
�

Introduction to HP VEE
V3.1 ©1996

Introduction to
HP VEE

�

Introduction to HP VEE
V3.1 ©1996

Introduction

��

Welcome to HP VEE

HP VEE Class i-2
Introduction
V3.1 ©1996 Hewlett-Packard

� HP VEE: 00INTRO:0395:
E2110C+24D

HP VEE

HP VEE
...Objective and Agenda

02

Objective - Learn to use HP VEE and to meet your Test &
Measurement Programming Challenges

Agenda
Fundamentals
Objects
Functions
Operator Interface
Instruments
Records and DataSets
Sequencer

You’re going to experience the power and functionality HP VEE has to help you meet your test and
measurement programming challenges. You’ll learn about the only graphical programming language
designed specifically for test. To help you understand how HP VEE works, the lab exercises are
designed to give you hands-on experience in areas that are typically found in Test & Measurement
applications.

HP VEE Class i-3
Introduction
V3.1 ©1996 Hewlett-Packard

� HP VEE: 00INTRO:0395:
E2110C+24D

HP VEE

03

HP VEE (Visual Engineering Environment) is a next
generation "Graphical Programming Language" for
developing and running test programs.

What is HP VEE?

#include <csubdecl.h>
/* 32 bit raw DVM data */
void convert_data(raw, err)
{
 int range, ohms;
 unsigned long dvm_data;

 raw_data = (double)
*raw;
 dvm_data = raw_data;

When first seeing HP VEE, you may feel that the graphical interface "hides" the functionality,
however, you’ll soon realize that the graphical interface is the functionality. HP VEE doesn’t
generate code - the objects in HP VEE are the code. Initially, it may not be easy to make the
connection between a familiar textual language and a graphical language, but both perform similar
functions.

HP VEE Class i-4
Introduction
V3.1 ©1996 Hewlett-Packard

� HP VEE: 00INTRO:0395:
E2110C+24D

HP VEE

04

Why HP VEE?

Designed for Test

Ease of Use

Optimized for System Performance

Open Systems

HP VEE is the only GPL designed for Test & Measurement solutions

HP VEE is both a complete GPL and an interface with the measurement world. As an interface, HP
VEE makes you more productive when you need to develop a complete test and measurement solution.
HP VEE is your answer whether the solution includes graphical user interface (GUIs), instrument
interfaces or seamless integration of your own text-based language.

HP VEE is part of Hewlett-Packard’s overall test system strategy. This strategy consists of a broad line
of hardware, computers, software, and services.

HP VEE Class i-5
Introduction
V3.1 ©1996 Hewlett-Packard

� HP VEE: 00INTRO:0395:
E2110C+24D

HP VEE

05

Offer scaleable price/performance in products and services

Make system integration easy

Embrace open measurement, computer, and software standards

Offer a broad range of products and services from system
components to custom services

Support multi-vendor system environments

Focus of HP’s Test System Strategy

Hewlett-Packard’s test system strategy focuses on such key areas as performance, ease-of-use and
standards. HP offers customers a wide range of products and services including system components,
custom services and support of multi-vendor system environments.

HP VEE Class i-6
Introduction
V3.1 ©1996 Hewlett-Packard

� HP VEE: 00INTRO:0395:
E2110C+24D

HP VEE

It provides hundreds of
high-level objects that
perform most test system
functions
I/O
Analysis
Display
Test Sequencing
Flow Control

How does HP VEE Work?

Objects

When developing computer-aided test, three main areas need to be coded. To make this task easier,
HP VEE provides three levels of instrument control: instrument panels, component drivers, and direct
I/O. Besides the HP-IB I/O objects to send bus commands and retrieve data, HP VEE provides other
data acquisition objects such as:

Read/Write Files
Read/Write Strings
Objects for user input
Objects to mathematically generate data

HP VEE provides math and analysis functions that range from elementary math to real/complex math
and calculus, data handling and conversion, regression and digital signal processing, and more. When
a solution has to be constructed from a long mathematical equation, a formula object is provided for
you to key in the formula rather than building it from individual math objects. HP VEE also contains a
powerful sequencer object that allows decisions to be made from the acquired data.

Because engineering and scientific data are better understood graphically, HP VEE provides a large
number of graphical display objects. Each of these objects has dozens of modifiable options including
multiple inputs, markers, auto scaling, etc. You can also display data in a text format with
alphanumeric and scroll data objects, or with meter-type objects.

HP VEE Class i-7
Introduction
V3.1 ©1996 Hewlett-Packard

� HP VEE: 00INTRO:0395:
E2110C+24D

HP VEE

Hands-on is the best way to learn

Don’t make it too hard

Learn the objects

01

The Approach for Learning HP VEE

At first; it’s difficult to find correct objects to use; learn the objects.

As you proceed, the number of objects necessary becomes less to achieve a solution.

Hidden semantics of objects: finding what they can do.

HP VEE Class i-8
Introduction
V3.1 ©1996 Hewlett-Packard

�������������������������

Introduction to HP VEE
V3.1 ©1996

Fundamentals

� HP VEE: 01FUNDAM:0395:
E2110C+24D

HP VEE

VEE Operation Fundamentals

01

Synchronous Operation

Propagation Rules

Multiple Threads

In this module we’ll discuss the fundamental principles of operation used by HP VEE.

We’ll cover:

Synchronous Operation, how the HP VEE objects function

Propagation Rules, how HP VEE decides which object operates next

Multiple Threads, how multiple sets of objects relate

HP VEE Class 1-1
VEE Fundamentals
V3.1 ©1996 Hewlett-Packard

� HP VEE: 01FUNDAM:0395:
E2110C+24D

HP VEE

Useful Definitions For HP VEE

02

Program the finished solutions with objects linked together

Work Area "the executable block diagram"
 The area within the HP VEE window in which you
 build programs. The "Detail" View

Object any item placed on the work area

Icon View a small, graphical representation of an object

Open View the maximized view of an object

Panel View the operator interface

First, let’s define some words commonly used with HP VEE.

HP VEE Class 1-2
VEE Fundamentals
V3.1 ©1996 Hewlett-Packard

� HP VEE: 01FUNDAM:0395:
E2110C+24D

HP VEE

HP VEE Work Area

2a

HP VEE Class 1-3
VEE Fundamentals
V3.1 ©1996 Hewlett-Packard

� HP VEE: 01FUNDAM:0395:
E2110C+24D

HP VEE

Icon vs. Open View

03

Icon View This view has the object title, bitmap display (optional) and the object
pins.

Open View This view has the Functions of the object. The title is optional, along
with the object menu and minimize button. The object pins are visible,
but the terminals are optional.

HP VEE Class 1-4
VEE Fundamentals
V3.1 ©1996 Hewlett-Packard

� HP VEE: 01FUNDAM:0395:
E2110C+24D

HP VEE

More Useful Definitions For HP VEE

04

Thread a set of objects connected by solid lines

Operate to execute an object

Ping send data or sequence instructions across a line to a
terminal

Container the package that is transmitted over lines and is
 processed by objects. The Container can be any of
 the HP VEE data types

Let’s define some more words commonly used with HP VEE.

HP VEE Class 1-5
VEE Fundamentals
V3.1 ©1996 Hewlett-Packard

� HP VEE: 01FUNDAM:0395:
E2110C+24D

HP VEE

Pins and Terminals

05

Data Input/Output

Sequence Input/Output

Asynchronous Control Input

Error Output

Pin

Terminal

Pins and terminals provide input and output connections for data and control on HP VEE objects.

Pins provide connecting points between objects. Data pins receive and send data. Sequence pins
control the execution flow of objects. You do not have to connect sequence pins for the object to
operate. Asynchronous pins control the operation of the object. The action they control activates
immediately. It doesn’t wait for the object to complete its operation. The Error Output pin sends error
information and allows you to trap errors.

Terminals display data information for each pin. Note that sequence pins do not have a corresponding
terminal.

HP VEE Class 1-6
VEE Fundamentals
V3.1 ©1996 Hewlett-Packard

� HP VEE: 01FUNDAM:0395:
E2110C+24D

HP VEE

Synchronous Operation

06

All Data Input pins must be connected for an object to fire
All Data Input pins must be pinged before the object will operate
A single Data Input pin cannot accept more than one line

Data flows
left-to-right

Sequence flows
top-to-bottom

Sequence
In

Data
Input

Sequence
Out

Data
Output

All HP VEE objects operate in the same manner. Data flows from left to right through the object.
Sequence flows from top to bottom.

All Data Input pins MUST be connected. A Data Input pin cannot accept more than one input
connection. Data output pins may connect to one or more objects.

Data Output and Sequence In or Out pins DO NOT need to be connected.

The object will not operate until all of its Data Input pins have been pinged.

The Sequence In is a hold off pin. If it is connected, the object cannot operate until the Sequence In is
pinged.

HP VEE Class 1-7
VEE Fundamentals
V3.1 ©1996 Hewlett-Packard

� HP VEE: 01FUNDAM:0395:
E2110C+24D

HP VEE

Synchronous Object Operation

Sequence In (optional - if connected)

Data in is accepted

Object operates

Data out is sent

Object waits for all data out to be sent and for "receipt
acknowledged"

Sequence out fires

Object deactivates

09

Sequence In 1a

Data Input 1b
2 Data Output

3 4

Sequence Out 5

1a

1b

2

3

4

5

6

HP VEE objects operate in the following manner:

1. The object receives data input. Sequence Input is received (if connected).

2. The object operates, performing its designated function.

3. The object sends data out to the next object.

4. The object waits for the next object in the thread to complete operation and send a "receipt
acknowledged" back to it. This insures that all objects in a thread operate before HP VEE
executes the next thread or subthread.

5. The object activates its sequence out pin.

6. The object deactivates.

HP VEE Class 1-8
VEE Fundamentals
V3.1 ©1996 Hewlett-Packard

� HP VEE: 01FUNDAM:0395:
E2110C+24D

HP VEE

Data In, Data Out
Many objects allow additional data in, data out terminals

Control Input
Ping causes immediate execution
of object sub-function
Is not required for overall object
execution
Examples: (Clear, Autoscale X, etc.)

Error Output
Overrides standard object
behavior
Activates when error occurs
 during object execution
Activates INSTEAD OF data outputs
Allows HP VEE to continue execution
after error

Optional Object Connections

08

Each object starts with a set of default input and output pins. Many devices allow additional input and
output data pins as well as control and error pins. Some objects only allow specific data pins to be
added.

The control pins cause immediate execution of an object sub-function, such as Clear, Auto-scale, etc.
The object does not need to receive input on a control pin in order to execute. However, it must
receive input on each data pin in order to execute.

The error pin overrides standard object behavior in the event of an error. It sends out an error message
when an error occurs. The object does not send out data on its data pins when an error occurs.

HP VEE Class 1-9
VEE Fundamentals
V3.1 ©1996 Hewlett-Packard

� HP VEE: 01FUNDAM:0395:
E2110C+24D

HP VEE

Adding Optional Inputs

09

Object menu provides ability to add terminals to objects
Data and Control
Inputs and Outputs

Terminal can be opened to Edit Name (double-click)
Type and shape can be modified if required

The Terminals selection on the object menu allows you to add terminals to an object. Selecting Edit
Properties... Show Terminals displays the terminal names on the object.

You can also open and edit terminal characteristics such as name, type and shape. Note that some
characteristics are unalterable.

Depending on the type of object, Adding Inputs might be additional Data Inputs or object specific
inputs, such as Frequency or Amplitude for the Device ==> Virtual Source ==> Function Generator.
This will be the same for Data Outputs.

