Extending VEE via custom menus and DLLs
September 22, 1997

This paper was written to instruct you on how to integrate callsto aDLL into HP VEE.
It also shows how to modify the VEE menu to allow your users/customersto use the
functionality you are delivering. It will cover options from easiest (less work for you,
more for your customer) to hardest (more work for you, less for your customer). It uses
as examples the implementation from Data Trandation and Computer Boards, Inc.
(OEMs for HP VEE) to integrate calling DLLs in order to communicate with their PC
plug-in boards. This paper shows how to use Microsoft Visual C++ (4.2) development
environment to debug the DLL. Other IDE’s are not covered.

The options are (in easiest to hardest order):

1. Includeinyour DLL, which will be callable from VEE, the functions you think are
necessary. This may involve writing some wrapper code to call your DLL from VEE,
providing an interface file for those functions, and a few examples showing how to
call the functions. HP VEE does not support all the data types that are available in
C/C++. Single character types, unsigned values and single precision floating point
(32 bit) number data types are not supported by VEE. Thiswill be discussed in detail
later in this paper.

2. All of 1 above, but creating an add-on menu to VEE and organizing it in common
areas of functionality.

3. All of 2 above, but adding help functionality to the objects (User Objects) you
provide. Thisinvolveswriting a help file and putting the necessary code into the
VEE objects so that the customer can get help on the function by using the built-in
help system with HP-VEE.

This paper will start with a general tutorial on creating compiled functionsin HP VEE. It
closely follows the VEE documentation (see the Advanced Programming Techniques
manual, chapter 4). Thisisdesigned to be the starting point for learning how to integrate
PC plug-in cards with HP VEE.

Compiled Functions in HP VEE

There are severa reasons for using Compiled Functions in your HP VEE program. Y ou
can develop time-sensitive routines in another language and integrate them directly into
your VEE program by using Compiled Functions. Also, you can use Compiled Functions
as ameans of providing security for proprietary routines. Because Compiled Functions
do not time dlice (i.e. they execute until they are done without interruption) they are only
useful for specific purposes that are not available in VEE.

Although you can extend the capabilities of your VEE program by using Compiled
Functions, it adds complexity to the VEE programming process. The key design goal
should be to keep the purpose of the external routine highly focused on a specific task.
Y ou currently cannot access any of the VEE internal functions from within the DLL.

Although the use of Compiled Functions provides enhanced V EE capabilities, there are
some pitfalls. Here are afew key ones:

VEE does not normally trap errors originating in the external routine. Because your
external routine becomes part of the VEE process, any errorsin that routine will
propagate back to VEE, and afailure in the external routine may cause VEE to
“hang” or otherwise fail. Thus, you need to be sure of what you want the externa
routine to do, and provide for error checking in the routine. Also, if your externa
routine exits, so will VEE. There isanother white paper on thistitled “Catching
ExceptionsinaDLL. Seethe support pages in our web page to get a copy of this
document.

Y our routine must manage all memory that it needs. Be sure to deallocate any
memory that you may have allocated when the routine was running. Y ou should use
the non-multithreaded memory library, which is unfortunately not the default in MS
Visua C.

Y our external routine cannot convert datatypes the way VEE does. Thus, you should
configure the data input terminals of the Call object to accept only the type and shape
of datathat is compatible with the external routine.

If your external routine accepts arrays, it must have a valid pointer for the type of data
it will examine. Also, the routine must check the size of the array on whichiit is
working. The best way to do thisisto pass the size of the array from VEE as an input
to the routine, separate from the array itself. If your routine overwrites values of an
array passed to it, use the return value of the function to indicate how many of the
array elements are valid.

System 1/O resources may become locked. Y our external routine is responsible for
timeout provisions, and so forth.

If your external routine performs an invalid operation, such as overwriting memory
beyond the end of an array or dereferencing a nil or bad pointer, this can cause VEE
to exit or error with a segmentation violation.

Importing and Calling a Compiled Function

Once you have created a dynamically linked library, you can import the library into your
VEE program with the “Import Library” object and then call the Compiled Function with
the “Call” object. To import a Compiled Function library, select “Compiled Function” in
the “Library Type” field. Just asfor a UserFunction, the “Library Name” field attaches a
name to identify the library within the program, and the “File Name” field specifies the
DLL. The Definition File field specifies the name of the include file which contains the
specification for the functions to be called:

= Import Library =]

Library Type |Compiled Function x|
Library Mame | Lk L
File Mame ryFile.dl | ;
Definition File rmiyFile h (|
,, |

Figure 1: Using Import Library for Compiled Functions

The definition file defines the type of data that is passed between the external routine and
VEE. It contains the prototypes for the functions.

Once you have imported the library with “Import Library”, you can call the Compiled
Function by specifying the function name in the “Call” object. For example, the “Call”
object below calls the Compiled Function named “myFunc”.

= Call Function 7]

Al e Retvalua ¥

T s o aray_t

Figure 2: Using Call for Compiled Functions

Y ou select a Compiled Function just as you would select a UserFunction. Y ou can either
select the desired function using “Select Function” from the “Call” object menu or from
the “ Select Function” dialog box (under “ Device - Math & Functions’), or you can type
the name in the “ Call” object. Inany case, provided VEE recognizes the function, the
input and output terminals of the “Call” object are configured automatically for the
function. The definition file supplies (he necessary information. Or, you can reconfigure
the “Call” input and output terminals by selecting “ Configure Pinout” in the object menu.
Whichever method you use, VEE will configure the “Call” object with the input
terminals required by the function, and with a“ Ret Value’ output terminal for the return
value of the function. In addition, there will be an output terminal corresponding to each
input that is passed by reference.

