
HP VEE Advanced
Programming
Techniques

e.
ion
Notice
The information contained in this document is subject to change without
notice.

Hewlett-Packard Company (HP) shall not be liable for any errors contained
in this document. HP makes no warranties of any kind with regard to this
document, whether express or implied. HP specifically disclaims the implied
warranties of merchantability and fitness for a particular purpose. HP shall
not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory, in
connection with the furnishing of this document or the use of the
information in this document.

Warranty Information

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

U.S. Government Restricted Rights

The Software and Documentation have been developed entirely at private
expense. They are delivered and licensed as commercial computer software
as defined in DFARS 252.227-7013 (Oct 1988),
DFARS 252.211-7015 (May 1991) or DFARS 252.227-7014 (Jun 1995),
as a “commercial item” as defined in FAR 52.101(a), or as Restricted
computer software as defined in FAR 52.227-19 (Jun 1987) (or any
equivalent agency regulation or contract clause), whichever is applicabl
You have only those rights provided for such Software and Documentat
by the applicable FAR or DFARS clause or the HP standard software
agreement for the product involved.

Copyright  1991—1998 Hewlett-Packard Company. All rights reserved.

This document contains information which is protected by copyright. All
rights are reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under the copyright laws.
ii

Microsoft®, MS-DOS®, Windows®, MS Windows®, and Windows NT®
are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of The Open Group.

Printing History

Edition 1 - September 1993
Edition 2 - January 1995
Edition 3 - March 1997
Edition 4 - May 1998
 iii

.

Conventions Used in This Manual
This manual uses the following typographical conventions:

Getting Started Italicized text is used for book titles and for
emphasis.

Dialog Box Bold text is used for the first instance of a word
that is defined in the glossary.

File Computer font represents text that you will see
on the screen, including menu names, features,
buttons, or text that you have to enter.

dir filename In this context, the text in computer font
represents an argument that you type exactly as
shown, and the italicized text represents an
argument that you must replace with an actual
value.

File ⇒ Open The “⇒” is used in a shorthand notation to show
the location of HP VEE features in the menu. For
example, “File ⇒ Open” means to select the
File menu and then select Open.

Sml | Med | Lrg Choices in computer font, separated with bars
(|), indicate that you should choose one of the
options.

Press Enter In this context, bold represents a key to press on
the keyboard.

Press Ctrl + O Represents a combination of keys on the
keyboard that you should press at the same time
iv

Contents
1. Introduction

About This Manual..2
HP VEE Example Programs ...3

Using the Examples ...3
Running Examples ...3
Example Directories ...3

Using Library Objects ...4

2. Variables

About Undeclared Variables ..6
About Declared Variables ..7
About Naming ..8

Naming Precedence ...8
Setting Initial Values ...9
Accessing Variable Values ...11
Deleting Variables ..12
Using Variables in Libraries..12

3. Using Records and DataSets

Record Containers ..15
Accessing Records..17
Programmatically Building Records...20

Editing Record Fields ..21
Using DataSets..23

4. Using User-Defined Libraries

About UserFunctions ..27
Converting Between UserObjects and UserFunctions27
Calling a UserFunction from an Expression28
Creating a UserFunction Library...29
Differences Between Merging and Importing...................................31

About Compiled Functions...33
 Contents-1

Design Considerations for Compiled Functions 34
Importing and Calling a Compiled Function..................................... 35
Creating a Compiled Function (UNIX)... 37

The Definition File... 38
Building a C Function .. 39
Creating a Shared Library .. 42
Binding the Shared Library.. 43

Creating a Dynamic Linked Library (MS Windows)........................ 44
Creating the DLL ... 44

Declaring DLL Functions ... 45
Creating the Definition File .. 45
Examples... 46

Parameter Limitations .. 46
The Import Library Object ... 47
The Call Object .. 47
The Delete Library Object ... 48

Using DLL Functions in Formula Objects .. 48
About Remote Functions.. 49

UNIX Security, UIDs, and Names .. 52
Resource Files ... 54
Errors... 54

About Callable VEE ... 56
About the VEE RPC API .. 57

Starting and Stopping a Server... 57
Loading and Unloading a Library.. 58
Selecting UserFunctions .. 59
Calling UserFunctions.. 60
 Other Functions... 61
Error Codes for the VEE RPC API.. 62

About the VEE DATA API... 63
Data Types, Shapes and Mappings .. 64
Scalar Data Handling ... 65
Array Data Handling.. 67
Enum Types ... 74
Mapping Functions .. 75
Other Functions.. 76

About the Callable VEE ActiveX Control ... 77
Contents-2

5. Using Transaction I/O

Using Transactions ...81
Creating and Editing Transactions ...82

Editing the Data Field ..85
Adding Terminals ..87
Reading Data ...88

Transactions that Read a Specified Number of Data Elements ...89
Read-To-End Transactions...91
Non-Blocking Reads ..93

Suggestions for Experimentation ..96
Details About Transaction-Based Objects..97

Execution Rules...97
Object Configuration ...97

End Of Line (EOL) ..99
Array Separator ..99
Multi-Field Format...100
Array Format ..100

READ and WRITE Compatibility...101
Choosing the Correct Transaction ..102

Selecting the Correct Object and Transaction104
Example of Selecting an Object and Transaction105

Using To String and From String ...106
Communicating With Files ..107

Details About File Pointers ...107
Read Pointers..108
Write Pointers...108
Closing Files...108

The EOF Data Output..110
Common Tasks for Importing Data...111

Importing X-Y Values..111
Importing Waveforms ..113

Fixed-Format Header ..113
Variable-Format Header ...115

Communicating With Programs (UNIX) ...117
Execute Program (UNIX)..117

Execute Program (UNIX) Fields..118
Shell ..118
Wait for Prog Exit ...118
 Contents-3

Prog With Params ... 119
Running a Shell Command .. 120
Running a C Program... 122

To/From Named Pipe (UNIX) .. 123
Hints for Using Named Pipes... 124

To/From Socket... 125
To/From Socket Fields... 126

Connect/Bind Port Mode .. 126
Host Name .. 127
Timeout... 127
Transactions .. 127

Data Organization .. 128
Object Execution.. 128
Example ... 128

HP BASIC/UX Objects (HP-UX) ... 130
Init HP BASIC/UX .. 131
To/From

HP BASIC/UX.. 131
Examples Using

To/From
HP BASIC/UX.. 132
Sharing Scalar Data .. 132
Sharing Array Data ... 133
Sharing Binary Data ... 133

Communicating With Programs (PC) ... 134
Execute Program (PC)... 134

Execute Program (PC) Fields... 135
Run Style .. 135
Wait for Prog Exit... 135
Prog With Params ... 136
Working Directory.. 136

Using Dynamic Data Exchange (DDE) .. 137
To/From DDE Object... 138

DDE Examples.. 141
Dynamic Linked Libraries (DLL) ... 143

Related Reading.. 144
Contents-4

6. Using the Sequencer Object

Sequence Transactions..147
Logging Test Results ..153

Logging to a DataSet ...156
Some Restrictions in Logging Test Results.....................................157

A Practical Test Example ...158

7. Using ActiveX
Automation Objects
and Controls

Using ActiveX Automation ..169
To Make Automation Objects Available in HP VEE......................169
To Declare Automation Object Variables171

Handling Automation Object Events ...172
To Create an Automation Object in a Program175
To Get an Existing Automation Object ...175
To Manipulate Automation Objects ..176

Getting and Setting Properties..176
About Default Properties ..177

Calling Methods ...178
Using Enumerations ...179
Using the ActiveX Object Browser..179

Data Type Compatibility ...184
To Delete Automation Objects ..185

Using ActiveX Controls ...186
To Select ActiveX Controls...186
To Add a Control to HP VEE..187

Differences in the ActiveX Control Host188
To Use an ActiveX Control in HP VEE..189

Using the Assigned Local Variable..189
Declaring a Global Variable for a Control190

To Manipulate ActiveX Controls ..190
Recommended Reading ..191
 Contents-5

8. Keys To Faster Programs

9. Troubleshooting Problems

A. Using the Compatibility Mode

About The Compiler... 203
Compatibility Mode Changes:

VEE 3 to VEE 4 .. 204
Line Colors.. 204
Compiling Existing Programs ... 205
Program Changes .. 205

Time-Slicing UserFunctions .. 206
UserObjects.. 206
Function Precedence .. 206
Auto Execute and Start .. 207
OK Buttons and Wait for Input.. 207
Collectors Without Data... 207
Sample & Hold Without Data.. 207
Timer Object .. 207
Feedback Cycles .. 208
Parallel Threads.. 208
Loop Bounds .. 209
UserObjects and Calls With XEQ Pins...................................... 209
OK Buttons With XEQ Pins .. 209
From File With EOF Pins .. 209
Parallel Junctions ... 210
Intersecting Loops.. 211
Intersecting Loops Via Junctions... 212
Open View Object Changes... 212
Array Syntax in Expressions.. 213

Compatibility Mode Changes:
VEE 4 to Standard... 214
About the Standard Mode ... 214
Converting Programs to Standard Mode... 214

Menu Changes.. 215
Expressions .. 215
Variables .. 216
Contents-6

Global Namespace..216
READ TEXT Transactions ..218
Interaction Between To/From File and To/From DataSet219

Using Standard Mode in HP VEE for HP-UX219

B. Configuring HP VEE

Color and Font Settings ..223
Changing X11 Attributes (UNIX) ..224
Configuring HP VEE for Windows..225

General HP VEE Settings..225
Customizing Icon Bitmaps ...226
Selecting a Bitmap for a Panel View..227
If You See Colors Changing On Your Screen (UNIX) 228

Too Many Colors...228
Applications that Use a Local Color Map (UNIX)230

Using Non-USASCII Keyboards (UNIX) ..232
Using HP-GL Plotters (UNIX) ...233

C. ASCII Table

D. I/O Transaction Reference

WRITE Transactions ...246
Path-Specific Behaviors ..246
TEXT Encoding...249

DEFAULT Format ...250
STRING Format ...251

Field Width and Justification ..251
Number of Characters ...253
Writing Arrays With Direct I/O ..254

QUOTED STRING Format ...255
Field Width and Justification ..255
Number of Characters ...257
Embedded Control and Escape Characters258

INTEGER Format ..260
Number of Digits ..261
Sign Prefixes ...262

OCTAL Format ..263
 Contents-7

Number of Digits .. 263
Octal Prefixes.. 264

HEX Format... 266
Hexadecimal Prefixes ... 266

REAL Format... 267
Notations and Digits ... 268

COMPLEX, PCOMPLEX, and COORD Formats 270
COMPLEX Format... 270
PCOMPLEX Format .. 272
COORD Format.. 273

TIME STAMP Format ... 273
BYTE Encoding .. 276
CASE Encoding .. 276
BINARY Encoding ... 277
BINBLOCK Encoding .. 279

Non-HP-IB BINBLOCK.. 279
HP-IB BINBLOCK.. 280

CONTAINER Encoding ... 281
STATE Encoding .. 282
REGISTER Encoding ... 283
MEMORY Encoding .. 284
IOCONTROL Encoding ... 285

READ Transactions ... 286
TEXT Encoding .. 287

General Notes for READ TEXT.. 289
Read to End... 289
Number of Characters Per READ... 289
Effects of Quoted Strings.. 291

CHAR Format .. 293
TOKEN Format.. 294

SPACE DELIM .. 295
INCLUDE CHARS .. 296
EXCLUDE CHARS ... 298

STRING Format... 299
Effects of Control and Escape Characters 299

QUOTED STRING Format ... 301
Effects of Control and Escape Characters 301

INTEGER Format .. 303
OCTAL Format.. 305
Contents-8

HEX Format ...306
REAL Format...308
COMPLEX, PCOMPLEX, and COORD Formats.....................311

COMPLEX Format ...311
PCOMPLEX Format...311
COORD Format ..312

BINARY Encoding ...313
BINBLOCK Encoding ..314
CONTAINER Encoding..316
REGISTER Encoding ..316
MEMORY Encoding ..317
IOSTATUS Encoding ...318

EXECUTE Transactions...320
Details About HP-IB ...324
Details About VXI...326

WAIT Transactions ..329
SEND Transactions ..332
WRITE(POKE) Transactions ...334
READ(REQUEST) Transactions ...335

E. HP VEE for UNIX and
HP VEE for Windows
Differences

Execute Program...339
DLL versus Shared Library ..340
Data Files ..341

Index
 Contents-9

Figures
Figure 2-1. A Simple Variable Example .. 9
Figure 2-2. Setting Array Values.. 10
Figure 2-3. Accessing a Variable Multiple Ways 11
Figure 3-1. A Simple Record Container... 16
Figure 3-2. Retrieving Record Fields with Get Field 17
Figure 3-3. Using Array Syntax in Get Field ... 18
Figure 3-4. Retrieving Record Fields with UnBuild Record.................. 19
Figure 3-5. The Effect of Output Shape in Build Record....................... 20
Figure 3-6. Mixing Scalar and Array Input Data 21
Figure 3-7. Using Set Field to Edit a Record ... 22
Figure 3-8. Using To DataSet to Save a Record 23
Figure 3-9. Using From DataSet to Retrieve a Record 24
Figure 4-1. Calling a UserFunction from Expressions........................... 28
Figure 4-2. Creating UserFunctions for a Library.................................. 29
Figure 4-3. Importing a UserFunction Library....................................... 30
Figure 4-4. Using Import Library for Compiled Functions.................... 36
Figure 4-5. Using Call for Compiled Functions..................................... 36
Figure 4-6. Program Calling a Compiled Function 42
Figure 4-7. Import Library for Remote Functions.................................. 50
Figure 5-1. Default Transaction in To String 81
Figure 5-2. A Simple Program Using To String 81
Figure 5-3. Editing the Default Transaction in To String 84
Figure 5-4. READ Transaction Using a Variable in the Data Field 85
Figure 5-5. WRITE Transaction Using an Expression in the Data Field 85
Figure 5-6. Terminals Correspond to Variables 88
Figure 5-7. Select Read Dimension from List 89
Figure 5-8. Transaction Dialog Box for Multi-Dimensional Read 90
Figure 5-9. Transaction Dialog Box for Multi-Dimensional Read-To-End

92
Figure 5-10. Using READ IOSTATUS DATAREADY for a Non-Blocking Read

95
Figure 5-11. Experimenting with To String 96
Figure 5-12. The Properties Dialog Box .. 98
Figure 5-13. Using the EXECUTE CLOSE Transaction 109
Figure 5-14. Typical Use of EOF to Read a File 111
Figure 5-15. Importing XY Values ... 112
Figure 5-16. Importing a Waveform File .. 114
 Contents-10

Figure 5-17. Importing a Waveform File ..116
Figure 5-18. The Execute Program (UNIX) Object117
Figure 5-19. Execute Program (UNIX) Running a Shell Command ..

120
Figure 5-20. Execute Program (UNIX) Running a Shell Command us-

ing Read-To-End ..121
Figure 5-21. Execute Program Running a C Program122
Figure 5-22. C Program Listing..123
Figure 5-23. The To/From Socket Object ..126
Figure 5-24. To/From Socket Binding Port for Server Process129
Figure 5-25. To/From Socket Connecting Port for Client Process ..130
Figure 5-26. To/From HP BASIC/UX Settings132
Figure 5-27. The Execute Program (PC) Object135
Figure 5-28. The To/From DDE Object ..138
Figure 5-29. The To/From DDE Example ..139
Figure 5-30. Execute PC before To/From DDE140
Figure 5-31. I/O Terminals and To/From DDE....................................140
Figure 5-32. Lotus 123 DDE Example ...141
Figure 5-33. Excel DDE Example ..141
Figure 5-34. Reflections DDE Example ...142
Figure 5-35. Word for Windows DDE Example142
Figure 5-36. WordPerfect DDE Example...143
Figure 6-1. A Simple Sequencer Program..147
Figure 6-2. Running the Program ..150
Figure 6-3. A Logged Record of Records ...151
Figure 6-4. A Simple Logging Example...153
Figure 6-5. A Logged Array of Records of Records154
Figure 6-6. Analyzing the Logged Test Results155
Figure 6-7. Logging to a DataSet ...156
Figure 6-8. Simple Bin Sort Example...159
Figure 6-9. Improved Bin Sort Example ..161
Figure 7-1. Selecting ActiveX Automation Type Libraries170
Figure 7-2. Declaring an ActiveX Automation Variable......................171
Figure 7-3. Specifying the Automation Object Type172
Figure 7-4. Using the ActiveX Object Browser180
Figure 7-5. Elements Displayed in the Function & Object Browser180
Figure 7-6. Selecting ActiveX Controls ...186
Figure 7-7. Adding ActiveX Controls from the Device Menu187
Figure 7-8. Accessing Properties and Help in an ActiveX Control......188
Figure A-1. Feedback in Previous Versions ...208
Figure A-2. Feedback in Compiled Mode ..208
 Contents-11

Figure A-3. EOF Differences ... 210
Figure A-4. Parallel Junctions .. 210
Figure A-5. Intersecting Loops.. 211
Figure A-6. Intersecting Loops Via Junctions...................................... 212
Figure A-7. READ TEXT Transaction with TOKEN in VEE 4 Mode 218
Figure A-8. READ TEXT Transaction with TOKEN in Standard Mode ..

219
Figure B-1. Color Map File Using Words.. 230
Figure B-2. Color Map File Using Hex Numbers 230
Figure D-1. A WRITE TEXT Transaction... 250
Figure D-2. Two WRITE TEXT STRING Transactions........................ 251
Figure D-3. Two WRITE TEXT STRING Transactions........................ 252
Figure D-4. A WRITE TEXT STRING Transaction.............................. 253
Figure D-5. Two WRITE TEXT STRING Transactions........................ 253
Figure D-6. Two WRITE TEXT QUOTED STRING Transactions 255
Figure D-7. Two WRITE TEXT QUOTED STRING Transactions 256
Figure D-8. A WRITE TEXT QUOTED STRING Transaction 257
Figure D-9. Two WRITE TEXT QUOTED STRING Transactions 257
Figure D-10. A WRITE TEXT QUOTED STRING Transaction 259
Figure D-11. Two WRITE TEXT INTEGER Transactions 261
Figure D-12. A WRITE TEXT INTEGER Transaction 261
Figure D-13. Two WRITE TEXT INTEGER Transactions 262
Figure D-14. A WRITE TEXT OCTAL Transaction.............................. 264
Figure D-15. A WRITE TEXT OCTAL Transaction.............................. 265
Figure D-16. A WRITE TEXT HEX Transaction 266
Figure D-17. A WRITE TEXT HEX Transaction 267
Figure D-18. Three WRITE TEXT REAL Transactions 268
Figure D-19. Three WRITE TEXT REAL Transactions 269
Figure D-20. Three WRITE TEXT REAL Transactions 269
Figure D-21. A WRITE TEXT COMPLEX Transaction 270
Figure D-22. Two WRITE TEXT PCOMPLEX Transactions 272
Figure D-23. A WRITE TEXT PCOMPLEX Transaction 272
Figure D-24. Two WRITE BYTE Transactions..................................... 276
Figure D-25. Two WRITE CASE Transactions..................................... 277
Figure D-26. Quoted and Non-Quoted Data .. 292
Figure D-27. Data for READ TOKEN........................295
Figure D-28. Data for READ TOKEN........................297
Figure D-29. Data for READ TOKEN........................298
Contents-12

Tables
Table 5-1. Editing Transactions With a Mouse82
Table 5-2. Editing Transactions With the Keyboard83
Table 5-3. Typical Data Field Entries ..86
Table 5-4. Escape Characters ...87
Table 5-5. Summary of Transaction-Based Objects 103
Table 5-6. Summary of Transaction Types 104
Table 5-7. Range of Integers Allowed for Socket Port Numbers.........127
Table 7-1. Conversions from Automation to HP VEE Data Types......184
Table 7-2. Conversions from HP VEE to Automation Data Types......185
Table 9-1. Problems, Causes, and Solutions...198
Table C-1. ASCII 7-bit Codes ..236
Table D-1. Summary of Transaction Types ...244
Table D-2. Summary of I/O Transaction Objects.................................245
Table D-3. WRITE Encodings and Formats ..247
Table D-4. Formats for WRITE TEXT Transactions249
Table D-5. Escape Characters...259
Table D-6. Sign Prefixes...262
Table D-7. Octal Prefixes ...264
Table D-8. Hexadecimal Prefixes...266
Table D-9. REAL Notations...268
Table D-10. PCOMPLEX Phase Units...272
Table D-11. READ Encodings and Formats...286
Table D-12. Formats for READ TEXT Transactions287
Table D-13. Suffixes for REAL Numbers..310
Table D-14. IOSTATUS Values ..319
Table D-15. Summary of EXECUTE Commands................................320
Table D-16. EXECUTE ABORT HP-IB Actions.....................................324
Table D-17. EXECUTE CLEAR HP-IB Actions.....................................324
Table D-18. EXECUTE TRIGGER HP-IB Actions325
Table D-19. EXECUTE LOCAL HP-IB Actions.....................................325
Table D-20. EXECUTE REMOTE HP-IB Actions...................................325
Table D-21. EXECUTE LOCAL LOCKOUT HP-IB Actions326
Table D-22. EXECUTE CLEAR VXI Actions ..327
Table D-23. EXECUTE TRIGGER VXI Actions....................................327
Table D-24. EXECUTE LOCAL VXI Actions ..327
Table D-25. EXECUTE REMOTE VXI Actions328
Table D-26. SEND Bus Commands...332
 Contents-13

Contents-14

1
Introduction

Introduction

About This Manual

This manual gives detailed information about using advanced features of
HP VEE. This manual is meant to be used as needed, rather than read from
beginning to end.

Note Throughout this manual, references to HP VEE apply to both HP VEE for
HP-UX and HP VEE for Windows except where noted otherwise.
2 Chapter 1

Introduction
HP VEE Example Programs

''
lled

te
ms.

the
t
n

d
HP VEE Example Programs
 HP VEE includes many examples programs to help you understand
HP VEE. HP VEE also includes a library of objects that you can ‘‘Merge
into your programs. The example programs and library objects are insta
as part of the normal HP VEE installation process.

Using the Examples

The examples referenced from the manuals are included in the examples/
manual directory (with file names like manual01.vee, etc). Other
examples, not referenced in any of the manuals, are available to illustra
specific HP VEE concepts, or to illustrate solutions to engineering proble
To help you find the example you want, the examples directory is divided
into several subdirectories.

Running Examples You load and run example programs using the Help menu. First, click on
Help ⇒ Open Example on the menu bar. This presents a list of
subdirectories which group similar examples together. Double-click on
desired subdirectory to see the list of available example programs in tha
group. Scroll through the list until you find the desired example. Click o
the example name, then click on OK to open the program. You will be
prompted to save the any existing program in the work area. To run the
program, press the Run button on the tool bar.

Example Directories You can also use File ⇒ Open to load HP VEE examples.

For HP VEE for Windows, the default directory is:

C:\Program Files\Hewlett-Packard\VEE 5.0\examples\

For HP VEE for HP-UX, running on HP-UX 9.x the examples are installe
in subdirectories under:

/usr/lib/veetest/examples/

For 10.x, the directory is:

/opt/veetest/examples/
Chapter 1 3

Introduction
HP VEE Example Programs

or

uch
Using Library Objects

The object library provides objects that you can merge into your own
program. Just select Merge from the File menu and a list box will appear
for the appropriate library directory:

C:\Program Files\Hewlett-Packard\VEE 5.0\lib\

- or -

/usr/lib/veetest/lib/

- or -

/opt/veetest/lib/

Most of the library objects are UserObjects that encapsulate individual
objects. You can create your own UserObjects for the library, but you must
save them in the contrib subdirectory (HP-UX only):

/usr/lib/veetest/lib/contrib/

- or -

/opt/veetest/lib/contrib/

(You can’t write to the lib directory unless you are logged on as "root" on
HP-UX platforms.)

The contrib subdirectory is empty at installation — it provides a place f
your own library of "contributed" objects.

There is another subdirectory under lib, named convert. This
subdirectory contains formula objects that you can Merge into your
program. Each of these objects performs a useful conversion function s
as degrees to radians. The files are located in:

C:\Program Files\Hewlett-Packard\VEE 5.0\lib\convert\

- or -

/usr/lib/veetest/lib/conversions/

- or -

/opt/veetest/lib/conversions/
4 Chapter 1

2
Variables

ls,”

 not

e

pe
or
ble
s”
Variables

There are two types of variables in HP VEE, undeclared and declared. Both
types of variables can contain any data type, including complex data types
such as waveforms and records. They can also be any data shape, including
scalars and arrays.

Note For information about using variables with ActiveX automation objects and
controls, see Chapter 7, “Using ActiveX Automation Objects and Contro

About Undeclared Variables

Undeclared variables are the easiest to use, but execute slower and do
allow scoping. Undeclared variables include the following:

n Global variables that can be used anywhere in the program. They ar
created with the Set Variable object. They are deleted before the
program is run if the Delete Variables at PreRun property is set.
Global variables must be created before they can be accessed via theGet
Variable object or used in expressions, or else your program will
generate an error.

Undeclared global variables are useful if you don't know what data ty
or shape your values will be. Also if the values may change the type
shape, use an undeclared global variable. If you want a scoped varia
(i.e. local), then use declared variables (see “About Declared Variable
on page 7).

n Temporary variables that are used only in Formula objects. To create a
temporary variable, such as tmp, in a Formula by adding an output
terminal. For example, to swap the values input in the terminals a and b,
use the temporary variable tmp. The expression would look like
tmp=a, a=b, b=tmp;
For more information about temporary variables, see Assignment in
HP VEE Help under Reference ⇒ Math Functions and
Operators.
6 Chapter 2

Variables
n Terminal names that are used as variables within objects (such as in
transaction or Formula objects).

About Declared Variables

Declared variables are defined before they are used. They have the
additional feature of scoping, which allows HP VEE to run faster because
the data type and shape are known before run time. However, if you attempt
to set a declared variable with values that are different than the data type or
shape of the values set in the declaration, the program will error.

To declare a variable, use the Data ⇒ Declare Variable object. When
placed in a context, it declares the variable before any of the other objects
execute. When the variable has been declared, it has no value until it is set
via a Set Variable or a Formula object.

The scope of a declared variable must be specified in the Declare
Variable object. The scopings are as follows:

n Global - The variable can be used anywhere in the program.

n Local to Context - The variable can only be used in a single
UserObject or UserFunction, or in Main. This variable can be used in the
context that the Declare Variable object is in, and in UserObjects
nested inside the context. The variable cannot be used in UserFunctions
called from the context.

n Local to Library - The variable can only be used within the library
of UserFunctions where the Declare Variable object is used.
Declare Variable must be located in one of the UserFunctions.

You cannot define multiple variables with the same name and scope. If this
happens, you will get an error.
Chapter 2 7

Variables

riable
est to

ct,
.
About Naming

You can use any valid variable name for a variable. The first character must
be a letter. Letters, numbers and the underscore character may be used in the
rest of the name. Variable names are not case sensitive (uppercase and
lowercase letters are equivalent). Special characters, including spaces, are
not allowed.

To retrieve the value of the variable, you must use the name that you
specified when the variable was declared or set.

Naming Precedence When Compatibility Mode in Default Preferences is set to
Standard, some names must be unique. See Appendix A, “Using the
Compatibility Mode,” for information about using variable names in
Standard mode. When Compatibility Mode is set to VEE 4 or VEE 3
mode, the question of precedence comes up when you have named a va
the same name as another variable. The order of precedence (from high
lowest) is:

1. Input terminal name (such as in a Formula or a transaction object)

2. Temporary variable (as in a Formula object)

3. Local to Context declared variable

4. Local to Library declared variable

5. Global declared variable

6. Global undeclared variable

In other words, if you have two variables with the same name in an obje
there is a conflict. The variable that has the highest precedence is used
8 Chapter 2

Variables
Setting Initial Values

You must have set initial values before accessing any variables or HP VEE
generates an error.

Figure 2-1. A Simple Variable Example

The Set Variable must set the global variable before the Get Variable
attempts to retrieve it. To ensure this, the sequence output pin of the Set
Variable object is connected to the sequence input pin of the Get
Variable object. If this is not done, the Get Variable may try to access
a non-existent global variable, and an error will occur.

If the property Delete Variables at PreRun is not set, you may not
receive an error and may receive old data instead.

When declared variables are created, they are not initialized and must have a
value set in them before they are accessed via the Get Variable object or
used in expressions, or else your program will generate an error. You set
values via the Set Variable object or by using the Formula object.
Chapter 2 9

Variables
If the variable is an array or a record, when using the Formula object, you
must set the values of the entire array or record before trying to access any
of the elements. The following example shows two different ways to
initialize values from a Formula object.

Figure 2-2. Setting Array Values
10 Chapter 2

Variables
Accessing Variable Values

Once you have named a variable, you can access its value as many times as
you want in your program. You can use several methods to retrieve the
variable value. In the following example, the value stored in the global
variable globalA is retrieved once with a Get Variable object, a second
time by including the name globalA in an expression in a Formula object,
and a third time by including the name globalA in a transaction in a To
File object:

Figure 2-3. Accessing a Variable Multiple Ways

Note You can include the name of any global variable in any expression in a
Formula object, or in any other expression that is evaluated at run time.
Chapter 2 11

Variables

rted
re

ill

hen

ope

 a
 as
Deleting Variables

To improve memory usage, use the Delete Variable object to free up
memory space when a variable is no longer needed. When undeclared
variables are deleted, their values and definitions are both deleted. When
declared variables are deleted, the values are reset to uninitialized values, but
the definition remains.

When you set Delete Variable to By Name, the closest variable of the
specified name is deleted. The closest variable is defined by the precedence
listed in “Naming Precedence” on page 8.

When you set Delete Variable to All, all declared and undeclared
variables in all scopings are affected, even the variables that are in impo
libraries. Declared variables are uninitialized and undeclared variables a
deleted (as described previously).

To delete all variables before each execution of the program, select File ⇒
Default Preferences and click on the check box Delete Variables
at PreRun. If this check box is not selected, the values of all variables w
remain and the declarations of declared variables will not reinitialize the
values

Using Variables in Libraries

Because only UserFunctions are loaded when the library is imported, w
you use Declare Variable objects, you must put them in one of the
UserFunctions, not in the Main window of the library.

When a variable is scoped as a Global, it is only used in the local program.
It can not be used in any Remote Function that is called.

When a library is imported, all variables declared (via Declare Variable
objects) in the imported UserFunction are defined at that time for the sc
specified. For example, if the variable is scoped as a Global, it can be
accessed from any part of the program, until the library is deleted. When
library is deleted, all variables declared in its UserFunctions are deleted
well.
12 Chapter 2

3

Using Records and DataSets

Using Records and DataSets

This chapter introduces two concepts: the Record data type and the DataSet,
which is a collection of Record containers saved into a file for later retrieval.
There are several HP VEE objects that allow you to create and manipulate
records, including: Record, Build Record, UnBuild Record, Merge
Record, SubRecord, Set Field, and Get Field. All of these objects
are located under the Data menu.

The To DataSet and From DataSet objects allow you to store and
retrieve records to and from DataSets; they are located under the I/O menu.
14 Chapter 3

Using Records and DataSets
Record Containers
Record Containers
A container of the Record data type has named fields which represent data.
You can have as many named fields as you like in a record. Each field can
contain another record, a scalar, or an array. Let’s look at a simple record,
created with the Record object.

The Record object allows you to create records by manually entering a
value for each field. Just configure the Record object as a scalar (array
elements = 0) or as an array (array elements = non-zero) with the
Properties dialog box, accessed from the object menu. The Record
object in the following example is configured as a record array with four
array elements. The record consists of five fields: the Text fields (Name,
Address, and City), and the Int32 fields (EmplNo and Zip). The Record
object allows you to step through the record, from one array element to the
next, with the First, Prev, Next, and Last buttons. You edit each field as
you go.
Chapter 3 15

Using Records and DataSets
Record Containers
Figure 3-1. A Simple Record Container

When the program is run, the entire record is output on the Record output
pin. The AlphaNumeric display shows the entire record, with four array
elements (0 through 3), each consisting of five record fields enclosed in
braces ("{}").
16 Chapter 3

Using Records and DataSets
Accessing Records
Accessing Records
The following examples show how to access a record and extract individual
fields.

Use the Get Field object to extract an individual field from the record.
Get Field is located under Data ⇒ Access Record. In the following
example Get Field objects are used to extract the entire Name and EmplNo
fields: Note that the Get Field object is really just a Formula object titled
rec.field.

Figure 3-2. Retrieving Record Fields with Get Field

Use the "dot" syntax to access individual fields, for example: Rec[*].Name
and Rec[*].EmplNo. This syntax is described in detail in
Mathematically Processing Data ⇒ General Concepts under
Tell Me About in HP VEE Help.

Rec[*].Name means "get the Name field from the record on the Rec input
pin." This syntax can be used in an expression in a Formula object, or in
any other expression that is evaluated at run time. For example, you could
use this syntax in a transaction in the To String object.
Chapter 3 17

Using Records and DataSets
Accessing Records
Use the syntax Rec[1].Name and Rec[1].EmplNo to obtain just the
second element ("element 1") of each field:

Figure 3-3. Using Array Syntax in Get Field
18 Chapter 3

Using Records and DataSets
Accessing Records
To retrieve several or all fields from a record use the UnBuild Record
object, as shown in the next example:

Figure 3-4. Retrieving Record Fields with UnBuild Record

The UnBuild Record object not only allows you to add outputs for every
field in the record, but provides Name List and Type List outputs. These
outputs list the name and type of each field in the record.

The program is saved in the file manual38.vee in your examples
directory.

Note Data cannot be automatically converted to and from the Record data type.
For example, to send Record data into a Real input terminal, you must
extract the field from the Record with the Unbuild Record object, or use
Get Field with the Rec.A syntax as described previously.
Chapter 3 19

Using Records and DataSets
Programmatically Building Records
Programmatically Building Records
The Record object is useful to create and edit simple records, however it is
cumbersome to create large records. You also may want to create a record
from existing data. In such cases, you use Build Record to build a record.

When you build a record from individual data components with Build
Record, you must define the data shape of the output Record container. The
Build Record object gives you two Output Shape choices: Scalar and
Array 1D. In most cases you will find that Scalar, the default, is the
appropriate choice for Output Shape.

The following example shows the difference between Scalar and
Array 1D in the output record built from two input arrays:

Figure 3-5. The Effect of Output Shape in Build Record

In the figure above, when Scalar is selected, the output record is a scalar
record consisting of two fields, each being one of the input arrays. On the
other hand, when Array 1D is selected for the same input data, the output
record is a record array with the same number of elements as the two input
arrays. The data is matched, element for element, in the output record.
20 Chapter 3

Using Records and DataSets
Programmatically Building Records
If two input arrays have different numbers of elements, only Scalar is
allowed as the Output Shape. To create an Array 1D output record, all
input arrays must have the same number of elements or an error will occur.
However, you can mix scalar and array input data, as shown in the next
example:

Figure 3-6. Mixing Scalar and Array Input Data

In this case, the scalar Real value 1 is repeated five times in the output
record array if Array 1D is selected.

Editing Record Fields

You can use the Set Field object to modify a field in a record. The
Set Field object is an assignment statement consisting of a left-hand
expression set equal to a right-hand expression. The left-hand expression
specifies the field that you want to modify, and the right-hand expression
Chapter 3 21

Using Records and DataSets
Programmatically Building Records
specifies the new data. The right-hand expression is evaluated and the record
field specified by the left-hand expression is assigned that value.

Figure 3-7. Using Set Field to Edit a Record

In this example, a five element record array is built with Build Record.
The Set Field object (titled rec.field = b) specifies that the field
Rec[1].A (the A field of record element 1) is to be assigned the value A*10.
Note that there is potential for confusion here. In the left-hand expression,
the A in Rec[1].A refers to the A field of the record, however, in the right-
hand expression, the A in A*10 refers to the value at the A input of the
Set Field object. This exemplifies the need for good names for variables
and Record fields.

The variable A has the value 33, so A*10 is evaluated as 330, which is
assigned to Rec[1].A, as shown in the figure. Note that none of the other
values of the record have changed.

Note that Set Field is a Formula object, see Assignment in Math
Functions and Operators, under Reference in HP VEE Help for
more information.
22 Chapter 3

Using Records and DataSets
Using DataSets
Using DataSets
As we have seen, HP VEE data (including waveforms) can be built into
records and later retrieved. But you can also store records into a file, called a
DataSet.

A DataSet is a collection of Record containers saved into a file for later
retrieval. The To DataSet object collects Record data on its input and
writes that data to a named file (the DataSet). Let’s look at an example of
how this is done.

Figure 3-8. Using To DataSet to Save a Record

Two waveforms, a sine wave and a noise waveform, are output to the Build
Record object, which builds a record. The record is then output to the To
DataSet object, which writes the data to the file myData. Note that Clear
File at PreRun is checked so that any data previously stored in myData
is cleared.
Chapter 3 23

Using Records and DataSets
Using DataSets
Once the data has been saved as a DataSet, you use From DataSet to
retrieve the record, which can then be unbuilt if desired. The following
program shows this technique.

Figure 3-9. Using From DataSet to Retrieve a Record

The From DataSet object retrieves the record data from myData, and
outputs the data to Unbuild Record, which separates out the sine wave
and noise data fields. In this example, the sine wave, the noise waveform,
and the sum of the two waveforms are each displayed in a separate XY
Trace object.

 The pair of programs of this last example are saved in the files
manual40.vee and manual41.vee in your examples directory.
24 Chapter 3

4

Using User-Defined Libraries

Using User-Defined Libraries

HP VEE supports three kinds of user-defined functions:

n UserFunctions
n Compiled Functions
n Remote Functions

The methods for creating each type of user-defined function, and for using it
in the HP VEE program, are similar. All of these functions are called using
the Call object, or from certain expressions such as in Sequencer or
Formula objects. You can use any of the three kinds of user-defined
functions in a library. To use a library of functions, generally follow these
steps:

1. Import the library.

Use the Device ⇒ Import Library object. Select the Library
Type (UserFunction, Compiled Function, or Remote Function)
and fill in the appropriate fields. Specific information about these fields
is explained in the associated section in this chapter.

2. Call one or more functions that are contained in the library.

Use the Call, Formula, or Sequencer objects from the Device menu.
You can also use other objects that expressions at run time, such as If/
Then/Else or To File. If you want to have multiple values returned
from the function, you must use a Call object.

3. Delete the library.

If memory management or program execution speed is a concern, use the
Device ⇒ Delete Library object to programmatically free the
library from memory. Otherwise the libraries are automatically deleted
when the program ends.

Specific information about using the different kinds of libraries is listed in
the following sections.
26 Chapter 4

Using User-Defined Libraries
About UserFunctions
About UserFunctions
UserFunction is a user-defined function selected from the Device menu. It
can also be created from an existing UserObject.

The advantage of creating a UserFunction over using a UserObject is that
you can call a single UserFunction several times in your program. Thus,
there is only one UserFunction to edit and maintain, rather than several
instances of a UserObject. A UserFunction can be created and called locally
within an HP VEE program, or it can be saved in a library and imported into
a program with the Import Library object.

UserFunctions, when executed in Standard or VEE 4 mode, will time-slice
when called from Call, Formula, If/Then/Else, or Sequencer objects
(only from the Function field). UserFunctions will not time-slice when
called from a To File, To String, or similar object, or if the formula is
supplied via a control pin.

For information about creating, editing, and calling a UserFunction, refer to
How Do I in HP VEE Help.

Converting Between UserObjects and UserFunctions

To convert a UserObject into a UserFunction, select Make UserFunction
from the UserObject’s object menu. The UserObject window will be
replaced by a UserFunction window with the same input and output
terminals. The UserObject object is replaced by a UserFunction Call
object.

To reconvert the UserFunction back into a UserObject, select Make
UserObject from the object menu of the UserFunction window. Any calls
to the UserFunction remain (you’ll have to manually delete them), but the
UserFunction is automatically converted into a UserObject.
Chapter 4 27

Using User-Defined Libraries
About UserFunctions
Calling a UserFunction from an Expression

You don’t need to use the Call object to call a UserFunction. In fact you can
call a UserFunction from an expression in a Formula object, or from any
expression evaluated at run time such as from a Sequencer object. The
following program demonstrates several ways to call a UserFunction.

Figure 4-1. Calling a UserFunction from Expressions

In the program, the Call object calls the UserFunction noiseUF and returns
a sine wave with an added noise component. The expression
abs(noiseUF(Y)) in the first Formula object returns the absolute value
of the waveform returned by the UserFunction. Thus, the displayed noisy
sine wave is rectified in the positive direction. The expression
abs(noiseUF(Y))-1.5 in the second Formula object also calls the
UserFunction, but also adds a negative dc offset to the waveform. Note that
the sequence pins are used to ensure correct propagation, because the
UserFunction uses the global variable.
28 Chapter 4

Using User-Defined Libraries
About UserFunctions

r

ed

s in
eate

ns.
This program is saved in the file manual43.vee in your examples
directory.

The ability to call a UserFunction from an expression is very useful —
especially when you include such an expression in a transaction in the
Sequencer object. Refer to Chapter 6, “Using the Sequencer Object,” fo
more information about this topic.

Creating a UserFunction Library

So far we have looked at local UserFunctions, which are created and us
within the same program. However, you can create a library of multiple
UserFunctions which are stored externally, and later imported into a
program.

To create a library of UserFunctions, create the individual UserFunction
the empty HP VEE work area, and then save to a file. For example, to cr
a library of two UserFunctions, myRand1 and myRand2 (which add random
numbers to an input value), you would start by creating two UserFunctio

Figure 4-2. Creating UserFunctions for a Library
Chapter 4 29

Using User-Defined Libraries
About UserFunctions
To create a UserFunction library, save the program containing the
UserFunctions.

Note Generally you want the program to contain only the UserFunctions, however
if there are other objects in the program (e.g. in Main), they will be ignored
when the library is imported.

Because only the UserFunctions are loaded when the library is imported, if
you use Declare Variable objects, put them in one of the UserFunctions,
not in the Main window of the library.

To import the UserFunction library into your program, use the Import
Library object. The following program imports the library from the file
user_func_lib and calls the UserFunctions myRand1 and myRand2.

Figure 4-3. Importing a UserFunction Library

The Import Library object allows you to specify the type of library:
User Function, Compiled Function, or Remote Function. For a
UserFunction library, you also specify a Library Name and File
Name. The File Name field specifies the file from which to import the
library, user_func_lib in this case. The Library Name just specifies a
local name by which the library can be identified within the program. In this
30 Chapter 4

Using User-Defined Libraries
About UserFunctions
case, Import Library attaches the name myLibrary to the library
imported from the file user_func_lib. This makes it possible for the
Delete Library object to delete the library from the program.

This program is simple, so it isn’t necessary to delete the UserFunction
library after it is used. However, in a large program with calls to large
libraries, the ability to delete a library when you no longer need it, reduces
the memory requirements of the program.

Note You cannot edit the UserFunctions imported with Device ⇒ Import
Library, but you can view their contents and set breakpoints for
debugging. To view imported UserFunctions, use the Program Explorer
or use Edit ⇒ Edit UserFunction.

You can merge a library of UserFunctions using File ⇒ Merge Library.
Once the library is merged into your program, you can edit the individual
UserFunctions with Edit ⇒ Edit UserFunction.

Differences Between Merging and Importing

You can bring existing, external UserFunctions into your program in two
different ways.

n Importing UserFunctions

q Can be done programmatically or manually.

q Can be programmatically deleted after use (saving memory).

q Allows you to use UserFunctions from a single source. For example a
single set of common UserFunctions can be used by multiple HP VEE
programs. None of the HP VEE programs can change the
UserFunctions so the UserFunctions remain consistent, which
simplifies maintenance.

q Imported UserFunctions are not saved with the HP VEE program and
therefore saves disk space and improves load time.
Chapter 4 31

Using User-Defined Libraries
About UserFunctions
n Merging UserFunctions

q Is done manually (via File ⇒ Merge Library).

q Allows you to make the UserFunctions a part of your program and
modify them as you need to.

q Merged UserFunctions are saved with the HP VEE program.
32 Chapter 4

Using User-Defined Libraries
About Compiled Functions

tion

on
nd

nce
d to

,
About Compiled Functions
The second type of user-defined function is the Compiled Function, which is
created by dynamically linking a library, written in C, C++, FORTRAN, or
Pascal, into the HP VEE process. A library of compiled functions is called a
shared library on UNIX® and a dynamically linked library (DLL) on
Microsoft® Windows.

To use a Compiled Function, you:

1. Write the external program.

2. Create the DLL (Windows) or shared library (UNIX), and a definition
file.

3. Import the library and call the function from HP VEE.

4. Delete the library from HP VEE's memory when you're done.

Note Pascal shared libraries are supported only for HP 9000 Series 700
computers.

Basically, the methods for importing a Compiled Function library and for
calling the function are very similar to what was discussed for UserFunc
libraries. The Import Library object attaches the shared library to the
HP VEE process and parses the definition file declarations. The definiti
file defines the type of data that is passed between the external library a
HP VEE. This file will be discussed later in this section. The Compiled
Function can then be called with the Call object, or from certain objects
such as Formula and Sequencer. You'll find that creating a Compiled
Function is considerably more difficult than creating a UserFunction. O
you have written a library of functions in C or another language, you nee
create the shared library and definition file for the program to be linked.

Before we look at the process of creating and using Compiled Functions
let's look at some design considerations.
Chapter 4 33

Using User-Defined Libraries
About Compiled Functions
Design Considerations for Compiled Functions

There are several reasons for using Compiled Functions in your HP VEE
program. You can develop time-sensitive routines in another language and
integrate them directly into your HP VEE program by using Compiled
Functions. Also, you can use Compiled Functions as a means of providing
security for proprietary routines. Because Compiled Functions do not
timeslice (i.e. they execute until they are done without interruption) they are
only useful for specific purposes that are not available in HP VEE.

Although you can extend the capabilities of your HP VEE program by using
Compiled Functions, it is at the expense of adding complexity to the
HP VEE process. The key design goal should be to keep the purpose of the
external routine highly focused on a specific task, and to use Compiled
Functions only when the capability or performance that you need is not
available using an HP VEE UserFunction, or an Execute Program
escape to the operating system.

You can use any facilities available to the operating system in the program
to be linked. These include math routines, instrument I/O, and so forth.
However, you cannot access any of the HP VEE internal functions from
within the external program to be linked.

Although the use of Compiled Functions provides enhanced HP VEE
capabilities, there are some pitfalls. Here are a few key ones:

n HP VEE can not trap errors originating in the external routine. Because
your external routine becomes part of the HP VEE process, any errors in
that routine will propagate back to HP VEE, and a failure in the external
routine may cause HP VEE to "hang" or otherwise fail. Thus, you need
to be sure of what you want the external routine to do, and provide for
error checking in the routine. Also, if your external routine exits, so will
HP VEE.

n Your routine must manage all memory that it needs. Be sure to
deallocate any memory that you may have allocated when the routine
was running.
34 Chapter 4

Using User-Defined Libraries
About Compiled Functions

n Your external routine cannot convert data types the way HP VEE does.
Thus, you should configure the data input terminals of the Call object to
accept only the type and shape of data that is compatible with the
external routine.

n If your external routine accepts arrays, it must have a valid pointer for the
type of data it will examine. Also, the routine must check the size of the
array on which it is working. The best way to do this is to pass the size of
the array from HP VEE as an input to the routine, separate from the array
itself. If your routine overwrites values of an array passed to it, use the
return value of the function to indicate how many of the array elements
are valid.

n System I/O resources may become locked. Your external routine is
responsible for timeout provisions, and so forth.

n If your external routine performs an invalid operation, such as
overwriting memory beyond the end of an array or dereferencing a nil or
bad pointer, this can cause HP VEE to exit or error with a General
Protection Fault (MS Windows) or a segmentation violation (UNIX).

Importing and Calling a Compiled Function

Once you have created a dynamically linked library, you can import the
library into your HP VEE program with the Import Library object and
then call the Compiled Function with the Call object. The process is very
much like that of importing a library of UserFunctions and then calling the
functions, as described at the beginning of this chapter.

The Import Library object was explained in the ‘‘UserFunctions’’
section at the beginning of this chapter. To import a Compiled Function
library, select Compiled Function in the Library Type field. Just as
for a UserFunction, the Library Name field attaches a name to identify the
library within the program, and the File Name field specifies the file from
Chapter 4 35

Using User-Defined Libraries
About Compiled Functions
which to import the library. In addition, there is a fourth field, which
specifies the name of the Definition File:

Figure 4-4. Using Import Library for Compiled Functions

The definition file defines the type of data that is passed between the
external routine and HP VEE. It contains the prototypes for the functions.

Once you have imported the library with Import Library, you can call
the Compiled Function by specifying the function name in the Call object.
For example, the Call object below calls the Compiled Function named
myFunction.

Figure 4-5. Using Call for Compiled Functions

You select a Compiled Function just as you would select a UserFunction.
You can either select the desired function using Select Function from
the Call object menu or from the Function & Object Browser (under
Device ⇒ Function & Object Browser), or you can type the name in
the Call object. In either case, provided HP VEE recognizes the function,
36 Chapter 4

Using User-Defined Libraries
About Compiled Functions
the input and output terminals of the Call object are configured
automatically for the function. (The necessary information is supplied by
the definition file.) Or, you can reconfigure the Call input and output
terminals by selecting Configure Pinout in the object menu. Whichever
method you use, the HP VEE will configure the Call object with the input
terminals required by the function, and with a Ret Value output terminal
for the return value of the function. In addition, there will be an output
terminal corresponding to each input that is passed by reference.

You can also call the Compiled Function by name from an expression in a
Formula object, or from other expressions evaluated at run time. For
example, you could call a Compiled Function by including its name in an
expression in a Sequencer transaction. Note, however, that only the
Compiled Function’s return value (Ret Value in the Call object) can be
obtained from within an expression. If you want to obtain other parameters
from the function, you have to use the Call object.

Creating a Compiled Function (UNIX)

 There are several steps to the process of creating a Compiled Function. First
you must write a program in C, C++, FORTRAN, or Pascal (HP 9000 Series
700 only), and write a definition file for the function. Then you must create a
shared library containing the Compiled Function, and bind the shared library
into the HP VEE process. We’ll look at each step in turn. But first, let’s look
at the structure of the definition file.
Chapter 4 37

Using User-Defined Libraries
About Compiled Functions
The Definition File The Call object determines the type of data it should pass to your function
based on the contents of the definition file you provide. The definition file
defines the type of data the function returns, the function name, and the
arguments the function accepts. The function definition is of the following
general form:

<return type> <function name> (<type> <paramname>, <type>
<paramname>, ...) ;

Where:

n <return type> can be: int, short, long, double, char*, or void.

n <function name> can be a string consisting of an alpha character
followed by alphanumeric characters, up to a total of 512 characters.

n <type> can be: int, short, long, double, int*, char*, short*,
long*, double*, char**, or void.

n <paramname> can be a string consisting of an alpha character followed
by alphanumeric characters, up to a total of 512 characters. The
parameter names are optional, but it is recommended to include them. If a
parameter is to be passed by reference, the parameter name must be
preceded by the indirection symbol (*).

The valid return types are character strings (char*, corresponding to the
HP VEE Text data type), integers (long, int, short, corresponding to the
HP VEE Int32 data type), and double-precision floating-point real numbers
(double, corresponding to the HP VEE Real data type).

If you specify "pass by reference" for a parameter by preceding the
parameter name with *, HP VEE will pass the address of the information to
your function. If you specify "pass by value" for a parameter by leaving out
the *, HP VEE will copy the value (rather than the address of the value) to
your function. You’ll want to pass the data by reference if your external
routine changes that data for propagation back to HP VEE. Also, all arrays
must be passed by reference.

Any parameter passed to a Compiled Function by reference will be available
as an output terminal on the Call object. That is, the output terminals will
38 Chapter 4

Using User-Defined Libraries
About Compiled Functions
be Ret Value for the function’s return value, plus an output for each input
parameter that was passed by reference.

HP VEE pushes 144 bytes on the stack. This means that it allows up to 36
parameters to be passed by reference to a Compiled Function. This would
also imply that up to 36 long integer parameters, or up to 18 double-
precision floating-point parameters, may be passed by value.

Note For HP-UX, you must have the ANSI C compiler in order to generate the
position independent code needed to build a shared library for a Compiled
Function.

You may include comments in your definition file. HP VEE allows both
"enclosed" comments and "to-end-of-line" comments. "Enclosed" comments
use the delimiter sequence /*comments*/, where /* and */ mark the
beginning and end of the comment, respectively.

"To-end-of-line" comments use the delimiting characters // to indicate the
beginning of a comment that runs to the end of the current line.

Building a C
Function

Now let’s look at an example of building an external routine. We’ll use the C
language in this example.

The following C function accepts a real array and adds 1 to each element in
the array. The modified array is returned to HP VEE on the Array terminal,
while the size of the array is returned on the Ret Value terminal. This
function, once linked into HP VEE, becomes the Compiled Function called
in the HP VEE program shown in Figure 4-6.
Chapter 4 39

Using User-Defined Libraries
About Compiled Functions
/*
C code from manual49.c file

*/

#include <stdlib.h>

#ifdef WIN32
define DLLEXPORT __declspec(dllexport)
#else
define DLLEXPORT
#endif

/* The description will show up on the Program Explorer when you select
"Show Description" from the object menu and the Function Selection
dialog box in the small window on the bottom of the box.
*/
DLLEXPORT char myFunc_desc[] = "This function adds 1.0 to the array
passed in";

DLLEXPORT long myFunc(long arraySize, double *array) { long i;

for (i = 0; i < arraySize; i++, array++) { *array += 1.0; }

return(arraySize); }

The definition file for this function is as follows:

/*
definition file for manual49.c
*/

long myFunc(long arraySize, double *array);

(This definition is exactly the same as the ANSI C prototype definition in the
C file.)

You must include any header files on which the routine depends.

The library should link against any other system libraries needed to resolve
the system functions it calls.

The example program uses the ANSI C function prototype. This isn’t
necessary, but it makes things a little easier to understand. The function
prototype declares the data types that HP VEE should pass into the function.
The array has been declared as a pointer variable. HP VEE will put the
addresses of the information appearing on the Call data in terminals into
this variable. The array size has been declared as a long integer. HP VEE
will put the value (not the address) of the size of the array into this variable.
The positions of both the data input terminals and the variable declarations
are important. The addresses of the data items (or their values) supplied to
40 Chapter 4

Using User-Defined Libraries
About Compiled Functions
the data input pins (from top to bottom) are placed in the variables in the
function prototype from left to right.

Note that one variable in the C function (and correspondingly, one data input
terminal in the Call object) is used to indicate the size of the array. The
arraySize variable is used to prevent data from being written beyond the
end of the array. If you overwrite the bounds of an array, the result depends
on the language you are using. In Pascal, which performs bounds checking, a
run-time error will result, stopping HP VEE. In languages like C, where
there is no bounds checking, the result will be unpredictable, but intermittent
data corruption is probable.

Our example has passed a pointer to the array, so it is necessary to
dereference the data before the information can be used.

The arraySize variable has been passed by value, so it won’t show up as a
data output terminal. However, here we’ve used the function’s return value to
return the size of the output array to HP VEE. This technique is useful when
you need to return an array that has fewer elements than the input array.
Chapter 4 41

Using User-Defined Libraries
About Compiled Functions
The following HP VEE program calls the Compiled Function created from
our example C program:

Figure 4-6. Program Calling a Compiled Function

The example in Figure 4-6 is saved in the file manual49.vee in your
examples directory. The C file is saved as manual49.c, the definition file
as manual49.h, and the shared library as manual49.sl.

Creating a Shared
Library

To create a shared library, your function must be compiled as position-
independent code. This means that, instead of having entry points to your
routines exist as absolute addresses, your routine’s symbol table will hold a
symbolic reference to your function’s name. The symbol table is updated to
reflect the absolute address of your named function when the function is
42 Chapter 4

Using User-Defined Libraries
About Compiled Functions
bound into the HP VEE environment. It must be linked with a special option
to create a shared library.

Let’s suppose that our example C routine is in the file named dLink.c. To
compile the file to be position independent, you use the +z compiler option.
You also need to prevent the compiler from performing the link phase by
using the -c option. Thus, the compile command would look like this:

cc -Aa -c +z dLink.c

This produces an output file named dLink.o, which you can then link as a
shared library with the following command:

ld -b dLink.o

The -b option tells the linker to generate a shared library from position-
independent code. This produces a shared library named a.out.
Alternatively, you could use the command:

ld -b -o dLink.sl dLink.o

to obtain an output file (through the use of the -o option) called dLink.sl.

Binding the Shared
Library

HP VEE binds the shared library into the HP VEE process. All you need to
do is include an Import Library object in your program, specifying the
library to import, and then call the function by name (i.e., with a Call
object). When Import Library executes, HP VEE binds the shared
library and makes the appropriate input and output terminals available to the
Call object. Then you use the object menu choices from the Call object
(Configure Pinout and Select Function) to configure the Call
object correctly. The shared library remains bound to the HP VEE process
until HP VEE terminates, or until the library is expressly deleted.

You delete the shared library from HP VEE either by selecting Delete Lib
from the Import Library object menu, or by including the Delete
Library object in your program. Note, however, that you may have more
than one library name pointing to the same shared library file. In this case,
you use the Delete Library object to delete each library, but the shared
library remains bound until the last library pointing to it is deleted. However,
the Delete Lib selection in the Import Library object menu will
unbind the shared library without regard to other Import Library objects.
Chapter 4 43

Using User-Defined Libraries
About Compiled Functions
When HP VEE binds a shared library, it defines the input and output
terminals needed for each Compiled Function. When you select a Compiled
Function for a Call object, or when you execute a Configure Pinout,
HP VEE automatically configures Call with the appropriate terminals. The
algorithm is as follows:

n The appropriate input terminals are created for each input parameter to be
passed to the function (by reference or by value).

n An output terminal labeled Ret Value is configured to output the return
value of the Compiled Function. This is always the top-most output pin.

n An output terminal is created for every input that is passed by reference.

The names of the input and output terminals (except for Ret Value) are
determined by the parameter names in the definition file. However, the
values output on the output terminals are a function of position, not name.
Thus, the first (top-most) output pin is always the return value. The second
output pin returns the value of the first parameter passed by reference, and so
forth. This is normally not a problem unless you add terminals after the
automatic pin configuration.

Creating a Dynamic Linked Library (MS Windows)

HP VEE for Windows provides access to Dynamic Linked Libraries (DLL)
through the Call object and through formula objects. Only DLLs
specifically written for HP VEE will work because HP VEE does not
support 8-bit characters or 32-bit reals.

Note This section tells you how to call a DLL, not how to write a DLL.

