PCOVPLEX -equivalent to two REALS

COORD - equivalent to two or more REALS

Appendix D 277

Note

I/0 Transaction Reference
WRITE Transactions

HP VEE stores and manipulates all integer values asthe | NT32 data type,
and all real numbersasthe Real datatype, aso known asREAL64. Thus, the
| NT16 and REAL32 datatypes are provided for 1/O only. HP VEE performs
the following data-type conversions for instrument 1/O on an output
transaction.

I NT32 values are individually converted to | NT16 values, which are output
to the instrument. However, sincethe | NT16 datatype has arange of -32768
to 32767, values outside this range will be truncated to 16 hits.

REAL64 values are individually converted to REAL32 values, which are
output to the instrument. However, since the REAL32 datatype has asmaller
range than REAL64 data type, values outside this range cannot be converted
to REAL32 and will result in an error.

BI NARY encoded transactions convert each of the values specified in
Expressi onLi st tothe HP VEE data type specified by Dat aType.
Each converted item isthen written in the specified binary format. However,
since the binary data written is a copy of the representation in computer
memory, it is not easily shared by different computer architectures or
hardware.

Bl NARY encoded data has the advantage of being very compact. READ
Bl NARY transactions can read any corresponding WRI TE Bl NARY data.

Note that BI NARY encoding writes only the numeric portion of each data
type. For example, the parentheses and commathat can be included when
writing Complex and Coord data with TEXT encoding are never written with
Bl NARY encoding. Similarly, when writing arrays, Bl NARY encoding does
not writeany Array Separators. WRI TE BI NARY transactions do allow
you to specify EOL ON. Thereisrarely aneed to write EOL with Bl NARY
transactions because numeric data types are of fixed length and strings are
null-terminated.

278 Appendix D

Non-HP-1B
BINBLOCK

I/0 Transaction Reference
WRITE Transactions

BINBLOCK Encoding

VWRI TE Bl NBLOCK transactions are of thisform:
VRl TE BI NBLOCK ExpressionLi st DataType

Expressi onLi st isasingle expression or acomma-separated list of
expressions.

Dat aType isone of these pre-defined HP VEE data types:

BYTE - 8-bit byte

I NT16 - 16-bit two's complement integer

I NT32 - 32-bit two's complement integer
REAL32 - 32-bit |IEEE 754 floating-point number
REAL64 - 64-bit IEEE 754 floating-point number
COVPLEX - equivalent to two REALS

PCOVPLEX -equivalent to two REALS

B COORD - equivalent to two or more REALS

Bl NBLOCK writeseachitemin Expr essi onLi st asaseparate datablock.
The block header used depends on the type of object performing the WRI TE
and the object’s configuration.

If theobjectisnot Di rect |/ Oto HP-IB, aWRl TE Bl NBLOCK always
writesan |EEE 488.2 Definite Length Arbitrary Block Response Data block.
This data format is primarily used for communicating with HP-1B
instrumentsusing Di r ect | / O, although it is supported by other objects.

Appendix D 279

HP-IB BINBLOCK

I/0 Transaction Reference
WRITE Transactions

Each Definite Length Arbitrary Block is of the form:
#<Num di gi t s><Num byt es><Dat a>

where:
isliterally the # character as shown.

<Num_di gi t s> isan ASCII character that isa single digit (decimal
notation) indicating the number of digitsin <Num byt es>.

<Num byt es> isalist of ASCII characters that are digits (decimal
notation) indicating the number of bytesthat follow in <Dat a>.

<Dat a> isa sequence of arbitrary 8-bit data bytes.

If the objectisDi rect |/ Oto HP-IB, the behavior of WRI TE BI NBLOCK
transactions depends upon the Di rect 1/ O Confi gur at i on settings for
Conf or mance and Bi nbl ock; these settings are accessed viathe | / O

I nstrument Manager menu selection.

If Conf or mance issetto| EEE 488. 2, then WRI TE BI NBLOCK always
writes an |EEE 488.2 Definite Length Arbitrary Block Response Data block.

If Conf or mance issetto| EEE 488, then the type of header used depends
on Bi nbl ock. Bi nbl ock may specify IEEE 728 #A, #T, or #| block
headers. If Bi nbl ock isNone, WRI TE BI NBLOCK writes an |EEE 488.2
Definite Length Arbitrary Block Response Data block.

280 Appendix D

I/0 Transaction Reference
WRITE Transactions

|EEE 728 block headers are of the following forms:

#A<Byt e_Count ><Dat a>
#T<Byt e_Count ><Dat a>
#| <Dat a><END>

where:
isthe character as shown.
AT, | arethe characters as shown.

<Byt e_Count > consists of two bytes which together form a 16-bit
unsigned integer that specifies the number of bytes that follow in
<Dat a>. (HP VEE calculates this automatically.)

<Dat a> isastream of arbitrary bytes.

<END> indicates that EOI is asserted with the last data byte transmitted.

CONTAINER Encoding

VRl TE CONTAI NER transactions are of this form:
WRI TE CONTAI NER ExpressionLi st

Expressi onLi st isasingle expression or acomma-separated list of
expressions.

A VRI TE CONTAI NER transaction writes each itemin Expr essi onLi st
using a special HP VEE text representation.

Thisrepresentation retains all the HP V EE attributes associated with the data
type written, such as shape, size, and name. Any WRI TE CONTAI NER data
can be retrieved without any loss of information using READ CONTAI NER.

For example, this transaction:
WRI TE CONTAI NER 1. 2345
writesthis:

(Real
(data 1.2345)

)

Appendix D 281

I/0 Transaction Reference
WRITE Transactions

STATE Encoding

WRI TE STATE transactions are of the form:
WRI TE STATE [Downl oadSt ri ngj

Downl oadSt ri ng isan optional string that allows you to specify a
download string if you have not previously specified one in the direct 110
configuration for the corresponding instrument. This explained in greater
detail in the sections that follow.

WRI TE STATE transactionsare used by Di r ect |/ Oobjectsto download a
learn string to an instrument. There is exactly one learn string associated
with eachinstance of abDi rect |/ Oobject. Thislearn string is uploaded by
clicking on Upl oad inthe Di rect 1/ Oobject menu. The learn string
contains the null string before Upl oad is selected for the first time.

The behavior of WRI TE STATE is affected by theDirect 1/0

Conf i gur at i on settings for Conf or mance and Downl oad Stri ng.
These settings are accessed viathe | / OO | nstrunent Manager menu
selection. If Conf or mance is| EEE 488, theWRI TE STATE transaction
writesthe Downl oad St ri ng followed by the learn string. If

Conf or mance is| EEE 488. 2, thelearn string is downloaded without any
prefix as defined by |EEE 488.2. Please refer to Controlling Instruments
with HP VEE for information about WRI TE STATE transactions.

282 Appendix D

I/0 Transaction Reference
WRITE Transactions

REGISTER Encoding

WRI TE REG STERIis used to write valuesinto a VXl device's A16 memory.
WRI TE REG STER transactions are of this form:

WRI TE REG Synbol i cName ExpressionLi st 1 NCR
- Or -
WRI TE REG Synbol i cName ExpressionLi st

where:

Symbol i cNane isaname defined during configuration of aV X| device.
The name refers to a specific address within a device's register space.
Specific datatypes for WRI TE REGA STER transactions are:

B BYTE - 8 bit byte

B WORD16 - 16-bit two's complement integer

B WORD32 - 32-bit two's complement integer

B REAL32 - 32-bit IEEE 754 floating point number

These datatypes are also specified during configuration of aV X deviceand

do not appear in the transaction.

Expressi onLi st isasingle expression or acomma-separated list of
expressions.

I NCR specifies that array dataisto be written incrementally starting at the
register address specified by Synbol i cNane. Thefirst element of the
array iswritten at the starting address, the second at that address plus an
offset equal to the length in bytes of the data type, and so forth until all array
elements have been written. If | NCRis not specified in the transaction, the
entire array is written to the single location specified by Synbol i cNane.

Appendix D 283

I/0 Transaction Reference
WRITE Transactions

MEMORY Encoding

VWRI TE MEMORY isused to write valuesinto aVX| device's A24 or A32
memory.

VWRI TE MEMORY transactions are of this form:

WRI TE MEM Synbol i cName ExpressionLi st 1 NCR
- Or -
WRI TE MEM Synbol i cName ExpressionLi st

where:

Symbol i cNane isaname defined during configuration of aV XI device.
The name refers to a specific address within a device's extended memory.
Specific data types for WRI TE MEMORY transactions are:

B BYTE - 8 bit byte

B WORD16 - 16-bit two's complement integer

B WORD32 - 32-bit two's complement integer

B REAL32 - 32-bit IEEE 754 floating point number

These datatypes are also specified during configuration of aVXI| deviceand
do not appear in the transaction.

Expressi onLi st isasingle expression or acomma-separated list of
expressions.

I NCR specifies that array dataisto be written incrementally starting at the
memory location specified by Synbol i cNane. Thefirst element of the
array iswritten at that location, the second at that location plus an offset
egual to the length in bytes of the datatype, and so forth until all array
elements have been written. If | NCRis not specified in the transaction, the
entire array is written to the single memory location specified by

Synbol i cNane.

284 Appendix D

I/0 Transaction Reference
WRITE Transactions

IOCONTROL Encoding

WRI TE | OCONTRCL transactions are of this form;

WRI TE | OCONTROL CTL ExpressionlLi st
Or
VRl TE | OCONTROL PCTL ExpressionlLi st

Expressi onLi st isasingle expression or acomma-separated list of
expressions.

| OCONTRCOL encoding is used only for Di rect 1/ Oto GPIO interfaces.
This transaction sets the control lines of a GPIO interface:
WRI TE | OCONTROL CTL a

HP VEE converts the value of a to an Integer. The least X significant bits of
the Integer value are mapped to the control lines of the interface, where Xis
the number of control lines.

For example, the HP 98622A GPIO interface uses two control lines, CTLO
and CTL1.

Value Written CTL1 CTLO
0 0 0
1 0 1
2 1 0
3 1 1

In the preceding table, 1 indicatesthat acontrol lineis asserted, a0 indicates
that it is cleared.

This transaction controls the computer-driven handshake line of a GPIO
interface:

VWRI TE | OCONTRCL PCTL a

If the value of a is non-zero, the PCTL lineisset. If thevaueis zero, no
action istaken. PCTL iscleared automatically by the interface when the
peripheral meets the handshake requirements.

Appendix D 285

I/0 Transaction Reference

READ Transactions

READ Transactions

Table D-11. READ Encodings and Formats

Encodings

Formats

TEXT

CHAR

TOKEN

STRI NG
QUOTED STRI NG
| NTEGER
OCTAL

HEX

REAL
COVPLEX
PCOVPLEX
COCRD

TI ME STAWP

Bl NARY

STR

BYTE

I NT16

| NT32
REAL32
REAL64
COWPLEX
PCOVPLEX
COCRD

Bl NBLOCK

BYTE

I NT16

| NT32
REAL32
REAL64
COWPLEX
PCOVPLEX
COCRD

CONTAI NER

Not Applicable

| OSTATUS

Not Applicable

286

Appendix D

I/0 Transaction Reference
READ Transactions

Table D-11. READ Encodings and Formats

Encodings Formats

REG STERR BYTE
WORD16

WORD32
REAL32

MEMORY? BYTE
WORD16

WORD32
REAL32

a. Direct I/0 to VXI only.

TEXT Encoding

READ TEXT transactions are generally very easy to use. Thisis because they
are able to read and discard what isirrelevant and selectively read what is
important. Thisworks well most of the time, but occasionally you must
analyze very carefully what HP VEE considersto be irrelevant and what it
considersto be important. Thiswill rarely (if ever) be a problem if you are
reading text files written by HP VEE, aslong as you read them using the
same format used to write them. Problems are most likely to occur when
you are trying to import afile from another software application.

Table D-12 describes READ TEXT behavior in ageneral way only; be sure to
read al the sections that follow to understand all the possible variations.

Table D-12. Formats for READ TEXT Transactions

Format Description
CHAR Reads any 8-bit character.
TOKEN Reads a contiguous list of characters as a unit; this unit is called a token.

Tokens are separated by specified delimiter characters (you specify the
delimiters). For example, in normal written English, words are tokens and
spaces are delimiters.

STRI NG Reads a list of 8-hit characters as a unit. Most control characters are read
and discarded. The end of the string is reached when the specified number
of characters has been read, or when a newline character is encountered.

Appendix D 287

I/0 Transaction Reference
READ Transactions

Table D-12. Formats for READ TEXT Transactions

Format

Description

QSTRI NG

Reads a list of 8-bit characters that conform to the IEEE 488.2 arbitrary
length string defined by a starting and ending double quote character (ASCII
34). Control characters are not discarded. Escaped characters are
expanded to a corresponding control character. The end of the string is
reached when the double quote character (ASCII 34) has been read.

I NTECER

Reads a list of characters and interprets them as a decimal or non-decimal
representation of an integer. The only characters considered to be part of a
decimal NTEGER are 0123456789- +. HP VEE recognizes the prefix 0x
(hex) and all the Non-Decimal Numeric formats specified by IEEE 488.2: #H
(hex), #Q (octal), #B (binary).

OCTAL

Reads a list of characters and interprets them as the octal representation of
an integer. The characters considered to be part of an OCTAL are
01234567. HP VEE also recognizes the IEEE 488.2 Non-Decimal Numeric
prefix #Qfor octal numbers.

HEX

Reads a list of characters and interprets them as the hexadecimal
representation of an integer. The only characters considered to be part of a
HEX are 0123456789abcdef ABCDEF. The character combination Ox is the
default prefix; it is not part of the number and is read and ignored. HP VEE
also recognizes Ox and the IEEE 488.2 Non-Decimal Numeric prefix #H for
hexadecimal numbers.

REAL

Reads a list of characters and interprets them as the decimal representation
of a Real (floating-point) number. All common notations are recognized
including leading signs, signed exponents, and decimal points. The
characters recognized to be part of a REAL are 0123456789- +. Ee.

HP VEE also recognizes certain characters as suffix multipliers for Real
numbers (refer to Table D-13).

COWMPLEX

Reads the equivalent of two REALs and interprets them as a complex
number. The first number read is the real part and the second number read
is the imaginary part.

PCOVPLEX

Reads the equivalent of two REALs and interprets them as a complex
number in polar form. Some engineering disciplines refer to this as "phasor
notation". The first number read is considered to be the magnitude and the
second is the angle. You may specify units of measure for phase in the
transaction.

COORD

Reads the equivalent of two or more REALs and interprets them as
rectangular coordinates.

TI ME STAWP

Reads one of the specified HP VEE time stamp formats which represent the
calendar date and/or time of day.

288

Appendix D

General Notes for
READ TEXT

I/0 Transaction Reference
READ Transactions

Read to End. The READ TEXT formats support a choice between reading a
specified number of elements or reading until EOF is encountered. Ina
transaction, N\unel enment s isasingle expression or acomma-separated
list of expressions that specifies the dimensions of each variablein

Var Li st . If thefirst expression is an asterisk (*), the transaction will read
data until an EOF is encountered. Read to end is supported only for Fr om
File, From String, From Stdl n, Execute Program To/ From
Narmed Pi pe, To/ From Socket , and To/ From HP BASI C/ UX
transactions.

Only the first dimension can have an asterisk rather than a number.
For example, the following transaction, reading from afile:

READ TEXT a REAL ARRAY: *, 10

will read until EOF is encountered resulting in atwo dimensional array with
ten columns. The number of rows is dependent on the amount of datain the
file. The total number of data el ements read must be evenly divisible by the
product of the known dimension sizes, in this example: 10. If this criteriais
not met, an error will occur.

Number of CharactersPer READ. These READ TEXT formats support a
choice between DEFAULT NUM CHARS and MAX NUM CHARS:

STRI NG
| NTEGER
OCTAL
HEX
REAL

This section discusses the effects of DEFAULT NUM CHARS and
MAX NUM CHARS on these formats.

Appendix D 289

I/0 Transaction Reference
READ Transactions

The basic difference between DEFAULT NUM CHARS and MAX NUM CHARS
isthis:

B DEFAULT NUM CHARS causes HP VEE to read and ignore most
characters that do not appear to be part of the number or string it expects.

B MAX NUM CHARS allows you to read up to the specified number of 8-bit
characters in an attempt to build the type of number or string specified.
HP VEE stops reading characters as soon as the READ is satisfied. All
characters are read and HP VEE attemptsto convert them to the data
type specified in the transaction.

If you specify DEFAULT NUM CHARS, the transaction reads as many
characters as it requires to fill each variable. Charactersthat are not
meaningful to the specified datatype are read and ignored.

If you specify MAX NUM CHARS, HP V EE makes no attempt to sort out
characters that are not meaningful to the data type specified. If non-
meaningful characters are encountered, they are read and may later generate
an error.

In either case, newline and end-of-file are recognized as terminators for
strings or numbers. For numeric formats, white space encountered before
any significant characters (digits) is read and ignored; after reading
significant characters, white space or other non-numeric characters
terminate the current READ. These are the general behaviors; read the
examples that follow for additional detail.

Consider this example that distinguishes between the behaviors of

DEFAULT NUM CHARS and MAX NUM CHARS using | NTEGER format.
Assume that you are trying to read afile containing this data:

bird dog cat 12345 horse

It isimpossible to extract the integer 12345 from this data with a
READ TEXT | NTEGER transaction using MAX NUM CHARS ho matter how
many characters are read. Thisis because the charactersbi rd dog cat are

290 Appendix D

I/0 Transaction Reference
READ Transactions

aways read before the digits, they cannot be converted to an Integer, and
this generates an error.

DEFAULT NUM CHARS will extract the integer 12345 by reading and
ignoring bi rd dog cat and treating the white space following 5 asa
delimiter.

Effects of Quoted Strings. The presence of quoted strings affects the
behavior of READ TEXT QSTRand READ TEXT TOKENfor al 1/0 pathsand
READ TEXT STRI NGfor instrument or interface 1/O. In this discussion, a
quoted string means a set of characters beginning and ending with a double
guote character and no embedded (non-escaped) double quote characters.
The double quote character is ASCII 34 decimal. The presence of double
guotes affects the way that these READ transactions group characters into
strings and tokens, and how embedded control and escape characters are
handled.

In this discussion, the terms control character and escape character have
specific meaning. A control character is asingle byte of data corresponding
to one of the ASCI|I characters 0-31 decimal. For example, linefeed is ASCI|
10 decimal and the symbol <LF> denotes linefeed character in this
discussion. Thestring\ n isahuman-readable escape character representing
linefeed that is recognized by HP VEE.

The behavior of certain transactions when dealing with quoted stringsis
dependent on the particular I/0 path. For all 1/O paths except instrument |/
O, READ TEXT QSTRtreats quoted strings specially. For all 1/0O paths
except instrument 1/O, READ TEXT STRI NG does not recognize quoted
strings. For instrument |/O thereisno READ TEXT QSTR transaction.
Instead, READ TEXT STRI NG recognizes quoted stings and deals with them
accordingly. Thisisdone since quoted strings have special meaning in the
|EEE 488.2 specification. For al 1/0 pathsincluding instruments, READ
TEXT TOKEN treats quoted strings specially. In the following discussions,
we will assume the I/O path to be file I/O.

When astring does not begin and end with double quotes, control characters
other than linefeed are read and discarded by READ TEXT STRI NG
transactions and by READ TEXT TOKEN transactions that specify SPACE
DELI M In both STRI NG and TOKEN transactions, linefeed terminates the
READ. Escape character sequences, such as\ n (newline) are simply read as
the two characters\ and n.

Appendix D 291

I/0 Transaction Reference
READ Transactions

Within double quoted strings, READ TEXT QSTRand READ TEXT TOKEN
will read all enclosed characters (including control characters) store themin
the input variable. Embedded linefeeds are read and treated like any other
character; they do not terminate the current READ. Escape character
sequences are read and translated to their single-character counterpart.

Grouping effects are best explained by using an example. For the discussion
in the rest of this section, the data being read is a file with the contents
shown in Figure D-26.

"This is in quotes." This is not.

Figure D-26. Quoted and Non-Quoted Data

Assume that you read the file shown in Figure D-26 using Fr om Fi | e with
these transactions:

READ TEXT x QSTR
READ TEXT y (STR

After reading thefile, the results are:

X
y

Note that the double quotes are interpreted as delimiters and do not appear in
the input variable.

This is in quotes.
This is not.

Now assume that you read the file shown in Figure D-26 using From Fi | e
with these transactions:

READ TEXT x QSTR MAXFW 4
READ TEXT y (STR

After reading thefile, the results are:

Thi s
This is not.

X
y

Here the double quotes are till acting adelimiters; the first transaction reads
from doubl e quote to double quote and assigns the first four charactersto x.
Thisleavesthefile's read pointer positioned before the second occurrence of
Thi s. The second transaction reads the same string as before.

292 Appendix D

CHAR Format

I/0 Transaction Reference
READ Transactions

Next, assume that you read the file shown in Figure D-26 using From Fi | e
with these transactions:

READ TEXT x TOKEN
READ TEXT y QSTR

Now after reading the file, the results are:

X
y

Herethe double quotes effectively make the entire first sentence into asingle
token. Even though default TOKEN delimiter is white space, the entire
quoted string is treated as a single token. In addition, TOKEN reads and
discards the double quote characters.

This is in quotes.
This is not.

READ TEXT CHAR transactions are of this form:
READ TEXT VarLi st CHAR NuntChar ARRAY: Nunttr

Var Li st isasingle Text variable or acomma-separated list of Text
variables.

NumChar specifiesthe number of 8-bit charactersthat must read to fill each
element of each variablein Var Li st .

Nunst r isasingle expression or acomma-separated list of expressions that
specifies the dimensions of each variablein Var Li st . If thetransactionis
configured to read a scalar, the ARRAY keyword does not appear in the
transaction. Note that ARRAY: 1 isaone-dimensional array with one
element. HP VEE makes a distinction between scalars and one-dimensional
arrays containing only one element.

CHAR format is useful when you wish to simply read one character at atime,
or when you need to read every character without ignoring any incoming
data.

This transaction reads two two-dimensional Text arrays; each element in
each array contains two characters.

READ TEXT X, Y CHAR 2 ARRAY: 2, 2

Appendix D 293

TOKEN Format

I/0 Transaction Reference
READ Transactions

If afileread by the previous transaction contains these characters:
<space>ABCDEFG' AB" <LF>" CD
then the variables X and Y contain these val ues after the READ:

X [0 0] = <space>A
X [0 1] = BC

X[1 0] =DE

X[1 1 = FG
Y[0O] ="A

Y[O 1] = B"

Y[1 0] = <LF>
Y[11 =CD

The symbol <space> meansthe single character, space (ASCI| 32 decimal).
The symbol <LF> means the single character, linefeed (ASCII 10 decimal).
Note that space, linefeed, and double quotes are read without any special
consideration or interpretation.

