
1

Extending VEE via custom menus and DLLs
September 22, 1997

This paper was written to instruct you on how to integrate calls to a DLL into HP VEE.
It also shows how to modify the VEE menu to allow your users/customers to use the
functionality you are delivering. It will cover options from easiest (less work for you,
more for your customer) to hardest (more work for you, less for your customer). It uses
as examples the implementation from Data Translation and Computer Boards, Inc.
(OEMs for HP VEE) to integrate calling DLLs in order to communicate with their PC
plug-in boards. This paper shows how to use Microsoft Visual C++ (4.2) development
environment to debug the DLL. Other IDE’s are not covered.

The options are (in easiest to hardest order):
1. Include in your DLL, which will be callable from VEE, the functions you think are

necessary. This may involve writing some wrapper code to call your DLL from VEE,
providing an interface file for those functions, and a few examples showing how to
call the functions. HP VEE does not support all the data types that are available in
C/C++. Single character types, unsigned values and single precision floating point
(32 bit) number data types are not supported by VEE. This will be discussed in detail
later in this paper.

2. All of 1 above, but creating an add-on menu to VEE and organizing it in common
areas of functionality.

3. All of 2 above, but adding help functionality to the objects (User Objects) you
provide. This involves writing a help file and putting the necessary code into the
VEE objects so that the customer can get help on the function by using the built-in
help system with HP-VEE.

This paper will start with a general tutorial on creating compiled functions in HP VEE. It
closely follows the VEE documentation (see the Advanced Programming Techniques
manual, chapter 4). This is designed to be the starting point for learning how to integrate
PC plug-in cards with HP VEE.

Compiled Functions in HP VEE
There are several reasons for using Compiled Functions in your HP VEE program. You
can develop time-sensitive routines in another language and integrate them directly into
your VEE program by using Compiled Functions. Also, you can use Compiled Functions
as a means of providing security for proprietary routines. Because Compiled Functions
do not time slice (i.e. they execute until they are done without interruption) they are only
useful for specific purposes that are not available in VEE.

2

Although you can extend the capabilities of your VEE program by using Compiled
Functions, it adds complexity to the VEE programming process. The key design goal
should be to keep the purpose of the external routine highly focused on a specific task.
You currently cannot access any of the VEE internal functions from within the DLL.

Although the use of Compiled Functions provides enhanced VEE capabilities, there are
some pitfalls. Here are a few key ones:

• VEE does not normally trap errors originating in the external routine. Because your
external routine becomes part of the VEE process, any errors in that routine will
propagate back to VEE, and a failure in the external routine may cause VEE to
“hang” or otherwise fail. Thus, you need to be sure of what you want the external
routine to do, and provide for error checking in the routine. Also, if your external
routine exits, so will VEE. There is another white paper on this titled “Catching
Exceptions in a DLL. See the support pages in our web page to get a copy of this
document.

• Your routine must manage all memory that it needs. Be sure to deallocate any
memory that you may have allocated when the routine was running. You should use
the non-multithreaded memory library, which is unfortunately not the default in MS
Visual C.

• Your external routine cannot convert data types the way VEE does. Thus, you should
configure the data input terminals of the Call object to accept only the type and shape
of data that is compatible with the external routine.

• If your external routine accepts arrays, it must have a valid pointer for the type of data
it will examine. Also, the routine must check the size of the array on which it is
working. The best way to do this is to pass the size of the array from VEE as an input
to the routine, separate from the array itself. If your routine overwrites values of an
array passed to it, use the return value of the function to indicate how many of the
array elements are valid.

• System I/O resources may become locked. Your external routine is responsible for
timeout provisions, and so forth.

• If your external routine performs an invalid operation, such as overwriting memory
beyond the end of an array or dereferencing a nil or bad pointer, this can cause VEE
to exit or error with a segmentation violation.

Importing and Calling a Compiled Function

Once you have created a dynamically linked library, you can import the library into your
VEE program with the “Import Library” object and then call the Compiled Function with
the “Call” object. To import a Compiled Function library, select “Compiled Function” in
the “Library Type” field. Just as for a UserFunction, the “Library Name” field attaches a
name to identify the library within the program, and the “File Name” field specifies the
DLL. The Definition File field specifies the name of the include file which contains the
specification for the functions to be called:

3

Figure 1: Using Import Library for Compiled Functions

The definition file defines the type of data that is passed between the external routine and
VEE. It contains the prototypes for the functions.