HP VEE version 3.2 and greater only calls 32-bit DLLs, not 16-bit DLLs.

Creating the DLL Create your DLL before writing your HP VEE program. Create your DLL
as you would any other DLL except that only a subset of C types are
allowed. (See “Creating the Definition File” on page 45.)
44 Chapter 4

Using User-Defined Libraries
About Compiled Functions
 If you are using Microsoft Visual C++ version 2.0 or greater, the function
definition should be:

__declspec(dllexport) long myFunc (...);

This definition eliminates the need for a .DEF file to export the function
from the DLL. Use the following command line to compile and link the
DLL:

cl /DWIN32 $file.c /LD

/LD creates a DLL. Use /Zi to generate debug information. Note the MS
linker links to the C multi-threaded Runtime Library by default. If you use
functions like GetComputerName(), you need to link against
Kernel32.lib. Then the compile/link line would look like:

cl /DWIN32 file.c /LD /link Kernel32.lib

Declaring DLL Functions. To work with HP VEE, DLL functions can be
declared as __declspec(dllexport) using Microsoft C++ version 2.0 or
greater. This application eliminates the need for a .DEF file. For example, a
generic function could be created as follows:

__declspec(dllexport) long generic Func(long a) {return (a*2); }

If you are not using Microsoft Visual C++, then the .DEF file contains:

EXPORTS genericFunc

And the function definition looks like:

long generic Func(long a) {return(a*2);}

Creating the Definition File. The definition file contains a list of
prototypes of the imported functions. HP VEE uses this file to configure the
Call objects and to determine how to pass parameters to the DLL function.
The format for these prototypes is:

<return type> <modifier> <function name> (<type> <paramname>, <type>
<paramname>, ...) ;

Where:

n <return type> can be: int, short, long, double, char*, or void.
Chapter 4 45

Using User-Defined Libraries
About Compiled Functions
n <function name> can be a string consisting of an alpha character
followed by alphanumeric characters, up to a total of 512 characters.

n <modifier> can be _cdecl, _pascal, or _stdcall.

n <type> can be: int, short, long, double, int*, char*, short*,
long*, double*, char**, or void.

n <paramname> can be a string consisting of an alpha character followed
by alphanumeric characters, up to a total of 512 characters. The
parameter names are optional, but it is recommended to include them. If a
parameter is to be passed by reference, the parameter name must be
preceded by the indirection symbol (*).

Examples.

Pass in four parameters, return a long:

long aFunc(double *,long param2,long *param3, char *);

No input parameters, return a double:

double aFunc();

Pass in a string, return a long:

long aFunc(char *aString);

Pass in an array of strings, return a long:

long aFunc(char **aString);

Parameter
Limitations

A DLL function pushes 144 bytes on the stack. This limits the number of
parameters used by the function. Any combination of parameters may be
used as long as the 144-byte limit is not exceeded. A long uses four bytes, a
double uses eight bytes and a pointer uses four bytes. For example, a
function could have 36 longs, or 18 doubles, or 20 pointers and 8 doubles.
46 Chapter 4

Using User-Defined Libraries
About Compiled Functions
The Import Library
Object

Before you can use a Call object or Formula box to execute a DLL
function you must import the function into the HP VEE environment via the
Import Library object. On the Import Library object select
Compiled Function under Library Type. Enter the correct definition
file name using the Definition File button. Finally, select the correct
file using the File Name button. The Library Name button assigns a
logical name to a set of functions and does not need to be changed.

The Call Object Before using a DLL function with the Call object you must configure the
Call object. The easiest way to do this is to select Load Lib on the
Import Library object menu to load the DLL file into the HP VEE
environment. Then select Select Function on the Call object menu.
HP VEE will bring up a dialog box with a list of all the functions listed in the
definitions file. When you select a function, HP VEE automatically
configures the Call object with the correct input and output terminals and
function name.

You can also configure the Call object manually by modifying the function
name and adding the appropriate input and output terminals. First, configure
the input terminals, with the same number of input terminals as there are
parameters passed to the function. The top input terminal is the first
parameter passed to the function. The next terminal down from the top is the
second parameter, and so on. Next, configure the output terminals so that
the parameters passed by reference appear as output terminals on the Call
object. Note that parameters passed by value cannot be assigned as output
terminals. The top output terminal is the value returned by the function.
The next terminal down is the first parameter passed by reference, etc.
Finally, enter the correct DLL function name in the Function Name field.
For example, for a DLL function defined as

long foo(double *x, double y, long *z);

you need three input terminals for x, y, and z and three output terminals, one
for the return value and two for x and z. The Function Name field would
contain foo. If the number of input and output terminals do not exactly
match the number of parameters in the function HP VEE generates an error.

If the DLL library has already been loaded and you enter the function name
in the Function Name field you can also use the Configure Pinout
selection on the Call object menu to configure the terminals.
Chapter 4 47

Using User-Defined Libraries
About Compiled Functions
The Delete Library
Object

If you have very large programs you may want to delete libraries after you
use them. The Delete Library object deletes libraries from memory just
as the Delete Lib selection on the Import Library object menu does.

Using DLL Functions in Formula Objects

You can also use DLL functions in formula objects. With formula objects,
only the return value is used in the formula; the parameters passed by
reference cannot be accessed. For example, the DLL function defined above
in a formula:

4.5 + foo(a, b, c) * 10

where a is the top input terminal on the formula object, b is next and c is
last. The call to foo must have the correct number of parameters or
HP VEE generates an error.
48 Chapter 4

Using User-Defined Libraries
About Remote Functions

ed by
s.

king

f
e
st

e
t
on

he

:

About Remote Functions
The third type of user-defined function is the Remote Function. A Remote
Function is a UserFunction that runs in another HP VEE process on a remote
host computer. Because Remote Functions are a special case of a
UserFunction, refer to “About UserFunctions” on page 27 for general
information that applies to UserFunctions.

The Remote Function is called from the local HP VEE process over the
LAN (Local Area Network). Just as for UserFunctions and Compiled
Functions, you import a library of Remote Functions with the Import
Library object.

Once one or more Remote Functions have been imported, they are call
either using the Call object, or by including function names in expression
You include Remote Function calls in your program just as you would
UserFunctions. However, there are some differences, and some networ
technicalities, which are described in this section.

You create a library of Remote Functions just as you would a library of
UserFunctions (as described earlier in this chapter). However, instead o
saving the library file on your local computer, you'll need to save it on th
intended remote host computer. The intended remote host computer mu
also have HP VEE installed on it. When you import the library of Remot
Functions, it is actually imported, not into the local HP VEE process, bu
rather in a special invocation of HP VEE, called a "service", which runs
the remote host. The local HP VEE process is called the "client."

The client HP VEE process imports the Remote Function library using t
Import Library object. When you select Remote Function for the
Library Type field, some new fields appear as shown in the next figure
Chapter 4 49

Using User-Defined Libraries
About Remote Functions

Figure 4-7. Import Library for Remote Functions

The Library Type and Library Name fields function the same as for
UserFunctions and Compiled Functions. The other fields are as follows:

n Remote Host Name - This is the name of the host on which the
"service" HP VEE process is to run (the "remote host"). This name can
be the common or symbolic name of the host (for example myhost). On
the other hand, you can enter the IP address of the host in this field (for
example 14.13.29.99).

n Remote File Name - This is the name of the Remote Function library
file. The Remote File Name is analogous to the File Name field for a
UserFunction library. However, you must specify the absolute path to the
file. Hence the path and file name can be rather long. You may want to
have all users place remote function library files in a common place, for
example: /users/remfunc/ or C:\USERS\REMFUNC.
50 Chapter 4

Using User-Defined Libraries
About Remote Functions
Note The remote HP VEE service invoked by the client is dependent on the Host
Name specified in the Import Library object. Thus, if you have two
Import Library objects using the same Host Name only one service
process will be invoked. Even if two different Library Names and
Remote File Names are used, each will communicate with the same
service. On the other hand, if each Import Library uses a different Host
Name, two separate services will be invoked.

n Remote Timeout - This field specifies a timeout period in seconds for
communication with the HP VEE service. If the HP VEE service has not
returned the expected results of a Remote Function within this time
period, an error occurs.

n Display Server - Enter a resolvable host name or IP address. The host
must have an X Server running and permissions must be set to have an X
client display on the specified machine. If the service is instantiated on a
MS Windows machine, the Display Server field must be the same as
the Remote Host Name. On HP-UX, they can be different.

n Geometry - Enter the initial geometry for the window that contains the
view of the remote HP VEE, in the standard geometry format. For
example, 800x500+0-0.

n Remote Debug - When this check box is selected, all of the
UserFunctions within the library will execute in debug mode (i.e., you
will be able to perform debugging on them such as setting breakpoints
and doing line probes). This setting works with UserFunctions whether
or not they have panel views.

When the Import Library object is executed (either by selecting Load
Lib from the object menu, or during normal program execution), a HP VEE
server process is started on the remote host specified in the Host Name
field. The client process and the server process are connected over the
network, and are able to communicate. When a Call object in the client
HP VEE calls a Remote Function, the arguments (the data input pins on the
Call object) are sent over the network to the remote service, the Remote
Function is executed, and the results are sent back to the Call object and
output on its data output pins. If your program deletes the library of Remote
Chapter 4 51

Using User-Defined Libraries
About Remote Functions
Functions with the Delete Library object, the Remote Functions
associated with the library are removed. You can load multiple libraries in a
HP VEE server process, then delete each one as needed without canceling
the service connection. The HP VEE server exists while the HP VEE client
process continues to run.

The service HP VEE process can exist on the same computer or "host" as the
client, or on another host as long as there is a network connection between
them. The most common connection is between two hosts on a LAN.
However, if a network path exists, the two hosts could be a continent apart.

The HP VEE service process has some attributes that are different than a
normal HP VEE process:

1. The HP VEE service process will execute only Remote Functions that
are contained in the Remote Function library named by Import
Library.

2. Remote Functions have views associated with them. When you call a
remote functions, you can have a HP VEE window appear if the
UserFunction displays a panel view.

3. Global variables (declared and undeclared) are not shared between the
processes.

4. Remote Functions will not time-slice when called.

5. Objects cannot be passed to or from a Remote Function
(includes Automation objects or pointers to ActiveX controls).

UNIX Security, UIDs, and Names

When your client HP VEE process runs a service HP VEE process on a
remote host, some security requirements must be satisfied. The basic
requirement is that, in order to invoke the service HP VEE process, you must
have a user name on the remote host which is the same as your user name on
the computer running the client HP VEE process. (However, the passwords
need not be the same.) Also, you must have a directory in the /users
directory. In addition, in order to establish network communication between
the two hosts, either the remote host must have an /etc/hosts.equiv file
52 Chapter 4

Using User-Defined Libraries
About Remote Functions
with an entry for the client host, or the user must have an .rhosts file in
the $HOME directory on the remote host, which contains an entry for the
client host.

Let’s look at an example. Suppose the client host can be identified as
follows:

Client host: myhost

User: mike

Password: twoheads

And the service host can be identified as follows:

Service host: remhost

User: mike

Password: arebetter

Directory: /users/mike

In this case, you must have one of the following on the service host:

n An /etc/hosts.equiv file with the entry: myhost

or

n A /users/mike/.rhosts file with the entry: myhost mike

The /etc/hosts.equiv file can be modified only by a super-user (usually
the system administrator), while the .rhosts file can be modified by the
user. It is a common practice to use the same /etc/hosts.equiv file on
all computers in a particular subnet, listing all of those computers as entries.
The /etc/hosts.equiv file is checked first for the proper entry for the
client host. If no entry for the client host is found there, the .rhosts file is
checked.

Note In calling a service HP VEE process, the password is not required or called
for. You must have the correct entry for the client in either the
hosts.equiv file or the .rhosts file on the remote host.
Chapter 4 53

Using User-Defined Libraries
About Remote Functions
Another factor in UNIX security is the user id and group id, called the UID
and GID, respectively. The UID is a unique integer supplied to each user on
a host by the /etc/passwd file. The GID is a unique integer supplied to
groups of users. All UNIX processes have a UID and GID associated with
them. The UID and GID determines which files or directories a user can
read, write, and execute.

The HP VEE service on the service host will have the GID and UID of the
user who invoked the process from the client host. This means that the file
permissions are the same as if the user was running a normal interactive
HP VEE session.

Resource Files

The VEE.IO or .veeio, and VEE.RC or .veerc files used by the HP VEE
service process are those that belong to the user who invokes the process on
the remote host. Thus, for the user mike in our previous example, the
HP VEE service process will read the following files on host remhost:

/users/mike/.veeio /users/mike/.veerc

(HP VEE only reads the VEE.IO or .veeio file. The VEE.RC or .veerc file is
used for trig preferences only.)

Errors

There are two classes of errors that can occur in a remote HP VEE service:

n Fatal Errors - These are errors, like the timeout violation discussed
previously, that mean that the service is most likely in a unusable state.
When a fatal error occurs in an HP VEE service, an error message is
displayed, advising the user that the error was fatal. If this occurs, you’ll
need to re-import the Remote Function library. The HP VEE client will
attempt to terminate the remote service.

In most cases, a fatal error will only occur if something has gone wrong
with the network, or in calling the remote service. Normally, a fatal error
won’t be caused by a problem in the Remote Function itself.
54 Chapter 4

Using User-Defined Libraries
About Remote Functions
n Non-Fatal Errors - These errors are almost exclusively errors that occur
within the Remote Function itself (for example a divide-by-zero error).
Such errors would normally occur regardless of whether the function
were local or remote. The normal error message display occurs, and gives
the name of the Remote Function in which the error occurred.

Note It is possible to write a Remote Function that will hang, such as an infinite
loop. In this case, the Remote Function will time out with a fatal error
message. The HP VEE client will attempt to remove the service, but will fail
since the service will never respond. You then need to terminate the process
on the remote machine. For example, in HP VEE for HP-UX you log onto
the remote host and determine the process id with ps and terminate the
process with kill.
Chapter 4 55

Using User-Defined Libraries
About Callable VEE
About Callable VEE
In some cases you may want to build an application in another language, and
still use HP VEE UserFunctions. Just as Remote Functions allow one
HP VEE to access UserFunctions of another HP VEE, Callable VEE allows
you to call UserFunctions from a C program, or any language that can access
C routines.

Note that the server system needs to have HP VEE present and accessible to
run the UserFunctions; they cannot be executed on their own. UserFunctions
have to be organized into a library that HP VEE can load and execute.

The tools needed to support Callable VEE are provided with HP VEE:

n A C library, named libvapi.a is found in the lib subdirectory of the
HP VEE installation. This library is to be linked to your C program.

This library supports two Application Program Interfaces (APIs). One
API (VEE RPC) sets up and controls the Remote Procedure Call (RPC)
between the C program and HP VEE. The prototypes for the functions in
this API are in veeRPC.h and perform the following actions:

q Loading and unloading HP VEE servers.
q Loading and unloading HP VEE libraries.
q Listing UserFunctions in HP VEE libraries.
q Calling and receiving data from UserFunctions.
q Performing related status and housekeeping.

The second API (VEE DATA) performs conversions between C and
HP VEE data types. The prototypes for the functions in this API are in
veeData.h.

Note The libvapi.a library cannot link to programs when using the Borland
compiler.
56 Chapter 4

Using User-Defined Libraries
About Callable VEE
n The HP VEE Service Manager, veesm.exe (veesm on HP-UX) is
located with the other HP VEE executables in the HP VEE installation
directory. It handles running the target HP VEE with its UserFunctions,
and allows a remote client to bring up HP VEE as a server.

On HP-UX systems, veesm is automatically run by the inet daemon
process. On a PC, either run veesm.exe or put it into the Windows
Startup Group so it is started when the PC is started.

There are example programs in the escapes directory that demonstrate
Callable VEE. They are named callVEE.c and callVEE.vee.

About the VEE RPC API

The VEE RPC API handles setting up, maintaining, and closing the
connection between the C client program and the HP VEE server.

The VEE RPC API’s routines use one of three handles in their operation:

VRPC_SERVICE; // Handle to a VEE server.
VRPC_LIBRARY; // Handle to a VEE UserFunction library.
VRPC_FUNCTION; // Handle to a VEE UserFunction.

The API calls are organized as described in the following subsections.

Starting and
Stopping a Server

The most essential API functions are the two that start and stop a HP VEE
server. To load a HP VEE server use:

VRPC_SERVICE vrpcCreateService(char *hostName,
 char *display,
 char *geometry,
 double aTimeoutInSeconds,
 unsigned long flags);

This function starts an HP VEE server on the host given by hostName. The
hostName can be in text form (for example, mycomputer@lvld.hp.com)
or numeric form (15.11.55.105). The function returns a server handle.
You get a NULL (effectively a zero) back if something goes wrong; you can
then get the precise error information with the veeGetErrorNumber() and
veeGetErrorString() functions as outlined in the next section.
Chapter 4 57

Using User-Defined Libraries
About Callable VEE
The display argument specifies a remote display using a network address
in text (babylon:0.0) or numeric form (15.11.55.101:0.0) on a
networked X Windows system.

The geometry argument specifies the HP VEE window size and placement.
For example 800x500+0+0 puts an 800x500 HP VEE window in the lower-
left corner of the display.

The aTimeoutInSeconds argument gives the number of seconds to wait
when starting the service. This value is used for all later calls in the session
unless changed by vrpcSetTimeout().

The flags argument is not normally used; you can, however, set it to the
value VEERPC_CREATE_NEW to start a new copy of HP VEE on a server
instead of using the one already started.

To stop a HP VEE server you use:

VRPC_SERVICE vrpcDeleteService(VRPC_SERVICE aService);

The only argument is the server handle obtained when you originally started
the server. You get a NULL pointer back if all is OK, otherwise you get a
non-NULL pointer.

Loading and
Unloading a Library

Once you have started the server, you then need to load a library into the
remote copy of HP VEE; this is done with:

VRPC_LIBRARY vrpcLoadLibrary(VRPC_SERVICE aService,
 char *LibraryPath);

This function accepts as arguments a server handle and the pathname of a
library of UserFunctions specified by LibraryPath; it returns a library
handle. If it fails, you get a NULL back.

Once loaded, you can specify either normal or debugging execution mode
for the library with:

void vrpcSetExecutionMode(VRPC_LIBRARY aLibrary,
 unsigned long executionMode);

In this function, you specify the handle for the library and an
executionMode flag, which can be set to VRPC_DEBUG_EXECUTION
(which specifies single-stepping through the UserFunction on the target
system) and then set back to the default VRPC_NORMAL_EXECUTION.
58 Chapter 4

Using User-Defined Libraries
About Callable VEE
You can similarly unload the library with:

VRPC_LIBRARY vrpcUnLoadLibrary(VRPC_LIBRARY aLibrary);

The only argument is the library handle.

Selecting
UserFunctions

Now that you are connected to the server and have a library loaded, you need
to get a handle to a UserFunction.

You get a function handle with:

VRPC_FUNCTION vrpcFindFunction(VRPC_LIBRARY aLibrary,
 char *aFunctionName);

You specify the library handle and a string giving the UserFunction name as
arguments, and get back the function handle, or a NULL if something goes
wrong.

To get information on the function, use:

struct VRPC_FUNC_INFO*
 vrpcFunctionInfo(VRPC_FUNCTION aFunction);

This returns a data structure or a NULL if something goes wrong. The data
structure is of the form:

typedef struct VRPC_FUNC_INFO
{

char *functionName; // Name of function.
long numArguments; // # of input pins on function.
enum veeType *argumentTypes; // List of argument types.
veeShape *argumentShapes; // List of argument shapes.
long numResults; // # of output pins on function.
enum veeType *resultTypes; // List of output types.
veeShape *resultShapes; // List of output shapes.

};

If you get a NULL, the memory for this is taken up in your process space, so
if you want to get rid of it you use:

struct VRPC_FUNC_INFO*
 vrpcFreeFunctionInfo(struct VRPC_FUNC_INFO *funcinfo);

You can determine what functions are in the library with:

char** vrpcGetFunctionNames(VRPC_LIBRARY aLibrary,
 long *numberOfFunctions);
Chapter 4 59

Using User-Defined Libraries
About Callable VEE

on

t to
This accepts a library handle as an argument; it returns a pointer to an array
of null-terminated strings giving the function names directly, and the
numberOfFunctions in the library as a argument. You get a NULL
pointer back if an error occurs. The string array exists in your process space.

Calling
UserFunctions

Now you can call the UserFunction.

You call and receive in a single function using:

VDC* vrpcCallAndReceive(VRPC_FUNCTION aFunction,
 VDC *arguments);

This function blocks, waiting for the function to complete or until a timeout
occurs. You specify a function handle and an input array of HP VEE Data
Containers (VDCs). Handling VDCs is the function of the VEE DATA API
and is covered in “About the VEE DATA API” on page 63.

Or to call a UserFunction in blocking mode, you can invoke:

long vrpcCall(VRPC_FUNCTION aFunction,
 VDC *arguments);

This function does not "block", it returns immediately, whether it worked
not; it returns 0 if all is OK, and an error code if not.

Of course, since most UserFunctions will return sometime, you will wan
get a value back, and for that you use:

VDC* vrpcReceive(VRPC_FUNCTION aFunction,
 unsigned long waitMode);

You specify a function handle and a waitMode flag, which can have one of
three values:

n VRPC_NO_WAITING The call returns immediately with or without
results.

n VRPC_WAIT_SLEEPING Wait for data until timeout (server sleeps).

n VRPC_WAIT_SPINNING Wait for data until timeout (server busy).

If the function fails, a NULL is returned.
60 Chapter 4

Using User-Defined Libraries
About Callable VEE
 Other Functions This section lists other utility functions in the VEE RPC API:

n This function allows you to change the timeout. You specify a server
handle and the timeout in seconds. You get back a zero if all is OK, and
an error code if not.

long vrpcSetTimeout(VRPC_SERVICE aService,
 double aTimeoutInSeconds);

n This function allows you to set the default C client behavior for receiving
data:

long vrpcSetBehavior(VRPC_SERVICE aService,
 unsigned long flags);

You specify a server handle and the flag, and get back 0 or an error code.
The flags are as follows:

VRPC_WAIT_SLEEPING Wait for data until timeout (client sleeps).
VRPC_WAIT_SPINNING Wait for data until timeout (client busy).

You can also OR in a flag, VRPC_BUFFER_EXPAND, to specify that the C
client will allocate and retain larger buffers in response to increasing
sizes of data returned from the server.

n You can query the revision number of the remote veesm with:

long vrpcGetServerVersion(VRPC_SERVICE aService);

You give this a server handle and get back either a revision code or a 0 (if
you have an error).
Chapter 4 61

Using User-Defined Libraries
About Callable VEE
Error Codes for the
VEE RPC API

The following error codes are returned when a connection to the HP VEE
server cannot be made:

The following are fatal errors that occur after connection to a HP VEE server
(the connection has been terminated):

Error Code Meaning

850: eUnknownHost The host name or IP address is
unresolvable.

851: eNoServiceManager veesm cannot be found on the server
host.

861: eServiceManagerTO The service manager timed-out.

863: eServiceNotFound Unable to find the HP VEE service.

864:
eServiceNotStarted

Unable to start the HP VEE service.

866: eConnectRefused The connection to veesm or inetd was
refused.

868: eFailedSecurity Failed the security check on UNIX.

Error Code Meaning

852: eHostDown The HP VEE server host is down.

853: eConnectTimedOut The connection has timed out.

855: eConnectBroken The connection has broken.
62 Chapter 4

Using User-Defined Libraries
About Callable VEE
The following errors reflect an internal non-fatal state within the service:

The following error is returned by a RPC function call:

About the VEE DATA API

As shown in the previous section, performing a Call or Receive with a
UserFunction requires handling data in the VEE Data Container (VDC)
format, which is a set of data structures required by HP VEE for its internal
operation. Communicating with HP VEE from your C program requires an
ability to translate between VDCs and conventional C data types. The VEE
DATA API provides this ability (and a few others).

Error Code Meaning

865: eSomeInternalError A non-fatal internal error occurred.

869: eVeeServiceError There is an error within the
UserFunction.

870: eWouldBlock Returned for non-blocking RPC.

871: eDebugTermination The user pressed stop during a debug
session.

Error Code Meaning

851: eInvalidArgument There is an invalid argument.
Chapter 4 63

Using User-Defined Libraries
About Callable VEE
Data Types, Shapes
and Mappings

The fundamental VDC types are listed in the veeData.h header file as:

enum veeType
{

VEE_TYPE_ANY=0, // The default without constraints.
VEE_NOT_DEFINED1, // Leave space.
VEE_LONG, // 32-bit signed integer (no 16-bit INTs in VEE).
VEE_NOT_DEFINED2, // Leave space.
VEE_DOUBLE, // IEEE 754 64-bit floating-point number.
VEE_COMPLEX, // Complex number: 2 doubles in rectangular form.
VEE_PCOMPLEX, // Complex number: 2 doubles in polar form.
VEE_STRING, // 8-bit ASCII null-terminated string.
VEE_NIL, // Empty container returned by function call.
VEE_NOT_DEFINED3, // Leave space.
VEE_COORD, // 2 or more doubles give XY or XYZ or ... data.
VEE_ENUM, // An ordered list of strings.
VEE_RECORD, // VEE record-structures data.
VEE_NOT_DEFINED4, // Leave space.
VEE_WAVEFORM, // A 1D array of VEE_DOUBLE with a time mapping.
VEE_SPECTRUM // A 1D array of VEE_PCOMPLEX with a time mapping.

};

For convenience, the veeData.h file defines C data types for translation
with HP VEE data types:

typedef short int16;
typedef long int32;
typedef struct {double rval, ival;} veeComplex;
typedef struct {double mag, phase;} veePComplex;
typedef struct {double xval, yval;} vee2DCoord;
typedef struct {double xval, yval, zval;} vee3DCoord;
typedef void veeDataContainer;
typedef veeDataContainer* VDC;

The data types can also have a specified number of dimensions, or numDims,
given by:

enum veeShape
{

VEE_SHAPE_SCALAR, // A single data element.
VEE_SHAPE_ARRAY1D, // A one-dimensional array.
VEE_SHAPE_ARRAY2D, // A two-dimensional array.
VEE_SHAPE_ARRAY3D, // A three-dimensional array.
VEE_SHAPE_ARRAY, // An array with from 4 to 10 dimensions.
VEE_SHAPE_ANY // Placeholder for undefined shape.

};
64 Chapter 4

Using User-Defined Libraries
About Callable VEE
Arrays can be "mapped". Normally they aren’t, but the VEE_WAVEFORM and
VEE_SPECTRUM data types are mapped types where the array elements
correspond to time intervals. Mappings are given by:

enum veeMapType
{

VEE_MAPPING_NONE, // No mapping.
VEE_MAPPING_LINEAR, // Linear mapping.
VEE_MAPPING_LOG // Log mapping.

};

Generally you don’t need to worry about specifying mappings.

Scalar Data
Handling

To create VDC scalars from C data, use the following functions:

VDC vdcCreateLongScalar(int32 aLong);

VDC vdcCreateDoubleScalar(double aReal);

VDC vdcCreateStringScalar(char *aString);

VDC vdcCreateComplexScalar(double realPart,
 double imaginaryPart);

VDC vdcCreatePComplexScalar(double magnitude,
 double phase);
VDC vdcCreate2DCoordScalar(double xval,
 double yval);

VDC vdcCreate3DCoordScalar(double xval,
 double yval,
 double zval);

VDC vdcCreateCoordScalar(int16 aFieldCount,
 double *values);

All these functions return a pointer to a VDC, or a NULL if they fail. There
are, of course, no scalars of VEE_WAVEFORM or VEE_SPECTRUM
types as they are always 1D arrays by definition.
Chapter 4 65

Using User-Defined Libraries
About Callable VEE
You can change the values in the VDCs with another set of routines:

int32 vdcSetLongScalar(VDC aVD,
 int32 aLong);

int32 vdcSetDoubleScalar(VDC aVD,
 double aReal);

int32 vdcSetStringScalar(VDC aVD,
 char *aStr);

int32 vdcSetComplexScalar(VDC aVD,
 double realPart,
 double imaginaryPart);

int32 vdcSetPComplexScalar(VDC aVD,
 double magnitude,
 double phase);

int32 vdcSet2DCoordScalar(VDC aVD,
 double xval,
 double yval);

int32 vdcSet3DCoordScalar(VDC aVD,
 double xval,
 double yval,
 double zval);

int32 vdcSetCoordScalar(VDC aVD,
 int16 aFieldCount,
 double* values);

As described above, these functions return either 0 or an error code.
66 Chapter 4

Using User-Defined Libraries
About Callable VEE
When you have created a scalar VDC or returned one from a function, you
can get the C data type out of it with another set of routines:

int32 vdcGetLongScalarValue(VDC aVD,
 int32 *aLong);

int32 vdcGetDoubleScalarValue(VDC aVD,
 double *aReal);

char* vdcGetStringScalarValue(VDC aVD);

int32 vdcGetComplexScalarValue(VDC aVD,
 veeComplex *aComplex);

int32 vdcGetPComplexScalarValue(VDC aVD,
 veePComplex *aPComplex);

int32 vdcGet2DCoordScalarValue(VDC aVD,
 vee2DCoord *aCoord);

int32 vdcGet3DCoordScalarValue(VDC aVD,
 vee3DCoord *aCoord);

double* vdcGetCoordScalarValue(VDC aVD,
 int16 *aFieldCount);

In general, these functions take the data out of the first argument, a VDC,
and put it into the second, with is a C variable (with some types as defined at
the beginning of this section); they return 0 if no error and an error code if
there is an error.

The exceptions are the vdcGetStringScalarValue() function, which
returns a string directly from the function (or a NULL string if something
goes wrong), and the vdcGetCoordScalarValue() function, which
returns a pointer to an array of N-dimensional coordinate data (with N
returned as an argument).

Finally, you can interrogate coordinate types for their number of coordinate
dimensions or set the coordinate dimensions to new values if desired:

int16 vdcNumCoordDims(VDC aVD);
int32 vdcCoordSetNumCoordDims(VDC, int16);

Array Data Handling These functions create array VDC of HP VEE types. The values you supply
are copied into the VDC, the callers memory is never used. If an error occurs
a null pointer is returned. You create VDC arrays with the following set of
functions:
Chapter 4 67

Using User-Defined Libraries
About Callable VEE
n This function returns a VDC of type VEE_LONG which is allocated to a
size equal to the argument, numPts. The array of data pointed to by the
argument, values, must be of the same specified size. The type of the
argument, int32, is type defined to type long in veeData.h.

VDC vdcCreateLong1DArray(int32 numPts,
 int32 *values);

n This function returns a VDC of type VEE_STRING which is allocated to a
size equal to the argument, numPts. The argument, strings, points to an
array of pointers which in turn point to null terminated strings. The
number of strings in the array must equal the specified size. The type of
the argument, int32, is type defined to type long in veeData.h.

VDC vdcCreateString1DArray(int32 numPts,
 char **strings);

n This function returns a VDC of type VEE_DOUBLE which is allocated to a
size equal to the argument, numPts. The argument, values, points to an
array of data. The number of doubles in the array must equal the
specified size. The type of the argument, int32, is type defined to type
long in veeData.h.

VDC vdcCreateDouble1DArray(int32 numPts,
 double *values);

n This function returns a VDC of type VEE_COMPLEX which is
preallocated to a size equal to the argument, numPts. The type of the
argument, int32, is type defined to type long in veeData.h. The
argument, values, points to an array of structures of type veeComplex.
This structure is defined in veeData.h as:

typedef struct {double rval, ival;} veeComplex;

VDC vdcCreateComplex1DArray(int32 numPts,
 veeComplex *values);
68 Chapter 4

Using User-Defined Libraries
About Callable VEE
n This function returns a VDC of type VEE_PCOMPLEX which is
preallocated to a size equal to the argument, numPts. The type of the
argument, int32, is type defined to type long in veeData.h. The
argument, values, points to an array of structures of type
veePComplex. This structure is defined in veeData.h as:

typedef struct {double mag, phase;} veePComplex;

VDC vdcCreatePComplex1DArray(int32 numPts,
 veePComplex *values);

n This function returns a VDC of type VEE_COORD which is preallocated
to a size equal to the argument, numPts. The type of the argument,
int32, is type defined to type long in veeData.h. The argument,
values, points to an array of structures of type vee2DCoord. This
structure is defined in veeData.h as:

typedef struct {double xval, yval;} vee2DCoord;

VDC vdcCreate2DCoord1DArray(int32 numPts,
 vee2DCoord *values);

n This function returns a VDC of type VEE_COORD which is preallocated
to a size equal to the argument, numPts. The type of the argument,
int32, is type defined to type long in veeData.h. The argument,
values, points to an array of structures of type vee3DCoord. This
structure is defined in veeData.h as:

typedef struct {double xval, yval, zval;} vee3DCoord;

VDC vdcCreate3DCoord1DArray(int32 numPts,
 vee3DCoord *values);
Chapter 4 69

Using User-Defined Libraries
About Callable VEE

n This function returns a VDC of type VEE_COORD which is preallocated to
a size equal to the argument, numPts. The argument, aFieldCount, is
the number of fields in the coordinates. The type of the argument, int32,
is type defined to type long in veeData.h. The argument, values,
points to an array of type double. The length of this array must be equal
to the product of numPts and aFieldCount.

VDC vdcCreateCoord1DArray(int32 numPts,
 int16 aFieldCount,
 double *values);

n This function returns a VDC of type VEE_WAVEFORM with a number of
samples equal to the argument, numPts. The starting and ending times
for the waveform are the arguments, from and thru. The argument,
mapType, is of type VMT, defined in veeData.h; it declares what type of
mapping is used. Refer to “Data Types, Shapes and Mappings” on
page 64 for more information. The array of doubles pointed to by the
argument, data, must be equal in size to the argument, numPts. The
type of the argument, int32, is type defined to type long in
veeData.h.

VDC vdcCreateWaveform(int32 numPts,
 double from,
 double thru,
 VMT mapType,
 double *data);

n This function returns a VDC of type VEE_SPECTRUM with a number of
samples equal to the argument, numPts. The starting and ending
frequencies for the spectrum are the arguments, from and thru. The
argument, mapType, is of type VMT, defined in veeData.h; it declares
what type of mapping is used. Refer to “Data Types, Shapes and
Mappings” on page 64 for more information. The array of type
veePComplex pointed to by the argument, data, must be equal in size
to the argument, numPts.Type. veePComplex is a structure defined in
veeData.h:

typedef struct {double mag, phase;} veePComplex.
70 Chapter 4

Using User-Defined Libraries
About Callable VEE
The array of structures is copied. The type of the argument, int32, is
type defined to type long in veeData.h.

VDC vdcCreateSpectrum(int32 numPts,
 double from,
 double thru,
 VMT mapType,
 veePComplex *data);

In the functions listed above, you specify an array size, any additional data
needed to represent the array (such as mapping data for VEE_WAVEFORM and
VEE_SPECTRUM types), and the array data, and get back a VDC (or a NULL
if something goes wrong).

You can convert back from VDCs to C arrays with:

n This function returns a pointer to an array of type int32. The argument,
aVD, must be of type, VEE_LONG, and be an array. The value returned in
the pass-by-reference argument, numPts, is the length of the array.

int32* vdcGetLong1DArray(VDC aVD,
 int32 *numPts);

n This function returns a pointer to an array of type double. The
argument, aVD, must be of type, VEE_DOUBLE. The value returned in the
pass-by-reference argument, numPts, is the length of the array.

double* vdcGetDouble1DArray(VDC aVD,
 int32 *numPts);

n This function returns a pointer to an array of pointers each pointing to a
null terminated string. The argument, aVD, must be of type VEE_STRING.
The value returned in the pass-by-reference argument, numPts, is the
number of strings.

char** vdcGetString1DArray(VDC aVD,
 int32 *numPts);

n This function returns a pointer to an array of structures of type,
veeComplex. This structure is defined in veeData.h as:

typedef struct {double rval, ival;} veeComplex;
Chapter 4 71

Using User-Defined Libraries
About Callable VEE
The argument, aVD, must be of type VEE_COMPLEX. The value returned
in the pass-by-reference argument, numPts, is the length of the array.

veeComplex* vdcGetComplex1DArray(VDC aVD,
 int32 *numPts);

n This function returns a pointer to an array of structures of type,
veePComplex. This structure is defined in veeData.h as:

typedef struct {double mag, phase;} veePComplex;

The argument, aVD, must be of type VEE_PCOMPLEX. The value returned
in the pass-by-reference argument, numPts, is the length of the array.

veePComplex* vdcGetPComplex1DArray(VDC aVD,
 int32 *numPts);

n This function returns a pointer to an array of structures of type,
vee2DCoord. This structure is defined in veeData.h as:

typedef struct {double xval, yval;} vee2DCoord;

The argument, aVD, must be of type VEE_COORD. The value returned in
the pass-by-reference argument, numPts, is the length of the array.

vee2DCoord* vdcGet2DCoord1DArray(VDC aVD,
 int32 *numPts);

n This function returns a pointer to an array of structures of type,
vee3DCoord. This structure is defined in veeData.h as:

typedef struct {double xval, yval, zval;} vee3DCoord;

The argument, aVD, must be of type VEE_COORD. The value returned in
the pass-by-reference argument, numPts, is the length of the array.

vee3DCoord* vdcGet3DCoord1DArray(VDC aVD,
 int32 *numPts);
72 Chapter 4

Using User-Defined Libraries
About Callable VEE
n This function returns a pointer to an array of type double. The
argument, aVD, must be of type VEE_COORD. The value returned in the
pass-by-reference argument, numPts, is the number of coordinate tuples
in the array. The value returned in the pass-by-reference argument,
aFieldCount, is the number of fields in each coordinate tuple. The
length of the returned array is the product of numPts and aFieldCount.

double* vdcGetCoord1DArray(VDC aVD,
 int32 *numPts,
 int16 *aFieldCount);

n This function returns a pointer to an array of type double. The
argument, aVD, must be of type VEE_WAVEFORM. The pass-by-reference
arguments numPts, from, thru, and mapType return, respectively, the
length of the array, the start time, the end time, and the type of mapping.

double* vdcGetWaveform(VDC aVD,
 int32 *numPts,
 double *from,
 double *thru,
 VMT *mapType);

n This function returns a pointer to an array of structures of type
veePComplex. This structure is defined in veeData.h as:

typedef struct {double mag, phase;} veePComplex;

The argument, aVD, must be of type VEE_WAVEFORM. The pass-by-
reference arguments numPts, from, thru, and mapType return,
respectively, the length of the array of structures, the starting frequency,
the ending frequency, and the type of mapping.

veePComplex* vdcGetSpectrum(VDC aVD,
 int32 *numPts,
 double *from,
 double *thru,
 VMT *mapType);

These functions take a VDC, return a pointer to the array of data directly,
and return the size of the array (or any other relevant information) as
arguments.
Chapter 4 73

Using User-Defined Libraries
About Callable VEE
Once the arrays are created, you can also check, interrogate, or manipulate
the arrays with the following functions:

int32 vdcSetNumDims(VDC, int16);

int16 vdcGetNumDims(VDC);

int32 vdcSetDimSizes(VDC, int32*);

int32 *vdcGetDimSizes(VDC);

int32 vdcCurNumElements(VDC);

Enum Types HP VEE enumerated types, as noted, are ordered lists of strings; they are
handled by the following routines:

n This function creates an empty VEE_ENUM structure with the given
number of string-ordinal pairs. It returns a NULL VDC on error.

VDC vdcCreateEnumScalar(int16 numberOfPairs);

n This function places an enumerated pair in the defined VEE ENUM
structure, returns the updated structure, and returns 0 or an error code.

int32 vdcEnumAddEnumPair(VDC aVD,
 char* aString,
 int32 aValue);

n This function deletes an enumerated pair as given by the ordinal value
argument. It returns 0 or an error code.

int32 vdcEnumDeleteEnumPairWithOrdinal(VDC aVD,
 int32 anOrd);

n This function sets an ordinal value for use by other vdcEnum routines. It
returns 0 or an error code.

int32 vdcSetEnumScalar(VDC aVD,
 int32 anOrdinal);
74 Chapter 4

Using User-Defined Libraries
About Callable VEE
n This function places a string in the VEE_ENUM structure with the
ordinal value assigned by vdcSetEnumScalar().

int32 vdcEnumDeleteEnumPairWithStr(VDC aVD,
 char* aString);

n This function returns the current ordinal number selection assigned by
vdcSetEnumScalar().

int32 vdcGetEnumOrdinal(VDC aVD);

n This function returns the string associated with the current ordinal
number, or a NULL string if something goes wrong.

char* vdcGetEnumString(VDC aVD);

Mapping Functions The VEE DATA API allows you to manipulate the mappings of arrays with
the following functions:

int32 vdcAtDimPutLowerLimit(VDC aVD,
 int16 aDim,
 double aValue);

// Specify mapping for lower limit.

int32 vdcAtDimPutUpperLimit(VDC aVD,
 int16 aDim,
 double aValue);

// Specify mapping for upper limit.

int32 vdcAtDimPutRange(VDC aVD,
 int16 aDim,
 double lowerLimit,
 double upperLimit);

// Combines "vdcAtDimPutLowerLimit" &
 "vdcAtDimPutUpperLimit".

int32 vdcAtDimPutMapping(VDC aVD,
 int16 aDim,
 VMT aMapping);

// Set the mapping between limits as defined above.

int32 vdcMakeMappingsSame(VDC VD1,
 VDC VD2);

// Map two containers in the same way.

int32 vdcUnMap(VDC aVD);
// Delete mapping information from container.
Chapter 4 75

Using User-Defined Libraries
About Callable VEE
Other Functions Other VEE DATA API functions include:

n Get the type of VDC. Return VEE_NOTDEFINED1 on error.

enum veeType vdcType(VDC aVD);

n Make a copy of a VDC. Return NULL on error.

VDC vdcCopy(VDC oldVD);

n Destroy a container and release its memory. Return NULL on error.

VDC vdcFree(VDC aVD);

n Get error number/message of last error.

int16 veeGetErrorNumber(void);
char *veeGetErrorString(void);
76 Chapter 4

Using User-Defined Libraries
About the Callable VEE ActiveX Control
About the Callable VEE ActiveX Control
HP VEE includes an ActiveX control that encapsulates the functionality of
Callable VEE. Instead of a C program calling HP VEE UserFunctions, the
UserFunctions are called from OLE-compliant applications such as Visual
Basic or Microsoft Excel. The control is located at
%SystemRoot%\system32\call.ocx (Windows NT) or
Windows95\System\call.ocx (Windows 95).

Use the control to:

n Explore the network domain, looking for the UserFunction to call.

n Get information about the UserFunction’s input and output pins.

n Build the VEE Data Container (VDC) needed.

n Call the UserFunction.

Online help is available from the control. It explains the specific use of the
control.
Chapter 4 77

Using User-Defined Libraries
About the Callable VEE ActiveX Control
78 Chapter 4

5

Using Transaction I/O

Using Transaction I/O

HP VEE for Windows includes the capabilities of communicating with files,
printers, other programs, and various hardware interfaces and the
instruments connected to them.

HP VEE for UNIX includes objects for communicating with files, printers,
named pipes, and other processes, plus the ability to communicate with
HP BASIC, and various hardware interfaces and the instruments connected
to them.

All of these types of communication are controlled by I/O objects using
transactions. This chapter explains the general concepts common to all
objects using transactions and the details of how to use each type of object.
For information on how to use transactions in instrument I/O, refer to
Controlling Instruments with HP VEE.
80 Chapter 5

Using Transaction I/O
Using Transactions
Using Transactions
All I/O objects discussed in this chapter contain transactions. A transaction
is simply a specification for a low-level input or output operation, such as
how to read or write data. Each transaction appears as a line of text listed in
the open view of an I/O object. To view a typical transaction, click on
I/O ⇒ To ⇒ String to create a To String object.

Figure 5-1. Default Transaction in To String

The default transaction in To String is:

WRITE TEXT a EOL

Before exploring too many details, consider a simple program using the
To String object to illustrate how transactions operate. The program in
Figure 5-2 uses two transactions, one to write a string literal and one to write
a number in fixed decimal format.

Figure 5-2. A Simple Program Using To String
Chapter 5 81

Using Transaction I/O
Using Transactions
To accomplish something useful with a transaction-based I/O object, you
generally need to do at least two things:

1. Modify the default transaction or add additional transactions as required.

2. Add input terminals, output terminals, or both.

The following sections explain how to edit transactions and add terminals.

Creating and Editing Transactions

Table 5-1. Editing Transactions With a Mouse

To Do This... Click On This...

Add another transaction to the end of the list. Add Trans in the object menu. Or
double-click in the list area immediately
below the last transaction.

Move the highlight bar to a different transaction. Any non-highlighted transaction.

Insert a transaction above the highlighted
transaction.

Insert Trans in the object menu.

Cut (delete) the highlighted transaction, saving it
in the transaction "cut-and-paste" buffer.

Cut Trans in the object menu.

Copy the highlighted transaction to the
transaction "cut-and-paste" buffer.

Copy Trans in the object menu.

Paste the transaction currently in the buffer above
the highlighted transaction.

Paste Trans in the object menu.

Edit the transaction. Double-click on the transaction.
82 Chapter 5

Using Transaction I/O
Using Transactions
Table 5-2. Editing Transactions With the Keyboard

To Do This... Press This Key...

Move the highlight bar to the next transaction. CTRL+N

Move the highlight bar to the previous
transaction.

CTRL+P

Move the highlight bar to a different transaction. ↑, ↓, Home

Insert a transaction above the highlighted
transaction.

Insert line or CTRL+O

Cut (delete) the highlighted transaction, saving it
to the transaction "cut-and-paste" buffer.

Delete line or CTRL+K

Paste the transaction currently in the buffer above
the highlighted transaction.

CTRL+Y

Edit the highlighted transaction. space bar
Chapter 5 83

Using Transaction I/O
Using Transactions

es
To edit the fields within a transaction, double-click on the transaction to
expand it to an I/O Transaction dialog box.

Figure 5-3. Editing the Default Transaction in To String

The fields shown in the I/O Transaction dialog box will be different for
the different types of I/O operations. To edit any field, click on the field and
type in information or complete the resulting dialog box. Detailed
information about these fields is provided later in this chapter and in
Appendix D, “I/O Transaction Reference”.

Notice that the fields in the I/O Transaction dialog box map directly to
the mnemonics that appear in the transaction listed in the open view.

The NOP button is unique to the I/O Transaction dialog box. Clicking
on NOP saves the latest settings shown in the dialog box, but it also mak
that transaction a "no operation" or a "no op." Its effect is the same as
commenting out a line of code in a text-based computer program.
84 Chapter 5

Using Transaction I/O
Using Transactions
Editing the Data
Field

Most of the I/O specifications in a transaction are easy to edit because a
dialog box helps you select the proper choice. However, the data field does
not use a dialog box; you can type in many different combinations of
variables and expressions.

Figure 5-4. READ Transaction Using a Variable in the Data Field

Figure 5-5. WRITE Transaction Using an Expression in the Data Field

You must type in the proper list of what you wish to read or write. Table 5-
3 lists typical entries for the data field. Note that WRITE transactions allow
you to specify an expression list (variables, constants, and operators), but
READ allows only a variable list.
Chapter 5 85

Using Transaction I/O
Using Transactions

The expressions allowed in a WRITE data field are the same as those allowed
in Formula objects. Note that you may include the escape characters shown
in Table 5-4 in any field that accepts Text input in the form of a string
delimited by double quotes.

Note READ transactions allow a special variable named null in the data field.
Reading data into the null variable simply throws the data away; this is
useful when you need to strip away unneeded data in a controlled fashion.

Table 5-3. Typical Data Field Entries

Data Field Entry Meaning

X

A

(READ) Read data into the variable X.

(WRITE) Write the value of the variable A.

X,Y

A,B

(READ) Read data into the variable X and then read data into the
variable Y.

(WRITE) Write the value of the variable A and then write the value
of the variable B.

null

A,A*1.1

(READ only) Read the specified value and throw it away. null is a
special variable defined by HP VEE.

(WRITE only) Write the value of A and then write the value of A
multiplied by 1.1.

"hello\n" (WRITE) Write the Text literal hello followed by a newline
character.

"FR ",Fr," MHZ" (WRITE) Write a combination of Text literals and a numeric value. If
the transaction is WRITE TEXT REAL and Fr has the Real value
1.234, then HP VEE writes FR 1.234 MHZ.
86 Chapter 5

Using Transaction I/O
Using Transactions

Adding Terminals

Most often, you will want to add input or output terminals to a transaction-
based I/O object. To add terminals, click on the corresponding features in the
object menu, or use the keyboard short cuts. (Use CTRL-A to add a terminal
or CTRL-D to delete a terminal.)

For WRITE transactions, you will generally add a data input terminal. In a
WRITE transaction, data is transferred from HP VEE to the destination
associated with the object.

For READ transactions, you will generally add a data output terminal. In a
READ transaction, data is transferred from the source associated with the
object to HP VEE.

The variable names that appear on the terminal must match the variable
names in the transaction specification. This may be easy to overlook,
because HP VEE automatically assigns variable names such as X, Y, or Z
when you add a terminal.

Table 5-4. Escape Characters

Escape Character ASCII Code
(decimal)

Meaning

\n 10 Newline

\t 9 Horizontal Tab

\v 11 Vertical Tab

\b 8 Backspace

\r 13 Carriage Return

\f 12 Form Feed

\" 34 Double Quote

’ 39 Single Quote

\\ 92 Backslash

\ddd The ASCII character corresponding
to the three-digit octal value ddd.
Chapter 5 87

Using Transaction I/O
Using Transactions

Figure 5-6. Terminals Correspond to Variables

To edit the variable name of a terminal:

1. Double click on the terminal to expand it into a
Terminal Information dialog box.

2. Edit the Name field in the dialog box.

Recall that variable names in HP VEE are not case-sensitive. Thus, s is the
same as S and Signal is the same as signal.

Reading Data

In order to read data into a variable, HP VEE must know either the number
of data elements to read, or what specific terminating condition, such as
EOF (end-of-file), is to be satisfied. Let’s begin by looking at how to
configure a transaction to read a specified number of data elements.
88 Chapter 5

Using Transaction I/O
Using Transactions
Transactions that
Read a Specified
Number of Data
Elements

When you are editing a transaction, the last field in the transaction dialog
box has the default value SCALAR. This specifies that the READ transaction is
to read only one element. To change this, just click on the SCALAR field to
reveal a list of available choices.

Figure 5-7. Select Read Dimension from List

The choices in the list indicate the number of dimensions for the READ
transaction. For example, SCALAR indicates a dimension of 0, ARRAY 1D
indicates a one-dimensional array, ARRAY 2D indicates a two-dimensional
array, and so forth.
Chapter 5 89

Using Transaction I/O
Using Transactions
When you click on a dimension in the list, the transaction dialog box will
reconfigure itself with a fill-in field for each of the dimensions specified.
Figure 5-8 shows the transaction dialog box configured to read a three-
dimensional array of binary integers into the variable named matrix. Each
of the three fields after SIZE: contains the number of integers for the
corresponding dimension. (In this case, each dimension has two elements.)

Figure 5-8. Transaction Dialog Box for Multi-Dimensional Read

Note that when more than one dimension is specified, the rightmost or
"innermost" dimension is filled first. Thus, in this example, the elements are
read in this order:

matrix[0,0,0] read first
matrix[0,0,1]
matrix[0,1,0]
matrix[0,1,1]
matrix[1,0,0]
matrix[1,0,1]
matrix[1,1,0]
matrix[1,1,1] read last
90 Chapter 5

Using Transaction I/O
Using Transactions
When you click on the OK button in the transaction dialog box, the resulting
transaction appears with the ARRAY: keyword followed by the dimension
sizes, for example:

READ BINARY matrix INT32 ARRAY:2,2,2

If the transaction is configured to read a scalar value, the transaction appears
as follows:

READ BINARY x INT32

You can use variable names in the SIZE: fields to specify array dimensions
programmatically. For example, the following transaction would read a
three-dimensional matrix:

READ BINARY matrix INT32 ARRAY:xsize,ysize,zsize

In this case, xsize, ysize, and zsize could be either the names of input
terminals, or the names of output terminals set by previous transactions in
the same object.

Read-To-End
Transactions

Certain HP VEE objects support READ transactions that will read to the end-
of-file (EOF). Thus, it is possible to read the contents of a file with a single
transaction. Such transactions are called read-to-end transactions. Note that
EOF, besides indicating end-of-file for a standard disk file, can also indicate
closure of a named-pipe or pipe.

The following HP VEE objects support read-to-end transactions:

n From File
n From String
n From Stdin (UNIX)
n To/From Named Pipe (UNIX)
n To/From HP BASIC/UX (UNIX)
n Execute Program (UNIX)
n To/From DDE (PC)
Chapter 5 91

Using Transaction I/O
Using Transactions

 that
read
isk

at
d for
ows

.

ay is
r. A
Figure 5-9 shows the transaction dialog box of a From File object, reading
a three dimensional array of binary integers, but configured for read-to-end:

Figure 5-9. Transaction Dialog Box for Multi-Dimensional Read-To-End

Note that read-to-end transactions are not supported for scalars. The
transaction must be configured for at least a one-dimensional array in order
to be configured as read-to-end. If an HP VEE object supports read-to-end,
the SIZE: field will appear as a button in the transaction dialog box.
Clicking on the SIZE: field will enable read-to-end — the field will now
appear as TO END:.

The trivial case of reading a one-dimensional array to end simply means
the number of elements in the array is equal to the number of elements
until EOF is found. The unknown size of the array is denoted by an aster
(*) in the transaction.

On the other hand, reading a multi-dimensional array to end is somewh
more complicated. In this case the number of elements must be supplie
each dimension, except the left-most or "outer" dimension. Figure 5-9 sh
that this dimension has an (*) in place of a size in the transaction. This
dimension size is unknown until the read-to-end is transaction complete

To better understand this concept, consider that a three-dimensional arr
nothing more than a number of two-dimensional arrays grouped togethe
two-dimensional array has the dimensions of "rows" and "columns".
92 Chapter 5

Using Transaction I/O
Using Transactions

nd

n

of

ng
ver,

Stacking two-dimensional arrays, like cards, adds the third dimension,
"depth". In a read-to-end transaction of a three-dimensional array, the
number of "rows" and "columns" is specified, but the "depth" is unknown
until EOF is encountered. The same is true for all multi-dimensional read-to-
end transactions. If the array has n dimensions, the size of n-1 of those
dimensions must be specified. Only one (the left-most) dimension can be of
unknown size.

A further restriction on read-to-end transactions of dimensions greater than
an ARRAY 1D is that the number of total elements read has to be evenly
divisible by the product of the known dimensions. For example, let’s assume
that our read-to-end example of a three-dimensional array is from a file with
16 total elements. This means that the transaction will read four two-by-two
arrays since the transaction specifies the number of "rows" and "columns" is
equal to 2. Hence, the unknown dimension size, "depth", is 4 when the read
is complete.

If the file actually contained 18 elements, one of the two-by-two arrays
would be incomplete — it would contain only two elements. A read-to-e
of this file would result in an error, and no data would be read, if you
specified a size of 2 for the "row" and "column" dimensions. On the other
hand, you could read this file if the number of "rows" is equal to 1 and the
number of "columns" is equal to 3. A read-to-end of this file would then
result in a "depth" of 6.

Note If you don't know the absolute number of data elements in a file, you ca
always use a read-to-end using ARRAY 1D.

The read-to-end transaction is useful with the Execute Program object for
a program that is a shell command that will return an unknown number
elements.

Non-Blocking Reads A READ transaction finishes when the read is complete. Until the read is
done, the transaction is said to block. When reading disk files the blocki
action is not apparent since data is always available from the disk. Howe
for named-pipes, and for pipes where data is being made available from
another process, a READ transaction could block, thereby effectively halting
execution of an HP VEE program. In some cases, the READ transaction could
block indefinitely.
Chapter 5 93

Using Transaction I/O
Using Transactions
The READ IOSTATUS DATAREADY transaction provides a means to peek at
a named-pipe or pipe in order to see if there is data available for a READ
transaction. The READ IOSTATUS DATAREADY transaction is available in
the following HP VEE objects:

n To/From Named Pipe (UNIX)
n To/From Socket
n To/From HP BASIC/UX (UNIX)
n From StdIn (UNIX)

Note A READ IOSTATUS DATAREADY transaction, when executed, will block
until the named pipe has been opened on the other end by the writing
process. The transaction will then return the status of the pipe.

If the pipe has been closed by the writing process, effectively writing an
EOF into the pipe, the READ IOSTATUS DATAREADY transaction will return
a 1, indicating that an EOF is in the pipe. A subsequent READ transaction
will generate an EOF error. Use an error pin on the object reading the data to
trap the EOF error.

Figure 5-10 shows a program where READ IOSTATUS DATAREADY is used
to detect data on the StdIn pipe.
94 Chapter 5

Using Transaction I/O
Using Transactions

Figure 5-10. Using READ IOSTATUS DATAREADY for a Non-Blocking
Read

This program is saved in the file manual47.vee in your examples
directory.

The program in Figure 5-10 shows the use of a
READ IOSTATUS DATAREADY transaction in From StdIn. The transaction
returns a zero (0) if no data is present on the stdin pipe. If data is present, a
one (1) is returned. The If/Then/Else is used to test the returned value of
the READ IOSTATUS DATAREADY transaction. If the result is 1, then the
second From StdIn is allowed to execute, reading the data typed into the
HP VEE start-up terminal window. If no data has been typed into the start-up
terminal window (or a Return has not been typed), execution continues
again at the start of the thread. Note the use of Until Break to iterate the
thread so the From StdIn with the READ IOSTATUS DATAREADY
transaction is continually tested.

To view complete programs that illustrate how to read arrays from files,
open and run the programs manual27.vee and manual28.vee in your
examples directory.
Chapter 5 95

Using Transaction I/O
Using Transactions
Suggestions for Experimentation

Many times the best way to develop the transactions you need is by using
trial and error. A large portion of the data handled by I/O transactions is text
(as opposed to some type of binary data). Data written as TEXT is very
useful for experimenting because it is human-readable. While using TEXT is
not the most compact or fastest approach, you can use it to do just about
anything.

You can use the To String object to accurately simulate the output
behavior of other I/O objects writing text. The following program shows
how you might do this.

Figure 5-11. Experimenting with To String
96 Chapter 5

Using Transaction I/O
Details About Transaction-Based Objects
Details About Transaction-Based Objects

Execution Rules

Transaction I/O objects obey all of the general propagation rules for HP
VEE programs. In addition, there are a few simple rules for the transactions
themselves:

1. Transactions execute beginning with the top-most transaction and
proceed sequentially downward.

2. Each transaction in the list executes completely before the next one
begins. Transactions within a given object do not execute in an
overlapped fashion. Similarly, only one transaction object has access to a
particular source or destination at a time.

