
Understanding ActiveX Automation White Paper

Worldwide Field Training Event MXD-03 Page 1

Understanding ActiveX Automation in Measurement
Applications Using HP VEE 5.0

Abstract

This paper explains ActiveX Automation technology (which supersedes OLE Automation) and
Microsoft’s underlying COM technology, how these apply to measurement applications, using
HP VEE 5.0 with Microsoft’s Office97 applications to illustrate.  HP VEE and similar software
generate large quantities of data from measurements.  Microsoft’s Access, Word and Excel are
software applications used to manipulate data and present it to the end information consumer.

Overview of ActiveX Automation Technology

Engineers who need to make measurements as part of their job often end up struggling more with
software issues than taking measurements.  Writing good software is hard to do and time
consuming.  It is well documented that hardware design is aided by heavy reuse of existing
components.  This has resulted in unprecedented orders-of-magnitude improvement in
performance over the last two decades.  If similar standards could be defined that allow various
software components from a variety of sources to be glued together to form a solution, then
better software could be written in a shorter period of time.

Microsoft’s Component Object Model (COM)

Component (or object) software applies this concept to the creation of new software.  Until
recently, approaches to software reuse have not been sufficient.  Traditional technologies present
three obstacles to creating a component software market:
• Distributing objects with their source code;
• Reusing objects across different languages; and
• Relinking or recompiling an entire application when one object changes.

To solve these problems and to move towards fulfilling the goal of true software component
reuse, Microsoft architected the Components Object Model (COM). COM is a foundation for
interaction among all kinds of software.  COM defines a common way to access software
services.  Without COM, different mechanisms are used to access the services provided by
libraries, local processes, the operating system, and remote processes.

In the example below, HP VEE 5.0 is invoking the methods in the COM object’s interface.



Understanding ActiveX Automation White Paper

Worldwide Field Training Event MXD-03 Page 2

Today, most COM-based technologies are assigned the label ActiveX.  However, ActiveX is a
stripped down version of a COM object to make it more readily usable over the internet. COM
offers the benefit of object orientation, provide consistency, and is language independent.
Currently COM is available for Windows95 & NT, Macintosh, and Solaris operating systems.

Microsoft is also using COM to define extensions to Windows; applying it to many Microsoft
applications; and using it to define standard interfaces for many kinds of services.

The COM model was first introduced by providing the foundation technology behind
Microsoft’s second version of Object Linking and Embedding (OLE).   OLE was originally
designed to provide a way to create a document-centric approach to computing.  This would
allow one document to combine, for instance, an Excel spreadsheet and a Word text document.
However, there was a bigger problem of how interaction would occur between various software
packages, including libraries, software applications, system software, and others.

OLE defines technologies for creating compound applications, which are increasingly common.
Separate applications that support COM can cooperate to present one compound document to the
user. Examples are word processing with graphical capabilities; spreadsheets with charting
function. Consider a MS Word document that contains an Excel spreadsheet.  When the user
modifies the text, Word is in control.  Double clicking on the spreadsheet silently starts Excel,
allowing the user to manipulate the data in the spreadsheet. However, Word may not need to add
Excel graphing functions if an existing graphing function within Word can be used.

Originally, COM ran on only a single system.  Distributed COM (DCOM) changes this.  With
DCOM, COM objects can provide their services across machine boundaries.  To achieve this,
DCOM relies on remote procedure calls (RPC).  With RPC, you can call and execute an object
across a network.  In other words, DCOM can be used to build secure, distributed, COM-based
applications.

ActiveX Automation
Many desktop software applications have their own “macro” language that allows programmatic
control within the application.  However, the macro language is often cryptic and is not
accessible by other programs.  In addition, since there is no standard for macro languages among
applications, each application macro language is distinct and not interchangeable.  Within the
application, the macro language is normally predetermined for the developer.

Client
(VEE 5.0)

COM Object
(in VB, Excel,

etc)



Understanding ActiveX Automation White Paper

Worldwide Field Training Event MXD-03 Page 3

COM attempts to address these concerns.  Now any language that can invoke the methods in the
COM objects of an application can gain access to the services of that application.  A program
that accesses objects can programmatically do anything a user was doing manually.  General
programmability with COM is called ActiveX Automation.

For example, a Microsoft Excel user can perform calculations on a range of cells by selecting
menu picks and manual typing.  What was accomplished through the user interface may be
replicated through the use of Visual Basic or another tool to write code that does exactly what
the user accomplished.

The Simplified Interface Used by ActiveX Automation
ActiveX Automation is a COM-based technology that provides programmability of applications
by other programs. However, most programs do not expose their services through ordinary COM
interfaces, because it is too complex.  Instead, the Visual Basic design group of Microsoft
defined dispatch interfaces or dispinterfaces.  Dispinterface methods are easier to invoke from
programs using simpler languages like Visual Basic.  However, the parameters allowed with
dispinterfaces can’t be as complex as those using the full COM-based interfaces.  One reason for
this is Visual Basic doesn’t support certain data types.

Dispinterfaces use a standard COM interface called IDispatch.  IDispatch is like other COM
interfaces except it includes a method call Invoke, and Invoke can be used to invoke all other
methods.  By using Invoke, a client can invoke any of a group of methods, passing whatever
parameters are required.  Thus, the Visual Basic interpreter, for instance, can take advantage of
IDispatch, by containing code that knows how to navigate through only one interface
(IDispatch).