Once you have imported the library with “Import Library”, you can call the Compiled
Function by specifying the function name in the “Call” object. For example, the “Call”
object below calls the Compiled Function named “myFunc”.

Figure 2: Using Call for Compiled Functions

You select a Compiled Function just as you would select a UserFunction. You can either
select the desired function using “Select Function” from the “Call” object menu or from
the “Select Function” dialog box (under “Device à Math & Functions”), or you can type
the name in the “Call” object. In any case, provided VEE recognizes the function, the
input and output terminals of the “Call” object are configured automatically for the
function. The definition file supplies (he necessary information. Or, you can reconfigure
the “Call” input and output terminals by selecting “Configure Pinout” in the object menu.
Whichever method you use, VEE will configure the “Call” object with the input
terminals required by the function, and with a “Ret Value” output terminal for the return
value of the function. In addition, there will be an output terminal corresponding to each
input that is passed by reference.

You can also call the Compiled Function by name from an expression in a Formula
object, or from other expressions evaluated at run time. For example, you could call a
Compiled Function by including its name in an expression in a Sequencer transaction.
Note, however, that only the Compiled Function's return value (‘Ret Value’ in the Call

4

object) can be obtained from within an expression. If you want to obtain other
parameters from the function, you have to use the Call object.

The DLL remains bound to the VEE process until VEE terminates, or until the library is
expressly deleted.

You delete the DLL from VEE either by selecting “Delete Lib” from the “Import
Library” object menu, or by including the “Delete Library” object in your program.
Note, however, that you may have more than one library name pointing to a DLL library
file. In this case, you use the “Delete Library” object to delete each library, but the shared
library remains bound until the last library pointing to it is deleted. However, the “Delete
Lib” selection in the “Import Library” object menu will unbind the shared library without
regard to other “Import Library” objects.

The Definition File

The Call object determines the type of data it should pass to your function based on the
contents of the definition file used in the Import Library object. The definition file
defines the type of data the function returns, the function name, and the arguments the
function accepts. When VEE executes an Import Library object, it defines the input and
output terminals needed for each Compiled Function. When you select a Compiled
Function for a Call object, or when you execute a “Configure Pinout”, VEE
automatically configures the Call with the appropriate terminals. The algorithm is as
follows:

• The appropriate input terminals are created for each input parameter to be passed to
the function (by reference or by value).

• An output terminal labeled “Ret Value” is configured to output the return value of the
Compiled Function. This is always the top-most output pin.

• An output terminal is created for every input that is passed by reference.

The names of the input and output terminals (except for “Ret Value”) are determined by
the parameter names in the definition file. However, the values output on the output
terminals are a function of position, not name. Thus, the first (top-most) output pin is
always the return value. The second output pin returns the value of the first parameter
passed by reference, and so forth. This is normally not a problem unless you add
terminals after the automatic pin configuration.

VEE version 3.2 and greater only calls 32-bit DLLs, not 16-bit DLLs.

Function Definition
Function definitions are of the following general form:

<return type> [_hidden] <function name> (<type>
<paramname>, <type> <paramname>, ...) ;

5

Where:

<return type> can be: int, short, long, double, char*, or void.

The optional “[_hidden]” parameter has the effect of “hiding” the function in VEE
although it can be called as with any other function. The difference is that it will not
appear in the Explorer view or the Function Selection dialog box. You might want to use
this if your DLL / menu picks has entries which are called from encapsulated objects, but
you do not want to “clutter” up the Explorer/Function selection dialog box with
unnecessary functions.

The int, short and long types are all passed as a 32-bit value to your function. The
int and long types are 32 bits and the short is 16 bits.

<function name> can be a string consisting of an alpha character followed by
alphanumeric characters (the ‘_’ character is also allowed), up to a total of 512
characters.

<type> can be: int, short, long, double, int*, char*,
short*, long*, double*, char**, or void.

<paramname> can be a string consisting of an alpha character followed by
alphanumeric characters (the ‘_’ character is also allowed), up to a total of 512
characters. The parameter names are optional, but it is highly recommended to include
them as VEE will just create a name on the Call box (a, b, c, etc) if it is missing. If a
parameter is to be passed by reference, the parameter name must be preceded by the
indirection symbol (*).