3. Transaction-based I/O objects accessing the same source or destination
may exist in separate threads within the same program.

Note that for file-related objects, there is only one read pointer and one
write pointer per file. The same pointers are shared by all objects
accessing a particular file.

Object Configuration

In the most general case, the result of any transaction is actually determined
by two things:

n The specifications in the transaction

n The settings accessed via Properties in the object menu

In most cases you do not need to be concerned about the Properties
settings; the default values are generally suitable.
Chapter 5 97

Using Transaction I/O
Details About Transaction-Based Objects
All transaction-based I/O objects that write data (except Direct I/O)
include an additional tab in the Properties dialog box that lets you edit
the data format. The resulting dialog box allows you to view and edit various
settings.

Note Direct I/O objects behave differently than described above.
Direct I/O objects include a Show Config feature in their object menu
that allows you to view (but not edit) configuration settings. To edit the
configuration of a Direct I/O object, you must use
I/O ⇒ Instrument Manager. Refer to Controlling Instruments with
HP VEE for more information on Direct I/O.

Clicking on Properties in the object menu of a transaction I/O object
yields a Properties dialog box like the one in Figure 5-12.

Figure 5-12. The Properties Dialog Box
98 Chapter 5

Using Transaction I/O
Details About Transaction-Based Objects
The Properties dialog box has a Data Format tab containing settings
that affect the way certain data is written by WRITE transactions. The
End Of Line (EOL) affects any WRITE in which EOL ON is set. The
remaining Data Format fields affect only WRITE TEXT transactions.

The sections that follow explain the fields in the Data Format tab in detail.

End Of Line (EOL) The End Of Line (EOL) field specifies the characters that are sent at the
end of WRITE transactions that use EOL ON. The entry in this field must be
zero or more characters surrounded by double quotes. "Double quote"
means ASCII 34 decimal. HP VEE recognizes any ASCII characters within
End Of Line (EOL) including the escape characters shown previously in
Table 5-4.

Array Separator The Array Separator field specifies the character string used to separate
elements of an array written by WRITE TEXT transactions. The entry in this
field must be surrounded by double quotes. "Double quote" means ASCII 34
decimal. HP VEE recognizes any ASCII character as an
Array Separator as well as the escape characters shown previously in
Table 5-4.

WRITE TEXT STR transactions in Direct I/O objects that write arrays are
a special case. In this case, the value in the Array Separator field is
ignored and the linefeed character (ASCII 10 decimal) is used to separate the
elements of an array. This behavior is consistent with the needs of most
instruments.
Chapter 5 99

Using Transaction I/O
Details About Transaction-Based Objects
Multi-Field Format The Multi-Field Format section specifies the formatting style for multi-
field data types for WRITE TEXT transactions. The multi-field data types in
HP VEE are Coord, Complex, PComplex, and Spectrum. Other data types
and other formats are unaffected by this setting.

Specifying a multi-field format of (...) Syntax surrounds each multi-
field item with parentheses. Specifying Data Only omits the parentheses,
but retains the separating comma. For example, the complex number 2+2j
could be written as (2,2) using (...) Syntax or as 2,2 using
Data Only syntax.

Note that HP VEE allows arrays of multi-field data types; for example, you
can create an array of Complex data. In such a case, if
Multi-Field Format is set to (...) Syntax, the array will be written
as:

(1,1)array_sep(2,2)array_sep ...

where array_sep is the character specified in the Array Separator
field.

Array Format The Array Format determines the manner in which multidimensional
arrays are written. For example, mathematicians write a matrix like this:

1 2 3
4 5 6
7 8 9

HP VEE writes the same matrix in one of two ways, depending on the
setting of Array Format. In the two examples that follow,
End Of Line (EOL) is set to "\n" (newline) and Array Separator is
set to " " (space).

1 2 3 Block Array Format
4 5 6
7 8 9
1 2 3 4 5 6 7 8 9 Linear Array Format

Either array format separates each element of the array with the
Array Separator character. Block Array Format takes the additional
step of separating each row in the array using the End Of Line (EOL)
character.
100 Chapter 5

Using Transaction I/O
Details About Transaction-Based Objects
In the more general case (arrays greater than two dimensions), Block
Array Format outputs an End Of Line (EOL) character each time a
subscript other than the right-most subscript changes.

For example, if you write the three-dimensional array A[x,y,z] using
Block array format with this transaction:

WRITE TEXT A

an End Of Line (EOL) character will be output each time x or y changes
value.

If the size of each dimension in A is two, the elements will be written in this
order:

A[0,0,0] A[0,0,1]<EOL Character>
A[0,1,0] A[0,1,1]<EOL Character>
<EOL Character>
A[1,0,0] A[1,0,1]<EOL Character>
A[1,1,0] A[1,1,1]<EOL Character>

Notice that after A[0,1,1] is written, x and y change simultaneously and
consequently two <EOL Character>s are written.

READ and WRITE Compatibility

In general, you must know how data was written in order to read it properly.
This is particularly true when the data in question is in some type of binary
format that cannot be examined directly to determine its format. You must
read data in the same format it was written.
Chapter 5 101

Using Transaction I/O
Choosing the Correct Transaction

lable
 the

.

Choosing the Correct Transaction
This section summarizes the various I/O objects and the transactions they
support. It also suggests a procedure for determining the correct object and
transaction for a particular purpose. For details on transaction encodings
and formats, please refer to Appendix D, “I/O Transaction Reference”.

The two tables that follow summarize the transaction-based objects avai
in HP VEE and the actions they support. Use these tables together with
following section, “Selecting the Correct Object and Transaction” on
page 104, to determine the proper object and transaction for your needs
102 Chapter 5

Using Transaction I/O
Choosing the Correct Transaction

Table 5-5. Summary of Transaction-Based Objects

Object Description

To File

From File

Writes data to a file.

Reads data from a file.

To String

From String

Writes text to an HP VEE container.

Reads text from an HP VEE container.

Execute Program
(UNIX)

Spawns an executable file; writes to standard input and reads from
standard output of the spawned process. Note that Execute
Program (PC) is not transaction based.

To Printer Writes text to the HP VEE text printer.

To StdOut

To StdError

From StdIn

Writes data to HP VEE standard output. (A file on the PC)

Writes data to HP VEE standard error. (A file on the PC)

Reads data from HP VEE standard input. (A file on the PC)

Direct I/O

Multiple Device
Direct I/O

Interface
Operations

Communicates directly with HP-IB, VXI, serial, or GPIO
instruments.

Communicates directly with multiple HP-IB, VXI, serial, or GPIO
instruments in the same object.

Transmits low-level bus commands and data bytes on an HP-IB or
VXI interface.

To/From Named
Pipe (UNIX)

To/From HP
BASIC/UX (UNIX)

Transmits data to and from named pipes to support interprocess
communications.

Transmits data to and from an HP BASIC/UX process via HP-UX
named pipes.

To/From DDE (PC) Dynamically exchanges data between programs running under
Microsoft Windows.

To/From Socket Uses interprocess communication to exchange data within
networked computer systems.
Chapter 5 103

Using Transaction I/O
Choosing the Correct Transaction

Selecting the Correct Object and Transaction

1. Determine the source or destination of your I/O operation and the form in
which data is to be transmitted.

2. Determine the type of object that supports the source or destination using
Table 5-5.

3. Determine the correct type of transaction using Table 5-6.

4. To determine the remaining specifications for the transaction, such as
encodings and formats, consult Appendix D, “I/O Transaction
Reference”.

For information about using transaction for instrument I/O, refer to
Controlling Instruments with HP VEE.

Table 5-6. Summary of Transaction Types

Action Description

EXECUTE Executes low-level commands to control the file, device, or interface
associated with the transaction-based object. This action is used to adjust
file pointers, clear buffers, close files and pipes, and provide low-level
control of hardware interfaces.

WAIT Waits for a specified period of time before executing the next transaction.

In the case of Direct I/O to HP-IB, message-based and I-SCPI-
supported register-based VXI devices, WAIT can also wait for a specific
serial poll response.

READ Reads data from the associated object.

WRITE Writes data to the associated object.

SEND Sends IEEE 488-defined bus messages (commands and data) to an HP-IB
interface.
104 Chapter 5

Using Transaction I/O
Choosing the Correct Transaction
Example of
Selecting an Object
and Transaction

Assume you need to read a file containing two columns of text data. Each
row contains a time stamp and a real number separated by a white space.
Each line ends with a newline character. Here is a partial listing of the
contents of the file.

14:18:00 1.001
14:18:30 -2.002
14:19:00 1.0E-03 . . .

Based on the previous procedure for selecting objects and transactions, here
are the steps to solve this problem:

1. The source is a text file. The data consists of a time stamp in 24-hour
hours-minutes-seconds notation and signed real numbers in scientific and
decimal notation.

2. Consulting Table 5-5, note that the object used to read a file is
From File.

3. Consulting Table 5-6, note that the type of transaction used to read data
from a file is READ.

4. The desired transactions are:

READ TEXT x TIME
READ TEXT y REAL
Chapter 5 105

Using Transaction I/O
Using To String and From String

ut
Using To String and From String
Use To String to create formatted Text by using transactions. The Text is
written to an HP VEE container.

Use From String to read formatted Text from an HP VEE container.

 If only one string is generated by all the transactions in a To String
object, the output container is a Text scalar. If more than one string is
generated by the transactions in a To String, the output is a one-
dimensional array of Text.

WRITE transactions using EOL ON always terminate the current output
string. This causes the next transaction to begin writing to the next array
element in the output container.

WRITE transactions ending with EOL OFF will not terminate the output
string, causing the characters output by the next WRITE transaction to
append to the end of the current string. The last transaction in a To String
always terminates the current string, regardless of that transaction’s EOL
setting.

For most situations, the proper type of transaction for use with To String
is WRITE TEXT. For details about encodings other than TEXT, please refer to
Appendix D, “I/O Transaction Reference”.

From String can read a Text scalar or an array depending on the
configuration of the READ TEXT transaction. READ TEXT will either
terminate a read upon encountering a EOL or will consume the EOL and
continue with the read. This is dependent on the format. For details abo
formats, please refer to Appendix D, “I/O Transaction Reference”.
106 Chapter 5

Using Transaction I/O
Communicating With Files
Communicating With Files

Details About File Pointers

HP VEE maintains one read pointer and one write pointer per file regardless
of how many objects are accessing the file. A read pointer indicates the
position of the next data item to be read. Similarly, a write pointer indicates
the position where the next item should be written. The position of these
pointers can be affected by:

n A READ, WRITE, or EXECUTE action

n The Clear File at PreRun & Open setting in the open view of
To File

All objects accessing the same file share the same read and write pointers,
even if the objects are in different threads or different contexts.

A file is opened for reading and writing when either of these conditions is
met:

n The first object to access a particular file operates for the first time after
PreRun. This is the most common case.

n New data arrives at the optional control input terminal that specifies the
file name. This case occurs less frequently.

Source or Destination Object

Data Files To File, From File

Standard Input From StdIn

Standard Output To StdOut

Standard Error To StdErr
Chapter 5 107

Using Transaction I/O
Communicating With Files
Read Pointers At the time From File opens a file, the read pointer is at the beginning of
the file. Subsequent READ transactions advance the file pointer as required
to satisfy the READ. You can force the read pointer to the beginning of the
file at any time using an EXECUTE REWIND transaction in a From File
object; data in the file is not affected by this action.

Write Pointers The initial position of a write pointer depends on the
Clear File at PreRun & Open setting in the open view of To File.
If you enable Clear File at PreRun & Open, the file contents are
erased and the write pointer is positioned at the beginning of the file when
the file is opened. Otherwise, the write pointer is positioned at the end of the
file and data is appended. You can force the write pointer to the beginning of
the file at any time using an EXECUTE REWIND or EXECUTE CLEAR
transaction. REWIND preserves any data already in the file. However, new
data will overwrite old data starting at the new position. CLEAR erases data
already in the file.

Note The To DataSet and From DataSet objects also share one read and one
write pointer per file with the To File and From File objects. However,
mixing To DataSet and From DataSet operations with To File and
From File operations on the same file is not recommended.

Closing Files HP VEE guarantees that any data written by To File is written to the
operating system when the last transaction completes execution and all
output terminals have been activated.

The UNIX operating system physically writes data buffered by the operating
system to disk periodically, typically every 15-30 seconds. This buffered
operation is part of the operating system; it is not unique to HP VEE.

HP VEE automatically closes all files at PostRun. PostRun occurs when all
active threads finish executing.

Files may be closed programmatically by using the EXECUTE CLOSE
transaction in both To File and From File. This provides a means to
continually read or write a file that may have been created by another
process.
108 Chapter 5

Using Transaction I/O
Communicating With Files
Files may also be deleted programmatically by using the EXECUTE DELETE
transaction. This is useful for deleting temporary files.

Figure 5-13 shows an example of how to use EXECUTE CLOSE.

Figure 5-13. Using the EXECUTE CLOSE Transaction

This program is saved in the file manual48.vee in your examples
directory.

In Figure 5-13 Execute Program executes a shell command (date) that
creates and writes the date and time to a file (/tmp/dateFile). Within the
same thread, a From File reads the date from that file using a
READ TEXT x STR transaction. The EXECUTE CLOSE transaction is
necessary because the subthread is executed multiple times by For Count.
Succeeding executions of Execute Program will overwrite the file.
However, since From File only opens the file once, upon the second
execution of From File the read pointer will be stale — it will no longer
point to the file since Execute Program has re-created the file. An error
will occur.
Chapter 5 109

Using Transaction I/O
Communicating With Files

ents
-
the
From File must close the file after reading the data by using an
EXECUTE CLOSE transaction. The EXECUTE CLOSE transaction forces
From File to re-open the file on every execution.

In the example of Figure 5-13, the error can be shown by using a NOP to
"comment out" the EXECUTE CLOSE transaction. The error will state End
of file or no data found. Removing the NOP will allow the program
to run normally.

The EOF Data Output

From File supports a unique data output terminal named EOF (end-of-file).
This terminal is activated whenever you attempt to read beyond the end of a
file. The EOF terminal is useful when you wish to read a file of unknown
length.

The read-to-end feature, discussed in “Reading Data” on page 88, also
provides a means of reading a file of unknown length. However, the cont
of the file will be in a single HP VEE container. If the file is to be read an
element-at-a-time, with each element residing in its own container, use
EOF terminal.

Figure 5-14 illustrates a typical use of EOF. The file being read contains a
list of X-Y data of unknown length. Here are typical contents of the file:

1.0
5.5
2.1
8
.
.
.
110 Chapter 5

Using Transaction I/O
Communicating With Files

Figure 5-14. Typical Use of EOF to Read a File

Common Tasks for Importing Data

Because HP VEE provides a convenient environment for analyzing and
displaying data, you may wish to import data into HP VEE from other
programs. This is the general procedure to use for importing data from
another software application:

1. Save the data in a text file (ASCII file).

2. Examine the data file with a text editor to determine the format of the
data.

3. Use a From File object with a READ TEXT transaction to read the data
file.

Importing X-Y
Values

One very common problem is reading a text file containing an unknown
number of X and Y values and plotting them. The program shown in Figure
5-15 solves this problem.
Chapter 5 111

Using Transaction I/O
Communicating With Files

Figure 5-15. Importing XY Values

The program shown in Figure 5-15 is saved in the file manual29.vee in
your examples directory.

Note that the READ TEXT REAL transaction easily handles all the different
notations used for Y values including signs, decimals, and exponents. Here
is a portion of the data file:

.

.

.
8 8.555555
9 9e0
10 1.05e+01
11 +11.
12 12.5
13 1.3E1
112 Chapter 5

Using Transaction I/O
Communicating With Files
Importing
Waveforms

There are many different conventions used by other software applications
for saving waveforms as text files. In general, the file consists of a number
of individual values that describe attributes of the waveform and a one-
dimensional array of Y values. This section illustrates how to import
waveforms saved using one of these conventions:

n Fixed-format file header. Waveform attributes are listed in fixed
positions at the beginning of the file followed by a one-dimensional array
of Y data.

n Variable-format file header. A variable number of attributes are listed at
the beginning of the file followed by a one-dimensional array of Y data.
Their positions are marked by special text tokens.

Fixed-Format Header. Here is a portion of the data file read by the program
in Figure 5-16:

NAME Noise1
START_TIME 0.0
STOP_TIME 1.0E-03
SAMPLES 32
DATA

 .243545
.2345776

.

.

.

Since this is a fixed-format header, labels such as NAME and SAMPLES are
irrelevant. The waveform attributes always appear and are in the same
position. Figure 5-16 shows a program that reads the waveform data file.
Chapter 5 113

Using Transaction I/O
Communicating With Files

Figure 5-16. Importing a Waveform File

The program shown in Figure 5-16 is saved in the file manual30.vee in
your examples directory.
114 Chapter 5

Using Transaction I/O
Communicating With Files
The transactions in From File do most of the work here. Here is how each
transaction works:

1. The first transaction strips away the NAME label. This must be done
before attempting to read the string that names the waveform, or else
NAME and Noise1 would be read together as a single string.

2. The second transaction reads the string name of the waveform.

3. The third through fifth transactions read the specified numeric quantity.
Note that HP VEE simply reads and ignores any preceding "extra"
characters in the file not needed to build a number.

4. The sixth transaction reads the one-dimensional array of Y data using the
ARRAY SIZE determined by the previous transaction. Note that
Samples must appear as an output terminal to be used in this transaction.

Variable-Format Header. Here is a portion of the data file read by the
program in Figure 5-17:

First Line Of File
<MARKER1> 1 2 3
<MARKER2> A B C

<DATA>

1 1.1
2 2.2
3 2.9
.
.
.

In this case, the exact contents and position of data in the file is not known.
The only fact known about this file is that a list of XY values follows the
special text marker <DATA>.

To simplify this example, the program in Figure 5-17 finds only the data
associated with <DATA>. In your own applications, you might need to
search for several markers.
Chapter 5 115

Using Transaction I/O
Communicating With Files

Figure 5-17. Importing a Waveform File

The program shown in Figure 5-17 is saved in the file manual31.vee in
your examples directory.

From File #1 reads tokens (words delimited by white space) one at a
time, searching for <DATA>. Once <DATA> is found, From File reads XY
pairs until the end of the file is reached.
116 Chapter 5

Using Transaction I/O
Communicating With Programs (UNIX)
Communicating With Programs (UNIX)

Execute Program (UNIX)

At times you may wish to use an HP VEE program to perform a task that
you would normally do from the Operating System command line. The
Execute Program (UNIX) object allows you to do this. You use
Execute Program (UNIX) to run any executable file including:

n Compiled C programs

n Shell scripts

n UNIX system commands, such as ls and grep

Figure 5-18. The Execute Program (UNIX) Object

Program Object(s)

Shell command Execute Program (UNIX)

C program Execute Program (UNIX)
To/From Named Pipe (UNIX)
To/From Socket

HP BASIC/UX Init HP BASIC/UX (UNIX)
To/From HP BASIC/UX (UNIX)
Chapter 5 117

Using Transaction I/O
Communicating With Programs (UNIX)
Execute Program
(UNIX) Fields

The following sections explain the fields visible in the open view of
Execute Program (UNIX).

Shell. Shell specifies the name of an UNIX shell, such as sh, csh, or ksh.
If the Shell field is set to none, the first token in the Prog with params
field is assumed to be the name of an executable file, and each token
thereafter is assumed to be a command-line parameter. The executable is
spawned directly as a child process of HP VEE. All other things being
equal, Execute Program (UNIX) executes fastest when Shell is set to
none.

If the Shell field specifies a shell, HP VEE spawns a process
corresponding to the specified shell. The string contained in the
Prog with params field is passed to the specified shell for interpretation.
Generally, the shell will spawn additional processes.

Wait for Prog Exit. Wait for prog exit determines when HP VEE
completes operation of the Execute Program object and activates any
data outputs. If Wait for prog exit is set to Yes, HP VEE will:

1. Check to see if a child process corresponding to the
Execute Program (UNIX) object is active. If one is not already
active, HP VEE will spawn one.

2. Execute all transactions specified in the Execute Program object.

3. Close all pipes to the child process, thus sending an end-of-file (EOF) to
the child.

4. Wait until the child process terminates before activating any output pins
of the Execute Program (UNIX) object. If the Shell field is not set
to none, it is the shell that must terminate to satisfy this condition.
118 Chapter 5

Using Transaction I/O
Communicating With Programs (UNIX)
If Wait for prog exit is set to No, HP VEE will:

1. Check to see if a child process corresponding to the
Execute Program (UNIX) object is active. If one is not already
active, HP VEE will spawn one.

2. Execute all transactions specified in the Execute Program object.

3. Activate any data output pins on the Execute Program object. The
child process remains active and the corresponding pipes still exist.

All other things being equal, Execute Program (UNIX) executes fastest
when Wait for prog exit is set to No.

Prog With Params. Prog with params specifies either:

1. The name of an executable file and command line parameters
(Shell set to none).

2. A command that will be sent to a shell for interpretation
(Shell not set to none).

Here are examples of what you typically type into the Prog with params
field:

To run a shell command (Shell set to ksh):

ls -t *.dat | more

To run a compiled C program (Shell set to none):

MyProg -optionA -optionB

If you use shell-dependent features in the Prog with params field, you
must specify a shell to achieve the desired result. Common shell-dependent
features are:

n Standard input/output redirection (< and >)
n File name expansion using wildcards (*, ?, and [a-z])
n Pipes (|)
Chapter 5 119

Using Transaction I/O
Communicating With Programs (UNIX)
Running a Shell
Command

Execute Program (UNIX) can be used to run shell commands such as
ls, mkdir, and rm. Figure 5-19 shows one method for obtaining a list of
files in a directory using an HP VEE program.

Figure 5-19. Execute Program (UNIX) Running a Shell Command

The program shown in Figure 5-19 is saved in the file manual32.vee in
your examples directory.

In Figure 5-19, the Execute Program (UNIX) determines the number of
file names in the /tmp directory by listing the names in a single column (ls
-1) and piping this list to a line counting program (wc -l). Because the
pipe is used, the command contained in the Prog with params field must
be sent to a shell for interpretation. Thus, the Shell field is set to sh. The
number of lines is read by the READ TEXT transaction and passed to the
output terminal named Lines.

The second transaction reads the list of files in the /tmp directory. Note that
it reads exactly the number of lines detected in the first transaction. The shell
command is separated by a semicolon to tell the shell that it is executing two
commands.

In the Execute Program (UNIX), Wait for prog exit is set to Yes.
In this case, this setting is not very important because these shell commands
are only executed once. The No setting is useful when you want the process
120 Chapter 5

Using Transaction I/O
Communicating With Programs (UNIX)

n
spawned by the Execute Program (UNIX) to remain active while your
HP VEE program continues to execute.

 Figure 5-20 shows another method for obtaining a list of files in a directory
using an HP VEE program.

Figure 5-20. Execute Program (UNIX) Running a Shell Command
using Read-To-End

This program is saved in the file manual50.vee in your examples
directory.

In Figure 5-20 the HP VEE program displays the contents of the /tmp
directory in a simpler fashion than in Figure 5-19.

In Figure 5-20, Execute Program (UNIX) has in the Prog with
params field the single shell command ls /tmp. There is no need to first
obtain the number of files in the directory, as was done in the program in
Figure 5-19, because the transaction READ TEXT x STR ARRAY:* uses the
read-to-end feature discussed in “Reading Data” on page 88. The shell
command, when it is done executing, will close the pipe that
Execute Program (UNIX) is using to read the list of files. This sends a
end-of-file (EOF) which terminates the transaction.
Chapter 5 121

Using Transaction I/O
Communicating With Programs (UNIX)
Running a C
Program

The program shown in Figure 5-21 illustrates one way to share data with a C
program using stdin and stdout of the C program. In this case, the C
program simply reads a real number from HP VEE, adds one to the number,
and returns the incremented value.

Figure 5-21. Execute Program Running a C Program

The program shown in Figure 5-21 is saved in the file manual33.vee in
your examples directory.
122 Chapter 5

Using Transaction I/O
Communicating With Programs (UNIX)

ad
ipes
 a

reate
Figure 5-22 contains a listing of the C program called by the HP VEE
program in Figure 5-21.

The program listing in Figure 5-22 uses both setbuf and fflush to force
data through stdout of the C program; in practice, either setbuf or
fflush is sufficient. Using setbuf(file,NULL) turns off buffering for
all output to file. Using fflush(file) flushes any already buffered
data to file.

#include <stdio.h>
main ()
{

int c;
double val;
setbuf(stdout,NULL); /* turn stdout buffering off */

while (((c=scanf("%lf",&val)) != EOF) && c > 0){
fprintf(stdout,"%g\n",val+1);
fflush(stdout); /* force output back to VEE*/

}
exit(0);

}
Figure 5-22. C Program Listing

To/From Named Pipe (UNIX)

To/From Named Pipe is a tool for advanced users who wish to implement
interprocess communication. Using named pipes in UNIX is not a task for
casual users; named pipes have some complex behaviors. If you wish to
learn more about named pipes and interprocess communication, refer to the
section “Related Reading” on page 144 at the end of this chapter.

All To/From Named Pipe objects contain the same default names for re
and write pipes. Be certain that you correctly specify the names of the p
you want to read or write. This can be a problem if you run HP VEE on
diskless workstation. You must be sure that the named pipes in your
program are not being accessed by another user.

HP VEE creates pipes for you as they are needed; you do not need to c
them outside the HP VEE environment.
Chapter 5 123

Using Transaction I/O
Communicating With Programs (UNIX)

ate
Hints for Using
Named Pipes

n Be certain that HP VEE and the process on the other end of the pipe
expect to share the same type of data. In particular, be certain that the
amount of data sent is sufficient to satisfy the receiver and that unclaimed
data is not left in the pipe.

n Use unbuffered output to send data to HP VEE or flush output buffers to
force data through to HP VEE. This can be achieved by using non-
buffered I/O (write), turning off buffering (setbuf), or flushing buffers
explicitly (fflush).

Here are examples of the C function calls used to control buffered output to
HP VEE:

setbuf(out_pipe1,NULL) Turns off output buffering.

or

fflush(out_pipe1) Flushes data to HP VEE.

or

write(out_pipe2,data,n) Writes unbuffered data.

where out_pipe1 is a file pointer and out_pipe2 is a file descriptor for
the Read Pipe specified in To/From Named Pipe.

Note that HP VEE automatically performs similar flushing operations when
writing data to a pipe. HP VEE does the equivalent of an fflush when
either of these conditions is met:

n The last transaction in the object executes.

n A WRITE transaction is followed by a non-WRITE transaction.

To/From Named Pipe supports read-to-end transactions as described in
“Reading Data” on page 88. To/From Named Pipe also supports
EXECUTE CLOSE READ PIPE and EXECUTE CLOSE WRITE PIPE
transactions. These transactions can be used for inter-process
communications where the amount of data to read and write between
HP VEE and the other process is not explicitly known.

For example, suppose that HP VEE is using named-pipes to communic
with another process. If HP VEE is writing data out on a named pipe and the
124 Chapter 5

Using Transaction I/O
Communicating With Programs (UNIX)

n

t a

 two

col.

aits

ntity.

ame

amount of data is less than that expected by the reading process, that reading
process will hang until such time as there is enough data on the named-pipe.

By using an EXECUTE CLOSE WRITE PIPE transaction, the named-pipe is
closed when an EOF (end-of-file) is sent. Thus, an EOF will terminate most
read function calls (read’, fread, fgets, etc...), thereby allowing the
reading process to unblock and still obtain the data written by HP VEE into
the pipe.

Conversely, if HP VEE is the reading process, a READ transaction using the
read-to-end feature will allow HP VEE to read an unknown amount of data
from the named-pipe if the writing process performs a close() on the pipe,
sending an EOF. Another way to avoid a read that will block indefinitely is
to use the READ IOSTATUS transaction. See Appendix D, “I/O Transactio
Reference” for more information about using READ IOSTATUS transactions.

To/From Socket

The To/From Socket object is for advanced users who wish to implement
interprocess communication for systems integration. Using sockets is no
task for casual users; sockets have some complex behaviors.

Sockets let you implement interprocess communication (IPC) to allow
programs to treat the LAN as a file descriptor. IPC implies that there are
sockets involved between two or more processes on two different
computers. Instead of a simple open()/close() interface as used in the
To/From Named Pipe object, sockets use an exported address and an
initial caller/receiver strategy, referred to as a connection-oriented proto

In a connection-oriented protocol, also known as a client/server
arrangement, the server must obtain a socket, then bind an address known as
the port number to the socket. After binding a port number, the server w
in a blocked state to accept a connection request. To call for a connection,
the client must obtain a socket, then use two elements of the server's ide
The elements include the particular port number the server bound to its
socket, and the server's host name or IP address. If the server's host n
cannot be resolved into an IP address, the client must use the IP address
specifically. After the server accepts the client's connection request, the
connection is established and normal I/O activities can begin.
Chapter 5 125

Using Transaction I/O
Communicating With Programs (UNIX)

Figure 5-23. The To/From Socket Object

To/From Socket
Fields

The To/From Socket object contains fields that let you do the following:

n Connect to a bound socket on a remote computer.

n Bind a socket on the computer on which HP VEE is running and wait for
a connection to occur.

Of the four available fields, values of the following three fields can be input
as control pins to the object:

n Connect/Bind Port Mode

n Host name

n Timeout

The following sections explain the fields visible in the To/From Socket
open view.

Connect/Bind Port Mode. Connect/Bind Port Mode comprises two fields,
the mode button and the text field. The mode button toggles between Bind
Port and Connect Port. The text field lets you enter the port number.
Allowed port numbers are integers from 1024 through 65535. Numbers
from 0 through 1023 are reserved and will cause a run-time error if you use
126 Chapter 5

Using Transaction I/O
Communicating With Programs (UNIX)
them. Port numbers above 5000 are commonly called transient, and are the
range of numbers you should use.

Host Name. If the mode is set to Bind Port, this field displays the name
of host computer on which HP VEE is running. You cannot change this field
to the host name of a remote computer, because it is not possible to bind a
port number to a socket on a remote computer.

If the mode is set to Connect Port, you are allowed to edit this field. Enter
the host name or IP address of the remote computer to which you want to
connect. You must know the host name and it must be resolvable to the IP
address. If a host name table is not available on the network to translate the
host name to an IP address, you must enter the specific address, such as
15.11.29.103.

Timeout. Timeout lets you enter an integer value that represents the
timeout period in seconds for all READ and WRITE transactions. This
timeout period is also in effect for the initial connection when the To/From
Socket object is set either in the Bind Port mode waiting for a connection
to occur, or in the Connect Port mode waiting for a connection to be
accepted. This value is ignored if the remote host does not exist or it is
down; in this case, the HP VEE interface is frozen until the connection fails,
which may take up to one minute.

Transactions. The To/From Socket object uses the same normal I/O
transactions used by the To/From Named Pipe object. READ and
WRITE transactions support all data types. See Appendix D, “I/O
Transaction Reference” for detailed information about transactions.

Table 5-7. Range of Integers Allowed for Socket Port Numbers

Number Range Reserved for ...

0—1023 operating system

1024—5000 commercial or global applicationa

a. Usually involves a registration process.

5001—65535 internal or closed distributed applications
Chapter 5 127

Using Transaction I/O
Communicating With Programs (UNIX)
Data Organization All binary data is placed on the LAN in network-byte order. This
corresponds to Most Significant Byte (MSB) or Big Endian ordering.
Binary transactions will swap bytes on READs and WRITEs, if necessary.
This implies that any other process that HP VEE is connected to will need to
conform to this standard. In the previous example, the server process could
have been little endian ordered while the client could be big endian ordered.
The byte swapping done by HP VEE is invisible.

Object Execution A To/From Socket object set to bind a socket at a port number will use the
timeout period waiting for a connection to occur. All concurrent threads in
HP VEE will not execute during this period. The timeout value can be set to
zero which disables timeouts, potentially making the period waiting for a
connection infinitely long. Any timeout violation causes an error, and halts
HP VEE execution.

Once a connection has been established the devices perform the transactions
contained in the transaction list. All READ operations will block for the
timeout period waiting for the amount and type of data specified in the
transaction. To avoid potential blocked threads, use the READ IOSTATUS
transaction to detect when data is available on the socket.

To specifically terminate a connection, use the EXECUTE CLOSE transaction.
All socket connections established in a HP VEE program are broken when a
program stops executing. Whichever way connections are broken, the server
and client objects must repeat the bind-accept and connect-to protocols to
re-establish connections. EXECUTE CLOSE should be used as a mutually
agreed-upon termination method, and not merely an expedient way to flush
data from a socket.

Multiple To/From Socket objects will share sockets. All objects that are
binding an identical port number will share the same socket. All objects that
are configured with identical port numbers and host names to attempt
connection to the same bound socket will share the same socket. The
overhead of establishing the connection is incurred in the first execution of
one of the commonly configured objects.

Example The following figure shows a HP VEE program which uses the To/From
Socket object to provide a separate server process for data acquisition using
the HPE 1413B. This simple server can honor client requests to initialize
instruments, acquire and write data to disk, and shutdown and quit. During
128 Chapter 5

Using Transaction I/O
Communicating With Programs (UNIX)
the acquisition phase data is read from the Current Value Table in the A/D
and sent to the client.

The first To/From Socket object to execute, connected to the Until
Break object, will bind a socket to port number 5001 on the host computer
named hpjtmxzz and wait 180 seconds for another process to connect to
that socket. Note the use of an error pin to avoid a halt due to a timeout. In
this case that object is just executed again and will wait another 180 seconds
for a connection. After the connection has been made, the object will then
block on the READ transaction waiting for the client to send a command.
Again, if a timeout occurs on the READ, the object will execute again and
block on the READ transaction.

Figure 5-24. To/From Socket Binding Port for Server Process
Chapter 5 129

Using Transaction I/O
Communicating With Programs (UNIX)
The following figure shows the client side of the service described
previously. The first To/From Socket object to execute will wait,
sleeping, for the attempted connection to occur. Note that unlike the server,
any timeout error will cause the program to error and halt. The first object
sends over the commands Init and Acquire then executes the loop to read
the CVT.

Figure 5-25. To/From Socket Connecting Port for Client Process

HP BASIC/UX Objects (HP-UX)

The Init HP BASIC/UX and To/From HP BASIC/UX objects are
available in all versions of HP VEE, and work only in programs that run on
HP 9000 Series 700 systems.

The HP BASIC/UX objects are tools for advanced users who wish to
communicate with HP BASIC processes. Refer to the section “To/From
Named Pipe (UNIX)” on page 123 earlier in this chapter for general
information about using pipes with HP VEE.
130 Chapter 5

Using Transaction I/O
Communicating With Programs (UNIX)
Init HP BASIC/UX Init HP BASIC/UX spawns an HP BASIC/UX process and runs a
specified HP BASIC program.

Enter the complete path and file name of the HP BASIC program you wish
to execute in the Program field. The program may be in either STOREd or
SAVEd format.

Init HP BASIC/UX does not provide any data path to or from the
HP BASIC process; use To/From HP BASIC/UX for that purpose.

You can use more than one Init HP BASIC/UX object in a program, and
you can use more than one in a single thread.

Note that there is no direct way to terminate an HP BASIC/UX process from
an HP VEE program. In particular, PostRun does not attempt to terminate
any HP BASIC/UX processes. PostRun occurs when all threads complete
execution or when you press Stop. Thus, you must provide a way to
terminate the HP BASIC/UX process. Possible ways to do this are:

n Your HP BASIC program executes a QUIT statement when it receives a
certain data value from HP VEE.

n An Execute Program object kills the HP BASIC/UX process using a
shell command, such as rmbkill.

If you Cut an Init HP BASIC/UX while the associated HP BASIC process
is active, HP VEE automatically terminates the HP BASIC process. When
you Exit HP VEE, all HP BASIC processes started by HP VEE are
terminated.

To/From
HP BASIC/UX

The To/From HP BASIC/UX object supports communications between an
HP BASIC program and HP VEE using named pipes.

Type in the names of the pipes you wish to use in the Read Pipe and
Write Pipe fields. Be certain that they match the names of the pipes used
by your HP BASIC/UX program and that the read and write names are not
inadvertently swapped relative to their use in the HP BASIC program. Use
different pipes for the To/From HP BASIC/UX objects in different threads.
Chapter 5 131

Using Transaction I/O
Communicating With Programs (UNIX)
Examples Using
To/From
HP BASIC/UX

Sharing Scalar Data. Consider a simple case where you wish to:

1. Start HP BASIC.

2. Run a specific HP BASIC program.

3. Send a single number to HP BASIC for analysis.

4. Retrieve the analyzed data.

5. Terminate HP BASIC.

Here are typical To/From HP BASIC/UX settings and the corresponding
HP BASIC/UX program:

Figure 5-26. To/From HP BASIC/UX Settings

 Here is the HP BASIC/UX program:

100 ASSIGN @From_vee TO "/tmp/to_rmb"
110 ASSIGN @To_vee TO "/tmp/from_rmb"
120 ! Your analysis code here
130 ENTER @From_vee;Vee_data
140 OUTPUT @To_vee;Rmb_data
150 END

To view an example program that solves this problem, open the
manual34.vee example.
132 Chapter 5

Using Transaction I/O
Communicating With Programs (UNIX)
Sharing Array Data. To share array data between HP VEE and HP BASIC
using TEXT encoding, you must modify the default Array Separator in
To/From HP BASIC/UX. To do this, click on Properties in the
To/From HP BASIC/UX object menu and click on the Data Format tab
in the Properties dialog box. Set the Array Separator field to ", "
(a comma followed by a blank).

Be sure that HP VEE and HP BASIC use the same size arrays.

Note that the order in which HP VEE and HP BASIC read and write array
elements is compatible. If HP VEE and HP BASIC share an array using
READ and WRITE transactions in To/From HP BASIC/UX, each element
will have the same value in HP VEE as in HP BASIC.

To view an example program that shares arrays between HP VEE and
HP BASIC, open the manual35.vee example.

Sharing Binary Data. It is possible to share numeric data between HP VEE
and HP BASIC without converting the numbers to text. To do this, you must
select BINARY encoding in the To/From HP BASIC/UX transactions and
FORMAT OFF for the ASSIGN statements that reference the named pipes in
HP BASIC.

There are only two cases where it is possible to share numeric data in binary
form:

n HP VEE BINARY REAL is equivalent to HP BASIC REAL

n HP VEE BINARY INT16 is equivalent to HP BASIC INTEGER
Chapter 5 133

Using Transaction I/O
Communicating With Programs (PC)
Communicating With Programs (PC)

Execute Program (PC)

At times you may wish to use an HP VEE program to perform a task that
you would normally do from the Operating System command line. The
Execute Program (PC) object allows you to do this. You use
Execute Program (PC) to run any executable file including:

n Compiled C programs

n Any MS-DOS program (*.EXE or *.COM files)

n .BAT files

n MS-DOS system commands, such as dir

Program Object(s)

MS-DOS command Execute Program (PC)

Windows Applicationa

a. HP VEE for Windows supports ActiveX automation which lets
you control other Windows applications. For information about
using this feature, see Chapter 7, “Using ActiveX Automation
Objects and Controls”.

Execute Program (PC)
To/From DDE (PC)
To/From Socket

C program Execute Program (PC)
Import Library
Call Function
Formula
134 Chapter 5

Using Transaction I/O
Communicating With Programs (PC)

Figure 5-27. The Execute Program (PC) Object

Execute Program
(PC) Fields

The following sections explain the fields visible in the open view of
Execute Program (PC).

Run Style. If the program you want to execute runs in a window, Run
Style specifies the window style:

n Normal runs the program in a standard window.

n Minimized runs the program in a window minimized to an icon.

n Maximized runs the program in a window enlarged to its maximum size.

Wait for Prog Exit. Wait for prog exit determines when HP VEE
completes operation of the Execute Program (PC) object and activates
any data outputs. If Wait for prog exit is set to Yes, HP VEE will:

1. Execute the command specified in the Execute Program (PC) object.

2. Wait until the process terminates before activating any output pins of the
Execute Program (PC) object.
Chapter 5 135

Using Transaction I/O
Communicating With Programs (PC)
If Wait for prog exit is set to No, HP VEE will:

1. Execute the command specified in the Execute Program (PC) object.

2. Activate any data output pins on the Execute Program (PC) object.

All other things being equal, Execute Program (PC) executes fastest
when Wait for prog exit is set to No.

Prog With Params . Prog with params specifies either:

1. The name of an executable file and command line parameters.

2. A command that will be sent to MS-DOS for interpretation.

If you have included the appropriate path in the PATH variable in your
AUTOEXEC.BAT file, you don’t need to include the path in the
Prog with params field. Here are examples of what you typically type
into the Prog with params field:

To execute a MS-DOS command:

COMMAND.COM /C DIR *.DAT

To run a compiled C program:

MyProg -optionA -optionB

Working Directory. Working directory points to a directory where the
program you want to execute can find files it needs. So, if you want to run
the program nmake using the makefile in the directory c:\progs\cprog1:

In Prog with params:, enter nmake.

In Working directory:, enter c:\progs\cprog1.
136 Chapter 5

Using Transaction I/O
Communicating With Programs (PC)

kes
 the

ta or

s
nd
Using Dynamic Data Exchange (DDE)

Note HP VEE for Windows supports ActiveX automation which lets you control
other Windows applications. For information about using this feature, see
Chapter 7, “Using ActiveX Automation Objects and Controls”.

Dynamic Data Exchange (DDE) defines a message-based protocol for
communication between Windows applications. This communication ta
place between a DDE client and a DDE server. The DDE client requests
conversation with the DDE server. The client then requests data and
services from the server application. The server responds by sending da
executing procedures.

A Windows application that supports DDE may act as either a client, a
server or both. HP VEE for Windows provides only client capabilities. It
implements DDE capabilities with the To/From DDE object.

The HP VEE for Windows To/From DDE object uses four types of
transactions:

Note that the To/From DDE object initiates and terminates DDE operation
as part of its function. You do not need to explicitly perform the initiate a
terminate functions.

READ(REQUEST) Reads Data from a DDE transfer.

WRITE(POKE) Writes (pokes) Data to a DDE transfer.

EXECUTE Sends a command to the DDE server that HP VEE for
Windows is communicating with. The server then
executes the command.

WAIT Waits for the specified amount of time (in seconds).
Chapter 5 137

Using Transaction I/O
Communicating With Programs (PC)
Note Definitions:

Application - The DDE name for the application.

Topic - An application-specific identifier of the kind of data. For example, a
word processor’s topic would be the document name.

Item - An application-specific identifier for each piece of data. For
example, a spreadsheet data item might be a cell location; a word processor
data item might be a bookmark name.

To/From DDE
Object

Figure 5-28. The To/From DDE Object

The To/From DDE object has three main fields. In the Application field
enter the application name for the Windows application that you want to
communicate with. Generally, this is the .EXE file name. See the manual
for each specific application to determine its DDE application name.

The Topic field contains the Topic name for the application.

The Timeout field lets you specify the timeout period for HP VEE to wait if
the application does not respond. The default value is five seconds.

The last field contains transactions to communicate with the other
application. For READ(REQUEST) and WRITE(POKE) transactions, you
must also fill in an Item name in the transaction.
138 Chapter 5

Using Transaction I/O
Communicating With Programs (PC)
For example, the following To/From DDE object, communicating with the
MS Windows Program Manager, creates a program group, adds an item to
the group, displays it for 5 seconds and then deletes the program group.

Figure 5-29. The To/From DDE Example

Note that if the server DDE application is not currently running, HP VEE
will attempt to start that application. This will only be successful if the
application’s executable file name is the same as the name in the application
field. The executable file’s directory must also be defined in your PATH.
HP VEE will try to start the application for the amount of time entered in the
Timeout field. Otherwise, use an Execute Program (PC) object before
the To/From DDE object to run the application program, as illustrated in the
following example.
Chapter 5 139

Using Transaction I/O
Communicating With Programs (PC)

Figure 5-30. Execute PC before To/From DDE

The following example shows the use of input and output terminals with a
To/From DDE object.

Figure 5-31. I/O Terminals and To/From DDE
140 Chapter 5

Using Transaction I/O
Communicating With Programs (PC)
DDE Examples

The following figures are examples of how to communicate with various
popular Windows software. Read the Note Pad in each example for
important information regarding each example.

Figure 5-32. Lotus 123 DDE Example

Figure 5-33. Excel DDE Example
Chapter 5 141

Using Transaction I/O
Communicating With Programs (PC)

Figure 5-34. Reflections DDE Example

Figure 5-35. Word for Windows DDE Example
142 Chapter 5

Using Transaction I/O
Communicating With Programs (PC)

Figure 5-36. WordPerfect DDE Example

Dynamic Linked Libraries (DLL)

For information on using DLLs see “Creating a Dynamic Linked Library
(MS Windows)” on page 44.
Chapter 5 143

Using Transaction I/O
Related Reading
Related Reading
1. Haviland, Keith and Salama, Ben, UNIX System Programming.
(Addison-Wesley Publishing Company, Menlo Park, California, 1987).

This book contains information of general interest to programmers using
UNIX. In particular, it contains explanations of interprocess
communications and pipes that are applicable to with To/
From Named Pipe, To/From Socket, To/From HP BASIC/UX, and
Execute Program.

For information on using transactions for instrument I/O, refer to
Controlling Instruments with HP VEE.
144 Chapter 5

6

Using the Sequencer Object

g
n,

ions,
er

ns

 in
Using the Sequencer Object

You’ll need to understand several topics covered in this and other manuals in
order to use the Sequencer object effectively. These topics include
instrument I/O operations (Controlling Instruments with HP VEE),
UserObjects (How Do I in HP VEE Help), Records and DataSets (Chapter
3, “Using Records and DataSets”), and UserFunctions (Chapter 4, “Usin
User-Defined Libraries”). Also, for information on how to use a transactio
refer to "Using Transactions" in Chapter 5, “Using Transaction I/O”.

You can use the Sequencer object, found under the Device menu, to
control the order of calling of a series of tests. The Sequencer object
executes a series of sequence transactions. Each of these transactions
evaluates an HP VEE expression, which may contain calls to UserFunct
Compiled Functions, Remote Functions, or other HP VEE functions. Aft
evaluating the HP VEE expression, the transaction compares the value
returned by that expression against a test specification. Depending on
whether the test passes or fails, the transaction then evaluates different
expressions and selects the next transaction to be executed. Transactio
may optionally log their results to the Log output pin, or to a UserFunction,
Compiled Function, or Remote Function. Logging actions are specified
the Sequencer Properties dialog box on the Logging tab.
146 Chapter 6

Using the Sequencer Object
Sequence Transactions

t a

:
ut,

n
Sequence Transactions
The Sequencer object, in its open view, shows a list of sequence
transactions. Each transaction is similar to the other types of transactions
shown in Chapter 5, “Using Transaction I/O”. To see how the Sequencer
uses transactions to execute expressions and call functions, let's look a
simple example.

In the following program there are two UserFunctions in the background
myRand1, which adds a random number from 0 to 1 to the value of its inp
and myRand2, which adds a random number from 0 to 100 to its input.
(Refer to Chapter 4, “Using User-Defined Libraries”, for further informatio
on creating and using UserFunctions.)

Figure 6-1. A Simple Sequencer Program
Chapter 6 147

Using the Sequencer Object
Sequence Transactions
When you click on a transaction with the mouse, a dialog box "expands" the
transaction so you can view and edit it. The following dialog box shows the
first transaction, test1:

A sequence transaction can either be a TEST transaction or an EXEC
transaction. In this transaction, the type is TEST:, the name field is test1,
the nominal specification is 1.25’, a RANGE: specification is used, and the
range is 1 <= ... <= 1.5. Thus, only values from 1 to 1.5 will pass the
test. The expression myRand1(A) calls the user function using the value on
the A input terminal of the Sequencer as its input parameter. The
transaction has logging enabled, so a local variable named Test1 will be
automatically created, which contains the log record of the results of this
test. This log record will also be available as part of the Log output terminal.
The IF PASS and IF FAIL conditions are both THEN CONTINUE. This
means that, pass or fail, once test1 is done, the next transaction, test2,
will be executed.

The DESCRIPTION field is simply a comment area for this test.

Note For RANGE or LIMIT tests, the SPEC NOMINAL value is not used, except for
"documentation" purposes. However, if you use tests based on TOLERANCE
or %TOLERANCE values, the tolerance will be calculated relative to the SPEC
NOMINAL value.
148 Chapter 6

Using the Sequencer Object
Sequence Transactions
The second transaction, test2, is also a TEST transaction:

This second test is similar to the first. The UserFunction myRand2 is called
with the expression myRand2(A) and the resulting value is tested to see if it
is in the range 1 through 51, with a nominal specification of 26. Again, pass
or fail, the Sequencer continues to the next transaction.

The third transaction is an EXEC transaction:

An EXEC transaction, unlike a TEST transaction, performs no comparison
of the function result to a specification or range. EXEC transactions are used
to perform an action that does not require a pass/fail test. For example, an
EXEC transaction could call a routine that sets up an external configuration
before a TEST transaction is performed, or it could execute a power down
Chapter 6 149

Using the Sequencer Object
Sequence Transactions
procedure after a series of tests. (An EXEC transaction is a short cut for
specifying an "always pass" test condition.)

In our example, the transaction named finish returns the value of B to the
Return output terminal of the Sequencer object. Since no test is
performed, logging does not occur for an EXEC transaction.

Note that you can use the DESCRIPTION field to briefly describe any
transaction.

When you run the program, the three transactions are executed in sequence:

Figure 6-2. Running the Program

The logged test results are output on the Log output terminal and displayed.
Note that the results are logged as the Record data type, in fact a record of
records. In this case, test1 has passed with a value of 1.396 and test2
has failed with a value of 85.05. The third transaction returns the value on
the B input, which is the string Done!.

Let’s look more closely at how logging works. Each transaction that has
logging enabled creates a log record and attaches it to the transaction name.
In our example, logging is enabled for the first two tests, so local variables
named Test1 and Test2 contain the log records for those transactions. The
fields contained in the log records are defined on the Properties dialog
box. To access the logging configuration, click on Properties in the
Sequencer object menu, then on the Logging tab. By default, log records
contain Name, Result, and Pass fields.
150 Chapter 6

Using the Sequencer Object
Sequence Transactions

,

the
The Test1 and Test2 local variable names can be used in any expression
within the Sequencer to access the results of the current or a previously
executed transaction. For example, Test3 could have called a function with
Test1.Result as a parameter to pass the result of the first test. Or
Test2.Pass could be used as an expression, which would evaluate to 1 if
Test2 passed, or 0 if Test2 failed.

There is one more local variable, thisTest, available to access the logging
records. The value of thisTest is always the same as the logging record
for the currently executing transaction. This allows you to write transaction
expressions that can be used in many transactions without having to include
the name of each transaction.

Now let’s examine the data structure produced by the Log output terminal on
the Sequencer, which is a record of records:

Figure 6-3. A Logged Record of Records

The record produced by the Log output pin contains a field for each
transaction that has logging enabled — Test1 and Test2 in our example.
Each of these fields is simply the log record for the specified transaction
containing the fields Name, Result, and Pass. This record of records is
available on the Log output pin and can be used by other objects by using
record "dot" syntax. For example, the expression Log.Test1.Result
would, in this case, return the value 1.396 (see Figure 6-2). Likewise,
Log.Test1.Name would return test1 and Log.Test1.Pass would
return 1.
Chapter 6 151

Using the Sequencer Object
Sequence Transactions
Note that the data logged on the Log output pin is always the data from the
last execution of each transaction. If you wish to log the results of every
execution of each transaction, set Logging Mode to Log Each
Transaction To: on the Logging tab of the Sequencer Properties
dialog box. This option will call the specified function (or expression) at the
completion of every transaction. This option can also be useful if you wish
to log test results to a file or printer as they happen, rather than waiting until
the Sequencer has completed. The local variable thisTest can be used as
a parameter to the logging function to pass the log record of the transaction
that has just completed.
152 Chapter 6

Using the Sequencer Object
Logging Test Results
Logging Test Results
Now let’s look at a more practical example of logging test results, where an
iterator causes the Sequencer to repeat the tests over and over, and to log
the results:

Figure 6-4. A Simple Logging Example

In this example, the For Count object causes the Sequencer to execute its
series of tests (test1 and test2 of the previous example) four times. For
example, if four "widgets" are being tested on an assembly line, each
execution of the Sequencer tests one widget. The resulting series of
records from the Log output terminal is collected by the Collector and
displayed as an array of records. Note, also, that you can use the To File
object to output this array to a file using a WRITE CONTAINER I/O
transaction or you could use a DataSet.
Chapter 6 153

Using the Sequencer Object
Logging Test Results
Conceptually, the output of the Collector in this example can be viewed
as an array of records of records, as shown below:

Figure 6-5. A Logged Array of Records of Records

Each array element (Log[0], Log[1], etc.) represents a single iteration of
the sequencer, and is a record of records as shown in Figure 6-3. As
mentioned before, the logged output is available for analysis in expressions.
In this case, Log[*].Test1.Result is a "core sample" from the array. In
fact, Log[*].Test1.Result would return an array of values (1.396,
1.353, 1.319, and 1.016 for the example results shown in Figure 6-4).

Note The logged array is not a three-dimensional array, but is rather an array that
consists of records of records. This is important because the individual fields
of a record can be of differing data types. For example, while the Name field
is Text, the Result field could be a Waveform, and so forth. Also, the
Test2.Result field could be a Waveform, while the Test1.Result field
is a Real value.

However, each individual field must be of a consistent data type throughout
the array. For example, the field Test1.Result can’t be a Real value for
Log[0] and a Waveform for Log[1].
154 Chapter 6

Using the Sequencer Object
Logging Test Results
 Let’s extend our example to 10 iterations of the Sequencer, and add some
analysis of the logged data. In the following example, the expression
log[*].test1.result in the Formula object returns a 10 element Real
Array, which contains the results of test1. This array is then statistically
analyzed by means of the min(x), max(x), mean(x), and sdev(x)
objects.

Figure 6-6. Analyzing the Logged Test Results

This example is saved in the file manual44.vee in your examples
directory.
Chapter 6 155

Using the Sequencer Object
Logging Test Results
Logging to a DataSet

You can use a DataSet to store your logged test results. In the following
program, the Sequencer object Log output terminal is connected to the To
DataSet object.

Figure 6-7. Logging to a DataSet

Once the For Count object is finished, it causes the From DataSet object
to retrieve the stored DataSet (myDataSet). From DataSet is configured
to retrieve ALL records from myDataSet, but to test each record against the
condition Rec.test1.pass AND Rec.test2.pass. In other words, a
particular record is retrieved only if both test1 and test2 passed for that
record.

Of the retrieved records, if any, the expression Rec[*].test1.result
returns all of the test1.result record fields, which are then statistically
analyzed. (Note that this program will error if none of the records satisfy the
expression Rec.test1.pass AND Rec.test2.pass.)
156 Chapter 6

Using the Sequencer Object
Logging Test Results

ray
r a

 6-7).

y

t to

, you
turn
This example is saved in the file manual45.vee in your examples
directory.

Some Restrictions in Logging Test Results

There are some situations where you must be careful in collecting
Sequencer log records into an array of records. As explained in Chapter 3,
“Using Records and DataSets”, to build an array of records, all of the ar
elements of a given field must be of the same type, shape, and size. Fo
record of records, as is generated by the Log output terminal of the
Sequencer, the type, shape, and size of each field must match for sub-
records as well.

For example, suppose you are collecting the logged results of several
executions of a Sequencer, either by using the Collector to build an
array (see Figure 6-6) or by sending the results to a DataSet (see Figure
In either case, if any of the logged values of a given transaction were to
change type, shape, or size between executions of the Sequencer, an error
will occur. The error will be generated by the Collector or To DataSet
object because the array of records cannot be built.

This situation could easily occur if a transaction is not executed on ever
execution of the Sequencer; for example, if an ENABLED IF condition is
specified. If the transaction is not executed, a log record will still be
generated, but the NAME and DESCRIPTION fields will be empty strings and
all the other fields will contain a Real scalar value of zero. If the same
transaction, on a subsequent execution of the Sequencer, is executed and
logs a result that is not a Real scalar, an error will occur. You might wan
consider, in this situation, just writing each logged record out to a file in
container format with To File, instead of using To DataSet.

An error could also occur if your tests return arrays of different sizes; for
example, if the test returns an array of the failed data points. In this case
might want to design the test so that it pads the array so as to always re
the same size array.
Chapter 6 157

Using the Sequencer Object
A Practical Test Example
A Practical Test Example
So far, we’ve just looked at how the Sequencer works, and how you might
store, retrieve, and analyze the logged data. But normally, you’ll want to use
the Sequencer to control a series of "real world" tests. So let’s look at a
simple practical example.

In the old days, carbon resistors were manufactured by a rather imprecise
process, and then tested, sorted, and marked. The trick was that the standard
resistance values (for example, 220, 270, and 330 ohms) were chosen to
overlap at the 10 percent tolerance. Thus, you didn’t need to throw any
resistors away. If a resistor was more than 10 percent greater than 220 ohms,
it could be labeled as a 270 ohm resistor, and so forth.

So our problem is to construct a program in which the Sequencer calls a
UserFunction, which returns a resistance value. The Sequencer will then
run a series of tests to determine which nominal resistance value and percent
tolerance the resistor satisfies. This is a "bin sort" problem. That is, the
sequencer returns a result that identifies the bin in which to put the resistor.

One of the big advantages of using the Sequencer to call a UserFunction is
that different UserFunctions can be substituted. For our problem, we’ll just
use a UserFunction (simResist) that returns a random resistance value in
the expected range during development. You can easily substitute another
UserFunction that executes instrument I/O and returns real resistance values
once you’ve tested your solution.
158 Chapter 6

Using the Sequencer Object
A Practical Test Example

al
The simplest solution to our problem is to use an extended series of
sequence transactions, each testing the resistance value against a nominal
value and tolerance.

Figure 6-8. Simple Bin Sort Example

In this example, the first sequence transaction (test1) calls the
UserFunction simResist with the expression simResist(). (This
UserFunction requires no inputs.)

Note that test1 tests to see if the resistance value returned by simResist
is within ±2 percent of the nominal value 330. If it is, the two-element Re
array [330 2] is returned on the Return output terminal, and the To
String object converts this value to the string 330 Ohm, 2%. If the test
fails, the Sequencer goes on to the next test.
Chapter 6 159

Using the Sequencer Object
A Practical Test Example
The second transaction, test2, works just like the first except that instead
of calling simResist again, the FUNCTION field contains the expression
test1.result:

Note Key Idea

Any transaction with logging enabled creates a "local" Record variable with
the same name as the test. This record contains the fields specified for the
logging record. Thus, for the transaction test1, the expression
test1.result returns the value returned by the function called in test1.