Y ou can also call the Compiled Function by name from an expression in a Formula

object, or from other expressions evaluated at run time. For example, you could call a
Compiled Function by including its name in an expression in a Sequencer transaction.
Note, however, that only the Compiled Function's return value (‘Ret Value' in the Call

object) can be obtained from within an expression. If you want to obtain other
parameters from the function, you have to use the Call object.

The DLL remains bound to the VEE process until VEE terminates, or until the library is
expressly deleted.

You delete the DLL from VEE either by selecting “ Delete Lib” from the “Import
Library” object menu, or by including the “ Delete Library” object in your program.

Note, however, that you may have more than one library name pointing to a DLL library
file. In this case, you use the “ Delete Library” object to delete each library, but the shared
library remains bound until the last library pointing to it is deleted. However, the “Delete
Lib” selection in the “Import Library” object menu will unbind the shared library without
regard to other “Import Library” objects.

The Definition File

The Call object determines the type of data it should pass to your function based on the
contents of the definition file used in the Import Library object. The definition file
defines the type of data the function returns, the function name, and the arguments the
function accepts. When V EE executes an Import Library object, it defines the input and
output terminals needed for each Compiled Function. When you select a Compiled
Function for a Call object, or when you execute a“Configure Pinout”, VEE
automatically configures the Call with the appropriate terminals. The algorithmis as
follows:

The appropriate input terminals are created for each input parameter to be passed to
the function (by reference or by value).

An output terminal labeled “Ret Value” is configured to output the return value of the
Compiled Function. Thisis aways the top-most output pin.

An output terminal is created for every input that is passed by reference.

The names of the input and output terminals (except for “Ret Vaue') are determined by
the parameter names in the definition file. However, the values output on the output
terminals are a function of position, not name. Thus, the first (top-most) output pin is
awaysthe return value. The second output pin returns the value of the first parameter
passed by reference, and so forth. Thisis normally not a problem unless you add
terminals after the automatic pin configuration.

VEE version 3.2 and greater only calls 32-bit DLLSs, not 16-bit DLLs.

Function Definition
Function definitions are of the following general form:

<return type> [_hidden] <function narre> (<type>
<par amane>, <type> <parammane>, ...) ;

Where:
<return type>canbe int, short, |ong, double, char*,orvoid.

The optional “[_hi dden]” parameter has the effect of “hiding” the function in VEE
athough it can be called as with any other function. The difference isthat it will not
appear in the Explorer view or the Function Selection dialog box. Y ou might want to use
thisif your DLL / menu picks has entries which are called from encapsulated objects, but
you do not want to “clutter” up the Explorer/Function selection dialog box with
unnecessary functions.

Thei nt, short and| ong typesare al passed as a 32-bit value to your function. The
i nt and | ong types are 32 bits and the short is 16 hits.

<f uncti on name> can be astring consisting of an alpha character followed by
alphanumeric characters (the* ' character is also alowed), up to atota of 512
characters.

<type> canbe int, short, long, double, int*, char*,
short*, |ong*, double*, char**, or void.

<par ammane> can be a string consisting of an apha character followed by
alphanumeric characters (the* ' character isalso allowed), up to atota of 512
characters. The parameter names are optional, but it is highly recommended to include
them as VEE will just create a name on the Call box (a, b, ¢, etc) if it ismissing. If a
parameter isto be passed by reference, the parameter name must be preceded by the
indirection symbol (*).

The valid return types are character strings (char *, corresponding to the VEE Text data
type), integers (I ong, int, short, corresponding to the VEE Int32 datatype), and
double precision floating-point real numbers (doubl e, corresponding to the VEE Real
datatype).

If you specify “pass by reference” for a parameter by preceding the parameter name with
“x* VEE will pass the address of the information to your function. If you specify “pass
by value” for a parameter by leaving out the “*”, VEE will copy the value (rather than the
address of the value) to your function. You’ll want to pass the data by reference if your
external routine changes that data for propagation back to VEE. Also, al arrays must be
passed by reference or VEE will signal an error on the Call object.

Any parameter passed to a Compiled Function by reference will be available as an output
terminal on the Call object. That is, the output terminals will be ‘Ret Value' for the
functions return value, plus an output for each input parameter that was passed by
reference.

V EE pushes 144 bytes on the stack. This meansthat it allows up to 36 parameters to be
passed by reference to a Compiled Function. Thiswould also imply that up to 36 long
integer parameters, or up to 18 double-precision floating-point parameters, may be passed
by value.

Y ou may include comments in your definition file. VEE allows both “enclosed”
comments and “to-end-of-line” comments. “Enclosed” comments use the delimiter
sequence “ /* comments*/”, where “/*” and “*/” mark the beginning and end of the
comment, respectively.

“To-end-of-line” comments use the delimiting characters “//” to indicate the beginning of
acomment that runsto the end of the current line.

An example definition file might look like this:

/*
This function perfornms the snicker doodl e transform on
t he input array.

*/

| ong nyFunc(l ong arraySi ze, double *array);

Creating a Compiled Function

There are several stepsto the process of creating a Compiled Function. First you must
write aprogramin C or C++ and compile it to create a Dynamic Link Library (DLL)
containing the Compiled Function, and bind the shared library into the VEE process.
We'll look at each step in turn.

Building a C Function

The following C function accepts areal array and adds 1 to each element in the array.
The modified array is returned to VEE on the Array terminal, while the size of the array
isreturned on the Ret Value terminal. This function, once linked into HP VEE, becomes
the Compiled Function called in the VEE program shown in Figure 3 below. All the
code shown below comes with VEE and is in the examples/manual directory.