The valid return types are character strings (char*, corresponding to the VEE Text data
type), integers (long, int, short, corresponding to the VEE Int32 data type), and
double precision floating-point real numbers (double, corresponding to the VEE Real
data type).

If you specify “pass by reference” for a parameter by preceding the parameter name with
“*”, VEE will pass the address of the information to your function. If you specify “pass
by value” for a parameter by leaving out the “*”, VEE will copy the value (rather than the
address of the value) to your function. You’ll want to pass the data by reference if your
external routine changes that data for propagation back to VEE. Also, all arrays must be
passed by reference or VEE will signal an error on the Call object.

Any parameter passed to a Compiled Function by reference will be available as an output
terminal on the Call object. That is, the output terminals will be ‘Ret Value’ for the
functions return value, plus an output for each input parameter that was passed by
reference.

6

VEE pushes 144 bytes on the stack. This means that it allows up to 36 parameters to be
passed by reference to a Compiled Function. This would also imply that up to 36 long
integer parameters, or up to 18 double-precision floating-point parameters, may be passed
by value.

You may include comments in your definition file. VEE allows both “enclosed”
comments and “to-end-of-line” comments. “Enclosed” comments use the delimiter
sequence “/* comments */”, where “/*” and “*/” mark the beginning and end of the
comment, respectively.

“To-end-of-line” comments use the delimiting characters “//” to indicate the beginning of
a comment that runs to the end of the current line.

An example definition file might look like this:

Creating a Compiled Function
There are several steps to the process of creating a Compiled Function. First you must
write a program in C or C++ and compile it to create a Dynamic Link Library (DLL)
containing the Compiled Function, and bind the shared library into the VEE process.
We’ll look at each step in turn.

Building a C Function
The following C function accepts a real array and adds 1 to each element in the array.
The modified array is returned to VEE on the Array terminal, while the size of the array
is returned on the Ret Value terminal. This function, once linked into HP VEE, becomes
the Compiled Function called in the VEE program shown in Figure 3 below. All the
code shown below comes with VEE and is in the examples/manual directory.

/*
This function performs the snicker doodle transform on
the input array.

*/
long myFunc(long arraySize, double *array);

7

You must include any header files on which the routine depends in the source file. The
library should link against any other system libraries needed to resolve the system
functions it calls.

Notice the myFunc_desc[] entry above. If you add entries like this for each of your
DLL calls, then when the user looks at them with the Function selection box. See figure
4 below. In addition, this string will be displayed in a dialog box if the user selects the
“Description” selection with a right-button-down mouse click in the Explorer view on
that function. The general form for these strings is:

__declspec(dllexport) char <function name>_desc[] = “some
string information”

The <function name> must be exactly the same name as the function itself with a
“_desc[]” appended to it.

The definition file, manual49.h, for the function in manual49.c is as follows:

/*
 C code from manual49.c file
*/

#include <stdlib.h>

#define DLLEXPORT __declspec(dllexport)

/* The description will show up on the Program Explorer
when you select "Show Description" from the object menu
and the Function Selection dialog box in the small window
on the bottom of the box.
*/
DLLEXPORT char myFunc_desc[] = "This function adds 1.0 to
the array passed in";

DLLEXPORT long myFunc(long arraySize, double *array) {
long i;

for (i = 0; i < arraySize; i++, array++) {
*array += 1.0;

}

You can add text to
the function
selection box by
adding this to the
DLL. See Figure 4.

8

(This definition is exactly the same as the ANSI C prototype definition in the C file.)

The example program uses the ANSI C function prototype. This isn’t necessary, but it
makes things a little easier to understand. The function prototype declares the data types
that VEE should pass into the function. The array has been declared as a pointer variable.
VEE will put the addresses of the information appearing on the “Call” data input
terminals into this variable. The array size has been declared as a long integer. VEE will
put the value (not the address) of the size of the array into this variable. The positions of
both the data input terminals and the variable declarations are important. The addresses of
the data items (or their values) supplied to the data input pins (from top to bottom) are
placed in the variables in the function prototype from left to right.

One variable in the C function (and correspondingly, one data input terminal in the “Call”
object) is used to indicate the size of the array. The “arraySize” variable is used to
prevent data from being written beyond the end of the array. If you overwrite the bounds
of an array, the result depends on the language you are using. In Pascal, which performs
bounds checking, a run-time error will result, stopping VEE. In languages like C, where
there is no bounds checking, the result will be unpredictable, but intermittent data
corruption is probable.