There are two reasons for using the expression test1.result in our
example. First, by using test1.result in transactions test2 through
test9 we can ensure that each transaction uses the same function result,
even if we later change test1 to call a different function. More importantly
in this example, each time you call the UserFunction, a new resistance value
will be returned. Instead, we want to continue testing the original resistance
value against successive nominal values and tolerances. So the transactions
test2 through test9 all include the expression test1.result in the
FUNCTION field. These transactions work like the first, returning the
appropriate array ([330 5], [330 10], [270 2], and so forth) if passed.

The first eight tests simply continue to the next test if failed. However, an
indication is needed if all of the tests are failed. Thus, test9 is configured
IF FAIL THEN ERROR. The Error output terminal causes the
160 Chapter 6

Using the Sequencer Object
A Practical Test Example
AlphaNumeric display entitled Error Condition to execute, displaying
the text Out of Range.

Although this approach is simple, it is not very efficient. You would need to
create quite a large number of sequence transactions to test several resistance
values, with three tolerances in each case. Let’s look at an improved version
of our "bin sort" example.

Figure 6-9. Improved Bin Sort Example

This example is saved in the file manual46.vee in your examples
directory.
Chapter 6 161

Using the Sequencer Object
A Practical Test Example
You may want to load this program and explore how it works. Here are some
key points:

n This program uses two Sequencer objects. The first one (labeled Test
Bounds) "re-uses" the tests in the second one (labeled Test Value &
Tolerance).

n The Real array in the upper left corner of the program contains five
elements, each representing a standard resistance value. However, the list
of values is extensible in this example. Regardless of the number of array
elements, the TotSize(x) function returns that number so that the For
Count object will iterate the correct number of times. The expression
R[i] in the Formula object takes care of the indexing.

n In the Sequencer named Test Bounds, the first transaction (test1)
calls the UserFunction simResist with the expression simResist():

A simulated resistance test value is returned and tested to see if it is at
least 90 percent of the lowest value (150 Ohms) in the array. (Note that
any value field in a sequence transaction can contain an expression such
as min(a)*.9.)
162 Chapter 6

Using the Sequencer Object
A Practical Test Example
The second transaction (test2) tests to see if the value
(test1.result) is less than or equal to 110 percent of the highest value
(330 Ohms) in the array.

If either test fails, an error occurs.

n If an error does occur, the UserObject named Error Condition uses a
Triadic expression to ascertain whether to display Out of Range:
LOW or Out of Range: HIGH. The UserObject is configured as Show
Panel on Exec, so if either error condition occurs, a display "pops up"
to show the error. You’ll find that this happens once every few times you
run the program because the UserFunction simResist returns random
values in the range 100–400. (To continue, just press OK in the pop-up
box.)
Chapter 6 163

Using the Sequencer Object
A Practical Test Example
n The transaction test1 in the first Sequencer is the only transaction that
calls the UserFunction simResist. (Instead, test2 includes the
expression test1.result.) This is necessary in this case because we
want to run multiple tests on just one resistance value. Otherwise, a new
value would be returned every time the UserFunction was called.
However, there is another reason. Since the UserFunction simResist is
only called once, you can easily replace it with a call to a different
UserFunction. The example (manual46.vee) contains a second
UserFunction named measResist, which uses an HP Instrument Driver
to call an HP 3478A Digital Voltmeter configured for resistance
measurements. If you have an HP 3478A meter, just connect it to your
HP-IB, change the FORMULA field in test1 to the expression
measResist(), and run the program.

n Regardless of whether simulated or measured resistance values are taken,
the Test Bounds return value is displayed, and is set as a global
variable (globalOhms). The three transactions in the Sequencer
labeled Test Value & Tolerance each call this global variable using
the expression globalOhms, for example:

If a test passes, the appropriate real array (e.g., [220 2]) is output. The
To String object converts the data to a string (e.g., 220 Ohm, 2%).
The Sequencer will be executed as many times as necessary until a Bin
Sort result is found.
164 Chapter 6

Using the Sequencer Object
A Practical Test Example
n Note that we are not using the Log output terminal in either Sequencer,
so we’ve deleted it to speed up execution.

n If you want to see the flow of this program, try running it a few times
with Show Execution Flow and Show Data Flow turned on.

For some further examples using the Sequencer, look in your examples
directory.

Chapter 6 165

Using the Sequencer Object
A Practical Test Example
166 Chapter 6

7

Using ActiveX
Automation Objects
and Controls

n
ser
lue

he

 of
fore
or

les
n
Using ActiveX Automation Objects and Controls

HP VEE for Windows supports ActiveX automation and controls on PCs
running Windows 95 or NT 4.0 or greater. ActiveX technology is not
supported on UNIX. This chapter explains how to use ActiveX automation
and controls in HP VEE; it does not describe the ActiveX technology.

ActiveX automation lets you use HP VEE as an automation controller. This
lets you control other Windows applications such as Microsoft Word, Excel,
Access, and Crystal Reports for activities such as sending data to the
applications for report generation, and reading data back from them. For
automation-capable applications, this fully supersedes our current
application-control solution, Dynamic Data Exchange (DDE).

ActiveX controls, available from various vendors, extend HP VEE’s
functionality by providing domain-specific services via ActiveX automatio
properties, methods and events. Most ActiveX controls also provide a u
interface that let you manipulate a control such as a "slider" to input a va
into a program, just as you would do with an HP VEE Slider object.

Note To enable ActiveX support, HP VEE must be set to Standard compatibility
mode in the Default Preferences dialog box on the General tab. This
is the default mode for new programs. If HP VEE is in Standard mode, t
status bar at the bottom of HP VEE’s window will display STD. If you are
adding ActiveX functionality to a program developed in an older version
HP VEE, you should make sure your program runs in Standard mode be
adding new features. See Appendix A, “Using the Compatibility Mode” f
more information.

Several examples are available that demonstrate the use of ActiveX
automation objects, and ActiveX controls. To open and run these examp
use Help ⇒ Open Example... They are located in the HP VEE installatio
directory under \examples\ActiveXAutomation and
\ActiveXControls.
168 Chapter 7

Using ActiveX Automation Objects and Controls
Using ActiveX Automation

Using ActiveX Automation
Make sure HP VEE is set to Standard compatibility mode (in Default
Preferences) to enable ActiveX support.

To Make Automation Objects Available in HP VEE

When you install Windows applications, it is very likely that ActiveX type
libraries are also installed that allow the applications to act as automation
servers. Type libraries describe the capabilities of an ActiveX object, and are
available for use if they exist on your system. You may prefer to select
specific type libraries in HP VEE for the following reasons:

n To have HP VEE perform type checking on variables declared for
ActiveX objects where the object type is defined (see “To Declare
Automation Object Variables” on page 171).

n To catch events generated by an automation object (see “Handling
Automation Object Events” on page 172).

n To view information in the ActiveX Object Browser (see “Using the
ActiveX Object Browser” on page 179).

To select the type libraries you want to reference in a program, click on
Device ⇒ ActiveX Automation References… The ActiveX
Automation References dialog box appears that lists all the type
libraries registered by the Windows Registry. The following figure shows
the dialog box with the Microsoft Access library selected for use:
Chapter 7 169

Using ActiveX Automation Objects and Controls
Using ActiveX Automation

 the

ary

Figure 7-1. Selecting ActiveX Automation Type Libraries

Your list is probably different depending on the applications you have
installed. When you highlight a library name, its location appears in the
dialog box status area. When you find the automation server you want to
use, click on the check box by the library name (or double-click the name
itself) so a check mark appears. Then, click on OK. This loads the selected
type library and searches it for the object classes, dispatch interfaces, and
events that it exports. You can select multiple libraries, but you should select
only the ones you plan to use since selected libraries use memory.

If you know a type library file exists for an automation server, but it doesn’t
appear in the list, it’s possible the type library did not get registered when
associated application was installed. Press the Browse button to find the
type library missing from the list. When you locate and open the type libr
file, HP VEE will attempt to register the type library and add it to the list.
170 Chapter 7

Using ActiveX Automation Objects and Controls
Using ActiveX Automation

sing

e,
To Declare Automation Object Variables

You can declare a variable for an ActiveX automation object using the new
Object data type (Data ⇒ Variable ⇒ Declare Variable). The
declared variable is a reference to an object that lives in another process. For
instance, it might point to a ComboBox in Access. As shown in the next
figure, when you set the variable Type to Object, the dialog box expands to
list the library name, class, and enabled events.

Figure 7-2. Declaring an ActiveX Automation Variable

You can specify the object variable’s type further by clicking on Specify
Object Type so a check mark appears. Then click the Edit button to
access the Specify Object Type dialog box. It lets you set the library
and class names, and enable events available for the class. If you are u
the Access Object Library, you can declare a variable combo, then specify
the object type as Library: Access, and Class: ComboBox as shown in
the next figure. In this example, the class ComboBox contains events. To use
the events, simply click on Enable Events. If events are not available for
a class, then the checkbox is grayed out. After specifying the object typ
click on OK to dismiss the dialog box and return to Declare Variable
which displays the information.
Chapter 7 171

Using ActiveX Automation Objects and Controls
Using ActiveX Automation

 so
ring

m

 you
s.
 can

Figure 7-3. Specifying the Automation Object Type

If you enable events, then you must create an event-handler UserFunction
for each event that you want to catch. For information about using events,
see “Handling Automation Object Events” on page 172.

As with any HP VEE variable, declaring a variable is optional, and doing
does not create the automation object in the program. However, by decla
variables for automation objects, and specifying the object type details,
HP VEE will do type checking automatically to assure that the specified
Library and Class are assigned only to the declared variable.

Note If you declare a variable for an ActiveX object when developing a progra
in Windows, and then open the program in HP-UX, the program will still
contain the variable declaration, but will ignore the object type
specifications. The Declare Variable object will maintain the object
type specifications, and not let you change them.

Handling
Automation Object
Events

Automation objects can generate events. HP VEE, as an automation
controller, lets you use events via UserFunctions. You can create event-
handler UserFunctions for an automation object that generates events if
have declared a variable of the specific type and have enabled its event
You can create an event-handler UserFunction for each event an object
generate.
172 Chapter 7

Using ActiveX Automation Objects and Controls
Using ActiveX Automation

ce

ent
l
It is easy to create an event-handler UserFunction when you declare a
variable for the object and enable its events (if they are available).

1. After declaring the variable and specifying its type, including enabling
events, open the Declare Variable object menu.

2. In the object menu, click on Create Event Handler… The Create
Event Handler UserFunction browser appears.

The Member area lists all of the events available for the dispatch interfa
listed in the Class area.

3. Click on an event name to select it.

When you select an event, the browser information area presents ev
details, and the status area shows the UserFunction title HP VEE wil
create. Press the Help button to get information about using the event.
Not all events have online help; the library vendor is responsible for
providing it. Online help for events is not part of the HP VEE Help.
Chapter 7 173

Using ActiveX Automation Objects and Controls
Using ActiveX Automation

l
rs.

ed
ely.

lated
t a
am
ue, it
t-

the

 in
 are
4. Click on Create Handler. The new UserFunction window appears. If
you open this dialog box again to create another event handler, you’l
notice that the icons change color next to events with existing handle

Each new event-handler UserFunction is empty except for any requir
inputs or outputs. You must program it to handle the event appropriat
To edit an existing event, in the Declare Variable object menu, click
on Edit Event Handler...

Events are tied to the declared variable’s name. The UserFunction title
combines the variable name with the event name. For instance, if you
declared a variable named combo and specified its type as
Access.ComboBox, you could create event-handler UserFunctions with
names such as:

combo_AfterUpdate
combo_Change
combo_DblClick
combo_KeyDown

Events are nothing more than callback functions. You must program the
generated UserFunctions (the callback functions) to handle each event
appropriately. If the automation object generates an event, it calls the re
UserFunction to handle the event. Automation objects sometimes expec
return value from HP VEE when they fire an event. If so, you must progr
the UserFunction to return a value. When the object expects a return val
waits until HP VEE provides this return value. You should write an even
handler UserFunction to work quickly, since both HP VEE and the
automation server, such as Access, wait until the event-handler
UserFunction returns.

Since the automation server waits until the event-handler UserFunction
returns, the UserFunction is executed in non-timeslicing mode. That is,
UserFunction runs to completion without timeslicing with the rest of the
HP VEE program. Because it is not timeslicing, breakpoints do not work
an event-handler UserFunction. Also, errors do not stop HP VEE. Errors
turned into Cautions, and execution continues.
174 Chapter 7

Using ActiveX Automation Objects and Controls
Using ActiveX Automation
To Create an Automation Object in a Program

To control a server application from HP VEE, you need to create an
automation object in your program. The CreateObject function lets you
do that. To put the function in your program, click the fx toolbar button to
get the Function & Object Browser, then select:

Type: Built-in Functions
Category: ActiveX Automation
Member: CreateObject

Click Create Formula and place the Formula object in your program.
The Formula contains the expression

CreateObject(objectName)

which you need to modify to perform the desired action.

Most of the time you want a new instance of an automation object created in
a new instance of the server application. For example, the following
HP VEE expression starts a new instance of Excel (even if Excel is already
running), and returns a reference to a new "Workbook" object tied to the
excel variable.

SET excel = CreateObject("Excel.Sheet")

To Get an Existing Automation Object

If you already created an automation object, you can get an active object or
load an existing object from a file by using the GetObject function. To put
the function in your program, click the fx toolbar button to get the
Function & Object Browser, then select:

Type: Built-in Functions
Category: ActiveX Automation
Member: GetObject

Click Create Formula and place the Formula object in your program.
The Formula contains the expression

GetObject(fileName, objectName)

which you need to modify to perform the desired action.
Chapter 7 175

Using ActiveX Automation Objects and Controls
Using ActiveX Automation
The following expression gets an active object, and returns a reference to a
currently running Excel application’s Application object. This call will
fail if Excel is not running.

SET excel = GetObject("","Excel.Application")

The following expressions load an existing object from file. The
objectName parameter is optional:

SET excel = GetObject("d:/tmp/TestData.xls","Excel.Sheet")

or

SET excel = GetObject("d:/tmp/TestData.xls")

They return a reference to the sheet object associated with
d:/tmp/TestData.xls in the currently running Excel application. If
Excel is not already running, it will be started before loading the object. If
objectName is omitted, HP VEE uses the Component Object Model
(COM) library to determine what application the file is associated with.

To Manipulate Automation Objects

After creating an automation object, you can manipulate them to control
server applications. Manipulating automation objects involves three basic
operations: getting properties, setting properties, and calling methods. This
section demonstrates these using previously initialized object variables
named cell, sheet, and excel. The HP VEE keywords SET and ByRef
are introduced.

Getting and Setting
Properties

The expressions in this section are examples of getting and setting a property
of an object. The following expression gets a property, where the value
property returns the contents of the cell:

contents = cell.value

In the next expression, the value property returns the contents of the cell:

contents = sheet.cells(1,1).value
176 Chapter 7

Using ActiveX Automation Objects and Controls
Using ActiveX Automation
The next expression does the same property-getting action as the previous
expression by implying the .value property because of default properties
(explained below):

contents = sheet.cells(1,1)

Sometimes you want the contents, value, and default property of the right-
hand side (which happens by default), and sometimes you want a pointer to
the object on the right-hand side, not its value. To get the object pointer you
need to use SET to tell HP VEE not to get the default value. The next
expression sets an object reference, where the cell variable is set to
reference one cell out of the "collection" of cells:

SET cell = sheet.cells(1,1)

Note the difference between this example and the second example, where
SET specifies that the left-hand-side wants the right-hand-side object itself,
not its default property.

The following expressions are examples of setting a property of an object,
which is identical to the second example above because of default
properties:

cell.value = "Test Data:"
sheet.cells(1,1).value = "Test Data2"
sheet.cells(1,1) = "Test Data2"

About Default Properties. Automation supports the concept of a default
property or method. You can use this concept when manipulating
automation objects as shown in the previous examples. In the case of cell,
its default property is value. So the first example above in getting a
property could use this concept to imply the .value property, and be
entered as

contents = cell

This means that the expression

cell = sheet.cells(1,1)

would not only return a cell from the collection of cells, but it would also
evaluate the default property (.value) on that cell as in the expression

cell = sheet.cells(1,1).value
Chapter 7 177

Using ActiveX Automation Objects and Controls
Using ActiveX Automation

value

t

e
To get a cell from the collection of cells, you must use the keyword SET in
the expression such as

SET cell = sheet.cells(1,1)

This sets cell to be a pointer to that cell in Excel. Compare this to the
expression

cell = sheet.cells(1,1)

(mentioned above) where cell gets the contents of that cell in Excel. Also,
the .value property is implied on SET Property, such that the following
two expressions perform the identical function:

cell.value = "Test Data”
cell = "Test Data"

Calling Methods The following expression is an example of calling a method on an object:

result = excel.CheckSpelling("aardvark")

By default, parameters are passed by value. For example, cells(1,1)
actually calls a method and passes two parameters (1 and 1). Passing by
value simply sends the parameter values to Excel, and a return value comes
back. The parameter values are unchanged.

Some automation methods have parameters that are passed by reference.
The parameter’s value is changed by the automation server and a new
for the parameter is passed back to HP VEE. For example, an ActiveX
instrument control might contain an automation method called by this
expression

passed = Scanner.GetReading (ByRef Reading)

where the method’s return value for passed is true or false, and any other
values are returned in the ByRef parameter Reading. You should initialize
the variable Reading before passing it to the function, and have an outpu
terminal on the Formula object containing the expression so you can use
any returned values. The ByRef keyword is supported in HP VEE and the
Function & Object Browser displays in its information area the
parameters passed using ByRef. ByRef does not support all data types. Se
Table 7-2, “Conversions from HP VEE to Automation Data Types,” on
page 185 for the list of supported data types.
178 Chapter 7

Using ActiveX Automation Objects and Controls
Using ActiveX Automation

on:

ides.
trol
Using Enumerations Type libraries can provide enumerations that appear in the Class area of
HP VEE’s Function & Object Browser. Enumerations make using
object methods and properties easier. For instance, the Window object in
Excel has a WindowState property. The WindowState property is of type
XlWindowState enumeration. There are three values for this enumerati

xlWindowMaximized (-4137)
xlWindowMinimized (-4140)
xlWindowNormal (-4143)

HP VEE supports enumerations, which allows you to use the following
expression when using object methods and properties:

Window.WindowState = xlWindowMinimzed

Using the ActiveX
Object Browser

The ActiveX Object Browser is part of the Function & Object Browser
that opens when you press fx on the toolbar. The browser configuration
changes when you select Type: ActiveX Objects. The browser lets you
explore the properties, methods, and events that an ActiveX object prov
ActiveX information appears here only if you selected automation or con
type libraries (Device ⇒ ActiveX Automation References or
ActiveX Control References). The following figure shows the
Function & Object Browser with ActiveX information for the Access
type library.
Chapter 7 179

Using ActiveX Automation Objects and Controls
Using ActiveX Automation

Figure 7-4. Using the ActiveX Object Browser

When a Library name is selected, the Class area displays dispatch
interfaces (dispinterfaces) and enumerations that are available. For a
selected dispinterface, the available properties, methods, and events appear
in the Member area. For enumerations, the constants are listed. The previous
figure displays some of the functionality available for the Access library.
The selected ComboBox dispinterface contains properties, a method, and
many events that are listed in the Member area.The following figure shows
the relationship between entries in the browser’s Classes and Members
areas, including their identifying icons:

Figure 7-5. Elements Displayed in the Function & Object Browser
180 Chapter 7

Using ActiveX Automation Objects and Controls
Using ActiveX Automation

he
y
 as

ds,
ch

The browser’s information area (just above the buttons) displays a help
string associated with the property, method, event or constant if this
information is provided by the automation object. This syntax contains t
object’s type information in the parameter list. Parameters surrounded b
square brackets [] are designated as optional. Some applications, such
Excel, may not provide these short help strings.

The type information provided for an ActiveX object's properties, metho
and events are converted to HP VEE types where there is an exact mat
with an automation type. For example, the following HP VEE types map
directly to automation types:

n Int32 - VT_I4
n Real - VT_R8
n Text - VT_BSTR
n Object - VT_UNKNOWN or VT_DISPATCH
n Void - the function does not return anything
n "" (no parameter specified) - corresponds to VT_VARIANT.

(HP VEE handles the conversion to the appropriate data type.)
Chapter 7 181

Using ActiveX Automation Objects and Controls
Using ActiveX Automation
The following automation types do not have an exact match; therefore, the
browser information area displays the actual automation type:

n VT_EMPTY (an HP VEE empty Text is used)

n VT_NULL (an HP VEE empty Text is used)

n VT_I2 (an HP VEE Int32 type can be used without data loss)

n VT_UI2 (an HP VEE Int32 can be used without data loss; negative
numbers are not allowed)

n VT_UI4 (an HP VEE Int32 can be used)

n VT_R4 (an HP VEE Real can be used without loss of data)

n VT_CY (an HP VEE Real can be used but with some loss of precision)

n VT_DATE (an HP VEE Real can be used without loss of data for dates
after Jan 1, 1970)

n VT_ERROR

n VT_BOOL (an HP VEE Int32 can be used: 0 = False, Non-Zero = True)

For a property, the browser displays type information about the property,
such as whether it is a read-only or write-only property, and whether it is the
default property. You can create a Formula object from a property that is
configured to do a read of that property. The following is an example of
what the browser displays in the information area for a property:

DEFAULT PROPERTY Name as Text

For a method, the browser displays type information about each parameter in
the parameter list and the return value. Methods can also be the default
member, so the browser also indicates this. You can create a Formula
object for a method that is configured to call that method. The following is
an example of what the browser displays in the information area for a
method:

METHOD Void SetData(vValue, vFormat)
182 Chapter 7

Using ActiveX Automation Objects and Controls
Using ActiveX Automation
For events, the browser displays the same type information as for a method.
However, the event handler associated with an event is usually called by the
client application. In the case of controlling Access by automation, Access
calls the event handler UserFunction. In the case of using an ActiveX
control, the ActiveX control calls the event handler UserFunction. Since
your program or HP VEE does not call these callback event handlers, the
Create Formula button is grayed out. You can only view information
about an event. The Function & Object Browser does not let you
create event-handler UserFunctions because events must be tied to a
particular ActiveX automation variable or an ActiveX control. To create an
event handler, go to the object menu of the appropriate Declare
Variable, or ActiveX control. The following is an example of what the
browser displays in the information area for an event:

EVENT Void Click()

For constants in an enumeration, the browser displays the value of the
constant. The following is an example of what the browser displays in the
information area for a constant:

CONSTANT tvwRootLines = 1

For constant values less than 0 and greater than 1024, HP VEE also displays
the hexadecimal value of the constant. This information appears as:

CONSTANT xlNormal = -4143 (#HFFFFEFD1)

Pressing the Help button opens the help file and topic associated with the
selected ActiveX object member if that information is provided by the
object. If no information is available, a dialog box appears, indicating that no
help is available for the selected member. This help information is provided
by the application vendor, and is not part of HP VEE Help.
Chapter 7 183

Using ActiveX Automation Objects and Controls
Using ActiveX Automation
Data Type Compatibility

ActiveX automation provides support for certain data types. This section
describes the type coercion that takes place between HP VEE data types and
ActiveX automation data types. Type coercion occurs automatically. The
following table indicates the automation data types that are supported and
the corresponding HP VEE data type.

Table 7-1. Conversions from Automation to HP VEE Data Types

Convert from
Automation Data Type

Convert to HP VEE
Data Type

Notes

VT_EMPTY Text (empty string) Nothing

VT_NULL Text (empty string) SQL-style Null

VT_I2 Int32

VT_I4 Int32

VT_R4 Real

VT_R8 Real

VT_CY Real 8 byte integer with 4
digits to right of decimal

VT_DATE Real Days since 12/30/1899

VT_BSTR Text

VT_DISPATCH COM Object

VT_ERROR No mapping

VT_BOOL Int32

VT_VARIANT Closest matching
HP VEE data type

VT_UNKNOWN COM Object

VT_UI1 Int32 unsigned char

VT_ARRAY, VT_VARIANT Record
184 Chapter 7

Using ActiveX Automation Objects and Controls
Using ActiveX Automation

The following table indicates the HP VEE data types that are supported and
the corresponding automation data types. Unlike the inverse mappings
shown in the previous table, these are not fixed one-to-one mappings. Most
automation server objects are capable of coercing data to the required data
type. For example, if the target property is a long integer, such as the X
coordinate of a point, you can pass not only an Int32 which is the exact
match, but also a float, real or even a text string as long as it is a string of
digits. However, in case of an array, which is always passed as a VARIANT,
acceptable data type and array shape depends on the implementation of the
target COM object.

To Delete Automation Objects

Automation objects are responsible for deleting themselves when HP VEE
releases its reference to them. When HP VEE no longer holds a reference to
an automation object, it tells the object that the reference has been released.
The object then deletes itself unless other ActiveX automation controller
applications are still using it. HP VEE releases references to automation
objects in the following cases:

n The Delete Variable object is executed on the automation object’s
variable name.

n Delete Variables at Prerun is enabled in Default
Preferences and you restart the program.

n HP VEE exits, or the commands File ⇒ New or File ⇒ Open are used.

Table 7-2. Conversions from HP VEE to Automation Data Types

Convert from HP VEE
Data Type

Convert to Automation
Data Type

Other Possible
Data Types

Int32 VT_I4

Real VT_R8

Text VT_BSTR

COM Object VT_DISPATCH VT_UNKNOWN

Record VT_VARIANT, VT_ARRAY
Chapter 7 185

Using ActiveX Automation Objects and Controls
Using ActiveX Controls

le
ur

d

Using ActiveX Controls
Make sure HP VEE is set to Standard compatibility mode (in Default
Preferences) to enable ActiveX support. See “Using ActiveX
Automation” on page 169 for more information about ActiveX support.

Note HP VEE does not support all ActiveX controls. If a control is incompatib
with HP VEE, an error will probably occur when you add the control to yo
program or while you are using it.

To Select ActiveX Controls

Before you can use ActiveX controls in HP VEE, you need to inform
HP VEE which ActiveX controls you want to use. Click on Device ⇒
ActiveX Control References... The resulting ActiveX Control
References dialog box lists the available control type libraries registere
by the Windows Registry. The following figure shows the dialog box with
several selected controls.

Figure 7-6. Selecting ActiveX Controls
186 Chapter 7

Using ActiveX Automation Objects and Controls
Using ActiveX Controls

n.
n
the

ou
Your list is probably different depending on the applications or controls you
have installed. Controls can be installed individually or as part of other
application installations. When you highlight a control name, its location
appears in the dialog box status area. When you find the control you want to
use, click on the check box by the control name (or double-click the name
itself) so a check mark appears. Then, click on OK to load them into memory
for use in HP VEE, and to search for their object classes, dispatch interfaces,
and exported events. You can select multiple controls, but you should select
only the ones you plan to use since selected libraries use memory.

If you know a control type library exists for a control, but it doesn’t appear in
the list, it’s possible the library did not get registered during its installatio
Press the Browse button to find the type library missing from the list. Whe
you locate and open the type library file, HP VEE will attempt to register
type library and add it to the list.

To Add a Control to HP VEE

Adding a control to an HP VEE program is similar to adding any other
object. After you select the ActiveX control(s) as explained previously, y
can add them to your program. Click on Device ⇒ ActiveX Controls to
view a cascading menu listing the selected controls.

Figure 7-7. Adding ActiveX Controls from the Device Menu
Chapter 7 187

Using ActiveX Automation Objects and Controls
Using ActiveX Controls

 do

ram
e

rols.
Note In the previous two figures, five controls are selected in the ActiveX
Control References dialog box, but six appear in the Device ⇒
ActiveX Controls cascading menu. It is normal for some selections to
result in more than one ActiveX control being added to the resulting menu.

Select a control and place the resulting object in a detail view in the HP VEE
work area. You can place controls in any context – Main, UserObject, or
UserFunction. You can delete controls by selecting Cut from their object
menu or double-clicking on the object's context menu button.

Differences in the
ActiveX Control
Host

ActiveX controls are different than any other HP VEE object. Unlike all
other HP VEE objects, ActiveX controls have no input or output pins, nor
they have any sequence input or output pins. Controls are not data flow
oriented. To give you access to a control that is similar to the access
available to other objects, HP VEE creates a special container in the prog
that is the host for the control. The container also gives you access to th
control’s specific properties built into it by the control’s developers.
Regardless of the combined features, we refer to these as ActiveX cont

Figure 7-8. Accessing Properties and Help in an ActiveX Control
188 Chapter 7

Using ActiveX Automation Objects and Controls
Using ActiveX Controls

rate
ith

e

l

d

r
ions

tting
ol
The object menu contains differences you should be aware of. The
Properties and Control Properties menu items provide access to
two different sets of properties. The host container’s properties are sepa
from the control’s properties. To see the typical properties associated w
HP VEE objects, in this case, the host container, click on Properties. To
view and change the ActiveX control’s properties that are provided by th
control’s developer, click on Control Properties. The Help button on
the control’s Properties dialog box opens the online help for that contro
if the developer provided one. The object menu’s Help item opens the
HP VEE Help topic for the host container. Create Event Handler... and
Edit Event Handler... provide the same functionality as described for
ActiveX automation objects in “Handling Automation Object Events” on
page 172.

To Use an ActiveX Control in HP VEE

When you add a control to the HP VEE work area, it appears with an
assigned local variable name in its title bar. You can change the assigne
variable by double-clicking the control’s title bar to get the ActiveX
Control Properties dialog box. On the General tab, change the value
beside Name:. Since the control has no pins to connect with lines to othe
objects in your program, you must manipulate the control using express
in Formula objects that refer to the control by its variable name. These
expressions must appear in the same context as the control, since the
control’s variable name is scoped "local to context".

Using the Assigned
Local Variable

If you add a Calendar control to your program, it is assigned the local
variable name Calendar1. The title bar contains Calendar: Calendar1.
To interact with the control, add a Formula object that is in the same
context as the Calendar control. The following examples demonstrate se
a property, getting a property, and calling a method on the ActiveX contr
referenced by the HP VEE local variable called Calendar1:

Calendar1.Day = 24;
Month = Calendar1.Month;
Calendar1.AboutBox()
Chapter 7 189

Using ActiveX Automation Objects and Controls
Using ActiveX Controls

 an

,

ns.
etail

el
Declaring a Global
Variable for a
Control

If you want the variable name to be global, then declare a new variable name
using Declare Variable (Data ⇒ Variable ⇒ Declare Variable).
This is similar to the variable declaration described in “To Declare
Automation Object Variables” on page 171. Since the control’s variable
name already exists, such as Calendar1, you cannot simply declare it as
global; HP VEE does not allow such conflicts. A common naming
convention is to adapt the local variable name (as in g_localName),
resulting in g_calendar1.

In Declare Variable, enter the new variable name, set Scope to
Global, and set Type: to Object. You do not need to check Specify
Object Type to specify the particular Library and Class. However, by
doing so, HP VEE will do type checking automatically to assure that the
Library and Class are assigned only to the declared variable.

After declaring the global variable, use a Formula expression to set the
control’s local variable name (such as Calendar1) equal to the declared
variable name (such as g_calendar1). It is important to use the SET
keyword, as shown in this expression:

SET g_calendar1 = Calendar1

To Manipulate ActiveX Controls

Setting and getting properties, calling methods, and handling events for
ActiveX control uses the same mechanisms described for ActiveX
automation objects in “To Manipulate Automation Objects” on page 176
and in “Handling Automation Object Events” on page 172.

Although HP VEE contains ActiveX controls in host objects so they are
accessible, the control’s behavior is slightly different when a program ru
Basically, controls are viewable in only one place at a time – either the d
view or panel view. As an example, suppose a control is added to a
program’s detail view, and the program dynamically displays a panel on
which the control appears using Show Panel on Execute or
showPanel(). The control is blanked out in the detail view until the pan
closes. When the panel closes, the control reappears in the detail view.
190 Chapter 7

Using ActiveX Automation Objects and Controls
Recommended Reading
Recommended Reading
Microsoft Office 97 Visual Basic Programmer’s Guide.
Microsoft Press, 1997. ISBN 1-57231-340-4.

HP VEE implements its ActiveX support using the standard established by
Microsoft Visual Basic. If you are unfamiliar with ActiveX technology,
review the chapters in this book that discuss Object Models, and ActiveX
Controls. Understanding these concepts will help you use HP VEE’s
ActiveX features.

Chapter 7 191

Using ActiveX Automation Objects and Controls
Recommended Reading
192 Chapter 7

8
Keys To Faster Programs

Keys To Faster Programs

e

he
ster

an't
 up
ata
Keys To Faster Programs

For general tips to increase the performance of your program, refer to
Improving the Performance of an HP VEE Program under
How Do I in HP VEE Help.

If you developed programs on a version of HP VEE prior to HP VEE 4.0,
refer to Appendix A, “Using the Compatibility Mode”, for information on
converting your program to use the compiler.

The following constructs will help you get the most speed benefit from th
compiler (when the Compatibility Mode is set to Standard or VEE 4
in File ⇒ Default Preferences):

n Use the Profiler (located at View ⇒ Profiler) to categorize which
routines are taking more time than you want them to. To run the
Profiler:

1. Click on Start Profiling and then run your program.

2. When you have finished running your program, click on Refresh to see
the results.

3. Click on Stop Profiling to stop the profiler. Click on Clear to clear
the current results displayed.

n Look at line colors. Lines are colored when HP VEE can determine t
data type before execution. The more colored (non-black) lines, the fa
the program will run.

n Because UserFunctions can be called from multiple places, HP VEE c
determine the input data types before the program runs. So to speed
UserFunctions, wherever possible add terminal constraints on their d
input terminals.
194 Chapter 8

Keys To Faster Programs
n If you use global variables, use Declare Variables (located on the
Data menu) when possible to declare the type and shape of your
variables so HP VEE can infer types for them prior to execution. This
technique also allows you to set the scope of your variables.

n A common programming practice is executing the Autoscale control
input on graphical displays more often than necessary. If you can wait to
execute Autoscale until after the display has finished updating, instead
of after each point is plotted, your program will execute faster. You can
eliminate the Autoscale control input by using the
Automatic Scaling property (see the Scales tab) which can further
improve execution speed.

n On graphical displays, when the Automatic Scaling property is
turned on (see the Scales tab), the program executes faster if a complete
set of data is sent to the display. Then, the display automatically rescales
once. If a program sends one data point at a time to the display, the
display may automatically rescale after each data point, which will slow
down program execution. In this case, use a Collector object to create
an array, then send the array to the display.

n If a display is showing the final output of a loop, but not tracking data
generated for each iteration of the loop (for example, an AlphaNumeric
object, not a Logging AlphaNumeric), don’t have it execute every
time in the loop. Hook the iterator’s sequence output pin to the display’s
sequence input pin so the display only executes the last time.

n Once you know the program is running correctly, run the program with
debugging features off. Use File ⇒ Default Preferences and
select Disable Debug Features in the Debug group.

You can also use the -r option, or run HP VEE RunTime. Because no
debug instructions are generated in those modes, your program will run a
little faster. However, you will not be able to perform any debugging
actions such as, pausing, stepping, Breakpoints, Line Probe, Show
Data Flow and Show Execution Flow.
Chapter 8 195

Keys To Faster Programs
196 Chapter 8

9

Troubleshooting Problems

Troubleshooting Problems

This chapter explains common situations and recovery actions.

Table 9-1. Problems, Causes, and Solutions

Problem Cause Solution

When running a program
created in versions prior to
HP VEE 4.0 in Standard or
VEE 4 compatibility mode, it
doesn’t operate when you
think it should.

Refer to Appendix A, “Using
the Compatibility Mode” for
possible solutions.

Your UserObject doesn't
operate when you think it
should.

You might be crossing the
context boundaries with
asynchronous data (such as
connecting to an XEQ pin on
an object inside the
UserObject).

Possible Solution 1: Move
any asynchronous
dependencies to outside the
UserObject.

Possible Solution 2: Enable
Show Execution Flow or
Show Data Flow to view
the order of operation in your
program.

You want to change the
functionality of an object.

Use the object menu which
includes features that let you
add a control input terminal
and edit properties.

You only get one value
output from an iterator within
a UserObject.

A UserObject only
activates its outputs once.

Take the iterator out of the
UserObject.

An iterator only operates
once.

Your iteration subthread is
connected to the sequence
output pin, not the data
output pin.

Start the iteration subthread
from the data output pin.

For Count doesn't operate. The value of For Count is
0 or negative.

Change the value; if you
need a negative value,
negate the output or use
For Range.
198 Chapter 9

Troubleshooting Problems
For Range or For Log
Range doesn’t operate.

The sign of the step size is
wrong. If From is less than
Thru, Step must be
positive. If Thru is less than
From, Step must be
negative.

Change Step.

You get the UNIX message
sh:name - not found.

You mistyped the name of
the executable.

Retype veetest.

You get the UNIX message
Error: cannot open
display

Your DISPLAY environment
variable is not set or is set to
display on a machine for
which permissions are not
set up correctly.

Set (and export) your
environment variable
DISPLAY. Generally, this is
set to hostname:0.0. To
display on a remote
machine, set up permissions
with xhost on the remote
machine.

HP VEE appears to hang --
the pointer is an hourglass.

Possible Cause 1:HP VEE is
rerouting lines because you
have Auto Line Routing
set on and you moved an
object.

Possible Cause 2: HP VEE
is printing the screen or the
program.

Possible Cause 3: You just
Cut a large object or a large
number of objects. HP VEE
is saving the objects to the
Paste buffer.

Wait. If the pointer doesn’t
change back to the
crosshairs within a few
minutes, type CTRL-C (or
whatever your intr setting
is in the terminal window
from which you started
HP VEE), close the HP VEE
window, or kill the HP VEE
process.

You can’t Open a program,
Cut objects, or delete a line
(the feature is grayed).

The program is still running. Press Stop to stop the
program, then try the action
again.

You can’t Paste (the feature
is grayed).

The Paste buffer is empty. Cut, Copy, or Clone the
object(s) again.

You can’t Cut, Create
UserObject, or Add to
Panel (the feature is
grayed).

No objects are selected. Select the objects and try
the action again.

Table 9-1. Problems, Causes, and Solutions

Problem Cause Solution
Chapter 9 199

Troubleshooting Problems
A UserObject only outputs
the last data element
generated.

UserObjects do not
accumulate data in the
output terminal buffer. It
only holds the last data
element received.

Use a Collector to gather
all of the data generated into
an array. Send this data to
the output terminal.

You can’t get out of line
drawing mode.

 Double-click or press Esc to
end line drawing mode.

You get a Parse Error
object when you Open a
program.

Replace the Parse Error
object with a new object.

Your characters are not
appearing correctly.

You have a non-USASCII
keyboard.

Refer to Appendix B,
“Configuring HP VEE”, for
recovery information.

Your colors outside of
HP VEE are changing
(although when you're in
HP VEE, the HP VEE colors
look normal).

Your color map planes are
all used.

Refer to Appendix B,
“Configuring HP VEE”, for
recovery information.

Table 9-1. Problems, Causes, and Solutions

Problem Cause Solution
200 Chapter 9

A

Using the Compatibility Mode

s

w
nts
Using the Compatibility Mode

When you have programs created in previous versions of HP VEE they will
open in VEE 3 or VEE 4 compatibility mode, depending on how they were
saved. You can still run them in VEE 3 or VEE 4 mode and they will
execute the same as before.

However, if you want older programs to take advantage of the compiler’
speed improvements introduced for HP VEE 4.0, set the Compatibility
Mode to VEE 4 in File ⇒ Default Preferences. To use the compiler
and include ActiveX automation and controls, set Compatibility Mode
to Standard. If you want to convert VEE 3 programs to Standard mode,
you should make sure they work in VEE 4 mode first. There are some
program execution differences between each mode that you should kno
about if you convert programs to the newer modes. This appendix prese
these differences.
202 Appendix A

Using the Compatibility Mode
About The Compiler

e

at
n,
E

iated
s
ht

ing

 will

About The Compiler
It is not necessary to understand the information in this section to use the
compiler. It explains the concepts behind the compiler for your information
only. The compiler works with programs that run in VEE 4 or Standard
modes. For information about changes between VEE 3 and VEE 4 modes,
see “Compatibility Mode Changes: VEE 3 to VEE 4” on page 204. For
information about changes between VEE 4 and Standard modes, see
“Compatibility Mode Changes: VEE 4 to Standard” on page 214

The HP VEE compiler converts a HP VEE program into p-code, but ther
isn't any machine language or executable generated.

The compiler allows HP VEE to predict at compile time (instead of
determining at run time) the order of execution of objects, determine wh
data types will be flowing on certain data lines, optimize code generatio
and generate and execute the most optimal p-code for any given HP VE
object.

One of the goals was to maintain the great level of interactiveness assoc
with HP VEE, especially during development/debugging of programs. A
such, the compilation of HP VEE programs takes place transparently rig
after you press the Run button. Stepping and breakpoints are also fully
supported, as well as Show Execution Flow, Show Data Flow, and
Line Probe.

Subsequent runs of the same unmodified program do not require
recompilation. Also, when a program is modified, only the contexts need
recompiling are recompiled (much like an incremental compiler).

Most programs benefit from the use of the compiler, though the actual
results vary. For example, a program using many levels of nested loops
probably see a greater speedup than one that does a lot of I/O or screen
updates (e.g. displays).

In compiled mode, iterators and formulas gain the most execution speed
benefit.
Appendix A 203

Using the Compatibility Mode
Compatibility Mode Changes: VEE 3 to VEE 4

ility

ed
,

rd

-

Compatibility Mode Changes:
VEE 3 to VEE 4
HP VEE programs written with versions before HP VEE 4.0 run exactly the
same way as they used to when run in VEE 3 mode. To ensure this, the
interpreter is automatically enabled upon loading of older programs. It is
possible that a program written with an previous version of HP VEE isn’t
going to run exactly the same way with the compiler. This could be due to
specific programming techniques, the use of undocumented side-effects, or
even slight changes in documented behavior. Information about the compiler
also apply to Standard mode, except for changes described in “Compatib
Mode Changes: VEE 4 to Standard” on page 214

Line Colors

In compiler mode, HP VEE assigns different colors to the data lines bas
on the type of data flowing through the line. Here are the default colors
along with the names of the color properties (changeable via File ⇒
Default Preferences):

n Blue: numeric (Integer or Real type)

n Blue: complex (Complex and PComplex type)

n Orange: string (String type)

n Gray: sequence out (nil value, usually from a sequence out line)

n Black: unknown type or type that is not optimized (for example, Reco
types).

If the data type is an array, HP VEE displays a wider line.

To increase speed, check your program for colored lines. The more non
black lines, the faster the program runs.
204 Appendix A

Using the Compatibility Mode
Compatibility Mode Changes: VEE 3 to VEE 4

e

er.
hread
ot if

.

 in
ions
e

run
n
Compiling Existing Programs

To use the HP VEE compiler with older programs, change the
Compatibility Mode checkbox on the File ⇒ Default
Preferences dialog box to VEE 4.

1. Open the old program, turn on compiler mode, and press Step (or Run).
This will PreRun the program. If there are unsupported constructs like
feedback without a Junction, intersecting loops, etc, HP VEE will error
now. These constructs must be changed. The most common situation is
feedback without Junction objects; simply insert a Junction fed by a
Constant to initialize the value, refer to “Feedback Cycles” on
page 208 for more information.

2. Try running the program. Most everything will run the same way. Th
most common problem is not realizing part of your program relied on
round-robin object order execution. Most of the time this will not matt
In a few cases, where one thread sets a global variable and another t
accesses it, programs may have "just worked" before and now may n
there is nothing to ensure the Set Variable executes before the Get
Variable object.

Most of the time, the program will either error at PreRun or run normally

There is the potential that the program will not work but also will not error
an obvious way, because of the way separate threads and parallel junct
execute in the compiler. Refer to “Program Changes” on page 205 for th
details on these changes.

Program Changes

Old programs (written in versions before HP VEE 4.0) are automatically
in VEE 3 mode. Programs written using HP VEE 4.x are automatically ru
in VEE 4 mode. (New HP VEE programs are automatically run in
Standard mode.)

You can manually change the Compatibility Mode of a program at any
time.

The following areas are where compatibility problems could arise when
changing an existing program from VEE 3 to VEE 4. The information about
Appendix A 205

Using the Compatibility Mode
Compatibility Mode Changes: VEE 3 to VEE 4
using older versions of HP VEE is the same as when using interpreted mode
or VEE 3 mode. If you are creating new programs, you should use
Standard mode.

Time-Slicing
UserFunctions

In versions before HP VEE 4.0, UserFunctions did not time-slice with other
parts of the program. In compiled mode, UserFunctions will time-slice
when called from separate threads. Be sure to use sequence pins between
Call objects when parallelism isn’t desired.

UserFunctions only time-slice when called from Call, Formula, If/
Then/Else, or Sequencer objects (only when called from the Function
field). Breakpoints also now work in UserFunctions when called from Call
or the other objects listed above.

UserFunctions will not time-slice, nor will breakpoints work, when called
from a To File, To String, or similar objects, or if the formula is
supplied via a control pin.

If a UserFunction is executing and gets called again from another part of the
program, that call will be blocked until the original call returns.

UserObjects UserObjects would always time-slice in previous versions, but in compiled
mode, they will only time-slice when invoked from separate threads.

Function
Precedence

The precedence of functions called from the Formula object has changed to
the following:

1. Internal functions (like sin() and totSize())

2. Local UserFunctions

3. Imported UserFunctions

4. Compiled Functions

5. Remote Functions

In versions before HP VEE 4.0, internal functions were last in precedence
(this allowed you to override internal functions such as totsize() or
fft() with your own).
206 Appendix A

Using the Compatibility Mode
Compatibility Mode Changes: VEE 3 to VEE 4
Auto Execute and
Start

There are some subtle changes in behavior when using the Auto Execute
feature of certain objects. In compiled mode, the behavior is as if the object
was hooked directly to a Start object, and that Start button was pushed.
This change does not affect most programs.

OK Buttons and
Wait for Input

Most asynchronous objects like the OK object or any object with Wait for
Input enabled will work better in compiled mode in these two areas:

1. Stepping: In previous versions, stepping over such an object would
often result in the termination of the program. In compiler mode,
stepping works properly.

2. CPU usage: In previous versions, executing such an object usually
resulted in increased CPU usage. In compiler mode, the CPU stays in an
idle state.

Collectors Without
Data

In previous versions, hitting the XEQ pin of a Collector that has never
been hit with data, outputs a nil container. In compiler mode, if the data type
is known at compile time, you get a zero-element array of that data type.
Otherwise, you get a zero-element array of type Integer.

This change allows the type inferences to be more consistent, producing
better p-code downstream from the Collector object.

Note that totSize() of a nil produces a one, while totSize() of a zero-
element array produces a zero.

Sample & Hold
Without Data

In previous versions, hitting the XEQ pin of a Sample & Hold object that
has never been hit with data will yield a nil container. In compiler mode, the
following error is generated (error number 937):

Sample & Hold was not given any data.

This change allows the type inferences to be more consistent, producing
better p-code downstream from the Sample & Hold object.

Timer Object In previous versions, the Timer object output an undefined result if the
Time2 pin (the bottom data input pin) was hit before the Time1 pin. In
compiler mode, the Timer object generates an error if the pins are executed
out of sequence.
Appendix A 207

Using the Compatibility Mode
Compatibility Mode Changes: VEE 3 to VEE 4
Feedback Cycles In compiler mode, a Junction object is required inside of a feedback cycle.
Start objects are no longer required. The following error is generated
when feedback without a Junction is detected (error number 935):

A Junction is required inside of feedback cycles.

Figure A-1. Feedback in Previous Versions

Figure A-2. Feedback in Compiled Mode

Note that the current version does not allow invalid connections, such as an
object’s data input pin connected to its data output pin, and for most objects,
connecting a sequence output pin to a data input pin.

Parallel Threads In previous versions, independent threads would round-robin between each
thread, meaning that one object will be executed in one thread, then an
object in the other thread, etc. In compiler mode, this behavior is not
guaranteed.
208 Appendix A

Using the Compatibility Mode
Compatibility Mode Changes: VEE 3 to VEE 4
Loop Bounds In order to increase looping performance, the bounds of iterators (such as the
Step field in a For Range object) are examined only at the beginning of
the first iteration, and not at every iteration. The object’s fields are grayed at
run time to show the value is not changeable. Data inputs to the iterators
will be ignored if the value changes while the loop is running

For example, if the Step value of a For Range object is changed via the
data input pin while the loop runs, it is ignored in compiler mode. In
previous versions, the step value would have been checked on every
iteration.

UserObjects and
Calls With XEQ Pins

In previous versions, you could have an XEQ pin on a UserObject or a Call
object run the UserObject or UserFunction before all the data input pins
were satisfied. In compiler mode, this is not allowed. XEQ pins on those
objects will generate an error.

You can no longer add an XEQ pin to those objects.

OK Buttons With
XEQ Pins

 In previous versions, an OK object with an XEQ pin was only executed once,
when either the OK button was pressed or when the XEQ pin was sent data.

In compiler mode, the OK button will execute every time the XEQ pin is sent
data.

You can no longer add an XEQ pin to an OK object.

From File With EOF
Pins

In previous versions, the data output pin on a From File object was treated
differently from other data output pins in HP VEE. If the From File was in
a loop, the data on the output pin remained valid when the EOF data output
pin was executed.

In compiled mode, the data output from a From File object is invalidated
each time the loop executes (just like on all other objects). Therefore when
the EOF pin is executed, the data is already invalid and cannot propagate.

The following figure illustrates this situation. In previous versions, the data
fed into A on the Formula would have remained valid even while another
Appendix A 209

Using the Compatibility Mode
Compatibility Mode Changes: VEE 3 to VEE 4
iteration of the loop executed. To get valid data fed into B on the Formula,
the EOF pin (on the bottom) executes and then the Formula executes.

In compiled mode, the data fed into A is invalidated as soon as the next
iteration of the loop begins. Because Formula does not get valid inputs on
the same iteration of the loop, it never executes.

Figure A-3. EOF Differences

Parallel Junctions In versions before HP VEE 4.0, if you had unconstrained objects that were
connected in parallel to Junction objects, the order that you made the
connections affected the execution order. In compiled mode, the order of
connection does not matter.

Figure A-4. Parallel Junctions
210 Appendix A

Using the Compatibility Mode
Compatibility Mode Changes: VEE 3 to VEE 4
Intersecting Loops In previous versions, you could intersect iteration objects. The execution
order was undefined, but was affected by the order the connections were
made. In compiler mode, only loops that intersect via a Junction object are
allowed. Any other intersecting loops generate error 938.

VEE was unable to compile this part of the program.

Figure A-5. Intersecting Loops
Appendix A 211

Using the Compatibility Mode
Compatibility Mode Changes: VEE 3 to VEE 4
Intersecting Loops
Via Junctions

In versions before HP VEE 4.0, the example shown below would execute
the Integer first, and when the program encountered the Break, it would
stop.

In compiled mode, the example below runs the For Count objects after the
Integer objects because the Break does not stop the program.

Figure A-6. Intersecting Loops Via Junctions

Open View Object
Changes

In versions before HP VEE 4.0, you could change the data in open view
fields while the program was running or paused. These changes would affect
program behavior and the result was not guaranteed.

In compiler mode, many objects do not allow this type of modification when
the program is running or paused (the input fields are grayed). Some
examples of this are:

n Formula and If/Then

n Collector

n All Transaction objects’ transactions

n Get Mappings and Set Mappings
212 Appendix A

Using the Compatibility Mode
Compatibility Mode Changes: VEE 3 to VEE 4
n Get Values and Set Values

n Constant’s properties such as setting Scalar or 1D Array, Wait for
Input, or Auto Execute.

n Setting properties like Clear at PreRun

n UserObject and UserFunction Trig Mode

n Dialog Boxes properties

Adding or deleting input or output terminals on objects is grayed at run time
(but not when paused). If this action is done at pause time, the program is
stopped (this is what versions before HP VEE 4.0 did).

Array Syntax in
Expressions

Expressions with array syntax entered without commas, such as [1 2 3],
will be reparsed when the program loads and automatically modified to use
commas, as in [1,2,3]. This is true for programs in VEE 3 and VEE 4
modes.
Appendix A 213

Using the Compatibility Mode
Compatibility Mode Changes: VEE 4 to Standard

e

run

he
nges

on

ing

x

lp

Compatibility Mode Changes:
VEE 4 to Standard
In HP VEE 5.0, the VEE 4 and VEE 3 modes retain their compatibility
definitions set in HP VEE 4.0, which are described in “Compatibility Mod
Changes: VEE 3 to VEE 4” on page 204. There are minor changes,
described later in this section, that will not affect existing programs that
in their original compatibility modes (VEE 3 or VEE 4). These changes are
important to know if you plan to convert programs from older to newer
modes.

About the Standard Mode

The Standard mode is a superset of the VEE 4 mode. This means that the
Standard mode retains the compiler features described previously, and
introduces significant changes affecting program compatibility. Most of t
changes enable support for ActiveX automation and controls. Other cha
may impact your programming techniques if you use any of the features
described in this section – even if you do not use ActiveX. For informati
about using ActiveX in HP VEE, see Chapter 7, “Using ActiveX
Automation Objects and Controls”.

Converting Programs to Standard Mode

New HP VEE 5.0 programs will open in Standard mode. If you want to
change older programs to a newer mode, you must do this manually us
Default Preferences. When you change a program to Standard mode,
errors can occur, and a list appears explaining problems. You need to fi
these before HP VEE accepts the switch to Standard mode. HP VEE does
not automatically revise any part of your program to fix the errors. To he
you know how to fix errors, the Standard mode compatibility changes are
described below.
214 Appendix A

Using the Compatibility Mode
Compatibility Mode Changes: VEE 4 to Standard

n

ion.

Note If you want to change HP VEE 3.x programs to Standard mode, you
should be sure they work in VEE 4 mode first, then change them to
Standard mode. See “Compatibility Mode Changes: VEE 3 to VEE 4” o
page 204 for help with that conversion.

Menu Changes As part of the ActiveX support added to HP VEE 5.0, the Device menu has
changed slightly. These new menu items have been added:

ActiveX Automation References…
ActiveX Control References…
ActiveX Controls

Also, the menu item Math & Functions that opened the Select
Functions dialog box, is now called Function & Object Browser that
opens the Function & Object Browser. You still use it the same way to
select math operators and functions for a program, and its expanded
functionality supports ActiveX.

Expressions The following changes affect objects such as Formula that contain
expressions:

n SET and ByRef are new keywords that are used for ActiveX automat
They are reserved and cannot be used as names for terminals.

n New syntax is supported for ActiveX automation such as
excel.worksheets(1).cells(1,2) = 2.

n In VEE 3 and VEE 4 modes, expressions with array syntax entered
without commas, such as [1 2 3], will be reparsed when the program
loads and automatically modified to use commas, as in [1,2,3]. In
Standard mode, entering array syntax without commas, such as [1 2 3]
will cause an error when Formula loses focus.

n A value such as 1 returns an Integer, 1.0 returns a Real. Previously, both
returned a Real.
Appendix A 215

Using the Compatibility Mode
Compatibility Mode Changes: VEE 4 to Standard
n There are two new built-in functions for ActiveX automation:
CreateObject() and GetObject().

n There are two new built-in constants for ActiveX automation:
true and false.

Variables The following changes affect variables:

n When Delete Variables at PreRun is turned on (in Default
Preferences) global variables are not deleted if they reference
ActiveX controls.

n The Declare Variable object has a new variable type called Object
which is used for ActiveX automation.

n The new Object variable type is also available on input terminals as a
Required Type, though it can’t be coerced from or to another type.

Global Namespace Global namespace rules have changed which affects names given to
variables, functions, and libraries in the following ways:

n Local UserFunctions, Library names, global declared and undeclared
variables, and local-to-library declared variables are now all in the same
namespace, and must have unique names. This affects existing programs
if they contain more than one instance of a name. As an example, this
means you cannot have a UserFunction and a declared global variable
both named daily_results. This will cause an error when you switch
the program to Standard mode.

n Within a Library, local UserFunctions and local-to-library declared
variables are in the same namespace and must have unique names. This
will cause an error when you switch the program to Standard mode, or
if you import a Library containing conflicting names into a Standard
mode program.
216 Appendix A

Using the Compatibility Mode
Compatibility Mode Changes: VEE 4 to Standard

s in
rted
n New syntax is allowed in the Formula object in all modes, such as

lib.func(a,b) = RightHandExpr

This parses correctly in all modes. However, it executes correctly only in
Standard mode, and causes a run-time error in VEE 3 and VEE 4
modes.

The changes in global namespace rules also changes the order of precedence
used in Standard mode to the following order when HP VEE looks up
variable and function names used in a Formula:

1. Local input/output terminals.

2. Declared local-to-context variables.

3. Declared local-to-library variables when inside a UserObject context
nested in a UserFunction context.

4. Global declared and undeclared variables, local UserFunctions, Library
names, which all must be unique names.

5. Built-in functions, such as sin() and totSize().

6. ActiveX controls and automation constants depending on which libraries
have been referenced using Device ⇒ ActiveX Automation
References or ActiveX Control References (for example, many
constants exist in Excel’s automation library such as xlMaximized).

7. Imported UserFunctions, Compiled Functions, and Remote Function
random order. To guarantee getting the correct one, include the impo
Library’s name, as in myLib.func().
Appendix A 217

Using the Compatibility Mode
Compatibility Mode Changes: VEE 4 to Standard

t’s
ct’s

ls”.

e

rated
An unlikely example of how this new order can cause an older program to
fail might involve a Formula containing the expression sin(90) with an
input terminal (a variable) named sin. In VEE 3 and VEE 4 modes,
HP VEE ignores the input terminal name and calls the sin() built-in
function. However, Standard mode uses the new precedence order to look
up the function and variable names. So HP VEE looks up the terminal name,
assumes it has an ActiveX object on the input, and tries to call the objec
default method. An example of an expression that calls an ActiveX obje
default method, cells(1,1), is similar to sin(90). For information about
ActiveX, see Chapter 7, “Using ActiveX Automation Objects and Contro

READ TEXT
Transactions

In VEE 3 and VEE 4 modes, the READ TEXT transaction using the TOKEN
format with EXCLUDE CHARS does not advance the read pointer to exclud
the specified character. The following figure shows an example of this in
VEE 4 mode:

Figure A-7. READ TEXT Transaction with TOKEN in VEE 4 Mode

This is an unexpected result. An expected result is for each phrase sepa
by the excluded character "*" to appear in separate AlphaNumeric displays
as shown in the next example in Standard mode:
218 Appendix A

Using the Compatibility Mode
Compatibility Mode Changes: VEE 4 to Standard

Figure A-8. READ TEXT Transaction with TOKEN in Standard Mode

Interaction Between
To/From File
and To/From
DataSet

In VEE 3 and VEE 4 modes, a program using a To File or From File
object with the EXECUTE REWIND transaction to access the same data file as
a To DataSet or From DataSet object can cause unexpected interactions.
More specifically, if a program uses From File (with EXECUTE REWIND)
to read data from a file, then uses To DataSet to write data back into the
same file, the data can be written incorrectly. A similar interaction can
happen when using From DataSet with To File. In Standard mode,
this unexpected interaction is fixed so the data is written to the file correctly.
However, we still do not recommend mixing To/From File with To/From
DataSet operations on the same file.