HP VEE Class 1-10
VEE Fundamentals
V3.1 ©1996 Hewlett-Packard

� HP VEE: 01FUNDAM:0395:
E2110C+24D

HP VEE

XEQ Control Pin

10

XEQ control causes immediate object operation
Available data used

Required by some data building objects

Useful for continuing after error

Objects with XEQ pins
UserObject
Confirm (OK)
Set Values
Collector
Call
Sample/Hold

The XEQ pin causes the object to operate immediately. The object uses whatever data is available on
the input pins. This is useful when continuing after an error. Some data building objects require the
use of this pin to "finish" their operation. Note that XEQ pins are only available on the following
objects:

UserObject
Confirm (OK)
Set Values
Collector
Call
Sample/Hold

HP VEE Class 1-11
VEE Fundamentals
V3.1 ©1996 Hewlett-Packard

� HP VEE: 01FUNDAM:0395:
E2110C+24D

HP VEE

Propagation Rules

11

Pre-Run & Activation, Auto Execute, Wait for Input

Order of Execution

Parallel threads

Now let’s take a look at the Rules of Propagation, or how HP VEE decides which object operates next.
We’ll also examine:

PreRun, how HP VEE initializes objects and work areas

Activation, what happens when a work area begins operation

Auto Execute, where some objects can operate without pressing Run

Wait for Input, pauses for user input

HP VEE Class 1-12
VEE Fundamentals
V3.1 ©1996 Hewlett-Packard

� HP VEE: 01FUNDAM:0395:
E2110C+24D

HP VEE

Propagation Definitions

12

PreRun
Checks for "static" structure of program
Feedback loops, connected inputs
Occurs for entire model when RUN pressed
Occurs for single thread if START object pressed
Objects reset to initial conditions
Files rewound
Errors cleared

Activate
Analogous to PreRun, but for individual UserObject

Auto Execute
Propagation initiates at Data object, after user input

Wait for Input
Running program pauses until user input

HP VEE performs a PreRun (the following operations) when you press a Start or Run button:
Checks the structure of your program for proper construction and connectivity
Checks for Feedback loops, setting data input terminals on feedback loops to nil
Determines if all data and XEQ inputs are connected
Resets objects to initial conditions
Rewinds data files to their beginning
Clears errors

Note that HP VEE PreRuns your entire program when you press Run, but only an individual thread
when you press Start on that thread.

Activation is analogous to a procedure call in a textual programming language. It initializes the state
(PreRuns) of an individual UserObject each time the UserObject operates.

Auto Execute causes an object to propagate data after a user input. It is not necessary to press Start or
Run.

Wait for Input - pauses a program or thread that is running until the user has inputted data.

Auto Execute and Wait for Input are available on Sliders, Constants, and other data input objects.

HP VEE Class 1-13
VEE Fundamentals
V3.1 ©1996 Hewlett-Packard

� HP VEE: 01FUNDAM:0395:
E2110C+24D

HP VEE

Start Objects

13

Useful in Debugging

Allow execution sequence to begin

Affect only their own thread

At Run time, all START objects on every thread operate prior to
any other objects

Initiates thread
propagation

Pressing Start #1
does not affect
Thread #2

HP VEE Class 1-14
VEE Fundamentals
V3.1 ©1996 Hewlett-Packard

� HP VEE: 01FUNDAM:0395:
E2110C+24D

HP VEE

Propagation

15

Unconstrained Objects (A & B)
No input constraints (Data In or Sequence In)
Control inputs do not constrain an object

Constrained Objects (C)
Have either Data Input or Sequence Input pins connected

A or B may operate anytime
after Start

HP VEE models execute in the following order:

Start Objects operate first

Unconstrained Objects, objects with no data or sequence inputs, operate next [A & B]

Constrained Objects then operate when their input constraints are satisfied [C]

In this example, A or B may operate any time after the Start Object operates. A and
B will operate in an unspecified order relative to each other.

HP VEE Class 1-15
VEE Fundamentals
V3.1 ©1996 Hewlett-Packard

� HP VEE: 01FUNDAM:0395:
E2110C+24D

HP VEE

Propagation Rules

16

Unconstrained objects may operate in any order

C must wait for both A & B
A or B may operate first

Both B & C must wait
for A, after which
B and C will operate in
an unknown order

C must wait for B to finish.
Not vice versa

Just to be sure you understand propagation in HP VEE, let’s look at some more examples.

In the first example, A or B may execute first, but C must wait until both A and B have completed
their operation.

In the next example, A executes first. B and C must wait until A finishes. Then B and C execute.
You cannot determine which one will go first.

If the order in which B and C operate is important, use a sequence connection as shown in the bottom
example. In this case, C must wait until B finishes.

HP VEE Class 1-16
VEE Fundamentals
V3.1 ©1996 Hewlett-Packard

� HP VEE: 01FUNDAM:0395:
E2110C+24D

HP VEE

Propagation Example

17

A operates first after Start

K cannot operate until J
operates then K gets pinged by
the sequence out of D

Here is a more complex example. Note that the objects operate in alphabetical order. Notice that D
cannot activate its Sequence Out pin until as many objects as possible down- thread from it complete.
A operates first because it is unconstrained.

In the case of G, it activates its Sequence Out pin before I completes because I cannot complete until H
operates, providing data for I.

Note: F & G and I & J are indeterminate.

HP VEE Class 1-17
VEE Fundamentals
V3.1 ©1996 Hewlett-Packard

� HP VEE: 01FUNDAM:0395:
E2110C+24D

HP VEE

Multiple Thread Propagation

18

Parallel threads are time-sliced by "propagation engine"

Timeslice = 1 primitive object

Note:
Each object on an iterating subthread of a repeat device (iterator)
counts as one timeslice
UserObjects are MULTIPLE objects. Each object in a
UserObject is a primitive object
UserFunctions propagate to completion. Not TimeSliced

When multiple threads exist, HP VEE shares the processor among the various threads. The time slice
is the time it takes to execute a single primitive object (i.e., Gate, Formula, Alpha ...).

Note that each object on an iterating subthread executes for one time slice. Also note that HP VEE
treats UserObjects as multiple objects. Each object within the UserObject operates for one time slice.

HP VEE Class 1-18
VEE Fundamentals
V3.1 ©1996 Hewlett-Packard

� HP VEE: 01FUNDAM:0395:
E2110C+24D

HP VEE

19

Show Execution Flow
Highlights each object during operation

Show Data Flow
Shows data container moving along threads

Set Breakpoints
Pauses execution at this point

Line Probe <SHIFT LB on Line>
Shows data container on thread

Debugging

HP VEE Class 1-19
VEE Fundamentals
V3.1 ©1996 Hewlett-Packard

� HP VEE: 01FUNDAM:0395:
E2110C+24D

HP VEE

Debugging

20

Debugging features are
provided to quickly get
systems up and running

Step
Breakpoints
Animate

Show Execution Flow
Show Data Flow

Line Probe
Bus Monitor

HP VEE provides several tools under the Edit menu to help you debug your models.

Edit ==> Animate
Show Exec Flow - Highlights the object that is currently executing. A highlighted border

appears around the executing object.

Show Data Flow - Shows the route that data takes through the program. A small square
marked moves along the lines connecting objects to show the movement
of a data container.

Set Breakpoints - Stops execution of the program before it executes this object. Each object
has a settable breakpoint. An object with breakpoint set has a black
border.

Edit ==> Line Probe - Displays the container information (data) transmitted on a line between
two objects. Text, Scalar, Array, Record, etc.

I/O ==> Bus I/O Monitor - Displays the interface bus traffic into and out of HP VEE.

HP VEE Class 1-20
VEE Fundamentals
V3.1 ©1996 Hewlett-Packard

Lab 1

Menu Structure

Objective: Become familiar with HP VEE’s menu structure.

Notice the short cuts listed on the menus. For example,
File =>Save is Ctrl + s which means you simultaneously press the Control key
and then the s.
Note that Device=>Virtual Source -> reveals a cascading menu
Note that File Open ... is a dialog box menu

Next, look at the HP VEE on-line help system. The help system will give you information about each
object along with it’s location. There are also a how to section and a glossary. Be sure to check out the
section Help=>Contents - Using Keyboard Shortcuts.

With Animate ON, (Edit=>Animate), open the listed programs to observe synchronous operation
and the rules of propagation.

proprule.vee
propbig.vee
startobj.vee

HP VEE Class 1-21
VEE Fundamentals
V3.1 ©1996 Hewlett-Packard

������������

Introduction to HP VEE
V3.1 ©1996

Objects
and
Data

� HP VEE: 02DATAOB:0395:
E2110C+24D

HP VEE

Repeat (Iterators)

01

Repeatedly propagate data onto a subthread

Bounded Loop
For Count
For Range
For Log Range

Endless Loop
Until Break
On Cycle

The Repeat objects let you repeatedly execute a subthread. The first set of objects repeat a bounded
loop, executing a set number of times.

The For Count object executes this subthread the number of times defined by the count. Note that if
you use the output of the Count object, it counts from zero 0 (not one).

The For Range object executes a subthread a number of times specified by a beginning value, an
ending value and an increment.

The For Log Range object executes a subthread a number of times specified by a beginning value, an
ending value and an increment. The output values are evenly distributed along the log 10 scale.

The second set of objects loop endlessly.

The Until Break object repeatedly executes a subthread until it encounters a Break object.

The On Cycle object repeatedly executes a subthread at a regularly timed interval.

HP VEE Class 2-1
Objects and Data
V3.1 ©1996 Hewlett-Packard

� HP VEE: 02DATAOB:0395:
E2110C+24D

HP VEE

Early Loop Termination

02

Next - terminates propagation of current iteration

Break - terminates current and future iterations

A executes
repeatedly

A executes
repeatedly

HP VEE provides two ways to terminate a loop early.

The Next object ends the current iteration and allows the iterator to go on to the next iteration.

The Break object ends the current and all future iterations. The iterator activates its Sequence Out pin
and stops operating.

HP VEE Class 2-2
Objects and Data
V3.1 ©1996 Hewlett-Packard

� HP VEE: 02DATAOB:0395:
E2110C+24D

HP VEE

02a

Subthread basic unit of work
Applicable to functionality of UserObject

Structures of subthreads

Thread Structures

An HP VEE subthread is the basic unit of your program. Each block in your block diagram becomes a
UserObject in the HP VEE program. Here we illustrate how you structure subthreads for sequential
and nested loops.

HP VEE Class 2-3
Objects and Data
V3.1 ©1996 Hewlett-Packard

� HP VEE: 02DATAOB:0395:
E2110C+24D

HP VEE

Collecting Interative Data

02b

Data ==> Collector
Useful for gathering data from an iterator. It takes data into it and once XEQ is pinged, it outputs n+1
dimensional data. If you send scalar data, 1 dimensional data comes out. The Collector is also used to
optimize performance by minimizing the operation of objects. Several labs and examples will follow.

HP VEE Class 2-4
Objects and Data
V3.1 ©1996 Hewlett-Packard

� HP VEE: 02DATAOB:0395:
E2110C+24D

HP VEE

Confirm (OK) and Do

02c

The Confirm (OK) object is used to pause execution of a program until there is operator action. The
Do object specifies sequential flow of a program. The Do is useful in execution timing with the Timer
object.

HP VEE Class 2-5
Objects and Data
V3.1 ©1996 Hewlett-Packard

� HP VEE: 02DATAOB:0395:
E2110C+24D

HP VEE

Flow (Data)

03

Junction
Wired-OR which sends its most recent input
data
Often used to send 2 or more data lines to
the same input pin
Extra inputs are added as DATA inputs
Only data object with asynchronous inputs

Gate
Similar to a "latch"
Holds input data until Sequence In is pinged
(No sequence in connection on Gate --- data
passes through)

Sample & Hold
Sends data every time XEQ pin is pinged

As you may recall, an input pin may only have one connection. However, you may occasionally want to
connect two outputs to one input. The Junction object does this for you. It acts like a "Wired-OR,"
sending out the most recently received input data container. If you need to use more than two inputs,
simply add more data inputs to the Junction.