Our example has passed a pointer to the array, so it is necessary to dereference the data
before the information can be used.

The “arraySize” variable has been passed by value, so it won’t show up as a data output
terminal. However, here we’ve used the function’s return value to return the size of the
output array to VEE. This technique is useful when you need to return an array that has
fewer elements than the input array.

/*
Definition file for manual49.c
*/

long myFunc(long arraySize, double *array);

9

The following VEE program calls the Compiled Function created from our example C
program:

Figure 3: Program Calling a Compiled Function

The example in Figure 3 is located in the file manual49.vee in the examples
directory. The C file is in manual49.c, the definition file is in manual49.h, and the
shared library is in manual49.dll.

10

After importing the function (either execute the program or select “Load Lib” on the
Import Library object menu) you can see that the function is available on the Function
Selection dialog box and the Explorer view in VEE.

Figure 4. Shows how a compiled function is integrated into VEE.

Creating the DLL
If you are using Microsoft Visual C++ version 2.0 or greater, the function definition
should be:
__declspec(dllexport) long myFunc (...);

This definition eliminates the need for a “.DEF” file to export the function from the DLL.
Use the following command line to compile and link the DLL:

cl /DWIN32 manual49.c /LD /Zi /link Kernel32.lib

“/LDd” creates the debug version of the DLL. Use “/Zi” to generate debug information.
This DLL can easily be created in one of the commercial development environments
(instead of using the command line interface) if you so choose.

Description as included in the
DLL. See the “char
myFunc_desc[]”part of the
C file above.

Function name and
parameters are displayed
here.

Functions
listed here.

All compiled function
libraries as well as the
functions in them are
displayed in the Explorer.

11

More on the Call object

You can also configure the “Call” object manually by modifying the function name and
adding the appropriate input and output terminals. First, configure the input terminals
with the same number of input terminals as there are parameters passed to the function.
The top input terminal is the first parameter passed to the function. The next terminal
down from the top is the second parameter, and so on. Next, configure the output The
Call Object terminals so that the parameters passed by reference appear as output
terminals on the “Call” object. Note that parameters passed by value cannot be assigned
as output terminals. The top output terminal is the value returned by the function. The
next terminal down is the first parameter passed by reference, etc. Finally, enter the
correct DLL function name in the “Function Name” field.
For example, for a DLL function defined as

long glarch(double *x, double y, long *z);

You need three input terminals for “x”, “y”, and “z” and three output terminals, one for
the return value and two for “x” and “z”. The “Function Name” field would contain
“glarch”. If the number of input and output terminals do not exactly match the number of
parameters in the function VEE generates an error. If the DLL library has already been
loaded and you enter the function name in the “Function Name” field you can also use
the “Configure Pinout” selection on the “Call” object menu to configure the terminals.

The Delete Library Object

If you have very large programs you may want to delete libraries after you use them. The
“Delete Library” object deletes libraries from memory just as the “Delete Lib” selection
on the “Import Library” object menu does.

Using DLL Functions in Formula Objects

You can also use DLL functions in formula objects (Formula box, If/Then box, I/O
objects, etc). With formula objects, only the return value is used in the formula; the
parameters passed by reference cannot be accessed. For example, using the DLL
function defined above in a formula:

4.5 + glarch(a, b, c) * 10

where “a” is the top input terminal on the formula object, “b” is next and “c” is last. The
call to “glarch” must have the correct number of parameters or VEE generates an error.
If the function “glarch” returns the value 0, the calculation would then proceed
computing 4.5 as the answer.

12

DLL specifics

Debugging your DLL
This section will show you how to debug your DLL running inside of HP VEE. I used
the Microsoft Visual C (version 4.2) environment. I leave it as an exercise of the reader
to do the same thing with other packages.

1. From the command line I issued the command:

Msdev “d:\Program Files\Hewlett Packard\VEE 4.0\vee.exe”

2. This brought up the environment that looks like this, where I selected the Build
àSettings menu pick:

3. Which brings up a dialog box like this:

13

Select the “Debug” tab and click on the “General” drop-down selection and pick
“Additional DLLs” and the dialog box will look like this:

Select the “Debug” tab

Then click on this
drop-down.