Using Standard Mode in HP VEE for HP-UX

Since Standard mode provides ActiveX support for Windows only, there
are some conditions to be aware of. In HP VEE for HP-UX, you can put
programs into Standard mode. This affects the global namespace as
described previously. However, the ActiveX automation menu items will not
appear since it is not supported on HP-UX. If you develop a program using
HP VEE for Windows that uses ActiveX features, it can cause errors or not
run properly if you move the program to an HP-UX system. If the program
calls HP VEE functions supporting ActiveX automation (CreateObject()
and GetObject()), the program will cause an error. Programs that declare
Object variable types will load into HP VEE for HP-UX, but they will not
run properly.
Appendix A 219

Using the Compatibility Mode
Compatibility Mode Changes: VEE 4 to Standard
220 Appendix A

B

Configuring HP VEE

Configuring HP VEE

This appendix explains how to configure and customize HP VEE for your
environment by changing HP VEE options, and X11 options (in the UNIX
environment) or Windows options (in the MS Windows environment). This
appendix discusses the following topics:

n Color and font settings

n Changing X11 attributes (such as window size and placement)

n Changing MS Windows attributes

n Customizing your icon bitmaps

n Selecting a bitmap for a panel view

n Recovering from X11 color plane limitations

n Using non-USASCII keyboards

n Using HP-GL Plotters
222 Appendix B

Configuring HP VEE
Color and Font Settings
Color and Font Settings
The HP VEE application contains default values for all color and font
settings. You can change color and font settings (and many other properties)
in the HP VEE Default Preferences dialog box (use File ⇒ Default
Preferences). These properties are saved in the defaults file -- .veerc in
your UNIX $HOME directory, or VEE.RC in the C:\Program
Files\Hewlett-Packard\5.0 directory for MS Windows (or %home% if
it is defined). For colors and fonts, only the settings you change are saved in
this defaults file. See Getting Started with HP VEE and How Do I in
HP VEE Help for more information about changing colors and fonts in
HP VEE.
Appendix B 223

Configuring HP VEE
Changing X11 Attributes (UNIX)
Changing X11 Attributes (UNIX)
HP VEE provides an app-defaults file named Vee that you can use to
customize several attributes of HP VEE. This file is in
/usr/lib/veetest/config/ for HP-UX 9.x. It is in
opt/veetest/config/ for HP-UX 10.x. In the same directory is the
app-defaults file named Helpview which lets you customize the appearance
of your Help windows. To use these files, you must install them into your
X11 resources database.

The color and font settings that you change in HP VEE using File ⇒
Default Preferences are saved in the defaults file $HOME/.veerc.

If you are using xrdb, install the files by typing xrdb -merge filename
(for each file) before starting HP VEE.

If you are not using xrdb, merge the files into your X11 resources file.
Your X11 resources file is usually .Xdefaults in your $HOME directory,
but may be in a file identified with the environment variable
$XENVIRONMENT.

To change other X11 resources, you can change or add to your X11
resources file. For example, to change the default geometry of the HP VEE
window so that it always started in the lower right corner of your screen and
the window was sized to 640 by 480 pixels, you would add the following
line to your X11 resources file (probably .Xdefaults):
 Vee*geometry: =640x480-0-0.

For more information about customizing an X11 environment, refer to
Beginner’s Guide to the X Window System.
224 Appendix B

Configuring HP VEE
Configuring HP VEE for Windows
Configuring HP VEE for Windows
HP VEE for Windows uses the Windows Registry to store HP VEE
environment information.

The color and font settings that you change in HP VEE using File ⇒
Default Preferences are saved in the defaults file VEE.RC in your
HP VEE installation directory if you do not have %home% defined.
Otherwise VEE.RC, VEE.IO, and V.INI are saved in %home%.

General HP VEE Settings

The Maximized variable controls whether HP VEE for Windows starts up
as a maximized window or not. The value 0 is for not maximized, 1 is for
maximized.

The Geometry variable controls the initial size of the HP VEE for
Windows window. For example:

Geometry=630x470
Appendix B 225

Configuring HP VEE
Customizing Icon Bitmaps
Customizing Icon Bitmaps
You can change the icon displayed on any iconized object to a bitmap or
pixmap of your choice. HP VEE provides many files, or you can create your
own. On UNIX platforms, HP VEE supports .bmp bitmap files, .gif,
.icn icon files, and .xwd X11 bitmap files. HP VEE for Windows supports
.BMP bitmap files, .GIF, and .ICN icon files. To select an object’s icon,
click on the object menu’s Properties feature, then use the Icon tab on
the Properties dialog box.

To create your own bitmaps for object icons, you can use any editor that
outputs graphics formats that HP VEE supports. Examples of such editors
include the IconEditor program on HP-UX, and the Paint program on
MS Windows. You should specify 48x48 as the size for an icon. Larger
icons use more space in the HP VEE program area, smaller icons are
difficult to see. You can also use screen capture utilities such as X11
Window Dump (xwd) on UNIX, and Print Screen with Paint on MS
Windows.
226 Appendix B

Configuring HP VEE
Selecting a Bitmap for a Panel View
Selecting a Bitmap for a Panel View
You can select a bitmap to use as the background icon for a panel view. This
applies to UserObjects and to HP VEE programs displayed in their panel
views. Panel view icons must use the same formats HP VEE supports; .bmp
bitmap files, .gif, and .icn icon files on all platforms; plus .xwd X11
bitmap files on UNIX. You can also use icons you create as described in the
previous section.

To select a bitmap as the icon for a panel view, first enable the panel view so
the Panel and Detail buttons appear in the title bar (by adding an object to
the panel). Click on the object menu, then click on Properties. Use the
Panel tab on the Properties dialog box to choose a bitmap.
Appendix B 227

Configuring HP VEE
If You See Colors Changing On Your Screen (UNIX)
If You See Colors Changing On Your
Screen (UNIX)

Your workstation is equipped with a certain number of color planes (usually
1, 4, 6, or 8). X11 uses the information in these color planes to color your
application’s window. If you have more than one application running (each
in its own window), and you notice the screen colors changing as you move
from one application’s window to another, then one of two things may be
happening. Either all the applications, together, use more colors than your
display has available, or one or more of the applications allocates its own
private color map (for example, HP BASIC/UX).

HP VEE uses at least 39 colors (this varies depending on how you define the
colors and which colors HP VEE actually uses while running), so you may
experience this behavior when HP VEE is one of your applications. The
symptoms are: when you are in the HP VEE window, the HP VEE colors
will be correct for HP VEE, but may be wrong in other application’s
windows. When you move to another application’s window, the colors will
be correct for that application, but may be wrong for HP VEE. This is typical
X11 behavior -- it is not a problem with HP VEE.

This behavior does not affect the performance of HP VEE or any other
application. However, if it bothers you, there are some things you can do to
help, depending on the cause.

There are two causes of this behavior:

n You have requested more colors than your workstation can
simultaneously display.

n One of the applications you are running controls a local color map.

Too Many Colors

Your workstation can display some number of colors at one time, based on
the number of color planes for your display. This number is:

2number of color planes
228 Appendix B

Configuring HP VEE
If You See Colors Changing On Your Screen (UNIX)
For example, if you have 4 color planes, you can use as many as 16 colors at
a time on your display.

24 = 16

If you exceed this number, you may see the screen flashing as you change
from one window to another.

If you exceed your total available colors, the first step in eliminating the
"flashing" is to reduce your colors to be within the limits of your
workstation. Some tips on reducing colors are:

n Remove any extra colors. If two applications can use the same color
scheme, then customize them to do this.

n Use reduced-color color schemes in applications. For example, HP VEE
allows customization of colors. Click on File ⇒ Default
Preferences. In the Default Preferences dialog box, change
your default colors to use only a few colors.

n Stop, or do not even start, any applications that you do not currently
need. Often, each application uses its own color scheme. This can
quickly increase your requested colors to exceed your color map limit.
Once you have stopped other applications, you probably need to stop,
then re-start, HP VEE before the behavior goes away.

n Reduce the number of colors allocated by the xinitcolormap
command. Because these colors remain permanently in the color map,
there is room for fewer temporary colors.

Some X11 window managers have a colormap focus directive (for example,
*colormapFocusPolicy). The value to which this is set may also
contribute to how colors are used on the screen. In particular, if you exceed
the total number of colors you can simultaneously display, do not set this to
be explicit or you may not see correct colors in your application’s
window.
Appendix B 229

Configuring HP VEE
If You See Colors Changing On Your Screen (UNIX)
Applications that Use a Local Color Map (UNIX)

 Some applications use a local color map. This means that when you run this
application, it saves the current color map and switches over to its own, local
color map. When this happens you may see the "flashing" between
windows.

One way to circumvent this is to pre-allocate the HP VEE colors using the
xinitcolormap command. To do this, you create an ASCII file listing the
colors you wish to pre-allocate. This file is described in the man page for
xinitcolormap. Basically, though, the file cannot contain blank lines,
must start with the colors Black and White, and the color format can be
either pre-defined word colors or the actual RGB hex values, preceded by
the symbol -- #. For example, the following two examples contain black,
white, and a shade of light gray:

Black
White
LightGray

Figure B-1. Color Map File Using Words

#000000
#ffffff
#a8a8a8

Figure B-2. Color Map File Using Hex Numbers

HP BASIC/UX is one application that uses a local color map and
recommends that you pre-allocate the HP BASIC/UX colors at startup using
the xinitcolormap command. Refer to the
/usr/lib/rmb/newconfig/rgb.README

- or -

/opt/rmb/newconfig/rgb.README file).

Because of this, if you will use HP VEE with HP BASIC/UX (or other
applications that allocate colors in the same way HP BASIC/UX does), you
need to also pre-allocate HP VEE colors at startup. If you do not, you may
see the colors flash on the screen as you move from one window to another.
230 Appendix B

Configuring HP VEE
If You See Colors Changing On Your Screen (UNIX)
To do this:

1. Create a "colormap" file that contains all the different HP VEE colors
you will use.

2. Change to your $HOME directory:

cd $HOME

3. Concatenate the HP BASIC/UX and the HP VEE colormap files:

cat /usr/lib/rmb/newconfig/xrmbcolormap vee-colormapfile > .xveecolormap

- or -

cat /opt/rmb/newconfig/xrmbcolormap vee-colormapfile > .xveecolormap

Note that the HP BASIC/UX colors must go first, because HP BASIC/
UX assumes that they are the first 16 entries in the colormap. You can
mix the word colors and the hex number colors in one file.

4. You must use the xinitcolormap command before you allocate any
colors for other applications. This means that it should be placed near the
beginning of your .x11start file.

For example, if you use the .x11start file, your colors are in
$HOME/.xveecolormap, and you have 55 colors listed in the file (16
from HP BASIC/UX + 39 from HP VEE), you would add the following
line to .x11start:

/usr/bin/X11/xinitcolormap -c 55 -f $HOME/.xveecolormap

- or -

/opt/X11/xinitcolormap -c 55 -f $HOME/.xveecolormap

5. Restart X11. To do this, stop the window manager by pressing the
following three keys at the same time: Shift-CTRL-Break, or selecting
Reset from your root menu (if it is configured for this choice), then
type:

x11start
Appendix B 231

Configuring HP VEE
Using Non-USASCII Keyboards (UNIX)
Using Non-USASCII Keyboards (UNIX)
If you are using a non-USASCII keyboard, you need to modify the $LANG
variable in your X11 environment. As an example, to use a German
keyboard, use the command export LANG=german.iso88591 in the
Korn Shell. Once the LANG variable is set, use File ⇒ Default
Preferences to change fonts.

Note If you are accessing data that was created with the Roman8 character set, you
must translate any special characters (above ASCII 127) used.

Your terminal window may use Roman8; therefore TEXT written to stdout,
file names (such as specified by To File and From File), and programs
names must use ASCII characters 0-127 to match with those specified with
HP VEE.
232 Appendix B

Configuring HP VEE
Using HP-GL Plotters (UNIX)
Using HP-GL Plotters (UNIX)
HP VEE supports graphics output to plotters and files using HP-GL. Before
you can send plots to a plotter (either local or networked) your system
administrator must add the plotter as a spooled device on your system.

In addition to standard HP-GL plotters such as the HP 7475, the HP
ColorPro (HP 7440), or the HP 7550, some printers can be used as plotters,
such as the PaintJet XL, and the LaserJet III. The HP ColorPro plotter
requires the Graphics Enhancement Cartridge in order to plot polar or Smith
Chart graticules, or an Area-Fill line type. The PaintJet XL requires the HP-
GL/2 Cartridge in order to make any plots. In order to make plots on the
LaserJet III, at least two megabytes of optional memory expansion is
required, and the Page Protection configuration option should be enabled.
Plots of many vectors, especially with Polar or Smith chart graticules, may
require even more optional memory in the LaserJet III. Any plot intended for
a printer requires the plotter type to be set to HP-GL/2, which causes the
proper HP-GL/2 setup sequence to be included with the plot information.

Any of the following graphical two-dimensional displays can be plotted to
an HP-GL or HP-GL/2 plotter, or to a file:

n XY Trace
n Strip Chart
n Complex Plane
n X vs Y Plot
n Polar Plot
n Waveform
n Magnitude Spectrum
n Phase Spectrum
n Magnitude vs Phase

You can specify the appropriate default plotter configuration by selecting:
File ⇒ Default Preferences. Then use the Printing tab in the
Default Preferences dialog box; click on the Plotter Setup button
to edit the Plotter Configuration dialog box.

To generate a plot directly from a display object, just select Plot on the
display’s object menu, specify the required parameters in the Plotter
Configuration dialog box, and then press OK. You can also add Plot as a
Appendix B 233

Configuring HP VEE
Using HP-GL Plotters (UNIX)
control input to generate plots programmatically. The entire view of the
display object will be plotted, and scaled to fill the defined plotting area,
while retaining the aspect ratio of the original display object. By re-sizing
the display object, you can control the aspect ratio of the plotted image. By
making the display object larger, you can reduce the relative size of the text
and numeric labels around the plot.

For an explanation of the plotter configuration parameters in the Plotter
Configuration dialog box, refer to the Default Preferences section
in Objects and Menu Items under Reference in HP VEE Help. Also,
refer to the reference sections for the appropriate two-dimensional display
devices.
234 Appendix B

C
ASCII Table

ASCII Table

This appendix contains reference tables of ASCII 7-bit codes.

Table C-1. ASCII 7-bit Codes

 Binary Oct Hex Dec HP-IB Msg

NUL 0000000 000 00 0

SOH 0000001 001 01 1 GTL

STX 0000010 002 02 2

ETX 0000011 003 03 3

EOT 0000100 004 04 4 SDC

ENQ 0000101 005 05 5 PPC

ACK 0000110 006 06 6

BEL 0000111 007 07 7

BS 0001000 010 08 8 GET

HT 0001001 011 09 9 TCT

LF 0001010 012 0A 10

VT 0001011 013 0B 11

FF 0001100 014 0C 12

CR 0001101 015 0D 13

SO 0001110 016 0E 14

SI 0001111 017 0F 15

DLE 0010000 020 10 16

DC1 0010001 021 11 17 LLO

DC2 0010010 022 12 18
236 Appendix C

ASCII Table
DC3 0010011 023 13 19

DC4 0010100 024 14 20 DCL

NAK 0010101 025 15 21 PPU

SYN 0010110 026 16 22

ETB 0010111 027 17 23

CAN 0011000 030 18 24 SPE

EM 0011001 031 19 25 SPD

SUB 0011010 032 1A 26

ESC 0011011 033 1B 27

FS 0011100 034 1C 28

GS 0011101 035 1D 29

RS 0011110 036 1E 30

US 0011111 037 1F 31

space 0100000 040 20 32 listen addr 0

! 0100001 041 21 33 listen addr 1

" 0100010 042 22 34 listen addr 2

0100011 043 23 35 listen addr 3

$ 0100100 044 24 36 listen addr 4

% 0100101 045 25 37 listen addr 5

& 0100110 046 26 38 listen addr 6

’ 0100111 047 27 39 listen addr 7

(0101000 050 28 40 listen addr 8

) 0101001 051 29 41 listen addr 9

Table C-1. ASCII 7-bit Codes

 Binary Oct Hex Dec HP-IB Msg
Appendix C 237

ASCII Table
* 0101010 052 2A 42 listen addr 10

+ 0101011 053 2B 43 listen addr 11

, 0101100 054 2C 44 listen addr 12

- 0101101 055 2D 45 listen addr 13

. 0101110 056 2E 46 listen addr 14

/ 0101111 057 2F 47 listen addr 15

0 0110000 060 30 48 listen addr 16

1 0110001 061 31 49 listen addr 17

2 0110010 062 32 50 listen addr 18

3 0110011 063 33 51 listen addr 19

4 0110100 064 34 52 listen addr 20

5 0110101 065 35 53 listen addr 21

6 0110110 066 36 54 listen addr 22

7 0110111 067 37 55 listen addr 23

8 0111000 070 38 56 listen addr 24

9 0111001 071 39 57 listen addr 25

: 0111010 072 3A 58 listen addr 26

; 0111011 073 3B 59 listen addr 27

< 0111100 074 3C 60 listen addr 28

= 0111101 075 3D 61 listen addr 29

> 0111110 076 3E 62 listen addr 30

? 0111111 077 3F 63 UNL

@ 1000000 100 40 64 talk addr 0

Table C-1. ASCII 7-bit Codes

 Binary Oct Hex Dec HP-IB Msg
238 Appendix C

ASCII Table
A 1000001 101 41 65 talk addr 1

B 1000010 102 42 66 talk addr 2

C 1000011 103 43 67 talk addr 3

D 1000100 104 44 68 talk addr 4

E 1000101 105 45 69 talk addr 5

F 1000110 106 46 70 talk addr 6

G 1000111 107 47 71 talk addr 7

H 1001000 110 48 72 talk addr 8

I 1001001 111 49 73 talk addr 9

J 1001010 112 4A 74 talk addr 10

K 1001011 113 4B 75 talk addr 11

L 1001100 114 4C 76 talk addr 12

M 1001101 115 4D 77 talk addr 13

N 1001110 116 4E 78 talk addr 14

O 1001111 117 4F 79 talk addr 15

P 1010000 120 50 80 talk addr 16

Q 1010001 121 51 81 talk addr 17

R 1010010 122 52 82 talk addr 18

S 1010011 123 53 83 talk addr 19

T 1010100 124 54 84 talk addr 20

U 1010101 125 55 85 talk addr 21

V 1010110 126 56 86 talk addr 22

W 1010111 127 57 87 talk addr 23

Table C-1. ASCII 7-bit Codes

 Binary Oct Hex Dec HP-IB Msg
Appendix C 239

ASCII Table
X 1011000 130 58 88 talk addr 24

Y 1011001 131 59 89 talk addr 25

Z 1011010 132 5A 90 talk addr 26

[1011011 133 5B 91 talk addr 27

\ 1011100 134 5C 92 talk addr 28

] 1011101 135 5D 93 talk addr 29

^ 1011110 136 5E 94 talk addr 30

_ 1011111 137 5F 95 UNT

‘ 1100000 140 60 96 secondary addr 0

a 1100001 141 61 97 secondary addr 1

b 1100010 142 62 98 secondary addr 2

c 1100011 143 63 99 secondary addr 3

d 1100100 144 64 100 secondary addr 4

e 1100101 145 65 101 secondary addr 5

f 1100110 146 66 102 secondary addr 6

g 1100111 147 67 103 secondary addr 7

h 1101000 150 68 104 secondary addr 8

i 1101001 151 69 105 secondary addr 9

j 1101010 152 6A 106 secondary addr 10

k 1101011 153 6B 107 secondary addr 11

l 1101100 154 6C 108 secondary addr 12

m 1101101 155 6D 109 secondary addr 13

n 1101110 156 6E 110 secondary addr 14

Table C-1. ASCII 7-bit Codes

 Binary Oct Hex Dec HP-IB Msg
240 Appendix C

ASCII Table
o 1101111 157 6F 111 secondary addr 15

p 1110000 160 70 112 secondary addr 16

q 1110001 161 71 113 secondary addr 17

r 1110010 162 72 114 secondary addr 18

s 1110011 163 73 115 secondary addr 19

t 1110100 164 74 116 secondary addr 20

u 1110101 165 75 117 secondary addr 21

v 1110110 166 76 118 secondary addr 22

w 1110111 167 77 119 secondary addr 23

x 1111000 170 78 120 secondary addr 24

y 1111001 171 79 121 secondary addr 25

z 1111010 172 7A 122 secondary addr 26

{ 1111011 173 7B 123 secondary addr 27

| 1111100 174 7C 124 secondary addr 28

} 1111101 175 7D 125 secondary addr 29

~ 1111110 176 7E 126 secondary addr 30

[del] 1111111 177 7F 127

Table C-1. ASCII 7-bit Codes

 Binary Oct Hex Dec HP-IB Msg
Appendix C 241

ASCII Table
242 Appendix C

D

I/O Transaction Reference

I/O Transaction Reference

This appendix contains details about the behavior of all I/O transaction
actions, encodings, and formats. For general information about using
transactions for instrument I/O, refer to Controlling Instruments with
HP VEE. This appendix is organized by the transaction actions summarized
in Table D-1. For example, if you need detailed information about TEXT
encoding, do this:

n Look in the WRITE section for details about WRITE TEXT transactions.

n Look in the READ section for details about READ TEXT transactions.

Table D-1. Summary of Transaction Types

Action Description

WRITE Writes data to the destination specified in the object.

READ Reads data from the source specified in the object.

EXECUTE Executes low-level commands to control the file, device, or
interface associated with the object. EXECUTE is used to
adjust file pointers, to close pipes and files, and to provide
low-level control of devices and hardware interfaces.

WAIT Waits for the specified number of seconds before
executing the next transaction.

For Direct I/O objects, WAIT can also wait for a specific
serial poll response, or for specific values in accessible VXI
device registers.

SEND Sends IEEE 488-defined bus messages (bus commands
and data) to an HP-IB interface.

READ(REQUEST)a

a. HP VEE for Windows only.

Reads DDE data from another application.

WRITE(POKE)a Writes DDE data to another application.
244 Appendix D

I/O Transaction Reference

Table D-2. Summary of I/O Transaction Objects

Objects Supported Transactions

EXECUTE WAIT READ WRITE SEND

To File X X X

From File X X X

To Printer X X

To String X X

From String X X

To StdOut X X

From StdIn X X

To StdErr X X

Execute Program

(UNIX)a

a. Execute Program (PC) is not transaction based.

X X X X

To/From Named Pipe X X X X

To/From Socket X X X X

Direct I/O X X X X

MultiDevice Direct
I/O

X X X X

Interface
Operations

X X

To/From HP BASIC/UXb

b. HP VEE for HP-UX only.

X X X X

To/From DDEc

c. HP VEE for Windows only.

X X X X
Appendix D 245

I/O Transaction Reference
WRITE Transactions
WRITE Transactions
This section is organized by the WRITE encodings summarized in Table D-3.
Topics that apply to all WRITE encodings are summarized at the beginning
of this section.

Path-Specific Behaviors

Some WRITE transactions behave differently depending on the I/O path of
the destination. For example, WRITE TEXT HEX transactions format
hexadecimal numbers differently depending on whether the destination is a
UNIX file or an instrument. To distinguish these behaviors, this section uses
the following terms:

The behaviors described in the following sections apply to all paths, except
as specifically noted.

Term Meaning

UNIX paths Any destination other than an instrument, such as a
UNIX file, a string, the printer, or a UNIX pipe.

MS-DOS paths Any destination other than an instrument, such as
an MS-DOS file, a string, or the printer.

direct I/O paths Any instrument accessed using Direct I/O.
246 Appendix D

I/O Transaction Reference
WRITE Transactions

Table D-3. WRITE Encodings and Formats

Encodings Formats

TEXT DEFAULT
STRING
QUOTED STRING
INTEGER
OCTAL
HEX
REAL
COMPLEX
PCOMPLEX
COORD
TIME STAMP

BYTE Not Applicable

CASE Not Applicable

BINARY STRING
BYTE
INT16
INT32
REAL32
REAL64
COMPLEX
PCOMPLEX
COORD

BINBLOCK BYTE
INT16
COMPLEX
INT32
PCOMPLEX
REAL32
REAL64
COORD

CONTAINER Not Applicable

STATEa Not Applicable
Appendix D 247

I/O Transaction Reference
WRITE Transactions
REGISTERb BYTE
WORD16
WORD32
REAL32

MEMORYb BYTE
WORD16
WORD32
REAL32

IOCONTROLc Not Applicable

a. Direct I/O to HP-IB only.
b. Direct I/O to VXI only.
c. Direct I/O to GPIO only.

Table D-3. WRITE Encodings and Formats

Encodings Formats
248 Appendix D

I/O Transaction Reference
WRITE Transactions
TEXT Encoding

WRITE TEXT transactions are of this form:

WRITE TEXT ExpressionList [Format]

ExpressionList is a single expression or a comma-separated list of
expressions.

Format is an optional setting that specifies one of the formats listed in
Table D-4.

Table D-4. Formats for WRITE TEXT Transactions

Format Description

DEFAULT HP VEE automatically determines an appropriate text representation based
on the data type of the item being written.

STRING Writes Text data without any conversion. Writes numeric data types as Text
with maximum numeric precision.

QUOTED
STRING

Writes data in the same format as STRING, except the data is surrounded by
double quotes (ASCII 34 decimal).

INTEGER Writes data as a 32-bit two’s complement integer in decimal form.

OCTAL Writes data as a 32-bit two’s complement integer in octal form.

HEX Writes data as a 32-bit two’s complement integer in hexadecimal form.

REAL Writes data as a 64-bit floating point number in a variety of notations including
fixed decimal and scientific notation.

COMPLEX Writes a comma-separated pair of 64-bit floating point numbers that
represent a complex number. The first number represents the real part and
the second number represents the imaginary part.

PCOMPLEX Writes a comma-separated pair of 64-bit floating point numbers that
represent a complex number. The first number represents the magnitude
and the second number represents the phase angle in the phase units
specified in the transaction.

COORD Writes a comma-separated series of 64-bit floating point numbers that
represent a rectangular coordinate.

TIME
STAMP

Converts a real number (for example, the output of the now() function) to a
meaningful form and writes it in a variety of combinations of year, month, day,
and time.
Appendix D 249

I/O Transaction Reference
WRITE Transactions
DEFAULT Format WRITE TEXT (default) transactions are of this form:

WRITE TEXT ExpressionList

ExpressionList is a single expression or a comma-separated list of
expressions.

The transaction converts each item in ExpressionList to a meaningful
string and writes it. Consider the simple case of writing the scalar variable
X:

Figure D-1. A WRITE TEXT Transaction

If X in Figure D-1 contains text, such as:

bird cat dog

then no conversion is performed and the transaction writes exactly 12
characters.

If X in Figure D-1 contains a scalar Integer, such as:

8923 the value of X (decimal notation)

then the numeric value is converted to text and HP VEE writes exactly four
characters.

If X in Figure D-1 contains a scalar real value, such as:

1.2345678901234567 the value of X (17-digit scalar real value)

then each significant digit up to 16 significant digits is written. The least
significant digit is approximate because of the conversion between
HP VEE’s internal binary form and decimal notation. If you use this scalar
real value using the transaction:

WRITE TEXT a EOL

then HP VEE writes this:

1.234567890123457 16-digit value

If the absolute value of the number is sufficiently large or small, exponential
notation is used. The Reals that form the sub-elements of Coord, Complex,
and PComplex behave the same way.

WRITE TEXT X
250 Appendix D

I/O Transaction Reference
WRITE Transactions
If EOL ON is specified for any WRITE TEXT DEFAULT transaction, the
character specified in the EOL Sequence field for that object is written
following the last character in ExpressionList.

STRING Format WRITE TEXT STRING transactions are of this form:

WRITE TEXT ExpressionList STR

ExpressionList is a single expression or a comma-separated list of
expressions.

 WRITE TEXT STRING transactions behave basically the same as WRITE
TEXT (default) transactions (one exception will be discussed). The
significant difference is that STRING allows you to specify additional details
about output formatting including field width, justification, and number of
characters.

Field Width and Justification. If a transaction specifies DEFAULT FIELD
WIDTH, only those characters resulting from the conversion of items within
ExpressionList to Text are written.

If a transaction specifies FIELD WIDTH: F, then the converted Text is
written right- or left-justified within a space F characters wide.

The transactions in Figure D-2 specify that all characters are to be written
within a field of twenty characters with left justification.

Figure D-2. Two WRITE TEXT STRING Transactions

WRITE TEXT X STR FW:20 LJ EOL
WRITE TEXT Y STR FW:20 LJ EOL
Appendix D 251

I/O Transaction Reference
WRITE Transactions
If X and Y in Figure D-2 have these values:

bird cat dog the Text value of X
12345678901234567 the Real value of Y

then HP VEE writes this:

bird cat dog
12345678901234567
^ ^

The caret characters (^) are not actually written by HP VEE; they are shown
to help you visualize the field width. The characters to the right of dog and
to the right of the second 7 are spaces (ASCII 32 decimal).

If justification is changed to RIGHT JUSTIFY, then the transactions appear
as shown in Figure D-3.

Figure D-3. Two WRITE TEXT STRING Transactions

If X and Y in Figure D-3 have these values:

bird cat dog the Text value of X
12345678901234567 the Real value of Y

then HP VEE writes this:

 bird cat dog
 12345678901234567
^ ^

The caret characters (^) are not actually written by HP VEE; they are shown
to help you visualize the field width. The characters to the left of bird and
to the left of the first 1 are spaces (ASCII 32 decimal).

WRITE TEXT X STR FW:20 RJ EOL
WRITE TEXT Y STR FW:20 RJ EOL
252 Appendix D

I/O Transaction Reference
WRITE Transactions
If the length of a string exceeds the specified field width, the entire string is
written. The field width specification never truncates; only MAX NUM
CHARS can truncate characters.

The transaction in Figure D-4 specifies that all characters are to be written in
a field width of four characters with left justification.

Figure D-4. A WRITE TEXT STRING Transaction

If X in Figure D-4 has this value:

bird cat dog the Text value of X, 12 characters

then HP VEE writes this:

bird cat dog all 12 characters

Even though the specified field width is four characters, the transaction
writes all twelve characters of the string.

Number of Characters. If you specify ALL CHARS, then all of the
characters generated by the conversion of each item in ExpressionList
are written. If you specify MAX NUM CHARS: M, then only the first M
characters of each item in ExpressionList are written.

The transactions in Figure D-5 specify that a maximum of seven characters
are written in each field, the field width is twenty characters, and field
entries are left justified.

Figure D-5. Two WRITE TEXT STRING Transactions

WRITE TEXT X STR FW:4 LJ

WRITE TEXT X STR:7 FW:20 LJ EOL
WRITE TEXT Y STR:7 FW:20 LJ EOL
Appendix D 253

I/O Transaction Reference
WRITE Transactions
If X and Y in Figure D-2 have these values:

bird cat dog the Text value of X
12345678901234567 the Real value of Y

then HP VEE writes this:

bird ca
1234567
^ ^

Notice that the numeric value of Y is first converted to Text and characters
are truncated. Numeric values are not rounded by MAX NUM CHARS.

The caret characters (^) are not actually written by HP VEE; they are shown
to help you visualize the field width. The characters to the right of bird and
to the right of the first 1 are spaces (ASCII 32 decimal).

Writing Arrays With Direct I/O. WRITE TEXT STR transactions that
write arrays to direct I/O paths ignore the Array Separator setting for the
Direct I/O object. These transactions always use linefeed (ASCII
decimal 10) to separate each element of an array (which is a string) as it is
written. This behavior is consistent with the needs of most instruments.

Note This special behavior for arrays does not apply to any other types of
transactions.
254 Appendix D

I/O Transaction Reference
WRITE Transactions
QUOTED STRING
Format

WRITE TEXT QUOTED STRING transactions are of this form:

WRITE TEXT ExpressionList QSTR

ExpressionList is a single expression or a comma-separated list of
expressions.

In general, the behaviors previously discussed for the STRING format apply
to QUOTED STRING format. There are two differences between STRING and
QUOTED STRING:

n For QUOTED STRING, a double quote (ASCII 34 decimal) is added to the
beginning and the end of the string. Note that the double quotes are
applied before any padding spaces are added to justify the string within
the specified field width.

n Control characters (ASCII 0-31 decimal), escape characters (Table D-5),
and the characters ’ (ASCII 39 decimal) and " (ASCII 34 decimal)
embedded inside a double-quoted string receive special treatment.

Field Width and Justification. If you specify DEFAULT FIELD WIDTH,
only those characters resulting from the conversion of items within
ExpressionList to Text and the surrounding double quotes are written.

If you specify FIELD WIDTH: F, then the converted Text and the
surrounding quotes are written right or left justified within a space F
characters wide.

The transactions in Figure D-6 specify that all characters are to be written as
quoted strings in a field 20 characters wide with left justification.

Figure D-6. Two WRITE TEXT QUOTED STRING Transactions

WRITE TEXT X QSTR FW:20 LJ EOL
WRITE TEXT Y QSTR FW:20 LJ EOL
Appendix D 255

I/O Transaction Reference
WRITE Transactions
If X and Y in Figure D-6 have these values:

bird cat dog the Text value of X
12345678901234567 the Real value of Y

then HP VEE writes this:

"bird cat dog"
"12345678901234567"
^ ^

The caret characters (^) are not actually written by HP VEE; they are shown
to help you visualize the field width. The characters to the right of dog" and
to the right of 7" are spaces (ASCII 32 decimal).

If justification is changed to RIGHT JUSTIFY, then the transactions appear
as shown in Figure D-7.

Figure D-7. Two WRITE TEXT QUOTED STRING Transactions

If X and Y in Figure D-7 have these values:

bird cat dog the Text value of X
12345678901234567 the Real value of Y

then HP VEE writes this:

 "bird cat dog"
"12345678901234567"
^ ^

The caret characters (^) are not actually written by HP VEE; they are shown
to help you visualize the field width. The characters to the left of "bird and
to the left of "1 are spaces (ASCII 32 decimal).

WRITE TEXT X QSTR FW:20 RJ EOL
WRITE TEXT Y QSTR FW:20 RJ EOL
256 Appendix D

I/O Transaction Reference
WRITE Transactions
If the length of a string exceeds the specified field width, the entire string is
output. The field width specification never truncates strings that are written;
only MAX NUM CHARS can truncate characters.

The transactions in Figure D-8 that specifies that all characters are to be
written within a field of four characters with left justification.

Figure D-8. A WRITE TEXT QUOTED STRING Transaction

If X in Figure D-8 has this value:

bird cat dog the Text value of X, 12 characters

then HP VEE writes this:

"bird cat dog" all 12 characters

Number of Characters. If you specify ALL CHARS, then all of the
characters generated by the conversion of each item in ExpressionList
as well as the surrounding double quotes are written. If you specify MAX
NUM CHARS: M, then only the first M characters of each item in
ExpressionList plus the surrounding double quotes are written. In
other words, a total of M+2 characters are written for each item in
ExpressionList.

The transaction in Figure D-9 that specifies MAX NUM CHARS:7 (field width
20, left justified).

Figure D-9. Two WRITE TEXT QUOTED STRING Transactions

WRITE TEXT X QSTR FW:4 LJ

WRITE TEXT X QSTR:7 FW:20 LJ EOL
WRITE TEXT Y QSTR:7 FW:20 LJ EOL
Appendix D 257

I/O Transaction Reference
WRITE Transactions
If X and Y in Figure D-9 have these values:

bird cat dog the Text value of X
12345678901234567 the Real value of Y

then HP VEE writes this:

"bird ca"
"1234567"
^ ^

The caret characters (^) are not actually written by HP VEE; they are shown
to help you visualize the field width. The characters to the right of ca" and
to the right of 7" are spaces (ASCII 32 decimal).

Embedded Control and Escape Characters. In this discussion, the terms
control character and escape character have specific meaning. A control
character is a single byte of data corresponding to one of the ASCII
characters 0-31 decimal. For example, linefeed is ASCII 10 decimal and the
symbol <LF> denotes linefeed character in this discussion. The string \n is
a human-readable escape character representing linefeed that is recognized
by HP VEE. HP VEE uses escape characters to represent control characters
within quoted strings.
258 Appendix D

I/O Transaction Reference
WRITE Transactions
Consider the effects of various embedded escape characters on the
transaction in Figure D-10.

Figure D-10. A WRITE TEXT QUOTED STRING Transaction

Table D-5. Escape Characters

Escape Character ASCII Code
(decimal)

Meaning

\n 10 Newline

\t 9 Horizontal Tab

\v 11 Vertical Tab

\b 8 Backspace

\r 13 Carriage Return

\f 12 Form Feed

\" 34 Double Quote

\’ 39 Single Quote

\\ 92 Backslash

\ddd The ASCII character
corresponding to the three-digit
octal value ddd.

WRITE TEXT X QSTR EOL
Appendix D 259

I/O Transaction Reference
WRITE Transactions
If X in Figure D-10 has this value:

bird\ncat dog

then HP VEE writes this to UNIX paths:

"bird\ncat dog"

For the same transaction and data, HP VEE writes this to direct I/O paths:

"bird<LF>cat dog"

Note that <LF> means the single character, linefeed (ASCII 10 decimal).

If X in Figure D-10 has this value:

bird \"cat\" dog

then HP VEE writes this to UNIX paths and Direct I/O paths for serial
interfaces:

"bird \"cat\" dog"

For the same transaction and data, HP VEE writes this to direct I/O paths for
HP-IB interfaces:

"bird ""cat"" dog"

This unique behavior for HP-IB interfaces is provided to support the
requirements of IEEE 488.2.

INTEGER Format WRITE TEXT INTEGER transactions are of this form:

WRITE TEXT ExpressionList INT

ExpressionList is a single expression or a comma-separated list of
expressions.

The type of integer generated by this transaction is a 32-bit two’s
complement integer. The range of these integers is 2 147 483 647 to
-2 147 483 648. The only characters written to represent these numbers
are +-0123456789.

HP VEE attempts to convert each item in ExpressionList to the Int32
data type before converting it to Text for final formatting. HP VEE follows
260 Appendix D

I/O Transaction Reference
WRITE Transactions
the usual conversion rules; refer to the Data Type Conversion topics
under Tell Me About... in HP VEE Help for more details.

If a Real is written using INTEGER format:

n Real values outside the valid range of Int32 generate an error.

n Real values within the valid range of Int32 are converted by truncating
the fractional portion of the Real.

Number of Digits. If you specify DEFAULT NUM DIGITS, the transaction
writes only the digits required to express the value of the integer; leading
zeros are not used.

If you specify MIN NUM DIGITS: M, the transaction pads the output with
leading zeros as required to give a total of exactly M digits.

Consider the two transactions in Figure D-11 which differ only in their
specification for the number of output digits.

Figure D-11. Two WRITE TEXT INTEGER Transactions

If X in Figure D-11 has this value:

4567

then HP VEE writes this:

4567
004567

MIN NUM DIGITS never causes truncation of the output string. The
transaction in Figure D-12 specifies the minimum number of digits to be 1.

Figure D-12. A WRITE TEXT INTEGER Transaction

WRITE TEXT X INT EOL default number of digits
WRITE TEXT X INT:6 EOL six digits

WRITE TEXT X INT:1 EOL
Appendix D 261

I/O Transaction Reference
WRITE Transactions
If X in Figure D-12 has a value of:

12345678

then HP VEE writes this:

12345678 all eight digits

Sign Prefixes. You may optionally specify one of the sign prefixes listed in
Table D-6 as part of a WRITE TEXT INT transaction.

Any prefixed signs do not count towards MIN NUM DIGITS. The transaction
shown in Figure D-13 specifies explicit leading signs for positive and
negative numbers.

Figure D-13. Two WRITE TEXT INTEGER Transactions

If X and Y in Figure D-13 have values of:

123 the Integer value of X
-123 the Integer value of Y

then HP VEE writes this:

+000123 six digits plus sign
-000123

Table D-6. Sign Prefixes

Prefix Description

/- Positive numbers are written with no prefix, neither a + nor a space. All
negative numbers are written with a - prefix.

+/- All positive numbers are written with a + prefix. All negative numbers
are written with a - prefix.

" "/- All positive numbers are written with a space (ASCII 32 decimal) prefix.
All negative numbers are written with a - prefix.

WRITE TEXT X INT:6 SIGN:"+/-" EOL
WRITE TEXT Y INT:6 SIGN:"+/-" EOL
262 Appendix D

I/O Transaction Reference
WRITE Transactions
OCTAL Format WRITE TEXT OCTAL transactions are of this form:

WRITE TEXT ExpressionList OCT

ExpressionList is a single expression or a comma-separated list of
expressions.

The type of integer written by this transaction is a 32-bit two’s complement
integer. The range of these integers is 2 147 483 647 to
-2 147 483 648. The only characters written to represent these octal
numbers are 01234567. An optional prefix may be specified which may
include other characters.

HP VEE attempts to convert any data written using OCTAL format to the
Int32 data type before converting it to Text for final formatting. The usual
HP VEE conversion rules are followed.

If a Real is written using OCTAL format:

n Real values outside the valid range of Int32 generate an error.

n Real values within the valid range of Int32 are converted by truncating
the fractional portion of the Real.

Number of Digits. The behavior of DEFAULT NUM DIGITS and MIN NUM
DIGITS is the same as described previously in “Number of Digits” on
page 261 for WRITE TEXT INTEGER transactions.
Appendix D 263

I/O Transaction Reference
WRITE Transactions
Octal Prefixes. You may specify one of the prefixes listed in Table D-7 as
part of a WRITE TEXT OCTAL transaction.

The transaction in Figure D-14 specifies the default prefix and six digits:

Figure D-14. A WRITE TEXT OCTAL Transaction

If X in Figure D-14 has this value:

15 the value 15 decimal

then HP VEE writes this to direct I/O paths:

#Q000017 exactly six digits plus prefix

Using the same transaction and data, HP VEE writes this to UNIX paths:

000017 exactly six digits

Table D-7. Octal Prefixes

Prefix Description

NO PREFIX HP VEE writes each octal number without any prefix; only
the digits 01234567 appear in the output.

DEFAULT PREFIX For direct I/O paths, HP VEE prefixes each octal number
with #Q. This supports the octal Non-Decimal Numeric data
format defined by IEEE 488.2.

For UNIX paths, HP VEE prefixes each octal number with a
0 (zero). If leading zeros are added to achieve the specified
MIN NUM DIGITS, DEFAULT PREFIX will not add
additional leading zeros.

PREFIX:string HP VEE prefixes each octal number with the characters
specified in string.

WRITE TEXT X OCT:6 PREFIX EOL
264 Appendix D

I/O Transaction Reference
WRITE Transactions
The transaction in Figure D-15 specifies a custom prefix and ten digits:

Figure D-15. A WRITE TEXT OCTAL Transaction

If X in Figure D-15 has this value:

15 the Integer value 15 decimal

then HP VEE writes this to UNIX paths and direct I/O paths:

oct>000017

Note that the prefix written by DEFAULT PREFIX depends on the
destination, but the prefix written by PREFIX: string is independent of
the destination.

WRITE TEXT X OCT:10 PREFIX:"oct>" EOL
Appendix D 265

I/O Transaction Reference
WRITE Transactions
HEX Format WRITE TEXT HEX transactions are of this form:

WRITE TEXT ExpressionList HEX

The type of integer written by this transaction is a 32-bit two’s complement
integer. The range of these integers is 2 147 483 647 to
-2 147 483 648. The only characters written to represent these
hexadecimal numbers are 0123456789abcdef. An optional prefix may be
specified that may include other characters.

The behavior of WRITE TEXT HEX is nearly identical to that of WRITE
TEXT OCTAL. The only difference is the set of prefixes available and the
behavior of DEFAULT PREFIX.

Hexadecimal Prefixes. You may specify one of the prefixes listed in Table
D-8 as part of a WRITE TEXT HEX transaction.

The transaction in Figure D-16 specifies the default prefix and six digits:

Figure D-16. A WRITE TEXT HEX Transaction

Table D-8. Hexadecimal Prefixes

Prefix Description

NO PREFIX HP VEE writes each hexadecimal number without any
prefix; only the digits 0123456789abcdef appear in the
output.

DEFAULT PREFIX For direct I/O paths, HP VEE prefixes each hexadecimal
number with #H. This supports the hexadecimal Non-
Decimal Numeric data format defined by IEEE 488.2.

For UNIX paths, HP VEE prefixes each hexadecimal
number with 0x.

PREFIX:string HP VEE prefixes each hexadecimal number with the
characters specified in string.

WRITE TEXT X HEX:6 PREFIX EOL
266 Appendix D

I/O Transaction Reference
WRITE Transactions
If X in Figure D-16 has this value:

15 the Integer value 15 decimal

then HP VEE writes this to direct I/O paths:

#H00000f exactly six digits plus prefix

Using the same transaction and data, HP VEE this to UNIX paths:

0x00000f exactly six digits plus prefix

The transaction in Figure D-17 specifies a custom prefix and three digits:

Figure D-17. A WRITE TEXT HEX Transaction

If X in Figure D-17 has this value:

15 the Integer value 15 decimal

then HP VEE writes this to UNIX paths and direct I/O paths:

hex>00f exactly three digits plus prefix

Note that the prefix written by DEFAULT PREFIX depends on the
destination, but the prefix written by PREFIX: string is independent of
the destination.

REAL Format WRITE TEXT REAL transactions are of this form:

WRITE TEXT ExpressionList REAL

The type of Real number generated by this transaction is a 64-bit IEEE 754
floating-point number. The range of these numbers is:

-1.797 693 134 862 315E+308
-2.225 073 858 507 202E-307
0
2.225 073 858 507 202E-307
1.797 693 134 862 315E+308

The only characters written to represent these numbers are
+-.0123456789E.

WRITE TEXT X HEX:3 PREFIX:"hex>" EOL
Appendix D 267

I/O Transaction Reference
WRITE Transactions
Notations and Digits. You may optionally specify one of the notations in
Table D-9 as part of a WRITE TEXT REAL transaction.

The transactions in Figure D-18 specify STANDARD notation and four
significant digits.

Figure D-18. Three WRITE TEXT REAL Transactions

If X, Y, and Z in Figure D-18 have these values:

1.23456E2 the Real value of X
1.23456E09 the Real value of Y
1.23 the Real value of Z

then HP VEE writes this:

123.5 mantissa rounded as required
1.235E+09 large numbers in exponential notation
1.23 never any trailing zeros

Table D-9. REAL Notations

Notation Description

STANDARD HP VEE automatically determines whether each Real value
should be written in fixed-point notation (decimal points as
required, no exponents) or in exponential notation. Non-
significant zeros are never written.

FIXED HP VEE writes each Real value as a fixed-point number. Numbers
with fractional digits are automatically rounded to fit the number of
fractional digits specified by NUM FRACT DIGITS. Trailing zero
digits are added as required to give the specified number of
fractional digits.

SCIENTIFIC HP VEE writes each Real value using exponential notation. Each
exponent includes an explicit sign (+ or -) and the upper-case E is
always used. Numbers with fractional digits are automatically
rounded to fit the number of fractional digits specified by NUM
FRACT DIGITS. Trailing zero digits are added as required to
give the specified number of fractional digits.

WRITE TEXT X REAL STD:4 EOL
WRITE TEXT Y REAL STD:4 EOL
WRITE TEXT Z REAL STD:4 EOL
268 Appendix D

I/O Transaction Reference
WRITE Transactions
The transactions in Figure D-19 specify FIXED notation and four fractional
digits.

Figure D-19. Three WRITE TEXT REAL Transactions

If X, Y, and Z in Figure D-19 have these values:

1.2345678E2 the Real value of X
1.2345678E-09 the Real value of Y
1.23 the Real value of Z

then HP VEE writes this:

123.4568 mantissa rounded as required
0.0000 small numbers round to zero
1.2300 trailing zeros added as required

The transactions in Figure D-20 specify SCIENTIFIC notation and four
fractional digits.

Figure D-20. Three WRITE TEXT REAL Transactions

If X, Y, and Z in Figure D-20 have these values:

1.2345678E2 the Real value of X
-1.2345678E-09 the Real value of Y
0 the Real value of Z

then HP VEE writes this:

1.2346E+02 exponent is E plus two signed digits
-1.2346E-09 last digit rounded as required
0.0000E+00 trailing zeros padded as required

WRITE TEXT X REAL FIX:4 EOL
WRITE TEXT Y REAL FIX:4 EOL
WRITE TEXT Z REAL FIX:4 EOL

WRITE TEXT X REAL SCI:4 EOL
WRITE TEXT Y REAL SCI:4 EOL
WRITE TEXT Z REAL SCI:4 EOL
Appendix D 269

I/O Transaction Reference
WRITE Transactions
COMPLEX,
PCOMPLEX, and
COORD Formats

COMPLEX, PCOMPLEX, and COORD correspond to the HP VEE multi-field
data types with the same names. The behavior of all three formats is very
similar. The behaviors described in this section apply to all three formats
except as noted.

Just as the HP VEE data types Complex, PComplex, and Coord are
composed of multiple Real numbers, the COMPLEX, PCOMPLEX, and COORD
formats are essentially compound forms of the REAL format. Each
constituent Real value of the multi-field data types is written with the same
output rules that apply to an individual REAL formatted value.

The final output of transactions involving multi-field formats is affected by
the Multi-Field Format setting for the object in question. Multi-
Field Format is accessed via I/O ⇒ Instrument Manager for Direct
I/O objects and via Config in the object menu for all other objects. The
two possible settings for Multi-Field Format are:

n Data Only. This writes multi-field data formats as a list of comma-
separated numbers without parentheses.

n (...) Syntax. This writes multi-field data formats as a list of comma-
separated numbers grouped by parentheses.

Subsequent examples will illustrate these behaviors.

COMPLEX Format. WRITE TEXT COMPLEX transactions are of this form:

WRITE TEXT ExpressionList CPX

The transaction in Figure D-21 specifies a fixed-decimal notation, explicit
leading signs, a field width of 10 characters, and right justification.

Figure D-21. A WRITE TEXT COMPLEX Transaction

WRITE TEXT X CPX FIX:3 SIGN:"+/-" FW:10 RJ EOL
270 Appendix D

I/O Transaction Reference
WRITE Transactions
If the Multi-Field Format is set to (...) Syntax, and X in Figure D-
21 has this value:

(-1.23456 , 9.8) the Complex value of X

then HP VEE writes this:

(-1.235 , +9.800)
 ^ ^ ^ ^

If the Multi-Field Format is set to Data Only and X in Figure D-21
has the same value, then HP VEE writes this:

 -1.235, +9.800
^ ^ ^ ^

The caret characters (^) are not actually written by HP VEE; they are shown
to help you visualize the field width. The characters to the left of + are
spaces (ASCII 32 decimal).

Note that with (...) Syntax, a space-comma-space sequence separates
the ten-character wide fields that contain the real and imaginary parts of the
Complex number. With either Multi-Field Format there is a separate
ten-character field for both the real and the imaginary part. Neither
parentheses nor the separating comma and spaces are included in the field.
Appendix D 271

I/O Transaction Reference
WRITE Transactions
PCOMPLEX Format. WRITE TEXT PCOMPLEX transactions are of this
form:

WRITE TEXT ExpressionList PCX

PCOMPLEX format allows you to specify the phase units for the polar
complex number it writes. Note that phase units are independent of the units
set by Trig Mode in Properties.

The first transaction in Figure D-22 specifies phase measurement in degrees,
and the second transaction specifies phase measurement in radians.

Figure D-22. Two WRITE TEXT PCOMPLEX Transactions

If the Multi-Field Format is set to Data Only, and X in Figure D-22
has this value:

(-1.23456 , @90) the PComplex value of X, phase in degrees

then HP VEE writes this:

1.23456,-90
1.23456,-1.570796326794897

The transaction in Figure D-23 specifies phase measurement in radians,
fixed-decimal notation, three fractional digits, explicit leading signs, a field
width of ten characters, and right justification.

Figure D-23. A WRITE TEXT PCOMPLEX Transaction

Table D-10. PCOMPLEX Phase Units

Unit Description

DEG Degrees

RAD Radians

GRAD Gradians

WRITE TEXT X PCX:DEG STD EOL
WRITE TEXT X PCX:RAD STD EOL

WRITE TEXT X PCX:RAD FIX:3 SIGN:"+/-" FW:10 RJ EOL
272 Appendix D

I/O Transaction Reference
WRITE Transactions
If the Multi-Field Format is set to (...) Syntax, and X in Figure D-
23 has this value:

(-1.23456 , @9.8) the PComplex value of X, angle in radians

then HP VEE writes this:

(+1.235 , @ +0.375)
 ^ ^ ^ ^

Note that HP VEE normalizes all PComplex numbers to yield a positive
magnitude and a phase between +π and -π.

If the Multi-Field Format is set to Data Only, and X in Figure D-23
has the same value, then HP VEE writes this:

 +1.235, +0.375
^ ^ ^ ^

The caret characters (^) are not actually written by HP VEE; they are shown
to help you visualize the field width. The characters to the left of - and to the
left of + are spaces (ASCII 32 decimal).

COORD Format. WRITE TEXT COORD transactions are of this form:

WRITE TEXT ExpressionList COORD

COORD format has all the same behaviors of COMPLEX format. The only
difference is that COORD may contain an arbitrary number of fields while
COMPLEX has exactly two fields.

TIME STAMP
Format

WRITE TEXT TIME STAMP transactions are of this form:

WRITE TEXT ExpressionList [DATE:DateSpec] [TIME:TimeSpec]

ExpressionList is a single expression or a comma-separated list of
expressions.

DateSpec is one of the following pre-defined date and time combinations:

n Date
n Time
n Date&Time
n Time&Date
n Delta Time
Appendix D 273

I/O Transaction Reference
WRITE Transactions
If you specify a transaction that includes Date, you may also specify a
DateSpec of Weekday DD/Month/YYYY or
DD/Month/YYYY.

If you specify a transaction that includes Time, you may also specify a
TimeSpec. TimeSpec is a combination of the following pre-defined time
formats:

n HH:MM (hours and minutes)
n HH:MM:SS (hours, minutes, and seconds)
n 12 HOUR
n 24 HOUR

Each item in ExpressionList is converted to a Real and interpreted as a
date and time. This Real number represents the number of seconds that have
elapsed since midnight, January 1, AD 1 UTC. The most common source for
this Real number is the output of a Time Stamp object. You use the TIME
STAMP format to convert this Real number to a meaningful string that
contains a human-readable date and/or time.
274 Appendix D

I/O Transaction Reference
WRITE Transactions
TIME STAMP supports a variety of notations for writing dates and times. If a
Real variable contains this value:

62806574669.31164

then TIME STAMP can write it using any of these Time and Date notations:

Notation Result

Date with Weekday
DD/Month/YYYY

Thu 04/Apr/1991

Time with HH:MM:SS and 24 HOUR 15:44:29

Date&Time with Weekday
DD/Month/YYYY, HH:MM:SS,
and 24 HOUR

Thu 04/Apr/1991 15:44:29

Time&Date with HH:MM:SS, 24
HOUR, and Weekday
DD/Month/YYYY

15:44:29 Thu 04/Apr/1991

Delta Time with HH:MM:SS 17446270:44:29

Date with Weekday
DD/Month/YYYY

Thu 04/Apr/1991

Date with DD/Month/YYYY 04/Apr/1991

Time with HH:MM:SS and 24 HOUR 15:44:29

TIME with HH:MM and 24 HOUR 15:44

TIME with HH:MM:SS and 24 Hour 15:44:29

TIME with HH:MM:SS and 12 Hour 3:44:29 PM
Appendix D 275

I/O Transaction Reference
WRITE Transactions
BYTE Encoding

BYTE transactions are of this form:

WRITE BYTE ExpressionList

ExpressionList is a single expression or a comma-separated list of
expressions.

HP VEE converts each item in ExpressionList to an Int16 (16-bit two’s
complement integer) and writes the least-significant 8-bits. This is a
transaction for writing single characters to a device. Each expression in
ExpressionList must be a scalar.

The transactions in Figure D-24 produce the following character data output:

ABCAA

Figure D-24. Two WRITE BYTE Transactions

CASE Encoding

WRITE CASE transactions are of this form:

WRITE CASE ExpressionList1 OF ExpressionList2

ExpressionList is a single expression or a comma-separated list of
expressions.

HP VEE converts each item in ExpressionList1 to an integer and uses
it as an index into ExpressionList2. The indexed item(s) in
ExpressionList2 are written in a string format that is the same as
WRITE TEXT (default).

Note that the indexing of items in ExpressionList2 is zero-based.

WRITE BYTE 65,66,67
 WRITE BYTE 65+1024,65+2048
276 Appendix D

I/O Transaction Reference
WRITE Transactions
The transactions in Figure D-25 illustrate the behavior of CASE format.

Figure D-25. Two WRITE CASE Transactions

If the variables in Figure D-25 have these values:

2 the Real value of X
0.1 the Real value of A

then HP VEE writes this:

Str2Str1
3.1

BINARY Encoding

WRITE BINARY transactions are of this form:

WRITE BINARY ExpressionList DataType

ExpressionList is a single expression or a comma-separated list of
expressions.

DataTypes is one of the following pre-defined HP VEE data types:

n BYTE - 8-bit byte
n INT16 - 16-bit two’s complement integer
n INT32 - 32-bit two’s complement integer
n REAL32 - 32-bit IEEE 754 floating-point number
n REAL64 - 64-bit IEEE 754 floating-point number
n STRING - null terminated string
n COMPLEX - equivalent to two REALs
n PCOMPLEX -equivalent to two REALs
n COORD - equivalent to two or more REALs

 WRITE CASE 2,1 OF "Str0","Str1","Str2"
WRITE CASE X OF 1,1+A,3+A
Appendix D 277

I/O Transaction Reference
WRITE Transactions
Note HP VEE stores and manipulates all integer values as the INT32 data type,
and all real numbers as the Real data type, also known as REAL64. Thus, the
INT16 and REAL32 data types are provided for I/O only. HP VEE performs
the following data-type conversions for instrument I/O on an output
transaction.

INT32 values are individually converted to INT16 values, which are output
to the instrument. However, since the INT16 data type has a range of -32768
to 32767, values outside this range will be truncated to 16 bits.