/*
C code from manual 49.¢c file
*/

#i ncl ude <stdlib. h>
#defi ne DLLEXPORT __ decl spec(dl | export)

/* The description will show up on the Program Expl orer
when you sel ect "Show Description” fromthe object nenu
and the Function Selection dialog box in the small w ndow
on the bottom of the box.
*/

DLLEXPORT char nyFunc_desc[] = "This f
the array passed in";

ction adds 1.0 to

DLLEX:DOC];T long nyFunc(l ong arraysi ze, VEpS——
g, :
the function
for (i =0; i < arraySize; i++ array++) { selection box by
*array += 1.0; addlngthlstp the
} DLL. SeeFigure4.

Y ou must include any header files on which the routine depends in the source file. The
library should link against any other system libraries needed to resolve the system
functionsit calls.

Notice the myFunc_desc[] entry above. If you add entries like this for each of your
DLL calls, then when the user looks at them with the Function selection box. Seefigure
4 below. Inaddition, this string will be displayed in a dialog box if the user selects the

“ Description” selection with a right-button-down mouse click in the Explorer view on
that function. The general form for these stringsiis:

__decl spec(dl I export) char <function nane> _desc[] = “sone
string information”

The <function name> must be exactly the same name as the function itself with a
“ desc[]” appendedtoit.

The definition file, manual49.h, for the function in manual49.c is as follows:

/~k
Definition file for manual 49.c
*/

| ong nyFunc(l ong arraySi ze, double *array);

(This definition is exactly the same asthe ANSI C prototype definition in the C file.)

The example program uses the ANSI C function prototype. Thisisn't necessary, but it
makes things a little easier to understand. The function prototype declares the data types
that VEE should pass into the function. The array has been declared as a pointer variable.
VEE will put the addresses of the information appearing on the “Call” data input
terminals into this variable. The array size has been declared as along integer. VEE will
put the value (not the address) of the size of the array into this variable. The positions of
both the data input terminals and the variable declarations are important. The addresses of
the data items (or their values) supplied to the datainput pins (from top to bottom) are
placed in the variables in the function prototype from left to right.

One variable in the C function (and correspondingly, one data input terminal in the “Call”
object) is used to indicate the size of the array. The “arraySize” variable is used to
prevent data from being written beyond the end of the array. If you overwrite the bounds
of an array, the result depends on the language you are using. In Pascal, which performs
bounds checking, a run-time error will result, stopping VEE. Inlanguageslike C, where
there is no bounds checking, the result will be unpredictable, but intermittent data
corruption is probable.

Our example has passed a pointer to the array, so it is hecessary to dereference the data
before the information can be used.

The “arraySize” variable has been passed by value, so it won't show up as a data output
terminal. However, here we' ve used the function’ s return value to return the size of the
output array to VEE. This technique is useful when you need to return an array that has
fewer elements than the input array.

The following VEE program calls the Compiled Function created from our example C

program:
= H¥ Trace |'=
I—ziil [[[[I/E
| Y name - -
= Impart Librany = 08 |- \ / \ / -
Library Type | Compiled Function | i \ / \ / /f
Library Mame | ryLibrary [Trace - 3
File Mame ~installDirfexamples/manual/manuald3.dil - \ \ / / \ \ / / 3
Definition File ~installDirfexamples/manualimanualdd .h | Tracez : \ / \ / E
I _1 E EI | - - | I - | - IE
| | v]
| : Ir] 0 | 20m
— Function Generator r
- ALto Scalel X name ami¢
Function [Cosine ~] totSize()
Freguency | 100
Amplitude | 1
DcOffset | o Func = Call Function [
Phase IDEQ:" I 0 arraySize Function Mame RetValue | f/
Time Span 20m sinf
myFunc —
Nur Points 256 | anay || ¥ array Formula

Figure 3: Program Calling a Compiled Function

The example in Figure 3 islocated in the file manual49.vee in the examples
directory. The C fileisin manual49.c, the definition file is in manual49.h, and the
shared library isin manual49.dll.

After importing the function (either execute the program or select “Load Lib” on the
Import Library object menu) you can see that the function is available on the Function
Selection dialog box and the Explorer view in VEE.

%EHP ¥YEE - manual49.vee

File Edt “iew Debug Corwersion Flow Device |/0 CBl-Datadcg Data Digplay Window Help
i p=2=11E] NEEECI R 5 %]

A Compiled Function Example
Main

|1 Compiled Functions U cetegen
E-C myLibrary Opler_aturs) ﬁh ¢ myFunc FLlnCti ons
L8] royF Built-in Functmns_ .
Gl rmyEune Local User Functions listed here.
Impored User Functions

Remote User Functions

Compiled Functions

Function name and
parameters are displayed
here.

myLibrargmyFuncilnta2 arraySize, Real® array) <

This function adds 1.0 to the array passed in

All compiled function
libraries as well asthe
functions in them are
displayed in the Explorer.

“\

ok | cancal| Hemp |

Description asincluded in the
DLL. Seethe“char
myFunc_desc|] "part of the

C file above.

Figure 4. Shows how a compiled function is integrated into VEE.

Creating the DLL
If you are using Microsoft Visual C++ version 2.0 or greater, the function definition
should be:

__decl spec(dl Il export) long nyFunc (...);

This definition eliminates the need for a“.DEF’ file to export the function from the DLL.
Use the following command line to compile and link the DLL:

cl /DWN32 manual 49.¢c /LD /Zi /link Kernel32.1ib

“/ LDd” creates the debug version of the DLL. Use“/ Zi " to generate debug information.

ThisDLL can easily be created in one of the commercial development environments
(instead of using the command line interface) if you so choose.

10

More on the Call object

Y ou can aso configure the “ Call” object manually by modifying the function name and
adding the appropriate input and output terminals. First, configure the input terminals
with the same number of input terminals as there are parameters passed to the function.
The top input terminal is the first parameter passed to the function. The next termina
down from the top is the second parameter, and so on. Next, configure the output The
Call Object terminals so that the parameters passed by reference appear as output
terminals on the “Call” object. Note that parameters passed by value cannot be assigned
asoutput terminals. The top output terminal is the value returned by the function. The
next terminal down isthe first parameter passed by reference, etc. Finally, enter the
correct DLL function name in the “Function Name” field.