The Gate object is very similar to a latch. It holds its last input until its sequence in pin is activated. If
the sequence in pin is not connected, it simply sends the data out immediately.

The Sample & Hold object holds the data and propagates every time the XEQ pin is activated.

HP VEE Class 2-6
Objects and Data
V3.1 ©1996 Hewlett-Packard

� HP VEE: 02DATAOB:0395:
E2110C+24D

HP VEE

Conditional Branching

04

If/Then/Else
Allows testing according to user formula
Allows many inputs
Allows Else/If and Else outputs to give the capability for
multi-conditionals (case arguments)

Conditionals
Pre-formulated two-way comparisons

HP VEE provides the If/Then and Conditionals objects so that you can test data and branch
accordingly.

The If/Then object tests according to a user-provided formula. It also allows multiple inputs and the
Else/If construct to provide multi-conditional tests.

The Conditional are objects preformulated If/Then/Else objects.

HP VEE Class 2-7
Objects and Data
V3.1 ©1996 Hewlett-Packard

� HP VEE: 02DATAOB:0395:
E2110C+24D

HP VEE

05

Time Related Objects

Delay
Delays propagation for n seconds

Timer
Measures execution time between two
objects

Now
Indicates time of execution

The Delay object puts the thread to sleep for n seconds, as defined by the user. After that time the
thread continues.

The Timer object measures the time between receiving two data containers. You can use this to
measure the execution time between two objects.

The Time Stamp has been replaced by now() which provides the real number corresponding to the
system real-time clock.

HP VEE Class 2-8
Objects and Data
V3.1 ©1996 Hewlett-Packard

� HP VEE: 02DATAOB:0395:
E2110C+24D

HP VEE

06

Termination (Exits)

Exit Thread
Terminates propagation of an individual
thread

Stop
Terminates program
Equivalent to pressing stop button

These two objects provide exits. Exit Thread terminates an individual thread. Stop terminates the
execution of a program. Note that it stops the program immediately. No other objects operate. It is
equivalent to pressing the Stop button.

HP VEE Class 2-9
Objects and Data
V3.1 ©1996 Hewlett-Packard

� HP VEE: 02DATAOB:0395:
E2110C+24D

HP VEE

07

HP VEE Data Types

Now let’s look at the various data types and structures implemented by HP VEE. You can see that we
provide many useful data types.

Text
Int32
Real
Coord
String
Complex
PComplex
Spectrum
Waveform
Record

HP VEE Class 2-10
Objects and Data
V3.1 ©1996 Hewlett-Packard

� HP VEE: 02DATAOB:0395:
E2110C+24D

HP VEE

07a

Allows you to reference data that is maintained in a single place

Can accept any VEE container

Global Variables

Global variables allow you to set or read information that is maintained in a single place within your
program. You might want to use this feature to implement a semaphore or flag scheme where the
condition of some aspect of your program is available as a program-wide reference. An example
would be setting an Operator Name or Serial Number variable that would be used throughout a
program.

HP VEE Class 2-11
Objects and Data
V3.1 ©1996 Hewlett-Packard

� HP VEE: 02DATAOB:0395:
E2110C+24D

HP VEE

You can only SET a global with the
 Data ==> Globals ==> SET GLOBAL object

You can Get a global 2 ways
 1. Data ==> Globals ==> GET GLOBAL object
 2. Any valid expression (field)

Hierarchy:
 1. Local variables (terminal name)
 2. Global variables

Setting/Getting Globals

07b

The object associated with the use of global variables are located under the Data ==> Set Global and
Data ==> Get Global menu entries.

Globals are referenced by a name you associate with them. The default name is "globalA". The Set
Global object allows you to make a variable, whose name you can choose, take on whatever value
shows up at its Data In pin. The Get Global object allows you to propagate the value currently held in
your global variable.

Both functions allow you to specify the variable name as either a type-in field or a control input.
Globals can also be referenced by name in a Formula box or any other expression field.

HP VEE Class 2-12
Objects and Data
V3.1 ©1996 Hewlett-Packard

� HP VEE: 02DATAOB:0395:
E2110C+24D

HP VEE

Common Error

Globals are optionally erased when you press Run or Start

So, you must SET before you GET

Edit ==> View Globals is available after you SET the value

Global - Debugging

07c

Globals will be erased when you press START or RUN. The File ==> System Properties dialog has a
"Delete Globals at PreRun" flag if you want to keep the value of globals between program runs. It is
important to keep in mind that your program’s sequencing affects the values stored in globals. You
might be certain that a specific global is "SET" before you attempt a "GET". One clear way to see how
this works is to have a sequence line run between the Set Global and Get Global object. This prevents
your program from trying to access the stored information before the information has been initialized.
If we remove the sequence lines, we get an error saying that the global variable we referenced is not
defined.

If we take this one step further, we can see that in multi-threaded programs, we could attempt to read a
global that has been defined in another thread. If the global hasn’t been set before we try to read it, we
would get another error.

Located under the Edit menu is a selection to view the contents of your global variables. When you
select this function, HP VEE will present a dialog box to allow you to choose the variable you wish to
examine.

HP VEE Class 2-13
Objects and Data
V3.1 ©1996 Hewlett-Packard

� HP VEE: 02DATAOB:0395:
E2110C+24D

HP VEE

08

Formula and Expressions

The Formula object accepts any HP VEE Math function including expression evaluation and
conditional tests. With this object you can define any math function.

Use the Formula object to increase the efficiency of your program. Formula objects operate most
efficiently since it will only execute one object instead of the many objects that would otherwise be
needed. For example, instead of using several objects to create the math operation sin(A+(B/C)),
simply type the formula into a Formula object.

Many objects have expression field, such as If/Then. These expression fields accept the same syntax as
the Formula object.

HP VEE Class 2-14
Objects and Data
V3.1 ©1996 Hewlett-Packard

� HP VEE: 02DATAOB:0395:
E2110C+24D

HP VEE

09

Triadic Operator

The Triadic Operator is a useful tool for incorporating conditional decision making within an object.
Allows you to get the effect of an if/then/else in an expression without the use of an additional object.

They can be nested within themselves.

The format is:

(evaluation expression? true response: false response)

The parenthesis are part of the syntax.

HP VEE Class 2-15
Objects and Data
V3.1 ©1996 Hewlett-Packard

� HP VEE: 02DATAOB:0395:
E2110C+24D

HP VEE

10

Strings
strUp ("footBar") = "FOOTBAR"
strDown ("FootBAr") = "footbar"
strRev ("footbar") = "raboof"
strTrim (" foot bar ") = "foot bar"
strLen ("footbar") = 6
strFromThru ("footbar",0,2) = "foot"
strFromLen ("footbar",0,2) = "fo"
strPosChar ("footbar","bao") = 1
strPosStr ("footbar","oba") = 2

strPosChar ("footbar","m") = -1
strTrim ("abfootbarabab","ba") =
"footbar"

Math ==> String

String Operators

String operations provide the capability to perform comparisons and string manipulation on textual
data.

There are a couple of key rules to remember when manipulating strings:

String indexes are zero based

These functions work only on strings and will convert numeric parameters to strings
and then perform the appropriate operation.

HP VEE Class 2-16
Objects and Data
V3.1 ©1996 Hewlett-Packard

� HP VEE: 02DATAOB:0395:
E2110C+24D

HP VEE

HP VEE Display Objects

10a

AlphaNumeric displays a single data container in its text format

Logging AlphaNumeric displays continuous data containers in their text format

Indicator displays single numeric data generally used to indicate a State, such as passes or failed

Spectrum displays frequency based information

Waveform displays time based information

HP VEE Class 2-17
Objects and Data
V3.1 ©1996 Hewlett-Packard

� HP VEE: 02DATAOB:0395:
E2110C+24D

HP VEE

10b

Display Control Pins

You can customize the display objects in many ways. For multiple graphs, add more data inputs.
Clear and Auto Scale can be control inputs.

Plot multiple data instances by using the Next Curve control.

You can magnify the view of the data by using the Zoom command.

HP VEE Class 2-18
Objects and Data
V3.1 ©1996 Hewlett-Packard

� HP VEE: 02DATAOB:0395:
E2110C+24D

HP VEE

10c

Display Properties

You can also modify the panel layout, grid type, trace color and line type used on the displays.

Note that many of these functions may be added as control pins to the object.

HP VEE Class 2-19
Objects and Data
V3.1 ©1996 Hewlett-Packard

� HP VEE: 02DATAOB:0395:
E2110C+24D

HP VEE

10d

Display Traces and Scales

You can modify the Trace Name, Color, Line type and for Scales, Name, Mapping type ...

HP VEE Class 2-20
Objects and Data
V3.1 ©1996 Hewlett-Packard

� HP VEE: 02DATAOB:0395:
E2110C+24D

HP VEE

11

Object Menu
OPEN VIEW ICON VIEW

The object menu allows you to interact with an object. Note that it is slightly different between the
icon view and the open view. With this menu you can:

Change the size of the object

Move it

Clone it

Change the properties of an object
change the colors/fonts used
change the layout
set and clear a breakpoint
other object specific operations

Show the user comments about the object (Show Description)

Add Pins and Terminals

Cut the object

HP VEE Class 2-21
Objects and Data
V3.1 ©1996 Hewlett-Packard

� HP VEE: 02DATAOB:0395:
E2110C+24D

HP VEE

12

Object Properties

Properties allow you to customize an object’s appearance and/or behavior.

All objects have properties to control attributes generic to objects.

In addition, objects may include properties specific to a particular object.

You can get to the Edit Properties... dialog by "double clicking" on the object title bar. The General
tab is where you set break points for use in debugging.

HP VEE Class 2-22
Objects and Data
V3.1 ©1996 Hewlett-Packard

� HP VEE: 02DATAOB:0395:
E2110C+24D

HP VEE

13

Object Color

You can use the Colors properties tab to assign a color to each area of an object.

Each related area, such as the title bar, has the color control in a titled view to help organize the
attributes.

HP VEE Class 2-23
Objects and Data
V3.1 ©1996 Hewlett-Packard

� HP VEE: 02DATAOB:0395:
E2110C+24D

HP VEE

14

Object Font

As with the Colors properties tab, the Fonts tab allows you to apply a font characteristic to each area of
an object. It will show all fonts available on your system that HP VEE can use.

The Font dialog displays the character set associated with the language you have chosen for your
environment. For instance, when using Japanese Windows, the Properties tab displays Kanji in the
char set field.

HP VEE Class 2-24
Objects and Data
V3.1 ©1996 Hewlett-Packard

� HP VEE: 02DATAOB:0395:
E2110C+24D

HP VEE

15

Object Icon

You can assign a graphical element to be displayed in the icon view of any object. The supported
graphics file types are:

MS Windows X Windows
 .gif .gif
 .bmp .bmp

 .xwd (x bitmap file)
 .icn .icn (x icon file)

You can allow the icon to stretch or shrink to fit the size of your iconized object.

HP VEE Class 2-25
Objects and Data
V3.1 ©1996 Hewlett-Packard

� HP VEE: 02DATAOB:0395:
E2110C+24D

HP VEE

16

Default Preferences

Program Properties

File ==> Edit Default Preferences...

This dialog allows you to set the appearance and/or behavior of your VEE program.

You can make the current settings affect all of your VEE programs by pressing the "Save" button in
the dialog. This saves the settings to your .veerc or vee.rc file.

In addition, you can override a program’s color and font attributes by checking the "Save Default
Colors/Fonts with Program" box.