READ TEXT TOKEN transactions are of this form:
READ TEXT VarLi st TOKEN Del i mi t er ARRAY: Nuntl enent s

Var Li st isasingle Text variable or acomma-separated list of Text
variables.

Del i mi t er specifiesthe combinations of characters that terminate
(delimit) each token.

NumEl enment s isasingle expression or acomma-separated list of
expressions that specifies the dimensions of each variablein Var Li st . If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. Note that ARRAY: 1 is aone-dimensiona array
with one element. HP VEE makes a distinction between scalars and one-
dimensional arrays containing only one element.

TOKEN format allows you to define the delimiter (boundary) for tokens using
one of these choicesfor Del i mi t er:

B SPACE DELIM
B | NCLUDE CHARS
B EXCLUDE CHARS

294 Appendix D

I/0 Transaction Reference
READ Transactions

Thefollowing discussion of delimiters explains how the choice of delimiters
affects reading afile with these contents:

A phrase.

"A phrase.™

Tab fol |l ows.
XOXXOOXXXOOOXXXX
XAXXBCXXXDEF

Figure D-27. Data for READ TCOKEN
Thefile contains only the letter O, not the digit zero.

Note that thereisaninvisible linefeed character at the end of each of thefirst
four lines of the file in Figure D-27. The figure showsthe file as it would
appear in atext editor likevi .

SPACE DELIM. If you use SPACE DELI M tokens are terminated by any
white space. White space includes spaces, tabs, newline, and end-of-file.
This corresponds roughly to words in written English. Using

SPACE DELI M you could read afile containing a paragraph of prose and
separate out individual words.

Note that double quoted strings receive specia treatment. Double quoted
strings are read as a single token and the double quotes are stripped away.
Control characters (ASCII 0-31 decimal) embedded in double-quoted strings
are returned in the output variable. Escape characters (such as\ n)
embedded in double-guoted strings are converted into their equivalent
control characters. This special treatment of double-quoted strings applies
only to SPACE DELI Mtransactions; | NCLUDE CHARS and EXCLUDE CHARS
treat double quotes, escapes, and control characters the same as any other
character.

Appendix D 295

I/0 Transaction Reference
READ Transactions

If you read the data shown in Figure D-27 using SPACE DELI Mwith this
transaction:

READ TEXT a TOKEN ARRAY: 8

then the variable a contains these values:

a[0] = A

a[1] = phrase.

a[2] = A phrase.

a[3] = Tab

a[4] = foll ows

a[5] = .

a[6] = XOXXOOXXXOOOXXXX
a[7] = XAXXBCXXXDEF

INCLUDE CHARS. If you use | NCLUDE CHARS, you can specify alist of
charactersto be "included" in tokens returned by the READ. These specified
characters will be the only characters returned in any token. Any character
other than the specified | NCLUDE characters terminates the current token.
The terminating characters are not included in the token and are stripped
away.

If HP VEE reads the data shown in Figure D-27 using | NCLUDE CHARS
with this transaction:

READ TEXT a TOKEN | NCLUDE: " X" ARRAY: 7
then the variable a contains these values:

a[0] = X
a[1] = XX
a[2] = XXX
a[3] = XXXX
a[4] = X
a[5] = XX
a[6] = XXX

296 Appendix D

I/0 Transaction Reference
READ Transactions

If HP VEE reads the data shown in Figure D-27 using | NCLUDE CHARS
with this transaction:

READ TEXT a TOKEN | NCLUDE: " OXZ" ARRAY: 4

then the variable a contains these values:

a[0] = XOXXOOXXXOOOXXXX
a[l1l] = X

a[2] = XX

a[3] = XXX

Note that the first character in the | NCLUDE list is the letter O, not the digit
ZEro.

Assume that you are trying to read a file containing the datain Figure D-28.

111 222 333 444 555

Figure D-28. Data for READ TOKEN
If you try to read the file in Figure D-28 using this transaction:
READ TEXT x,y,z TOKEN | NCLUDE: "1234567890"

then the Text variables x, y, and z will contain these values:

x = 111
y = 222
z = 333

Another way to do thisisto specify an ARRAY greater than one and read data
into an array. For example, if you read the datain Figure D-28 using this
transaction:

READ TEXT x TOKEN | NCLUDE: "1234567890" ARRAY: 3

then the Text variable x contains these values:

x[0] = 111
x[1] = 222
x[2] = 333

Appendix D 297

I/0 Transaction Reference
READ Transactions

EXCLUDE CHARS. If you use EXCLUDE CHARS, you can specify alist of

characters, any one of which will terminate the current token. The

terminating characters are not included in the token. They are read and
discarded.

If you read the data shown in Figure D-27 using EXCLUDE with this
transaction:

READ TEXT a TOKEN EXCLUDE: " X' ARRAY: 8

then the variable a contains these values:

a[0]
a[1]
a[2]
a[3]
a[4]
a[5]
a[6]
a[7]

Assume the data shown in Figure D-29 is sent to HP VEE from an

= A phrase. <LF>"A phrase. "<LF>Tab fol | ows

instrument.

O

00]

(000)
<LF>

A

BC
DEF<LF>

. <LF>

++1. 23++4. 98++0. 45++2. 34++0. 01++23. 45++12. 2++

If HP VEE reads the data in Figure D-29 with this transaction:

Figure D-29. Data for READ TOKEN

READ TEXT x TOKEN EXCLUDE: "+" ARRAY: 7

then the variable x will contain these values:

x[0]
x[1]
x[2]
x[3]
x[4]
x[5]
x[6]

null string (enpty)
1.23

4.98
0. 45
2.34
0.01
23. 45

Note that even though seven "numbers" were available, only six were read.
At the end of thistransaction, HP VEE has read seven tokens terminated by

298

Appendix D

STRING Format

I/0 Transaction Reference
READ Transactions

the +, including the first character which was terminated before it was filled
with any data.

READ TEXT STRI NG transactions are of this form:

READ TEXT Var Li st STR ARRAY: NUEl enent s

- Or‘ -

READ TEXT Var Li st STR MAXFW NuntChar s ARRAY: NUnEl enent s
Var Li st isasingle Text variable or acomma-separated list of Text
variables,

NumChar s specifies the maximum number of 8-bit characters that can be
read in an attempt to build a string.

NunEl enent s isasingle expression or acomma-separated list of
expressions that specifies the dimensions of each variablein Var Li st . If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. Note that ARRAY: 1 isaone-dimensiona array
with one element. HP VVEE makes a distinction between scalars and one-
dimensional arrays containing only one element.

Thistransaction reads all incoming characters and returns strings. Leading
spaces are deleted. The following discussion pertains to instrument 1/O paths

only, such asHP-IB or VXI. All other I/O paths, such as files or named-

pipes, will not treat Quoted Strings specially. Please refer to “Effects of
Quoted Strings” on page 291 for details about the effects of double quoted
strings oNREAD TEXT STRI NG

Effects of Control and Escape Characters. In this discussion, the terms

control character andescape character have specific meaning. A control
character is a single byte of data corresponding to one of the ASCII
characters 0-31 decimal. For example, linefeed is ASCII 10 decimal and the
symbol<LF> denotes linefeed character in this discussion. The &tnirig

a human-readable escape character representing linefeed that is recognized
by HP VEE. HP VEE uses escape characters to represent control characters
within quoted strings.

Control characters and escape characters are handled differently depending
on whether or not they appear within double quoted strings.

Appendix D 299

I/0 Transaction Reference
READ Transactions

Outside double quoted strings, control characters other than linefeed are read
and discarded. Linefeed terminates the current string. Escape characters,
such as\ n, are simply read as two individual characters (\ and n).

Within double quoted strings, control characters and escape characters are
read and included in the string returned by the READ. A linefeed within a
double quoted string does not terminate the current string. Escape characters,
such as\ n, areinterpreted as their single character equivalent (<LF>) and
are included in the returned string as a control character.

Assume you wish to read the following string data using READ TEXT
STRI NG transactions:

Si mpl e string.
Random\n % $ * ‘A’

"In quotes."

"In quotes

with control."

"In quotes\nwith escape."

If you read the string data using this transaction:
READ TEXT x STR ARRAY:5
then the variable x contains these values;

a[0] = Simple string.

a[1] = Random \n % $ * ‘A’

a[2] = In quotes.

a[3] = In quotes<LF>with control.
a[4] = In quotes<LF>with escape.

If you read the same string data using this transaction:

READ TEXT x STR MAXFW:16 ARRAY:5
then the variable x contains these val ues;

a[0] = Simple string.
a[1] = Random \n % $ *

a[2] = ‘A’
a[3] = In quotes.
af[4] = In quotes<LF>with ¢

Note that the transaction terminates the current READwhenever 16
characters have been read (a[1]) or when anon-quoted <LF> (a[2]) is

300 Appendix D

QUOTED STRING
Format

I/0 Transaction Reference
READ Transactions

read. Double quoted strings are read from double quote to double quote and
thefirst 16 delimited characters are returned (af 4]).

READ TEXT QUOTED STRI NGtransactions are of thisform:

READ TEXT VarLi st QSTR ARRAY: N\UnEl enent s

- Or‘ -

READ TEXT Var Li st QSTR MAXFW NuniChar s ARRAY: NUEl enent s
Var Li st isasingle Text variable or acomma-separated list of Text
variables.

NumChar s specifies the maximum number of 8-bit characters that can be
read in an attempt to build a string.

NunEl enent s isasingle expression or acomma-separated list of
expressions that specifies the dimensions of each variablein Var Li st . If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. Note that ARRAY: 1 isaone-dimensiona array
with one element. HP VVEE makes a distinction between scalars and one-
dimensional arrays containing only one element.

Thistransaction reads all incoming characters and returns strings. The
following discussion pertains to all non-instrument /O paths. Instrument I/
O paths do not implement the READ TEXT QSTRtransaction. Pleaserefer to
“Effects of Quoted Strings” on page 291 for details about the effects of
double quoted strings dREAD TEXT STRI NG

Effects of Control and Escape Characters. In this discussion, the terms

control character andescape character have specific meaning. A control
character is a single byte of data corresponding to one of the ASCII
characters 0-31 decimal. For example, linefeed is ASCII 10 decimal and the
symbol<LF> denotes linefeed character in this discussion. The &tnirig

a human-readable escape character representing linefeed that is recognized
by HP VEE. HP VEE uses escape characters to represent control characters
within quoted strings.

Control characters and escape characters are handled differently depending
on whether or not they appear within double quoted strings.

Appendix D 301

I/0 Transaction Reference
READ Transactions

Outside double quoted strings, control characters other than linefeed are read
and discarded. Linefeed terminates the current string. Escape characters,
such as\ n, are simply read as two individual characters (\ and n).

Within double quoted strings, control characters and escape characters are
read and included in the string returned by the READ. A linefeed within a
double quoted string does not terminate the current string. Escape characters,
such as\ n, areinterpreted as their single character equivalent (<LF>) and
are included in the returned string as a control character.

Assume you wish to read the following string data using READ TEXT
QUOTED STRI NGtransactions:

Si mpl e string.
Random\n % $ * ‘A’

"In quotes."

"In quotes

with control."

"In quotes\nwith escape."

If you read the string data using this transaction:
READ TEXT x QSTR ARRAY:5
then the variable x contains these values;

a[0] = Simple string.

a[1] = Random \n % $ * ‘A’

a[2] = In quotes.

a[3] = In quotes<LF>with control.
a[4] = In quotes<LF>with escape.

If you read the same string data using this transaction:
READ TEXT x QSTR MAXFW:16 ARRAY:5
then the variable x contains these values:

a[0] = Simple string.
a[1] = Random \n % $ *

a[2] = ‘A’
a[3] = In quotes.
af[4] = In quotes<LF>with ¢

Note that the transaction terminates the current READwhenever 16
characters have been read (a[1]) or when anon-quoted <LF> (a[2]) is

302 Appendix D

INTEGER Format

I/0 Transaction Reference
READ Transactions

read. Double quoted strings are read from double quote to double quote and
thefirst 16 delimited characters are returned (af 4]).

READ TEXT | NTEGER transactions are of this form:

READ TEXT Var Li st |NT ARRAY: NUnEl enent s

- Or -

READ TEXT Var Li st |INT MAXFW NumChar s ARRAY: NUITEl enent s
Var Li st isasingle Integer variable or acomma-separated list of Integer
variables.

NumChar s specifies the maximum number of 8-bit characters that can be
read in an attempt to build a number.

Nunst r isasingle expression or acomma-separated list of expressions that
specifies the dimensions of each variablein Var Li st . If thetransaction is
configured to read a scalar, the ARRAY keyword does not appear in the
transaction. Note that ARRAY: 1 isaone-dimensional array with one
element. HP VEE makes a distinction between scalars and one-dimensional
arrays containing only one element.

Appendix D 303

I/0 Transaction Reference
READ Transactions

READ TEXT | NTEGER transactions interpret incoming characters as 32-hit,
two's complement integers. The valid range for theseintegersis 2 147 483
647 to -2 147 483 648. Any numbers outside this range wrap around so there
isnever an overflow condition. For example, 2 147 483 648 isinterpreted as
-2 147 483 648. Asit startsto build anumber, HP VEE discards any leading
characters that are not recognized as part of anumber. Once HP VEE starts
building a number, any character that is not recognized as part of a number
terminates the READ for that number. These are the only combinations of
characters that are recognized as part of an | NTEGER:

Notation Characters Recognized

Decimal Valid characters are +- 0123456789. Leading
zeros are not interpreted as an octal prefix as they
are in HP VEE data entry fields.

HP VEE HP VEE interprets Ox as a prefix for a hexadecimal
hexadecimal number. Valid characters following the prefix are
0123456789aAbBc CdDeEf F.

IEEE 488.2 binary HP VEE interprets #b or #B as a prefix for a binary
number. Valid characters following the prefix are 0
and 1.

IEEE 488.2 octal HP VEE interprets #qg or #Qas a prefix for an octal
number. Valid characters following the prefix are

01234567.
IEEE 488.2 HP VEE interprets #h or #H as a prefix for a
hexadecimal hexadecimal number. Valid characters following the

prefix are 0123456789aAbBc CdDeEf F.

All of the following notations are interpreted as the Integer value 15
decimal:

15

+15
015
OxF
Oxf
#b1111
#QL7
#hF

304 Appendix D

OCTAL Format

I/0 Transaction Reference
READ Transactions

READ TEXT OCTAL transactions are of this form:

READ TEXT VarLi st OCT ARRAY: NUnmEl enent s

- Or -

READ TEXT VarList OCT MAXFW NuntChar s
ARRAY: NUnEl enent s

Var Li st isasingle Integer variable or a comma-separated list of Integer
variables.

NunmChar s specifies the number of 8-bit characters that can beread in an
attempt to build a number.

NumEl ement s isasingle expression or acomma-separated list of
expressions that specifies the dimensions of each variablein Var Li st . If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. Note that ARRAY: 1 is aone-dimensiona array
with one element. HP VVEE makes a distinction between scalars and one-
dimensional arrays containing only one element.

READ TEXT OCTAL transactions interpret incoming characters as octal
digits representing 32-hit, two’'s complement integers. The valid range for
these integersis 2 147 483 647 decimal to -2 147 483 648 decimal.

If the transaction specifiesa MAX NUM CHARS (MAXFW, the octal number
read may contain more than 32 bits of data. For example, assume HP VEE
reads the following octal data:

377237456214567243777
using this transaction:
READ TEXT x OCT MAXFW 21

HP VEE reads dl the digitsin octal data, but uses only the last 11 digits
(14567243777) to build a number for the value of x. Thisis because each
digit corresponds to 3 bits and the octal number must be stored in an

HP VEE Integer, which contains 32 bits. Eleven octal digitsyield 33 hits;
the most significant bit is dropped to fit the value in an HP VEE Integer.
Thereisno possibility of overflow.

If the transaction specifies DEFAULT NUM CHARS, it will continue to read
characters until it builds enough numbersto fill each variablein Var Li st.

Appendix D 305

HEX Format

I/0 Transaction Reference
READ Transactions

Linefeed characters will not terminate number building early. For example,
this transaction:

READ TEXT x OCT ARRAY: 4

interprets each line of the following octal data as the same set of four octal
numbers:

0345 067 003<LF>0377<LF>
345 67 3 377<ECF>
345, 67, 3, 377, 45, 67<EOF>

The symbol <LF> represents the single character linefeed (ASCII 10
decimal). The symbol <EOF> represents the end-of-file condition.

READ TEXT HEX transactions are of thisform:

READ TEXT Var Li st HEX ARRAY: NUITEl enent s

- Or‘ -

READ TEXT Var Li st HEX MAXFW NuntChar s ARRAY: NUnEl enent s
Var Li st isasingle Integer variable or acomma-separated list of Integer
variables.

NumChar s specifies the number of 8-bit charactersthat can beread in an
attempt to build a number.

NunEl enent s isasingle expression or acomma-separated list of
expressions that specifies the dimensions of each variablein Var Li st . If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. Note that ARRAY: 1 isaone-dimensiona array
with one element. HP VVEE makes a distinction between scalars and one-
dimensional arrays containing only one element.

READ TEXT HEX transactionsinterpret incoming characters as hexadecimal
digits representing 32-hit, two's complement integers. The valid range for
these integersis 2 147 483 647 decimal to -2 147 483 648 decimal.

306 Appendix D

I/0 Transaction Reference
READ Transactions

If the transaction specifiesa MAX NUM CHARS (MAXFW, the hexadecimal
number read may contain more than 32 bits of data. For example, assume
HP V EE reads the following hexadecimal data:

ad2469Ff 725BCdef 37964 hexadecimal data
using this transaction:
READ TEXT x HEX MAXFW 21

HP VEE reads al the digitsin the hexadecimal data, but uses only the last 8
digits (def 37964) to build a number for the value of x. Thisis because each
digit corresponds to 4 hits and the hexadecimal number must be stored in an
HP VEE Integer, which contains 32 bits. Eight hexadecimal digitsyields
exactly 32 bits. There is no possibility of overflow.

Assume HP V EE reads the same hexadecimal data, but with a different MAX
NUM CHARS, as in this transaction:

READ TEXT x HEX MAXFW 3 ARRAY: 7

In this case, the transaction reads the same data and interprets it as seven
Integers, each comprising three hexadecimal digits.

If the transaction specifies DEFAULT NUM CHARS, it will continue to read
characters until it builds enough numbersto fill each variablein Var Li st.
Each number will read exactly 8 hexadecimal digits. Linefeed characters
will not terminate number building early.

Assume HP V EE reads the same hexadecimal data, but with
DEFAULT NUM CHARS, asin this transaction:

READ TEXT x HEX ARRAY: 2

In this case, the transaction reads the same data and interpretsit astwo
Integers, each comprising eight hexadecimal digits. The last five digits
(37946) are not read.

Appendix D 307

REAL Format

I/0 Transaction Reference
READ Transactions

READ TEXT REAL transactions are of this form:

READ TEXT Var Li st REAL ARRAY: NUNEl enent s

- Or -

READ TEXT Var Li st REAL MAXFW NuntChar s ARRAY: NUnEl enent s
Var Li st isasingle Real variable or acomma-separated list of Real
variables.

NumChar s specifies the maximum number of 8-bit characters that can be
read in an attempt to build a number.

NunEl enent s isasingle expression or acomma-separated list of
expressions that specifies the dimensions of each variablein Var Li st . If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. Note that ARRAY: 1 isaone-dimensiona array
with one element. HP VVEE makes a distinction between scalars and one-
dimensional arrays containing only one element.

The decimal number read by this transaction isinterpreted as an HP VEE
Real which is a 64-bit |IEEE 754 floating-point number. The range of these
numbersis:

-1.797 693 134 862 315E+308
-2.225 073 858 507 202E-307
0

2.225 073 858 507 202E- 307
1.797 693 134 862 315E+308

If the transaction specifiesa MAX NUM CHARS (MAXFW, the Real number
read may contain more than 17 digits of data. For example, assume HP VEE
reads the following real data:

1. 234567890123456789 real number data
using this transaction:
READ TEXT x REAL MAXFW 19

HP VEE reads dl the digitsin the real data, but uses only the 17 most-
significant digits of the mantissato build anumber for thevalue of x. Thisis
because each Real contains a 54-bit mantissa, which is equivalent to more
than 16 but less than 17 decimal digits. As aresult, x has the value
1.2345678901234567. Text to Real conversions are not guaranteed to

308 Appendix D

I/0 Transaction Reference
READ Transactions

yield the same value to the least-significant digit. Comparisons of the two
least-significant bitsisinadvisable.

Assume HP V EE reads the same real number data, but with a different MAX
NUM CHARS, as in this transaction:

READ TEXT x REAL MAXFW 6 ARRAY: 3

In this case, the transaction reads the same data and interprets it as 3 Real
numbers, each comprised of six decimal characters. The last two characters
are not read.

If the transaction specifies DEFAULT NUM CHARS, it will continue to read
characters until it builds enough numbersto fill each variablein Var Li st .
Each number will read at most 17 decimal digits. Linefeed characters, white
space and other non-numeric characters will terminate number building
before 17 digits have been read.

Appendix D 309

I/0 Transaction Reference
READ Transactions

READ TEXT REAL transactions recognize most commonly used decimal
notations for Real numbers including leading signs, decimal points, and
signed exponents. The characters+- . 0123456789Ee are recognized as
valid parts of a Real number by all READ TEXT REAL transactions. If the
transaction specifies DEFAULT NUM CHARS, the suffix characters shown in
Table D-13 are also recognized. The suffix character must immediately
follow the last digit of the number with no intervening white space.

Table D-13. Suffixes for REAL Numbers

Suffix Multiplier
P 1015
T 1012
G 10°
M 108
k orK 103
m 1073
u 106
n 10°°
p 1012
f 10-15

The following Text data represents six real numbers:

1001

+1001.
1001.0

1. 001E3
+1. 001E+03
1. 001K

310 Appendix D

COMPLEX,
PCOMPLEX, and
COORD Formats

I/0 Transaction Reference
READ Transactions

If HP VEE reads the real text data with this transaction:

READ TEXT x REAL ARRAY: 6
then each element of the Real variable x contains the value 1001.
If HP VEE reads the same data with this transaction:

READ TEXT x REAL MAXFW 20 ARRAY: 6

then thefirst five el ements of the Real variablex contain thevalue 1001 and
the sixth e ement containsthevalue 1. 001.

COVPLEX, PCOVPLEX, and COORD correspond to the HP VEE multi-field
datatypes with the same names. The behavior of all three READ formatsis
very similar. The behaviors described in this section apply to all three
formats except as noted.