For example, for aDLL function defined as

| ong gl arch(double *x, double y, long *z);

Y ou need three input terminals for “x”, “y”, and “z” and three output terminals, one for
the return value and two for “x” and “z”. The “Function Name” field would contain
“glarch”. If the number of input and output terminals do not exactly match the number of
parameters in the function VEE generates an error. If the DLL library has already been
loaded and you enter the function name in the “Function Name” field you can also use
the “Configure Pinout” selection on the “Call” object menu to configure the terminals.

The Delete Library Object

If you have very large programs you may want to delete libraries after you use them. The
“ Delete Library” object deletes libraries from memory just asthe “Delete Lib” selection
on the “Import Library” object menu does.

Using DLL Functions in Formula Objects

You can also use DLL functionsin formula objects (Formula box, 1f/Then box, 1/0
objects, etc). With formula objects, only the return value is used in the formula; the
parameters passed by reference cannot be accessed. For example, using the DLL
function defined above in a formula:

4.5 + glarch(a, b, ¢) * 10

where “@’ isthe top input terminal on the formula object, “b” isnext and “c” islast. The
call to “glarch” must have the correct number of parameters or VEE generates an error.
If the function “glarch” returns the value 0O, the calculation would then proceed
computing 4.5 as the answer.

11

DLL specifics

Debugging your DLL
This section will show you how to debug your DLL running inside of HP VEE. | used

the Microsoft Visual C (version 4.2) environment. | leave it as an exercise of the reader
to do the same thing with other packages.

1. From the command line | issued the command:

Msdev “d:\Program Fil es\Hewl ett Packard\ VEE 4. 0\ vee. exe”

2. Thisbrought up the environment that looks like this, where | selected the Build
- Settings menu pick:

., Microzoft Developer Studio - vee

File Edit “iew |nzert QLN Tool: Window Help

Sl Lo (k{8 = iy
TR —)
[Debug | Eisbuld Al Alt+F8 9| @]] 8ls] s al 2
Batch Bufd).
[vee.ene Stacq: EuiLI‘;I Etrl+Break

lpdate &llDependencies...

Debug 4
Execute vee exe Ctrl+F5

Eonfigurations..
Subproects...
Set [Mefault Eontiguration...

3. Which brings up a dialog box like this:

12

Project Settings Select the “ Debug” tab

Settingz For; General Debug ;
1

Then click on this
drop-down.

Category:

Executable for debug session:

!VEE.EHE

working directony

Program arguments:

Femate executable path and file name:

QK. ; Cancel i Help i

Select the “ Debug” tab and click on the “ General” drop-down selection and pick
“ Additional DLLS’ and the dialog box will look like this:

Project Settings *

Settingz For; General Debug]

Category: | 2¥afal it = | R HE

Modules: bl ; > i

Local Hame

Meveetretaild Dexampleshmanualhmanuald3.di

Enter in the path to
| your DLL(s) here.

Place a check in the first column to load the module's

symbolz at the start of a debug zezsion.

¥ Ty tolocate other DLLs.

] ; Cancel Help 1

13

4. Enter inthe DLL (or DLLSs) that will be used when your VEE program runs. Y ou
might want to review the exceptions that your debug environment will catch (Debug
- Exceptions... for MSVC).

5. PressF5torunVEE.
Load your VEE program as normal and run it.

Let’ssay that the DLL hasan error init. You will get some kind of message box
from the debug environment that will look something like this:

"5 Microzoft Developer Studio [run] - vee
File Edit Miew |nsert Debug Tool: ‘Window Help
=] | R e

Eil D:A. Awhite paperimanualdd.c
#include <=tdlib h:

#ifdef WIH3Z
define DLIEXPORT _ declspec{dllexport)

tel==

Ll - T T T S T T

Pl Microzoft Developer Studio |

d @ First-chance exception in vee.exe [MANLALA9.DLL): OxCO000034: [nteger Divide by Zero. Dfi’
3

N rawv

DCrEaronT IOy My FUic | IO afTay=lee, UOUOie ®array o1
long 1i;

1= 234 Error messages will pop-

for (1 = 0; 1 < arraySize; i++., arrav++) - up in the debug

*zrray += 1.0: environment that Says
¥ what the exception was.
1 = arravsize:;

i is(di—1);
returnii):

14

8. After clicking on “OK”, the offending source code line will be displayed. You may
have to set some options saying where the source code is for the DLL.

) fmr—e e e f e ————— — .

DLLEXPORET long myFunc{long arraySize, double *®array) {

long 1i;

i = 234;

for (i = 0; 1 ¢ arravSize: iH .

B (contrived yes, but you get

1= arraySizea//,///’////// the idea)
5 1= is(i-1):

returnii);

In this fashion you can debug your DLL using the shipping version (versus getting a
special “debug” version of the bits) of VEE. In addition to this you might want to
consider getting a copy of the Pure-Atria s Purify software. It excels at finding all kinds
of problems with memory overwrites, ssomps, leaks, APl problems. | have used it with
great success on VEE and highly recommend it. A word of caution though — you will
need a fairly decent machine to run it on. Get lots of memory, too.

DLL initialization and cleanup

Y ou might want to do some initialization work when your DLL isfirst loaded and
cleanup work right before the DLL isunloaded. HP VEE will automatically look for a
functioncalled“ 1 i bEnt ry()” inyour DLL and call it when VEE loads (via the
LoadLibrary call) the DLL. Thisis useful for doing any initialization when the DLL is
first loaded. It will only get called once. Conversely VEE will look for and call a
function called “ I i bExi t () ” whenthe DLL isunloaded. The prototypes for these two
functionsis. “void libEntry(void)” and“void |ibExit(void)”. That
IS, no parameters and no return values. Make sure you export these functions correctly.