HP VEE Class 2-26
Objects and Data
V3.1 ©1996 Hewlett-Packard

� HP VEE: 02DATAOB:0395:
E2110C+24D

HP VEE

17

Colors and Fonts

The Fonts tab on the program properties dialog allows you to set the fonts associated with the VEE
editor window.

The "Screen Element" field is a drop down list of area whose fonts you may change.

HP VEE Class 2-27
Objects and Data
V3.1 ©1996 Hewlett-Packard

� HP VEE: 02DATAOB:0395:
E2110C+24D

HP VEE

18

Numbers and Printing

The Numbers tab in the program properties dialog allows you to control how numeric data is
displayed. It affects things like the AlphaNumeric display. It does NOT affect calculations, which are
ALWAYS done at full resolution.

The Printing tab allows you to adjust the appearance of your program hard copies.

HP VEE Class 2-28
Objects and Data
V3.1 ©1996 Hewlett-Packard

Lab 2a

Apple Bagger

Objective: To begin to learn the concept of data flow with an interator. In addition, we will continue
to learn where objects are located.

Let’s figure out how many apples it takes to fill a ten pound basket. Create an HP VEE program that
counts how many apples it takes to fill the basket. Each apple should randomly weigh between 0 and
1 pound.

Suggestions:
This program can be created with 8 or fewer objects. Choose from the following:

Until Break
Random Number
Accumulator
Break
Constant Real
Conditional (A>=B)
Stop
Counter
If/Then/Else

Hints:

As the weight of the apples is accumulated, check to see if the total accumulated weight is greater than
 10 pounds. Once the weight is greater than 10 pounds, check to see how many apples were in the bag
just before it went over 10 pounds.

HP VEE Class 2-29
Objects and Data
V3.1 ©1996 Hewlett-Packard

Lab 2b

Testing Numbers

Objective: To learn to use Flow Control objects in a decision making process.

Step 1
Create a program that allows the user to enter a number between 0 and 100. If the number is greater
than or equal to 50, display the number. If it is less than 50, display the message "Sorry".

Suggestions:
This program can be created with 7 or fewer objects. Choose from the following:

Integer
Slider
Real
If/Then/Else
Formula
Gate
Text
Junction
Alphanumeric

Hints:

There are many ways to solve this problem. One way could take advantage of the fact that A>15
evaluates to a 1 when true and a 0 when false. So you could also say (A>15)*A and; for example, when
A is 34, the output result would be 34. When A is 3 the output result is 0. This could be useful in an
If/Then/Else object.

Step 2
After the program is working with 7 objects or fewer, try the following:

Instead of using the Flow Control objects such as If/Then/Else or Gate, use the Formula object with
a Triadic Operator.

Hints:

The Triadic Operator is not an object under a VEE pull-down menu. It is an expression that can be
used in objects like the Formula object or the If/Then/Else object etc Search for help on the Triadic
Operator for more details.

HP VEE Class 2-30
Objects and Data
V3.1 ©1996 Hewlett-Packard

Lab 2c

Random Number Generator

Objective: To learn that objects have optional input terminals that enable a user to programmatically
control object variables.

Step 1
Create a random number generator that has user controlled external inputs. Plot the random numbers
on a Stripchart. The user controlled inputs should be allowed for:

Maximum random number

Minimum random number

Number of random numbers generated

Step 2
Using a VEE object, determine the time it takes to generate and to display the random numbers.

Note: Carefully select what you are timing! Improper connections can lead to erroneous results.

Step 3
 Modify the program to Collect the random numbers into an array before plotting them. Plot the array
of random numbers and also plot the "Moving Average" of those same random numbers on the same
Stripchart.

Hint:

Help on Collector and Moving Average would be wise.

HP VEE Class 2-31
Objects and Data
V3.1 ©1996 Hewlett-Packard

Lab 2d

String Functions and Global Variables

Objective: To learn about the string functions and the use of Global variables.

Step 1
Create a program that expects a users’ name to be typed into a Text Constant object or use a
Data=>Dialog Box=>Text Input.

Assume the name will be space <firstname> space <lastname>

After the user enters their name, have the program strip off the first name and only print the last name.

Note: You can use Math=>Strings functions or a Formula box.

Step 2
Store the string into a Global Variable.

Retrieve the string using a Formula box.

HP VEE Class 2-32
Objects and Data
V3.1 ©1996 Hewlett-Packard

�����������

Introduction to HP VEE
V3.1 ©1996

UserObjects

� HP VEE: 03OBJECT:0395:
E2110C+24D

HP VEE

Provides a work area within an object

A context

HP VEE UserObjects

01

A UserObject provides you with a work area within a work area. You build programs inside it that are
completely independent of the work area outside of it. In fact, you can run a program inside the
UserObject without affecting anything else in your work area. They create a new context, or working
environment.

These are most commonly used to build your own "custom" object, and can be thought of as an in-line
subroutine.

You can assemble a UserObject to perform a common task, then shrink it to an icon for use throughout
the current and future VEE programs.

HP VEE Class 3-1
UserObjects
V3.1 ©1996 Hewlett-Packard

� HP VEE: 03OBJECT:0395:
E2110C+24D

HP VEE

UserObjects

02

Obey all the rules of objects
Need all Data and Sequence inputs satisfied

Behave like work area
Supports all objects like main work area

Supports multiple threads
May be embedded within other UserObjects or UserFunctions

Behavior

UserObjects obey all the same rules as other objects, namely

They must have all data and sequence inputs satisfied before operating. They behave
exactly like the general work area, supporting all HP VEE objects and multiple
threads.

HP VEE Class 3-2
UserObjects
V3.1 ©1996 Hewlett-Packard

� HP VEE: 03OBJECT:0395:
E2110C+24D

HP VEE

Purpose

03

Encapsulate groups of objects that provide a function into a single
object

Unclutters work area
Facilitates easy understanding of programs behavior

Allows modular ("top down") design
Unlimited nesting

Can be stored in central object directory
Easy sharing and re-use

File ==> Merge

UserObjects are quite helpful in the development of HP VEE programs. They permit you to
encapsulate groups of objects that provide a function into a single object; uncluttering the work area.
This also helps to document the program, make understanding the program’s behavior easier and
facilitates "top-down" design. You can nest an unlimited number of UserObjects. So create your
program as a block diagram. Then simply fill in each UserObject with the necessary functions.

HP VEE Class 3-3
UserObjects
V3.1 ©1996 Hewlett-Packard

� HP VEE: 03OBJECT:0395:
E2110C+24D

HP VEE

Parallel Thread Example

05

Here is an example of how the propagation engine shares time between parallel threads, where a
UserObject contains one of the threads.

Note that the propagation engine treats each object inside the UserObject as a primitive object and
executes them one at a time.

The UserObject operates in the following fashion:

It activates only when all data and sequence inputs are satisfied, even if one of its
multiple internal threads only requires one of the data inputs. All internal threads
activate at once.

Only propagates its output pins once per UserObject execution, even if the output
pins are pinged multiple times.

HP VEE Class 3-4
UserObjects
V3.1 ©1996 Hewlett-Packard

� HP VEE: 03OBJECT:0395:
E2110C+24D

HP VEE

Termination of UserObjects

06

Causes of deactivation
All threads operate to completion
Exit UserObject
Untrapped error

Results
Data output pins activate ONLY those pinged within context
Sequence out activates

A UserObject terminates operation for the following reasons:

ALL threads completed execution

Thread execution encounters an Exit UserObject device

A thread causes an untrapped error.

When the UserObject terminates operation, it activates only its data output pins that received data from
within the UserObject. It then activates its sequence out pin.

HP VEE Class 3-5
UserObjects
V3.1 ©1996 Hewlett-Packard

� HP VEE: 03OBJECT:0395:
E2110C+24D

HP VEE

Early Termination

07

Exit UserObject
All threads in context halt
Outputs which received data
activate
Sequence out activates
Allows you to create a
custom dialog box with a
"cancel" button

Raise Error
User-generated error
All threads in context halt
NO data pins activate
Error pin propagates escape
code, otherwise an Error
dialog box

As mentioned before, UserObject terminates operation when it encounters an Exit UserObject. At that
point:

All threads in the UserObject terminate operation

Output pins that have received data activate

Sequence out activates

UserObjects will also stop operation when they encounter a "Raise Error". This provides a
user-generated error condition. At that time:

All threads in the UserObject terminate operation

NO output pins activate

The Error pin (if one exists on this UserObject) generates the escape code from the
"Raise Error" object. If there is no Error pin, an error dialog box appears.

Note that you can allow error messages to propagate up through nested UserObjects.

HP VEE Class 3-6
UserObjects
V3.1 ©1996 Hewlett-Packard

� HP VEE: 03OBJECT:0395:
E2110C+24D

HP VEE

Encapsulation with a UserObject
Bottom Up Design

Encapsulate Existing Object(s)
Select desired object(s)
Edit ==> Create UserObject

Advantages
All connections become data pins
Allows prototyping in main work area

Disadvantages
Redundant connections must be edited
Ill-conceived object selection yields nonfunctional UserObject

There are two methods of creating UserObjects. In the first method, you select your desired objects,
create a working function and then encapsulate it in a UserObject.

The advantage to this method is that all connections become data pins automatically. It also allows
you to prototype in the main work area.

This method also presents some disadvantages. Encapsulating a function often creates redundant data
pin connections which must be deleted. Also, ill-conceived object selection and the misunderstanding
of how an object operates often yield a non-functioning UserObject. "It just doesn’t work like it did
before." We’ll illustrate this with the following slide.

HP VEE Class 3-7
UserObjects
V3.1 ©1996 Hewlett-Packard

� HP VEE: 03OBJECT:0395:
E2110C+24D

HP VEE

Common Problem in
Create UserObject

09

The working program ...

... partially encapsulated

GIVES DIFFERENT RESULTS!

In the example listed above, the UserObject will only send a single output container, so, it will only
output the final value.

Remember that objects only operate once and only provide one data container.

The next slide illustrates how to handle iterative data within a UserObject.

HP VEE Class 3-8
UserObjects
V3.1 ©1996 Hewlett-Packard

� HP VEE: 03OBJECT:0395:
E2110C+24D

HP VEE

UserObject With Collector

10

To bundle data within a UserObject, a Collector is used to collect the data to pass out of the UserObject
as a single container of Array data.

HP VEE Class 3-9
UserObjects
V3.1 ©1996 Hewlett-Packard

� HP VEE: 03OBJECT:0395:
E2110C+24D

HP VEE

Define the problem and its constraints

Identify and define logical order and sequence

Define subtasks

Implement units
Device ==> UserObjects

Structured programming
Exactly same principles apply as in textual languages

UserObject - Top Down Design

11

Let’s review the Top-Down design methodology.

Define the problem, including all of its constraints

Identify a logical order and sequence for each of the tasks within the problem

Define each subtask within each task. Note how well this fits into HP VEE’s
paradigm of nested UserObjects

Now implement each of these tasks as a UserObject within HP VEE.

HP VEE Class 3-10
UserObjects
V3.1 ©1996 Hewlett-Packard

� HP VEE: 03OBJECT:0395:
E2110C+24D

HP VEE

Building With a UserObject
Top Down Design

12

Start with an empty UserObject
Device ==> UserObject

Build the model that will provide the basic unit of functionality

Add data inputs and outputs

Test individually

No symbolic procedure calls with UserObjects
No recursion
Multiple occurrences = multiple copies

Start with empty UserObjects: Use them as stubs or empty boxes

Build the program that provides basic functionality

Add data inputs and outputs

Test each UserObject individually. Do this with a Start object inside the UserObject,
run only those devices in it.