Another difference is dispinterface methods can explicitly be defined to either get or set
properties.  A method that gets a property is a read-only: it merely reports the current value of
the property.  A method that sets a property sets the property to the new value supplied.

Common Procedures for Using ActiveX Automation
The first step in using Automation is to declare an object.  Second, it must be created.  Third,
the object’s methods must then be invoked using the syntax of object.method (parameters).

Underneath each application is a simplified form of Visual Basic called Visual Basic for
Applications (VBA).  VBA is specific to the application, and is simplified in its capabilities.
VBA code may be used in Visual Basic.  You can turn on the Macro Recorder under Tools à
Macro à  Record New Macro in many of the Microsoft applications to see the underlying VBA
code. After stopping the Macro, go back into the same menu choices and select Visual Basic
Editor.  From there you can browse the objects and code structure.   Below is an example of
instantiating and using Excel’s spellchecking object using VBA:



Understanding ActiveX Automation White Paper

Worldwide Field Training Event MXD-03 Page 4

Sub SpellCheck ( )
Dim Obj as Object
Set Obj = CreateObject (“Excel.Application”)

 Word = InputBox (“Enter Word”)
If Obj.CheckSpelling(Word) Then

MsgBox (“Valid Word”)
Else

MsgBox (“Word Not Found”)
End If

End Sub

This example prompts the user for a word, checks to see if it is in the SpellChecker’s dictionary,
and returns an appropriate comment depending on whether the word is found or not.

VBA uses the pre-registered “Excel” library. At time of installation, the libraries of COM
objects with all of their methods, properties and events are registered by class.  The library has
access to all classes of COM objects within it. Within the Excel library, the “Application” class
was selected.  Each COM object is an instance of a specific class.  Each class is organized
around a specific function.  For instance, one class of objects provide spell checking, another
might provide thesaurus capabilities.

Excel supports an Application object that has a method called “CheckSpelling.”  A great source
of information for the structure of an applications’s classes and underlying methods, properties
and events is the application’s on-line HELP.  For instance, when you can look at Excel’s on-line
HELP for more information.  There are numerous books that give great detail as well as an
overview for each application.  A third option to use the Macro recorder in Microsoft
applications, however not all macro recordings yield insight into what VBA is doing for a
particular function.

The following Microsoft applications have ActiveX Automation capabilities.

Microsoft Applications  Supporting ActiveX Automation
Description Object Application Controller Application

Access 97 X X
Excel 97 X X
Office Binder X
Outlook 97 X
PowerPoint 97 X X
Project 97 X X
Team Manager 97 X
Word 97 X X

An Automation Object Application has its object model exposed to the outside world that allows
it to be controlled by a Controller Application.  It receives commands from a Controller



Understanding ActiveX Automation White Paper

Worldwide Field Training Event MXD-03 Page 5

Application.  The focus of this white paper is viewing Excel, for instance, as mainly an
Automation Object Application.

An Automation Controller (or sometimes called Container) Application controls Object
Applications.  It sends commands to an Object Application.  The focus of this white paper is
viewing HP VEE 5.0 as the main Controller Application

Using ActiveX Automation in HP VEE 5.0
The first step in using ActiveX Automation is to reference the objects you want HP VEE to use,
by selecting  ActiveX Automation References in the menu as shown:

After referencing the objects, the next step is to select the appropriate library of objects.  These
were registered at time of installation on your system.



Understanding ActiveX Automation White Paper

Worldwide Field Training Event MXD-03 Page 6

The next step, just like in the VBA program, is to create an object:



Understanding ActiveX Automation White Paper

Worldwide Field Training Event MXD-03 Page 7

Once chosen, the object will be placed in your work environment.  Then you modify the text to
state the exact object definition (here it is left in a generic form).

In the example below, you next select the particular property you want to set.  After the Excel
object is created, the Excel program and worksheet is made visible.  Note the HELP button: this
directly connects to VBA’s help file on this particular property.



Understanding ActiveX Automation White Paper

Worldwide Field Training Event MXD-03 Page 8

By clicking on the Range property shown above, it adds a second object to the HP VEE program.
Following the syntax guide in the VBA HELP, it is modified to make both the worksheet and the
application visible.  Now this program in HP VEE will initialize an Excel program, and display
Excel as well as the worksheet.  Note the wire that passes the “worksheet” variable, so when you
want to make the worksheet visible, the program knows what you’re referring to.

Now the entire program can be seen.  This program starts Excel from HP VEE, creates a virtual



Understanding ActiveX Automation White Paper

Worldwide Field Training Event MXD-03 Page 9

source cosine wave, transforms to 2 dimensions (and from row to column) so Excel can
recognize the data, and dumps the data into the first 60 rows.

The functions can also be made aware of the  “worksheet” variable by using the Data à  Variable
à  Declare Variable menu selection.  This is also a requirement if you want to use Events, but is
beyond the scope of this paper

Summary

ActiveX Automation, generally speaking, provides programmability of ActiveX-compliant
applications.  This allows engineers to use the correct software tools for each job by joining them
together to develop a complete measurement solution.  Engineers may now choose the correct
part of each software package for the best solution possible.