REAL64 values are individually converted to REAL32 values, which are
output to the instrument. However, since the REAL32 data type has a smaller
range than REAL64 data type, values outside this range cannot be converted
to REAL32 and will result in an error.

BINARY encoded transactions convert each of the values specified in
ExpressionList to the HP VEE data type specified by DataType.
Each converted item is then written in the specified binary format. However,
since the binary data written is a copy of the representation in computer
memory, it is not easily shared by different computer architectures or
hardware.

BINARY encoded data has the advantage of being very compact. READ
BINARY transactions can read any corresponding WRITE BINARY data.

Note that BINARY encoding writes only the numeric portion of each data
type. For example, the parentheses and comma that can be included when
writing Complex and Coord data with TEXT encoding are never written with
BINARY encoding. Similarly, when writing arrays, BINARY encoding does
not write any Array Separators. WRITE BINARY transactions do allow
you to specify EOL ON. There is rarely a need to write EOL with BINARY
transactions because numeric data types are of fixed length and strings are
null-terminated.
278 Appendix D

I/O Transaction Reference
WRITE Transactions
BINBLOCK Encoding

WRITE BINBLOCK transactions are of this form:

WRITE BINBLOCK ExpressionList DataType

ExpressionList is a single expression or a comma-separated list of
expressions.

DataType is one of these pre-defined HP VEE data types:

n BYTE - 8-bit byte
n INT16 - 16-bit two’s complement integer
n INT32 - 32-bit two’s complement integer
n REAL32 - 32-bit IEEE 754 floating-point number
n REAL64 - 64-bit IEEE 754 floating-point number
n COMPLEX - equivalent to two REALs
n PCOMPLEX -equivalent to two REALs
n COORD - equivalent to two or more REALs

BINBLOCK writes each item in ExpressionList as a separate data block.
The block header used depends on the type of object performing the WRITE
and the object’s configuration.

Non-HP-IB
BINBLOCK

If the object is not Direct I/O to HP-IB, a WRITE BINBLOCK always
writes an IEEE 488.2 Definite Length Arbitrary Block Response Data block.
This data format is primarily used for communicating with HP-IB
instruments using Direct I/O, although it is supported by other objects.
Appendix D 279

I/O Transaction Reference
WRITE Transactions
Each Definite Length Arbitrary Block is of the form:

#<Num_digits><Num_bytes><Data>

where:

is literally the # character as shown.

<Num_digits> is an ASCII character that is a single digit (decimal
notation) indicating the number of digits in <Num_bytes>.

<Num_bytes> is a list of ASCII characters that are digits (decimal
notation) indicating the number of bytes that follow in <Data>.

<Data> is a sequence of arbitrary 8-bit data bytes.

HP-IB BINBLOCK If the object is Direct I/O to HP-IB, the behavior of WRITE BINBLOCK
transactions depends upon the Direct I/O Configuration settings for
Conformance and Binblock; these settings are accessed via the I/O ⇒
Instrument Manager menu selection.

If Conformance is set to IEEE 488.2, then WRITE BINBLOCK always
writes an IEEE 488.2 Definite Length Arbitrary Block Response Data block.

If Conformance is set to IEEE 488, then the type of header used depends
on Binblock. Binblock may specify IEEE 728 #A, #T, or #I block
headers. If Binblock is None, WRITE BINBLOCK writes an IEEE 488.2
Definite Length Arbitrary Block Response Data block.
280 Appendix D

I/O Transaction Reference
WRITE Transactions
IEEE 728 block headers are of the following forms:

#A<Byte_Count><Data>
#T<Byte_Count><Data>
#I<Data><END>

where:

is the character as shown.

A,T, I are the characters as shown.

<Byte_Count> consists of two bytes which together form a 16-bit
unsigned integer that specifies the number of bytes that follow in
<Data>. (HP VEE calculates this automatically.)

<Data> is a stream of arbitrary bytes.

<END> indicates that EOI is asserted with the last data byte transmitted.

CONTAINER Encoding

WRITE CONTAINER transactions are of this form:

WRITE CONTAINER ExpressionList

ExpressionList is a single expression or a comma-separated list of
expressions.

A WRITE CONTAINER transaction writes each item in ExpressionList
using a special HP VEE text representation.

This representation retains all the HP VEE attributes associated with the data
type written, such as shape, size, and name. Any WRITE CONTAINER data
can be retrieved without any loss of information using READ CONTAINER.

For example, this transaction:

WRITE CONTAINER 1.2345

writes this:

(Real
(data 1.2345)
)

Appendix D 281

I/O Transaction Reference
WRITE Transactions
STATE Encoding

WRITE STATE transactions are of the form:

WRITE STATE [DownloadString]

DownloadString is an optional string that allows you to specify a
download string if you have not previously specified one in the direct I/O
configuration for the corresponding instrument. This explained in greater
detail in the sections that follow.

 WRITE STATE transactions are used by Direct I/O objects to download a
learn string to an instrument. There is exactly one learn string associated
with each instance of a Direct I/O object. This learn string is uploaded by
clicking on Upload in the Direct I/O object menu. The learn string
contains the null string before Upload is selected for the first time.

The behavior of WRITE STATE is affected by the Direct I/O
Configuration settings for Conformance and Download String.
These settings are accessed via the I/O ⇒ Instrument Manager menu
selection. If Conformance is IEEE 488, the WRITE STATE transaction
writes the Download String followed by the learn string. If
Conformance is IEEE 488.2, the learn string is downloaded without any
prefix as defined by IEEE 488.2. Please refer to Controlling Instruments
with HP VEE for information about WRITE STATE transactions.
282 Appendix D

I/O Transaction Reference
WRITE Transactions
REGISTER Encoding

WRITE REGISTER is used to write values into a VXI device’s A16 memory.

WRITE REGISTER transactions are of this form:

WRITE REG: SymbolicName ExpressionList INCR
-or-
WRITE REG: SymbolicName ExpressionList

where:

SymbolicName is a name defined during configuration of a VXI device.
The name refers to a specific address within a device’s register space.
Specific data types for WRITE REGISTER transactions are:

n BYTE - 8 bit byte

n WORD16 - 16-bit two’s complement integer

n WORD32 - 32-bit two’s complement integer

n REAL32 - 32-bit IEEE 754 floating point number

These data types are also specified during configuration of a VXI device and
do not appear in the transaction.

ExpressionList is a single expression or a comma-separated list of
expressions.

INCR specifies that array data is to be written incrementally starting at the
register address specified by SymbolicName. The first element of the
array is written at the starting address, the second at that address plus an
offset equal to the length in bytes of the data type, and so forth until all array
elements have been written. If INCR is not specified in the transaction, the
entire array is written to the single location specified by SymbolicName.
Appendix D 283

I/O Transaction Reference
WRITE Transactions
MEMORY Encoding

WRITE MEMORY is used to write values into a VXI device’s A24 or A32
memory.

WRITE MEMORY transactions are of this form:

WRITE MEM: SymbolicName ExpressionList INCR
-or-
WRITE MEM: SymbolicName ExpressionList

where:

SymbolicName is a name defined during configuration of a VXI device.
The name refers to a specific address within a device’s extended memory.
Specific data types for WRITE MEMORY transactions are:

n BYTE - 8 bit byte

n WORD16 - 16-bit two’s complement integer

n WORD32 - 32-bit two’s complement integer

n REAL32 - 32-bit IEEE 754 floating point number

These data types are also specified during configuration of a VXI device and
do not appear in the transaction.

ExpressionList is a single expression or a comma-separated list of
expressions.

INCR specifies that array data is to be written incrementally starting at the
memory location specified by SymbolicName. The first element of the
array is written at that location, the second at that location plus an offset
equal to the length in bytes of the data type, and so forth until all array
elements have been written. If INCR is not specified in the transaction, the
entire array is written to the single memory location specified by
SymbolicName.
284 Appendix D

I/O Transaction Reference
WRITE Transactions
IOCONTROL Encoding

WRITE IOCONTROL transactions are of this form:

WRITE IOCONTROL CTL ExpressionList
-or-
WRITE IOCONTROL PCTL ExpressionList

ExpressionList is a single expression or a comma-separated list of
expressions.

IOCONTROL encoding is used only for Direct I/O to GPIO interfaces.

This transaction sets the control lines of a GPIO interface:

WRITE IOCONTROL CTL a

HP VEE converts the value of a to an Integer. The least X significant bits of
the Integer value are mapped to the control lines of the interface, where X is
the number of control lines.

For example, the HP 98622A GPIO interface uses two control lines, CTL0
and CTL1.

In the preceding table, 1 indicates that a control line is asserted, a 0 indicates
that it is cleared.

This transaction controls the computer-driven handshake line of a GPIO
interface:

WRITE IOCONTROL PCTL a

If the value of a is non-zero, the PCTL line is set. If the value is zero, no
action is taken. PCTL is cleared automatically by the interface when the
peripheral meets the handshake requirements.

Value Written CTL1 CTL0

0 0 0

1 0 1

2 1 0

3 1 1
Appendix D 285

I/O Transaction Reference
READ Transactions
READ Transactions

Table D-11. READ Encodings and Formats

Encodings Formats

TEXT CHAR
TOKEN
STRING
QUOTED STRING
INTEGER
OCTAL
HEX
REAL
COMPLEX
PCOMPLEX
COORD
TIME STAMP

BINARY STR
BYTE
INT16
INT32
REAL32
REAL64
COMPLEX
PCOMPLEX
COORD

BINBLOCK BYTE
INT16
INT32
REAL32
REAL64
COMPLEX
PCOMPLEX
COORD

CONTAINER Not Applicable

IOSTATUS Not Applicable
286 Appendix D

I/O Transaction Reference
READ Transactions
TEXT Encoding

READ TEXT transactions are generally very easy to use. This is because they
are able to read and discard what is irrelevant and selectively read what is
important. This works well most of the time, but occasionally you must
analyze very carefully what HP VEE considers to be irrelevant and what it
considers to be important. This will rarely (if ever) be a problem if you are
reading text files written by HP VEE, as long as you read them using the
same format used to write them. Problems are most likely to occur when
you are trying to import a file from another software application.

Table D-12 describes READ TEXT behavior in a general way only; be sure to
read all the sections that follow to understand all the possible variations.

REGISTERa BYTE
WORD16
WORD32
REAL32

MEMORYa BYTE
WORD16
WORD32
REAL32

a. Direct I/O to VXI only.

Table D-12. Formats for READ TEXT Transactions

Format Description

CHAR Reads any 8-bit character.

TOKEN Reads a contiguous list of characters as a unit; this unit is called a token.
Tokens are separated by specified delimiter characters (you specify the
delimiters). For example, in normal written English, words are tokens and
spaces are delimiters.

STRING Reads a list of 8-bit characters as a unit. Most control characters are read
and discarded. The end of the string is reached when the specified number
of characters has been read, or when a newline character is encountered.

Table D-11. READ Encodings and Formats

Encodings Formats
Appendix D 287

I/O Transaction Reference
READ Transactions
QSTRING Reads a list of 8-bit characters that conform to the IEEE 488.2 arbitrary
length string defined by a starting and ending double quote character (ASCII
34). Control characters are not discarded. Escaped characters are
expanded to a corresponding control character. The end of the string is
reached when the double quote character (ASCII 34) has been read.

INTEGER Reads a list of characters and interprets them as a decimal or non-decimal
representation of an integer. The only characters considered to be part of a
decimal NTEGER are 0123456789-+. HP VEE recognizes the prefix 0x
(hex) and all the Non-Decimal Numeric formats specified by IEEE 488.2: #H
(hex), #Q (octal), #B (binary).

OCTAL Reads a list of characters and interprets them as the octal representation of
an integer. The characters considered to be part of an OCTAL are
01234567. HP VEE also recognizes the IEEE 488.2 Non-Decimal Numeric
prefix #Q for octal numbers.

HEX Reads a list of characters and interprets them as the hexadecimal
representation of an integer. The only characters considered to be part of a
HEX are 0123456789abcdefABCDEF. The character combination 0x is the
default prefix; it is not part of the number and is read and ignored. HP VEE
also recognizes 0x and the IEEE 488.2 Non-Decimal Numeric prefix #H for
hexadecimal numbers.

REAL Reads a list of characters and interprets them as the decimal representation
of a Real (floating-point) number. All common notations are recognized
including leading signs, signed exponents, and decimal points. The
characters recognized to be part of a REAL are 0123456789-+.Ee.

HP VEE also recognizes certain characters as suffix multipliers for Real
numbers (refer to Table D-13).

COMPLEX Reads the equivalent of two REALs and interprets them as a complex
number. The first number read is the real part and the second number read
is the imaginary part.

PCOMPLEX Reads the equivalent of two REALs and interprets them as a complex
number in polar form. Some engineering disciplines refer to this as "phasor
notation". The first number read is considered to be the magnitude and the
second is the angle. You may specify units of measure for phase in the
transaction.

COORD Reads the equivalent of two or more REALs and interprets them as
rectangular coordinates.

TIME STAMP Reads one of the specified HP VEE time stamp formats which represent the
calendar date and/or time of day.

Table D-12. Formats for READ TEXT Transactions

Format Description
288 Appendix D

I/O Transaction Reference
READ Transactions
General Notes for
READ TEXT

Read to End. The READ TEXT formats support a choice between reading a
specified number of elements or reading until EOF is encountered. In a
transaction, NumElements is a single expression or a comma-separated
list of expressions that specifies the dimensions of each variable in
VarList. If the first expression is an asterisk (*), the transaction will read
data until an EOF is encountered. Read to end is supported only for From
File, From String, From StdIn, Execute Program, To/From
Named Pipe, To/From Socket, and To/From HP BASIC/UX
transactions.

Only the first dimension can have an asterisk rather than a number.

For example, the following transaction, reading from a file:

READ TEXT a REAL ARRAY:*,10

will read until EOF is encountered resulting in a two dimensional array with
ten columns. The number of rows is dependent on the amount of data in the
file. The total number of data elements read must be evenly divisible by the
product of the known dimension sizes, in this example: 10. If this criteria is
not met, an error will occur.

Number of Characters Per READ. These READ TEXT formats support a
choice between DEFAULT NUM CHARS and MAX NUM CHARS:

STRING
INTEGER
OCTAL
HEX
REAL

This section discusses the effects of DEFAULT NUM CHARS and
MAX NUM CHARS on these formats.
Appendix D 289

I/O Transaction Reference
READ Transactions
The basic difference between DEFAULT NUM CHARS and MAX NUM CHARS
is this:

n DEFAULT NUM CHARS causes HP VEE to read and ignore most
characters that do not appear to be part of the number or string it expects.

n MAX NUM CHARS allows you to read up to the specified number of 8-bit
characters in an attempt to build the type of number or string specified.
HP VEE stops reading characters as soon as the READ is satisfied. All
characters are read and HP VEE attempts to convert them to the data
type specified in the transaction.

If you specify DEFAULT NUM CHARS, the transaction reads as many
characters as it requires to fill each variable. Characters that are not
meaningful to the specified data type are read and ignored.

If you specify MAX NUM CHARS, HP VEE makes no attempt to sort out
characters that are not meaningful to the data type specified. If non-
meaningful characters are encountered, they are read and may later generate
an error.

In either case, newline and end-of-file are recognized as terminators for
strings or numbers. For numeric formats, white space encountered before
any significant characters (digits) is read and ignored; after reading
significant characters, white space or other non-numeric characters
terminate the current READ. These are the general behaviors; read the
examples that follow for additional detail.

Consider this example that distinguishes between the behaviors of

DEFAULT NUM CHARS and MAX NUM CHARS using INTEGER format.
Assume that you are trying to read a file containing this data:

bird dog cat 12345 horse

It is impossible to extract the integer 12345 from this data with a
READ TEXT INTEGER transaction using MAX NUM CHARS no matter how
many characters are read. This is because the characters bird dog cat are
290 Appendix D

I/O Transaction Reference
READ Transactions
always read before the digits, they cannot be converted to an Integer, and
this generates an error.

DEFAULT NUM CHARS will extract the integer 12345 by reading and
ignoring bird dog cat and treating the white space following 5 as a
delimiter.

Effects of Quoted Strings. The presence of quoted strings affects the
behavior of READ TEXT QSTR and READ TEXT TOKEN for all I/O paths and
READ TEXT STRING for instrument or interface I/O. In this discussion, a
quoted string means a set of characters beginning and ending with a double
quote character and no embedded (non-escaped) double quote characters.
The double quote character is ASCII 34 decimal. The presence of double
quotes affects the way that these READ transactions group characters into
strings and tokens, and how embedded control and escape characters are
handled.

In this discussion, the terms control character and escape character have
specific meaning. A control character is a single byte of data corresponding
to one of the ASCII characters 0-31 decimal. For example, linefeed is ASCII
10 decimal and the symbol <LF> denotes linefeed character in this
discussion. The string \n is a human-readable escape character representing
linefeed that is recognized by HP VEE.

The behavior of certain transactions when dealing with quoted strings is
dependent on the particular I/O path. For all I/O paths except instrument I/
O, READ TEXT QSTR treats quoted strings specially. For all I/O paths
except instrument I/O, READ TEXT STRING does not recognize quoted
strings. For instrument I/O there is no READ TEXT QSTR transaction.
Instead, READ TEXT STRING recognizes quoted stings and deals with them
accordingly. This is done since quoted strings have special meaning in the
IEEE 488.2 specification. For all I/O paths including instruments, READ
TEXT TOKEN treats quoted strings specially. In the following discussions,
we will assume the I/O path to be file I/O.

When a string does not begin and end with double quotes, control characters
other than linefeed are read and discarded by READ TEXT STRING
transactions and by READ TEXT TOKEN transactions that specify SPACE
DELIM. In both STRING and TOKEN transactions, linefeed terminates the
READ. Escape character sequences, such as \n (newline) are simply read as
the two characters \ and n.
Appendix D 291

I/O Transaction Reference
READ Transactions
Within double quoted strings, READ TEXT QSTR and READ TEXT TOKEN
will read all enclosed characters (including control characters) store them in
the input variable. Embedded linefeeds are read and treated like any other
character; they do not terminate the current READ. Escape character
sequences are read and translated to their single-character counterpart.

Grouping effects are best explained by using an example. For the discussion
in the rest of this section, the data being read is a file with the contents
shown in Figure D-26.

Figure D-26. Quoted and Non-Quoted Data

Assume that you read the file shown in Figure D-26 using From File with
these transactions:

READ TEXT x QSTR
READ TEXT y QSTR

After reading the file, the results are:

x = This is in quotes.
y = This is not.

Note that the double quotes are interpreted as delimiters and do not appear in
the input variable.

Now assume that you read the file shown in Figure D-26 using From File
with these transactions:

READ TEXT x QSTR MAXFW:4
READ TEXT y QSTR

After reading the file, the results are:

x = This
y = This is not.

Here the double quotes are still acting a delimiters; the first transaction reads
from double quote to double quote and assigns the first four characters to x.
This leaves the file’s read pointer positioned before the second occurrence of
This. The second transaction reads the same string as before.

"This is in quotes." This is not.
292 Appendix D

I/O Transaction Reference
READ Transactions
Next, assume that you read the file shown in Figure D-26 using From File
with these transactions:

READ TEXT x TOKEN
READ TEXT y QSTR

Now after reading the file, the results are:

x = This is in quotes.
y = This is not.

Here the double quotes effectively make the entire first sentence into a single
token. Even though default TOKEN delimiter is white space, the entire
quoted string is treated as a single token. In addition, TOKEN reads and
discards the double quote characters.

CHAR Format READ TEXT CHAR transactions are of this form:

READ TEXT VarList CHAR:NumChar ARRAY:NumStr

VarList is a single Text variable or a comma-separated list of Text
variables.

NumChar specifies the number of 8-bit characters that must read to fill each
element of each variable in VarList.

NumStr is a single expression or a comma-separated list of expressions that
specifies the dimensions of each variable in VarList. If the transaction is
configured to read a scalar, the ARRAY keyword does not appear in the
transaction. Note that ARRAY:1 is a one-dimensional array with one
element. HP VEE makes a distinction between scalars and one-dimensional
arrays containing only one element.

CHAR format is useful when you wish to simply read one character at a time,
or when you need to read every character without ignoring any incoming
data.

This transaction reads two two-dimensional Text arrays; each element in
each array contains two characters.

READ TEXT X,Y CHAR:2 ARRAY:2,2
Appendix D 293

I/O Transaction Reference
READ Transactions
If a file read by the previous transaction contains these characters:

<space>ABCDEFG"AB"<LF>’CD

then the variables X and Y contain these values after the READ:

X [0 0] = <space>A
X [0 1] = BC
X [1 0] = DE
X [1 1] = FG

Y [0 0] = "A
Y [0 1] = B"
Y [1 0] = <LF>’
Y [1 1] = CD

The symbol <space> means the single character, space (ASCII 32 decimal).
The symbol <LF> means the single character, linefeed (ASCII 10 decimal).
Note that space, linefeed, and double quotes are read without any special
consideration or interpretation.

TOKEN Format READ TEXT TOKEN transactions are of this form:

READ TEXT VarList TOKEN Delimiter ARRAY:NumElements

VarList is a single Text variable or a comma-separated list of Text
variables.

Delimiter specifies the combinations of characters that terminate
(delimit) each token.

NumElements is a single expression or a comma-separated list of
expressions that specifies the dimensions of each variable in VarList. If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. Note that ARRAY:1 is a one-dimensional array
with one element. HP VEE makes a distinction between scalars and one-
dimensional arrays containing only one element.

TOKEN format allows you to define the delimiter (boundary) for tokens using
one of these choices for Delimiter:

n SPACE DELIM
n INCLUDE CHARS
n EXCLUDE CHARS
294 Appendix D

I/O Transaction Reference
READ Transactions
The following discussion of delimiters explains how the choice of delimiters
affects reading a file with these contents:

Figure D-27. Data for READ TOKEN

The file contains only the letter O, not the digit zero.

Note that there is an invisible linefeed character at the end of each of the first
four lines of the file in Figure D-27. The figure shows the file as it would
appear in a text editor like vi.

SPACE DELIM. If you use SPACE DELIM, tokens are terminated by any
white space. White space includes spaces, tabs, newline, and end-of-file.
This corresponds roughly to words in written English. Using
SPACE DELIM, you could read a file containing a paragraph of prose and
separate out individual words.

Note that double quoted strings receive special treatment. Double quoted
strings are read as a single token and the double quotes are stripped away.
Control characters (ASCII 0-31 decimal) embedded in double-quoted strings
are returned in the output variable. Escape characters (such as \n)
embedded in double-quoted strings are converted into their equivalent
control characters. This special treatment of double-quoted strings applies
only to SPACE DELIM transactions; INCLUDE CHARS and EXCLUDE CHARS
treat double quotes, escapes, and control characters the same as any other
character.

A phrase.
 "A phrase."

 Tab follows.
 XOXXOOXXXOOOXXXX

 XAXXBCXXXDEF
Appendix D 295

I/O Transaction Reference
READ Transactions
If you read the data shown in Figure D-27 using SPACE DELIM with this
transaction:

READ TEXT a TOKEN ARRAY:8

then the variable a contains these values:

a[0] = A
a[1] = phrase.
a[2] = A phrase.
a[3] = Tab
a[4] = follows
a[5] = .
a[6] = XOXXOOXXXOOOXXXX
a[7] = XAXXBCXXXDEF

INCLUDE CHARS. If you use INCLUDE CHARS, you can specify a list of
characters to be "included" in tokens returned by the READ. These specified
characters will be the only characters returned in any token. Any character
other than the specified INCLUDE characters terminates the current token.
The terminating characters are not included in the token and are stripped
away.

If HP VEE reads the data shown in Figure D-27 using INCLUDE CHARS
with this transaction:

READ TEXT a TOKEN INCLUDE:"X" ARRAY:7

then the variable a contains these values:

a[0] = X
a[1] = XX
a[2] = XXX
a[3] = XXXX
a[4] = X
a[5] = XX
a[6] = XXX
296 Appendix D

I/O Transaction Reference
READ Transactions
If HP VEE reads the data shown in Figure D-27 using INCLUDE CHARS
with this transaction:

READ TEXT a TOKEN INCLUDE:"OXZ" ARRAY:4

then the variable a contains these values:

a[0] = XOXXOOXXXOOOXXXX
a[1] = X
a[2] = XX
a[3] = XXX

Note that the first character in the INCLUDE list is the letter O, not the digit
zero.

Assume that you are trying to read a file containing the data in Figure D-28.

Figure D-28. Data for READ TOKEN

If you try to read the file in Figure D-28 using this transaction:

READ TEXT x,y,z TOKEN INCLUDE:"1234567890"

then the Text variables x, y, and z will contain these values:

x = 111
y = 222
z = 333

Another way to do this is to specify an ARRAY greater than one and read data
into an array. For example, if you read the data in Figure D-28 using this
transaction:

READ TEXT x TOKEN INCLUDE:"1234567890" ARRAY:3

then the Text variable x contains these values:

x[0] = 111
x[1] = 222
x[2] = 333

111 222 333 444 555
Appendix D 297

I/O Transaction Reference
READ Transactions
EXCLUDE CHARS. If you use EXCLUDE CHARS, you can specify a list of
characters, any one of which will terminate the current token. The
terminating characters are not included in the token. They are read and
discarded.

If you read the data shown in Figure D-27 using EXCLUDE with this
transaction:

READ TEXT a TOKEN EXCLUDE:"X" ARRAY:8

then the variable a contains these values:

a[0] = A phrase.<LF>"A phrase."<LF>Tab follows .<LF>
a[1] = O
a[2] = OO
a[3] = OOO
a[4] = <LF>
a[5] = A
a[6] = BC
a[7] = DEF<LF>

Assume the data shown in Figure D-29 is sent to HP VEE from an
instrument.

Figure D-29. Data for READ TOKEN

If HP VEE reads the data in Figure D-29 with this transaction:

READ TEXT x TOKEN EXCLUDE:"+" ARRAY:7

then the variable x will contain these values:

x[0] = null string (empty)
x[1] = 1.23
x[2] = 4.98
x[3] = 0.45
x[4] = 2.34
x[5] = 0.01
x[6] = 23.45

Note that even though seven "numbers" were available, only six were read.
At the end of this transaction, HP VEE has read seven tokens terminated by

++1.23++4.98++0.45++2.34++0.01++23.45++12.2++
298 Appendix D

I/O Transaction Reference
READ Transactions

ed

 the

ized
cters

ding
the +, including the first character which was terminated before it was filled
with any data.

STRING Format READ TEXT STRING transactions are of this form:

READ TEXT VarList STR ARRAY:NumElements
-or-
READ TEXT VarList STR MAXFW:NumChars ARRAY:NumElements

VarList is a single Text variable or a comma-separated list of Text
variables.

NumChars specifies the maximum number of 8-bit characters that can be
read in an attempt to build a string.

NumElements is a single expression or a comma-separated list of
expressions that specifies the dimensions of each variable in VarList. If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. Note that ARRAY:1 is a one-dimensional array
with one element. HP VEE makes a distinction between scalars and one-
dimensional arrays containing only one element.

This transaction reads all incoming characters and returns strings. Leading
spaces are deleted. The following discussion pertains to instrument I/O paths
only, such as HP-IB or VXI. All other I/O paths, such as files or named-
pipes, will not treat Quoted Strings specially. Please refer to “Effects of
Quoted Strings” on page 291 for details about the effects of double quot
strings on READ TEXT STRING.

Effects of Control and Escape Characters. In this discussion, the terms
control character and escape character have specific meaning. A control
character is a single byte of data corresponding to one of the ASCII
characters 0-31 decimal. For example, linefeed is ASCII 10 decimal and
symbol <LF> denotes linefeed character in this discussion. The string \n is
a human-readable escape character representing linefeed that is recogn
by HP VEE. HP VEE uses escape characters to represent control chara
within quoted strings.

Control characters and escape characters are handled differently depen
on whether or not they appear within double quoted strings.
Appendix D 299

I/O Transaction Reference
READ Transactions
Outside double quoted strings, control characters other than linefeed are read
and discarded. Linefeed terminates the current string. Escape characters,
such as \n, are simply read as two individual characters (\ and n).

Within double quoted strings, control characters and escape characters are
read and included in the string returned by the READ. A linefeed within a
double quoted string does not terminate the current string. Escape characters,
such as \n, are interpreted as their single character equivalent (<LF>) and
are included in the returned string as a control character.

Assume you wish to read the following string data using READ TEXT
STRING transactions:

Simple string.
Random \n % $ * ‘A'
"In quotes."
"In quotes
with control."
"In quotes\nwith escape."

If you read the string data using this transaction:

READ TEXT x STR ARRAY:5

then the variable x contains these values:

a[0] = Simple string.
a[1] = Random \n % $ * ‘A'
a[2] = In quotes.
a[3] = In quotes<LF>with control.
a[4] = In quotes<LF>with escape.

If you read the same string data using this transaction:

READ TEXT x STR MAXFW:16 ARRAY:5

then the variable x contains these values:

a[0] = Simple string.
a[1] = Random \n % $ *
a[2] = ‘A'
a[3] = In quotes.
a[4] = In quotes<LF>with c

Note that the transaction terminates the current READ whenever 16
characters have been read (a[1]) or when a non-quoted <LF> (a[2]) is
300 Appendix D

I/O Transaction Reference
READ Transactions

 the

ized
cters

ding
read. Double quoted strings are read from double quote to double quote and
the first 16 delimited characters are returned (a[4]).

QUOTED STRING
Format

READ TEXT QUOTED STRING transactions are of this form:

READ TEXT VarList QSTR ARRAY:NumElements
-or-
READ TEXT VarList QSTR MAXFW:NumChars ARRAY:NumElements

VarList is a single Text variable or a comma-separated list of Text
variables.

NumChars specifies the maximum number of 8-bit characters that can be
read in an attempt to build a string.

NumElements is a single expression or a comma-separated list of
expressions that specifies the dimensions of each variable in VarList. If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. Note that ARRAY:1 is a one-dimensional array
with one element. HP VEE makes a distinction between scalars and one-
dimensional arrays containing only one element.

This transaction reads all incoming characters and returns strings. The
following discussion pertains to all non-instrument I/O paths. Instrument I/
O paths do not implement the READ TEXT QSTR transaction. Please refer to
“Effects of Quoted Strings” on page 291 for details about the effects of
double quoted strings on READ TEXT STRING.

Effects of Control and Escape Characters. In this discussion, the terms
control character and escape character have specific meaning. A control
character is a single byte of data corresponding to one of the ASCII
characters 0-31 decimal. For example, linefeed is ASCII 10 decimal and
symbol <LF> denotes linefeed character in this discussion. The string \n is
a human-readable escape character representing linefeed that is recogn
by HP VEE. HP VEE uses escape characters to represent control chara
within quoted strings.

Control characters and escape characters are handled differently depen
on whether or not they appear within double quoted strings.
Appendix D 301

I/O Transaction Reference
READ Transactions
Outside double quoted strings, control characters other than linefeed are read
and discarded. Linefeed terminates the current string. Escape characters,
such as \n, are simply read as two individual characters (\ and n).

Within double quoted strings, control characters and escape characters are
read and included in the string returned by the READ. A linefeed within a
double quoted string does not terminate the current string. Escape characters,
such as \n, are interpreted as their single character equivalent (<LF>) and
are included in the returned string as a control character.

Assume you wish to read the following string data using READ TEXT
QUOTED STRING transactions:

Simple string.
Random \n % $ * ‘A'
"In quotes."
"In quotes
with control."
"In quotes\nwith escape."

If you read the string data using this transaction:

READ TEXT x QSTR ARRAY:5

then the variable x contains these values:

a[0] = Simple string.
a[1] = Random \n % $ * ‘A'
a[2] = In quotes.
a[3] = In quotes<LF>with control.
a[4] = In quotes<LF>with escape.

If you read the same string data using this transaction:

READ TEXT x QSTR MAXFW:16 ARRAY:5

then the variable x contains these values:

a[0] = Simple string.
a[1] = Random \n % $ *
a[2] = ‘A'
a[3] = In quotes.
a[4] = In quotes<LF>with c

Note that the transaction terminates the current READ whenever 16
characters have been read (a[1]) or when a non-quoted <LF> (a[2]) is
302 Appendix D

I/O Transaction Reference
READ Transactions
read. Double quoted strings are read from double quote to double quote and
the first 16 delimited characters are returned (a[4]).

INTEGER Format READ TEXT INTEGER transactions are of this form:

READ TEXT VarList INT ARRAY:NumElements
-or-
READ TEXT VarList INT MAXFW:NumChars ARRAY:NumElements

VarList is a single Integer variable or a comma-separated list of Integer
variables.

NumChars specifies the maximum number of 8-bit characters that can be
read in an attempt to build a number.

NumStr is a single expression or a comma-separated list of expressions that
specifies the dimensions of each variable in VarList. If the transaction is
configured to read a scalar, the ARRAY keyword does not appear in the
transaction. Note that ARRAY:1 is a one-dimensional array with one
element. HP VEE makes a distinction between scalars and one-dimensional
arrays containing only one element.
Appendix D 303

I/O Transaction Reference
READ Transactions
READ TEXT INTEGER transactions interpret incoming characters as 32-bit,
two’s complement integers. The valid range for these integers is 2 147 483
647 to -2 147 483 648. Any numbers outside this range wrap around so there
is never an overflow condition. For example, 2 147 483 648 is interpreted as
-2 147 483 648. As it starts to build a number, HP VEE discards any leading
characters that are not recognized as part of a number. Once HP VEE starts
building a number, any character that is not recognized as part of a number
terminates the READ for that number. These are the only combinations of
characters that are recognized as part of an INTEGER:

All of the following notations are interpreted as the Integer value 15
decimal:

15
+15
015
0xF
0xf
#b1111
#Q17
#hF

Notation Characters Recognized

Decimal Valid characters are +-0123456789. Leading
zeros are not interpreted as an octal prefix as they
are in HP VEE data entry fields.

HP VEE
hexadecimal

HP VEE interprets 0x as a prefix for a hexadecimal
number. Valid characters following the prefix are
0123456789aAbBcCdDeEfF.

IEEE 488.2 binary HP VEE interprets #b or #B as a prefix for a binary
number. Valid characters following the prefix are 0
and 1.

IEEE 488.2 octal HP VEE interprets #q or #Q as a prefix for an octal
number. Valid characters following the prefix are
01234567.

IEEE 488.2
hexadecimal

HP VEE interprets #h or #H as a prefix for a
hexadecimal number. Valid characters following the
prefix are 0123456789aAbBcCdDeEfF.
304 Appendix D

I/O Transaction Reference
READ Transactions
OCTAL Format READ TEXT OCTAL transactions are of this form:

READ TEXT VarList OCT ARRAY:NumElements
-or-
READ TEXT VarList OCT MAXFW:NumChars

ARRAY:NumElements

VarList is a single Integer variable or a comma-separated list of Integer
variables.

NumChars specifies the number of 8-bit characters that can be read in an
attempt to build a number.

NumElements is a single expression or a comma-separated list of
expressions that specifies the dimensions of each variable in VarList. If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. Note that ARRAY:1 is a one-dimensional array
with one element. HP VEE makes a distinction between scalars and one-
dimensional arrays containing only one element.

READ TEXT OCTAL transactions interpret incoming characters as octal
digits representing 32-bit, two’s complement integers. The valid range for
these integers is 2 147 483 647 decimal to -2 147 483 648 decimal.

If the transaction specifies a MAX NUM CHARS (MAXFW), the octal number
read may contain more than 32 bits of data. For example, assume HP VEE
reads the following octal data:

377237456214567243777

using this transaction:

READ TEXT x OCT MAXFW:21

HP VEE reads all the digits in octal data, but uses only the last 11 digits
(14567243777) to build a number for the value of x. This is because each
digit corresponds to 3 bits and the octal number must be stored in an
HP VEE Integer, which contains 32 bits. Eleven octal digits yield 33 bits;
the most significant bit is dropped to fit the value in an HP VEE Integer.
There is no possibility of overflow.

If the transaction specifies DEFAULT NUM CHARS, it will continue to read
characters until it builds enough numbers to fill each variable in VarList.
Appendix D 305

I/O Transaction Reference
READ Transactions
Linefeed characters will not terminate number building early. For example,
this transaction:

READ TEXT x OCT ARRAY:4

interprets each line of the following octal data as the same set of four octal
numbers:

0345 067 003<LF>0377<LF>
345 67 3 377<EOF>
345,67,3,377,45,67<EOF>

The symbol <LF> represents the single character linefeed (ASCII 10
decimal). The symbol <EOF> represents the end-of-file condition.

HEX Format READ TEXT HEX transactions are of this form:

READ TEXT VarList HEX ARRAY:NumElements
-or-
READ TEXT VarList HEX MAXFW:NumChars ARRAY:NumElements

VarList is a single Integer variable or a comma-separated list of Integer
variables.

NumChars specifies the number of 8-bit characters that can be read in an
attempt to build a number.

NumElements is a single expression or a comma-separated list of
expressions that specifies the dimensions of each variable in VarList. If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. Note that ARRAY:1 is a one-dimensional array
with one element. HP VEE makes a distinction between scalars and one-
dimensional arrays containing only one element.

READ TEXT HEX transactions interpret incoming characters as hexadecimal
digits representing 32-bit, two’s complement integers. The valid range for
these integers is 2 147 483 647 decimal to -2 147 483 648 decimal.
306 Appendix D

I/O Transaction Reference
READ Transactions
If the transaction specifies a MAX NUM CHARS (MAXFW), the hexadecimal
number read may contain more than 32 bits of data. For example, assume
HP VEE reads the following hexadecimal data:

ad2469Ff725BCdef37964 hexadecimal data

using this transaction:

READ TEXT x HEX MAXFW:21

HP VEE reads all the digits in the hexadecimal data, but uses only the last 8
digits (def37964) to build a number for the value of x. This is because each
digit corresponds to 4 bits and the hexadecimal number must be stored in an
HP VEE Integer, which contains 32 bits. Eight hexadecimal digits yields
exactly 32 bits. There is no possibility of overflow.

Assume HP VEE reads the same hexadecimal data, but with a different MAX
NUM CHARS, as in this transaction:

READ TEXT x HEX MAXFW:3 ARRAY:7

In this case, the transaction reads the same data and interprets it as seven
Integers, each comprising three hexadecimal digits.

If the transaction specifies DEFAULT NUM CHARS, it will continue to read
characters until it builds enough numbers to fill each variable in VarList.
Each number will read exactly 8 hexadecimal digits. Linefeed characters
will not terminate number building early.

Assume HP VEE reads the same hexadecimal data, but with
DEFAULT NUM CHARS, as in this transaction:

READ TEXT x HEX ARRAY:2

In this case, the transaction reads the same data and interprets it as two
Integers, each comprising eight hexadecimal digits. The last five digits
(37946) are not read.
Appendix D 307

I/O Transaction Reference
READ Transactions
REAL Format READ TEXT REAL transactions are of this form:

READ TEXT VarList REAL ARRAY:NumElements
-or-
READ TEXT VarList REAL MAXFW:NumChars ARRAY:NumElements

VarList is a single Real variable or a comma-separated list of Real
variables.

NumChars specifies the maximum number of 8-bit characters that can be
read in an attempt to build a number.

NumElements is a single expression or a comma-separated list of
expressions that specifies the dimensions of each variable in VarList. If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. Note that ARRAY:1 is a one-dimensional array
with one element. HP VEE makes a distinction between scalars and one-
dimensional arrays containing only one element.

The decimal number read by this transaction is interpreted as an HP VEE
Real which is a 64-bit IEEE 754 floating-point number. The range of these
numbers is:

-1.797 693 134 862 315E+308
-2.225 073 858 507 202E-307
 0
 2.225 073 858 507 202E-307
 1.797 693 134 862 315E+308

If the transaction specifies a MAX NUM CHARS (MAXFW), the Real number
read may contain more than 17 digits of data. For example, assume HP VEE
reads the following real data:

1.234567890123456789 real number data

using this transaction:

READ TEXT x REAL MAXFW:19

HP VEE reads all the digits in the real data, but uses only the 17 most-
significant digits of the mantissa to build a number for the value of x. This is
because each Real contains a 54-bit mantissa, which is equivalent to more
than 16 but less than 17 decimal digits. As a result, x has the value
1.2345678901234567. Text to Real conversions are not guaranteed to
308 Appendix D

I/O Transaction Reference
READ Transactions
yield the same value to the least-significant digit. Comparisons of the two
least-significant bits is inadvisable.

Assume HP VEE reads the same real number data, but with a different MAX
NUM CHARS, as in this transaction:

READ TEXT x REAL MAXFW:6 ARRAY:3

In this case, the transaction reads the same data and interprets it as 3 Real
numbers, each comprised of six decimal characters. The last two characters
are not read.

If the transaction specifies DEFAULT NUM CHARS, it will continue to read
characters until it builds enough numbers to fill each variable in VarList.
Each number will read at most 17 decimal digits. Linefeed characters, white
space and other non-numeric characters will terminate number building
before 17 digits have been read.
Appendix D 309

I/O Transaction Reference
READ Transactions
READ TEXT REAL transactions recognize most commonly used decimal
notations for Real numbers including leading signs, decimal points, and
signed exponents. The characters +-.0123456789Ee are recognized as
valid parts of a Real number by all READ TEXT REAL transactions. If the
transaction specifies DEFAULT NUM CHARS, the suffix characters shown in
Table D-13 are also recognized. The suffix character must immediately
follow the last digit of the number with no intervening white space.

The following Text data represents six real numbers:

1001
+1001.
1001.0
1.001E3
+1.001E+03
1.001K

Table D-13. Suffixes for REAL Numbers

Suffix Multiplier

P 1015

T 1012

G 109

M 106

k or K 103

m 10-3

u 10-6

n 10-9

p 10-12

f 10-15
310 Appendix D

I/O Transaction Reference
READ Transactions
If HP VEE reads the real text data with this transaction:

READ TEXT x REAL ARRAY:6

then each element of the Real variable x contains the value 1001.

If HP VEE reads the same data with this transaction:

READ TEXT x REAL MAXFW:20 ARRAY:6

then the first five elements of the Real variable x contain the value 1001 and
the sixth element contains the value 1.001.

COMPLEX,
PCOMPLEX, and
COORD Formats

COMPLEX, PCOMPLEX, and COORD correspond to the HP VEE multi-field
data types with the same names. The behavior of all three READ formats is
very similar. The behaviors described in this section apply to all three
formats except as noted.

Just as the HP VEE data types Complex, PComplex, and Coord are
composed of multiple Real numbers, the COMPLEX, PCOMPLEX, and COORD
formats are compound forms of the REAL format. Each constituent Real
value of the multi-field data types is read using the same rules that apply to
an individual REAL formatted value.

COMPLEX Format. READ TEXT COMPLEX transactions are of this form:

READ TEXT VarList CPX ARRAY:NumElements

Each READ TEXT COMPLEX transaction reads the equivalent of two REAL
formatted numbers. The first number read is interpreted as the real part and
the second number read is interpreted as the imaginary part.

PCOMPLEX Format. READ TEXT PCOMPLEX transactions are of this
form:

READ TEXT VarList PCX:PUnit ARRAY:NumElements

PUnit specifies the units of angular measure in which the phase of the
PComplex is measured.

Each READ TEXT PCOMPLEX transaction reads the equivalent of two REAL
formatted numbers. The first number read is interpreted as the magnitude
and the second number read is interpreted as the phase.
Appendix D 311

I/O Transaction Reference
READ Transactions
If any transaction reading COMPLEX, PCOMPLEX, or COORD formats
encounters an opening parenthesis, it expects to find a closing parenthesis.

Assume you wish to read a file containing the following data containing
parentheses:

(1.23 , 3.45 (6.78 , 9.01) (1.23 , 4.56)

If HP VEE reads the data with this transaction:

READ TEXT x,y CPX

then the variables x and y contain these Complex values:

x = (1.23 , 3.45)
y = (1.23 , 4.56)

Note that the transaction read past 6.78 and 9.01 to find the closing
parenthesis. If parentheses had been omitted from the data entirely, y would
have the value (6.78 , 9.01).

COORD Format. READ TEXT COORD transactions are of this form:

READ TEXT VarList COORD:NumFields ARRAY:NumElements

VarList is a single Coord variable or a comma-separated list of Coord
variables.

NumFields is a single variable or expression that specifies the number of
rectangular dimensions in each Coord value. This value must be 2 or more
for the READ to execute without error.

NumElements is a single expression or a comma-separated list of
expressions that specifies the dimensions of each variable in VarList. If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. Note that ARRAY:1 is a one-dimensional array
with one element. HP VEE makes a distinction between scalars and one-
dimensional arrays containing only one element.
312 Appendix D

I/O Transaction Reference
READ Transactions
BINARY Encoding

READ BINARY transactions are of this form:

READ BINARY VarList DataType ARRAY:NumElements

VarList is a single variable or a comma-separated list of variables.

DataType is one of the following pre-defined formats corresponding to the
HP VEE data type with the same name:

n BYTE - 8-bit byte
n INT16 - 16-bit two’s complement integer
n INT32 - 32-bit two’s complement integer
n REAL32 - 32-bit IEEE 754 floating-point number
n REAL64 - 64-bit IEEE 754 floating-point number
n STRING - null terminated string
n COMPLEX - equivalent to two REALs
n PCOMPLEX -equivalent to two REALs
n COORD - equivalent to two or more REALs

Note HP VEE stores and manipulates all integer values as the INT32 data type,
and all real numbers as the Real data type, also known as REAL64. Thus, the
INT16 and REAL32 data types are provided for I/O only. HP VEE performs
the following data-type conversions for instrument I/O on an input
transaction.

INT16 values from an instrument are individually converted to INT32
values by HP VEE. This conversion assumes that the INT16 data was signed
data. If you need the resulting INT32 data in unsigned form, simply pass the
data through a formula object with the formula

BITAND(a, 0xFFFF)

REAL32 values from an instrument are individually converted to REAL64
values by HP VEE.

NumElements is a single expression or a comma-separated list of
expressions that specifies the dimensions of each variable in VarList. If
the first expression is an asterisk (*), the transaction will read data until an
Appendix D 313

I/O Transaction Reference
READ Transactions
EOF is encountered. Read to end is supported only for From File, From
String, From StdIn, Execute Program, To/From Named Pipe, and
To/From HP BASIC/UX transactions.

Only the first dimension can have an asterisk rather than a number. If the
transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. Note that ARRAY:1 is a one-dimensional array
with one element. HP VEE makes a distinction between scalars and one-
dimensional arrays containing only one element.

For example, the following transaction, reading from a file:

READ BINARY a REAL64 ARRAY:*,10

will read until EOF is encountered, resulting in a two dimensional array with
10 columns. The number of rows is dependent on the amount of data in the
file. The total number of data elements read must be evenly divisible by the
product of the known dimension sizes, in this example: 10.

READ BINARY transactions expect that incoming data is in exactly the same
format that would be produced by an equivalent WRITE BINARY
transaction.

BINARY encoded data has the advantage of being very compact, but it is not
easily shared with non-HP VEE applications.

BINBLOCK Encoding

READ BINBLOCK transactions are of this form:

READ BINBLOCK VarList DataType ARRAY:NumElements

VarList is a single variable or a comma-separated list of variables.

DataType is one of these pre-defined HP VEE data types:

n BYTE - 8-bit byte
n INT16 - 16-bit two’s complement integer
n INT32 - 32-bit two’s complement integer
n REAL32 - 32-bit IEEE 754 floating-point number
n REAL64 - 64-bit IEEE 754 floating-point number
n COMPLEX - equivalent to two REALs
n PCOMPLEX -equivalent to two REALs
n COORD - equivalent to two or more REALs
314 Appendix D

I/O Transaction Reference
READ Transactions
NumElements is a single expression or a comma-separated list of
expressions that specifies the dimensions of each variable in VarList. The
number of columns is equal to the number of channels contained by the
binblock. The number of rows is equal to the number of readings per
channel. Only the first dimension can have an asterisk rather than a number.

If the first expression is an asterisk (*), the transaction will read data until an
EOF is encountered. Read to end is supported only for From File, From
String, From StdIn, Execute Program, To/From Named Pipe,
To/From Socket, and To/From HP BASIC/UX transactions.

If the transaction is configured to read a one-dimension array, for a single
channel, the single dimension represents rows and can have an asterisk.

 For example, the following transaction, reading from a file:

READ BINBLOCK a REAL64 ARRAY:*,10

will read until EOF is encountered, resulting in a two dimensional array with
10 columns. Each column represents an instrument channel. The number of
rows is dependent on the amount of data in each channel. The total number
of data elements contained by the binblock must be evenly divisible by the
number of columns, in this example: 10.

You do not need to specify any additional information about the format of
incoming data; the block header contains sufficient information.
READ BINBLOCK can read any of the block formats described previously
with WRITE BINBLOCK transactions.

The following transaction reads two traces from an oscilloscope that formats
its traces as IEEE 488.2 Definite Length Arbitrary Block Response Data:

READ BINBLOCK a,b REAL
Appendix D 315

I/O Transaction Reference
READ Transactions
CONTAINER Encoding

READ CONTAINER transactions are of the form:

READ CONTAINER VarList

VarList is a single variable or a comma-separated list of variables.

READ CONTAINER transactions reads data stored in the special text
representation written by WRITE CONTAINER transactions. No additional
specifications, such as format, need to be specified with READ CONTAINER
since that information is part of the container.

REGISTER Encoding

READ REGISTER is used to read values from a VXI device’s A16 memory.

READ REGISTER transactions are of this form:

READ REG: SymbolicName ExpressionList INCR ARRAY:NumElements
-or-
READ REG: SymbolicName ExpressionList ARRAY:NumElements

where:

SymbolicName is a name defined during configuration of a VXI device.
The name refers to a specific address within a device’s register space.
Specific data types for READ REGISTER transactions are:

n BYTE - 8 bit byte
n WORD16 - 16-bit two’s complement integer
n WORD32 - 32-bit two’s complement integer
n REAL32 - 32-bit IEEE 754 floating point number

These data types are also specified during configuration of a VXI device and
do not appear in the transaction.

ExpressionList is a single expression or a comma-separated list of
expressions.

INCR specifies that array data is to be read from the register incrementally
starting at the address specified by SymbolicName. The first element of
the array is read from the starting address, the second from that address plus
an offset equal to the length in bytes of the data type, and so forth until all
316 Appendix D

I/O Transaction Reference
READ Transactions
array elements have been read. If INCR is not specified in the transaction, the
entire array is read from the single location specified by SymbolicName.

NumElements is a single expression or a comma-separated list of
expressions that specifies the dimensions of each variable in VarList. If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. Note that ARRAY:1 is a one-dimensional array
with one element. HP VEE makes a distinction between scalars and one-
dimensional arrays containing only one element.

MEMORY Encoding

READ MEMORY is used to read values from a VXI device’s A24 or A32
memory.

READ MEMORY transactions are of this form:

READ MEM: SymbolicName ExpressionList INCR ARRAY:NumElements
-or-
READ MEM: SymbolicName ExpressionList ARRAY:NumElements

where:

SymbolicName is a name defined during configuration of a VXI device.
The name refers to a specific address within a device’s extended memory.
Specific data types for READ MEMORY transactions are:

n BYTE - 8 bit byte
n WORD16 - 16-bit two’s complement integer
n WORD32 - 32-bit two’s complement integer
n REAL32 - 32-bit IEEE 754 floating point number

These data types are also specified during configuration of a VXI device and
do not appear in the transaction.

ExpressionList is a single expression or a comma-separated list of
expressions.

INCR specifies that array data is to be read from the memory location
incrementally starting at the location specified by SymbolicName. The
first element of the array is read from the starting location, the second from
that location plus an offset equal to the length in bytes of the data type, and
so forth until all array elements have been read. If INCR is not specified in
Appendix D 317

I/O Transaction Reference
READ Transactions
the transaction, the entire array is read from the single memory location
specified by SymbolicName.

NumElements is a single expression or a comma-separated list of
expressions that specifies the dimensions of each variable in VarList. If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. Note that ARRAY:1 is a one-dimensional array
with one element. HP VEE makes a distinction between scalars and one-
dimensional arrays containing only one element.

IOSTATUS Encoding

READ IOSTATUS transactions are of this form:

READ IOSTATUS STS Bits VarList
-or-
READ IOSTATUS DATA READY VarList

VarList is a single Integer variable or a comma-separated list of Integer
variables.

READ IOSTATUS transactions are used by Direct I/O for GPIO
interfaces, From StdIn, To/From Named Pipe, To/From Socket, and
To/From HP BASIC/UX.

READ IOSTATUS transactions for GPIO reads the peripheral status bits
available on the interface. The number of bits read is dependent on the
model number of the interface. A single integer value is returned that is the
weighted sum of all the status bits.
318 Appendix D

I/O Transaction Reference
READ Transactions
For example, the HP 98622A GPIO interface supports two peripheral status
lines, STI0 and STI1. Table D-14 illustrates how to interpret the value of x
in this transaction:

READ IOSTATUS STS Bits a

READ IOSTATUS transactions read the instantaneous values of the status
lines; the status line are not latched or buffered in any way.

READ IOSTATUS transactions for To/From Named Pipe, To/From
Socket, To/From HP BASIC/UX and From StdIn returns a Boolean
YES (1) if there is data ready to read. If no data is present, a Boolean NO (0)
is returned. The READ IOSTATUS transaction can be used to avoid a READ
that will block program execution until data is available.

Table D-14. IOSTATUS Values

Value Read STI1 STI0

0 0 0

1 0 1

2 1 0

3 1 1
Appendix D 319

I/O Transaction Reference
EXECUTE Transactions
EXECUTE Transactions
EXECUTE transactions send low-level commands to control the file,
instrument, or interface associated with a particular object. EXECUTE is used
to adjust file pointers, clear buffers, and provide low-level control of
hardware interfaces. The various EXECUTE commands available are
summarized in Table D-15.

Table D-15. Summary of EXECUTE Commands

Commands Description

To File, From File

REWIND Sets the read pointer (From File) or write pointer (To File) to
the beginning of the file without changing the data in the file.

CLEAR (To File only). Erases existing data in the file and sets the
write pointer to the beginning of the file.

CLOSE Explicitly closes the file. Useful when multiple processes are
reading and writing the same file.

DELETE Explicitly deletes the file. Useful for deleting temporary files.
320 Appendix D

I/O Transaction Reference
EXECUTE Transactions
Interface Operations

CLEAR For HP-IB clears all devices by sending DCL (Device Clear).
For VXI, resets the interface and runs the resource manager

TRIGGER For HP-IB triggers all devices addressed to listen by sending
GET (Group Execute Trigger). For VXI triggers specified
backplane trigger lines or external triggers on an embedded
controller.

LOCAL For HP-IB releases the REN (Remote Enable) line, and puts
instrument into local mode.

REMOTE For HP-IB asserts the REN (Remote Enable) line.

LOCAL
LOCKOUT

For HP-IB sends the LLO (Local Lockout) message. Any
device in remote at the time LLO is sent will lock out front panel
operation.

ABORT Clears the HP-IB interface by asserting the IFC (Interface
Clear) line.

LOCK
INTERFACE

In a multiprocess system with shared resources, lets one
process lock the resources for its own use during a critical
section to prevent another process from trying to use them.

UNLOCK
INTERFACE

In a multiprocess system where a process has locked shared
resources for its own use, unlocks the resources to allow other
processes access to them.

Direct I/O to HP-IB

CLEAR Clears device at the address of a Direct I/O object by
sending the SDC (Selected Device Clear).

TRIGGER Triggers the device at the address of a Direct I/O object by
addressing it to listen and sending GET (Group Execute
Trigger).

LOCAL Places the device at the address of the
Direct I/O object in the local state.

REMOTE Places the device at the address of the
Direct I/O object in the remote state.

Table D-15. Summary of EXECUTE Commands

Commands Description
Appendix D 321

I/O Transaction Reference
EXECUTE Transactions
Direct I/O to GPIO

RESET Resets the GPIO interface associated with the Direct I/O
object by pulsing the PRESET line (Peripheral Reset).

Direct I/O to message-based VXI

CLEAR Clears the VXI device associated with the Direct I/O object
by sending the word-serial command Clear (0xffff).

TRIGGER Triggers the VXI device associated with the
Direct I/O object by sending the word-serial command
Trigger (0xedff).

LOCAL Places the VXI device associated with the
Direct I/O object into local state by sending the word-serial
command Clear Lock (0xefff).

REMOTE Places the VXI device associated with the
Direct I/O object into local state by sending the word-serial
command Set Lock (0xeeff). in the remote state.

Direct I/O to Serial Interfaces

RESET Resets the serial interface associated with the Direct I/O
object.

BREAK Transmits a signal on the Data Out line of the serial interface
associated with the Direct I/O object as follows:

A logical High for 400 milliseconds

A logical Low for 60 milliseconds

Execute Program, To/From Named Pipe, To/From HP BASIC/UX

CLOSE READ
PIPE

Closes the read named pipe associated with the (To/From)
object or the stdin pipe associated with the (Execute
Program).

CLOSE WRITE
PIPE

Closes the write named pipe associated with the (To/From)
object or the stdout pipe associated with the (Execute
Program).

Table D-15. Summary of EXECUTE Commands

Commands Description
322 Appendix D

I/O Transaction Reference
EXECUTE Transactions
To/From Socket

CLOSE Closes the connection between client and server sockets. To
re-establish the connection, the client and server must repeat
the bind-accept and connect-to protocols.

Direct I/O, MultiDevice Direct I/O, Interface Operations to HP-IB, GPIB, VXI, Serial,
GPIO

LOCK In a multiprocess system with shared resources, lets one
process lock the resources for its own use during a critical
section to prevent another process from trying to use them.

UNLOCK In a multiprocess system where a process has locked shared
resources for its own use, unlocks the resources to allow other
processes access to them.

Table D-15. Summary of EXECUTE Commands

Commands Description
Appendix D 323

I/O Transaction Reference
EXECUTE Transactions
Details About HP-IB

The EXECUTE commands used by Direct I/O to HP-IB devices and
Interface Operations are similar but different.

n Direct I/O EXECUTE commands address an instrument to receive the
command.

n Interface Operations EXECUTE commands may affect multiple
instruments already addressed to listen.

The following series of tables indicate the exact bus actions conducted by
Direct I/O and Interface Operations EXECUTE transactions.