Note that HP VEE does not support recursion in UserObjects. When you need multiple occurrences of
an object, you must make multiple copies or promote UserObjects to UserFunctions.

Shortcut: Connecting an object outside the UserObject with an Object within, directly connect the data
out pin with the data in pin and HP VEE will make the UserObject connection automatically.

HP VEE Class 3-11
UserObjects
V3.1 ©1996 Hewlett-Packard

Lab 3a

UserObjects and Data Handling

Objective: To learn about data handling to improve speed and to understand the concept of
UserObjects.

Step 1
For this lab, we will build an HP VEE program several ways and note the differences in their execution
speeds.

Create a program that sends the RANGE (0 to 710, steps of 10) through a SINE and COSINE
function. Do not use a Device=>Virtual Source=>Function Generator.

Display the results of the functions in an X vs Y display.

Use a TIMER to determine how long the program takes to execute.

Step 2
Now, clone that entire example and place it below the first one. Change the clone so that the RANGE
data is COLLECTED into an array. Take the collected data into the SINE and COSINE functions
and then plot that data on the X vs Y display. Note the new time of execution.

Step 3
Let’s take a look at UserObjects. Save Steps 1 and 2. Do this in two parts. SELECT the objects in
thread #1 to Create UserObject. This will include the RANGE, SINE and COSINE.
On thread #2, SELECT the RANGE, SINE, COSINE and COLLECTOR in the UserObject.

What is the difference in the way each thread operates and why?

HP VEE Class 3-12
UserObjects
V3.1 ©1996 Hewlett-Packard

Lab 3b

Mask Test with UserObject

Objective: To build and utilize a new UserObject that is built from Device=>UserObject.
 All objects except Noise Control and Display should be in the UserObject.

Your VEE program should plot a noisy sine wave, a mask limit line and mark any point over the limit
line with a diamond. The Graph will visually show you the data, but you will need to programmitically
check the limits with a Comparator object

Step 1
Create a 50Hz sine wave with a user controllable amount of noise. Use the Device=>Virtual
Source=>Function Generator and Noise Generator

Step 2
Build your mask limit line using data points from Data=>Constant=>Coord with these values:

(0, 0.5)
(2.2m, 1.2)
(7.2m, 1.2)
(10.2m, 0.5)
(20m. 0.5)

Hint:

The Coord object has some userful Properties that will help with making a scalar Coord turn into an
array Coord. This coordinate array is used to plot the limit line and also as the reference values for the
comparator.

Step 3
If any point from the noisy sine wave exceeds the limit line, mark that failing point with a red
diamond.

Hint: You can change the trace format of the display from lines to dots and the points from dots to
diamonds. Look under the Traces and Scales menu option on the display’s Edit Properties.

You may also find the Device=>Comparator object essential for this lab.
(Don’t forget to read Help on the Comparator!))

HP VEE Class 3-13
UserObjects
V3.1 ©1996 Hewlett-Packard

Lab 3c

Random Noise UserObjects

Objective: Create a UserObject that generates a random noise waveform and compare it to the
Virtual Function Generator’s data.

Step 1
Create a UserObject that generates a random noise waveform. Provide control outside of the
UserObject for the following:

Amplitude, Number of Points, Interval (timespan), and DC offset

Step 2
Plot the noisy waveform on a Waveform(Time) object and the noise spectrum on a Magnitude
Spectrum object outside of the UserObject.

Note: Do NOT use a Virtual Source inside the UserObject! Build Waveform and Random
Number, etc. are recommended.

Step 3
Compare your noisy waveform generator with the Device=>Virtual Source=>Noise Generator by
plotting both traces on the same graphs.

HP VEE Class 3-14
UserObjects
V3.1 ©1996 Hewlett-Packard

IntIntroduction to HP VEE
V3.0 ©1995
Introduction to HP VEE
V3.1 ©1996

����������

UserFunctions

� HP VEE: 04FUNCTI:0395:
E2110C+24D

HP VEE

01

"Next Generation" of UserObjects

This allows users to change the source and have the changes
reflected everywhere

Large applications with duplicate code will require less memory and
take less disk space

HP VEE UserFunctions

The UserFunction is the next progression above the UserObject. It is made from a UserObject but has
several advantages over the UserObject.

The advantages are the UserFunction is referenced in the program from one location and multiple
references to the UserFunction uses incrementally smaller amounts of memory.

HP VEE Class 4-1
UserFunctions
V3.1 ©1996 Hewlett-Packard

� HP VEE: 04FUNCTI:0395:
E2110C+24D

HP VEE

Functions

Three types
UserFunctions (made from UserObjects)
Compiled Functions (made from C programs)
Remote Functions (UserFunctions that run on another system)

Allow you to build and call custom VEE functions

Represent a uniform method to scale ease-of-use vs. performance

02

Functions allow the user to define a particular capability or set of capabilities that can be used as a
standard part of your HP VEE environment.

All calls to a function reference back to a single defining instance of that function. If you change the
single instance of the function, this change is reflected in all instances of the object. Calls to the
function have separate data references, so even though only one defining, executable part of a function
exists, each call object acts on whatever data is supplied to its data terminals.

Functions can be created as one of three types:

UserFunctions, Compiled Functions, or Remote Functions. The type of function you choose depends
on whether you want to write the functions in HP VEE for ease of creation, C for speed, or if you want
the function to execute on a different system. If you decide to change the type of function you call, HP
VEE only requires you to change one object... the mechanism to call the types of functions is the same.

Compiled and Remote Functions will be discussed in a later section.

HP VEE Class 4-2
UserFunctions
V3.1 ©1996 Hewlett-Packard

� HP VEE: 04FUNCTI:0395:
E2110C+24D

HP VEE

UserFunctions

03

Created from UserObjects

Have the same synchronous operation as other objects

Can be local to a program or imported from a library

Functions can be defined to be local within a program or can optionally be stored for later use as a
library module. This allows access from other programs and other workstations and serves as the basis
for a user-defined library of functions.

In relation to other objects, UserFunctions synchronously operate as a primitive object in that it will
operate to completion once it is activated. This is since the UserFunction is referenced through a
primitive object. Device ==> Function ==> Call

HP VEE Class 4-3
UserFunctions
V3.1 ©1996 Hewlett-Packard

� HP VEE: 04FUNCTI:0395:
E2110C+24D

HP VEE

UserFunctions

04

Edit local UserFunctions in one place - have the changes effected
everywhere

Edit ==> Edit UserFunction

Don’t clone - smaller programs mean faster loading, faster editing

UserFunctions imported from a library may be viewed

Once a UserFunction is created, it is stored in memory. We will see how to call the UserFunction later
in this section. Unlike UserObjects, they are not copied but only referenced.

HP VEE Class 4-4
UserFunctions
V3.1 ©1996 Hewlett-Packard

� HP VEE: 04FUNCTI:0395:
E2110C+24D

HP VEE

Making UserFunctions

05

Make UserFunction
Will change the UserObject into a
UserFunction
The name of the Function is taken from the
TITLE of the UserObject

After selecting "make userfunction", it is now
available with this program to call, edit, etc.

To create a UserFunction, first create a UserObject. Each UserObject includes a menu choice to Make
UserFunction. (The name of the function is decided by the title of the UserObject). When you make
the UserFunction, you will see that the UserObject is replaced by a Call Function object that has the
same input and output data terminals, with all the lines still attached. The "look" of the object will
change.

Once a UserFunction is made, it is stored in memory

UserFunctions are saved as part of the program. Once the UserFunction has been
saved in a program, it can be imported as a UserFunction into other programs

HP VEE Class 4-5
UserFunctions
V3.1 ©1996 Hewlett-Packard

� HP VEE: 04FUNCTI:0395:
E2110C+24D

HP VEE

Calling UserFunctions

06

Device ==> Function ==> Call or from ANY expression

In an expression -

Input terminals are function
parameters to pass in
You can only retrieve data
from the top data output
terminal

Note: Don’t forget the null
parentheses () if no data is sent

Select Function...
Configure pin-outs

The function name can be
specified as a control pin

Device ==> Function ==> Call

You can call this UserFunction from a Call object or from a Formula box or expression. When you access the
Call Function object menu, you will see a choice labeled "Select Function". If you choose this, you will get a
dialog box that shows which functions are available to be called. Remember that the Call object adheres to all
the same rules as any other object in HP VEE. To function, all of its data in pins must be supplied with new data.

After you have selected a function, you will see a choice on the object menu labeled Configure Pinouts. This is
useful when you have changed something in the defining object that requires a different number of pins than you

had originally. Configure Pinouts will put the right number of pins on your Call Function object.

To call a UserFunction from a Formula or expression, use the name of the function, followed by a parameter list.
Each parameter listed after the function will relate to an input to the function. The parameter list Left-to-Right
should equate to the function’s Input Terminals, Top-to-Bottom. As in the example, add (a,b)

When called from expressions, the UserFunction will propagate data to the TOP output terminal only.

Note!!: If you want to use a formula or expression to call a UserFunction that does not contain any input
terminals, you MUST include empty parens () after the function name. Otherwise, HP VEE will think you are
referencing a global variable or input terminal.

HP VEE Class 4-6
UserFunctions
V3.1 ©1996 Hewlett-Packard

� HP VEE: 04FUNCTI:0395:
E2110C+24D

HP VEE

07

Allows you to merge UserFunctions from a saved program file into
your active program

This will merge ALL UserFunctions from the file

File ==> Merge Library

Merge Library

When you merge a library, all UserFunctions from the file specified are copied into your program, and
are available as if you had created them locally.

The term ’Library’ just means a HP VEE program file that contains the functions you want to merge.

Merged UserFunctions can be edited/changed, but the changes become part of the encapsulating VEE
program. In other words, the UserFunction that was referenced is now locally defined instead of
referencing the Merge Library UserFunction. The Library is not affected; changes are not made to it.

HP VEE Class 4-7
UserFunctions
V3.1 ©1996 Hewlett-Packard

� HP VEE: 04FUNCTI:0395:
E2110C+24D

HP VEE

Edit UserFunctions

08

Only available for local functions that you created or merged

Multiple edit windows can STAY open while a program is
executing

If you add or delete terminals after creating a UserFunction - you
must go the CALL objects and select "Configure Pin-out"

Edit ==> Edit UserFunctions

Edit ==> Edit UserFunction

All local UserFunctions can be edited by selecting Edit UserFunction and the name of the Function.
When you are finished editing, press DONE. The changes will be reflected for all calls in your
program to that specific UserFunction.

This Edit window can stay open while your program is executing. This allows you to use HP VEE’s
debugging features (e.g. break points, animate, etc.). Also, you can open multiple edit windows for
multiple User Functions at the same time.

When the Edit window is open, it has an object menu that is specific to that function. From this menu,
users can delete the UserFunction from the program, make it back into a UserObject, change to Detail
or Panel View, or several other choices.

To change the Title or Show Panel on Exec setting of the UserFunction, you must select the Change
Properties choice from the Edit window’s object menu.

HP VEE Class 4-8
UserFunctions
V3.1 ©1996 Hewlett-Packard

� HP VEE: 04FUNCTI:0395:
E2110C+24D

HP VEE

To allow a UserFunction to be shared among multiple VEE
programs

To spread out load times

To only load the parts of a program that are required

Import/Delete/Call UserFunctions

09

Device ==> Function ==> Import

Instead of having all of your UserFunctions loaded and stored with every HP VEE program, you can
selectively Import only the functions required. This is great if you want to have multiple HP VEE
programs all access the same function, instead of having to keep a copy of the function in every
program.

Also, you can now selectively load the parts of a particular program that you need. This will keep you
from having to always have all functions loaded at once. An example would be if you have a
PASS/FAIL decision. Then only the UserFunctions needed in either the PASS or the FAIL branch are
imported.