Just as the HP V EE data types Complex, PComplex, and Coord are
composed of multiple Real numbers, the COMPLEX, PCOVPLEX, and COORD
formats are compound forms of the REAL format. Each constituent Real
value of the multi-field data typesis read using the same rules that apply to
anindividual REAL formatted value.

COMPLEX Format. READ TEXT COWPLEX transactions are of thisform:
READ TEXT VarLi st CPX ARRAY: NUnEl enent s

Each READ TEXT COWVPLEX transaction reads the equivalent of two REAL
formatted numbers. The first number read isinterpreted as the real part and
the second number read is interpreted as the imaginary part.

PCOMPLEX Format. READ TEXT PCOVPLEX transactions are of this
form:

READ TEXT VarLi st PCX: PUnit ARRAY: NUNEl enent s

PUni t specifies the units of angular measure in which the phase of the
PComplex is measured.

Each READ TEXT PCOMPLEX transaction reads the equivalent of two REAL
formatted numbers. The first number read is interpreted as the magnitude
and the second number read is interpreted as the phase.

Appendix D 311

I/0 Transaction Reference
READ Transactions

If any transaction reading COVPLEX, PCOMPLEX, or COORD formats
encounters an opening parenthesis, it expectsto find a closing parenthesis.

Assume you wish to read a file containing the following data containing
parentheses:

(1.23 , 3.45 (6.78 , 9.01) (1.23 , 4.56)
If HP VEE reads the data with this transaction:

READ TEXT x,y CPX
then the variables x and y contain these Complex values:

x = (1.23 , 3.45)
y = (1.23 , 4.56)

Note that the transaction read past 6. 78 and 9. 01 to find the closing
parenthesis. If parentheses had been omitted from the data entirely, y would
havethevalue (6. 78 , 9.01).

COORD Format. READ TEXT COORD transactions are of thisform:
READ TEXT Var Li st COORD: NunfFi el ds ARRAY: Nuntl enent s

Var Li st isasingle Coord variable or acomma-separated list of Coord
variables.

Nun¥i el ds isasingle variable or expression that specifies the number of
rectangular dimensions in each Coord value. Thisvalue must be2 or more
for the READto execute without error.

NunEl enent s isasingle expression or acomma-separated list of
expressions that specifies the dimensions of each variablein Var Li st . If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. Note that ARRAY: 1 isaone-dimensiona array
with one element. HP VVEE makes a distinction between scalars and one-
dimensional arrays containing only one element.

312 Appendix D

Note

I/0 Transaction Reference
READ Transactions

BINARY Encoding

READ BI NARY transactions are of thisform:
READ BI NARY Var Li st DataType ARRAY: NUnEl enent s
Var Li st isasinglevariable or acomma-separated list of variables.

Dat aType isone of the following pre-defined formats corresponding to the
HP VEE data type with the same name:

BYTE - 8-bit byte

I NT16 - 16-bit two's complement integer

I NT32 - 32-bit two's complement integer
REAL32 - 32-bit |IEEE 754 floating-point number
REAL64 - 64-bit IEEE 754 floating-point number
STRI NG - null terminated string

COVPLEX - equivalent to two REALS

PCOVPLEX -equivalent to two REALS

COORD - equivalent to two or more REALS

HP VEE stores and manipulates all integer values asthe | NT32 data type,
and all real numbersasthe Real datatype, aso known asREAL64. Thus, the
| NT16 and REAL32 datatypes are provided for 1/O only. HP VEE performs
the following data-type conversions for instrument I/O on an input
transaction.

I NT16 values from an instrument are individually converted to | NT32
values by HP VEE. This conversion assumesthat thel NT16 datawas signed
data. If you need the resulting | NT32 datain unsigned form, simply passthe
data through a formula object with the formula

Bl TAND(a, OXFFFF)

REAL32 values from an instrument are individually converted to REAL64
values by HP VEE.

NumEl ement s isasingle expression or acomma-separated list of
expressions that specifies the dimensions of each variablein Var Li st . If
the first expression is an asterisk (*), the transaction will read data until an

Appendix D 313

I/0 Transaction Reference
READ Transactions

EOF is encountered. Read to end is supported only for From Fi | e, Fr om
String, From Stdl n, Execute Program To/ From Naned Pi pe, and
To/ From HP BASI C/ UX transactions.

Only the first dimension can have an asterisk rather than a number. If the
transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. Note that ARRAY: 1 isaone-dimensiona array
with one element. HP VEE makes a distinction between scalars and one-
dimensional arrays containing only one element.

For example, the following transaction, reading from afile:
READ Bl NARY a REAL64 ARRAY: *, 10

will read until EOF is encountered, resulting in atwo dimensional array with
10 columns. The number of rows is dependent on the amount of datain the
file. The total number of data elements read must be evenly divisible by the
product of the known dimension sizes, in this example: 10.

READ BI NARY transactions expect that incoming dataisin exactly the same
format that would be produced by an equivalent WRI TE Bl NARY
transaction.

Bl NARY encoded data has the advantage of being very compact, but it is not
easily shared with non-HP V EE applications.

BINBLOCK Encoding

READ Bl NBLOCK transactions are of thisform:

READ BI NBLOCK Var Li st DataType ARRAY: NUntl enent s
Var Li st isasingle variable or acomma-separated list of variables.
Dat aType isone of these pre-defined HP VEE data types:

B BYTE - 8-bit byte

B | NT16 - 16-bit two's complement integer

W | NT32 - 32-bit two's complement integer

B REAL32 - 32-bit IEEE 754 floating-point number
B REAL64 - 64-bit |IEEE 754 floating-point number
B COVPLEX - equivalent to two REALS

B PCOVPLEX -equivalent to two REALS

B COORD - equivalent to two or more REALS

314 Appendix D

I/0 Transaction Reference
READ Transactions

NumEl ement s isasingle expression or acomma-separated list of
expressions that specifiesthe dimensions of each variablein Var Li st . The
number of columnsis equal to the number of channels contained by the
binblock. The number of rowsis equal to the number of readings per
channel. Only the first dimension can have an asterisk rather than a number.

If thefirst expression isan asterisk (*), the transaction will read data until an
EOF is encountered. Read to end is supported only for From Fi | e, Fr om
String, From Stdl n, Execut e Program To/ From Narmed Pi pe,

To/ Fr om Socket , and To/ Fr om HP BASI C/ UX transactions.

If the transaction is configured to read a one-dimension array, for asingle
channel, the single dimension represents rows and can have an asterisk.

For example, the following transaction, reading from afile:
READ BI NBLOCK a REAL64 ARRAY: *, 10

will read until EOF is encountered, resulting in atwo dimensional array with
10 columns. Each column represents an instrument channel. The number of
rows is dependent on the amount of datain each channel. The total number
of data elements contained by the binblock must be evenly divisible by the

number of columns, in this example: 10.

You do not need to specify any additional information about the format of
incoming data; the block header contains sufficient information.

READ BI NBLOCK can read any of the block formats described previously
with WRI TE BI NBLOCK transactions.

Thefollowing transaction reads two traces from an oscilloscope that formats
itstraces as | EEE 488.2 Definite Length Arbitrary Block Response Data:

READ Bl NBLOCK a, b REAL

Appendix D 315

I/0 Transaction Reference
READ Transactions

CONTAINER Encoding

READ CONTAI NER transactions are of the form:
READ CONTAI NER Var Li st
Var Li st isasinglevariable or acomma-separated list of variables.

READ CONTAI NER transactions reads data stored in the special text
representation written by WRI TE CONTAI NER transactions. No additional
specifications, such as format, need to be specified with READ CONTAI NER
since that information is part of the container.

REGISTER Encoding

READ REG STERis used to read values from a V XI device's A16 memory.

READ REG STER transactions are of this form:

READ REG Symbol i cName ExpressionLi st | NCR ARRAY: NunEl enment s
- Or -
READ REG Symbol i cName ExpressionLi st ARRAY: NumEl enment s

where:

Synbol i ¢cName isaname defined during configuration of aVXI device.
The name refers to a specific address within a device's register space.
Specific datatypes for READ REG STER transactions are:

B BYTE - 8 hit byte

B WORD16 - 16-bit two's complement integer

B WORD32 - 32-bit two's complement integer

B REAL32 - 32-bit IEEE 754 floating point number

These datatypes are also specified during configuration of aV X deviceand
do not appear in the transaction.

Expressi onLi st isasingle expression or acomma-separated list of
expressions.

I NCR specifies that array datais to be read from the register incrementally
starting at the address specified by Synbol i ¢ Name. The first element of
the array isread from the starting address, the second from that address plus
an offset equal to the length in bytes of the data type, and so forth until all

316 Appendix D

I/0 Transaction Reference
READ Transactions

array elements have been read. If | NCRis not specified in the transaction, the
entire array is read from the single location specified by Synbol i c Nane.

NunEl enent s isasingle expression or acomma-separated list of
expressions that specifies the dimensions of each variablein Var Li st . If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. Note that ARRAY: 1 isaone-dimensiona array
with one element. HP VEE makes a distinction between scalars and one-
dimensional arrays containing only one element.

MEMORY Encoding

READ MEMORY is used to read values from aVX| device's A24 or A32
memory.

READ MEMORY transactions are of this form:

READ MEM Synbol i cName ExpressionLi st | NCR ARRAY: NunEl enent s
- Or -
READ MEM Symbol i cName Expressi onLi st ARRAY: NumEl enment s

where:

Symbol i cNane isaname defined during configuration of aV X| device.
The name refers to a specific address within a device's extended memory.
Specific datatypes for READ MEMORY transactions are:

B BYTE - 8 bit byte

B WORD16 - 16-bit two's complement integer

B WORD32 - 32-bit two's complement integer

B REAL32 - 32-bit IEEE 754 floating point number

These datatypes are also specified during configuration of aVX| deviceand
do not appear in the transaction.

Expressi onLi st isasingle expression or acomma-separated list of
expressions.

I NCR specifies that array dataisto be read from the memory location
incrementally starting at the location specified by Synbol i cName. The
first element of the array is read from the starting location, the second from
that location plus an offset equal to the length in bytes of the data type, and
so forth until al array elements have been read. If | NCRis not specified in

Appendix D 317

I/0 Transaction Reference
READ Transactions

the transaction, the entire array is read from the single memory location
specified by Synbol i cNane.

NunEl enent s isasingle expression or acomma-separated list of
expressions that specifies the dimensions of each variablein Var Li st . If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. Note that ARRAY: 1 isaone-dimensiona array
with one element. HP VEE makes a distinction between scalars and one-
dimensional arrays containing only one element.

|OSTATUS Encoding

READ | OSTATUS transactions are of thisform:

READ | OSTATUS STS Bits Varli st
- Or -
READ | OSTATUS DATA READY VarLi st

Var Li st isasingle Integer variable or acomma-separated list of Integer
variables.

READ | OSTATUS transactionsareused by Di rect 1/ Ofor GPIO
interfaces, From St dl n, To/ Fr om Nanmed Pi pe, To/ Fr om Socket , and
To/ From HP BASI C/ UX.

READ | OSTATUS transactions for GPIO reads the periphera status bits
available on theinterface. The number of bits read is dependent on the
model number of theinterface. A singleinteger valueis returned that isthe
weighted sum of all the status hits.

318 Appendix D

I/0 Transaction Reference
READ Transactions

For example, the HP 98622A GPI O interface supports two peripheral status
lines, STI0 and STI1. Table D-14 illustrates how to interpret the value of x
in this transaction:

READ | OSTATUS STS Bits a

Table D-14. | GSTATUS Values

Value Read STI1 STIO
0 0 0
1 0 1
2 1 0
3 1 1

READ | OSTATUS transactions read the instantaneous values of the status
lines; the status line are not latched or buffered in any way.

READ | OSTATUS transactions for To/ From Naned Pi pe, To/ From
Socket , To/ From HP BASI ¢/ UX and Fr om St dI n returns a Boolean
YES (1) if thereis dataready to read. If no datais present, aBoolean NO (0)
isreturned. The READ | OSTATUS transaction can be used to avoid aREAD
that will block program execution until datais available.

Appendix D 319

I/0 Transaction Reference
EXECUTE Transactions

EXECUTE Transactions

EXECUTE transactions send low-level commands to control thefile,
instrument, or interface associated with a particular object. EXECUTE is used
to adjust file pointers, clear buffers, and provide low-level control of
hardware interfaces. The various EXECUTE commands available are
summarized in Table D-15.

Table D-15. Summary of EXECUTE Commands

Commands Description

To File, From File

REW ND Sets the read pointer (From File) or write pointer (To File) to
the beginning of the file without changing the data in the file.

CLEAR (To Fil e only). Erases existing data in the file and sets the
write pointer to the beginning of the file.

CLCSE Explicitly closes the file. Useful when multiple processes are
reading and writing the same file.

DELETE Explicitly deletes the file. Useful for deleting temporary files.

320 Appendix D

I/0 Transaction Reference
EXECUTE Transactions

Table D-15. Summary of EXECUTE Commands

Commands

Description

Interface Operations

CLEAR For HP- | B clears all devices by sending DCL (Device Clear).
For VXI , resets the interface and runs the resource manager

TRI GGER For HP- | B triggers all devices addressed to listen by sending
GET (Group Execute Trigger). For VXI triggers specified
backplane trigger lines or external triggers on an embedded
controller.

LOCAL For HP- | B releases the REN (Remote Enable) line, and puts
instrument into local mode.

REMOTE For HP- | B asserts the REN (Remote Enable) line.

LOCAL For HP- | B sends the LLO (Local Lockout) message. Any

LOCKoUT device in remote at the time LLO is sent will lock out front panel
operation.

ABORT Clears the HP-IB interface by asserting the IFC (Interface
Clear) line.

LOCK In a multiprocess system with shared resources, lets one

| NTERFACE process lock the resources for its own use during a critical
section to prevent another process from trying to use them.

UNLOCK In a multiprocess system where a process has locked shared

| NTERFACE resources for its own use, unlocks the resources to allow other

processes access to them.

Direct I/O to HP-IB

CLEAR Clears device at the address of a Di rect |/ Oobject by
sending the SDC (Selected Device Clear).

TRI GGER Triggers the device at the address of a Di r ect |/ Oobject by
addressing it to listen and sending GET (Group Execute
Trigger).

LOCAL Places the device at the address of the
Di rect 1/ Oobjectin the local state.

REMOTE Places the device at the address of the

Di rect 1/ Oobjectin the remote state.

Appendix D

321

I/0 Transaction Reference
EXECUTE Transactions

Table D-15. Summary of EXECUTE Commands

Commands

Description

Direct I/O to GPIO

RESET Resets the GPIO interface associated with the Direct 1/ 0O
object by pulsing the PRESET line (Peripheral Reset).

Direct I/O to message-based VXI

CLEAR Clears the VXI device associated with the Di r ect 1/ Oobject
by sending the word-serial command Clear (Oxffff).

TRI GGER Triggers the VXI device associated with the
Di rect 1/ Oobject by sending the word-serial command
Trigger (Oxedff).

LOCAL Places the VXI device associated with the
Di rect 1/ Oobjectinto local state by sending the word-serial
command Clear Lock (Oxefff).

REMOTE Places the VXI device associated with the

Di rect 1/ Oobjectinto local state by sending the word-serial
command Set Lock (Oxeeff). in the remote state.

Direct I/O to Serial Interfaces

RESET Resets the serial interface associated withthe Direct 1/ 0O
object.
BREAK Transmits a signal on the Data Out line of the serial interface

associated with the Di rect |/ Oobject as follows:
A logical High for 400 milliseconds

A logical Low for 60 milliseconds

Execute Program,

To/From Named Pipe, To/From HP BASIC/UX

CLCSE READ Closes the read named pipe associated with the (To/ Fr on)
Pl PE object or the stdin pipe associated with the (Execut e
Pr ogr am.
CLCSE WRI TE Closes the write named pipe associated with the (To/ Fr om)
Pl PE object or the stdout pipe associated with the (Execut e
Pr ogr am.
322 Appendix D

I/0 Transaction Reference
EXECUTE Transactions

Table D-15. Summary of EXECUTE Commands

Commands Description

To/From Socket

CLOSE Closes the connection between client and server sockets. To
re-establish the connection, the client and server must repeat
the bind-accept and connect-to protocols.

Direct I/O, MultiDevice Direct I/O, Interface Operations to HP-IB, GPIB, VXI, Serial,
GPIO

LOCK In a multiprocess system with shared resources, lets one
process lock the resources for its own use during a critical
section to prevent another process from trying to use them.

UNLOCK In a multiprocess system where a process has locked shared
resources for its own use, unlocks the resources to allow other
processes access to them.

Appendix D 323

I/0 Transaction Reference
EXECUTE Transactions

Details About HP-1B

The EXECUTE commands used by Di rect |/ Oto HP-IB devices and
Interface Qperations aresimilar but different.

B Direct |/ OEXECUTE commands address an instrument to receive the
command.

B | nterface Qperations EXECUTE commands may affect multiple
instruments already addressed to listen.

The following series of tables indicate the exact bus actions conducted by
Direct I/OandlInterface Operations EXECUTE transactions.

Table D-16. EXECUTE ABORT HP-IB Actions

Direct 1/O| Interface Operations

Not applicable. IFC (= 100 psec)
REN
ATN

Table D-17. EXECUTE CLEAR HP-IB Actions

Direct 1/O| Interface Operations
ATN ATN
MTA DCL
UNL
LAG
SDC

324 Appendix D

I/0 Transaction Reference
EXECUTE Transactions

Table D-18. EXECUTE TRI GGERHP-IB Actions

Direct 1/O| Interface Operations
ATN ATN
MTA GET
UNL
LAG
GET

Table D-19. EXECUTE LOCAL HP-IB Actions

Direct 1/O | Interface Operations
ATN REN
MTA ATN
UNL
LAG
GTL

Table D-20. EXECUTE REMOTE HP-IB Actions

Direct 1/O| Interface Operations
REN REN
ATN ATN
MTA
UNL
LAG

Appendix D 325

I/0 Transaction Reference
EXECUTE Transactions

Table D-21. EXECUTE LOCAL LOCKCQUT HP-IB Actions

Direct /O | Interface Operations

Not applicable. ATN

LLO

Details About V XI

The EXECUTE commands used by Di rect 1/ Oto VXI devicesand
Interface Qperations aresimilar, but different. Referencesto
message-based V X1 devices apply to register-based devices that are
supported by 1-SCPI.

B Direct |/ OEXECUTE commands address a message based VXI device
to receive aword-serial command.

B | nterface Operations EXECUTE commands affect the V XI interface
directly and may affect VX1 devices within the interfaces servant area.

EXECUTE TRI GGER transactionsfor thel nt er f ace Oper at i ons object
are of the form:

EXECUTE TRI GGER Tri gger Type Expression Trigger Mbde
Tri gger Type specifieswhich trigger group will be used by the

EXECUTE TRI GGER transaction. The groups are:

B TTL - Specifiesthe eight TTL trigger lines on the VXI backplane.
B ECL - Specifiesthe four ECL trigger lines on the VXI backplane.

B EXT - Specifies the external triggers on a embedded VX1 controller.

Expr essi on evaluates to asingle Integer variable that represents a bit
pattern indicating which trigger lines for aparticular Tri gger Type areto

326 Appendix D

I/0 Transaction Reference
EXECUTE Transactions

be triggered. A value of 5, represented in binary as 101, indicatesthat TTL
lines 0 and 2 are to be triggered. A value of 255 triggersall eight TTL lines.

Tri gger Mbde indicates the way thetrigger lines are to be asserted:

B PULSE - Linesareto be pulsed for adiscreet timelimit (Tri gger Type

dependent).

B ON- Assertsthetrigger lines and |eaves them asserted.

B OFF - Removes the assertion from trigger lines that were asserted by a

previous ON transaction.

The following series of tables indicate the exact bus actions conducted by
Direct I/OandlInterface Operations EXECUTE transactions.

Table D-22. EXECUTE CLEAR VXI Actions

Direct I/0O

Interface Operations

Word-serial command Clear(0xffff)

Pulse SYSRESET line, rerun Resource
Manager

Table D-23. EXECUTE TRI GGER VXI Actions

Direct I/0O

Interface Qperations

Word-serial command Trigger(Oxedff)

Triggers either the TTL or ECL trigger
lines in the backplane, or the external
trigger(s) on the embedded VXI
controller. You can specify which lines
are to be triggered for each trigger

type.

Table D-24. EXECUTE LOCAL VXI Actions

Direct I/0O

Interface Operations

Word-serial command Set Lock(Oxeeff)

Not applicable.

Appendix D

327

I/0 Transaction Reference
EXECUTE Transactions

Table D-25. EXECUTE REMOTE VXI Actions

Direct I/0 Interface Operations

Word-serial command Clear Not applicable.
Lock(Oxefff)

328 Appendix D

I/0 Transaction Reference
WAIT Transactions

WAIT Transactions

There are four types of WAI T transactions:
B WAI T | NTERVAL

H WAIT SPOLL (Di rect |/ OtoHP-IB and message based VX1 devices
only)

B WAI T REG STER (Di rect |/ OtoVXI devicesonly)
B WAl T MEMORY (Direct |/ 0OtoVXI devicesonly)

WAl T | NTERVAL transactions simply wait for the specified number of
seconds before executing the next transaction listed in the open view of the
object. For example, this transaction waits for 10 seconds:

WAI T | NTERVAL: 10
WAI T SPOLL transactions are of the form:
WAI T SPOLL Expression Sense

Expressi onisan expression that evaluates to an integer. The integer will
be used as a bit mask.

Sense isafield with two possible values.

B ANY SET
B ALL CLEAR

WAI T SPOLL transactions wait until the serial poll response byte of the
associated instrument meets a specific condition. The serial poll responseis
tested by bitwise ANDing it with the specified mask and ORing the resulting
bitsinto asingle test bit. The transaction following WAI T SPOLL executes
when one of the following conditions is met:

B The transaction specifies ANY (ANY SET) and thetest bit is true (1).
B Thetransaction specifies CLEAR (ALL CLEAR) and thetest bitisfalse (0).

Appendix D 329

I/0 Transaction Reference
WAIT Transactions

The following transactions show how to use WAI T SPOLL:

WAI T SPOLL: 256 ANY Wit until any bit is set.
WAI T SPOLL: 256 CLEAR Wait until all areclear.
VWAI T SPOLL: 0x40 ANY Wait until bit 6 is set.

WAI T SPOLL: 0x40 CLEAR Wait until bit 6 isclear.

WAl T REG STER and WAI T MEMORY transactions are of the form:

WAI T REG Symbol i cName NASK: Expressi on Sense [Expressi on]
- Or -
WAI T MEM Symbol i cName NMASK: Expressi on Sense [Expressi on]

where:

Synbol i ¢cName isaname defined during configuration of a VXI device.
The name refers to a specific address within a device's A16 or extended
memory.