Enter in the path to
your DLL(s) here.

14

4. Enter in the DLL (or DLLs) that will be used when your VEE program runs. You
might want to review the exceptions that your debug environment will catch (Debug
à Exceptions… for MSVC).

5. Press F5 to run VEE.

6. Load your VEE program as normal and run it.

7. Let’s say that the DLL has an error in it. You will get some kind of message box
from the debug environment that will look something like this:

Error messages will pop-
up in the debug
environment that says
what the exception was.

15

8. After clicking on “OK”, the offending source code line will be displayed. You may
have to set some options saying where the source code is for the DLL.

In this fashion you can debug your DLL using the shipping version (versus getting a
special “debug” version of the bits) of VEE. In addition to this you might want to
consider getting a copy of the Pure-Atria’s Purify software. It excels at finding all kinds
of problems with memory overwrites, stomps, leaks, API problems. I have used it with
great success on VEE and highly recommend it. A word of caution though – you will
need a fairly decent machine to run it on. Get lots of memory, too.

DLL initialization and cleanup
You might want to do some initialization work when your DLL is first loaded and
cleanup work right before the DLL is unloaded. HP VEE will automatically look for a
function called “libEntry()” in your DLL and call it when VEE loads (via the
LoadLibrary call) the DLL. This is useful for doing any initialization when the DLL is
first loaded. It will only get called once. Conversely VEE will look for and call a
function called “libExit()” when the DLL is unloaded. The prototypes for these two
functions is: “void libEntry(void)” and “void libExit(void)”. That
is, no parameters and no return values. Make sure you export these functions correctly.

Neat Debugger trick
If your DLL has some kind of error condition in it you can have your program start the
debugger directly by calling the DebugBreak() Win32 function at the point in your code
that you want debugger to start. Calling this function causes the program to display a
dialog box as if it had crashed. Click Cancel to start the debugger and continue on in
debug mode. Just insert the following line of code in your DLL where you want the
debugger to start.

VOID DebugBreak(VOID)

Here is the error.
(contrived yes, but you get
the idea)

16

Alternate debug process
There is an alternate way to debug your freshly built DLL. Assuming that the DLL is
built in the visual environment (MS Visual C++, etc.) then you can simply run enter the
path to VEE to execute in the “Executable for debug session” part of the Project Settings
dialog box. Run the executable (F5) and make sure the Import box points to the Debug
version of the DLL.

C or C++ file?
The file containing the code for your DLL can be in either a C (.c extension) or a C++
(.cpp extension) file. Which one you choose does have an effect on your DLL. Suppose
you have the code as follows:
__declspec(dllexport) long longFunc (...);

in a file called C_DLL.c. When you compile the DLL the function “longFunc” will be
exported and available in VEE. Using the Explorer in Windows, find the DLL and select
“Quick View” via the right mouse button. You will see something like this:

If you put the same exact function in a file with the extension .cpp (C++) file and compile
it without declaring it as an extern C function, C++ will “mangle” the function name to
something that is not useful in VEE. Suppose the code looks like this:

/* This function name will be mangled by C++ */
__declspec(dllexport) long longFunc(long a, long b) {

long c;

Your function is
shown here.

17

c = a + b;
return c;

}

/* This function is properly exported as a C function. */
extern "C" {
__declspec(dllexport) long longFunc2(long a, long b) {

long c;
c = a + b;
return c;

}
}

Using “Quick View” again to examine the DLL shows the following two entry points.
Notice that the function “longFunc” name is completely “mangled” into something that
only this version of C++ understands. This is a normal (and one of the problems of)
thing for the C++ compiler to do. Each compiler does the mangling differently. There
can even be variations from revision to revision of the same vendor’s compiler!

Now let’s look at the different options of integrating the DLL into VEE.

longFunc name was
mangled by C++

The “longFunc2” function
was not. It is declared as
“extern C” in the code.

18

Option 1. Integrating the DLL into VEE

This section will show how to integrate your DLL into VEE doing the bare minimum
work. Provide your customers the DLL, a header file and perhaps a few example
programs on how to talk to the plug-in card with the DLL.

When you import the DLL (using one of the examples) you will see new entries on the
VEE 4.0 Explorer and also one the Function Selection dialog box. It might look like the
following:

So where here do I put the DLL and examples?