Neat Debugger trick

If your DLL has some kind of error condition in it you can have your program start the
debugger directly by calling the DebugBreak() Win32 function at the point in your code
that you want debugger to start. Calling this function causes the program to display a
dialog box asif it had crashed. Click Cancel to start the debugger and continue on in
debug mode. Just insert the following line of code in your DLL where you want the
debugger to start.

VO D DebugBr eak(VA D)

15

Alternate debug process

There is an alternate way to debug your freshly built DLL. Assuming that the DLL is
built in the visual environment (MS Visual C++, etc.) then you can simply run enter the
path to VEE to execute in the “Executable for debug session” part of the Project Settings
dialog box. Run the executable (F5) and make sure the Import box points to the Debug
version of the DLL.

C or C++ file?

The file containing the code for your DLL can be in either a C (.c extension) or a C++
(.cpp extension) file. Which one you choose does have an effect on your DLL. Suppose
you have the code as follows:

__decl spec(dl Il export) long | ongFunc (...);

inafilecaled C_DLL.c. When you compilethe DLL the function “l ongFunc” will be
exported and available in VEE. Using the Explorer in Windows, find the DLL and select
“Quick View” viathe right mouse button. Y ou will see something like this:

® C_DLL.dIl - Quick View

Eile iewn Help

b Ala] =

Export Tahle

Mame: C_DLL.dIl

Charactenstics: 00000000

Time Date Stamp: 33e7Badl
Yeraton: 0.00

Base; 00000001

Murnber of Functions: 00000001

Murmber of Names: 00000001

/ Y our function is

Ordinal ~ Entry Point Mame shown here.
ooao Qo001 000 langFunc /

K _'*I_I

|T|:| edit, click Open File for Editing on the File meru. o

If you put the same exact function in afile with the extension .cpp (C++) file and compile
it without declaring it as an extern C function, C++ will “ mangle” the function name to
something that is not useful in VEE. Suppose the code looks like this:

[* This function name will be nmangled by C++ */

__decl spec(dllexport) long |IongFunc(long a, long b) {
| ong c;

16

c = a + b;
return c;

}

[* This function is properly exported as a C function. */
extern "C" {
__decl spec(dllexport) long | ongFunc2(long a, long b) {
| ong c;
cC =a+b;
return c;

Using “ Quick View” again to examine the DLL shows the following two entry points.
Notice that the function “longFunc’ name is completely “mangled” into something that
only this version of C++ understands. Thisisanormal (and one of the problems of)
thing for the C++ compiler to do. Each compiler does the mangling differently. There
can even be variations from revision to revision of the same vendor’s compiler!

& CPP_DLL.dIl - Quick View

File iew Help

] &l<] =]

Export Tahle -]

Mame: CPP_DLL.dII
Charactenstics: 00000000
Time Date Stamp: 33e7Bb0B
Version: 0.00
Base: 00000001
Murmbeay of Functions: 00000002
Murmbeay of Mames: 00000002

longFunc name was
mangled by C++

Ordinal Entry Point Mamme

0ono 00001005 PlongFunc@@ Y ALLI@I p P
0o 00001000 longFunc2 The“longFunc2” function
— | was not. It isdeclared as
+|| | “extern C” inthe code.
<] | _>I_I

| To edit, click Open File for Editing on the File menu. o

Now let’slook at the different options of integrating the DLL into VEE.

17

Option 1. Integrating the DLL into VEE

This section will show how to integrate your DLL into VEE doing the bare minimum
work. Provide your customersthe DLL, a header file and perhaps a few example
programs on how to talk to the plug-in card with the DLL.

When you import the DLL (using one of the examples) you will see new entries on the
VEE 4.0 Explorer and aso one the Function Selection dialog box. It might look like the

following:

Ei, HP VEE

File Edit “iew Debug Flow Device |/0 Data DT Datadcg Digplay Window Help

] == 1= I e e s R = = = e R =

el |

Untitied

Main

@ Caompiled Functions

=00 ditv
ConfigSubsys
GetCriticalThreshold
GetData
GetEncoding
GetFilesize
GETMIXEDBUFFERSIZE
GetPreTrigData
GetResolution
GetSinglevalueEx
GetTriggerThreshald
PutData
PUtSinglevalueEx
SetCriticalThreshold
SETMIXEDBUFFERSIZE
SetResolutian
SefTriggerThreshold

Select Function

Type:

Operators

Built-in Functions

Local User Functions
Imported User Functions
Remote User Functions
Compiled Functions

Categony:

div

div. PutSinglevalueExiint32 hSubsys, Int32 Channel, Real Gain, DT YEEdata Yalue)

Marme:

div.GetFilesize -~
dtv. GETMIXEDBUFFERSI
div.GetPreTrigData
div.GetResolution
div.GetSinglevalueEx
div.GetTriggerThreshold
div.PutData

- dtv PutSingletalueEx
dtv. SetCriticalThreshold

dtv. SETMIXEDBUFFERSIZ
div.5etResolutian Jhd

Ok | Cancell

This function puts a single coded digital value to an output subsystern at a specified gain.

Help |

Notice asmall help string is

All the functionsin the .h

file appear in the Explorer
(unless explicitly removed
with the _hidden modifier)

available in the function
dialog box if you added
these stringsinthe DLL.

So where here do | put the DLL and examples?