MASK: Expr essi on isan expression that evaluates to an integer. The
integer will be used as a bit mask. The sizein bytes of this mask value
depends on the data type for which Synbol i ¢ Name has been configured.

Sense isafied with three possible values.

B ANY SET
B ALL CLEAR*EQUAL

[Expressi on] isan optional compare value that evaluates to an integer.
Theinteger is used only when Sense is EQUAL.

330 Appendix D

I/0 Transaction Reference
WAIT Transactions

WAI T REG STER or MEMORY transactions wait until the value read from the
register or memory location specified by Synbol i cNamesin the
associated V X| device meets a certain condition. The value read islogically
ANDed with the bit mask specified in MASK: Expr essi on, resultingin a
test value. The size of the test value is dependent on the data type configured
for the specified register or memory location. The transaction following

WAl T SPOLL executes when one of the following conditions is met:

B The transaction specifies ANY (ANY SET) and the test value has at least
one bit true (1).

B The transaction specifies CLEAR (ALL CLEAR) and the test value has all
bits false (0).

B The transaction specifies EQUAL and the test value is equal bit-for-bit
with the compare value specified in [Expr essi on].

Appendix D 331

I/0 Transaction Reference

SEND Transactions

SEND Transactions

SEND transactions are of thisform:

SEND BusCntd

Bus Cntd is one of the bus commands listed in Table D-26.

SEND transactions are used within | nt er f ace Qper ati ons objectsto
transmit low-level bus messages viaan HP-IB interface. These messages
aredefined in detail in IEEE 488.1.

Table D-26. SEND Bus Commands

Command Description

COVVAND Sets ATN true and transmits the specified data bytes. ATN
true indicates that the data represents a bus command.

DATA Sets ATN false and transmits the specified data bytes. ATN
false indicates that the data represents device-dependent
information.

TALK Addresses a device at the specified primary bus address
(0-31) to talk.

LI STEN Addresses a device at the specified primary bus address
(0-31) to listen.

SECONDARY Specifies a secondary bus address following a TALK or
LISTEN command. Secondary addresses are typically
used by cardcage instruments where the cardcage is at a
primary address and each plug-in module is at a secondary
address.

UNLI STEN Forces all devices to stop listening; sends UNL.

UNTALK Forces all devices to stop talking; sends UNT.

My LI STEN ADDR

Addresses the computer running HP VEE to listen; sends
MLA.

MY TALK ADDR

Addresses the computer running HP VEE to talk; sends
MTA.

332

Appendix D

I/0 Transaction Reference
SEND Transactions

Table D-26. SEND Bus Commands

Command Description

MESSAGE Sends a multi-line bus message. Consult IEEE 488.1 for
details. The multi-line messages are:

DCL Device Clear

SDC Selected Device Clear
GET Group Execute Trigger
GTL Go To Local

LLO Local Lockout

SPE Serial Poll Enable
SPD Serial Poll Disable
TCT Take Control

Appendix D 333

I/0 Transaction Reference
WRITE(POKE) Transactions

WRITE(POKE) Transactions

TheWRlI TE(POKE) transaction isvery similar to the WRI TE transaction,
except that it applies only to the To/ Fr om DDE object. The main difference
of WRI TE(POKE) isthat you must specify an item name. For example;

WRI TE | TEM "r2c3" TEXT a EQL
VRl TE(POKE) transactions are supported by HP VEE for Windows only.

The following encodings are allowed:
B TEXT

B BYTE

B CASE

B CONTAI NER

For more specific information about these formats see the WRI TE
transaction.

334 Appendix D

I/0 Transaction Reference
READ(REQUEST) Transactions

READ(REQUEST) Transactions

The READ(REQUEST) transaction isvery similar to the READ transaction,
except that it applies only to the To/ Fr om DDE object. The main difference
of READ(REQUEST) isthat you must specify an item name. For example:

READ | TEM "r2c3" TEXT a ECL
READ(REQUEST) transactions are supported by HP VEE for Windows only.

The following encodings are allowed:
B TEXT
B CONTAI NER

For more specific information about these formats see the READ transaction.

Appendix D 335

I/0 Transaction Reference
READ(REQUEST) Transactions

336 Appendix D

HP VEE for UNIX and
HP VEE for Windows
Differences

HP VEE for UNIX and HP VEE for Windows
Differences

In general, programs written in HP VVEE on one platform will work on any
other supported platform. The only difficulties that arise are when you use
programs that access features specific to the underlying platform, such as
DLLson PCsor named pipes on UNIX. This appendix containsinformation
on the differences between HP VEE on UNIX and PC platforms.

338 Appendix E

HP VEE for UNIX and HP VEE for Windows Differences
Execute Program

Execute Program

[Thereisan Execut e Pr ogr amobject for both the UNIX and PC
platforms. Note that you can determine which platform you are executing on
by using thewhi chPl at f or n(), whi chGOS(), or whi chPl at f or ()
built-in functions (inthe Functi on & Obj ect Browser). You canthen
programmatically determine which Execut e Pr ogr amobject to use.

Appendix E 339

HP VEE for UNIX and HP VEE for Windows Differences
DLL versus Shared Library

DLL versus Shared Library

There are several differences that must be noted when creating DLLs and
Shared Libraries for Compiled Functions.

I/O From a Shared Library you do I/O through SICL, DIL or
TERM O. For DLLs use SICL. To avoid systemic resource
conflicts, be sure your source code uses library commands
that support the platform and interface system the compiled
function will run on.

Graphics Shared Libraries use X11 graphics while DLLs use
Microsoft Windows GDI calls. Link Shared Libraries against
the X Windows Release 5 of the library. While a compiled
function runs in an X Window, HP VEE cannot service its
human interface.

340 Appendix E

HP VEE for UNIX and HP VEE for Windows Differences
Data Files

Data Files

No binary files will work across platforms since byte ordering is reversed
between UNIX and PC platforms. However, ASCII datafiles written using
To Fil e objects arereadable by Fr om Fi | e objects on other platforms.
Also, HP VEE program files are compatible since they are stored in ASCI|.
Note that when moving ASCII data files from one platform to another,
UNIX files use the linefeed character to terminate lines while MS Windows
uses the carriage return/linefeed sequence to terminate lines.

Appendix E 341

HP VEE for UNIX and HP VEE for Windows Differences
Data Files

342 Appendix E

| ndex

Symbols

#A block headers, 281
#B notation

with READ INTEGER, 287
#H notation

with READ INTEGER, 287
#1 block headers, 281
#Q notation

with READ INTEGER, 287
#T block headers, 281
$XENVIRONMENT, 224

Numerics

Ox notation
with READ INTEGER, 287

A

ABORT
for EXECUTE, 320
accessing
examples, 3
library objects, 4
records, 17
variable values, 11
ActiveX
adding control to program, 187
automation, 169—185
automation and controls, 168—191

automation properties and methods,

176—178
automation type libraries, 169
browser, 179—183
control properties dialog, 188
control selection, 186
control variables, 189
controls, 186—190
creating automation object, 175
data type compatibility, 181, 184
declaring variables, 171, 190
default properties, 177
deleting automation objects, 185
enumerations, 179
event handling, 172, 189
examples, 168

getting existing automation object,
175
mani pulating automation objects,
176—183
manipulating controls, 190
online help, 183, 189
type library selection, 169
using controls, 189
ActiveX (Callable VEE contral), 77
Add Trans, 82
ALL CLEAR
in WAIT REGISTER or MEMORY
transactions, 330
in WAIT SPOLL transactions, 329
ANY SET
in WAIT REGISTER or MEMORY
transactions, 330
in WAIT SPOLL transactions, 329
API
VEE DATA, 63
app-defaults for HP VEE, 224
ARRAY
reading arrays, 88
reading scalars, 88
read-to-end, 88
Array Format
in transaction objects, 100
Array Separator
in transaction objects, 99
arrays
reading with transactions, 88
sharing with HP BASIC/UX, 133
using commas, 213, 215
ASCI| table, 236
asynchronous objects, 207
attributes
changing, 224
location of file, 224
Auto Execute, 207
automation (see ActiveX)
Autoscale, 195

B

backward compatibility, 202
BINARY encoding

Index-2

for READ, 313
for WRITE, 277
BINBLOCK Encoding
for READ, 314
BINBLOCK encoding
for WRITE, 279
binding
shared library, 43
bitmaps
customizing, 226
panel view, 227
selecting, 227
Block Array Format, 100
block data formats, 279
block headers, 279
blocking reads
IOSTATUS (READ), 318
bounds checking, 209
building records, 20
BY TE encoding
for WRITE, 276
BYTE format
for READ BINARY, 313
for READ BINBLOCK, 314
for READ MEMORY, 317
for READ REGISTER, 316
for WRITE BINARY, 277
for WRITE BINBLOCK, 279
for WRITE MEMORY, 284
for WRITE REGISTER, 283

C

C
libraries, 33
C cdlsVEE, 56
C datatypes, 63
C programs, 122
communicating with, 117, 134
C Typesdlowed in DLL, 44
C++
libraries, 33
Cal, 209
time-dicing, 27
user-defined functions, 26
Callable VEE, 56—76

caling

DLL Functions, 47

precedence, 206

UserFunctions, 28
CASE encoding

for WRITE, 276
changing

geometry, 224

X11 attributes, 224
CHAR format

for READ TEXT, 287, 293
CLEAR

effect on write pointers, 108
CLEAR (Files)

for EXECUTE, 320
CLEAR (HP-IB)

for EXECUTE, 320
Clear File at PreRun & Open, 108
Client

DDE, 137
CLOSE

effect on files, 108

for EXECUTE, 320
CLOSE READ PIPE

for EXECUTE, 320
CLOSE WRITE PIPE

for EXECUTE, 320
closing files, 108
Collector, 207
color maps

dealing with different, 228—231
colors

line, 194, 204
colors flashing

correcting, 228—231
COMMAND

in SEND transactions, 332
common problems, 198
compatibility, 202
compatibility modes, 202—219
Compiled Function, 3348

DLL, 44

MS Windows, 44
Compiled Functions

precedence of, 206

Index-3

compiler, 202—213
object changes, 212
program changes, 205
COMPLEX format
for READ BINARY, 313
for READ BINBLOCK, 314
for READ TEXT, 287, 311
for WRITE BINARY,, 277
for WRITE BINBLOCK, 279
for WRITE TEXT, 249, 270
configuring
transaction objects, 97
configuring HP VEE, 222
Conformance
effects on learn strings, 282
effects on WRITE STATE, 282
Connect/Bind Port
in To/From Socket, 126
constraining inputs, 194
container
record, 15
CONTAINER encoding
for READ, 316
for WRITE, 281
control (Callable VEE), 77
controls (see ActiveX)
converting
between UserObjects and
UserFunctions, 27
data types, 63
programs, 202, 214
COORD format
for READ BINARY, 313
for READ BINBLOCK, 314
for READ TEXT, 287, 311
for WRITE BINARY, 277
for WRITE BINBLOCK, 279
for WRITE TEXT, 249, 270
Copy Trans, 82
correcting changing screen colors, 228—
231
CreateObject, 175
creating
bitmaps, 226
UserFunction library, 29

CTL

for WRITE IOCONTROL, 285
CTLOline

on GPIO interfaces, 285
CTL1line

on GPIO interfaces, 285
cursor keys

for editing transactions, 83
customizing bitmaps, 226
Cut Trans, 82

D

DATA

in SEND transactions, 332
data

in transactions, 85
data containers, 63
datafield

in transactions, 85
Data Format dialog box, 97
Data Format tab, 98
data shapes

records, 20
data types

converting, 63

in ActiveX, 181, 184

mapped, 65

record, 14
DataSet, 14, 23

logging to, 156
DCL (Device Clear), 332
DDE, 137

Client, 137

Server, 137
dealing with color maps, 228—231
Declare Variable

used in libraries, 30
Declare Variables, 195
declared variables, 7
default attributes

location of file, 224
DEFAULT format

for WRITE TEXT, 249, 250
DEFAULT NUM CHARS

effectson READ TEXT, 289

Index-4

Definite Length Arbitrary Block
Response Data, 279
Definition File for DLL, 45
DEG phase units, 272
Delete Variable
All, 12
By Name, 12
Delete Variables at PreRun, 9, 12
Deleting DLL Libraries, 48
delimiter
in READ TEXT TOKEN
transactions, 294
Device Clear (DCL), 332
Differencesin HP VEE platform
implementations, 338
Direct I/0O
EXECUTE transactions (HP-1B), 324
EXECUTE transactions (VXI), 326
Disable Debug Features, 195
Display Server, 51
DLL, 33, 340
.DEFfile, 45
C declarations, 44
C Types dlowed, 44
Calling Functions, 47
Configuring Calling Functions, 47
creating, 44
Definition File, 45
deleting libraries, 48
functionsin formulas, 48
importing libraries, 47
parameters, 46
Dynamic Data Exchange, 137

E

editing
transactions, 82
UserFunction libraries, 31

encodings
BINARY (WRITE), 277
BINBLOCK (WRITE), 279
BYTE (WRITE), 276
CASE (WRITE), 276
CONTAINER (READ), 316
CONTAINER (WRITE), 281

for READ transactions, 286
for WRITE transactions, 247
IOCONTROL (WRITE), 285
IOSTATUS (READ), 318
MEMORY (READ), 317
MEMORY (WRITE), 284
REGISTER (READ), 316
REGISTER (WRITE), 283
STATE (WRITE), 282
TEXT (WRITE), 249
End of Line (EOL)
in transaction objects, 99
EOF, 209
EOL
in transaction objects, 99
EQUAL
in WAIT REGISTER or MEMORY
transaction, 330
error 935, 208
error 937, 207
error 938, 211
errors
parse, 200
remote function, 54
escape characters
listed, 87
example programs
accessing, 3
communicating with HP BASIC/UX,
132, 133
directories, 3
importing awaveform file, 114, 116
reading XY datafrom afile, 111
running C programs, 122
running shell commands, 120
using EOF to read files, 111
examples, 3
EXCLUDE CHARS
for READ TEXT TOKEN, 294, 298
EXECUTE, 320328
file pointers, 107
Execute Program
general usage, 117
running C programs, 122
Wait for Prog Exit, 118

Index-5

Execute Program (PC), 339
general usage, 134
Prog With Params, 136
Run Style, 135
Wait for Prog Exit, 135
Working Directory, 136
Execute Program (UNIX), 339
Prog With Params, 119
read-to-end, 121
running shell commands, 120
Shell, 118
EXECUTE transactions
ABORT, 320
ABORT (HP-1B), 324
CLEAR (Files), 320
CLEAR (HP-IB), 320, 324
CLEAR (VXI), 327
CLOSE, 320
CLOSE READ PIPE, 320
CLOSE WRITE PIPE, 320
LOCAL, 320
LOCAL (HP-IB), 325
LOCAL (VXI), 327
LOCAL LOCKOUT, 320
LOCAL LOCKOUT (HP-1B), 326
REMOTE, 320
REMOTE (HP-IB), 325
REMOTE (VXI), 328
REWIND, 320
TRIGGER, 320
TRIGGER (HP-I1B), 325
TRIGGER (VXI), 327
execution
increasing speed of, 194
Execution Mode, 202
Disable Debug Features, 195
execution order, 208
expression list
in transactions, 85
expressions
calling UserFunctions, 28
changes for Standard mode, 215

E
feedback, 208

fields
compiler mode, 212
editing records, 21
files
.veeio, 54
.veerc, 54
closing, 108
From File, 107
From Stdin, 107
importing data, 111
pointers, 107
reading, 111
reading and writing with transactions,
107
To File, 107
To SdErr, 107
To StdOut, 107
using different attributes, 224
FIXED notation
for WRITE TEXT REAL, 268
flashing colors
correcting, 228—231
For Log Range
not operating, 199
For Range
in compile mode, 209
not operating, 199
formats
BYTE (READ BINARY), 313
BYTE (READ BINBLOCK), 314
BYTE (READ MEMORY), 317
BYTE (READ REGISTER), 316
BYTE (WRITE BINARY), 277
BYTE (WRITE BINBLOCK), 279
BYTE (WRITE MEMORY), 284
BYTE (WRITE REGISTER), 283
CHAR (READ TEXT), 287, 293
COMPLEX (READ BINARY), 313
COMPLEX (READ BINBLOCK),
314
COMPLEX (READ TEXT), 287, 311
COMPLEX (WRITE BINARY), 277
COMPLEX (WRITE BINBLOCK),
279

Index-6

COMPLEX (WRITE TEXT), 249,
270

COORD (READ BINARY), 313

COORD (READ BINBLOCK), 314

COORD (READ TEXT), 287, 311

COORD (WRITE BINARY), 277

COORD (WRITE BINBLOCK), 279

COORD (WRITE TEXT), 249, 270

DEFAULT (WRITE TEXT), 249, 250

for READ MEMORY, 317

for READ REGISTER, 316

for READ TEXT transactions, 287

for WRITE MEMORY, 284

for WRITE REGISTER, 283

for WRITE TEXT, 249

for WRITE transactions, 247

HEX (READ TEXT), 287, 306

HEX (WRITE TEXT), 249, 266

INT16 (READ BINARY), 313

INT16 (READ BINBLOCK), 314

INT16 (WRITE BINARY), 277

INT16 (WRITE BINBLOCK), 279

INT32 (READ BINARY), 313

INT32 (READ BINBLOCK), 314

INT32 (WRITE BINARY), 277

INT32 (WRITE BINBLOCK), 279

INTEGER (READ TEXT), 287, 303

INTEGER (WRITE TEXT), 249, 260

OCTAL (READ TEXT), 287, 305

OCTAL (WRITE TEXT), 249, 263

PCOMPLEX (READ BINARY), 313

PCOMPLEX (READ BINBLOCK),
314

PCOMPLEX (READ TEXT), 287,
311

PCOMPLEX (WRITE BINARY), 277

PCOMPLEX (WRITE BINBLOCK),
279

PCOMPLEX (WRITE TEXT), 249,
270

QUOTED STRING (READ TEXT),
287, 301

QUOTED STRING (WRITE TEXT),
249, 255

REAL (READ TEXT), 287, 308

REAL (WRITE TEXT, 267
REAL (WRITE TEXT), 249
REAL32 (READ BINARY), 313
REAL32 (READ BINBLOCK), 314
REAL32 (READ MEMORY), 317
REAL32 (READ REGISTER), 316
REAL32 (WRITE BINARY), 277
REAL32 (WRITE BINBLOCK), 279
REAL32 (WRITE MEMORY), 284
REAL32 (WRITE REGISTER), 283
REAL64 (READ BINARY), 313
REAL64 (READ BINBLOCK), 314
REAL64 (WRITE BINARY, 277
REAL64 (WRITE BINBLOCK), 279
STRING (READ BINARY), 313
STRING (READ TEXT), 287, 299
STRING (WRITE BINARY, 277
STRING (WRITE TEXT), 249, 251
TIME STAMP (READ TEXT, 287
TIME STAMP (WRITE TEXT), 249,
273

TOKEN (READ TEXT), 287, 294
WORD16 (READ MEMORY), 317
WORD16 (READ REGISTER), 316
WORD16 (WRITE MEMORY), 284
WORD16 (WRITE REGISTER), 283
WORD32 (READ MEMORY), 317
WORD32 (READ REGISTER), 316
WORD32 (WRITE MEMORY), 284
WORD32 (WRITE REGISTER), 283

Formula
calling UserFunctions, 28
DLL Functions, 48

FORTRAN
libraries, 33

From File, 209
general usage, 107

From Stdin
general usage, 107
non-blocking reads, 107

From String
general usage, 106

Function & Object Browser
used for ActiveX, 179

functions

Index-7

cdled from C, 56 in To/From Socket, 127

compiled, 33 HP BASIC/UX
handling scalar data, 65 sharing colors with HP VEE, 228—231
merging, 31 HP VEE
precedence, 206 sharing colors with HP BASIC/UX,
remote, 49 228—231
see also Compiled Functions, Remote HP VEE RunTime, 195
Functions, UserFunctions HP-GL
user, 27 plotter support, 233
user-defined, 2655 HP-IB
Direct |/O, 324
G Interface Operations, 324
geometry low-level control_, 324
changing, 224 HP-I1B Bus Operations

Geometry, on Import Library, 51 detailed reference, 332

GET (Group Execute Trigger), 332 HP-IB Msg, 236

Get Field
accessing records, 17 I

Get Variable, 9 icons

GetObject, 175 creating bitmaps for, 226

global namespace, 216 |IEEE 728

global variables, 195 block headers, 281
deleting, 12 Implementation Differences, 338
scoping, 7 Import Library, 30
undeclared, 6 Imported UserFunctions
using, 6 precedence of, 206

Go To Local (GTL), 332
GPIO interfaces

importing data, 111
Importing DLL Libraries, 47

READ transactions, 318 INCLUDE CHARS

WRITE transactions, 285 for READ TEXT TOKEN, 294, 296
GRAD phase units, 272 INCR

grayed
features, 199
fieldsin compiler mode, 212
fieldsiniterators, 209

Group Execute Trigger (GET), 332

GTL (Go To Local), 332

H

handling scalar data, 65
HEX format
for READ TEXT, 287, 306
for WRITE TEXT, 249, 266
Host Name

for READ MEMORY, 317
for READ REGISTER, 316
for WRITE MEMORY, 284
for WRITE REGISTER, 283
Init HP BASIC/UX
general usage, 117, 130
Insert Trans, 82
INT16 format
for READ BINARY, 313
for READ BINBLOCK, 314
for WRITE BINARY, 277
for WRITE BINBLOCK, 279
INT32 format
for READ BINARY, 313

Index-8

for READ BINBLOCK, 314
for WRITE BINARY, 277
for WRITE BINBLOCK, 279
INTEGER format
for READ TEXT, 287, 303
for WRITE TEXT, 249, 260
Interface Operations
EXECUTE transactions (VX1), 324,
326
interface,user (see panel view)
internal functions
precedence of, 206
interprocess communication
To/From Named Pipe, 123
To/From Socket, 125
intersecting loops, 211
Junction, 212
INTERVAL
for WAIT, 329
IOCONTROL encoding
for WRITE, 285
IOSTATUS encoding
for READ, 318
Iso, 232
iteration, 209
iterations, 209
iterators
intersecting, 211
intersecting with Junction, 212

J

Junction, 208
intersecting loops, 212
parallel, 210

K

Katakana, 232
keyboards
non-USASCII, 232

keys
for editing transactions, 83

L
libraries

editing imported, 31
general use of, 26
importing, 31
merging, 31
user-defined, 26—77
UserFunction, 29
using variablesin, 12, 30
library objects, 4
accessing, 4
line colors, 194, 204
Linear Array Format, 100
LISTEN
in SEND transactions, 332
LLO (Local Lockout), 332
LOCAL
for EXECUTE, 320
LOCAL LOCKOUT
for EXECUTE, 320
Local Lockout (LLO), 332
local scoping, 7
local UserFunctions
precedence of, 206
local variables
using, 6
logging
to aDataSet, 156
logging test results
restrictions, 157
loop bounds, 209
loops, 209
intersecting, 211
intersecting with Junction, 212