If you have some kind of installation program (I highly recommend InstallShield) you
will have to decide where to put the DLL(s), VxD/Driver, VEE examples. The
recommended place to put the VEE examples would be relative to the VEE installation
directory in your own subdirectory, say for example, in the directory:

“C:\ProgramFiles\Hewlett Packard\VEE 4.01\cbi”.

Notice a small help string is
available in the function
dialog box if you added
these strings in the DLL.

All the functions in the .h
file appear in the Explorer
(unless explicitly removed
with the _hidden modifier)

19

Here the examples would go into the “cbi” subdirectory and your example programs
could be constructed to find other items needed in that subdirectory. Say for instance one
of the VEE examples needs to load another DLL, or execute a program or load a library
of UserFunctions. You should use ~installDir\cbi\<whatever_filename> directive in your
VEE program to get to the files instead of relying on the installation forcing the user to
put the files in a certain spot.

If you writing an install program, you can find out where VEE in installed by looking at
the registry key: HKEY_LOCAL_MACHINE\SOFTWARE\Hewlett-Packard\VEE.
There may be one or more versions of VEE installed there which means you will have to
enumerate all the version of VEE available and either let the user choose one of entries or
determine which is newest (highest numeric value).

Or you can query the key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\App Paths\vee.exe

To find out the path of the most recently installed version of VEE. Each time you install
VEE this value is overwritten.

That’s it! The user will use your DLL and the examples to construct the appropriate VEE
program to talk to your card.

Option 2. Integration using the VEE menu

The next step would be to modify the VEE menu to include blocks of functionality. The
menu objects can be entire example programs, single Call objects, or small User Objects
configured to call directly to your DLL. This section will show you how to create a file
that will modify the VEE menu. There is a file that ships with VEE in the lib
subdirectory named customMenu.mnu, which contains a working example of code that
will modify your VEE menu. If you copy this file into the install directory, then when
you start VEE the menu will have additional items in it. This section of the paper will
use these items from customMenu.mnu as a working example.

First some general rules about the menu files:

• Files with the extension “.mnu" that exist in the VEE installation directory will be
loaded as VEE menu modifications. The files are loaded in alphabetical order.

• Lines starting with '#' are comments.

• There MUST be a line of this form for each menu modification entry:

20

"MENU->xxxxx".

There must be double quotes around the string and it must start with the characters
MENU->. The xxxxx characters describe where in the menu the item will appear.
VEE will parse the string and look for the menu or menu item between each set of '->'
characters and put the new menu item BEFORE the one specified in the string. For
instance, an entry of the form "MENU->Data->Constant->Text" will insert the
item into the Data menu, the Constant submenu BEFORE the Text entry. To put a menu
item at the end of a menu, use END keyword. See example below.

• There may be an optional visibility selector of the form:

[visibleWhen notRunning]

This entry will “gray-out” the menu picks when VEE is running. Generally most (but not
all) VEE menu items have this. It is not required.

• An optional description that shows up on the status bar when the cursor is over that
menu item. It is not required but highly recommended.

[desc "The rain in Spain stays mainly on the plain"]

• The item itself. You can either specify it via a line like:

 getDevicesFrom: "~installDir\dataacq\adconfig.vlo"

This is the easiest way to build a menu because you can maintain all the menu items in
separate files. I used this method here to minimize clutter.

Note the "~installDir" modifier. This tells this version of VEE to look in the
directory that the user installed VEE into to find the file "dataacq\adconfig.vlo" and load
the object there.

- or -

You can do it the hard way ☺ and embed the object directly in the menu as shown in an
example below.

It is generally better to put your files to be loaded in a subdirectory relative to the VEE
install directory instead of using absolute file names. It makes coding your examples
easier (they don’t have to depend on making sure that the hardcoded paths are correct)
and your installation process easier. The installation process can look in the
LOCAL_MACHINE registry entries for the Software\\Hewlett-Packard\\VEE registry
entries, enumerate them and decide what the most recent version is. Based on that there
are subkeys that specify what the installation directory for VEE is. You can install your
software in a sub-directory relative to that.

21

 Here are several examples of VEE menu file modifications and how they look in VEE.

Install of single item in cascaded sub-menu structure.