If you have some kind of installation program (I highly recommend I nstallShield) you
will have to decide where to put the DLL(s), VxD/Driver, VEE examples. The
recommended place to put the VEE examples would be relative to the VEE installation
directory in your own subdirectory, say for example, in the directory:

“C:\Prograntil es\Hewl ett Packard\ VEE 4. 01\ chi”.

18

Here the examples would go into the“ cbi ” subdirectory and your example programs
could be constructed to find other items needed in that subdirectory. Say for instance one
of the VEE examples needs to load another DLL, or execute a program or load a library
of UserFunctions. Y ou should use ~installDir\cbi\<whatever_filename> directive in your
VEE program to get to the filesinstead of relying on the installation forcing the user to
put the files in a certain spot.

If you writing an install program, you can find out where VEE in installed by looking at
the registry key: HKEY _LOCAL_MACHINE\SOFTWARE\Hewlett-Packard\V EE.
There may be one or more versions of VEE installed there which means you will have to
enumerate all the version of VEE available and either let the user choose one of entries or
determine which is newest (highest numeric value).

Or you can query the key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentV ersion\App Paths\vee.exe

To find out the path of the most recently installed version of VEE. Each time you install
VEE this value is overwritten.

That’sit! The user will use your DLL and the examples to construct the appropriate VEE
program to talk to your card.

Option 2. Integration using the VEE menu

The next step would be to modify the VEE menu to include blocks of functionality. The
menu objects can be entire example programs, single Call objects, or small User Objects
configured to call directly to your DLL. This section will show you how to create afile
that will modify the VEE menu. Thereisafile that ships with VEE in the lib
subdirectory named cust oniVenu. mmu, which contains a working example of code that
will modify your VEE menu. If you copy this file into the install directory, then when
you start VEE the menu will have additional itemsin it. This section of the paper will

use these items from cust omvenu. rMu as aworking example.

First some general rules about the menu files:

Files with the extension “.mnu" that exist in the VEE installation directory will be
loaded as VEE menu modifications. The files are loaded in alphabetical order.

Lines starting with '# are comments.

There MUST be aline of this form for each menu modification entry:

19

" MENU- >XXXXX" .

There must be double quotes around the string and it must start with the characters
MENU- >, The xxxxXx characters describe where in the menu the item will appear.
VEE will parse the string and look for the menu or menu item between each set of - >
characters and put the new menu item BEFORE the one specified in the string. For
instance, an entry of the form " MENU- >Dat a- >Const ant - >Text " will insert the
item into the Data menu, the Constant submenu BEFORE the Text entry. To put a menu
item at the end of amenu, use END keyword. See example below.

There may be an optional visibility selector of the form:

[vi si bl eWhen not Runni ng]

This entry will “gray-out” the menu picks when VEE isrunning. Generally most (but not
al) VEE menu items have this. It is not required.

An optional description that shows up on the status bar when the cursor is over that
menu item. |t is not required but highly recommended.

[desc "The rain in Spain stays mainly on the plain"]

Theitemitself. You can either specify it viaaline like:

get Devi cesFrom "~install D r\dataacq\adconfig. vl o"

Thisisthe easiest way to build a menu because you can maintain all the menu itemsin
separate files. | used this method here to minimize clutter.

Notethe"~i nst al | Di r " modifier. Thistellsthisversion of VEE to look in the
directory that the user installed VEE into to find the file "dataacg\adconfig.vio" and load
the object there.

Or

You can do it the hard way © and embed the object directly in the menu as shown in an
example below.

It is generally better to put your files to be loaded in a subdirectory relative to the VEE
install directory instead of using absolute file names. It makes coding your examples
easier (they don’'t have to depend on making sure that the hardcoded paths are correct)
and your installation process easier. The installation process can look in the
LOCAL_MACHINE registry entries for the Software\\Hewlett-Packard\\\V EE registry
entries, enumerate them and decide what the most recent version is. Based on that there
are subkeys that specify what the installation directory for VEE is. Y ou can install your
software in a sub-directory relative to that.

20

Here are several examples of VEE menu file modifications and how they look in VEE.

Install of single item in cascaded sub-menu structure.

" MENU- >Dat a- >Const ant - >Text "

("& nsert at begi nni ng"
[vi si bl eWhen not Runni ng]
[desc "Test install of single itemin nmenu structure"]
get Devi cesFrom "~installDir/Ilib/convert/Rad2G ad. vee"

1/0 Display ‘window Help

__Q_ Selection Contral » hl_ﬂi i ﬁ‘; _'_',,{n

Toggle Contral
Dialog Box r
Continuous »
m Inzert at beginning i <
W ariable P Tent
Build D ata P |nteger
UnBuild Data ¥ Real
Allocate Array r
Coord
Aocess Aray r
Aoocess Hecord # Sl
EComplex
Concatenator 7
Sliging Collector Late/Time
Callector Becord
Inzert at end

Install of single item at the end of a cascaded sub-menu.

" MENU- >Dat a- >Const ant - >END"

("I'nsert at end"
[vi si bl eWhen not Runni ng]
[desc "Install a single itemat end of Constant nenu"]
get Devi cesFrom "~installDir/lib/convert/ G ad2Rad. vee"

21

Dizplay Window Help
. Selection Contral # %;%; ;_ﬁs; o

Togagle Control »

Dialog Box »

Continuous k

m Inzert at beginning

W ariable P Text

Build [ata ¥ Integer

rBuild Data » Real

Allocate & 3

Allocate Array Coord

Access Aray » i

Aooess Hecord # LA
FComplex

Concatenator g

Sliging Callector Dste/Time

Collector E d

- e Shows use of END

keyword.

Install of entire main level cascaded menu.
This shows how to insert an entire “top-level” menu pick on the VEE menu bar.