M

Make UserFunction, 27
Make UserObject, 27
mapping arrays, 65
MAX NUM CHARS

effectson READ TEXT, 289
MEMORY

for WAIT, 329
MEMORY encoding

for READ, 317

for WRITE, 284
menu features

Index-9

grayed, 199
Merge Library, 31
merging

xrdb, 224
Multi-Field Format

in transaction objects, 100
MY LISTEN ADDR

in SEND transactions, 332
MY TALK ADDR

in SEND transactions, 332

N

named pipes
related reading, 144
namespace, 216
naming variables, 8
Non-blocking reads, 93
Non-Decimal Numeric formats
with READ INTEGER, 287
non-USASCII keyboards, 232
NOP
in transactions, 84
notations
FIXED, 268
for READ TEXT INTEGER, 304
for WRITE TEXT REAL, 268
SCIENTIFIC, 268
STANDARD, 268
null
in READ transactions, 86

O

object changes

with the compiler, 212
objects

library, 4

pre-defined, 200
OCTAL format

for READ TEXT, 287, 305

for WRITE TEXT, 249, 263
OK, 207, 209
OLE (Callable VEE contral), 77
OLE automation (see ActiveX)
Open Example, 3

open view changes
with the compiler, 212

P

panel view
selecting a bitmap, 227
parallel junctions, 210
parallel threads, 208
parse errors, 200
Pascal
libraries, 33
Paste Trans, 82
PCOMPLEX format
for READ BINARY, 313
for READ BINBLOCK, 314
for READ TEXT, 287, 311
for WRITE BINARY, 277
for WRITE BINBLOCK, 279
for WRITE TEXT, 249, 270
PCTL
for WRITE IOCONTROL, 285
phase units
for WRITE PCOMPLEX, 272
plotter support
HP-GL, 233
pointers
relationship to transactions, 107
precedence
functions, 206
variable names, 8
pre-defined objects, 200
PreRun
effects on file pointers, 107
Profiler, 194
Prog With Params
in Execute Program, 119, 136
programs
configuring, 222
example, 3
execution order, 208
speeding up, 194
troubleshooting, 198
Properties
in transaction objects, 97

Index-10

Q

QUOTED STRING format
for READ TEXT, 287, 301
for WRITE TEXT, 249, 255
quoted strings
effectson READ TEXT STRING, 291
effects on READ TEXT TOKEN, 291

R

-r, 195
RAD phase units, 272
READ, 286—319
file pointers, 107
non-blocking, 93
reading arrays, 88
simplified usage, 85
TEXT, 287
read pointers, 108
READ TEXT STRING
effects of quoted strings, 291
READ TEXT TOKEN
effects of quoted strings, 291
Read to End
effects on READ TEXT, 289
Read to EOF
effects on READ BINARY, 313
effectson READ BINBLOCK, 315
READ(REQUEST) transactions, 335
reading files, 111
REAL format
for READ TEXT, 287, 308
for WRITE TEXT, 249, 267
REAL 32 format
for READ BINARY, 313
for READ BINBLOCK, 314
for READ MEMORY, 317
for READ REGISTER, 316
for WRITE BINARY, 277
for WRITE BINBLOCK, 279
for WRITE MEMORY, 284
for WRITE REGISTER, 283
REAL 64 format
for READ BINARY, 313
for READ BINBLOCK, 314
for WRITE BINARY, 277

for WRITE BINBLOCK, 279
records

accessing, 17

building, 20

container, 15

data shape, 20

datatype, 14

editing fields, 21

unbuilding, 19
recovering from common problems, 198
REGISTER

for WAIT, 329
REGISTER encoding

for READ, 316

for WRITE, 283
REMOTE

for EXECUTE, 320
Remote Debug, 51
Remote Function, 49-55

errors, 54

precedence of, 206
restrictions

logging test results, 157
REWIND

effect on read pointers, 108

effect on write pointers, 108

for EXECUTE, 320
Roman8 fonts, 232
round-robin, 208
Run Style

in Execute Program, 135
running

examples, 3

S

Sample & Hold, 207
scalar data handling, 65
SCIENTIFIC notation

for WRITE TEXT REAL, 268
scoping, 7

global, 7

local, 7
SDC (Selected Device Clear), 332
SECONDARY

in SEND transactions, 332

Index-11

security

UNIX, 52
Selected Device Clear (SDC), 332
selecting a bitmap, 227
SEND transactions, 332
Sequencer

calling UserFunctions, 28

object, 146
Serial Poll Disable (SPD), 332
Seria Poll Enable (SPE), 332
Server

DDE, 137
Set Variable, 9
Shared Libraries, 33, 340
Shell field

in Execute Program (UNIX), 118
SPACE DELIM

for READ TEXT TOKEN, 294, 295
SPD (Serial Poll Disable), 332
SPE (Serial Poll Enable), 332
Speed

increasing execution, 194
SPOLL

for WAIT, 329
Standard Compatibility, 202
Standard mode

defined, 214

expressions, 215

global namespace, 216

in HP-UX, 219

variables, 216
STANDARD notation

for WRITE TEXT REAL, 268
Start, 207, 208
STATE encoding

for WRITE, 282
Step, 209
STRING format

for READ BINARY, 313

for READ TEXT, 287, 299

for WRITE BINARY, 277

for WRITE TEXT, 249, 251

T
Take Control (TCT), 332

TALK
in SEND transactions, 332
TCT (Take Contral), 332
temporary variables, 6
terminals
name of variables, 7
using with transactions, 87
test sequencer, 146
TEXT encoding
for WRITE, 249
TIME STAMP format
for READ TEXT, 287
for WRITE TEXT, 249, 273
Timeout
in To/From Socket, 127
Timer, 207
time-dlicing, 27, 206
ToFile
general usage, 107
To Stderr
general usage, 107
To StdOut
general usage, 107
To String
as adebugging tool, 96
example program, 81
general usage, 106, 107
To/From DDE, 137
To/From HP BASIC/UX
general usage, 117, 130
To/From Named Pipe

EXECUTE CLOSE READ PIPE, 124

EXECUTE CLOSE WRITE PIPE,
124
general usage, 123
non-blocking reads, 124
read-to-end, 124
related reading, 144
To/From Socket
Connect/Bind Port, 126
general usage, 125
Host Name, 127
Timeout, 127
TOKEN format
for READ TEXT, 287, 294

Index-12

totSize(), 207
transactions, 80—144
adding terminals, 87
communicating with Programs, 117
configuring transaction objects, 97
creating, 82
debugging, 96
detailed reference, 244—335
details of operation, 97
editing, 82
example of editing, 84
EXECUTE, 320
Execute Program, 117
execution rules, 97
file pointers, 107
Init HP BASIC/UX, 117
non-blocking reads, 107
overview, 81
READ, 286, 287
READ(REQUEST), 335
selecting, 102
SEND, 332
summary of objects using, 245
summary of transaction objects, 103
summary of types, 104, 244
To String, 96
To String example, 81
To/From HP BASIC/UX, 117
To/From Named Pipe, 123
To/From Socket, 125
using From File, 107
using From Stdin, 107
using From String, 106
using To File, 107
using To StdErr, 107
using To StdOut, 107
using To String, 106
WAIT, 329
with files, 107
WRITE, 246—285
WRITE(POKE), 334
TRIGGER
for EXECUTE, 320
troubleshooting
programs, 198

U

unbuilding records, 19
unconstrained objects, 210
undeclared variables, 6
units

for PCOMPLEX phase, 272
UNIX security, 52
UNLISTEN

in SEND transactions, 332
UNTALK

in SEND transactions, 332
user interface (see panel view)
user-defined functions, 2655
user-defined libraries, 26—77
UserFunction, 27—32, 209
UserFunction library, 29
UserFunctions, 194

calling from expressions, 28

converting to UserObjects, 27

merging, 31

time-dlicing, 27, 206

used as ActiveX event handler, 172
UserObjects

converting to UserFunctions, 27

problems with, 198

time-dicing, 206

with XEQ pins, 209
using

default attributes file, 224

examples, 3

non-USASCI| keyboards, 232

xrdb, 224

\Y,

variables, 6
accessing values, 11
changes for Standard mode, 216
declared, 7
declaring for ActiveX, 171, 190
declaring in libraries, 30
deleting, 12
global, 7
in transactions, 85, 87
initializing, 9
local, 7

Index-13

naming, 8
naming precedence, 8
null, 86
scoping, 7
temporary, 6
terminal names, 7
undeclared, 6
undeclared global, 6
using in libraries, 12
VDCs, 63
VEE 3 Compatibility, 202
VEE 4 Compatibility, 202
VEE DATA AP, 63
VEE.RC file, 223
veeData.h, 64
veeio file, 54
veerc file, 54, 223
VXI
Direct 1/O, 326
Interface Operations, 326
low-level control, 326

w

WAIT, 329331
INTERVAL, 329
MEMORY, 329
REGISTER, 329
SPOLL, 329

Wait for Input, 207

Wait for Prog Exit

in Execute Program (PC), 135
in Execute Program (UNIX), 118

waveforms
importing, 113
WORD16 format
for READ MEMORY, 317
for READ REGISTER, 316
for WRITE MEMORY , 284
for WRITE REGISTER, 283
WORD32 format
for READ MEMORY, 317
for READ REGISTER, 316
for WRITE MEMORY,, 284
for WRITE REGISTER, 283
Working Directory

in Execute Program, 136
WRITE
encodings and formats, 247
file pointers, 107
path-specific behaviors, 246
simplified usage, 85
write pointers, 108
WRITE transactions, 246—285
WRITE(POKE) transactions, 334

X

X11 attributes
changing, 224
X11 colorsflashing
correcting, 228—231
X11 resources
file location, 224
Xdefaults, 224
XEQ, 207, 209
xrdb
using, 224

Index-14

	HP VEE Advanced Programming Techniques
	Notice
	Warranty Information
	U.S. Government Restricted Rights
	Copyright ” 1991—1998 Hewlett-Packard Company. All rights reserved.
	Printing History

	Conventions Used in This Manual
	1. Introduction
	2. Variables
	3. Using Records and DataSets
	4. Using User-Defined Libraries
	5. Using Transaction I/O
	6. Using the Sequencer Object
	7. Using ActiveX Automation Objects and Controls
	8. Keys To Faster Programs
	9. Troubleshooting Problems
	A. Using the Compatibility Mode
	B. Configuring HP�VEE
	C. ASCII Table
	D. I/O Transaction Reference
	E. HP�VEE for UNIX and HP�VEE for Windows Differences

	1 Introduction
	Introduction
	About This Manual
	Note Throughout this manual, references to HP�VEE apply to both HP�VEE for HP�UX and HP�VEE for W...

	HP�VEE Example Programs
	Using the Examples
	Running Examples
	Example Directories
	Using Library Objects

	2 Variables
	Variables
	Note For information about using variables with ActiveX automation objects and controls, see Chap...
	About Undeclared Variables
	About Declared Variables
	About Naming
	You can use any valid variable name for a variable. The first character must be a letter. Letters...

	Naming Precedence
	1. Input terminal name (such as in a Formula or a transaction object)
	2. Temporary variable (as in a Formula object)
	3. Local to Context declared variable
	4. Local to Library declared variable
	5. Global declared variable
	6. Global undeclared variable
	Setting Initial Values
	You must have set initial values before accessing any variables or HP�VEE generates an error.
	Figure 2-1. A Simple Variable Example

	If the variable is an array or a record, when using the Formula object, you must set the values o...
	Figure 2-2. Setting Array Values

	Accessing Variable Values
	Once you have named a variable, you can access its value as many times as you want in your progra...
	Figure 2-3. Accessing a Variable Multiple Ways

	Note You can include the name of any global variable in any expression in a Formula object, or in...
	Deleting Variables
	Using Variables in Libraries

	3 Using Records and DataSets
	Using Records and DataSets
	Record Containers
	Figure 3-1. A Simple Record Container

	Accessing Records
	Figure 3-2. Retrieving Record Fields with Get Field
	Use the syntax Rec[1].Name and Rec[1].EmplNo to obtain just the second element ("element 1") of e...
	Figure 3-3. Using Array Syntax in Get Field

	To retrieve several or all fields from a record use the UnBuild Record object, as shown in the ne...
	Figure 3-4. Retrieving Record Fields with UnBuild Record

	Note Data cannot be automatically converted to and from the Record data type. For example, to sen...

	Programmatically Building Records
	Figure 3-5. The Effect of Output Shape in Build Record
	Figure 3-6. Mixing Scalar and Array Input Data
	Editing Record Fields
	You can use the Set Field object to modify a field in a record. The Set�Field object is an assign...
	Figure 3-7. Using Set Field to Edit a Record

	Using DataSets
	Figure 3-8. Using To DataSet to Save a Record
	Figure 3-9. Using From DataSet to Retrieve a Record

	4 Using User-Defined Libraries
	Using User-Defined Libraries
	1. Import the library. Use the Device ﬁ Import Library object. Select the Library Type (UserFunct...
	2. Call one or more functions that are contained in the library. Use the Call, Formula, or Sequen...
	3. Delete the library. If memory management or program execution speed is a concern, use the Devi...

	About UserFunctions
	Converting Between UserObjects and UserFunctions
	Calling a UserFunction from an Expression
	You don't need to use the Call object to call a UserFunction. In fact you can call a UserFunction...
	Figure 4-1. Calling a UserFunction from Expressions

	Creating a UserFunction Library
	Figure 4-2. Creating UserFunctions for a Library

	Note Generally you want the program to contain only the UserFunctions, however if there are other...
	Figure 4-3. Importing a UserFunction Library

	Note You cannot edit the UserFunctions imported with Device ﬁ Import Library, but you can view th...
	Differences Between Merging and Importing

	About Compiled Functions
	1. Write the external program.
	2. Create the DLL (Windows) or shared library (UNIX), and a definition file.
	3. Import the library and call the function from HP�VEE.
	4. Delete the library from HP�VEE's memory when you're done.
	Note Pascal shared libraries are supported only for HP 9000 Series 700 computers.
	Design Considerations for Compiled Functions
	Importing and Calling a Compiled Function
	The Import Library object was explained in the ‘‘UserFunctions’’ section at the beginning of this...
	Figure 4-4. Using Import Library for Compiled Functions
	Figure 4-5. Using Call for Compiled Functions

	Creating a Compiled Function (UNIX)
	The Definition File
	The Call object determines the type of data it should pass to your function based on the contents...
	<return type> <function name> (<type> <paramname>, <type> <paramname>, ...) ;

	Where:

	Note For HP-UX, you must have the ANSI C compiler in order to generate the position independent c...
	Building a C Function
	/*
	C code from manual49.c file
	*/
	#include <stdlib.h>
	#ifdef WIN32
	# define DLLEXPORT __declspec(dllexport)
	#else
	# define DLLEXPORT
	#endif
	/* The description will show up on the Program Explorer when you select "Show Description" from t...
	*/
	DLLEXPORT char myFunc_desc[] = "This function adds 1.0 to the array passed in";
	DLLEXPORT long myFunc(long arraySize, double *array) { long i;
	for (i = 0; i < arraySize; i++, array++) { *array += 1.0; }
	return(arraySize); }
	The following HP�VEE program calls the Compiled Function created from our example C program:
	Figure 4-6. Program Calling a Compiled Function

	Creating a Shared Library
	Binding the Shared Library
	Creating a Dynamic Linked Library (MS Windows)

	Note This section tells you how to call a DLL, not how to write a DLL. HP�VEE version 3.2 and gre...
	Creating the DLL
	If you are using Microsoft Visual C++ version 2.0 or greater, the function definition should be:
	Declaring DLL Functions
	Creating the Definition File
	Examples

	Parameter Limitations
	The Import Library Object
	The Call Object
	The Delete Library Object
	Using DLL Functions in Formula Objects

	About Remote Functions
	Figure 4-7. Import Library for Remote Functions
	Note The remote HP�VEE service invoked by the client is dependent on the Host Name specified in t...
	1. The HP�VEE service process will execute only Remote Functions that are contained in the Remote...
	2. Remote Functions have views associated with them. When you call a remote functions, you can ha...
	3. Global variables (declared and undeclared) are not shared between the processes.
	4. Remote Functions will not time-slice when called.
	5. Objects cannot be passed to or from a Remote Function (includes Automation objects or pointers...
	UNIX Security, UIDs, and Names

	Note In calling a service HP�VEE process, the password is not required or called for. You must ha...
	Resource Files
	Errors

	Note It is possible to write a Remote Function that will hang, such as an infinite loop. In this ...

	About Callable VEE
	Note The libvapi.a library cannot link to programs when using the Borland compiler.
	About the VEE RPC API
	Starting and Stopping a Server
	Loading and Unloading a Library
	Selecting UserFunctions
	Calling UserFunctions
	Other Functions
	Error Codes for the VEE RPC API
	The following error codes are returned when a connection to the HP�VEE server cannot be made:
	The following are fatal errors that occur after connection to a HP�VEE server (the connection has...
	The following errors reflect an internal non-fatal state within the service:
	The following error is returned by a RPC function call:
	About the VEE DATA API

	Data Types, Shapes and Mappings
	The fundamental VDC types are listed in the veeData.h header file as:
	enum veeType
	{
	VEE_TYPE_ANY=0, // The default without constraints.
	VEE_NOT_DEFINED1, // Leave space.
	VEE_LONG, // 32-bit signed integer (no 16-bit INTs in VEE).
	VEE_NOT_DEFINED2, // Leave space.
	VEE_DOUBLE, // IEEE 754 64-bit floating-point number.
	VEE_COMPLEX, // Complex number: 2 doubles in rectangular form.
	VEE_PCOMPLEX, // Complex number: 2 doubles in polar form.
	VEE_STRING, // 8-bit ASCII null-terminated string.
	VEE_NIL, // Empty container returned by function call.
	VEE_NOT_DEFINED3, // Leave space.
	VEE_COORD, // 2 or more doubles give XY or XYZ or ... data.
	VEE_ENUM, // An ordered list of strings.
	VEE_RECORD, // VEE record-structures data.
	VEE_NOT_DEFINED4, // Leave space.
	VEE_WAVEFORM, // A 1D array of VEE_DOUBLE with a time mapping.
	VEE_SPECTRUM // A 1D array of VEE_PCOMPLEX with a time mapping.

	Arrays can be "mapped". Normally they aren't, but the VEE_WAVEFORM and VEE_SPECTRUM data types ar...
	enum veeMapType
	{
	VEE_MAPPING_NONE, // No mapping.
	VEE_MAPPING_LINEAR, // Linear mapping.
	VEE_MAPPING_LOG // Log mapping.

	Scalar Data Handling
	You can change the values in the VDCs with another set of routines:
	int32 vdcSetLongScalar(VDC aVD,
	int32 aLong);
	int32 vdcSetDoubleScalar(VDC aVD,
	double aReal);
	int32 vdcSetStringScalar(VDC aVD,
	char *aStr);
	int32 vdcSetComplexScalar(VDC aVD,
	double realPart,
	double imaginaryPart);
	int32 vdcSetPComplexScalar(VDC aVD,
	double magnitude,
	double phase);
	int32 vdcSet2DCoordScalar(VDC aVD,
	double xval,
	double yval);
	int32 vdcSet3DCoordScalar(VDC aVD,
	double xval,
	double yval,
	double zval);
	int32 vdcSetCoordScalar(VDC aVD,
	int16 aFieldCount,
	double* values);

	When you have created a scalar VDC or returned one from a function, you can get the C data type o...
	int32 vdcGetLongScalarValue(VDC aVD,
	int32 *aLong);
	int32 vdcGetDoubleScalarValue(VDC aVD,
	double *aReal);
	char* vdcGetStringScalarValue(VDC aVD);
	int32 vdcGetComplexScalarValue(VDC aVD,
	veeComplex *aComplex);
	int32 vdcGetPComplexScalarValue(VDC aVD,
	veePComplex *aPComplex);
	int32 vdcGet2DCoordScalarValue(VDC aVD,
	vee2DCoord *aCoord);
	int32 vdcGet3DCoordScalarValue(VDC aVD,
	vee3DCoord *aCoord);
	double* vdcGetCoordScalarValue(VDC aVD,
	int16 vdcNumCoordDims(VDC aVD);

	Array Data Handling
	VDC vdcCreateCoord1DArray(int32 numPts,
	int16 aFieldCount,

	Enum Types
	Mapping Functions
	The VEE DATA API allows you to manipulate the mappings of arrays with the following functions:
	int32 vdcAtDimPutLowerLimit(VDC aVD,
	int16 aDim,
	double aValue);
	// Specify mapping for lower limit.
	int32 vdcAtDimPutUpperLimit(VDC aVD,
	int16 aDim,
	double aValue);
	// Specify mapping for upper limit.
	int32 vdcAtDimPutRange(VDC aVD,
	int16 aDim,
	double lowerLimit,
	double upperLimit);
	// Combines "vdcAtDimPutLowerLimit" &
	"vdcAtDimPutUpperLimit".
	int32 vdcAtDimPutMapping(VDC aVD,
	int16 aDim,
	VMT aMapping);
	// Set the mapping between limits as defined above.
	int32 vdcMakeMappingsSame(VDC VD1,
	VDC VD2);
	// Map two containers in the same way.
	int32 vdcUnMap(VDC aVD);

	Other Functions

	About the Callable VEE ActiveX Control

	5 Using Transaction I/O
	Using Transaction I/O
	Using Transactions
	Figure 5-1. Default Transaction in To String
	Figure 5-2. A Simple Program Using To String
	1. Modify the default transaction or add additional transactions as required.
	2. Add input terminals, output terminals, or both.
	Creating and Editing Transactions
	Table 5-1. Editing Transactions With a Mouse

	To Do This...
	Click On This...
	Table 5-2. Editing Transactions With the Keyboard

	To Do This...
	Press This Key...
	Figure 5-3. Editing the Default Transaction in To String

	Editing the Data Field
	Figure 5-4. READ Transaction Using a Variable in the Data Field
	Figure 5-5. WRITE Transaction Using an Expression in the Data Field
	Table 5-3. Typical Data Field Entries
	Data Field Entry
	Meaning

	Note READ transactions allow a special variable named null in the data field. Reading data into t...
	Table 5-4. Escape Characters
	Escape Character
	ASCII Code (decimal)
	Meaning
	\n
	10
	\t
	9
	\v
	11
	\b
	8
	\r
	13
	\f
	12
	\"
	34
	'
	39
	\\
	92
	\ddd
	Adding Terminals
	Figure 5-6. Terminals Correspond to Variables
	1. Double click on the terminal to expand it into a Terminal�Information dialog box.
	2. Edit the Name field in the dialog box.