HP VEE Class 4-9
UserFunctions
V3.1 ©1996 Hewlett-Packard

� HP VEE: 04FUNCTI:0395:
E2110C+24D

HP VEE

Import/Delete UserFunctions

10

Allows you to dynamically load functions from a file to use in your
program

Also - the object menu includes a "load lib" or "delete lib" choice
for interactively loading or unloading of library.

UserFunction

"handle" used for
deleting library later

file that is the library
of functions

To save your UserFunction for use in another program requires no special operations. Simply saving
your program will allow other programs to access your functions. One thing to remember is that if you
import a function into another program, all functions defined in the source program automatically get
included. For this reason, you may want to save your functions in some logical grouping of several at
a time in a few files. In this way, you can build a set of libraries that have a single common source
(that you could manage with a source code control system) grouped logically by some user-defined
criteria.

To access a function from another file, use the Device -> Function -> Import object. This object
specifies the type of function you want, such as a UserFunction. It also has the name of the library you
will reference if you decide to programmatically delete these functions. The third field is a file selector
box you use to tell this object which file to look in to get your function. It is literally the file on the
system.

Notice the selections labeled Load Lib and Delete Lib in the Import Library function’s object menu.
These are immediate action selections that allow you to have interactive control over the addition and
deletion of libraries from your program. This is a very handy feature when you are developing your
program. If you first select Load Lib, you can then use the CALL object Select Function to choose the
function to call. If you do not use Load Lib on the Import object, you must remember the name of the
function and the proper pin-out.

The library name and file name can be specified as control pins on the Import object.

HP VEE Class 4-10
UserFunctions
V3.1 ©1996 Hewlett-Packard

� HP VEE: 04FUNCTI:0395:
E2110C+24D

HP VEE

Import/Delete/Call UserFunctions

11

Remember:
Load Lib lets you manually
load in the functions and test to
be certain VEE can find the file

Remember:
Select Function will present a
list of UserFunctions that are
available.

An example of the Import Library would be to configure the object with Library Type and File Name
of the UserFunctions that are needed. Use the edit menu "Load Lib" to immediately load the
UserFunctions into memory. Now, the Call Function’s Select Function is enabled. This will show you
the names of the UserFunctions loaded. If Select Function and/or Edit ==> UserFunction is
grayed-out, no UserFunctions were loaded.

HP VEE Class 4-11
UserFunctions
V3.1 ©1996 Hewlett-Packard

Lab 4a

Using UserFunctions

Objective: Learn more about UserObjects and then how to make them into UserFunctions. In
addition, we will learn about calling UserFunctions.

Step 1
Create a UserObject named NoiseGen that accepts an Amplitude value (0-1) from a slider and
returns a noisy waveform.

Do NOT use Virtual Source, For Count, For Range, Collector
Do use Data=>Allocate Array=>Real and Advmath=>Probability=>Randomize

Step 1a
Turn the UserObject NoiseGen into a UserFunction named NoiseGen.
You may want to build a simple program to be certain this function works correctly.

Step 2
As part of the same program, create a UserFunction named AddNoise that calls the first
UserFunction, NoiseGen and adds the noisy waveform from NoiseGen with data from an input pin
on the UserFunction named AddNoise.

The AddNoise function should have 2 inputs, 1 for the NoiseGen amplitude and 1 for the sine wave
(use the Device=>Virtual Source=>Function Generator [100Hz] for the sine wave). It should have 1
output pin for the result.

Using the UserFunctions that you have made, build a simple program with a Slider to control the
amplitude of the NoiseGen waveform . Plot the resultant waveform.

Step 3
Adding to the same program, call the AddNoise function again, this time from a formula box taking
the Absolute Value of the result.

Plot this Absolute Value waveform on the same display as in Step 2.
Next Edit the AddNoise UserFunction .
Turn ON Show Data Flow.

Run the program and notice how the debugging capabilities work on an open UserFunction.

Step 4
Now change your program so that the slider sets a Global Variable called Amplitude. Have the
NoiseGen function use that Global (so NoiseGen will no longer require an input pin).

Save this file as UFLAB.

HP VEE Class 4-12
UserFunctions
V3.1 ©1996 Hewlett-Packard

Lab 4b

Importing and Deleting UserFunctions

Objective: Learn to import and delete UserFunctions from libraries.

Step 1
Build a simple program to import the UserFunctions from the File UFLAB. Call the UserFunction
that adds the noise, and then Delete the UserFunctions programmatically.

Step 2
Try using the Select Functions choice from the Call box’s object menu.

HP VEE Class 4-13
UserFunctions
V3.1 ©1996 Hewlett-Packard

����������

Introduction to HP VEE
V3.1 ©1996

Operator
Interface

� HP VEE: 05OPERAT:0395:
E2110C+24D

HP VEE

User Interaction

01

Definition - a user is someone who runs a program developed by
someone else

User Inputs
Customization
Panel Views
Secure Programs
Combining Panels and UserObjects/UserFunctions

Let’s look now at some features that HP VEE provides that help you interact with people using your
program.

We’ll discuss:

User Inputs - How the user enters data

Customization - How you can customize the manner in which users interact with your program

Panel Views - A custom interface for your users

Secure Programs - You can secure your program so that others cannot alter it

Combine Panels and UserObjects - You can attach custom Panel Views to UserObjects and
UserFunctions

HP VEE Class 5-1
Operator Interfaces
V3.1 ©1996 Hewlett-Packard

� HP VEE: 05OPERAT:0395:
E2110C+24D

HP VEE

User Inputs

02

Selection Control, Toggle Control, Sliders, Constants, Dialog Boxes

Allow developer to prompt user for a variety of inputs
Each input object allow Auto Execute and "Wait For Input" except
for Dialog Boxes or Array Constants
Users input values without having to RE-START the program

The user enters data into a program by using the Set Control, Toggle Control, Slider, Constants, and
Dialog Boxes. These objects permit you to prompt the user for inputs. These objects also allow Auto
Execute, which automatically propagates the data to other objects. Note that you don’t need to stop and
restart the program to enter data. It can be entered while the program is running. Some of the objects
will pause the program waiting on the user input.

HP VEE Class 5-2
Operator Interfaces
V3.1 ©1996 Hewlett-Packard

� HP VEE: 05OPERAT:0395:
E2110C+24D

HP VEE

User Customization Features

03

Ability to size objects

Ability to customize display features and colors

Ability to annotate a program
Notepads
Custom object or program titles
Object descriptions
Labels and Pictures

Properties for each object and for the work area

You can customize your program in many ways such as:

Changing the size of objects to denote importance or to make them easier to use

Changing display features and colors with object properties and work area properties

Annotating your program with user instructions or documentation for maintenance
purposes.

You can make annotations by using:

Notepad objects to write notes to yourself in the work area

Editing object titles for further clarity of function or purpose

Writing in the Show Description area of each object

Changing or adding Bitmaps to the Icon View of the object

Labels and Pictures document the program

HP VEE Class 5-3
Operator Interfaces
V3.1 ©1996 Hewlett-Packard

� HP VEE: 05OPERAT:0395:
E2110C+24D

HP VEE

Panel View
A simpler view of the program

04

Developer chooses objects from the Detail View

Data and sequence lines are not
on the Panel View

The Panel View of a program provides another means of customizing your program. You choose
which objects appear on the panel. The Panel View does not show the interconnecting lines between
objects. By using a Panel View, you simplify and clarify the program seen by the user.

The Detail View is where the development of a program is done. As seen in the other labs, a Panel
View is optional.

Detail View <==> Development
Panel View <==> Operator/User Interface

HP VEE Class 5-4
Operator Interfaces
V3.1 ©1996 Hewlett-Packard

� HP VEE: 05OPERAT:0395:
E2110C+24D

HP VEE

Panel Views

05

Show only the necessary objects

Secure the program from user intervention

Provide an easy to read interface to a potentially complex program

Improve performance by decreasing screen interaction

With Panel Views you display only the objects necessary to interact with your program. You can also
secure your program with only the Panel, thus preventing the user from altering the program. Again,
the Panel View provides an easy-to-read interface for complex programs.

One of the major performance enhancers is to minimize the computer screen interaction. Updating
display objects once by use of a Collector object will usually increase performance. In addition,
minimize the use of textual display objects.

HP VEE Class 5-5
Operator Interfaces
V3.1 ©1996 Hewlett-Packard

� HP VEE: 05OPERAT:0395:
E2110C+24D

HP VEE

Creating a Panel View

06

Build the program and verify that it runs properly

Select the one or more objects you want to show on the Panel View

Select Edit ==> Add to Panel

Move and size objects on the Panel to maximize its effectiveness

Press Panel and Detail to move between views

So how do you create a Panel View?

1. Create the program and verify that it works as desired.

2. Select the objects that you want to appear on the Panel View. These should be
objects that the user interacts with or that display information for the user. A
shortcut to select objects is Control LB on an object.

3. Select Add to Panel from the Edit menu. Edit ==> Add to Panel

4. Move and size the objects on the Panel View to maximize its effectiveness for
the user.

5. Use Panel and Detail buttons on the title bar to move between views.

Remember that changes to the Detail View DO NOT affect the Panel View, except when a Detail View
object is deleted. This will automatically delete the Panel View object.

HP VEE Class 5-6
Operator Interfaces
V3.1 ©1996 Hewlett-Packard

� HP VEE: 05OPERAT:0395:
E2110C+24D

HP VEE

Panel View Characteristics

07

Fewer choices appear on the main menu in Panel View

If you can cut an object on the Detail View, its corresponding object
on the Panel is gone

The appearance (size, location, etc.) is not shared between views

Shared values include:
Initialize Values
Clear Values
Data
Etc.

Note that fewer choices appear on the main menu bar in the Panel View. This prohibits the user from
altering the operation of the program.

When you delete an object from the detail view, its corresponding object on the Panel View is also
deleted.

HP VEE does not share appearance characteristics between the panel and detail views. You can
change the size or location in one without affecting the other. However, it does share the following
characteristics:

Initial Values
Clear Values
Data
Etc.

Data means the actual content of the program. The program can have different Alphanumeric number
formats between the Panel and Detail Views.

HP VEE Class 5-7
Operator Interfaces
V3.1 ©1996 Hewlett-Packard

� HP VEE: 05OPERAT:0395:
E2110C+24D

HP VEE

Securing a Panel View

08

Creates a panel that does not allow a user to access the Detail View

Three Step Process:
 1. Create the program with a Panel View;
 2. Select Secure, and save the source file
 The Panel View is available yet can no longer be edited
 3. Save the secured program to another file

 Be certain to select a unique name to save the secured program
so you don’t overwrite the source file

Securing a panel prevents the user from seeing the detail view.

HP VEE Class 5-8
Operator Interfaces
V3.1 ©1996 Hewlett-Packard

� HP VEE: 05OPERAT:0395:
E2110C+24D

HP VEE

UserObjects With Panel Views

09

A UserObject is an independent work area

Developers can create a Panel View for the UserObject

Select objects within the UserObject and then use the UserObjects
work area Edit menu to "Add a Panel"
 object menu Edit ==> Add to Panel

Same applies to UserFunctions

Remember that a UserObject is an independent work area within the main work area or another object.
Each UserObject allows you to create a Panel View associated with that individual object. As before,
select the objects that you want to appear on the Panel View, then select Add to Panel from the
UserObject’s Edit menu or the pop-up Edit menu inside the UserObject work area. Add to Panel is
context sensitive.