Table D-16. EXECUTE ABORT HP-IB Actions

Direct I/O Interface Operations

Not applicable. IFC (≥ 100 µsec)

REN

ATN

Table D-17. EXECUTE CLEAR HP-IB Actions

Direct I/O Interface Operations

ATN ATN

MTA DCL

UNL

LAG

SDC
324 Appendix D

I/O Transaction Reference
EXECUTE Transactions

Table D-18. EXECUTE TRIGGER HP-IB Actions

Direct I/O Interface Operations

ATN ATN

MTA GET

UNL

LAG

GET

Table D-19. EXECUTE LOCAL HP-IB Actions

Direct I/O Interface Operations

ATN REN

MTA ATN

UNL

LAG

GTL

Table D-20. EXECUTE REMOTE HP-IB Actions

Direct I/O Interface Operations

REN REN

ATN ATN

MTA

UNL

LAG
Appendix D 325

I/O Transaction Reference
EXECUTE Transactions

Details About VXI

The EXECUTE commands used by Direct I/O to VXI devices and
Interface Operations are similar, but different. References to
message-based VXI devices apply to register-based devices that are
supported by I-SCPI.

n Direct I/O EXECUTE commands address a message based VXI device
to receive a word-serial command.

n Interface Operations EXECUTE commands affect the VXI interface
directly and may affect VXI devices within the interfaces servant area.

EXECUTE TRIGGER transactions for the Interface Operations object
are of the form:

EXECUTE TRIGGER TriggerType Expression TriggerMode

TriggerType specifies which trigger group will be used by the

EXECUTE TRIGGER transaction. The groups are:

n TTL - Specifies the eight TTL trigger lines on the VXI backplane.

n ECL - Specifies the four ECL trigger lines on the VXI backplane.

n EXT - Specifies the external triggers on a embedded VXI controller.

Expression evaluates to a single Integer variable that represents a bit
pattern indicating which trigger lines for a particular TriggerType are to

Table D-21. EXECUTE LOCAL LOCKOUT HP-IB Actions

Direct I/O Interface Operations

Not applicable. ATN

LLO
326 Appendix D

I/O Transaction Reference
EXECUTE Transactions
be triggered. A value of 5, represented in binary as 101, indicates that TTL
lines 0 and 2 are to be triggered. A value of 255 triggers all eight TTL lines.

TriggerMode indicates the way the trigger lines are to be asserted:

n PULSE - Lines are to be pulsed for a discreet time limit (TriggerType
dependent).

n ON - Asserts the trigger lines and leaves them asserted.

n OFF - Removes the assertion from trigger lines that were asserted by a
previous ON transaction.

The following series of tables indicate the exact bus actions conducted by
Direct I/O and Interface Operations EXECUTE transactions.

Table D-22. EXECUTE CLEAR VXI Actions

Direct I/O Interface Operations

Word-serial command Clear(0xffff) Pulse SYSRESET line, rerun Resource
Manager

Table D-23. EXECUTE TRIGGER VXI Actions

Direct I/O Interface Operations

Word-serial command Trigger(0xedff) Triggers either the TTL or ECL trigger
lines in the backplane, or the external
trigger(s) on the embedded VXI
controller. You can specify which lines
are to be triggered for each trigger
type.

Table D-24. EXECUTE LOCAL VXI Actions

Direct I/O Interface Operations

Word-serial command Set Lock(0xeeff) Not applicable.
Appendix D 327

I/O Transaction Reference
EXECUTE Transactions

Table D-25. EXECUTE REMOTE VXI Actions

Direct I/O Interface Operations

Word-serial command Clear
Lock(0xefff)

Not applicable.
328 Appendix D

I/O Transaction Reference
WAIT Transactions
WAIT Transactions
There are four types of WAIT transactions:

n WAIT INTERVAL

n WAIT SPOLL (Direct I/O to HP-IB and message based VXI devices
only)

n WAIT REGISTER (Direct I/O to VXI devices only)

n WAIT MEMORY (Direct I/O to VXI devices only)

WAIT INTERVAL transactions simply wait for the specified number of
seconds before executing the next transaction listed in the open view of the
object. For example, this transaction waits for 10 seconds:

WAIT INTERVAL:10

WAIT SPOLL transactions are of the form:

WAIT SPOLL Expression Sense

Expression is an expression that evaluates to an integer. The integer will
be used as a bit mask.

Sense is a field with two possible values.

n ANY SET
n ALL CLEAR

WAIT SPOLL transactions wait until the serial poll response byte of the
associated instrument meets a specific condition. The serial poll response is
tested by bitwise ANDing it with the specified mask and ORing the resulting
bits into a single test bit. The transaction following WAIT SPOLL executes
when one of the following conditions is met:

n The transaction specifies ANY (ANY SET) and the test bit is true (1).
n The transaction specifies CLEAR (ALL CLEAR) and the test bit is false (0).
Appendix D 329

I/O Transaction Reference
WAIT Transactions
The following transactions show how to use WAIT SPOLL:

WAIT SPOLL:256 ANY Wait until any bit is set.
WAIT SPOLL:256 CLEAR Wait until all are clear.
WAIT SPOLL:0x40 ANY Wait until bit 6 is set.
WAIT SPOLL:0x40 CLEAR Wait until bit 6 is clear.

WAIT REGISTER and WAIT MEMORY transactions are of the form:

WAIT REG:SymbolicName MASK:Expression Sense [Expression]
-or-
WAIT MEM:SymbolicName MASK:Expression Sense [Expression]

where:

SymbolicName is a name defined during configuration of a VXI device.
The name refers to a specific address within a device’s A16 or extended
memory.

MASK:Expression is an expression that evaluates to an integer. The
integer will be used as a bit mask. The size in bytes of this mask value
depends on the data type for which SymbolicName has been configured.

Sense is a field with three possible values.

n ANY SET
n ALL CLEAR *EQUAL

[Expression] is an optional compare value that evaluates to an integer.
The integer is used only when Sense is EQUAL.
330 Appendix D

I/O Transaction Reference
WAIT Transactions
WAIT REGISTER or MEMORY transactions wait until the value read from the
register or memory location specified by SymbolicNames in the
associated VXI device meets a certain condition. The value read is logically
ANDed with the bit mask specified in MASK:Expression, resulting in a
test value. The size of the test value is dependent on the data type configured
for the specified register or memory location. The transaction following
WAIT SPOLL executes when one of the following conditions is met:

n The transaction specifies ANY (ANY SET) and the test value has at least
one bit true (1).

n The transaction specifies CLEAR (ALL CLEAR) and the test value has all
bits false (0).

n The transaction specifies EQUAL and the test value is equal bit-for-bit
with the compare value specified in [Expression].
Appendix D 331

I/O Transaction Reference
SEND Transactions
SEND Transactions
SEND transactions are of this form:

SEND BusCmd

BusCmd is one of the bus commands listed in Table D-26.

SEND transactions are used within Interface Operations objects to
transmit low-level bus messages via an HP-IB interface. These messages
are defined in detail in IEEE 488.1.

Table D-26. SEND Bus Commands

Command Description

COMMAND Sets ATN true and transmits the specified data bytes. ATN
true indicates that the data represents a bus command.

DATA Sets ATN false and transmits the specified data bytes. ATN
false indicates that the data represents device-dependent
information.

TALK Addresses a device at the specified primary bus address
(0-31) to talk.

LISTEN Addresses a device at the specified primary bus address
(0-31) to listen.

SECONDARY Specifies a secondary bus address following a TALK or
LISTEN command. Secondary addresses are typically
used by cardcage instruments where the cardcage is at a
primary address and each plug-in module is at a secondary
address.

UNLISTEN Forces all devices to stop listening; sends UNL.

UNTALK Forces all devices to stop talking; sends UNT.

MY LISTEN ADDR Addresses the computer running HP VEE to listen; sends
MLA.

MY TALK ADDR Addresses the computer running HP VEE to talk; sends
MTA.
332 Appendix D

I/O Transaction Reference
SEND Transactions
MESSAGE Sends a multi-line bus message. Consult IEEE 488.1 for
details. The multi-line messages are:

DCL Device Clear
SDC Selected Device Clear
GET Group Execute Trigger
GTL Go To Local
LLO Local Lockout
SPE Serial Poll Enable
SPD Serial Poll Disable
TCT Take Control

Table D-26. SEND Bus Commands

Command Description
Appendix D 333

I/O Transaction Reference
WRITE(POKE) Transactions
WRITE(POKE) Transactions
The WRITE(POKE) transaction is very similar to the WRITE transaction,
except that it applies only to the To/From DDE object. The main difference
of WRITE(POKE) is that you must specify an item name. For example:

WRITE ITEM:"r2c3" TEXT a EOL

WRITE(POKE) transactions are supported by HP VEE for Windows only.

The following encodings are allowed:

n TEXT

n BYTE

n CASE

n CONTAINER

For more specific information about these formats see the WRITE
transaction.
334 Appendix D

I/O Transaction Reference
READ(REQUEST) Transactions
READ(REQUEST) Transactions
The READ(REQUEST) transaction is very similar to the READ transaction,
except that it applies only to the To/From DDE object. The main difference
of READ(REQUEST) is that you must specify an item name. For example:

READ ITEM:"r2c3" TEXT a EOL

READ(REQUEST) transactions are supported by HP VEE for Windows only.

The following encodings are allowed:

n TEXT

n CONTAINER

For more specific information about these formats see the READ transaction.
Appendix D 335

I/O Transaction Reference
READ(REQUEST) Transactions
336 Appendix D

E

HP VEE for UNIX and
HP VEE for Windows
Differences

HP VEE for UNIX and HP VEE for Windows
Differences

In general, programs written in HP VEE on one platform will work on any
other supported platform. The only difficulties that arise are when you use
programs that access features specific to the underlying platform, such as
DLLs on PCs or named pipes on UNIX. This appendix contains information
on the differences between HP VEE on UNIX and PC platforms.
338 Appendix E

HP VEE for UNIX and HP VEE for Windows Differences
Execute Program
Execute Program
|There is an Execute Program object for both the UNIX and PC
platforms. Note that you can determine which platform you are executing on
by using the whichPlatform(), whichOS(), or whichPlatform()
built-in functions (in the Function & Object Browser). You can then
programmatically determine which Execute Program object to use.
Appendix E 339

HP VEE for UNIX and HP VEE for Windows Differences
DLL versus Shared Library
DLL versus Shared Library
There are several differences that must be noted when creating DLLs and
Shared Libraries for Compiled Functions.

I/O From a Shared Library you do I/O through SICL, DIL or
TERMIO. For DLLs use SICL. To avoid systemic resource
conflicts, be sure your source code uses library commands
that support the platform and interface system the compiled
function will run on.

Graphics Shared Libraries use X11 graphics while DLLs use
Microsoft Windows GDI calls. Link Shared Libraries against
the X Windows Release 5 of the library. While a compiled
function runs in an X Window, HP VEE cannot service its
human interface.
340 Appendix E

HP VEE for UNIX and HP VEE for Windows Differences
Data Files
Data Files
No binary files will work across platforms since byte ordering is reversed
between UNIX and PC platforms. However, ASCII data files written using
To File objects are readable by From File objects on other platforms.
Also, HP VEE program files are compatible since they are stored in ASCII.
Note that when moving ASCII data files from one platform to another,
UNIX files use the linefeed character to terminate lines while MS Windows
uses the carriage return/linefeed sequence to terminate lines.
Appendix E 341

HP VEE for UNIX and HP VEE for Windows Differences
Data Files
342 Appendix E

Index

Symbols
#A block headers, 281
#B notation

with READ INTEGER, 287
#H notation

with READ INTEGER, 287
#I block headers, 281
#Q notation

with READ INTEGER, 287
#T block headers, 281
$XENVIRONMENT, 224

Numerics
0x notation

with READ INTEGER, 287

A
ABORT

for EXECUTE, 320
accessing

examples, 3
library objects, 4
records, 17
variable values, 11

ActiveX
adding control to program, 187
automation, 169–185
automation and controls, 168–191
automation properties and methods,

176–178
automation type libraries, 169
browser, 179–183
control properties dialog, 188
control selection, 186
control variables, 189
controls, 186–190
creating automation object, 175
data type compatibility, 181, 184
declaring variables, 171, 190
default properties, 177
deleting automation objects, 185
enumerations, 179
event handling, 172, 189
examples, 168

getting existing automation object,
175

manipulating automation objects,
176–183

manipulating controls, 190
online help, 183, 189
type library selection, 169
using controls, 189

ActiveX (Callable VEE control), 77
Add Trans, 82
ALL CLEAR

in WAIT REGISTER or MEMORY
transactions, 330

in WAIT SPOLL transactions, 329
ANY SET

in WAIT REGISTER or MEMORY
transactions, 330

in WAIT SPOLL transactions, 329
API

VEE DATA, 63
app-defaults for HP VEE, 224
ARRAY

reading arrays, 88
reading scalars, 88
read-to-end, 88

Array Format
in transaction objects, 100

Array Separator
in transaction objects, 99

arrays
reading with transactions, 88
sharing with HP BASIC/UX, 133
using commas, 213, 215

ASCII table, 236
asynchronous objects, 207
attributes

changing, 224
location of file, 224

Auto Execute, 207
automation (see ActiveX)
Autoscale, 195

B
backward compatibility, 202
BINARY encoding
Index-2

for READ, 313
for WRITE, 277

BINBLOCK Encoding
for READ, 314

BINBLOCK encoding
for WRITE, 279

binding
shared library, 43

bitmaps
customizing, 226
panel view, 227
selecting, 227

Block Array Format, 100
block data formats, 279
block headers, 279
blocking reads

IOSTATUS (READ), 318
bounds checking, 209
building records, 20
BYTE encoding

for WRITE, 276
BYTE format

for READ BINARY, 313
for READ BINBLOCK, 314
for READ MEMORY, 317
for READ REGISTER, 316
for WRITE BINARY, 277
for WRITE BINBLOCK, 279
for WRITE MEMORY, 284
for WRITE REGISTER, 283

C
C

libraries, 33
C calls VEE, 56
C data types, 63
C programs, 122

communicating with, 117, 134
C Types allowed in DLL, 44
C++

libraries, 33
Call, 209

time-slicing, 27
user-defined functions, 26

Callable VEE, 56–76

calling
DLL Functions, 47
precedence, 206
UserFunctions, 28

CASE encoding
for WRITE, 276

changing
geometry, 224
X11 attributes, 224

CHAR format
for READ TEXT, 287, 293

CLEAR
effect on write pointers, 108

CLEAR (Files)
for EXECUTE, 320

CLEAR (HP-IB)
for EXECUTE, 320

Clear File at PreRun & Open, 108
Client

DDE, 137
CLOSE

effect on files, 108
for EXECUTE, 320

CLOSE READ PIPE
for EXECUTE, 320

CLOSE WRITE PIPE
for EXECUTE, 320

closing files, 108
Collector, 207
color maps

dealing with different, 228–231
colors

line, 194, 204
colors flashing

correcting, 228–231
COMMAND

in SEND transactions, 332
common problems, 198
compatibility, 202
compatibility modes, 202–219
Compiled Function, 33–48

DLL, 44
MS Windows, 44

Compiled Functions
precedence of, 206
Index-3

compiler, 202–213
object changes, 212
program changes, 205

COMPLEX format
for READ BINARY, 313
for READ BINBLOCK, 314
for READ TEXT, 287, 311
for WRITE BINARY, 277
for WRITE BINBLOCK, 279
for WRITE TEXT, 249, 270

configuring
transaction objects, 97

configuring HP VEE, 222
Conformance

effects on learn strings, 282
effects on WRITE STATE, 282

Connect/Bind Port
in To/From Socket, 126

constraining inputs, 194
container

record, 15
CONTAINER encoding

for READ, 316
for WRITE, 281

control (Callable VEE), 77
controls (see ActiveX)
converting

between UserObjects and
UserFunctions, 27

data types, 63
programs, 202, 214

COORD format
for READ BINARY, 313
for READ BINBLOCK, 314
for READ TEXT, 287, 311
for WRITE BINARY, 277
for WRITE BINBLOCK, 279
for WRITE TEXT, 249, 270

Copy Trans, 82
correcting changing screen colors, 228–

231
CreateObject, 175
creating

bitmaps, 226
UserFunction library, 29

CTL
for WRITE IOCONTROL, 285

CTL0 line
on GPIO interfaces, 285

CTL1 line
on GPIO interfaces, 285

cursor keys
for editing transactions, 83

customizing bitmaps, 226
Cut Trans, 82

D
DATA

in SEND transactions, 332
data

in transactions, 85
data containers, 63
data field

in transactions, 85
Data Format dialog box, 97
Data Format tab, 98
data shapes

records, 20
data types

converting, 63
in ActiveX, 181, 184
mapped, 65
record, 14

DataSet, 14, 23
logging to, 156

DCL (Device Clear), 332
DDE, 137

Client, 137
Server, 137

dealing with color maps, 228–231
Declare Variable

used in libraries, 30
Declare Variables, 195
declared variables, 7
default attributes

location of file, 224
DEFAULT format

for WRITE TEXT, 249, 250
DEFAULT NUM CHARS

effects on READ TEXT, 289
Index-4

Definite Length Arbitrary Block
Response Data, 279

Definition File for DLL, 45
DEG phase units, 272
Delete Variable

All, 12
By Name, 12

Delete Variables at PreRun, 9, 12
Deleting DLL Libraries, 48
delimiter

in READ TEXT TOKEN
transactions, 294

Device Clear (DCL), 332
Differences in HP VEE platform

implementations, 338
Direct I/O

EXECUTE transactions (HP-IB), 324
EXECUTE transactions (VXI), 326

Disable Debug Features, 195
Display Server, 51
DLL, 33, 340

.DEF file, 45
C declarations, 44
C Types allowed, 44
Calling Functions, 47
Configuring Calling Functions, 47
creating, 44
Definition File, 45
deleting libraries, 48
functions in formulas, 48
importing libraries, 47
parameters, 46

Dynamic Data Exchange, 137

E
editing

transactions, 82
UserFunction libraries, 31

encodings
BINARY (WRITE), 277
BINBLOCK (WRITE), 279
BYTE (WRITE), 276
CASE (WRITE), 276
CONTAINER (READ), 316
CONTAINER (WRITE), 281

for READ transactions, 286
for WRITE transactions, 247
IOCONTROL (WRITE), 285
IOSTATUS (READ), 318
MEMORY (READ), 317
MEMORY (WRITE), 284
REGISTER (READ), 316
REGISTER (WRITE), 283
STATE (WRITE), 282
TEXT (WRITE), 249

End of Line (EOL)
in transaction objects, 99

EOF, 209
EOL

in transaction objects, 99
EQUAL

in WAIT REGISTER or MEMORY
transaction, 330

error 935, 208
error 937, 207
error 938, 211
errors

parse, 200
remote function, 54

escape characters
listed, 87

example programs
accessing, 3
communicating with HP BASIC/UX,

132, 133
directories, 3
importing a waveform file, 114, 116
reading XY data from a file, 111
running C programs, 122
running shell commands, 120
using EOF to read files, 111

examples, 3
EXCLUDE CHARS

for READ TEXT TOKEN, 294, 298
EXECUTE, 320–328

file pointers, 107
Execute Program

general usage, 117
running C programs, 122
Wait for Prog Exit, 118
Index-5

Execute Program (PC), 339
general usage, 134
Prog With Params, 136
Run Style, 135
Wait for Prog Exit, 135
Working Directory, 136

Execute Program (UNIX), 339
Prog With Params, 119
read-to-end, 121
running shell commands, 120
Shell, 118

EXECUTE transactions
ABORT, 320
ABORT (HP-IB), 324
CLEAR (Files), 320
CLEAR (HP-IB), 320, 324
CLEAR (VXI), 327
CLOSE, 320
CLOSE READ PIPE, 320
CLOSE WRITE PIPE, 320
LOCAL, 320
LOCAL (HP-IB), 325
LOCAL (VXI), 327
LOCAL LOCKOUT, 320
LOCAL LOCKOUT (HP-IB), 326
REMOTE, 320
REMOTE (HP-IB), 325
REMOTE (VXI), 328
REWIND, 320
TRIGGER, 320
TRIGGER (HP-IB), 325
TRIGGER (VXI), 327

execution
increasing speed of, 194

Execution Mode, 202
Disable Debug Features, 195

execution order, 208
expression list

in transactions, 85
expressions

calling UserFunctions, 28
changes for Standard mode, 215

F
feedback, 208

fields
compiler mode, 212
editing records, 21

files
.veeio, 54
.veerc, 54
closing, 108
From File, 107
From StdIn, 107
importing data, 111
pointers, 107
reading, 111
reading and writing with transactions,

107
To File, 107
To StdErr, 107
To StdOut, 107
using different attributes, 224

FIXED notation
for WRITE TEXT REAL, 268

flashing colors
correcting, 228–231

For Log Range
not operating, 199

For Range
in compile mode, 209
not operating, 199

formats
BYTE (READ BINARY), 313
BYTE (READ BINBLOCK), 314
BYTE (READ MEMORY), 317
BYTE (READ REGISTER), 316
BYTE (WRITE BINARY), 277
BYTE (WRITE BINBLOCK), 279
BYTE (WRITE MEMORY), 284
BYTE (WRITE REGISTER), 283
CHAR (READ TEXT), 287, 293
COMPLEX (READ BINARY), 313
COMPLEX (READ BINBLOCK),

314
COMPLEX (READ TEXT), 287, 311
COMPLEX (WRITE BINARY), 277
COMPLEX (WRITE BINBLOCK),

279
Index-6

COMPLEX (WRITE TEXT), 249,
270

COORD (READ BINARY), 313
COORD (READ BINBLOCK), 314
COORD (READ TEXT), 287, 311
COORD (WRITE BINARY), 277
COORD (WRITE BINBLOCK), 279
COORD (WRITE TEXT), 249, 270
DEFAULT (WRITE TEXT), 249, 250
for READ MEMORY, 317
for READ REGISTER, 316
for READ TEXT transactions, 287
for WRITE MEMORY, 284
for WRITE REGISTER, 283
for WRITE TEXT, 249
for WRITE transactions, 247
HEX (READ TEXT), 287, 306
HEX (WRITE TEXT), 249, 266
INT16 (READ BINARY), 313
INT16 (READ BINBLOCK), 314
INT16 (WRITE BINARY), 277
INT16 (WRITE BINBLOCK), 279
INT32 (READ BINARY), 313
INT32 (READ BINBLOCK), 314
INT32 (WRITE BINARY), 277
INT32 (WRITE BINBLOCK), 279
INTEGER (READ TEXT), 287, 303
INTEGER (WRITE TEXT), 249, 260
OCTAL (READ TEXT), 287, 305
OCTAL (WRITE TEXT), 249, 263
PCOMPLEX (READ BINARY), 313
PCOMPLEX (READ BINBLOCK),

314
PCOMPLEX (READ TEXT), 287,

311
PCOMPLEX (WRITE BINARY), 277
PCOMPLEX (WRITE BINBLOCK),

279
PCOMPLEX (WRITE TEXT), 249,

270
QUOTED STRING (READ TEXT),

287, 301
QUOTED STRING (WRITE TEXT),

249, 255
REAL (READ TEXT), 287, 308

REAL (WRITE TEXT, 267
REAL (WRITE TEXT), 249
REAL32 (READ BINARY), 313
REAL32 (READ BINBLOCK), 314
REAL32 (READ MEMORY), 317
REAL32 (READ REGISTER), 316
REAL32 (WRITE BINARY), 277
REAL32 (WRITE BINBLOCK), 279
REAL32 (WRITE MEMORY), 284
REAL32 (WRITE REGISTER), 283
REAL64 (READ BINARY), 313
REAL64 (READ BINBLOCK), 314
REAL64 (WRITE BINARY, 277
REAL64 (WRITE BINBLOCK), 279
STRING (READ BINARY), 313
STRING (READ TEXT), 287, 299
STRING (WRITE BINARY, 277
STRING (WRITE TEXT), 249, 251
TIME STAMP (READ TEXT, 287
TIME STAMP (WRITE TEXT), 249,

273
TOKEN (READ TEXT), 287, 294
WORD16 (READ MEMORY), 317
WORD16 (READ REGISTER), 316
WORD16 (WRITE MEMORY), 284
WORD16 (WRITE REGISTER), 283
WORD32 (READ MEMORY), 317
WORD32 (READ REGISTER), 316
WORD32 (WRITE MEMORY), 284
WORD32 (WRITE REGISTER), 283

Formula
calling UserFunctions, 28
DLL Functions, 48

FORTRAN
libraries, 33

From File, 209
general usage, 107

From StdIn
general usage, 107
non-blocking reads, 107

From String
general usage, 106

Function & Object Browser
used for ActiveX, 179

functions
Index-7

called from C, 56
compiled, 33
handling scalar data, 65
merging, 31
precedence, 206
remote, 49
see also Compiled Functions, Remote

Functions, UserFunctions
user, 27
user-defined, 26–55

G
geometry

changing, 224
Geometry, on Import Library, 51
GET (Group Execute Trigger), 332
Get Field

accessing records, 17
Get Variable, 9
GetObject, 175
global namespace, 216
global variables, 195

deleting, 12
scoping, 7
undeclared, 6
using, 6

Go To Local (GTL), 332
GPIO interfaces

READ transactions, 318
WRITE transactions, 285

GRAD phase units, 272
grayed

features, 199
fields in compiler mode, 212
fields in iterators, 209

Group Execute Trigger (GET), 332
GTL (Go To Local), 332

H
handling scalar data, 65
HEX format

for READ TEXT, 287, 306
for WRITE TEXT, 249, 266

Host Name

in To/From Socket, 127
HP BASIC/UX

sharing colors with HP VEE, 228–231
HP VEE

sharing colors with HP BASIC/UX,
228–231

HP VEE RunTime, 195
HP-GL

plotter support, 233
HP-IB

Direct I/O, 324
Interface Operations, 324
low-level control, 324

HP-IB Bus Operations
detailed reference, 332

HP-IB Msg, 236

I
icons

creating bitmaps for, 226
IEEE 728

block headers, 281
Implementation Differences, 338
Import Library, 30
Imported UserFunctions

precedence of, 206
importing data, 111
Importing DLL Libraries, 47
INCLUDE CHARS

for READ TEXT TOKEN, 294, 296
INCR

for READ MEMORY, 317
for READ REGISTER, 316
for WRITE MEMORY, 284
for WRITE REGISTER, 283

Init HP BASIC/UX
general usage, 117, 130

Insert Trans, 82
INT16 format

for READ BINARY, 313
for READ BINBLOCK, 314
for WRITE BINARY, 277
for WRITE BINBLOCK, 279

INT32 format
for READ BINARY, 313
Index-8

for READ BINBLOCK, 314
for WRITE BINARY, 277
for WRITE BINBLOCK, 279

INTEGER format
for READ TEXT, 287, 303
for WRITE TEXT, 249, 260

Interface Operations
EXECUTE transactions (VXI), 324,

326
interface,user (see panel view)
internal functions

precedence of, 206
interprocess communication

To/From Named Pipe, 123
To/From Socket, 125

intersecting loops, 211
Junction, 212

INTERVAL
for WAIT, 329

IOCONTROL encoding
for WRITE, 285

IOSTATUS encoding
for READ, 318

Iso, 232
iteration, 209
iterations, 209
iterators

intersecting, 211
intersecting with Junction, 212

J
Junction, 208

intersecting loops, 212
parallel, 210

K
Katakana, 232
keyboards

non-USASCII, 232
keys

for editing transactions, 83

L
libraries

editing imported, 31
general use of, 26
importing, 31
merging, 31
user-defined, 26–77
UserFunction, 29
using variables in, 12, 30

library objects, 4
accessing, 4

line colors, 194, 204
Linear Array Format, 100
LISTEN

in SEND transactions, 332
LLO (Local Lockout), 332
LOCAL

for EXECUTE, 320
LOCAL LOCKOUT

for EXECUTE, 320
Local Lockout (LLO), 332
local scoping, 7
local UserFunctions

precedence of, 206
local variables

using, 6
logging

to a DataSet, 156
logging test results

restrictions, 157
loop bounds, 209
loops, 209

intersecting, 211
intersecting with Junction, 212

M
Make UserFunction, 27
Make UserObject, 27
mapping arrays, 65
MAX NUM CHARS

effects on READ TEXT, 289
MEMORY

for WAIT, 329
MEMORY encoding

for READ, 317
for WRITE, 284

menu features
Index-9

grayed, 199
Merge Library, 31
merging

xrdb, 224
Multi-Field Format

in transaction objects, 100
MY LISTEN ADDR

in SEND transactions, 332
MY TALK ADDR

in SEND transactions, 332

N
named pipes

related reading, 144
namespace, 216
naming variables, 8
Non-blocking reads, 93
Non-Decimal Numeric formats

with READ INTEGER, 287
non-USASCII keyboards, 232
NOP

in transactions, 84
notations

FIXED, 268
for READ TEXT INTEGER, 304
for WRITE TEXT REAL, 268
SCIENTIFIC, 268
STANDARD, 268

null
in READ transactions, 86

O
object changes

with the compiler, 212
objects

library, 4
pre-defined, 200

OCTAL format
for READ TEXT, 287, 305
for WRITE TEXT, 249, 263

OK, 207, 209
OLE (Callable VEE control), 77
OLE automation (see ActiveX)
Open Example, 3

open view changes
with the compiler, 212

P
panel view

selecting a bitmap, 227
parallel junctions, 210
parallel threads, 208
parse errors, 200
Pascal

libraries, 33
Paste Trans, 82
PCOMPLEX format

for READ BINARY, 313
for READ BINBLOCK, 314
for READ TEXT, 287, 311
for WRITE BINARY, 277
for WRITE BINBLOCK, 279
for WRITE TEXT, 249, 270

PCTL
for WRITE IOCONTROL, 285

phase units
for WRITE PCOMPLEX, 272

plotter support
HP-GL, 233

pointers
relationship to transactions, 107

precedence
functions, 206
variable names, 8

pre-defined objects, 200
PreRun

effects on file pointers, 107
Profiler, 194
Prog With Params

in Execute Program, 119, 136
programs

configuring, 222
example, 3
execution order, 208
speeding up, 194
troubleshooting, 198

Properties
in transaction objects, 97
Index-10

Q
QUOTED STRING format

for READ TEXT, 287, 301
for WRITE TEXT, 249, 255

quoted strings
effects on READ TEXT STRING, 291
effects on READ TEXT TOKEN, 291

R
-r, 195
RAD phase units, 272
READ, 286–319

file pointers, 107
non-blocking, 93
reading arrays, 88
simplified usage, 85
TEXT, 287

read pointers, 108
READ TEXT STRING

effects of quoted strings, 291
READ TEXT TOKEN

effects of quoted strings, 291
Read to End

effects on READ TEXT, 289
Read to EOF

effects on READ BINARY, 313
effects on READ BINBLOCK, 315

READ(REQUEST) transactions, 335
reading files, 111
REAL format

for READ TEXT, 287, 308
for WRITE TEXT, 249, 267

REAL32 format
for READ BINARY, 313
for READ BINBLOCK, 314
for READ MEMORY, 317
for READ REGISTER, 316
for WRITE BINARY, 277
for WRITE BINBLOCK, 279
for WRITE MEMORY, 284
for WRITE REGISTER, 283

REAL64 format
for READ BINARY, 313
for READ BINBLOCK, 314
for WRITE BINARY, 277

for WRITE BINBLOCK, 279
records

accessing, 17
building, 20
container, 15
data shape, 20
data type, 14
editing fields, 21
unbuilding, 19

recovering from common problems, 198
REGISTER

for WAIT, 329
REGISTER encoding

for READ, 316
for WRITE, 283

REMOTE
for EXECUTE, 320

Remote Debug, 51
Remote Function, 49–55

errors, 54
precedence of, 206

restrictions
logging test results, 157

REWIND
effect on read pointers, 108
effect on write pointers, 108
for EXECUTE, 320

Roman8 fonts, 232
round-robin, 208
Run Style

in Execute Program, 135
running

examples, 3

S
Sample & Hold, 207
scalar data handling, 65
SCIENTIFIC notation

for WRITE TEXT REAL, 268
scoping, 7

global, 7
local, 7

SDC (Selected Device Clear), 332
SECONDARY

in SEND transactions, 332
Index-11

security
UNIX, 52

Selected Device Clear (SDC), 332
selecting a bitmap, 227
SEND transactions, 332
Sequencer

calling UserFunctions, 28
object, 146

Serial Poll Disable (SPD), 332
Serial Poll Enable (SPE), 332
Server

DDE, 137
Set Variable, 9
Shared Libraries, 33, 340
Shell field

in Execute Program (UNIX), 118
SPACE DELIM

for READ TEXT TOKEN, 294, 295
SPD (Serial Poll Disable), 332
SPE (Serial Poll Enable), 332
speed

increasing execution, 194
SPOLL

for WAIT, 329
Standard Compatibility, 202
Standard mode

defined, 214
expressions, 215
global namespace, 216
in HP-UX, 219
variables, 216

STANDARD notation
for WRITE TEXT REAL, 268

Start, 207, 208
STATE encoding

for WRITE, 282
Step, 209
STRING format

for READ BINARY, 313
for READ TEXT, 287, 299
for WRITE BINARY, 277
for WRITE TEXT, 249, 251

T
Take Control (TCT), 332

TALK
in SEND transactions, 332

TCT (Take Control), 332
temporary variables, 6
terminals

name of variables, 7
using with transactions, 87

test sequencer, 146
TEXT encoding

for WRITE, 249
TIME STAMP format

for READ TEXT, 287
for WRITE TEXT, 249, 273

Timeout
in To/From Socket, 127

Timer, 207
time-slicing, 27, 206
To File

general usage, 107
To StdErr

general usage, 107
To StdOut

general usage, 107
To String

as a debugging tool, 96
example program, 81
general usage, 106, 107

To/From DDE, 137
To/From HP BASIC/UX

general usage, 117, 130
To/From Named Pipe

EXECUTE CLOSE READ PIPE, 124
EXECUTE CLOSE WRITE PIPE,

124
general usage, 123
non-blocking reads, 124
read-to-end, 124
related reading, 144

To/From Socket
Connect/Bind Port, 126
general usage, 125
Host Name, 127
Timeout, 127

TOKEN format
for READ TEXT, 287, 294
Index-12

totSize(), 207
transactions, 80–144

adding terminals, 87
communicating with Programs, 117
configuring transaction objects, 97
creating, 82
debugging, 96
detailed reference, 244–335
details of operation, 97
editing, 82
example of editing, 84
EXECUTE, 320
Execute Program, 117
execution rules, 97
file pointers, 107
Init HP BASIC/UX, 117
non-blocking reads, 107
overview, 81
READ, 286, 287
READ(REQUEST), 335
selecting, 102
SEND, 332
summary of objects using, 245
summary of transaction objects, 103
summary of types, 104, 244
To String, 96
To String example, 81
To/From HP BASIC/UX, 117
To/From Named Pipe, 123
To/From Socket, 125
using From File, 107
using From StdIn, 107
using From String, 106
using To File, 107
using To StdErr, 107
using To StdOut, 107
using To String, 106
WAIT, 329
with files, 107
WRITE, 246–285
WRITE(POKE), 334

TRIGGER
for EXECUTE, 320

troubleshooting
programs, 198

U
unbuilding records, 19
unconstrained objects, 210
undeclared variables, 6
units

for PCOMPLEX phase, 272
UNIX security, 52
UNLISTEN

in SEND transactions, 332
UNTALK

in SEND transactions, 332
user interface (see panel view)
user-defined functions, 26–55
user-defined libraries, 26–77
UserFunction, 27–32, 209
UserFunction library, 29
UserFunctions, 194

calling from expressions, 28
converting to UserObjects, 27
merging, 31
time-slicing, 27, 206
used as ActiveX event handler, 172

UserObjects
converting to UserFunctions, 27
problems with, 198
time-slicing, 206
with XEQ pins, 209

using
default attributes file, 224
examples, 3
non-USASCII keyboards, 232
xrdb, 224

V
variables, 6

accessing values, 11
changes for Standard mode, 216
declared, 7
declaring for ActiveX, 171, 190
declaring in libraries, 30
deleting, 12
global, 7
in transactions, 85, 87
initializing, 9
local, 7
Index-13

naming, 8
naming precedence, 8
null, 86
scoping, 7
temporary, 6
terminal names, 7
undeclared, 6
undeclared global, 6
using in libraries, 12

VDCs, 63
VEE 3 Compatibility, 202
VEE 4 Compatibility, 202
VEE DATA API, 63
VEE.RC file, 223
veeData.h, 64
veeio file, 54
veerc file, 54, 223
VXI

Direct I/O, 326
Interface Operations, 326
low-level control, 326

W
WAIT, 329–331

INTERVAL, 329
MEMORY, 329
REGISTER, 329
SPOLL, 329

Wait for Input, 207
Wait for Prog Exit

in Execute Program (PC), 135
in Execute Program (UNIX), 118

waveforms
importing, 113

WORD16 format
for READ MEMORY, 317
for READ REGISTER, 316
for WRITE MEMORY, 284
for WRITE REGISTER, 283

WORD32 format
for READ MEMORY, 317
for READ REGISTER, 316
for WRITE MEMORY, 284
for WRITE REGISTER, 283

Working Directory

in Execute Program, 136
WRITE

encodings and formats, 247
file pointers, 107
path-specific behaviors, 246
simplified usage, 85

write pointers, 108
WRITE transactions, 246–285
WRITE(POKE) transactions, 334

X
X11 attributes

changing, 224
X11 colors flashing

correcting, 228–231
X11 resources

file location, 224
Xdefaults, 224
XEQ, 207, 209
xrdb

using, 224
Index-14

	HP VEE Advanced Programming Techniques
	Notice
	Warranty Information
	U.S. Government Restricted Rights
	Copyright ” 1991—1998 Hewlett-Packard Company. All rights reserved.
	Printing History

	Conventions Used in This Manual
	1. Introduction
	2. Variables
	3. Using Records and DataSets
	4. Using User-Defined Libraries
	5. Using Transaction I/O
	6. Using the Sequencer Object
	7. Using ActiveX Automation Objects and Controls
	8. Keys To Faster Programs
	9. Troubleshooting Problems
	A. Using the Compatibility Mode
	B. Configuring HP�VEE
	C. ASCII Table
	D. I/O Transaction Reference
	E. HP�VEE for UNIX and HP�VEE for Windows Differences

	1 Introduction
	Introduction
	About This Manual
	Note Throughout this manual, references to HP�VEE apply to both HP�VEE for HP�UX and HP�VEE for W...

	HP�VEE Example Programs
	Using the Examples
	Running Examples
	Example Directories
	Using Library Objects

	2 Variables
	Variables
	Note For information about using variables with ActiveX automation objects and controls, see Chap...
	About Undeclared Variables
	About Declared Variables
	About Naming
	You can use any valid variable name for a variable. The first character must be a letter. Letters...

	Naming Precedence
	1. Input terminal name (such as in a Formula or a transaction object)
	2. Temporary variable (as in a Formula object)
	3. Local to Context declared variable
	4. Local to Library declared variable
	5. Global declared variable
	6. Global undeclared variable
	Setting Initial Values
	You must have set initial values before accessing any variables or HP�VEE generates an error.
	Figure 2-1. A Simple Variable Example

	If the variable is an array or a record, when using the Formula object, you must set the values o...
	Figure 2-2. Setting Array Values

	Accessing Variable Values
	Once you have named a variable, you can access its value as many times as you want in your progra...
	Figure 2-3. Accessing a Variable Multiple Ways

	Note You can include the name of any global variable in any expression in a Formula object, or in...
	Deleting Variables
	Using Variables in Libraries

	3 Using Records and DataSets
	Using Records and DataSets
	Record Containers
	Figure 3-1. A Simple Record Container

	Accessing Records
	Figure 3-2. Retrieving Record Fields with Get Field
	Use the syntax Rec[1].Name and Rec[1].EmplNo to obtain just the second element ("element 1") of e...
	Figure 3-3. Using Array Syntax in Get Field

	To retrieve several or all fields from a record use the UnBuild Record object, as shown in the ne...
	Figure 3-4. Retrieving Record Fields with UnBuild Record

	Note Data cannot be automatically converted to and from the Record data type. For example, to sen...

	Programmatically Building Records
	Figure 3-5. The Effect of Output Shape in Build Record
	Figure 3-6. Mixing Scalar and Array Input Data
	Editing Record Fields
	You can use the Set Field object to modify a field in a record. The Set�Field object is an assign...
	Figure 3-7. Using Set Field to Edit a Record

	Using DataSets
	Figure 3-8. Using To DataSet to Save a Record
	Figure 3-9. Using From DataSet to Retrieve a Record

	4 Using User-Defined Libraries
	Using User-Defined Libraries
	1. Import the library. Use the Device ﬁ Import Library object. Select the Library Type (UserFunct...
	2. Call one or more functions that are contained in the library. Use the Call, Formula, or Sequen...
	3. Delete the library. If memory management or program execution speed is a concern, use the Devi...

	About UserFunctions
	Converting Between UserObjects and UserFunctions
	Calling a UserFunction from an Expression
	You don't need to use the Call object to call a UserFunction. In fact you can call a UserFunction...
	Figure 4-1. Calling a UserFunction from Expressions

	Creating a UserFunction Library
	Figure 4-2. Creating UserFunctions for a Library

	Note Generally you want the program to contain only the UserFunctions, however if there are other...
	Figure 4-3. Importing a UserFunction Library

	Note You cannot edit the UserFunctions imported with Device ﬁ Import Library, but you can view th...
	Differences Between Merging and Importing

	About Compiled Functions
	1. Write the external program.
	2. Create the DLL (Windows) or shared library (UNIX), and a definition file.
	3. Import the library and call the function from HP�VEE.
	4. Delete the library from HP�VEE's memory when you're done.
	Note Pascal shared libraries are supported only for HP 9000 Series 700 computers.
	Design Considerations for Compiled Functions
	Importing and Calling a Compiled Function
	The Import Library object was explained in the ‘‘UserFunctions’’ section at the beginning of this...
	Figure 4-4. Using Import Library for Compiled Functions
	Figure 4-5. Using Call for Compiled Functions

	Creating a Compiled Function (UNIX)
	The Definition File
	The Call object determines the type of data it should pass to your function based on the contents...
	<return type> <function name> (<type> <paramname>, <type> <paramname>, ...) ;

	Where:

	Note For HP-UX, you must have the ANSI C compiler in order to generate the position independent c...
	Building a C Function
	/*
	C code from manual49.c file
	*/
	#include <stdlib.h>
	#ifdef WIN32
	# define DLLEXPORT __declspec(dllexport)
	#else
	# define DLLEXPORT
	#endif
	/* The description will show up on the Program Explorer when you select "Show Description" from t...
	*/
	DLLEXPORT char myFunc_desc[] = "This function adds 1.0 to the array passed in";
	DLLEXPORT long myFunc(long arraySize, double *array) { long i;
	for (i = 0; i < arraySize; i++, array++) { *array += 1.0; }
	return(arraySize); }
	The following HP�VEE program calls the Compiled Function created from our example C program:
	Figure 4-6. Program Calling a Compiled Function

	Creating a Shared Library
	Binding the Shared Library
	Creating a Dynamic Linked Library (MS Windows)

	Note This section tells you how to call a DLL, not how to write a DLL. HP�VEE version 3.2 and gre...
	Creating the DLL
	If you are using Microsoft Visual C++ version 2.0 or greater, the function definition should be:
	Declaring DLL Functions
	Creating the Definition File
	Examples

	Parameter Limitations
	The Import Library Object
	The Call Object
	The Delete Library Object
	Using DLL Functions in Formula Objects

	About Remote Functions
	Figure 4-7. Import Library for Remote Functions
	Note The remote HP�VEE service invoked by the client is dependent on the Host Name specified in t...
	1. The HP�VEE service process will execute only Remote Functions that are contained in the Remote...
	2. Remote Functions have views associated with them. When you call a remote functions, you can ha...
	3. Global variables (declared and undeclared) are not shared between the processes.
	4. Remote Functions will not time-slice when called.
	5. Objects cannot be passed to or from a Remote Function (includes Automation objects or pointers...
	UNIX Security, UIDs, and Names

	Note In calling a service HP�VEE process, the password is not required or called for. You must ha...
	Resource Files
	Errors

	Note It is possible to write a Remote Function that will hang, such as an infinite loop. In this ...

	About Callable VEE
	Note The libvapi.a library cannot link to programs when using the Borland compiler.
	About the VEE RPC API
	Starting and Stopping a Server
	Loading and Unloading a Library
	Selecting UserFunctions
	Calling UserFunctions
	Other Functions
	Error Codes for the VEE RPC API
	The following error codes are returned when a connection to the HP�VEE server cannot be made:
	The following are fatal errors that occur after connection to a HP�VEE server (the connection has...
	The following errors reflect an internal non-fatal state within the service:
	The following error is returned by a RPC function call:
	About the VEE DATA API

	Data Types, Shapes and Mappings
	The fundamental VDC types are listed in the veeData.h header file as:
	enum veeType
	{
	VEE_TYPE_ANY=0, // The default without constraints.
	VEE_NOT_DEFINED1, // Leave space.
	VEE_LONG, // 32-bit signed integer (no 16-bit INTs in VEE).
	VEE_NOT_DEFINED2, // Leave space.
	VEE_DOUBLE, // IEEE 754 64-bit floating-point number.
	VEE_COMPLEX, // Complex number: 2 doubles in rectangular form.
	VEE_PCOMPLEX, // Complex number: 2 doubles in polar form.
	VEE_STRING, // 8-bit ASCII null-terminated string.
	VEE_NIL, // Empty container returned by function call.
	VEE_NOT_DEFINED3, // Leave space.
	VEE_COORD, // 2 or more doubles give XY or XYZ or ... data.
	VEE_ENUM, // An ordered list of strings.
	VEE_RECORD, // VEE record-structures data.
	VEE_NOT_DEFINED4, // Leave space.
	VEE_WAVEFORM, // A 1D array of VEE_DOUBLE with a time mapping.
	VEE_SPECTRUM // A 1D array of VEE_PCOMPLEX with a time mapping.

	Arrays can be "mapped". Normally they aren't, but the VEE_WAVEFORM and VEE_SPECTRUM data types ar...
	enum veeMapType
	{
	VEE_MAPPING_NONE, // No mapping.
	VEE_MAPPING_LINEAR, // Linear mapping.
	VEE_MAPPING_LOG // Log mapping.

	Scalar Data Handling
	You can change the values in the VDCs with another set of routines:
	int32 vdcSetLongScalar(VDC aVD,
	int32 aLong);
	int32 vdcSetDoubleScalar(VDC aVD,
	double aReal);
	int32 vdcSetStringScalar(VDC aVD,
	char *aStr);
	int32 vdcSetComplexScalar(VDC aVD,
	double realPart,
	double imaginaryPart);
	int32 vdcSetPComplexScalar(VDC aVD,
	double magnitude,
	double phase);
	int32 vdcSet2DCoordScalar(VDC aVD,
	double xval,
	double yval);
	int32 vdcSet3DCoordScalar(VDC aVD,
	double xval,
	double yval,
	double zval);
	int32 vdcSetCoordScalar(VDC aVD,
	int16 aFieldCount,
	double* values);

	When you have created a scalar VDC or returned one from a function, you can get the C data type o...
	int32 vdcGetLongScalarValue(VDC aVD,
	int32 *aLong);
	int32 vdcGetDoubleScalarValue(VDC aVD,
	double *aReal);
	char* vdcGetStringScalarValue(VDC aVD);
	int32 vdcGetComplexScalarValue(VDC aVD,
	veeComplex *aComplex);
	int32 vdcGetPComplexScalarValue(VDC aVD,
	veePComplex *aPComplex);
	int32 vdcGet2DCoordScalarValue(VDC aVD,
	vee2DCoord *aCoord);
	int32 vdcGet3DCoordScalarValue(VDC aVD,
	vee3DCoord *aCoord);
	double* vdcGetCoordScalarValue(VDC aVD,
	int16 vdcNumCoordDims(VDC aVD);

	Array Data Handling
	VDC vdcCreateCoord1DArray(int32 numPts,
	int16 aFieldCount,

	Enum Types
	Mapping Functions
	The VEE DATA API allows you to manipulate the mappings of arrays with the following functions:
	int32 vdcAtDimPutLowerLimit(VDC aVD,
	int16 aDim,
	double aValue);
	// Specify mapping for lower limit.
	int32 vdcAtDimPutUpperLimit(VDC aVD,
	int16 aDim,
	double aValue);
	// Specify mapping for upper limit.
	int32 vdcAtDimPutRange(VDC aVD,
	int16 aDim,
	double lowerLimit,
	double upperLimit);
	// Combines "vdcAtDimPutLowerLimit" &
	"vdcAtDimPutUpperLimit".
	int32 vdcAtDimPutMapping(VDC aVD,
	int16 aDim,
	VMT aMapping);
	// Set the mapping between limits as defined above.
	int32 vdcMakeMappingsSame(VDC VD1,
	VDC VD2);
	// Map two containers in the same way.
	int32 vdcUnMap(VDC aVD);

	Other Functions

	About the Callable VEE ActiveX Control

	5 Using Transaction I/O
	Using Transaction I/O
	Using Transactions
	Figure 5-1. Default Transaction in To String
	Figure 5-2. A Simple Program Using To String
	1. Modify the default transaction or add additional transactions as required.
	2. Add input terminals, output terminals, or both.
	Creating and Editing Transactions
	Table 5-1. Editing Transactions With a Mouse

	To Do This...
	Click On This...
	Table 5-2. Editing Transactions With the Keyboard

	To Do This...
	Press This Key...
	Figure 5-3. Editing the Default Transaction in To String

	Editing the Data Field
	Figure 5-4. READ Transaction Using a Variable in the Data Field
	Figure 5-5. WRITE Transaction Using an Expression in the Data Field
	Table 5-3. Typical Data Field Entries
	Data Field Entry
	Meaning

	Note READ transactions allow a special variable named null in the data field. Reading data into t...
	Table 5-4. Escape Characters
	Escape Character
	ASCII Code (decimal)
	Meaning
	\n
	10
	\t
	9
	\v
	11
	\b
	8
	\r
	13
	\f
	12
	\"
	34
	'
	39
	\\
	92
	\ddd
	Adding Terminals
	Figure 5-6. Terminals Correspond to Variables
	1. Double click on the terminal to expand it into a Terminal�Information dialog box.
	2. Edit the Name field in the dialog box.

	Reading Data

	Transactions that Read a Specified Number of Data Elements
	Figure 5-7. Select Read Dimension from List
	Figure 5-8. Transaction Dialog Box for Multi-Dimensional Read

	Read-To-End Transactions
	Figure 5-9 shows the transaction dialog box of a From File object, reading a three dimensional ar...
	Figure 5-9. Transaction Dialog Box for Multi-Dimensional Read-To-End

	Note If you don't know the absolute number of data elements in a file, you can always use a read-...
	Non-Blocking Reads

	Note A READ IOSTATUS DATAREADY transaction, when executed, will block until the named pipe has be...
	Figure 5-10. Using READ IOSTATUS DATAREADY for a Non-Blocking Read
	Suggestions for Experimentation
	Figure 5-11. Experimenting with To String

	Details About Transaction-Based Objects
	Execution Rules
	1. Transactions execute beginning with the top-most transaction and proceed sequentially downward.
	2. Each transaction in the list executes completely before the next one begins. Transactions with...
	3. Transaction-based I/O objects accessing the same source or destination may exist in separate t...

	Object Configuration
	Note Direct�I/O objects behave differently than described above. Direct�I/O objects include a Sho...
	Figure 5-12. The Properties Dialog Box
	End Of Line (EOL)
	Array Separator
	Multi-Field Format
	Array Format
	READ and WRITE Compatibility

	Choosing the Correct Transaction
	Table 5-5. Summary of Transaction-Based Objects
	Object
	Description
	Table 5-6. Summary of Transaction Types

	Action
	Description
	Selecting the Correct Object and Transaction
	1. Determine the source or destination of your I/O operation and the form in which data is to be ...
	2. Determine the type of object that supports the source or destination using Table 5-5.
	3. Determine the correct type of transaction using Table 5-6.
	4. To determine the remaining specifications for the transaction, such as encodings and formats, ...

	Example of Selecting an Object and Transaction
	1. The source is a text file. The data consists of a time stamp in 24-hour hours-minutes-seconds ...
	2. Consulting Table 5-5, note that the object used to read a file is From�File.
	3. Consulting Table 5-6, note that the type of transaction used to read data from a file is READ.
	4. The desired transactions are:

	Using To String and From String
	Communicating With Files
	Source or Destination
	Object
	Details About File Pointers

	Read Pointers
	Write Pointers
	Note The To DataSet and From DataSet objects also share one read and one write pointer per file w...
	Closing Files
	Figure 5-13. Using the EXECUTE CLOSE Transaction
	The EOF Data Output
	1.0
	5.5
	2.1
	8
	.
	.
	Figure 5-14. Typical Use of EOF to Read a File

	Common Tasks for Importing Data
	1. Save the data in a text file (ASCII file).
	2. Examine the data file with a text editor to determine the format of the data.
	3. Use a From�File object with a READ TEXT transaction to read the data file.

	Importing X-Y Values
	Figure 5-15. Importing XY Values
	.
	.
	.
	8 8.555555
	9 9e0
	10 1.05e+01
	11 +11.
	12 12.5
	13 1.3E1

	Importing Waveforms
	Fixed-Format Header
	NAME Noise1
	START_TIME 0.0
	STOP_TIME 1.0E-03
	SAMPLES 32
	DATA
	.243545
	.2345776
	.
	.
	.
	Figure 5-16. Importing a Waveform File
	1. The first transaction strips away the NAME label. This must be done before attempting to read ...
	2. The second transaction reads the string name of the waveform.
	3. The third through fifth transactions read the specified numeric quantity. Note that HP�VEE sim...
	4. The sixth transaction reads the one-dimensional array of Y data using the ARRAY SIZE determine...

	Variable-Format Header
	First Line Of File
	<MARKER1> 1 2 3
	<MARKER2> A B C
	<DATA>
	1 1.1
	2 2.2
	3 2.9
	.
	.
	Figure 5-17. Importing a Waveform File

	Communicating With Programs (UNIX)
	Program
	Object(s)
	Execute Program (UNIX)
	Figure 5-18. The Execute Program (UNIX) Object

	Execute Program (UNIX) Fields
	Shell
	Wait for Prog Exit
	1. Check to see if a child process corresponding to the Execute�Program�(UNIX) object is active. ...
	2. Execute all transactions specified in the Execute�Program object.
	3. Close all pipes to the child process, thus sending an end-of-file (EOF) to the child.
	4. Wait until the child process terminates before activating any output pins of the Execute�Progr...
	1. Check to see if a child process corresponding to the Execute�Program�(UNIX) object is active. ...
	2. Execute all transactions specified in the Execute�Program object.
	3. Activate any data output pins on the Execute�Program object. The child process remains active ...

	Prog With Params
	1. The name of an executable file and command line parameters (Shell�set�to�none).
	2. A command that will be sent to a shell for interpretation (Shell�not�set�to�none).

	Running a Shell Command
	Figure 5-19. Execute Program (UNIX) Running a Shell Command
	Figure 5-20. Execute Program (UNIX) Running a Shell Command using Read-To-End

	Running a C Program
	Figure 5-21. Execute Program Running a C Program
	#include <stdio.h>
	main ()
	{
	int c;
	double val;
	setbuf(stdout,NULL); /* turn stdout buffering off */
	while (((c=scanf("%lf",&val)) != EOF) && c > 0){
	fprintf(stdout,"%g\n",val+1);
	fflush(stdout); /* force output back to VEE*/
	}
	exit(0);
	}
	Figure 5-22. C Program Listing

	To/From Named Pipe (UNIX)

	Hints for Using Named Pipes
	To/From Socket
	Figure 5-23. The To/From Socket Object

	To/From Socket Fields
	Connect/Bind Port Mode
	Table 5-7. Range of Integers Allowed for Socket Port Numbers

	Number Range
	Reserved for ...
	Host Name
	Timeout
	Transactions

	Data Organization
	Object Execution
	Example
	Figure 5-24. To/From Socket Binding Port for Server Process
	Figure 5-25. To/From Socket Connecting Port for Client Process
	HP BASIC/UX Objects (HP-UX)

	Init HP BASIC/UX
	To/From HP�BASIC/UX
	Examples Using To/From HP�BASIC/UX
	Sharing Scalar Data
	1. Start HP�BASIC.
	2. Run a specific HP�BASIC program.
	3. Send a single number to HP�BASIC for analysis.
	4. Retrieve the analyzed data.
	5. Terminate HP�BASIC.
	Figure 5-26. To/From HP BASIC/UX Settings

	100 ASSIGN @From_vee TO "/tmp/to_rmb"
	110 ASSIGN @To_vee TO "/tmp/from_rmb"
	120 ! Your analysis code here
	130 ENTER @From_vee;Vee_data
	140 OUTPUT @To_vee;Rmb_data
	150 END

	Sharing Array Data
	Sharing Binary Data

	Communicating With Programs (PC)
	Program
	Object(s)
	Execute Program (PC)
	Figure 5-27. The Execute Program (PC) Object

	Execute Program (PC) Fields
	Run Style
	Wait for Prog Exit
	1. Execute the command specified in the Execute�Program�(PC) object.
	2. Wait until the process terminates before activating any output pins of the Execute�Program�(PC...
	1. Execute the command specified in the Execute�Program�(PC) object.
	2. Activate any data output pins on the Execute�Program�(PC) object.

	Prog With Params
	1. The name of an executable file and command line parameters.
	2. A command that will be sent to MS-DOS for interpretation.

	Working Directory
	Using Dynamic Data Exchange (DDE)

	Note HP�VEE for Windows supports ActiveX automation which lets you control other Windows applicat...
	Note Definitions: Application - The DDE name for the application. Topic - An application-specific...
	To/From DDE Object
	Figure 5-28. The To/From DDE Object
	Figure 5-29. The To/From DDE Example
	Figure 5-30. Execute PC before To/From DDE
	Figure 5-31. I/O Terminals and To/From DDE
	DDE Examples
	Figure 5-32. Lotus 123 DDE Example
	Figure 5-33. Excel DDE Example
	Figure 5-34. Reflections DDE Example
	Figure 5-35. Word for Windows DDE Example
	Figure 5-36. WordPerfect DDE Example

	Dynamic Linked Libraries (DLL)

	Related Reading

	6 Using the Sequencer Object
	Using the Sequencer Object
	Sequence Transactions
	Figure 6-1. A Simple Sequencer Program
	Note For RANGE or LIMIT tests, the SPEC NOMINAL value is not used, except for "documentation" pur...
	Figure 6-2. Running the Program
	Figure 6-3. A Logged Record of Records

	Logging Test Results
	Figure 6-4. A Simple Logging Example
	Figure 6-5. A Logged Array of Records of Records
	Note The logged array is not a three-dimensional array, but is rather an array that consists of r...
	Figure 6-6. Analyzing the Logged Test Results
	Logging to a DataSet
	Figure 6-7. Logging to a DataSet

	Some Restrictions in Logging Test Results

	A Practical Test Example
	Figure 6-8. Simple Bin Sort Example
	Note Key Idea Any transaction with logging enabled creates a "local" Record variable with the sam...
	Figure 6-9. Improved Bin Sort Example
	You may want to load this program and explore how it works. Here are some key points:

	7 Using ActiveX Automation Objects and Controls
	Using ActiveX Automation Objects and Controls
	Note To enable ActiveX support, HP�VEE must be set to Standard compatibility mode in the Default ...