	Reading Data

	Transactions that Read a Specified Number of Data Elements
	Figure 5-7. Select Read Dimension from List
	Figure 5-8. Transaction Dialog Box for Multi-Dimensional Read

	Read-To-End Transactions
	Figure 5-9 shows the transaction dialog box of a From File object, reading a three dimensional ar...
	Figure 5-9. Transaction Dialog Box for Multi-Dimensional Read-To-End

	Note If you don't know the absolute number of data elements in a file, you can always use a read-...
	Non-Blocking Reads

	Note A READ IOSTATUS DATAREADY transaction, when executed, will block until the named pipe has be...
	Figure 5-10. Using READ IOSTATUS DATAREADY for a Non-Blocking Read
	Suggestions for Experimentation
	Figure 5-11. Experimenting with To String

	Details About Transaction-Based Objects
	Execution Rules
	1. Transactions execute beginning with the top-most transaction and proceed sequentially downward.
	2. Each transaction in the list executes completely before the next one begins. Transactions with...
	3. Transaction-based I/O objects accessing the same source or destination may exist in separate t...

	Object Configuration
	Note Direct�I/O objects behave differently than described above. Direct�I/O objects include a Sho...
	Figure 5-12. The Properties Dialog Box
	End Of Line (EOL)
	Array Separator
	Multi-Field Format
	Array Format
	READ and WRITE Compatibility

	Choosing the Correct Transaction
	Table 5-5. Summary of Transaction-Based Objects
	Object
	Description
	Table 5-6. Summary of Transaction Types

	Action
	Description
	Selecting the Correct Object and Transaction
	1. Determine the source or destination of your I/O operation and the form in which data is to be ...
	2. Determine the type of object that supports the source or destination using Table 5-5.
	3. Determine the correct type of transaction using Table 5-6.
	4. To determine the remaining specifications for the transaction, such as encodings and formats, ...

	Example of Selecting an Object and Transaction
	1. The source is a text file. The data consists of a time stamp in 24-hour hours-minutes-seconds ...
	2. Consulting Table 5-5, note that the object used to read a file is From�File.
	3. Consulting Table 5-6, note that the type of transaction used to read data from a file is READ.
	4. The desired transactions are:

	Using To String and From String
	Communicating With Files
	Source or Destination
	Object
	Details About File Pointers

	Read Pointers
	Write Pointers
	Note The To DataSet and From DataSet objects also share one read and one write pointer per file w...
	Closing Files
	Figure 5-13. Using the EXECUTE CLOSE Transaction
	The EOF Data Output
	1.0
	5.5
	2.1
	8
	.
	.
	Figure 5-14. Typical Use of EOF to Read a File

	Common Tasks for Importing Data
	1. Save the data in a text file (ASCII file).
	2. Examine the data file with a text editor to determine the format of the data.
	3. Use a From�File object with a READ TEXT transaction to read the data file.

	Importing X-Y Values
	Figure 5-15. Importing XY Values
	.
	.
	.
	8 8.555555
	9 9e0
	10 1.05e+01
	11 +11.
	12 12.5
	13 1.3E1

	Importing Waveforms
	Fixed-Format Header
	NAME Noise1
	START_TIME 0.0
	STOP_TIME 1.0E-03
	SAMPLES 32
	DATA
	.243545
	.2345776
	.
	.
	.
	Figure 5-16. Importing a Waveform File
	1. The first transaction strips away the NAME label. This must be done before attempting to read ...
	2. The second transaction reads the string name of the waveform.
	3. The third through fifth transactions read the specified numeric quantity. Note that HP�VEE sim...
	4. The sixth transaction reads the one-dimensional array of Y data using the ARRAY SIZE determine...

	Variable-Format Header
	First Line Of File
	<MARKER1> 1 2 3
	<MARKER2> A B C
	<DATA>
	1 1.1
	2 2.2
	3 2.9
	.
	.
	Figure 5-17. Importing a Waveform File

	Communicating With Programs (UNIX)
	Program
	Object(s)
	Execute Program (UNIX)
	Figure 5-18. The Execute Program (UNIX) Object

	Execute Program (UNIX) Fields
	Shell
	Wait for Prog Exit
	1. Check to see if a child process corresponding to the Execute�Program�(UNIX) object is active. ...
	2. Execute all transactions specified in the Execute�Program object.
	3. Close all pipes to the child process, thus sending an end-of-file (EOF) to the child.
	4. Wait until the child process terminates before activating any output pins of the Execute�Progr...
	1. Check to see if a child process corresponding to the Execute�Program�(UNIX) object is active. ...
	2. Execute all transactions specified in the Execute�Program object.
	3. Activate any data output pins on the Execute�Program object. The child process remains active ...

	Prog With Params
	1. The name of an executable file and command line parameters (Shell�set�to�none).
	2. A command that will be sent to a shell for interpretation (Shell�not�set�to�none).

	Running a Shell Command
	Figure 5-19. Execute Program (UNIX) Running a Shell Command
	Figure 5-20. Execute Program (UNIX) Running a Shell Command using Read-To-End

	Running a C Program
	Figure 5-21. Execute Program Running a C Program
	#include <stdio.h>
	main ()
	{
	int c;
	double val;
	setbuf(stdout,NULL); /* turn stdout buffering off */
	while (((c=scanf("%lf",&val)) != EOF) && c > 0){
	fprintf(stdout,"%g\n",val+1);
	fflush(stdout); /* force output back to VEE*/
	}
	exit(0);
	}
	Figure 5-22. C Program Listing

	To/From Named Pipe (UNIX)

	Hints for Using Named Pipes
	To/From Socket
	Figure 5-23. The To/From Socket Object

	To/From Socket Fields
	Connect/Bind Port Mode
	Table 5-7. Range of Integers Allowed for Socket Port Numbers

	Number Range
	Reserved for ...
	Host Name
	Timeout
	Transactions

	Data Organization
	Object Execution
	Example
	Figure 5-24. To/From Socket Binding Port for Server Process
	Figure 5-25. To/From Socket Connecting Port for Client Process
	HP BASIC/UX Objects (HP-UX)

	Init HP BASIC/UX
	To/From HP�BASIC/UX
	Examples Using To/From HP�BASIC/UX
	Sharing Scalar Data
	1. Start HP�BASIC.
	2. Run a specific HP�BASIC program.
	3. Send a single number to HP�BASIC for analysis.
	4. Retrieve the analyzed data.
	5. Terminate HP�BASIC.
	Figure 5-26. To/From HP BASIC/UX Settings

	100 ASSIGN @From_vee TO "/tmp/to_rmb"
	110 ASSIGN @To_vee TO "/tmp/from_rmb"
	120 ! Your analysis code here
	130 ENTER @From_vee;Vee_data
	140 OUTPUT @To_vee;Rmb_data
	150 END

	Sharing Array Data
	Sharing Binary Data

	Communicating With Programs (PC)
	Program
	Object(s)
	Execute Program (PC)
	Figure 5-27. The Execute Program (PC) Object

	Execute Program (PC) Fields
	Run Style
	Wait for Prog Exit
	1. Execute the command specified in the Execute�Program�(PC) object.
	2. Wait until the process terminates before activating any output pins of the Execute�Program�(PC...
	1. Execute the command specified in the Execute�Program�(PC) object.
	2. Activate any data output pins on the Execute�Program�(PC) object.

	Prog With Params
	1. The name of an executable file and command line parameters.
	2. A command that will be sent to MS-DOS for interpretation.

	Working Directory
	Using Dynamic Data Exchange (DDE)

	Note HP�VEE for Windows supports ActiveX automation which lets you control other Windows applicat...
	Note Definitions: Application - The DDE name for the application. Topic - An application-specific...
	To/From DDE Object
	Figure 5-28. The To/From DDE Object
	Figure 5-29. The To/From DDE Example
	Figure 5-30. Execute PC before To/From DDE
	Figure 5-31. I/O Terminals and To/From DDE
	DDE Examples
	Figure 5-32. Lotus 123 DDE Example
	Figure 5-33. Excel DDE Example
	Figure 5-34. Reflections DDE Example
	Figure 5-35. Word for Windows DDE Example
	Figure 5-36. WordPerfect DDE Example

	Dynamic Linked Libraries (DLL)

	Related Reading

	6 Using the Sequencer Object
	Using the Sequencer Object
	Sequence Transactions
	Figure 6-1. A Simple Sequencer Program
	Note For RANGE or LIMIT tests, the SPEC NOMINAL value is not used, except for "documentation" pur...
	Figure 6-2. Running the Program
	Figure 6-3. A Logged Record of Records

	Logging Test Results
	Figure 6-4. A Simple Logging Example
	Figure 6-5. A Logged Array of Records of Records
	Note The logged array is not a three-dimensional array, but is rather an array that consists of r...
	Figure 6-6. Analyzing the Logged Test Results
	Logging to a DataSet
	Figure 6-7. Logging to a DataSet

	Some Restrictions in Logging Test Results

	A Practical Test Example
	Figure 6-8. Simple Bin Sort Example
	Note Key Idea Any transaction with logging enabled creates a "local" Record variable with the sam...
	Figure 6-9. Improved Bin Sort Example
	You may want to load this program and explore how it works. Here are some key points:

	7 Using ActiveX Automation Objects and Controls
	Using ActiveX Automation Objects and Controls
	Note To enable ActiveX support, HP�VEE must be set to Standard compatibility mode in the Default ...

	Using ActiveX Automation
	To Make Automation Objects Available in HP�VEE
	Figure 7-1. Selecting ActiveX Automation Type Libraries

	To Declare Automation Object Variables
	You can declare a variable for an ActiveX automation object using the new Object data type (Data ...
	Figure 7-2. Declaring an ActiveX Automation Variable
	Figure 7-3. Specifying the Automation Object Type

	Note If you declare a variable for an ActiveX object when developing a program in Windows, and th...
	Handling Automation Object Events
	It is easy to create an event-handler UserFunction when you declare a variable for the object and...
	1. After declaring the variable and specifying its type, including enabling events, open the Decl...
	2. In the object menu, click on Create Event Handler… The Create Event Handler UserFunction brows...
	3. Click on an event name to select it. When you select an event, the browser information area pr...
	4. Click on Create Handler. The new UserFunction window appears. If you open this dialog box agai...

	To Create an Automation Object in a Program
	Click Create Formula and place the Formula object in your program. The Formula contains the expre...
	CreateObject(objectName)

	Most of the time you want a new instance of an automation object created in a new instance of the...

	To Get an Existing Automation Object
	If you already created an automation object, you can get an active object or load an existing obj...
	Type: Built-in Functions
	Category: ActiveX Automation
	Member: GetObject

	Click Create Formula and place the Formula object in your program. The Formula contains the expre...
	GetObject(fileName, objectName)

	The following expression gets an active object, and returns a reference to a currently running Ex...
	The following expressions load an existing object from file. The objectName parameter is optional:
	SET excel = GetObject("d:/tmp/TestData.xls","Excel.Sheet")

	or
	SET excel = GetObject("d:/tmp/TestData.xls")

	To Manipulate Automation Objects
	After creating an automation object, you can manipulate them to control server applications. Mani...

	Getting and Setting Properties
	The expressions in this section are examples of getting and setting a property of an object. The ...
	In the next expression, the value property returns the contents of the cell:
	The next expression does the same property-getting action as the previous expression by implying ...
	contents = sheet.cells(1,1)

	Sometimes you want the contents, value, and default property of the right- hand side (which happe...
	The following expressions are examples of setting a property of an object, which is identical to ...
	cell.value = "Test Data:"
	sheet.cells(1,1).value = "Test Data2"
	sheet.cells(1,1) = "Test Data2"
	About Default Properties

	Automation supports the concept of a default property or method. You can use this concept when ma...
	This means that the expression
	cell = sheet.cells(1,1)

	would not only return a cell from the collection of cells, but it would also evaluate the default...
	To get a cell from the collection of cells, you must use the keyword SET in the expression such as
	SET cell = sheet.cells(1,1)

	This sets cell to be a pointer to that cell in Excel. Compare this to the expression
	cell = sheet.cells(1,1)

	(mentioned above) where cell gets the contents of that cell in Excel. Also, the .value property i...
	cell.value = "Test Data”

	Calling Methods
	The following expression is an example of calling a method on an object:
	By default, parameters are passed by value. For example, cells(1,1) actually calls a method and p...
	Some automation methods have parameters that are passed by reference. The parameter’s value is ch...
	passed = Scanner.GetReading (ByRef Reading)

	Using Enumerations
	Type libraries can provide enumerations that appear in the Class area of HP�VEE’s Function & Obje...
	HP�VEE supports enumerations, which allows you to use the following expression when using object ...

	Using the ActiveX Object Browser
	Figure 7-4. Using the ActiveX Object Browser
	Figure 7-5. Elements Displayed in the Function & Object Browser
	The following automation types do not have an exact match; therefore, the browser information are...
	For a method, the browser displays type information about each parameter in the parameter list an...
	For events, the browser displays the same type information as for a method. However, the event ha...
	For constants in an enumeration, the browser displays the value of the constant. The following is...
	For constant values less than 0 and greater than 1024, HP�VEE also displays the hexadecimal value...
	Data Type Compatibility
	Table 7-1. Conversions from Automation to HP�VEE Data Types

	Convert from Automation Data Type
	Convert to HP�VEE Data Type
	Notes
	Table 7-2. Conversions from HP�VEE to Automation Data Types

	Convert from HP�VEE Data Type
	Convert to Automation Data Type
	Other Possible Data Types
	To Delete Automation Objects
	Automation objects are responsible for deleting themselves when HP�VEE releases its reference to ...

	Using ActiveX Controls
	Note HP�VEE does not support all ActiveX controls. If a control is incompatible with HP�VEE, an e...
	To Select ActiveX Controls
	Before you can use ActiveX controls in HP�VEE, you need to inform HP�VEE which ActiveX controls y...
	Figure 7-6. Selecting ActiveX Controls

	To Add a Control to HP�VEE
	Figure 7-7. Adding ActiveX Controls from the Device Menu

	Note In the previous two figures, five controls are selected in the ActiveX Control References di...
	Differences in the ActiveX Control Host
	Figure 7-8. Accessing Properties and Help in an ActiveX Control
	To Use an ActiveX Control in HP�VEE

	Using the Assigned Local Variable
	If you add a Calendar control to your program, it is assigned the local variable name Calendar1. ...
	Calendar1.Day = 24;
	Month = Calendar1.Month;

	Declaring a Global Variable for a Control
	To Manipulate ActiveX Controls

	Recommended Reading

	8 Keys To Faster Programs
	Keys To Faster Programs
	1. Click on Start Profiling and then run your program.
	2. When you have finished running your program, click on Refresh to see the results.
	3. Click on Stop Profiling to stop the profiler. Click on Clear to clear the current results disp...

	9 Troubleshooting Problems
	Troubleshooting Problems
	Table 9-1. Problems, Causes, and Solutions
	Problem
	Cause
	Solution

	A Using the Compatibility Mode
	Using the Compatibility Mode
	About The Compiler
	Compatibility Mode Changes: VEE 3 to VEE 4
	Line Colors
	Compiling Existing Programs
	1. Open the old program, turn on compiler mode, and press Step (or Run). This will PreRun the pro...
	2. Try running the program. Most everything will run the same way. The most common problem is not...

	Program Changes
	Time-Slicing UserFunctions
	UserObjects
	Function Precedence
	1. Internal functions (like sin() and totSize())
	2. Local UserFunctions
	3. Imported UserFunctions
	4. Compiled Functions
	5. Remote Functions

	Auto Execute and Start
	OK Buttons and Wait for Input
	1. Stepping: In previous versions, stepping over such an object would often result in the termina...
	2. CPU usage: In previous versions, executing such an object usually resulted in increased CPU us...

	Collectors Without Data
	Sample & Hold Without Data
	Timer Object
	Feedback Cycles
	In compiler mode, a Junction object is required inside of a feedback cycle. Start objects are no ...
	A Junction is required inside of feedback cycles.
	Figure A-1. Feedback in Previous Versions
	Figure A-2. Feedback in Compiled Mode

	Note that the current version does not allow invalid connections, such as an object's data input ...

	Parallel Threads
	Loop Bounds
	UserObjects and Calls With XEQ Pins
	OK Buttons With XEQ Pins
	From File With EOF Pins
	In previous versions, the data output pin on a From File object was treated differently from othe...
	In compiled mode, the data output from a From File object is invalidated each time the loop execu...
	The following figure illustrates this situation. In previous versions, the data fed into A on the...
	In compiled mode, the data fed into A is invalidated as soon as the next iteration of the loop be...
	Figure A-3. EOF Differences

	Parallel Junctions
	In versions before HP�VEE 4.0, if you had unconstrained objects that were connected in parallel t...
	Figure A-4. Parallel Junctions

	Intersecting Loops
	In previous versions, you could intersect iteration objects. The execution order was undefined, b...
	VEE was unable to compile this part of the program.
	Figure A-5. Intersecting Loops

	Intersecting Loops Via Junctions
	In versions before HP�VEE 4.0, the example shown below would execute the Integer first, and when ...
	In compiled mode, the example below runs the For Count objects after the Integer objects because ...
	Figure A-6. Intersecting Loops Via Junctions

	Open View Object Changes
	Array Syntax in Expressions

	Compatibility Mode Changes: VEE 4 to Standard
	About the Standard Mode
	Converting Programs to Standard Mode
	Note If you want to change HP VEE 3.x programs to Standard mode, you should be sure they work in ...
	Menu Changes
	Expressions
	Variables
	The following changes affect variables:

	Global Namespace
	1. Local input/output terminals.
	2. Declared local-to-context variables.
	3. Declared local-to-library variables when inside a UserObject context nested in a UserFunction ...
	4. Global declared and undeclared variables, local UserFunctions, Library names, which all must b...
	5. Built-in functions, such as sin() and totSize().
	6. ActiveX controls and automation constants depending on which libraries have been referenced us...
	7. Imported UserFunctions, Compiled Functions, and Remote Functions in random order. To guarantee...

	READ TEXT Transactions
	In VEE 3 and VEE 4 modes, the READ TEXT transaction using the TOKEN format with EXCLUDE CHARS doe...
	Figure A-7. READ TEXT Transaction with TOKEN in VEE 4 Mode
	Figure A-8. READ TEXT Transaction with TOKEN in Standard Mode

	Interaction Between To/From File and To/From DataSet
	Using Standard Mode in HP�VEE for HP�UX

	B Configuring HP�VEE
	Configuring HP�VEE
	Color and Font Settings
	Changing X11 Attributes (UNIX)
	Configuring HP�VEE for Windows
	General HP�VEE Settings
	The Geometry variable controls the initial size of the HP�VEE for Windows window. For example:

	Customizing Icon Bitmaps
	Selecting a Bitmap for a Panel View
	If You See Colors Changing On Your Screen (UNIX)
	Too Many Colors
	Your workstation can display some number of colors at one time, based on the number of color plan...
	For example, if you have 4 color planes, you can use as many as 16 colors at a time on your display.

	Applications that Use a Local Color Map (UNIX)
	Black
	White
	LightGray
	Figure B-1. Color Map File Using Words
	Figure B-2. Color Map File Using Hex Numbers

	To do this:
	1. Create a "colormap" file that contains all the different HP�VEE colors you will use.
	2. Change to your $HOME directory:
	3. Concatenate the HP BASIC/UX and the HP�VEE colormap files:

	cat /usr/lib/rmb/newconfig/xrmbcolormap vee-colormapfile > .xveecolormap
	cat /opt/rmb/newconfig/xrmbcolormap vee-colormapfile > .xveecolormap
	4. You must use the xinitcolormap command before you allocate any colors for other applications. ...
	/usr/bin/X11/xinitcolormap -c 55 -f $HOME/.xveecolormap
	5. Restart X11. To do this, stop the window manager by pressing the following three keys at the s...

	Using Non-USASCII Keyboards (UNIX)
	Note If you are accessing data that was created with the Roman8 character set, you must translate...