HP VEE Class 5-9
Operator Interfaces
V3.1 ©1996 Hewlett-Packard

� HP VEE: 05OPERAT:0395:
E2110C+24D

HP VEE

Using "Show Panel on Execute"

10

Create a UserObject with a Panel View

Edit Properties... of the UserObject

General tab "Show Panel on Execute"

When the UserObject operates, the panel "Pops Up" on the work
area

Again, this works the same for UserFunctions

The UserObjects also implement a unique feature with respect to the Panel View. You can display the
panel ONLY while the UserObject is operating. To do this, select Show Panel on Execute from the
UserObject’s Edit Properties... Now the Panel View associated with that UserObject appears in the
work area when the UserObject is operating. The UserObject will remain on the work area for as long
as primitive objects are active. Check on Exit UserObject.

If a UserObject is on an iterating subthread, it will repeatedly pop up and go away.

HP VEE Class 5-10
Operator Interfaces
V3.1 ©1996 Hewlett-Packard

� HP VEE: 05OPERAT:0395:
E2110C+24D

HP VEE

"Show Panel on Execute" Operation

11

When the UserObject operates, the panel opens up in the center of
the work area

The Panel View of the UserObject disappears when the UserObject
finishes - so -

 To use this feature effectively - developers should use the Confirm
(OK) object to pause execution until the user responds

When the UserObject operates, the Panel View appears in the work area. It disappears when the
UserObject finishes. Therefore, to use this feature effectively you should add a Confirm (OK) object to
the Panel View to pause execution until the user responds.

Note: If the program is propagating out the wrong data, check the ordering of the OK object relative
to the data object.

HP VEE Class 5-11
Operator Interfaces
V3.1 ©1996 Hewlett-Packard

� HP VEE: 05OPERAT:0395:
E2110C+24D

HP VEE

OK Button - Keyboard Actions

12

OK Button can be assigned to Function, Enter and ESC keys

On the Panel View, the OK button can be assigned to the Enter and ESC keys; this can facilitate an
operator using the keyboard instead of the mouse.

The OK button can also be assigned to Function Keys (F1 - F12). This assignment will operate in
Detail or Panel Views.

HP VEE Class 5-12
Operator Interfaces
V3.1 ©1996 Hewlett-Packard

Lab 5

Creating Operator Panels and Pop-Ups

Objective: To learn to develop an Operator Panel and to create Pop-Up Panels

Step 1
Create a UserObject to interact with an operator. You will need two data inputs, A and B.
After data is entered, if A equals B (A==B), send A to an output display. If A and B are not equal
(A!=B), prompt the operator to select either A or B while the information is being displayed in a
menu. If the operator is not fast enough, after five (5) seconds, generate a User Defined Error
message.

Hint: Each panel that pops-up needs to be a separate UserObject.

Remember SHOW PANEL ON EXECUTE for pop-up action.

Step 2
Change the UserObjects into UserFunctions.

HP VEE Class 5-13
Operator Interfaces
V3.1 ©1996 Hewlett-Packard

����������

Introduction to HP VEE
V3.1 ©1996

Transactions

� HP VEE:06TRANSA:0395:
E2110C+24D

HP VEE

01

Transactions

Communication paths are implemented as Transaction-based
objects

Individual transactions handle multiple data items

All of the communications paths between HP VEE and other resources go through transaction objects.
For example, this slide shows a I/O ==> To ==> File transaction.

Note that each object may have multiple transactions contained within it, i.e. multiple reads and
writes.

Also note that each transaction may handle multiple data items. For example, you can read in a single
coordinate pair, or an array of coordinate pairs as a single transaction.

HP VEE Class 6-1
Transactions
V3.1 ©1996 Hewlett-Packard

� HP VEE:06TRANSA:0395:
E2110C+24D

HP VEE

02

Transactions

Specify action
READ, WRITE, EXECUTE, WAIT

Specify data encoding (interpretation)
TEXT, BYTE, CASE for data being written
TEXT, BINARY, BINBLOCK, CONTAINER for data being read

Specify formatting of data
Numerics represented at REAL, INTEGER, HEX, OCTAL
Full control of field width, justification

Within each Transaction, items may be specified such as Action, Data Encoding, and Data Formatting.
There are a great number of permutations to these items. The following section is not an exhaustive
list.

HP VEE Class 6-2
Transactions
V3.1 ©1996 Hewlett-Packard

� HP VEE:06TRANSA:0395:
E2110C+24D

HP VEE

03

Actions

You can specify the following actions in a transaction box:

READ - read data into HP VEE from another resource

WRITE - write data out of HP VEE to another resource

EXECUTE - performs a device-dependent operation on the resource. Such as
REWIND a File to the beginning

WAIT - waits the specified number of seconds before performing the next
transaction

HP VEE Class 6-3
Transactions
V3.1 ©1996 Hewlett-Packard

� HP VEE:06TRANSA:0395:
E2110C+24D

HP VEE

TEXT Formats for READ - Text

04

Match input data stream to required value and types

Data conversion enforced

Output pins take on type and shape required

CHAR - Reads specified number of characters
 - Stored in string

TOKEN - Allows multiple strings to be entered from data stream
 - SPACE DELIM - strings are separated by spaces
 - INCLUDE CHARACTERS - strings delimited by any
 non-member of set
 - EXCLUDE CHARACTERS - strings delimited by any

 member of set

STRING -Reads all characters up to a specified limit

You also specify TEXT formats for READ actions. HP VEE then matches the input data stream to the
required values and types. It enforces the data conversion specified. The object’s output pin then takes
on the type and shape of the data.

CHAR - This format reads the specified number of characters and stores it as a string.

TOKEN - This format allows you to read several strings from a data stream.

SPACE DELIM specifies that a space separates each string.

INCLUDE CHARACTERS specifies that any character not specified in the set
separates each string.

EXCLUDE CHARACTERS specifies that any character in the specified set separates
each string.

Useful for parsing data

STRING - This format reads all characters up to the number specified.

HP VEE Class 6-4
Transactions
V3.1 ©1996 Hewlett-Packard

� HP VEE:06TRANSA:0395:
E2110C+24D

HP VEE

Text Formats for READ - Numeric

05

OCTAL - Attempt to build INT32 value from numeric
HEXADECIMAL data received
INTEGER - OCTAL accepts 0..7
 HEX accepts 0..9, a-f, A-F
 INTEGER accepts 0..9

REAL - Builds REAL64 value
 - Accepts 0..9, +, -, e, E, . (decimal point)

COMPLEX - Expects two REAL values

PCOMPLEX - As COMPLEX, except must specify RAD,
 DEG, GRAD to interpret angle

COORD - Expects specified number of REAL values

The text formats for numeric READ actions are:

OCTAL - build an Int32 from received numeric data

HEXADECIMAL - build an Int32 from received numeric data

INTEGER - build an Int32 from received numeric data

REAL - build a Real (64-bit) from received numeric data

COMPLEX - build two Reals (64-bit) from received numeric data

PCOMPLEX - build two Reals (64-bit) from received numeric data. Remember to specify RAD, DEG,
or GRAD to interpret the angle correctly.

COORD - build the specified number of Reals (64-bit) from received numeric data.

HP VEE provides you objects to communicate data to the "outside world." This enables you to share
information with other programs, or simply archive data generated by your program.

HP VEE Class 6-5
Transactions
V3.1 ©1996 Hewlett-Packard

� HP VEE:06TRANSA:0395:
E2110C+24D

HP VEE

06

Text Formats for WRITE

These are the TEXT formats available for a WRITE action in a transaction box. You use them to
"beautify" your output data. Note that very little type checking or conversion takes place. It simply
formats your data.

DEFAULT - all data is in a free-field notation. It includes all characters of string data or all
significant digits of numeric data.

STRING - all data is in a free-field notation as in the DEFAULT format. However, with this format
you can control the field width and justification (left to right).

QUOTED STRING - this format is the same as STRING format, except that all data is enclosed in
double STRING quotes. It also handles data with embedded quotes.

REAL - all data is in a free-field notation as the above formats. You can control the sign prefix and
number of significant digits. You can also designate FIXED, STANDARD, or SCIENTIFIC notation
formats for the data.

COMPLEX - this format appears the same as two REALS separated by a comma.

PCOMPLEX - this format appears the same as COMPLEX, except that the angle value is preceded by
a @.

HP VEE Class 6-6
Transactions
V3.1 ©1996 Hewlett-Packard

� HP VEE:06TRANSA:0395:
E2110C+24D

HP VEE

07

Execute

To File and From File support EXECUTE commands

REWIND
All further READ or WRITE operations start at beginning of file

CLEAR
Useful in OVERWRITE mode
Resets file to zero length (erases old data)

CLOSE
Closes the file

DELETE - Deletes the file

REWIND - this will move the file pointer back to the beginning of the file. If you want to APPEND
data to a file, do not REWIND

CLEAR - this will set the file length to zero, essentially erasing the file contents but not the file
existents

CLOSE - closes the file from any reading or writing

DELETE - removes the file from the system. The file no longer exists

HP VEE Class 6-7
Transactions
V3.1 ©1996 Hewlett-Packard

� HP VEE:06TRANSA:0395:
E2110C+24D

HP VEE

08

Data Encoding

You can specify the following data encodings in a transaction box:

TEXT - a data stream of ASCII characters. Data types are constructed character
by character. For example, the data stream 1.23456 EOL becomes the REAL value
1.23456

BINARY - a data stream of bytes which match the HP VEE internal
representation. For example, a REAL value will have the IEEE 754 64-bit data
format, which uses 8 bytes

BYTE - a data stream consisting of one byte per variable

CASE - a data stream that behaves like an enumerated type. For example, the
statement CASE x OF ZERO, ONE, TWO will select the string TWO if x equals 2.
Note that this works only for WRITE transactions

HP VEE Class 6-8
Transactions
V3.1 ©1996 Hewlett-Packard

� HP VEE:06TRANSA:0395:
E2110C+24D

HP VEE

Data Encoding

09

BINBLOCK - Data stream is sent as IEEE - 488.2 indefinite
 length block

 - A "#" character
 - A digit specifying the size of the length field
 - The length field specifying the number of

 bytes to follow
 ex: #12AB = a 1 digit length
 length = 2
 data = AB
 #2101234567890 = a 2 digit length
 length = 10
 data = 1234567890

BINBLOCK -- A data stream sent as an IEEE-488.2 indefinite length block.

Useful when talking to instruments (that conform to IEEE-488.2) that capture waveforms, like scopes
or digitizers as well as other instruments that would transfer blocks of binary data.

HP VEE Class 6-9
Transactions
V3.1 ©1996 Hewlett-Packard

� HP VEE:06TRANSA:0395:
E2110C+24D

HP VEE

Data Encoding

10

CONTAINER - Data stream is sent to HP VEE internal format
 ex: (INT 32
 (numdims 1)
 (size 2)
 (data 1 2)
)

CONTAINER -- A data stream in HP VEE descriptive format.

For example: (INT 32 (numdims 1) (size 2) (data 1 2))

You might want to use this format so you don’t need to worry about the encoding format.

HP VEE Class 6-10
Transactions
V3.1 ©1996 Hewlett-Packard

� HP VEE:06TRANSA:0395:
E2110C+24D

HP VEE

The Number Builder when Reading

11

When numeric format is imposed on TEXT data stream, "number
builder" attempts to extract numeric value from data

Data is skipped while looking for numeric character

Data is used by builder until EOL or non-numeric encountered

Number is built

Numeric means 0-7 for OCTAL
 0-9, a-f, A-F for HEX
 0-9 for INTEGER
 +, -, 0-9, e, E, decimal point for REAL

HP VEE uses a Number Builder to extract a numeric value from textual data when you specify a
numeric format for READ action data. The number builder works in the following manner.