" MENU- >FI ow"
(" &Conver si on"
("&Deg 2 Rad"
[vi si bl eWhen not Runni ng]
get Devi cesFrom "~installDir/lib/convert/ Deg2Rad. vee"

[desc "converts nunber from degrees to radi ans"]
)
("&Deg 2 Gad"
[vi si bl eWhen not Runni ng]
get Devi cesFrom "~installDir/lib/convert/Deg2G ad. vee"
[desc "converts nunber from degrees to gradi ans"]

)

[separ at or]

("&Rad 2 Deg"
[vi si bl eWhen not Runni ng]
get Devi cesFrom "~installDir/lib/convert/Rad2Deg. vee"
[desc "converts nunber fromradians to degrees"]

)

("&Rad 2 G ad"

get Devi cesFrom "~installDir/lib/convert/Rad2G ad. vee"
[vi si bl eWhen not Runni ng]

22

[desc "converts nunber fromradi ans to gradi ans"]

)
... Rest was deleted ...
)
Yiew Debug ERGUEENGE Flow Device /0 Data Dizplay Window He
g ey (28] O®[f=]@] sl
© Deg2 Grad
e N 1% and 2™ entries.
Had 2 Grad
Grad 2 Deg A [separator]
fGrad 2 Rad

Install of cascaded sub-menu at END (of Device menu).

This shows an example of a cascaded sub-menu that isinstalled at the END of aVEE
main menu selection.

" MENU- >Devi ce- >END"
("Menu slide off at END'
("Bar Chart 1"
[vi si bl eWhen not Runni ng]
get Devi cesFrom "~instal |l Dir/exanpl es/|ib/barchtl. vee"
[desc "bar chart 1"]
)
("Bar Chart 2"
[vi si bl eWhen not Runni ng]
get Devi cesFrom "~instal |l Dir/exanpl es/|ib/barcht2. vee"
[desc "bar chart 2"]]
("1d to 2d array conversion”
[vi si bl eWhen not Runni ng]
get Devi cesFrom "~install Dir/exanpl es/|ib/1Dto2D. vee"
[desc "1D to 2D array conversion"]

))

23

NG |0 CEl-Datatcg Data Digplay Window Help
(8] aaliol slr| 215

kd ath & Functions
|1zer0bject

UszerFunction
OTDatatcg 3
Call

Irnpart Library

Delete Libram

Sequencer
Wirtual Source 3
Bearezsion

Counter
Aocumulator
Tirner

Shift Reaister
DetMultiplexer
Comparator
benu shde off at END » SR B ET S|
- BarChat2

1d to 2d array conversion

Insert all information directly in menu file.

Y ou may also install an item in the menu by encoding the VEE save information directly
in the menu file. Thisisthe "hard" way - i.e. having to put the item here directly. You
must save the object(s) first and then cut the information from the save file and paste it
correctly into the menu file. This example is here mainly to show how you can link in
your help file to a specific VEE User Object or Call object. | don't recommend it, but |
mention it, asthisisthe way the VEE menu is built and shipped (internally) in the
product. The “helpLink” entry is how you link a help file to a VEE object that you
create. Thistopic iscovered in the next section.

"MENU- >Devi ce->Cal | "
(" DTDat aAcé&qg"
("CGet &Single Val ue"
[vi si bl eWhen not Runni ng]
[desc "Test install of cascaded nenu on mai n-submenu. "]
createCbj ect: (conponent 0 "CALL"
(hel pLi nk "Get - Si ngl e-Val @install Dir/DTVPI.HLP")
(name "Get Single Value")
(i nterface
(sequence in)
(sequence out)
(it nput 1
(type data)
(name "hSubsys")
(requires (datatype Int32))

24

(l ock name constraints))
... Rest was deleted ...

Install of single item at end of Main menu item (Display).

"MENU- >Di spl ay- >END"

("&Pie chart™
[vi si bl evhen not Runni ng]
[desc "An encapsul ated User Object that displays a Pie Chart"]
get Devi cesFrom "~install Dir\lib\PieChart.vee")

)= WS indow Help
Alphat urmenic

Loaging Alphatumeric
Indicator »

21 Trace
Strip Chart
LComplex Plane

#ows ' Plot
Falar Plot

W aveform [Time]
Spectum [Freg) k

Picture
Label
Beep

4——{ Menuentry

Thistext appearsin the status bar
a the bottom of the VEE

An encapsulated UserOhject that displays a Pie Chart g window. Noticeit isthe same
text entered inthe “desc” part of
the menu entry.

Install a custom help menu link.

Thereis away to provide custom help linksin VEE. This example shows how to add an
entry to the “ Help” menu itself. For demonstration purposes, | have used the "vee.hlp"
file and the link in that file called "integer" to show how to do it. You can substitute any
valid help file for "vee.hlp" and any valid help link for "integer".

25

" MENU- >Hel p- >About VEE..."

("Custom hel p i nk"
[desc "Creates a link to a customhelp file"]
"hel p:" "integer@-installDir/vee.hlp"

| LContents
How to ze Help

Instuments. .

Opensthe help file “vee.hlp”
to the entry “integer”.

Open Example...
Cugtom help link,

About YEE ..

Menu bar protocol

It is considered “against the standard” to insert items before the “Edit” menu bar pick or
after the“ Help” menu bar pick. Try not to do this.

Put new menu items between these two.

EIWPVEE __ __ _ __ _ ___ ____\

File Edt “ew Debug Flow Device /0 Data Digplay Swindow Help

ﬁiﬁinigi pigﬁi%&i%i?ié?i mii‘l’i‘l;ﬂfﬂi}g‘[;@i

26

Vendor examples

OK. Let’sget specific now. Here are a couple of examples show how Data Translation
and Computer Boards have integrated their menusinto VEE.