	Using HP-GL Plotters (UNIX)

	C ASCII Table
	ASCII Table
	Table C-1. ASCII 7-bit Codes
	Binary
	Oct
	Hex
	Dec
	HP-IB Msg
	NUL
	0000000
	000
	00
	0
	SOH
	0000001
	001
	01
	1
	GTL
	STX
	0000010
	002
	02
	2
	ETX
	0000011
	003
	03
	3
	EOT
	0000100
	004
	04
	4
	SDC
	ENQ
	0000101
	005
	05
	5
	PPC
	ACK
	0000110
	006
	06
	6
	BEL
	0000111
	007
	07
	7
	BS
	0001000
	010
	08
	8
	GET
	HT
	0001001
	011
	09
	9
	TCT
	LF
	0001010
	012
	0A
	10
	VT
	0001011
	013
	0B
	11
	FF
	0001100
	014
	0C
	12
	CR
	0001101
	015
	0D
	13
	SO
	0001110
	016
	0E
	14
	SI
	0001111
	017
	0F
	15
	DLE
	0010000
	020
	10
	16
	DC1
	0010001
	021
	11
	17
	LLO
	DC2
	0010010
	022
	12
	18
	DC3
	0010011
	023
	13
	19
	DC4
	0010100
	024
	14
	20
	DCL
	NAK
	0010101
	025
	15
	21
	PPU
	SYN
	0010110
	026
	16
	22
	ETB
	0010111
	027
	17
	23
	CAN
	0011000
	030
	18
	24
	SPE
	EM
	0011001
	031
	19
	25
	SPD
	SUB
	0011010
	032
	1A
	26
	ESC
	0011011
	033
	1B
	27
	FS
	0011100
	034
	1C
	28
	GS
	0011101
	035
	1D
	29
	RS
	0011110
	036
	1E
	30
	US
	0011111
	037
	1F
	31
	space
	0100000
	040
	20
	32
	listen addr 0
	!
	0100001
	041
	21
	33
	listen addr 1
	"
	0100010
	042
	22
	34
	listen addr 2
	#
	0100011
	043
	23
	35
	listen addr 3
	$
	0100100
	044
	24
	36
	listen addr 4
	%
	0100101
	045
	25
	37
	listen addr 5
	&
	0100110
	046
	26
	38
	listen addr 6
	’
	0100111
	047
	27
	39
	listen addr 7
	(
	0101000
	050
	28
	40
	listen addr 8
)
	0101001
	051
	29
	41
	listen addr 9
	*
	0101010
	052
	2A
	42
	listen addr 10
	+
	0101011
	053
	2B
	43
	listen addr 11
	,
	0101100
	054
	2C
	44
	listen addr 12
	-
	0101101
	055
	2D
	45
	listen addr 13
	.
	0101110
	056
	2E
	46
	listen addr 14
	/
	0101111
	057
	2F
	47
	listen addr 15
	0
	0110000
	060
	30
	48
	listen addr 16
	1
	0110001
	061
	31
	49
	listen addr 17
	2
	0110010
	062
	32
	50
	listen addr 18
	3
	0110011
	063
	33
	51
	listen addr 19
	4
	0110100
	064
	34
	52
	listen addr 20
	5
	0110101
	065
	35
	53
	listen addr 21
	6
	0110110
	066
	36
	54
	listen addr 22
	7
	0110111
	067
	37
	55
	listen addr 23
	8
	0111000
	070
	38
	56
	listen addr 24
	9
	0111001
	071
	39
	57
	listen addr 25
	:
	0111010
	072
	3A
	58
	listen addr 26
	;
	0111011
	073
	3B
	59
	listen addr 27
	<
	0111100
	074
	3C
	60
	listen addr 28
	=
	0111101
	075
	3D
	61
	listen addr 29
	>
	0111110
	076
	3E
	62
	listen addr 30
	?
	0111111
	077
	3F
	63
	UNL
	@
	1000000
	100
	40
	64
	talk addr 0
	A
	1000001
	101
	41
	65
	talk addr 1
	B
	1000010
	102
	42
	66
	talk addr 2
	C
	1000011
	103
	43
	67
	talk addr 3
	D
	1000100
	104
	44
	68
	talk addr 4
	E
	1000101
	105
	45
	69
	talk addr 5
	F
	1000110
	106
	46
	70
	talk addr 6
	G
	1000111
	107
	47
	71
	talk addr 7
	H
	1001000
	110
	48
	72
	talk addr 8
	I
	1001001
	111
	49
	73
	talk addr 9
	J
	1001010
	112
	4A
	74
	talk addr 10
	K
	1001011
	113
	4B
	75
	talk addr 11
	L
	1001100
	114
	4C
	76
	talk addr 12
	M
	1001101
	115
	4D
	77
	talk addr 13
	N
	1001110
	116
	4E
	78
	talk addr 14
	O
	1001111
	117
	4F
	79
	talk addr 15
	P
	1010000
	120
	50
	80
	talk addr 16
	Q
	1010001
	121
	51
	81
	talk addr 17
	R
	1010010
	122
	52
	82
	talk addr 18
	S
	1010011
	123
	53
	83
	talk addr 19
	T
	1010100
	124
	54
	84
	talk addr 20
	U
	1010101
	125
	55
	85
	talk addr 21
	V
	1010110
	126
	56
	86
	talk addr 22
	W
	1010111
	127
	57
	87
	talk addr 23
	X
	1011000
	130
	58
	88
	talk addr 24
	Y
	1011001
	131
	59
	89
	talk addr 25
	Z
	1011010
	132
	5A
	90
	talk addr 26
	[
	1011011
	133
	5B
	91
	talk addr 27
	\
	1011100
	134
	5C
	92
	talk addr 28
]
	1011101
	135
	5D
	93
	talk addr 29
	^
	1011110
	136
	5E
	94
	talk addr 30
	_
	1011111
	137
	5F
	95
	UNT
	‘
	1100000
	140
	60
	96
	secondary addr 0
	a
	1100001
	141
	61
	97
	secondary addr 1
	b
	1100010
	142
	62
	98
	secondary addr 2
	c
	1100011
	143
	63
	99
	secondary addr 3
	d
	1100100
	144
	64
	100
	secondary addr 4
	e
	1100101
	145
	65
	101
	secondary addr 5
	f
	1100110
	146
	66
	102
	secondary addr 6
	g
	1100111
	147
	67
	103
	secondary addr 7
	h
	1101000
	150
	68
	104
	secondary addr 8
	i
	1101001
	151
	69
	105
	secondary addr 9
	j
	1101010
	152
	6A
	106
	secondary addr 10
	k
	1101011
	153
	6B
	107
	secondary addr 11
	l
	1101100
	154
	6C
	108
	secondary addr 12
	m
	1101101
	155
	6D
	109
	secondary addr 13
	n
	1101110
	156
	6E
	110
	secondary addr 14
	o
	1101111
	157
	6F
	111
	secondary addr 15
	p
	1110000
	160
	70
	112
	secondary addr 16
	q
	1110001
	161
	71
	113
	secondary addr 17
	r
	1110010
	162
	72
	114
	secondary addr 18
	s
	1110011
	163
	73
	115
	secondary addr 19
	t
	1110100
	164
	74
	116
	secondary addr 20
	u
	1110101
	165
	75
	117
	secondary addr 21
	v
	1110110
	166
	76
	118
	secondary addr 22
	w
	1110111
	167
	77
	119
	secondary addr 23
	x
	1111000
	170
	78
	120
	secondary addr 24
	y
	1111001
	171
	79
	121
	secondary addr 25
	z
	1111010
	172
	7A
	122
	secondary addr 26
	{
	1111011
	173
	7B
	123
	secondary addr 27
	|
	1111100
	174
	7C
	124
	secondary addr 28
	}
	1111101
	175
	7D
	125
	secondary addr 29
	~
	1111110
	176
	7E
	126
	secondary addr 30
	[del]
	1111111
	177
	7F
	127

	D I/O Transaction Reference
	I/O Transaction Reference
	Table D-1. Summary of Transaction Types
	Action
	Description
	Table D-2. Summary of I/O Transaction Objects

	Objects
	Supported Transactions
	EXECUTE
	WAIT
	READ
	WRITE
	SEND
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X

	WRITE Transactions
	Path-Specific Behaviors
	Some WRITE transactions behave differently depending on the I/O path of the destination. For exam...
	Table D-3. WRITE Encodings and Formats

	Encodings
	Formats
	TEXT Encoding
	WRITE TEXT transactions are of this form:
	WRITE TEXT ExpressionList [Format]

	ExpressionList is a single expression or a comma-separated list of expressions.
	Format is an optional setting that specifies one of the formats listed in Table D-4.
	Table D-4. Formats for WRITE TEXT Transactions

	Format
	Description
	DEFAULT Format
	WRITE TEXT (default) transactions are of this form:
	WRITE TEXT ExpressionList

	The transaction converts each item in ExpressionList to a meaningful string and writes it. Consid...
	WRITE TEXT X
	Figure D-1. A WRITE TEXT Transaction
	If X in Figure D-1 contains text, such as:
	bird cat dog

	If X in Figure D-1 contains a scalar Integer, such as:
	8923 the value of X (decimal notation)

	If X in Figure D-1 contains a scalar real value, such as:
	1.2345678901234567 the value of X (17-digit scalar real value)

	then each significant digit up to 16 significant digits is written. The least significant digit i...
	WRITE TEXT a EOL

	then HP�VEE writes this:

	STRING Format
	WRITE TEXT STRING transactions are of this form:
	WRITE TEXT ExpressionList STR
	Field Width and Justification

	The transactions in Figure D-2 specify that all characters are to be written within a field of tw...
	WRITE TEXT X STR FW:20 LJ EOL WRITE TEXT Y STR FW:20 LJ EOL
	Figure D-2. Two WRITE TEXT STRING Transactions
	If X and Y in Figure D-2 have these values:
	bird cat dog the Text value of X
	12345678901234567 the Real value of Y

	then HP�VEE writes this:
	bird cat dog
	12345678901234567
	^ ^

	The caret characters (^) are not actually written by HP�VEE; they are shown to help you visualize...
	If justification is changed to RIGHT JUSTIFY, then the transactions appear as shown in Figure D-3.

	WRITE TEXT X STR FW:20 RJ EOL WRITE TEXT Y STR FW:20 RJ EOL
	Figure D-3. Two WRITE TEXT STRING Transactions
	If X and Y in Figure D-3 have these values:
	bird cat dog the Text value of X
	12345678901234567 the Real value of Y

	then HP�VEE writes this:
	bird cat dog
	12345678901234567
	^ ^

	If the length of a string exceeds the specified field width, the entire string is written. The fi...
	The transaction in Figure D-4 specifies that all characters are to be written in a field width of...

	WRITE TEXT X STR FW:4 LJ
	Figure D-4. A WRITE TEXT STRING Transaction
	If X in Figure D-4 has this value:
	bird cat dog the Text value of X, 12 characters

	then HP�VEE writes this:
	bird cat dog all 12 characters
	Number of Characters

	The transactions in Figure D-5 specify that a maximum of seven characters are written in each fie...

	WRITE TEXT X STR:7 FW:20 LJ EOL WRITE TEXT Y STR:7 FW:20 LJ EOL
	Figure D-5. Two WRITE TEXT STRING Transactions
	If X and Y in Figure D-2 have these values:
	bird cat dog the Text value of X
	12345678901234567 the Real value of Y

	then HP�VEE writes this:
	bird ca
	1234567
	^ ^

	Notice that the numeric value of Y is first converted to Text and characters are truncated. Numer...
	Writing Arrays With Direct I/O

	WRITE TEXT STR transactions that write arrays to direct I/O paths ignore the Array Separator sett...

	Note This special behavior for arrays does not apply to any other types of transactions.
	QUOTED STRING Format
	WRITE TEXT QUOTED STRING transactions are of this form:
	WRITE TEXT ExpressionList QSTR

	ExpressionList is a single expression or a comma-separated list of expressions.
	In general, the behaviors previously discussed for the STRING format apply to QUOTED STRING forma...
	Field Width and Justification

	The transactions in Figure D-6 specify that all characters are to be written as quoted strings in...
	WRITE TEXT X QSTR FW:20 LJ EOL WRITE TEXT Y QSTR FW:20 LJ EOL
	Figure D-6. Two WRITE TEXT QUOTED STRING Transactions
	If X and Y in Figure D-6 have these values:
	bird cat dog the Text value of X
	12345678901234567 the Real value of Y

	then HP�VEE writes this:
	"bird cat dog"
	"12345678901234567"
	^ ^

	If justification is changed to RIGHT JUSTIFY, then the transactions appear as shown in Figure D-7.

	WRITE TEXT X QSTR FW:20 RJ EOL WRITE TEXT Y QSTR FW:20 RJ EOL
	Figure D-7. Two WRITE TEXT QUOTED STRING Transactions
	If X and Y in Figure D-7 have these values:
	bird cat dog the Text value of X
	12345678901234567 the Real value of Y

	then HP�VEE writes this:
	"bird cat dog"
	"12345678901234567"
	^ ^

	If the length of a string exceeds the specified field width, the entire string is output. The fie...
	The transactions in Figure D-8 that specifies that all characters are to be written within a fiel...

	WRITE TEXT X QSTR FW:4 LJ
	Figure D-8. A WRITE TEXT QUOTED STRING Transaction
	If X in Figure D-8 has this value:
	bird cat dog the Text value of X, 12 characters

	then HP�VEE writes this:
	Number of Characters

	The transaction in Figure D-9 that specifies MAX NUM CHARS:7 (field width 20, left justified).

	WRITE TEXT X QSTR:7 FW:20 LJ EOL WRITE TEXT Y QSTR:7 FW:20 LJ EOL
	Figure D-9. Two WRITE TEXT QUOTED STRING Transactions
	If X and Y in Figure D-9 have these values:
	bird cat dog the Text value of X
	12345678901234567 the Real value of Y

	then HP�VEE writes this:
	"bird ca"
	"1234567"
	^ ^
	Embedded Control and Escape Characters
	Table D-5. Escape Characters

	Escape Character
	ASCII Code (decimal)
	Meaning
	\n
	10
	\t
	9
	\v
	11
	\b
	8
	\r
	13
	\f
	12
	\"
	34
	\'
	39
	\\
	92
	\ddd
	Consider the effects of various embedded escape characters on the transaction in Figure D-10.

	WRITE TEXT X QSTR EOL
	Figure D-10. A WRITE TEXT QUOTED STRING Transaction
	If X in Figure D-10 has this value:
	bird\ncat dog

	then HP�VEE writes this to UNIX paths:
	"bird\ncat dog"

	For the same transaction and data, HP�VEE writes this to direct I/O paths:
	"bird<LF>cat dog"

	If X in Figure D-10 has this value:
	bird \"cat\" dog

	then HP�VEE writes this to UNIX paths and Direct I/O paths for serial interfaces:
	"bird \"cat\" dog"

	For the same transaction and data, HP�VEE writes this to direct I/O paths for HP-IB interfaces:
	"bird ""cat"" dog"

	INTEGER Format
	WRITE TEXT INTEGER transactions are of this form:
	WRITE TEXT ExpressionList INT

	ExpressionList is a single expression or a comma-separated list of expressions.
	HP�VEE attempts to convert each item in ExpressionList to the Int32 data type before converting i...
	If a Real is written using INTEGER format:
	Number of Digits

	If you specify DEFAULT NUM DIGITS, the transaction writes only the digits required to express the...
	Consider the two transactions in Figure D-11 which differ only in their specification for the num...
	WRITE TEXT X INT EOL default number of digits WRITE TEXT X INT:6 EOL six digits
	Figure D-11. Two WRITE TEXT INTEGER Transactions
	If X in Figure D-11 has this value:
	4567

	then HP�VEE writes this:
	4567

	MIN NUM DIGITS never causes truncation of the output string. The transaction in Figure D-12 speci...

	WRITE TEXT X INT:1 EOL
	Figure D-12. A WRITE TEXT INTEGER Transaction
	If X in Figure D-12 has a value of:
	12345678

	then HP�VEE writes this:
	Sign Prefixes

	You may optionally specify one of the sign prefixes listed in Table D-6 as part of a WRITE TEXT I...
	Table D-6. Sign Prefixes

	Prefix
	Description
	Any prefixed signs do not count towards MIN NUM DIGITS. The transaction shown in Figure D-13 spec...
	WRITE TEXT X INT:6 SIGN:"+/-" EOL WRITE TEXT Y INT:6 SIGN:"+/-" EOL
	Figure D-13. Two WRITE TEXT INTEGER Transactions
	If X and Y in Figure D-13 have values of:
	123 the Integer value of X
	-123 the Integer value of Y

	then HP�VEE writes this:
	+000123 six digits plus sign

	OCTAL Format
	WRITE TEXT OCTAL transactions are of this form:
	WRITE TEXT ExpressionList OCT

	ExpressionList is a single expression or a comma-separated list of expressions.
	If a Real is written using OCTAL format:
	Number of Digits
	Octal Prefixes

	You may specify one of the prefixes listed in Table D-7 as part of a WRITE TEXT OCTAL transaction.
	Table D-7. Octal Prefixes

	Prefix
	Description
	The transaction in Figure D-14 specifies the default prefix and six digits:
	WRITE TEXT X OCT:6 PREFIX EOL
	Figure D-14. A WRITE TEXT OCTAL Transaction
	If X in Figure D-14 has this value:
	15 the value 15 decimal

	then HP�VEE writes this to direct I/O paths:
	Using the same transaction and data, HP�VEE writes this to UNIX paths:
	The transaction in Figure D-15 specifies a custom prefix and ten digits:

	WRITE TEXT X OCT:10 PREFIX:"oct>" EOL
	Figure D-15. A WRITE TEXT OCTAL Transaction
	If X in Figure D-15 has this value:
	15 the Integer value 15 decimal

	then HP�VEE writes this to UNIX paths and direct I/O paths:
	oct>000017

	HEX Format
	WRITE TEXT HEX transactions are of this form:
	WRITE TEXT ExpressionList HEX

	The type of integer written by this transaction is a 32-bit two's complement integer. The range o...
	The behavior of WRITE TEXT HEX is nearly identical to that of WRITE TEXT OCTAL. The only differen...
	Hexadecimal Prefixes

	You may specify one of the prefixes listed in Table D-8 as part of a WRITE TEXT HEX transaction.
	Table D-8. Hexadecimal Prefixes

	Prefix
	Description
	The transaction in Figure D-16 specifies the default prefix and six digits:
	WRITE TEXT X HEX:6 PREFIX EOL
	Figure D-16. A WRITE TEXT HEX Transaction
	If X in Figure D-16 has this value:
	15 the Integer value 15 decimal

	then HP�VEE writes this to direct I/O paths:
	#H00000f exactly six digits plus prefix

	Using the same transaction and data, HP�VEE this to UNIX paths:
	The transaction in Figure D-17 specifies a custom prefix and three digits:

	WRITE TEXT X HEX:3 PREFIX:"hex>" EOL
	Figure D-17. A WRITE TEXT HEX Transaction
	If X in Figure D-17 has this value:
	15 the Integer value 15 decimal

	then HP�VEE writes this to UNIX paths and direct I/O paths:
	hex>00f exactly three digits plus prefix

	REAL Format
	WRITE TEXT REAL transactions are of this form:
	WRITE TEXT ExpressionList REAL

	The type of Real number generated by this transaction is a 64-bit IEEE 754 floating-point number....
	-1.797 693 134 862 315E+308
	-2.225 073 858 507 202E-307
	0
	2.225 073 858 507 202E-307
	1.797 693 134 862 315E+308
	Notations and Digits

	You may optionally specify one of the notations in Table D-9 as part of a WRITE TEXT REAL transac...
	Table D-9. REAL Notations

	Notation
	Description
	The transactions in Figure D-18 specify STANDARD notation and four significant digits.
	WRITE TEXT X REAL STD:4 EOL WRITE TEXT Y REAL STD:4 EOL WRITE TEXT Z REAL STD:4 EOL
	Figure D-18. Three WRITE TEXT REAL Transactions
	If X, Y, and Z in Figure D-18 have these values:
	1.23456E2 the Real value of X
	1.23456E09 the Real value of Y
	1.23 the Real value of Z

	then HP�VEE writes this:
	123.5 mantissa rounded as required
	1.235E+09 large numbers in exponential notation

	The transactions in Figure D-19 specify FIXED notation and four fractional digits.

	WRITE TEXT X REAL FIX:4 EOL WRITE TEXT Y REAL FIX:4 EOL WRITE TEXT Z REAL FIX:4 EOL
	Figure D-19. Three WRITE TEXT REAL Transactions
	If X, Y, and Z in Figure D-19 have these values:
	1.2345678E2 the Real value of X
	1.2345678E-09 the Real value of Y
	1.23 the Real value of Z

	then HP�VEE writes this:
	123.4568 mantissa rounded as required
	0.0000 small numbers round to zero

	The transactions in Figure D-20 specify SCIENTIFIC notation and four fractional digits.

	WRITE TEXT X REAL SCI:4 EOL WRITE TEXT Y REAL SCI:4 EOL WRITE TEXT Z REAL SCI:4 EOL
	Figure D-20. Three WRITE TEXT REAL Transactions
	If X, Y, and Z in Figure D-20 have these values:
	1.2345678E2 the Real value of X
	-1.2345678E-09 the Real value of Y
	0 the Real value of Z

	then HP�VEE writes this:
	1.2346E+02 exponent is E plus two signed digits
	-1.2346E-09 last digit rounded as required

	COMPLEX, PCOMPLEX, and COORD Formats
	The final output of transactions involving multi-field formats is affected by the Multi-Field For...
	COMPLEX Format

	WRITE TEXT COMPLEX transactions are of this form:
	WRITE TEXT ExpressionList CPX

	The transaction in Figure D-21 specifies a fixed-decimal notation, explicit leading signs, a fiel...
	WRITE TEXT X CPX FIX:3 SIGN:"+/-" FW:10 RJ EOL
	Figure D-21. A WRITE TEXT COMPLEX Transaction
	If the Multi-Field Format is set to (...) Syntax, and X in Figure D- 21 has this value:
	(-1.23456 , 9.8) the Complex value of X

	then HP�VEE writes this:
	(-1.235 , +9.800)

	If the Multi-Field Format is set to Data Only and X in Figure D-21 has the same value, then HP�VE...
	-1.235, +9.800

	The caret characters (^) are not actually written by HP�VEE; they are shown to help you visualize...
	PCOMPLEX Format

	WRITE TEXT PCOMPLEX transactions are of this form:
	WRITE TEXT ExpressionList PCX

	PCOMPLEX format allows you to specify the phase units for the polar complex number it writes. Not...
	Table D-10. PCOMPLEX Phase Units

	Unit
	Description
	The first transaction in Figure D-22 specifies phase measurement in degrees, and the second trans...
	WRITE TEXT X PCX:DEG STD EOL WRITE TEXT X PCX:RAD STD EOL
	Figure D-22. Two WRITE TEXT PCOMPLEX Transactions
	If the Multi-Field Format is set to Data Only, and X in Figure D-22 has this value:
	(-1.23456 , @90) the PComplex value of X, phase in degrees

	then HP�VEE writes this:
	1.23456,-90

	The transaction in Figure D-23 specifies phase measurement in radians, fixed-decimal notation, th...

	WRITE TEXT X PCX:RAD FIX:3 SIGN:"+/-" FW:10 RJ EOL
	Figure D-23. A WRITE TEXT PCOMPLEX Transaction
	If the Multi-Field Format is set to (...) Syntax, and X in Figure D- 23 has this value:
	(-1.23456 , @9.8) the PComplex value of X, angle in radians

	then HP�VEE writes this:
	(+1.235 , @ +0.375)
	^ ^ ^ ^

	If the Multi-Field Format is set to Data Only, and X in Figure D-23 has the same value, then HP�V...
	+1.235, +0.375
	COORD Format

	WRITE TEXT COORD transactions are of this form:
	WRITE TEXT ExpressionList COORD

	TIME STAMP Format
	WRITE TEXT TIME STAMP transactions are of this form:
	WRITE TEXT ExpressionList [DATE:DateSpec] [TIME:TimeSpec]

	DateSpec is one of the following pre-defined date and time combinations:
	If you specify a transaction that includes Time, you may also specify a TimeSpec. TimeSpec is a c...
	TIME STAMP supports a variety of notations for writing dates and times. If a Real variable contai...
	62806574669.31164

	BYTE Encoding
	BYTE transactions are of this form:
	WRITE BYTE ExpressionList

	ExpressionList is a single expression or a comma-separated list of expressions.
	The transactions in Figure D-24 produce the following character data output:
	ABCAA

	WRITE BYTE 65,66,67 WRITE BYTE 65+1024,65+2048
	Figure D-24. Two WRITE BYTE Transactions
	CASE Encoding
	WRITE CASE transactions are of this form:
	WRITE CASE ExpressionList1 OF ExpressionList2

	ExpressionList is a single expression or a comma-separated list of expressions.
	HP�VEE converts each item in ExpressionList1 to an integer and uses it as an index into Expressio...
	The transactions in Figure D-25 illustrate the behavior of CASE format.