"MENU->Data->Constant->Text"
("&Insert at beginning"

[visibleWhen notRunning]
[desc "Test install of single item in menu structure"]
getDevicesFrom: "~installDir/lib/convert/Rad2Grad.vee"

)

Install of single item at the end of a cascaded sub-menu.
"MENU->Data->Constant->END"
("Insert at end"

[visibleWhen notRunning]
[desc "Install a single item at end of Constant menu"]
getDevicesFrom: "~installDir/lib/convert/Grad2Rad.vee"

22

)

Install of entire main level cascaded menu.
This shows how to insert an entire “top-level” menu pick on the VEE menu bar.

"MENU->Flow"
("&Conversion"
 ("&Deg 2 Rad"

[visibleWhen notRunning]
getDevicesFrom: "~installDir/lib/convert/Deg2Rad.vee"
[desc "converts number from degrees to radians"]

)
 ("&Deg 2 Grad"

[visibleWhen notRunning]
getDevicesFrom: "~installDir/lib/convert/Deg2Grad.vee"
[desc "converts number from degrees to gradians"]

)
 [separator]
 ("&Rad 2 Deg"

[visibleWhen notRunning]
getDevicesFrom: "~installDir/lib/convert/Rad2Deg.vee"
[desc "converts number from radians to degrees"]

)
 ("&Rad 2 Grad"

getDevicesFrom: "~installDir/lib/convert/Rad2Grad.vee"
[visibleWhen notRunning]

Shows use of END
keyword.

23

[desc "converts number from radians to gradians"]
)
 … Rest was deleted …
)

Install of cascaded sub-menu at END (of Device menu).

This shows an example of a cascaded sub-menu that is installed at the END of a VEE
main menu selection.

"MENU->Device->END"
("Menu slide off at END"
 ("Bar Chart 1"

[visibleWhen notRunning]
getDevicesFrom: "~installDir/examples/lib/barcht1.vee"
[desc "bar chart 1"]

)
 ("Bar Chart 2"

[visibleWhen notRunning]
getDevicesFrom: "~installDir/examples/lib/barcht2.vee"
[desc "bar chart 2"]]

 ("1d to 2d array conversion"
[visibleWhen notRunning]
getDevicesFrom: "~installDir/examples/lib/1Dto2D.vee"
[desc "1D to 2D array conversion"]

))

1st and 2nd entries.

A [separator]

24

Insert all information directly in menu file.
You may also install an item in the menu by encoding the VEE save information directly
in the menu file. This is the "hard" way - i.e. having to put the item here directly. You
must save the object(s) first and then cut the information from the save file and paste it
correctly into the menu file. This example is here mainly to show how you can link in
your help file to a specific VEE User Object or Call object. I don’t recommend it, but I
mention it, as this is the way the VEE menu is built and shipped (internally) in the
product. The “helpLink” entry is how you link a help file to a VEE object that you
create. This topic is covered in the next section.

"MENU->Device->Call"
("DTDataAc&q"
 ("Get &Single Value"
 [visibleWhen notRunning]
 [desc "Test install of cascaded menu on main-submenu."]
 createObject:`(component 0 "CALL"
 (helpLink "Get-Single-Val@~installDir/DTVPI.HLP")
 (name "Get Single Value")
 (interface
 (sequence in)
 (sequence out)
 (input 1
 (type data)
 (name "hSubsys")
 (requires (datatype Int32))

25

 (lock name constraints))
 … Rest was deleted …

Install of single item at end of Main menu item (Display).

"MENU->Display->END"
("&Pie chart"
 [visibleWhen notRunning]
 [desc "An encapsulated UserObject that displays a Pie Chart"]
 getDevicesFrom: "~installDir\lib\PieChart.vee")

Install a custom help menu link.
There is a way to provide custom help links in VEE. This example shows how to add an
entry to the “Help” menu itself. For demonstration purposes, I have used the "vee.hlp"
file and the link in that file called "integer" to show how to do it. You can substitute any
valid help file for "vee.hlp" and any valid help link for "integer".

This text appears in the status bar
at the bottom of the VEE
window. Notice it is the same
text entered in the “desc” part of
the menu entry.

Menu entry

26

"MENU->Help->About VEE..."
("Custom help link"

[desc "Creates a link to a custom help file"]
"help:" "integer@~installDir/vee.hlp"

)

Menu bar protocol
It is considered “against the standard” to insert items before the “Edit” menu bar pick or
after the “Help” menu bar pick. Try not to do this.

Opens the help file “vee.hlp”
to the entry “integer”.