Thefirst isfrom Data Trandation. They install atop-level menu that is divided into two
sections. Thefirst isfor configuration of card functionality. Individual cards have
different areas of functionality so you might have to use several of these Config objects
to get your card set up. The second section includes all the calls you need to make to set
or get data from the card as well as doing some other low-level chores.

[0 ENEENEIEEYSl Data Display Window Help

Lt Blel Al]

There are configuration picks C/T Canfig

for each of the high-level sub- Digital In Canfig
systems you might find on a
particular board arranged

Drigital Dut Config

first. Get Data Panel
LContral P Get Data Function
Get Config ¥ PutData Panel
Set Config ¥ Put Data Function
/ Get Single Walue
There are 4 main levels of Fut Single Yalue

functionality. Try to
minimize the number of picks
that the user must choose.

Cantrol r I

Get Config et Sampling

Set Config ¥ Get Clocking
Get Channel Buffer Size
et Hange
Get Trigger

Get Retigger Clocking
et Channel Filker

Get Data Mode

Get Multi Channel Mode

et CAT Mode

Get CAT Freguency

Get CAT Pulzehwidth

et CAT Meazure Duration

27

This example is how Computer Boards (CBI) integrated their cards into VEE:

TH il v [MIRERNETEU Data Display Window Help
IS particular entry 1s .
the inonrt library o)k/Jject T
for th_e CBI DLL and EGEL I chaConvertDiata
function _defml_tlon file. Analog Output » chAConvertPretrighata
The configuration of the Dighal 10 » chyGetdinData
card is handled by
another application. Counters b cbAln
(InstaCal) Temperature » chalnScan
File [0 r chaloadlueue
Memom Board * chdPretrg
Utilitiez ¥ chaTng

The other menus/sub-menus are callsto the DLL Library, which is the method they use to
talk with their VXD and hardware.

28

Option 3. Integration incorporating VEE help

Thisis an easy addition to the VEE menus, but requires more work on your part o |
broke it out as a separate item. Notice the item from the prior section that has an entry
similar to this:

(hel pLi nk "Get-Si ngl e-Val @installDir/DTVPI.HLP")

Thisisthe way you can get VEE to open Y OUR custom help file (dtvpi.hlp in this case)
and go to the specified help link (Get-Single-Val). The down side to thisisthat you
currently have to manually edit the program file and insert this entry into the object that
you want to put help on. If you are putting secured User Objects on the menu, put the
entries in the User Object and it will be preserved across program save/open cycles. The
up sideis that when the user selects "Help" on that object, VEE will open the correct help
file. Inthiscase the help file must be in the VEE install directory and contain avalid
link called “Get-Single-Val”. It isvery easy to build help files but is beyond the scope of
this paper to tell you how to do this. There are many commercial products available to
help build help files such as ForeHelp, RoboHelp and others.

Note that you must provide a valid path to the help file. Use of ~installDir isthe
preferred way to do this or else you must force the help file to the correct place when you
install your custom object and or menus.

Y ou can also embed a call to the function “help()" inside of VEE to do the same thing
using the proper OK button or other mechanismto call it. Select the help function on the
Function selection dialog box and hit the Help button for more information on this
function.

29

Option 4. Writing a VXI plug&play style driver

There is another option if you have a PC plug-in card. Y ou could write a VX1 plug& play
style (not to be confused with Microsoft Plug and Play hardware/software specification)
driver. These drivers provide all of 1-3 outlined on the first page but in a different
format. Think of it asa“Visual Function Call”. It provides a nice tree view of the
functionsin your DLL (really an instrument driver). The big advantage of this kind of
driver isthat it can be used with HP VEE, Microsoft C, Microsoft Visual Basic, National
Instruments LabView and National Instruments LabWindows CV1. It is much more
work, but the benefits for a single driver for multiple software packages are obvious. HP
will be writing instrument drivers of this type for all its new hardware — including
traditional HPIB interface boxes. They look something like thisin HP VEE:

Select a Function Panel

(1 hpe1413

LJ—]—[:I Other Init

Auto Caonnect
=HEA Application Functions
Take a reading
[Data Logging
=L Measure

(1 Configure Measurement
(] Read

=0 Utility

Reset

SelfTest

Errar Query

Errar Message
Revision Query
Set Timeout

L_#E moaee Tirmanot

|

KR

This routine will automatically connect to a 1413. There
should be only one 1413 in the cage if there are more then
hpeldli MULTIPLE is the return walue and (if not WI_NULL)

iztring will contain a list of 1413's found.

(0] 4 | Cancell

But, thisis such an enormous topic that | am not going to cover it in this paper.

30

EXTENDING VEE VIA CUSTOM MENUS AND DLLS 1
Importing and Calling a Compiled Function 2
Function Definition 4
Creating a Compiled Function 6
Building a C Function 6
Creating the DLL 10
More on the Call object 11
The Delete Library Object 11
Using DLL Functions in Formula Objects 11

DLL SPECIFICS 12
Debugging your DLL 12
DLL initialization and cleanup 15
Neat Debugger trick 15
Alternate debug process 16
C or C++file? 16

OPTION 1. INTEGRATING THE DLL INTO VEE 18
So where heredo | put the DLL and examples? 18

OPTION 2. INTEGRATION USING THE VEE MENU 19
Install of singleitem in cascaded sub-menu structure. 21
Install of singleitem at the end of a cascaded sub-menu. 21
Install of entire main level cascaded menu. 22
Install of cascaded sub-menu at END (of Device menu). 23
Insert all information directly in menu file. 24
Install of single item at end of Main menu item (Display). 25
Install a custom help menu link. 25

Menu bar protocol 26

VENDOR EXAMPLES 27

OPTION 3. INTEGRATION INCORPORATING VEE HELP 29

OPTION 4. WRITING A VXI PLUG&PLAY STYLE DRIVER 30

31