	WRITE CASE 2,1 OF "Str0","Str1","Str2" WRITE CASE X OF 1,1+A,3+A
	Figure D-25. Two WRITE CASE Transactions
	If the variables in Figure D-25 have these values:
	2 the Real value of X
	0.1 the Real value of A

	then HP�VEE writes this:
	Str2Str1

	BINARY Encoding
	WRITE BINARY transactions are of this form:
	WRITE BINARY ExpressionList DataType

	DataTypes is one of the following pre-defined HP�VEE data types:

	Note HP�VEE stores and manipulates all integer values as the INT32 data type, and all real number...
	BINBLOCK Encoding
	WRITE BINBLOCK transactions are of this form:
	WRITE BINBLOCK ExpressionList DataType

	ExpressionList is a single expression or a comma-separated list of expressions.
	DataType is one of these pre-defined HP�VEE data types:

	Non-HP-IB BINBLOCK
	Each Definite Length Arbitrary Block is of the form:
	#<Num_digits><Num_bytes><Data>

	where:

	HP-IB BINBLOCK
	IEEE 728 block headers are of the following forms:
	#A<Byte_Count><Data>
	#T<Byte_Count><Data>
	#I<Data><END>

	where:
	CONTAINER Encoding
	WRITE CONTAINER transactions are of this form:
	WRITE CONTAINER ExpressionList

	ExpressionList is a single expression or a comma-separated list of expressions.
	This representation retains all the HP�VEE attributes associated with the data type written, such...
	For example, this transaction:
	WRITE CONTAINER 1.2345

	writes this:
	(Real
	(data 1.2345)

	STATE Encoding
	WRITE STATE transactions are of the form:
	WRITE STATE [DownloadString]

	REGISTER Encoding
	WRITE REGISTER is used to write values into a VXI device's A16 memory.
	WRITE REGISTER transactions are of this form:
	WRITE REG: SymbolicName ExpressionList INCR
	-or-
	WRITE REG: SymbolicName ExpressionList

	where:
	SymbolicName is a name defined during configuration of a VXI device. The name refers to a specifi...

	MEMORY Encoding
	WRITE MEMORY is used to write values into a VXI device's A24 or A32 memory.
	WRITE MEMORY transactions are of this form:
	WRITE MEM: SymbolicName ExpressionList INCR
	-or-
	WRITE MEM: SymbolicName ExpressionList

	where:
	SymbolicName is a name defined during configuration of a VXI device. The name refers to a specifi...

	IOCONTROL Encoding
	WRITE IOCONTROL transactions are of this form:
	WRITE IOCONTROL CTL ExpressionList
	-or-
	WRITE IOCONTROL PCTL ExpressionList

	ExpressionList is a single expression or a comma-separated list of expressions.
	This transaction sets the control lines of a GPIO interface:
	WRITE IOCONTROL CTL a

	HP�VEE converts the value of a to an Integer. The least X significant bits of the Integer value a...
	For example, the HP 98622A GPIO interface uses two control lines, CTL0 and CTL1.

	Value Written
	CTL1
	CTL0
	0
	0
	0
	1
	0
	1
	2
	1
	0
	3
	1
	1
	WRITE IOCONTROL PCTL a

	READ Transactions
	Table D-11. READ Encodings and Formats
	Encodings
	Formats
	TEXT Encoding
	Table D-12. Formats for READ TEXT Transactions

	Format
	Description
	General Notes for READ TEXT
	Read to End
	Number of Characters Per READ
	These READ TEXT formats support a choice between DEFAULT NUM CHARS and MAX�NUM�CHARS:
	STRING
	INTEGER
	OCTAL
	HEX
	REAL

	The basic difference between DEFAULT NUM CHARS and MAX�NUM�CHARS is this:
	If you specify DEFAULT NUM CHARS, the transaction reads as many characters as it requires to fill...
	If you specify MAX NUM CHARS, HP�VEE makes no attempt to sort out characters that are not meaning...
	Consider this example that distinguishes between the behaviors of
	DEFAULT NUM CHARS and MAX NUM CHARS using INTEGER format. Assume that you are trying to read a fi...
	bird dog cat 12345 horse

	It is impossible to extract the integer 12345 from this data with a READ�TEXT�INTEGER transaction...
	Effects of Quoted Strings

	The presence of quoted strings affects the behavior of READ TEXT QSTR and READ TEXT TOKEN for all...
	Grouping effects are best explained by using an example. For the discussion in the rest of this s...
	"This is in quotes." This is not.
	Figure D-26. Quoted and Non-Quoted Data
	Assume that you read the file shown in Figure D-26 using From File with these transactions:
	READ TEXT x QSTR
	READ TEXT y QSTR

	After reading the file, the results are:
	x = This is in quotes.
	y = This is not.

	Now assume that you read the file shown in Figure D-26 using From File with these transactions:
	READ TEXT x QSTR MAXFW:4
	READ TEXT y QSTR

	After reading the file, the results are:
	x = This
	y = This is not.

	Next, assume that you read the file shown in Figure D-26 using From File with these transactions:
	READ TEXT x TOKEN
	READ TEXT y QSTR

	Now after reading the file, the results are:
	x = This is in quotes.
	y = This is not.

	CHAR Format
	READ TEXT CHAR transactions are of this form:
	READ TEXT VarList CHAR:NumChar ARRAY:NumStr

	VarList is a single Text variable or a comma-separated list of Text variables.
	NumChar specifies the number of 8-bit characters that must read to fill each element of each vari...
	CHAR format is useful when you wish to simply read one character at a time, or when you need to r...
	This transaction reads two two-dimensional Text arrays; each element in each array contains two c...
	If a file read by the previous transaction contains these characters:
	<space>ABCDEFG"AB"<LF>'CD

	then the variables X and Y contain these values after the READ:
	X [0 0] = <space>A
	X [0 1] = BC
	X [1 0] = DE
	X [1 1] = FG
	Y [0 0] = "A
	Y [0 1] = B"
	Y [1 0] = <LF>'
	Y [1 1] = CD

	TOKEN Format
	READ TEXT TOKEN transactions are of this form:
	READ TEXT VarList TOKEN Delimiter ARRAY:NumElements

	VarList is a single Text variable or a comma-separated list of Text variables.
	Delimiter specifies the combinations of characters that terminate (delimit) each token.
	TOKEN format allows you to define the delimiter (boundary) for tokens using one of these choices ...
	The following discussion of delimiters explains how the choice of delimiters affects reading a fi...
	A phrase. "A phrase." Tab follows. XOXXOOXXXOOOXXXX XAXXBCXXXDEF
	Figure D-27. Data for READ TOKEN
	The file contains only the letter O, not the digit zero.
	SPACE DELIM

	If you use SPACE DELIM, tokens are terminated by any white space. White space includes spaces, ta...
	If you read the data shown in Figure D-27 using SPACE DELIM with this transaction:
	READ TEXT a TOKEN ARRAY:8

	then the variable a contains these values:
	a[0] = A
	a[1] = phrase.
	a[2] = A phrase.
	a[3] = Tab
	a[4] = follows
	a[5] = .
	a[6] = XOXXOOXXXOOOXXXX
	INCLUDE CHARS

	If HP�VEE reads the data shown in Figure D-27 using INCLUDE CHARS with this transaction:
	READ TEXT a TOKEN INCLUDE:"X" ARRAY:7

	then the variable a contains these values:
	a[0] = X
	a[1] = XX
	a[2] = XXX
	a[3] = XXXX
	a[4] = X
	a[5] = XX

	If HP�VEE reads the data shown in Figure D-27 using INCLUDE�CHARS with this transaction:
	READ TEXT a TOKEN INCLUDE:"OXZ" ARRAY:4

	then the variable a contains these values:
	a[0] = XOXXOOXXXOOOXXXX
	a[1] = X
	a[2] = XX
	a[3] = XXX

	Assume that you are trying to read a file containing the data in Figure D-28.

	111 222 333 444 555
	Figure D-28. Data for READ TOKEN
	If you try to read the file in Figure D-28 using this transaction:
	READ TEXT x,y,z TOKEN INCLUDE:"1234567890"

	then the Text variables x, y, and z will contain these values:
	x = 111
	y = 222

	Another way to do this is to specify an ARRAY greater than one and read data into an array. For e...
	READ TEXT x TOKEN INCLUDE:"1234567890" ARRAY:3

	then the Text variable x contains these values:
	x[0] = 111
	x[1] = 222
	EXCLUDE CHARS

	If you use EXCLUDE CHARS, you can specify a list of characters, any one of which will terminate t...
	If you read the data shown in Figure D-27 using EXCLUDE with this transaction:
	READ TEXT a TOKEN EXCLUDE:"X" ARRAY:8

	then the variable a contains these values:
	a[0] = A phrase.<LF>"A phrase."<LF>Tab follows .<LF>
	a[1] = O
	a[2] = OO
	a[3] = OOO
	a[4] = <LF>
	a[5] = A
	a[6] = BC

	Assume the data shown in Figure D-29 is sent to HP�VEE from an instrument.

	++1.23++4.98++0.45++2.34++0.01++23.45++12.2++
	Figure D-29. Data for READ TOKEN
	If HP�VEE reads the data in Figure D-29 with this transaction:
	READ TEXT x TOKEN EXCLUDE:"+" ARRAY:7

	then the variable x will contain these values:
	x[0] = null string (empty)
	x[1] = 1.23
	x[2] = 4.98
	x[3] = 0.45
	x[4] = 2.34
	x[5] = 0.01

	STRING Format
	READ TEXT STRING transactions are of this form:
	READ TEXT VarList STR ARRAY:NumElements
	-or-
	READ TEXT VarList STR MAXFW:NumChars ARRAY:NumElements

	VarList is a single Text variable or a comma-separated list of Text variables.
	NumChars specifies the maximum number of 8-bit characters that can be read in an attempt to build...
	Effects of Control and Escape Characters

	Assume you wish to read the following string data using READ TEXT STRING transactions:
	Simple string.
	Random \n % $ * ‘A'
	"In quotes."
	"In quotes
	with control."

	If you read the string data using this transaction:
	READ TEXT x STR ARRAY:5

	then the variable x contains these values:
	a[0] = Simple string.
	a[1] = Random \n % $ * ‘A'
	a[2] = In quotes.
	a[3] = In quotes<LF>with control.

	If you read the same string data using this transaction:
	READ TEXT x STR MAXFW:16 ARRAY:5

	then the variable x contains these values:
	a[0] = Simple string.
	a[1] = Random \n % $ *
	a[2] = ‘A'
	a[3] = In quotes.
	a[4] = In quotes<LF>with c

	QUOTED STRING Format
	READ TEXT QUOTED STRING transactions are of this form:
	READ TEXT VarList QSTR ARRAY:NumElements
	-or-
	READ TEXT VarList QSTR MAXFW:NumChars ARRAY:NumElements

	VarList is a single Text variable or a comma-separated list of Text variables.
	NumChars specifies the maximum number of 8-bit characters that can be read in an attempt to build...
	Effects of Control and Escape Characters

	Assume you wish to read the following string data using READ TEXT QUOTED STRING transactions:
	Simple string.
	Random \n % $ * ‘A'
	"In quotes."
	"In quotes
	with control."

	If you read the string data using this transaction:
	READ TEXT x QSTR ARRAY:5

	then the variable x contains these values:
	a[0] = Simple string.
	a[1] = Random \n % $ * ‘A'
	a[2] = In quotes.
	a[3] = In quotes<LF>with control.

	If you read the same string data using this transaction:
	READ TEXT x QSTR MAXFW:16 ARRAY:5

	then the variable x contains these values:
	a[0] = Simple string.
	a[1] = Random \n % $ *
	a[2] = ‘A'
	a[3] = In quotes.
	a[4] = In quotes<LF>with c

	INTEGER Format
	READ TEXT INTEGER transactions are of this form:
	READ TEXT VarList INT ARRAY:NumElements
	-or-
	READ TEXT VarList INT MAXFW:NumChars ARRAY:NumElements

	VarList is a single Integer variable or a comma-separated list of Integer variables.
	NumChars specifies the maximum number of 8-bit characters that can be read in an attempt to build...
	All of the following notations are interpreted as the Integer value 15 decimal:
	15
	+15
	015
	0xF
	0xf
	#b1111
	#Q17

	OCTAL Format
	READ TEXT OCTAL transactions are of this form:
	READ TEXT VarList OCT ARRAY:NumElements
	-or-
	READ TEXT VarList OCT MAXFW:NumChars ARRAY:NumElements

	VarList is a single Integer variable or a comma-separated list of Integer variables.
	NumChars specifies the number of 8-bit characters that can be read in an attempt to build a number.
	If the transaction specifies a MAX NUM CHARS (MAXFW), the octal number read may contain more than...
	377237456214567243777

	using this transaction:
	If the transaction specifies DEFAULT NUM CHARS, it will continue to read characters until it buil...
	READ TEXT x OCT ARRAY:4

	interprets each line of the following octal data as the same set of four octal numbers:
	0345 067 003<LF>0377<LF>
	345 67 3 377<EOF>
	345,67,3,377,45,67<EOF>

	HEX Format
	READ TEXT HEX transactions are of this form:
	READ TEXT VarList HEX ARRAY:NumElements
	-or-
	READ TEXT VarList HEX MAXFW:NumChars ARRAY:NumElements

	VarList is a single Integer variable or a comma-separated list of Integer variables.
	NumChars specifies the number of 8-bit characters that can be read in an attempt to build a number.
	If the transaction specifies a MAX NUM CHARS (MAXFW), the hexadecimal number read may contain mor...
	ad2469Ff725BCdef37964 hexadecimal data

	using this transaction:
	Assume HP�VEE reads the same hexadecimal data, but with a different MAX NUM CHARS, as in this tra...
	READ TEXT x HEX MAXFW:3 ARRAY:7

	Assume HP�VEE reads the same hexadecimal data, but with DEFAULT�NUM�CHARS, as in this transaction:
	READ TEXT x HEX ARRAY:2

	REAL Format
	READ TEXT REAL transactions are of this form:
	READ TEXT VarList REAL ARRAY:NumElements
	-or-
	READ TEXT VarList REAL MAXFW:NumChars ARRAY:NumElements

	VarList is a single Real variable or a comma-separated list of Real variables.
	NumChars specifies the maximum number of 8-bit characters that can be read in an attempt to build...
	The decimal number read by this transaction is interpreted as an HP�VEE Real which is a 64-bit IE...
	-1.797 693 134 862 315E+308
	-2.225 073 858 507 202E-307
	0
	2.225 073 858 507 202E-307

	If the transaction specifies a MAX NUM CHARS (MAXFW), the Real number read may contain more than ...
	1.234567890123456789 real number data

	using this transaction:
	Assume HP�VEE reads the same real number data, but with a different MAX NUM CHARS, as in this tra...
	READ TEXT x REAL MAXFW:6 ARRAY:3

	READ TEXT REAL transactions recognize most commonly used decimal notations for Real numbers inclu...
	Table D-13. Suffixes for REAL Numbers

	Suffix
	Multiplier
	The following Text data represents six real numbers:
	1001
	+1001.
	1001.0
	1.001E3
	+1.001E+03

	If HP�VEE reads the real text data with this transaction:
	READ TEXT x REAL ARRAY:6

	then each element of the Real variable x contains the value 1001.
	If HP�VEE reads the same data with this transaction:
	READ TEXT x REAL MAXFW:20 ARRAY:6

	COMPLEX, PCOMPLEX, and COORD Formats
	COMPLEX, PCOMPLEX, and COORD correspond to the HP�VEE multi-field data types with the same names....
	COMPLEX Format

	READ TEXT COMPLEX transactions are of this form:
	READ TEXT VarList CPX ARRAY:NumElements
	PCOMPLEX Format

	READ TEXT PCOMPLEX transactions are of this form:
	READ TEXT VarList PCX:PUnit ARRAY:NumElements

	PUnit specifies the units of angular measure in which the phase of the PComplex is measured.
	If any transaction reading COMPLEX, PCOMPLEX, or COORD formats encounters an opening parenthesis,...
	Assume you wish to read a file containing the following data containing parentheses:
	(1.23 , 3.45 (6.78 , 9.01) (1.23 , 4.56)

	If HP�VEE reads the data with this transaction:
	READ TEXT x,y CPX

	then the variables x and y contain these Complex values:
	x = (1.23 , 3.45)
	y = (1.23 , 4.56)
	COORD Format

	READ TEXT COORD transactions are of this form:
	READ TEXT VarList COORD:NumFields ARRAY:NumElements

	VarList is a single Coord variable or a comma-separated list of Coord variables.
	NumFields is a single variable or expression that specifies the number of rectangular dimensions ...
	BINARY Encoding
	READ BINARY transactions are of this form:
	READ BINARY VarList DataType ARRAY:NumElements

	VarList is a single variable or a comma-separated list of variables.

	Note HP�VEE stores and manipulates all integer values as the INT32 data type, and all real number...
	For example, the following transaction, reading from a file:
	READ BINARY a REAL64 ARRAY:*,10

	BINBLOCK Encoding
	READ BINBLOCK transactions are of this form:
	READ BINBLOCK VarList DataType ARRAY:NumElements

	VarList is a single variable or a comma-separated list of variables.
	DataType is one of these pre-defined HP�VEE data types:
	For example, the following transaction, reading from a file:
	READ BINBLOCK a REAL64 ARRAY:*,10

	The following transaction reads two traces from an oscilloscope that formats its traces as IEEE 4...

	CONTAINER Encoding
	READ CONTAINER transactions are of the form:
	READ CONTAINER VarList

	VarList is a single variable or a comma-separated list of variables.

	REGISTER Encoding
	READ REGISTER is used to read values from a VXI device's A16 memory.
	READ REGISTER transactions are of this form:
	READ REG: SymbolicName ExpressionList INCR ARRAY:NumElements
	-or-
	READ REG: SymbolicName ExpressionList ARRAY:NumElements

	where:
	SymbolicName is a name defined during configuration of a VXI device. The name refers to a specifi...

	MEMORY Encoding
	READ MEMORY is used to read values from a VXI device's A24 or A32 memory.
	READ MEMORY transactions are of this form:
	READ MEM: SymbolicName ExpressionList INCR ARRAY:NumElements
	-or-
	READ MEM: SymbolicName ExpressionList ARRAY:NumElements

	where:
	SymbolicName is a name defined during configuration of a VXI device. The name refers to a specifi...

	IOSTATUS Encoding
	READ IOSTATUS transactions are of this form:
	READ IOSTATUS STS Bits VarList
	-or-
	READ IOSTATUS DATA READY VarList

	VarList is a single Integer variable or a comma-separated list of Integer variables.
	READ IOSTATUS transactions are used by Direct I/O for GPIO interfaces, From StdIn, To/From Named ...
	For example, the HP 98622A GPIO interface supports two peripheral status lines, STI0 and STI1. Ta...
	READ IOSTATUS STS Bits a
	Table D-14. IOSTATUS Values

	Value Read
	STI1
	STI0
	0
	0
	0
	1
	0
	1
	2
	1
	0
	3
	1
	1

	EXECUTE Transactions
	Table D-15. Summary of EXECUTE Commands
	Commands
	Description
	Details About HP-IB
	The EXECUTE commands used by Direct I/O to HP-IB devices and Interface Operations are similar but...
	The following series of tables indicate the exact bus actions conducted by Direct I/O and Interfa...
	Table D-16. EXECUTE ABORT HP-IB Actions

	Direct I/O
	Interface Operations
	Not applicable.
	IFC (³ 100 µsec)
	REN
	ATN
	Table D-17. EXECUTE CLEAR HP-IB Actions

	Direct I/O
	Interface Operations
	ATN
	ATN
	MTA
	DCL
	UNL
	LAG
	SDC
	Table D-18. EXECUTE TRIGGER HP-IB Actions

	Direct I/O
	Interface Operations
	ATN
	ATN
	MTA
	GET
	UNL
	LAG
	GET
	Table D-19. EXECUTE LOCAL HP-IB Actions

	Direct I/O
	Interface Operations
	ATN
	REN
	MTA
	ATN
	UNL
	LAG
	GTL
	Table D-20. EXECUTE REMOTE HP-IB Actions

	Direct I/O
	Interface Operations
	REN
	REN
	ATN
	ATN
	MTA
	UNL
	LAG
	Table D-21. EXECUTE LOCAL LOCKOUT HP-IB Actions

	Direct I/O
	Interface Operations
	Not applicable.
	ATN
	LLO
	Details About VXI
	The EXECUTE commands used by Direct I/O to VXI devices and Interface Operations are similar, but ...
	EXECUTE TRIGGER transactions for the Interface Operations object are of the form:
	EXECUTE TRIGGER TriggerType Expression TriggerMode

	TriggerType specifies which trigger group will be used by the
	EXECUTE TRIGGER transaction. The groups are:
	Expression evaluates to a single Integer variable that represents a bit pattern indicating which ...
	TriggerMode indicates the way the trigger lines are to be asserted:
	Table D-22. EXECUTE CLEAR VXI Actions

	Direct I/O
	Interface Operations
	Table D-23. EXECUTE TRIGGER VXI Actions

	Direct I/O
	Interface Operations
	Table D-24. EXECUTE LOCAL VXI Actions

	Direct I/O
	Interface Operations
	Table D-25. EXECUTE REMOTE VXI Actions

	Direct I/O
	Interface Operations

	WAIT Transactions
	WAIT INTERVAL transactions simply wait for the specified number of seconds before executing the n...
	WAIT SPOLL transactions are of the form:
	WAIT SPOLL Expression Sense

	Expression is an expression that evaluates to an integer. The integer will be used as a bit mask.
	Sense is a field with two possible values.
	WAIT SPOLL transactions wait until the serial poll response byte of the associated instrument mee...
	The following transactions show how to use WAIT�SPOLL:
	WAIT SPOLL:256 ANY Wait until any bit is set.
	WAIT SPOLL:256 CLEAR Wait until all are clear.
	WAIT SPOLL:0x40 ANY Wait until bit 6 is set.

	WAIT REGISTER and WAIT MEMORY transactions are of the form:
	WAIT REG:SymbolicName MASK:Expression Sense [Expression]
	-or-
	WAIT MEM:SymbolicName MASK:Expression Sense [Expression]

	where:
	SymbolicName is a name defined during configuration of a VXI device. The name refers to a specifi...
	Sense is a field with three possible values.
	WAIT REGISTER or MEMORY transactions wait until the value read from the register or memory locati...

	SEND Transactions
	SEND transactions are of this form:
	SEND BusCmd

	BusCmd is one of the bus commands listed in Table D-26.
	Table D-26. SEND Bus Commands

	Command
	Description

	WRITE(POKE) Transactions
	The WRITE(POKE) transaction is very similar to the WRITE transaction, except that it applies only...

	READ(REQUEST) Transactions
	The READ(REQUEST) transaction is very similar to the READ transaction, except that it applies onl...

	E HP�VEE for UNIX and HP�VEE for Windows Differences
	HP�VEE for UNIX and HP�VEE for Windows Differences
	Execute Program
	DLL versus Shared Library
	Data Files
	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