	Using ActiveX Automation
	To Make Automation Objects Available in HP�VEE
	Figure 7-1. Selecting ActiveX Automation Type Libraries

	To Declare Automation Object Variables
	You can declare a variable for an ActiveX automation object using the new Object data type (Data ...
	Figure 7-2. Declaring an ActiveX Automation Variable
	Figure 7-3. Specifying the Automation Object Type

	Note If you declare a variable for an ActiveX object when developing a program in Windows, and th...
	Handling Automation Object Events
	It is easy to create an event-handler UserFunction when you declare a variable for the object and...
	1. After declaring the variable and specifying its type, including enabling events, open the Decl...
	2. In the object menu, click on Create Event Handler… The Create Event Handler UserFunction brows...
	3. Click on an event name to select it. When you select an event, the browser information area pr...
	4. Click on Create Handler. The new UserFunction window appears. If you open this dialog box agai...

	To Create an Automation Object in a Program
	Click Create Formula and place the Formula object in your program. The Formula contains the expre...
	CreateObject(objectName)

	Most of the time you want a new instance of an automation object created in a new instance of the...

	To Get an Existing Automation Object
	If you already created an automation object, you can get an active object or load an existing obj...
	Type: Built-in Functions
	Category: ActiveX Automation
	Member: GetObject

	Click Create Formula and place the Formula object in your program. The Formula contains the expre...
	GetObject(fileName, objectName)

	The following expression gets an active object, and returns a reference to a currently running Ex...
	The following expressions load an existing object from file. The objectName parameter is optional:
	SET excel = GetObject("d:/tmp/TestData.xls","Excel.Sheet")

	or
	SET excel = GetObject("d:/tmp/TestData.xls")

	To Manipulate Automation Objects
	After creating an automation object, you can manipulate them to control server applications. Mani...

	Getting and Setting Properties
	The expressions in this section are examples of getting and setting a property of an object. The ...
	In the next expression, the value property returns the contents of the cell:
	The next expression does the same property-getting action as the previous expression by implying ...
	contents = sheet.cells(1,1)

	Sometimes you want the contents, value, and default property of the right- hand side (which happe...
	The following expressions are examples of setting a property of an object, which is identical to ...
	cell.value = "Test Data:"
	sheet.cells(1,1).value = "Test Data2"
	sheet.cells(1,1) = "Test Data2"
	About Default Properties

	Automation supports the concept of a default property or method. You can use this concept when ma...
	This means that the expression
	cell = sheet.cells(1,1)

	would not only return a cell from the collection of cells, but it would also evaluate the default...
	To get a cell from the collection of cells, you must use the keyword SET in the expression such as
	SET cell = sheet.cells(1,1)

	This sets cell to be a pointer to that cell in Excel. Compare this to the expression
	cell = sheet.cells(1,1)

	(mentioned above) where cell gets the contents of that cell in Excel. Also, the .value property i...
	cell.value = "Test Data”

	Calling Methods
	The following expression is an example of calling a method on an object:
	By default, parameters are passed by value. For example, cells(1,1) actually calls a method and p...
	Some automation methods have parameters that are passed by reference. The parameter’s value is ch...
	passed = Scanner.GetReading (ByRef Reading)

	Using Enumerations
	Type libraries can provide enumerations that appear in the Class area of HP�VEE’s Function & Obje...
	HP�VEE supports enumerations, which allows you to use the following expression when using object ...

	Using the ActiveX Object Browser
	Figure 7-4. Using the ActiveX Object Browser
	Figure 7-5. Elements Displayed in the Function & Object Browser
	The following automation types do not have an exact match; therefore, the browser information are...
	For a method, the browser displays type information about each parameter in the parameter list an...
	For events, the browser displays the same type information as for a method. However, the event ha...
	For constants in an enumeration, the browser displays the value of the constant. The following is...
	For constant values less than 0 and greater than 1024, HP�VEE also displays the hexadecimal value...
	Data Type Compatibility
	Table 7-1. Conversions from Automation to HP�VEE Data Types

	Convert from Automation Data Type
	Convert to HP�VEE Data Type
	Notes
	Table 7-2. Conversions from HP�VEE to Automation Data Types

	Convert from HP�VEE Data Type
	Convert to Automation Data Type
	Other Possible Data Types
	To Delete Automation Objects
	Automation objects are responsible for deleting themselves when HP�VEE releases its reference to ...

	Using ActiveX Controls
	Note HP�VEE does not support all ActiveX controls. If a control is incompatible with HP�VEE, an e...
	To Select ActiveX Controls
	Before you can use ActiveX controls in HP�VEE, you need to inform HP�VEE which ActiveX controls y...
	Figure 7-6. Selecting ActiveX Controls

	To Add a Control to HP�VEE
	Figure 7-7. Adding ActiveX Controls from the Device Menu

	Note In the previous two figures, five controls are selected in the ActiveX Control References di...
	Differences in the ActiveX Control Host
	Figure 7-8. Accessing Properties and Help in an ActiveX Control
	To Use an ActiveX Control in HP�VEE

	Using the Assigned Local Variable
	If you add a Calendar control to your program, it is assigned the local variable name Calendar1. ...
	Calendar1.Day = 24;
	Month = Calendar1.Month;

	Declaring a Global Variable for a Control
	To Manipulate ActiveX Controls

	Recommended Reading

	8 Keys To Faster Programs
	Keys To Faster Programs
	1. Click on Start Profiling and then run your program.
	2. When you have finished running your program, click on Refresh to see the results.
	3. Click on Stop Profiling to stop the profiler. Click on Clear to clear the current results disp...

	9 Troubleshooting Problems
	Troubleshooting Problems
	Table 9-1. Problems, Causes, and Solutions
	Problem
	Cause
	Solution

	A Using the Compatibility Mode
	Using the Compatibility Mode
	About The Compiler
	Compatibility Mode Changes: VEE 3 to VEE 4
	Line Colors
	Compiling Existing Programs
	1. Open the old program, turn on compiler mode, and press Step (or Run). This will PreRun the pro...
	2. Try running the program. Most everything will run the same way. The most common problem is not...

	Program Changes
	Time-Slicing UserFunctions
	UserObjects
	Function Precedence
	1. Internal functions (like sin() and totSize())
	2. Local UserFunctions
	3. Imported UserFunctions
	4. Compiled Functions
	5. Remote Functions

	Auto Execute and Start
	OK Buttons and Wait for Input
	1. Stepping: In previous versions, stepping over such an object would often result in the termina...
	2. CPU usage: In previous versions, executing such an object usually resulted in increased CPU us...

	Collectors Without Data
	Sample & Hold Without Data
	Timer Object
	Feedback Cycles
	In compiler mode, a Junction object is required inside of a feedback cycle. Start objects are no ...
	A Junction is required inside of feedback cycles.
	Figure A-1. Feedback in Previous Versions
	Figure A-2. Feedback in Compiled Mode

	Note that the current version does not allow invalid connections, such as an object's data input ...

	Parallel Threads
	Loop Bounds
	UserObjects and Calls With XEQ Pins
	OK Buttons With XEQ Pins
	From File With EOF Pins
	In previous versions, the data output pin on a From File object was treated differently from othe...
	In compiled mode, the data output from a From File object is invalidated each time the loop execu...
	The following figure illustrates this situation. In previous versions, the data fed into A on the...
	In compiled mode, the data fed into A is invalidated as soon as the next iteration of the loop be...
	Figure A-3. EOF Differences

	Parallel Junctions
	In versions before HP�VEE 4.0, if you had unconstrained objects that were connected in parallel t...
	Figure A-4. Parallel Junctions

	Intersecting Loops
	In previous versions, you could intersect iteration objects. The execution order was undefined, b...
	VEE was unable to compile this part of the program.
	Figure A-5. Intersecting Loops

	Intersecting Loops Via Junctions
	In versions before HP�VEE 4.0, the example shown below would execute the Integer first, and when ...
	In compiled mode, the example below runs the For Count objects after the Integer objects because ...
	Figure A-6. Intersecting Loops Via Junctions

	Open View Object Changes
	Array Syntax in Expressions

	Compatibility Mode Changes: VEE 4 to Standard
	About the Standard Mode
	Converting Programs to Standard Mode
	Note If you want to change HP VEE 3.x programs to Standard mode, you should be sure they work in ...
	Menu Changes
	Expressions
	Variables
	The following changes affect variables:

	Global Namespace
	1. Local input/output terminals.
	2. Declared local-to-context variables.
	3. Declared local-to-library variables when inside a UserObject context nested in a UserFunction ...
	4. Global declared and undeclared variables, local UserFunctions, Library names, which all must b...
	5. Built-in functions, such as sin() and totSize().
	6. ActiveX controls and automation constants depending on which libraries have been referenced us...
	7. Imported UserFunctions, Compiled Functions, and Remote Functions in random order. To guarantee...

	READ TEXT Transactions
	In VEE 3 and VEE 4 modes, the READ TEXT transaction using the TOKEN format with EXCLUDE CHARS doe...
	Figure A-7. READ TEXT Transaction with TOKEN in VEE 4 Mode
	Figure A-8. READ TEXT Transaction with TOKEN in Standard Mode

	Interaction Between To/From File and To/From DataSet
	Using Standard Mode in HP�VEE for HP�UX

	B Configuring HP�VEE
	Configuring HP�VEE
	Color and Font Settings
	Changing X11 Attributes (UNIX)
	Configuring HP�VEE for Windows
	General HP�VEE Settings
	The Geometry variable controls the initial size of the HP�VEE for Windows window. For example:

	Customizing Icon Bitmaps
	Selecting a Bitmap for a Panel View
	If You See Colors Changing On Your Screen (UNIX)
	Too Many Colors
	Your workstation can display some number of colors at one time, based on the number of color plan...
	For example, if you have 4 color planes, you can use as many as 16 colors at a time on your display.

	Applications that Use a Local Color Map (UNIX)
	Black
	White
	LightGray
	Figure B-1. Color Map File Using Words
	Figure B-2. Color Map File Using Hex Numbers

	To do this:
	1. Create a "colormap" file that contains all the different HP�VEE colors you will use.
	2. Change to your $HOME directory:
	3. Concatenate the HP BASIC/UX and the HP�VEE colormap files:

	cat /usr/lib/rmb/newconfig/xrmbcolormap vee-colormapfile > .xveecolormap
	cat /opt/rmb/newconfig/xrmbcolormap vee-colormapfile > .xveecolormap
	4. You must use the xinitcolormap command before you allocate any colors for other applications. ...
	/usr/bin/X11/xinitcolormap -c 55 -f $HOME/.xveecolormap
	5. Restart X11. To do this, stop the window manager by pressing the following three keys at the s...

	Using Non-USASCII Keyboards (UNIX)
	Note If you are accessing data that was created with the Roman8 character set, you must translate...

	Using HP-GL Plotters (UNIX)

	C ASCII Table
	ASCII Table
	Table C-1. ASCII 7-bit Codes
	Binary
	Oct
	Hex
	Dec
	HP-IB Msg
	NUL
	0000000
	000
	00
	0
	SOH
	0000001
	001
	01
	1
	GTL
	STX
	0000010
	002
	02
	2
	ETX
	0000011
	003
	03
	3
	EOT
	0000100
	004
	04
	4
	SDC
	ENQ
	0000101
	005
	05
	5
	PPC
	ACK
	0000110
	006
	06
	6
	BEL
	0000111
	007
	07
	7
	BS
	0001000
	010
	08
	8
	GET
	HT
	0001001
	011
	09
	9
	TCT
	LF
	0001010
	012
	0A
	10
	VT
	0001011
	013
	0B
	11
	FF
	0001100
	014
	0C
	12
	CR
	0001101
	015
	0D
	13
	SO
	0001110
	016
	0E
	14
	SI
	0001111
	017
	0F
	15
	DLE
	0010000
	020
	10
	16
	DC1
	0010001
	021
	11
	17
	LLO
	DC2
	0010010
	022
	12
	18
	DC3
	0010011
	023
	13
	19
	DC4
	0010100
	024
	14
	20
	DCL
	NAK
	0010101
	025
	15
	21
	PPU
	SYN
	0010110
	026
	16
	22
	ETB
	0010111
	027
	17
	23
	CAN
	0011000
	030
	18
	24
	SPE
	EM
	0011001
	031
	19
	25
	SPD
	SUB
	0011010
	032
	1A
	26
	ESC
	0011011
	033
	1B
	27
	FS
	0011100
	034
	1C
	28
	GS
	0011101
	035
	1D
	29
	RS
	0011110
	036
	1E
	30
	US
	0011111
	037
	1F
	31
	space
	0100000
	040
	20
	32
	listen addr 0
	!
	0100001
	041
	21
	33
	listen addr 1
	"
	0100010
	042
	22
	34
	listen addr 2
	#
	0100011
	043
	23
	35
	listen addr 3
	$
	0100100
	044
	24
	36
	listen addr 4
	%
	0100101
	045
	25
	37
	listen addr 5
	&
	0100110
	046
	26
	38
	listen addr 6
	’
	0100111
	047
	27
	39
	listen addr 7
	(
	0101000
	050
	28
	40
	listen addr 8
)
	0101001
	051
	29
	41
	listen addr 9
	*
	0101010
	052
	2A
	42
	listen addr 10
	+
	0101011
	053
	2B
	43
	listen addr 11
	,
	0101100
	054
	2C
	44
	listen addr 12
	-
	0101101
	055
	2D
	45
	listen addr 13
	.
	0101110
	056
	2E
	46
	listen addr 14
	/
	0101111
	057
	2F
	47
	listen addr 15
	0
	0110000
	060
	30
	48
	listen addr 16
	1
	0110001
	061
	31
	49
	listen addr 17
	2
	0110010
	062
	32
	50
	listen addr 18
	3
	0110011
	063
	33
	51
	listen addr 19
	4
	0110100
	064
	34
	52
	listen addr 20
	5
	0110101
	065
	35
	53
	listen addr 21
	6
	0110110
	066
	36
	54
	listen addr 22
	7
	0110111
	067
	37
	55
	listen addr 23
	8
	0111000
	070
	38
	56
	listen addr 24
	9
	0111001
	071
	39
	57
	listen addr 25
	:
	0111010
	072
	3A
	58
	listen addr 26
	;
	0111011
	073
	3B
	59
	listen addr 27
	<
	0111100
	074
	3C
	60
	listen addr 28
	=
	0111101
	075
	3D
	61
	listen addr 29
	>
	0111110
	076
	3E
	62
	listen addr 30
	?
	0111111
	077
	3F
	63
	UNL
	@
	1000000
	100
	40
	64
	talk addr 0
	A
	1000001
	101
	41
	65
	talk addr 1
	B
	1000010
	102
	42
	66
	talk addr 2
	C
	1000011
	103
	43
	67
	talk addr 3
	D
	1000100
	104
	44
	68
	talk addr 4
	E
	1000101
	105
	45
	69
	talk addr 5
	F
	1000110
	106
	46
	70
	talk addr 6
	G
	1000111
	107
	47
	71
	talk addr 7
	H
	1001000
	110
	48
	72
	talk addr 8
	I
	1001001
	111
	49
	73
	talk addr 9
	J
	1001010
	112
	4A
	74
	talk addr 10
	K
	1001011
	113
	4B
	75
	talk addr 11
	L
	1001100
	114
	4C
	76
	talk addr 12
	M
	1001101
	115
	4D
	77
	talk addr 13
	N
	1001110
	116
	4E
	78
	talk addr 14
	O
	1001111
	117
	4F
	79
	talk addr 15
	P
	1010000
	120
	50
	80
	talk addr 16
	Q
	1010001
	121
	51
	81
	talk addr 17
	R
	1010010
	122
	52
	82
	talk addr 18
	S
	1010011
	123
	53
	83
	talk addr 19
	T
	1010100
	124
	54
	84
	talk addr 20
	U
	1010101
	125
	55
	85
	talk addr 21
	V
	1010110
	126
	56
	86
	talk addr 22
	W
	1010111
	127
	57
	87
	talk addr 23
	X
	1011000
	130
	58
	88
	talk addr 24
	Y
	1011001
	131
	59
	89
	talk addr 25
	Z
	1011010
	132
	5A
	90
	talk addr 26
	[
	1011011
	133
	5B
	91
	talk addr 27
	\
	1011100
	134
	5C
	92
	talk addr 28
]
	1011101
	135
	5D
	93
	talk addr 29
	^
	1011110
	136
	5E
	94
	talk addr 30
	_
	1011111
	137
	5F
	95
	UNT
	‘
	1100000
	140
	60
	96
	secondary addr 0
	a
	1100001
	141
	61
	97
	secondary addr 1
	b
	1100010
	142
	62
	98
	secondary addr 2
	c
	1100011
	143
	63
	99
	secondary addr 3
	d
	1100100
	144
	64
	100
	secondary addr 4
	e
	1100101
	145
	65
	101
	secondary addr 5
	f
	1100110
	146
	66
	102
	secondary addr 6
	g
	1100111
	147
	67
	103
	secondary addr 7
	h
	1101000
	150
	68
	104
	secondary addr 8
	i
	1101001
	151
	69
	105
	secondary addr 9
	j
	1101010
	152
	6A
	106
	secondary addr 10
	k
	1101011
	153
	6B
	107
	secondary addr 11
	l
	1101100
	154
	6C
	108
	secondary addr 12
	m
	1101101
	155
	6D
	109
	secondary addr 13
	n
	1101110
	156
	6E
	110
	secondary addr 14
	o
	1101111
	157
	6F
	111
	secondary addr 15
	p
	1110000
	160
	70
	112
	secondary addr 16
	q
	1110001
	161
	71
	113
	secondary addr 17
	r
	1110010
	162
	72
	114
	secondary addr 18
	s
	1110011
	163
	73
	115
	secondary addr 19
	t
	1110100
	164
	74
	116
	secondary addr 20
	u
	1110101
	165
	75
	117
	secondary addr 21
	v
	1110110
	166
	76
	118
	secondary addr 22
	w
	1110111
	167
	77
	119
	secondary addr 23
	x
	1111000
	170
	78
	120
	secondary addr 24
	y
	1111001
	171
	79
	121
	secondary addr 25
	z
	1111010
	172
	7A
	122
	secondary addr 26
	{
	1111011
	173
	7B
	123
	secondary addr 27
	|
	1111100
	174
	7C
	124
	secondary addr 28
	}
	1111101
	175
	7D
	125
	secondary addr 29
	~
	1111110
	176
	7E
	126
	secondary addr 30
	[del]
	1111111
	177
	7F
	127

	D I/O Transaction Reference
	I/O Transaction Reference
	Table D-1. Summary of Transaction Types
	Action
	Description
	Table D-2. Summary of I/O Transaction Objects

	Objects
	Supported Transactions
	EXECUTE
	WAIT
	READ
	WRITE
	SEND
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X

	WRITE Transactions
	Path-Specific Behaviors
	Some WRITE transactions behave differently depending on the I/O path of the destination. For exam...
	Table D-3. WRITE Encodings and Formats

	Encodings
	Formats
	TEXT Encoding
	WRITE TEXT transactions are of this form:
	WRITE TEXT ExpressionList [Format]

	ExpressionList is a single expression or a comma-separated list of expressions.
	Format is an optional setting that specifies one of the formats listed in Table D-4.
	Table D-4. Formats for WRITE TEXT Transactions

	Format
	Description
	DEFAULT Format
	WRITE TEXT (default) transactions are of this form:
	WRITE TEXT ExpressionList

	The transaction converts each item in ExpressionList to a meaningful string and writes it. Consid...
	WRITE TEXT X
	Figure D-1. A WRITE TEXT Transaction
	If X in Figure D-1 contains text, such as:
	bird cat dog

	If X in Figure D-1 contains a scalar Integer, such as:
	8923 the value of X (decimal notation)

	If X in Figure D-1 contains a scalar real value, such as:
	1.2345678901234567 the value of X (17-digit scalar real value)

	then each significant digit up to 16 significant digits is written. The least significant digit i...
	WRITE TEXT a EOL

	then HP�VEE writes this:

	STRING Format
	WRITE TEXT STRING transactions are of this form:
	WRITE TEXT ExpressionList STR
	Field Width and Justification

	The transactions in Figure D-2 specify that all characters are to be written within a field of tw...
	WRITE TEXT X STR FW:20 LJ EOL WRITE TEXT Y STR FW:20 LJ EOL
	Figure D-2. Two WRITE TEXT STRING Transactions
	If X and Y in Figure D-2 have these values:
	bird cat dog the Text value of X
	12345678901234567 the Real value of Y

	then HP�VEE writes this:
	bird cat dog
	12345678901234567
	^ ^

	The caret characters (^) are not actually written by HP�VEE; they are shown to help you visualize...
	If justification is changed to RIGHT JUSTIFY, then the transactions appear as shown in Figure D-3.

	WRITE TEXT X STR FW:20 RJ EOL WRITE TEXT Y STR FW:20 RJ EOL
	Figure D-3. Two WRITE TEXT STRING Transactions
	If X and Y in Figure D-3 have these values:
	bird cat dog the Text value of X
	12345678901234567 the Real value of Y

	then HP�VEE writes this:
	bird cat dog
	12345678901234567
	^ ^

	If the length of a string exceeds the specified field width, the entire string is written. The fi...
	The transaction in Figure D-4 specifies that all characters are to be written in a field width of...

	WRITE TEXT X STR FW:4 LJ
	Figure D-4. A WRITE TEXT STRING Transaction
	If X in Figure D-4 has this value:
	bird cat dog the Text value of X, 12 characters

	then HP�VEE writes this:
	bird cat dog all 12 characters
	Number of Characters

	The transactions in Figure D-5 specify that a maximum of seven characters are written in each fie...

	WRITE TEXT X STR:7 FW:20 LJ EOL WRITE TEXT Y STR:7 FW:20 LJ EOL
	Figure D-5. Two WRITE TEXT STRING Transactions
	If X and Y in Figure D-2 have these values:
	bird cat dog the Text value of X
	12345678901234567 the Real value of Y

	then HP�VEE writes this:
	bird ca
	1234567
	^ ^

	Notice that the numeric value of Y is first converted to Text and characters are truncated. Numer...
	Writing Arrays With Direct I/O

	WRITE TEXT STR transactions that write arrays to direct I/O paths ignore the Array Separator sett...

	Note This special behavior for arrays does not apply to any other types of transactions.
	QUOTED STRING Format
	WRITE TEXT QUOTED STRING transactions are of this form:
	WRITE TEXT ExpressionList QSTR

	ExpressionList is a single expression or a comma-separated list of expressions.
	In general, the behaviors previously discussed for the STRING format apply to QUOTED STRING forma...
	Field Width and Justification

	The transactions in Figure D-6 specify that all characters are to be written as quoted strings in...
	WRITE TEXT X QSTR FW:20 LJ EOL WRITE TEXT Y QSTR FW:20 LJ EOL
	Figure D-6. Two WRITE TEXT QUOTED STRING Transactions
	If X and Y in Figure D-6 have these values:
	bird cat dog the Text value of X
	12345678901234567 the Real value of Y

	then HP�VEE writes this:
	"bird cat dog"
	"12345678901234567"
	^ ^

	If justification is changed to RIGHT JUSTIFY, then the transactions appear as shown in Figure D-7.

	WRITE TEXT X QSTR FW:20 RJ EOL WRITE TEXT Y QSTR FW:20 RJ EOL
	Figure D-7. Two WRITE TEXT QUOTED STRING Transactions
	If X and Y in Figure D-7 have these values:
	bird cat dog the Text value of X
	12345678901234567 the Real value of Y

	then HP�VEE writes this:
	"bird cat dog"
	"12345678901234567"
	^ ^

	If the length of a string exceeds the specified field width, the entire string is output. The fie...
	The transactions in Figure D-8 that specifies that all characters are to be written within a fiel...

	WRITE TEXT X QSTR FW:4 LJ
	Figure D-8. A WRITE TEXT QUOTED STRING Transaction
	If X in Figure D-8 has this value:
	bird cat dog the Text value of X, 12 characters

	then HP�VEE writes this:
	Number of Characters

	The transaction in Figure D-9 that specifies MAX NUM CHARS:7 (field width 20, left justified).

	WRITE TEXT X QSTR:7 FW:20 LJ EOL WRITE TEXT Y QSTR:7 FW:20 LJ EOL
	Figure D-9. Two WRITE TEXT QUOTED STRING Transactions
	If X and Y in Figure D-9 have these values:
	bird cat dog the Text value of X
	12345678901234567 the Real value of Y

	then HP�VEE writes this:
	"bird ca"
	"1234567"
	^ ^
	Embedded Control and Escape Characters
	Table D-5. Escape Characters

	Escape Character
	ASCII Code (decimal)
	Meaning
	\n
	10
	\t
	9
	\v
	11
	\b
	8
	\r
	13
	\f
	12
	\"
	34
	\'
	39
	\\
	92
	\ddd
	Consider the effects of various embedded escape characters on the transaction in Figure D-10.

	WRITE TEXT X QSTR EOL
	Figure D-10. A WRITE TEXT QUOTED STRING Transaction
	If X in Figure D-10 has this value:
	bird\ncat dog

	then HP�VEE writes this to UNIX paths:
	"bird\ncat dog"

	For the same transaction and data, HP�VEE writes this to direct I/O paths:
	"bird<LF>cat dog"

	If X in Figure D-10 has this value:
	bird \"cat\" dog

	then HP�VEE writes this to UNIX paths and Direct I/O paths for serial interfaces:
	"bird \"cat\" dog"

	For the same transaction and data, HP�VEE writes this to direct I/O paths for HP-IB interfaces:
	"bird ""cat"" dog"

	INTEGER Format
	WRITE TEXT INTEGER transactions are of this form:
	WRITE TEXT ExpressionList INT

	ExpressionList is a single expression or a comma-separated list of expressions.
	HP�VEE attempts to convert each item in ExpressionList to the Int32 data type before converting i...
	If a Real is written using INTEGER format:
	Number of Digits

	If you specify DEFAULT NUM DIGITS, the transaction writes only the digits required to express the...
	Consider the two transactions in Figure D-11 which differ only in their specification for the num...
	WRITE TEXT X INT EOL default number of digits WRITE TEXT X INT:6 EOL six digits
	Figure D-11. Two WRITE TEXT INTEGER Transactions
	If X in Figure D-11 has this value:
	4567

	then HP�VEE writes this:
	4567

	MIN NUM DIGITS never causes truncation of the output string. The transaction in Figure D-12 speci...

	WRITE TEXT X INT:1 EOL
	Figure D-12. A WRITE TEXT INTEGER Transaction
	If X in Figure D-12 has a value of:
	12345678

	then HP�VEE writes this:
	Sign Prefixes

	You may optionally specify one of the sign prefixes listed in Table D-6 as part of a WRITE TEXT I...
	Table D-6. Sign Prefixes

	Prefix
	Description
	Any prefixed signs do not count towards MIN NUM DIGITS. The transaction shown in Figure D-13 spec...
	WRITE TEXT X INT:6 SIGN:"+/-" EOL WRITE TEXT Y INT:6 SIGN:"+/-" EOL
	Figure D-13. Two WRITE TEXT INTEGER Transactions
	If X and Y in Figure D-13 have values of:
	123 the Integer value of X
	-123 the Integer value of Y

	then HP�VEE writes this:
	+000123 six digits plus sign

	OCTAL Format
	WRITE TEXT OCTAL transactions are of this form:
	WRITE TEXT ExpressionList OCT

	ExpressionList is a single expression or a comma-separated list of expressions.
	If a Real is written using OCTAL format:
	Number of Digits
	Octal Prefixes

	You may specify one of the prefixes listed in Table D-7 as part of a WRITE TEXT OCTAL transaction.
	Table D-7. Octal Prefixes

	Prefix
	Description
	The transaction in Figure D-14 specifies the default prefix and six digits:
	WRITE TEXT X OCT:6 PREFIX EOL
	Figure D-14. A WRITE TEXT OCTAL Transaction
	If X in Figure D-14 has this value:
	15 the value 15 decimal

	then HP�VEE writes this to direct I/O paths:
	Using the same transaction and data, HP�VEE writes this to UNIX paths:
	The transaction in Figure D-15 specifies a custom prefix and ten digits:

	WRITE TEXT X OCT:10 PREFIX:"oct>" EOL
	Figure D-15. A WRITE TEXT OCTAL Transaction
	If X in Figure D-15 has this value:
	15 the Integer value 15 decimal

	then HP�VEE writes this to UNIX paths and direct I/O paths:
	oct>000017

	HEX Format
	WRITE TEXT HEX transactions are of this form:
	WRITE TEXT ExpressionList HEX

	The type of integer written by this transaction is a 32-bit two's complement integer. The range o...
	The behavior of WRITE TEXT HEX is nearly identical to that of WRITE TEXT OCTAL. The only differen...
	Hexadecimal Prefixes

	You may specify one of the prefixes listed in Table D-8 as part of a WRITE TEXT HEX transaction.
	Table D-8. Hexadecimal Prefixes

	Prefix
	Description
	The transaction in Figure D-16 specifies the default prefix and six digits:
	WRITE TEXT X HEX:6 PREFIX EOL
	Figure D-16. A WRITE TEXT HEX Transaction
	If X in Figure D-16 has this value:
	15 the Integer value 15 decimal

	then HP�VEE writes this to direct I/O paths:
	#H00000f exactly six digits plus prefix

	Using the same transaction and data, HP�VEE this to UNIX paths:
	The transaction in Figure D-17 specifies a custom prefix and three digits:

	WRITE TEXT X HEX:3 PREFIX:"hex>" EOL
	Figure D-17. A WRITE TEXT HEX Transaction
	If X in Figure D-17 has this value:
	15 the Integer value 15 decimal

	then HP�VEE writes this to UNIX paths and direct I/O paths:
	hex>00f exactly three digits plus prefix

	REAL Format
	WRITE TEXT REAL transactions are of this form:
	WRITE TEXT ExpressionList REAL

	The type of Real number generated by this transaction is a 64-bit IEEE 754 floating-point number....
	-1.797 693 134 862 315E+308
	-2.225 073 858 507 202E-307
	0
	2.225 073 858 507 202E-307
	1.797 693 134 862 315E+308
	Notations and Digits

	You may optionally specify one of the notations in Table D-9 as part of a WRITE TEXT REAL transac...
	Table D-9. REAL Notations

	Notation
	Description
	The transactions in Figure D-18 specify STANDARD notation and four significant digits.
	WRITE TEXT X REAL STD:4 EOL WRITE TEXT Y REAL STD:4 EOL WRITE TEXT Z REAL STD:4 EOL
	Figure D-18. Three WRITE TEXT REAL Transactions
	If X, Y, and Z in Figure D-18 have these values:
	1.23456E2 the Real value of X
	1.23456E09 the Real value of Y
	1.23 the Real value of Z

	then HP�VEE writes this:
	123.5 mantissa rounded as required
	1.235E+09 large numbers in exponential notation

	The transactions in Figure D-19 specify FIXED notation and four fractional digits.

	WRITE TEXT X REAL FIX:4 EOL WRITE TEXT Y REAL FIX:4 EOL WRITE TEXT Z REAL FIX:4 EOL
	Figure D-19. Three WRITE TEXT REAL Transactions
	If X, Y, and Z in Figure D-19 have these values:
	1.2345678E2 the Real value of X
	1.2345678E-09 the Real value of Y
	1.23 the Real value of Z

	then HP�VEE writes this:
	123.4568 mantissa rounded as required
	0.0000 small numbers round to zero

	The transactions in Figure D-20 specify SCIENTIFIC notation and four fractional digits.

	WRITE TEXT X REAL SCI:4 EOL WRITE TEXT Y REAL SCI:4 EOL WRITE TEXT Z REAL SCI:4 EOL
	Figure D-20. Three WRITE TEXT REAL Transactions
	If X, Y, and Z in Figure D-20 have these values:
	1.2345678E2 the Real value of X
	-1.2345678E-09 the Real value of Y
	0 the Real value of Z

	then HP�VEE writes this:
	1.2346E+02 exponent is E plus two signed digits
	-1.2346E-09 last digit rounded as required

	COMPLEX, PCOMPLEX, and COORD Formats
	The final output of transactions involving multi-field formats is affected by the Multi-Field For...
	COMPLEX Format

	WRITE TEXT COMPLEX transactions are of this form:
	WRITE TEXT ExpressionList CPX

	The transaction in Figure D-21 specifies a fixed-decimal notation, explicit leading signs, a fiel...
	WRITE TEXT X CPX FIX:3 SIGN:"+/-" FW:10 RJ EOL
	Figure D-21. A WRITE TEXT COMPLEX Transaction
	If the Multi-Field Format is set to (...) Syntax, and X in Figure D- 21 has this value:
	(-1.23456 , 9.8) the Complex value of X

	then HP�VEE writes this:
	(-1.235 , +9.800)

	If the Multi-Field Format is set to Data Only and X in Figure D-21 has the same value, then HP�VE...
	-1.235, +9.800

	The caret characters (^) are not actually written by HP�VEE; they are shown to help you visualize...
	PCOMPLEX Format

	WRITE TEXT PCOMPLEX transactions are of this form:
	WRITE TEXT ExpressionList PCX

	PCOMPLEX format allows you to specify the phase units for the polar complex number it writes. Not...
	Table D-10. PCOMPLEX Phase Units

	Unit
	Description
	The first transaction in Figure D-22 specifies phase measurement in degrees, and the second trans...
	WRITE TEXT X PCX:DEG STD EOL WRITE TEXT X PCX:RAD STD EOL
	Figure D-22. Two WRITE TEXT PCOMPLEX Transactions
	If the Multi-Field Format is set to Data Only, and X in Figure D-22 has this value:
	(-1.23456 , @90) the PComplex value of X, phase in degrees

	then HP�VEE writes this:
	1.23456,-90

	The transaction in Figure D-23 specifies phase measurement in radians, fixed-decimal notation, th...

	WRITE TEXT X PCX:RAD FIX:3 SIGN:"+/-" FW:10 RJ EOL
	Figure D-23. A WRITE TEXT PCOMPLEX Transaction
	If the Multi-Field Format is set to (...) Syntax, and X in Figure D- 23 has this value:
	(-1.23456 , @9.8) the PComplex value of X, angle in radians

	then HP�VEE writes this:
	(+1.235 , @ +0.375)
	^ ^ ^ ^

	If the Multi-Field Format is set to Data Only, and X in Figure D-23 has the same value, then HP�V...
	+1.235, +0.375
	COORD Format

	WRITE TEXT COORD transactions are of this form:
	WRITE TEXT ExpressionList COORD

	TIME STAMP Format
	WRITE TEXT TIME STAMP transactions are of this form:
	WRITE TEXT ExpressionList [DATE:DateSpec] [TIME:TimeSpec]

	DateSpec is one of the following pre-defined date and time combinations:
	If you specify a transaction that includes Time, you may also specify a TimeSpec. TimeSpec is a c...
	TIME STAMP supports a variety of notations for writing dates and times. If a Real variable contai...
	62806574669.31164

	BYTE Encoding
	BYTE transactions are of this form:
	WRITE BYTE ExpressionList

	ExpressionList is a single expression or a comma-separated list of expressions.
	The transactions in Figure D-24 produce the following character data output:
	ABCAA

	WRITE BYTE 65,66,67 WRITE BYTE 65+1024,65+2048
	Figure D-24. Two WRITE BYTE Transactions
	CASE Encoding
	WRITE CASE transactions are of this form:
	WRITE CASE ExpressionList1 OF ExpressionList2

	ExpressionList is a single expression or a comma-separated list of expressions.
	HP�VEE converts each item in ExpressionList1 to an integer and uses it as an index into Expressio...
	The transactions in Figure D-25 illustrate the behavior of CASE format.

	WRITE CASE 2,1 OF "Str0","Str1","Str2" WRITE CASE X OF 1,1+A,3+A
	Figure D-25. Two WRITE CASE Transactions
	If the variables in Figure D-25 have these values:
	2 the Real value of X
	0.1 the Real value of A

	then HP�VEE writes this:
	Str2Str1

	BINARY Encoding
	WRITE BINARY transactions are of this form:
	WRITE BINARY ExpressionList DataType

	DataTypes is one of the following pre-defined HP�VEE data types:

	Note HP�VEE stores and manipulates all integer values as the INT32 data type, and all real number...
	BINBLOCK Encoding
	WRITE BINBLOCK transactions are of this form:
	WRITE BINBLOCK ExpressionList DataType

	ExpressionList is a single expression or a comma-separated list of expressions.
	DataType is one of these pre-defined HP�VEE data types:

	Non-HP-IB BINBLOCK
	Each Definite Length Arbitrary Block is of the form:
	#<Num_digits><Num_bytes><Data>

	where:

	HP-IB BINBLOCK
	IEEE 728 block headers are of the following forms:
	#A<Byte_Count><Data>
	#T<Byte_Count><Data>
	#I<Data><END>

	where:
	CONTAINER Encoding
	WRITE CONTAINER transactions are of this form:
	WRITE CONTAINER ExpressionList

	ExpressionList is a single expression or a comma-separated list of expressions.
	This representation retains all the HP�VEE attributes associated with the data type written, such...
	For example, this transaction:
	WRITE CONTAINER 1.2345

	writes this:
	(Real
	(data 1.2345)

	STATE Encoding
	WRITE STATE transactions are of the form:
	WRITE STATE [DownloadString]

	REGISTER Encoding
	WRITE REGISTER is used to write values into a VXI device's A16 memory.
	WRITE REGISTER transactions are of this form:
	WRITE REG: SymbolicName ExpressionList INCR
	-or-
	WRITE REG: SymbolicName ExpressionList

	where:
	SymbolicName is a name defined during configuration of a VXI device. The name refers to a specifi...

	MEMORY Encoding
	WRITE MEMORY is used to write values into a VXI device's A24 or A32 memory.
	WRITE MEMORY transactions are of this form:
	WRITE MEM: SymbolicName ExpressionList INCR
	-or-
	WRITE MEM: SymbolicName ExpressionList

	where:
	SymbolicName is a name defined during configuration of a VXI device. The name refers to a specifi...

	IOCONTROL Encoding
	WRITE IOCONTROL transactions are of this form:
	WRITE IOCONTROL CTL ExpressionList
	-or-
	WRITE IOCONTROL PCTL ExpressionList

	ExpressionList is a single expression or a comma-separated list of expressions.
	This transaction sets the control lines of a GPIO interface:
	WRITE IOCONTROL CTL a

	HP�VEE converts the value of a to an Integer. The least X significant bits of the Integer value a...
	For example, the HP 98622A GPIO interface uses two control lines, CTL0 and CTL1.

	Value Written
	CTL1
	CTL0
	0
	0
	0
	1
	0
	1
	2
	1
	0
	3
	1
	1
	WRITE IOCONTROL PCTL a

	READ Transactions
	Table D-11. READ Encodings and Formats
	Encodings
	Formats
	TEXT Encoding
	Table D-12. Formats for READ TEXT Transactions

	Format
	Description
	General Notes for READ TEXT
	Read to End
	Number of Characters Per READ
	These READ TEXT formats support a choice between DEFAULT NUM CHARS and MAX�NUM�CHARS:
	STRING
	INTEGER
	OCTAL
	HEX
	REAL

	The basic difference between DEFAULT NUM CHARS and MAX�NUM�CHARS is this:
	If you specify DEFAULT NUM CHARS, the transaction reads as many characters as it requires to fill...
	If you specify MAX NUM CHARS, HP�VEE makes no attempt to sort out characters that are not meaning...
	Consider this example that distinguishes between the behaviors of
	DEFAULT NUM CHARS and MAX NUM CHARS using INTEGER format. Assume that you are trying to read a fi...
	bird dog cat 12345 horse

	It is impossible to extract the integer 12345 from this data with a READ�TEXT�INTEGER transaction...
	Effects of Quoted Strings

	The presence of quoted strings affects the behavior of READ TEXT QSTR and READ TEXT TOKEN for all...
	Grouping effects are best explained by using an example. For the discussion in the rest of this s...
	"This is in quotes." This is not.
	Figure D-26. Quoted and Non-Quoted Data
	Assume that you read the file shown in Figure D-26 using From File with these transactions:
	READ TEXT x QSTR
	READ TEXT y QSTR

	After reading the file, the results are:
	x = This is in quotes.
	y = This is not.

	Now assume that you read the file shown in Figure D-26 using From File with these transactions:
	READ TEXT x QSTR MAXFW:4
	READ TEXT y QSTR

	After reading the file, the results are:
	x = This
	y = This is not.

	Next, assume that you read the file shown in Figure D-26 using From File with these transactions:
	READ TEXT x TOKEN
	READ TEXT y QSTR

	Now after reading the file, the results are:
	x = This is in quotes.
	y = This is not.

	CHAR Format
	READ TEXT CHAR transactions are of this form:
	READ TEXT VarList CHAR:NumChar ARRAY:NumStr

	VarList is a single Text variable or a comma-separated list of Text variables.
	NumChar specifies the number of 8-bit characters that must read to fill each element of each vari...
	CHAR format is useful when you wish to simply read one character at a time, or when you need to r...
	This transaction reads two two-dimensional Text arrays; each element in each array contains two c...
	If a file read by the previous transaction contains these characters:
	<space>ABCDEFG"AB"<LF>'CD

	then the variables X and Y contain these values after the READ:
	X [0 0] = <space>A
	X [0 1] = BC
	X [1 0] = DE
	X [1 1] = FG
	Y [0 0] = "A
	Y [0 1] = B"
	Y [1 0] = <LF>'
	Y [1 1] = CD

	TOKEN Format
	READ TEXT TOKEN transactions are of this form:
	READ TEXT VarList TOKEN Delimiter ARRAY:NumElements

	VarList is a single Text variable or a comma-separated list of Text variables.
	Delimiter specifies the combinations of characters that terminate (delimit) each token.
	TOKEN format allows you to define the delimiter (boundary) for tokens using one of these choices ...
	The following discussion of delimiters explains how the choice of delimiters affects reading a fi...
	A phrase. "A phrase." Tab follows. XOXXOOXXXOOOXXXX XAXXBCXXXDEF
	Figure D-27. Data for READ TOKEN
	The file contains only the letter O, not the digit zero.
	SPACE DELIM

	If you use SPACE DELIM, tokens are terminated by any white space. White space includes spaces, ta...
	If you read the data shown in Figure D-27 using SPACE DELIM with this transaction:
	READ TEXT a TOKEN ARRAY:8

	then the variable a contains these values:
	a[0] = A
	a[1] = phrase.
	a[2] = A phrase.
	a[3] = Tab
	a[4] = follows
	a[5] = .
	a[6] = XOXXOOXXXOOOXXXX
	INCLUDE CHARS

	If HP�VEE reads the data shown in Figure D-27 using INCLUDE CHARS with this transaction:
	READ TEXT a TOKEN INCLUDE:"X" ARRAY:7

	then the variable a contains these values:
	a[0] = X
	a[1] = XX
	a[2] = XXX
	a[3] = XXXX
	a[4] = X
	a[5] = XX

	If HP�VEE reads the data shown in Figure D-27 using INCLUDE�CHARS with this transaction:
	READ TEXT a TOKEN INCLUDE:"OXZ" ARRAY:4

	then the variable a contains these values:
	a[0] = XOXXOOXXXOOOXXXX
	a[1] = X
	a[2] = XX
	a[3] = XXX

	Assume that you are trying to read a file containing the data in Figure D-28.

	111 222 333 444 555
	Figure D-28. Data for READ TOKEN
	If you try to read the file in Figure D-28 using this transaction:
	READ TEXT x,y,z TOKEN INCLUDE:"1234567890"

	then the Text variables x, y, and z will contain these values:
	x = 111
	y = 222

	Another way to do this is to specify an ARRAY greater than one and read data into an array. For e...
	READ TEXT x TOKEN INCLUDE:"1234567890" ARRAY:3

	then the Text variable x contains these values:
	x[0] = 111
	x[1] = 222
	EXCLUDE CHARS

	If you use EXCLUDE CHARS, you can specify a list of characters, any one of which will terminate t...
	If you read the data shown in Figure D-27 using EXCLUDE with this transaction:
	READ TEXT a TOKEN EXCLUDE:"X" ARRAY:8

	then the variable a contains these values:
	a[0] = A phrase.<LF>"A phrase."<LF>Tab follows .<LF>
	a[1] = O
	a[2] = OO
	a[3] = OOO
	a[4] = <LF>
	a[5] = A
	a[6] = BC

	Assume the data shown in Figure D-29 is sent to HP�VEE from an instrument.

	++1.23++4.98++0.45++2.34++0.01++23.45++12.2++
	Figure D-29. Data for READ TOKEN
	If HP�VEE reads the data in Figure D-29 with this transaction:
	READ TEXT x TOKEN EXCLUDE:"+" ARRAY:7

	then the variable x will contain these values:
	x[0] = null string (empty)
	x[1] = 1.23
	x[2] = 4.98
	x[3] = 0.45
	x[4] = 2.34
	x[5] = 0.01

	STRING Format
	READ TEXT STRING transactions are of this form:
	READ TEXT VarList STR ARRAY:NumElements
	-or-
	READ TEXT VarList STR MAXFW:NumChars ARRAY:NumElements

	VarList is a single Text variable or a comma-separated list of Text variables.
	NumChars specifies the maximum number of 8-bit characters that can be read in an attempt to build...
	Effects of Control and Escape Characters

	Assume you wish to read the following string data using READ TEXT STRING transactions:
	Simple string.
	Random \n % $ * ‘A'
	"In quotes."
	"In quotes
	with control."

	If you read the string data using this transaction:
	READ TEXT x STR ARRAY:5

	then the variable x contains these values:
	a[0] = Simple string.
	a[1] = Random \n % $ * ‘A'
	a[2] = In quotes.
	a[3] = In quotes<LF>with control.

	If you read the same string data using this transaction:
	READ TEXT x STR MAXFW:16 ARRAY:5

	then the variable x contains these values:
	a[0] = Simple string.
	a[1] = Random \n % $ *
	a[2] = ‘A'
	a[3] = In quotes.
	a[4] = In quotes<LF>with c

	QUOTED STRING Format
	READ TEXT QUOTED STRING transactions are of this form:
	READ TEXT VarList QSTR ARRAY:NumElements
	-or-
	READ TEXT VarList QSTR MAXFW:NumChars ARRAY:NumElements

	VarList is a single Text variable or a comma-separated list of Text variables.
	NumChars specifies the maximum number of 8-bit characters that can be read in an attempt to build...
	Effects of Control and Escape Characters

	Assume you wish to read the following string data using READ TEXT QUOTED STRING transactions:
	Simple string.
	Random \n % $ * ‘A'
	"In quotes."
	"In quotes
	with control."

	If you read the string data using this transaction:
	READ TEXT x QSTR ARRAY:5

	then the variable x contains these values:
	a[0] = Simple string.
	a[1] = Random \n % $ * ‘A'
	a[2] = In quotes.
	a[3] = In quotes<LF>with control.

	If you read the same string data using this transaction:
	READ TEXT x QSTR MAXFW:16 ARRAY:5

	then the variable x contains these values:
	a[0] = Simple string.
	a[1] = Random \n % $ *
	a[2] = ‘A'
	a[3] = In quotes.
	a[4] = In quotes<LF>with c

	INTEGER Format
	READ TEXT INTEGER transactions are of this form:
	READ TEXT VarList INT ARRAY:NumElements
	-or-
	READ TEXT VarList INT MAXFW:NumChars ARRAY:NumElements

	VarList is a single Integer variable or a comma-separated list of Integer variables.
	NumChars specifies the maximum number of 8-bit characters that can be read in an attempt to build...
	All of the following notations are interpreted as the Integer value 15 decimal:
	15
	+15
	015
	0xF
	0xf
	#b1111
	#Q17

	OCTAL Format
	READ TEXT OCTAL transactions are of this form:
	READ TEXT VarList OCT ARRAY:NumElements
	-or-
	READ TEXT VarList OCT MAXFW:NumChars ARRAY:NumElements

	VarList is a single Integer variable or a comma-separated list of Integer variables.
	NumChars specifies the number of 8-bit characters that can be read in an attempt to build a number.
	If the transaction specifies a MAX NUM CHARS (MAXFW), the octal number read may contain more than...
	377237456214567243777

	using this transaction:
	If the transaction specifies DEFAULT NUM CHARS, it will continue to read characters until it buil...
	READ TEXT x OCT ARRAY:4

	interprets each line of the following octal data as the same set of four octal numbers:
	0345 067 003<LF>0377<LF>
	345 67 3 377<EOF>
	345,67,3,377,45,67<EOF>

	HEX Format
	READ TEXT HEX transactions are of this form:
	READ TEXT VarList HEX ARRAY:NumElements
	-or-
	READ TEXT VarList HEX MAXFW:NumChars ARRAY:NumElements

	VarList is a single Integer variable or a comma-separated list of Integer variables.
	NumChars specifies the number of 8-bit characters that can be read in an attempt to build a number.
	If the transaction specifies a MAX NUM CHARS (MAXFW), the hexadecimal number read may contain mor...
	ad2469Ff725BCdef37964 hexadecimal data

	using this transaction:
	Assume HP�VEE reads the same hexadecimal data, but with a different MAX NUM CHARS, as in this tra...
	READ TEXT x HEX MAXFW:3 ARRAY:7

	Assume HP�VEE reads the same hexadecimal data, but with DEFAULT�NUM�CHARS, as in this transaction:
	READ TEXT x HEX ARRAY:2

	REAL Format
	READ TEXT REAL transactions are of this form:
	READ TEXT VarList REAL ARRAY:NumElements
	-or-
	READ TEXT VarList REAL MAXFW:NumChars ARRAY:NumElements

	VarList is a single Real variable or a comma-separated list of Real variables.
	NumChars specifies the maximum number of 8-bit characters that can be read in an attempt to build...
	The decimal number read by this transaction is interpreted as an HP�VEE Real which is a 64-bit IE...
	-1.797 693 134 862 315E+308
	-2.225 073 858 507 202E-307
	0
	2.225 073 858 507 202E-307

	If the transaction specifies a MAX NUM CHARS (MAXFW), the Real number read may contain more than ...
	1.234567890123456789 real number data

	using this transaction:
	Assume HP�VEE reads the same real number data, but with a different MAX NUM CHARS, as in this tra...
	READ TEXT x REAL MAXFW:6 ARRAY:3

	READ TEXT REAL transactions recognize most commonly used decimal notations for Real numbers inclu...
	Table D-13. Suffixes for REAL Numbers

	Suffix
	Multiplier
	The following Text data represents six real numbers:
	1001
	+1001.
	1001.0
	1.001E3
	+1.001E+03

	If HP�VEE reads the real text data with this transaction:
	READ TEXT x REAL ARRAY:6

	then each element of the Real variable x contains the value 1001.
	If HP�VEE reads the same data with this transaction:
	READ TEXT x REAL MAXFW:20 ARRAY:6

	COMPLEX, PCOMPLEX, and COORD Formats
	COMPLEX, PCOMPLEX, and COORD correspond to the HP�VEE multi-field data types with the same names....
	COMPLEX Format

	READ TEXT COMPLEX transactions are of this form:
	READ TEXT VarList CPX ARRAY:NumElements
	PCOMPLEX Format

	READ TEXT PCOMPLEX transactions are of this form:
	READ TEXT VarList PCX:PUnit ARRAY:NumElements

	PUnit specifies the units of angular measure in which the phase of the PComplex is measured.
	If any transaction reading COMPLEX, PCOMPLEX, or COORD formats encounters an opening parenthesis,...
	Assume you wish to read a file containing the following data containing parentheses:
	(1.23 , 3.45 (6.78 , 9.01) (1.23 , 4.56)

	If HP�VEE reads the data with this transaction:
	READ TEXT x,y CPX

	then the variables x and y contain these Complex values:
	x = (1.23 , 3.45)
	y = (1.23 , 4.56)
	COORD Format

	READ TEXT COORD transactions are of this form:
	READ TEXT VarList COORD:NumFields ARRAY:NumElements

	VarList is a single Coord variable or a comma-separated list of Coord variables.
	NumFields is a single variable or expression that specifies the number of rectangular dimensions ...
	BINARY Encoding
	READ BINARY transactions are of this form:
	READ BINARY VarList DataType ARRAY:NumElements

	VarList is a single variable or a comma-separated list of variables.

	Note HP�VEE stores and manipulates all integer values as the INT32 data type, and all real number...
	For example, the following transaction, reading from a file:
	READ BINARY a REAL64 ARRAY:*,10

	BINBLOCK Encoding
	READ BINBLOCK transactions are of this form:
	READ BINBLOCK VarList DataType ARRAY:NumElements

	VarList is a single variable or a comma-separated list of variables.
	DataType is one of these pre-defined HP�VEE data types:
	For example, the following transaction, reading from a file:
	READ BINBLOCK a REAL64 ARRAY:*,10

	The following transaction reads two traces from an oscilloscope that formats its traces as IEEE 4...

	CONTAINER Encoding
	READ CONTAINER transactions are of the form:
	READ CONTAINER VarList

	VarList is a single variable or a comma-separated list of variables.

	REGISTER Encoding
	READ REGISTER is used to read values from a VXI device's A16 memory.
	READ REGISTER transactions are of this form:
	READ REG: SymbolicName ExpressionList INCR ARRAY:NumElements
	-or-
	READ REG: SymbolicName ExpressionList ARRAY:NumElements

	where:
	SymbolicName is a name defined during configuration of a VXI device. The name refers to a specifi...

	MEMORY Encoding
	READ MEMORY is used to read values from a VXI device's A24 or A32 memory.
	READ MEMORY transactions are of this form:
	READ MEM: SymbolicName ExpressionList INCR ARRAY:NumElements
	-or-
	READ MEM: SymbolicName ExpressionList ARRAY:NumElements

	where:
	SymbolicName is a name defined during configuration of a VXI device. The name refers to a specifi...

	IOSTATUS Encoding
	READ IOSTATUS transactions are of this form:
	READ IOSTATUS STS Bits VarList
	-or-
	READ IOSTATUS DATA READY VarList

	VarList is a single Integer variable or a comma-separated list of Integer variables.
	READ IOSTATUS transactions are used by Direct I/O for GPIO interfaces, From StdIn, To/From Named ...
	For example, the HP 98622A GPIO interface supports two peripheral status lines, STI0 and STI1. Ta...
	READ IOSTATUS STS Bits a
	Table D-14. IOSTATUS Values

	Value Read
	STI1
	STI0
	0
	0
	0
	1
	0
	1
	2
	1
	0
	3
	1
	1

	EXECUTE Transactions
	Table D-15. Summary of EXECUTE Commands
	Commands
	Description
	Details About HP-IB
	The EXECUTE commands used by Direct I/O to HP-IB devices and Interface Operations are similar but...
	The following series of tables indicate the exact bus actions conducted by Direct I/O and Interfa...
	Table D-16. EXECUTE ABORT HP-IB Actions

	Direct I/O
	Interface Operations
	Not applicable.
	IFC (³ 100 µsec)
	REN
	ATN
	Table D-17. EXECUTE CLEAR HP-IB Actions

	Direct I/O
	Interface Operations
	ATN
	ATN
	MTA
	DCL
	UNL
	LAG
	SDC
	Table D-18. EXECUTE TRIGGER HP-IB Actions

	Direct I/O
	Interface Operations
	ATN
	ATN
	MTA
	GET
	UNL
	LAG
	GET
	Table D-19. EXECUTE LOCAL HP-IB Actions

	Direct I/O
	Interface Operations
	ATN
	REN
	MTA
	ATN
	UNL
	LAG
	GTL
	Table D-20. EXECUTE REMOTE HP-IB Actions

	Direct I/O
	Interface Operations
	REN
	REN
	ATN
	ATN
	MTA
	UNL
	LAG
	Table D-21. EXECUTE LOCAL LOCKOUT HP-IB Actions

	Direct I/O
	Interface Operations
	Not applicable.
	ATN
	LLO
	Details About VXI
	The EXECUTE commands used by Direct I/O to VXI devices and Interface Operations are similar, but ...
	EXECUTE TRIGGER transactions for the Interface Operations object are of the form:
	EXECUTE TRIGGER TriggerType Expression TriggerMode

	TriggerType specifies which trigger group will be used by the
	EXECUTE TRIGGER transaction. The groups are:
	Expression evaluates to a single Integer variable that represents a bit pattern indicating which ...
	TriggerMode indicates the way the trigger lines are to be asserted:
	Table D-22. EXECUTE CLEAR VXI Actions

	Direct I/O
	Interface Operations
	Table D-23. EXECUTE TRIGGER VXI Actions

	Direct I/O
	Interface Operations
	Table D-24. EXECUTE LOCAL VXI Actions

	Direct I/O
	Interface Operations
	Table D-25. EXECUTE REMOTE VXI Actions

	Direct I/O
	Interface Operations

	WAIT Transactions
	WAIT INTERVAL transactions simply wait for the specified number of seconds before executing the n...
	WAIT SPOLL transactions are of the form:
	WAIT SPOLL Expression Sense

	Expression is an expression that evaluates to an integer. The integer will be used as a bit mask.
	Sense is a field with two possible values.
	WAIT SPOLL transactions wait until the serial poll response byte of the associated instrument mee...
	The following transactions show how to use WAIT�SPOLL:
	WAIT SPOLL:256 ANY Wait until any bit is set.
	WAIT SPOLL:256 CLEAR Wait until all are clear.
	WAIT SPOLL:0x40 ANY Wait until bit 6 is set.

	WAIT REGISTER and WAIT MEMORY transactions are of the form:
	WAIT REG:SymbolicName MASK:Expression Sense [Expression]
	-or-
	WAIT MEM:SymbolicName MASK:Expression Sense [Expression]

	where:
	SymbolicName is a name defined during configuration of a VXI device. The name refers to a specifi...
	Sense is a field with three possible values.
	WAIT REGISTER or MEMORY transactions wait until the value read from the register or memory locati...

	SEND Transactions
	SEND transactions are of this form:
	SEND BusCmd

	BusCmd is one of the bus commands listed in Table D-26.
	Table D-26. SEND Bus Commands

	Command
	Description

	WRITE(POKE) Transactions
	The WRITE(POKE) transaction is very similar to the WRITE transaction, except that it applies only...

	READ(REQUEST) Transactions
	The READ(REQUEST) transaction is very similar to the READ transaction, except that it applies onl...

	E HP�VEE for UNIX and HP�VEE for Windows Differences
	HP�VEE for UNIX and HP�VEE for Windows Differences
	Execute Program
	DLL versus Shared Library
	Data Files
	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