Put new menu items between these two.

27

Vendor examples

OK. Let’s get specific now. Here are a couple of examples show how Data Translation
and Computer Boards have integrated their menus into VEE.

The first is from Data Translation. They install a top-level menu that is divided into two
sections. The first is for configuration of card functionality. Individual cards have
different areas of functionality so you might have to use several of these Config objects
to get your card set up. The second section includes all the calls you need to make to set
or get data from the card as well as doing some other low-level chores.

There are configuration picks
for each of the high-level sub-
systems you might find on a
particular board arranged
first.

There are 4 main levels of
functionality. Try to
minimize the number of picks
that the user must choose.

28

This example is how Computer Boards (CBI) integrated their cards into VEE:

The other menus/sub-menus are calls to the DLL Library, which is the method they use to
talk with their VxD and hardware.

This particular entry is
the import library object
for the CBI DLL and
function definition file.
The configuration of the
card is handled by
another application.
(InstaCal)

29

Option 3. Integration incorporating VEE help

This is an easy addition to the VEE menus, but requires more work on your part so I
broke it out as a separate item. Notice the item from the prior section that has an entry
similar to this:

(helpLink "Get-Single-Val@~installDir/DTVPI.HLP")

This is the way you can get VEE to open YOUR custom help file (dtvpi.hlp in this case)
and go to the specified help link (Get-Single-Val). The down side to this is that you
currently have to manually edit the program file and insert this entry into the object that
you want to put help on. If you are putting secured User Objects on the menu, put the
entries in the User Object and it will be preserved across program save/open cycles. The
up side is that when the user selects "Help" on that object, VEE will open the correct help
file. In this case the help file must be in the VEE install directory and contain a valid
link called “Get-Single-Val”. It is very easy to build help files but is beyond the scope of
this paper to tell you how to do this. There are many commercial products available to
help build help files such as ForeHelp, RoboHelp and others.

Note that you must provide a valid path to the help file. Use of ~installDir is the
preferred way to do this or else you must force the help file to the correct place when you
install your custom object and or menus.

You can also embed a call to the function “help()” inside of VEE to do the same thing
using the proper OK button or other mechanism to call it. Select the help function on the
Function selection dialog box and hit the Help button for more information on this
function.

30

Option 4. Writing a VXI plug&play style driver

There is another option if you have a PC plug-in card. You could write a VXI plug&play
style (not to be confused with Microsoft Plug and Play hardware/software specification)
driver. These drivers provide all of 1-3 outlined on the first page but in a different
format. Think of it as a “Visual Function Call”. It provides a nice tree view of the
functions in your DLL (really an instrument driver). The big advantage of this kind of
driver is that it can be used with HP VEE, Microsoft C, Microsoft Visual Basic, National
Instruments LabView and National Instruments LabWindows CVI. It is much more
work, but the benefits for a single driver for multiple software packages are obvious. HP
will be writing instrument drivers of this type for all its new hardware – including
traditional HPIB interface boxes. They look something like this in HP VEE:

But, this is such an enormous topic that I am not going to cover it in this paper.

31

EXTENDING VEE VIA CUSTOM MENUS AND DLLS 1
Importing and Calling a Compiled Function 2
Function Definition 4
Creating a Compiled Function 6
Building a C Function 6
Creating the DLL 10
More on the Call object 11
The Delete Library Object 11
Using DLL Functions in Formula Objects 11

DLL SPECIFICS 12
Debugging your DLL 12
DLL initialization and cleanup 15
Neat Debugger trick 15
Alternate debug process 16
C or C++ file? 16

OPTION 1. INTEGRATING THE DLL INTO VEE 18
So where here do I put the DLL and examples? 18

OPTION 2. INTEGRATION USING THE VEE MENU 19
Install of single item in cascaded sub-menu structure. 21
Install of single item at the end of a cascaded sub-menu. 21
Install of entire main level cascaded menu. 22
Install of cascaded sub-menu at END (of Device menu). 23
Insert all information directly in menu file. 24
Install of single item at end of Main menu item (Display). 25
Install a custom help menu link. 25

Menu bar protocol 26

VENDOR EXAMPLES 27

OPTION 3. INTEGRATION INCORPORATING VEE HELP 29

OPTION 4. WRITING A VXI PLUG&PLAY STYLE DRIVER 30