1. Skips data until it encounters a numeric character
2. Builds value from data until it encounters an EOL or non numeric character
3. Builds the final number

Valid numeric characters are:

OCTAL: 0-7
HEX: 0-9, a-f, A-F
INTEGER: 0-9
REAL: +,-,0-9,e,E,. (decimal point)

HP VEE Class 6-11
Transactions
V3.1 ©1996 Hewlett-Packard

Lab 6

Moving Data To and From Files

Objective: Learn how to move data in and out of files.

Step 1
Create an HP VEE program to:

 write the time of day to a file.
Generate 100 random numbers and also write them to the same file.
Calculate the Mean and Standard Deviation of the 100 numbers and write those two

numbers to the file using the format of :

Mean: xxxxxx
Std Dev: yyyyyy

Hints: Don’t forget to write out the "Mean" and "Std Dev." words too! Take a look at the Real Format
type in the File I/O Transaction Line, it has "fixed digits" capabilities....

Step 2
Create a different HP VEE program to read just the mean and standard deviation from the file.
Remember that this means that you will need to skip over the other entries to get to the desired data.

HP VEE Class 6-12
Transactions
V3.1 ©1996 Hewlett-Packard

����������

Introduction to HP VEE
V3.1 ©1996

Instruments

� HP VEE: 07INSTRU:0395:
E2110C+24D

HP VEE

HP VEE Instrument I/O

01

These are the objects that HP VEE uses to communicate to any device that is attached to any of the
supported interfaces. An example might be an instrument, a temperature chamber, or bar code
readers.

HP VEE Class 7-1
Instruments
V3.1 ©1996 Hewlett-Packard

� HP VEE: 07INSTRU:0395:
E2110C+24D

HP VEE

HP VEE Instrument I/O

02

Direct I/O
Transaction interface consistent with other I/O transaction
objects
Fast, flexible and powerful
For devices or instruments with no pre-developed drivers

Panel "State" Drivers
Developed by HP for over 400 instruments
Easiest HP VEE instrument control
Most interactive

Component Drivers
Allow efficient access to Panel components - relies on
information in the "Panel" driver

HP VEE communicates with instruments in three ways.

For the very fastest interaction with instruments, or for those devices which do not have a driver, HP
VEE provides Direct I/O. This object is the fastest and most flexible but requires the user to provide
the actual instrument commands. The two methods below do not require this. Direct I/O uses the same
transaction interface that we’ve previously learned about.

HP VEE uses HP Instrument drivers. We call them State drivers and they provide easy interactive
instrument control. They are called state drivers because they keep track of the instrument’s state or
function settings. State drivers have a "Component" to store the state of an instrument setting giving
you a way to transition to Component drivers.

HP VEE also uses the instrument drivers in a fashion called Component drivers. These same drivers
can also communicate more efficiently by not keeping track of the instrument state and not displaying
the instrument information.

Help ==> Instruments will give you a list of all installed drivers.

HP VEE Class 7-2
Instruments
V3.1 ©1996 Hewlett-Packard

� HP VEE: 07INSTRU:0395:
E2110C+24D

HP VEE

Direct I/O

03

Full instrument I/O functionality via transaction objects
READ and WRITE data in all formats
EXECUTE for control of interface and device
Wait

What if HP VEE doesn’t have an instrument driver for your favorite instrument? HP VEE can still
communicate with it using Direct I/O objects. These objects use the transaction box construct that
we’ve seen before.

Direct I/O provides the following actions:

READ and WRITE data to your instrument in all formats

EXECUTE controls the instrument interface and your device

WAIT until you’re ready for the next command or until a Reading is
ready/measurement has completed.

Direct I/O is similar to:

Rocky Mountain Basic OUTPUT/ENTER
Quick BASIC IOOUTPUT/IOENTER

HP VEE Class 7-3
Instruments
V3.1 ©1996 Hewlett-Packard

� HP VEE: 07INSTRU:0395:
E2110C+24D

HP VEE

Trade Offs With Direct I/O
Transactions

04

Benefits
Highest performance I/O
Consistent usage with other I/O transactions
Used to access instrument functionality unavailable through
instrument Panel Drivers
Access to registers of VXI register-based card

Disadvantages
Requires familiarity with instrument programming
Time to create I/O transactions

What are the tradeoffs of using Direct I/O?

Direct I/O provides the following benefits:

Highest performance I/O versus Panel Drivers

Consistent interface with other I/O transactions

Access to instrument functionality unavailable through instrument drivers or for
instruments without drivers

However, it also has the following disadvantages:

You must be familiar with the instrument programming commands or have access to
documentation

Time to gather instrument commands. Similar to text based programming

HP VEE Class 7-4
Instruments
V3.1 ©1996 Hewlett-Packard

� HP VEE: 07INSTRU:0395:
E2110C+24D

HP VEE

05

Direct I/O Configure

Each instrument has separate configuration for Driver and Direct I/O.

Direct I/O configuration specifies:

Terminators and EOL sequences

Formatting of array data

Conformance to IEEE 488 or 488.2

Information needed to save and restore instrument learn string

HP VEE Class 7-5
Instruments
V3.1 ©1996 Hewlett-Packard

� HP VEE: 07INSTRU:0395:
E2110C+24D

HP VEE

MultiDevice Direct I/O

06

The MultiDevice Direct I/O is used to communicate to different instruments or devices through one
MultiDevice Direct I/O object. A typical use would be to have a single object perform a similar task to
several instruments, such as RESET or SETUP.

I/O ==> Advanced I/O ==> MultiDevice Direct I/O

HP VEE Class 7-6
Instruments
V3.1 ©1996 Hewlett-Packard

� HP VEE: 07INSTRU:0395:
E2110C+24D

HP VEE

Instrument Select or Configure

07

I/O ==> Instrument ...

Add Instrument ...
This option will add a new instrument to the selection. It will prompt with a default Device
Configuration dialog box.

Delete Instrument ...
This option will delete the hi-lighted Instrument.

Edit Instrument ...
This option will show the Device Configuration dialog box for the hi-lighted Instrument.

HP VEE Class 7-7
Instruments
V3.1 ©1996 Hewlett-Packard

� HP VEE: 07INSTRU:0395:
E2110C+24D

HP VEE

Text file that defines:
 1. Instrument components (or functions)
 2. Bus mnemonics to set components
 3. User interface for front panel interaction

All drivers are compiled to allow fast loading

Also contain function interrelation (coupling)

HP instrument drivers provide access to most programmable
functions available on the instrument

Coupling allows incremental state programming

HP Instrument Panel Drivers

08

These instrument drivers are text files that define:

Instrument components or functions

Instrument commands or mnemonics that control the instrument functions

User interface for front panel interaction

The drivers also contain information on how various instrument functions interact. This interaction is
called coupling.

HP instrument drivers provide access to most of the programmable instrument functions available in
the device. These drivers also permit you to use incremental state programming since it tracks the
state of the instrument.

hpidc - HP Instrument Driver Compiler - Operating System specific.

Note: You can also use the driver writing tools provided for HP ITG to write new drivers.

HP VEE Class 7-8
Instruments
V3.1 ©1996 Hewlett-Packard

� HP VEE: 07INSTRU:0395:
E2110C+24D

HP VEE

Incremental State Programming

09

HP VEE maintains a state table of current instrument settings

Users can request a single component or entire instrument state to
be sent

With Incremental Mode ON, only required components
(commands) are sent to instrument

Func ACV
Range AUTO
NPLC 0.1
Trig HOLD
Auto ON

Current State

ACV
MAN
0.1
SINGLE
ON

Next State

With incremental state programming, HP VEE maintains a state table of current settings for the
instrument. You can then request HP VEE send an individual component or function change or an
entirely new instrument state. When you have Incremental Mode ON, HP VEE sends only those
components (commands) required to update the state of the instrument.

HP VEE Class 7-9
Instruments
V3.1 ©1996 Hewlett-Packard

� HP VEE: 07INSTRU:0395:
E2110C+24D

HP VEE

HP VEE Component Drivers

10

Do not use graphical Panel interface

Only required components are added to object

Only added components have state maintained

Because State Lookup is NOT done for every function, Component
drivers execute much faster than State drivers

With HP VEE Component drivers, you only add the functions you need to the object. You simply add
an input or output terminal, choosing from the list of available functions. This driver only tracks the
state of the functions you add. Since Component drivers do not look up the entire state of the
instrument they execute faster than State drivers.

HP VEE Class 7-10
Instruments
V3.1 ©1996 Hewlett-Packard

� HP VEE: 07INSTRU:0395:
E2110C+24D

HP VEE

State drivers for users wanting full graphical panels

Component drivers to set/get specific components to optimize driver
performance

State drivers and Component drivers can be mixed and matched

Multiple instances of same driver (state or component) to same
instrument share state

Summary

HP VEE Instrument Drivers

11

In summary:

State drivers provide a full graphical interface for the instrument

Component drivers set and get specific instrument components to optimize
performance

You can use State drivers and Component drivers in the same program. See the next
slide for an example of this

Multiple instances of the same driver (either state or component) to the same
instrument share the same state table. Same instrument refers to Device
Configuration Name

HP VEE Class 7-11
Instruments
V3.1 ©1996 Hewlett-Packard

� HP VEE: 07INSTRU:0395:
E2110C+24D

HP VEE

State and Component Drivers

11a

This is a sample of using a State driver and Component driver in the same program. The State driver
is used to setup the instrument into a known configuration and then the Component driver is used to
repeatedly send new values to the instrument.

HP VEE Class 7-12
Instruments
V3.1 ©1996 Hewlett-Packard

� HP VEE: 07INSTRU:0395:
E2110C+24D

HP VEE

Bus Monitor

12

Works with HP-IB, GPIO, RS-232, VXI

Records all traffic
Generated by Driver or Direct I/O
Received by Driver or Direct I/O

Data is timestamped, displayed in text or hex, I/O direction
indicated, and command bytes interpreted
 >VEE outbound traffic
 <VEE inbound traffic

Includes a "TO FILE" and Buffer Size option

To help you debug your instrument control models, HP VEE provides the Bus Monitor object. The
Bus Monitor works with all the interfaces configured in your computer, recording traffic generated by
instrument drivers or Direct I/O, or received by the controller. The monitor timestamps the data,
displays it as hex digits, indicating the I/O direction. It also interprets command bytes for you.

NOTE: The Bus Monitor only records I/O traffic related to HP VEE. It does not monitor or record
traffic generated or received by other devices or programs, such as an external BASIC program.

HP VEE Class 7-13
Instruments
V3.1 ©1996 Hewlett-Packard

� HP VEE: 07INSTRU:0395:
E2110C+24D

HP VEE

13

HP VEE Interfaces Supported

 HP-IB RS-232 GPIO VXI

PC

S300

S700

SUN

HP-IB Also known as IEEE-488 and GPIB support IEEE-488 and 488.2 type
instruments. Configurable item.

GPIO General Purpose I/O (Parallel)

RS-232 RS-232 Serial interface

VXI VXI is referenced as an interface rather than an instrument. S300 would be
V/382. S700 would be MXI or V/743. PC includes EPC7, EPC8, or VXLink.

HP VEE Class 7-14
Instruments
V3.1 ©1996 Hewlett-Packard

� HP VEE: 07INSTRU:0395:
E2110C+24D

HP VEE

VXI Support

14

Backplane access to message-based devices
ID’s and Direct I/O

Backplane access to register-based devices
Direct I/O
ID’s with I-SCPI

V/382, V743, S700, EPC7, EPC8, and VXLink
MXI Hardware

Message-based Access

HP VEE will support message-based back plane access to message based devices.
This access is accomplished through the V/382 resource manger and SICL/PIL. This
capability is available from both instrument drivers and Direct I/O transactions.

Register-based Access

I-SCPI will give access to register-based devices that have an I-SCPI driver.
I-SCPI is done with either a Shared Library or DLL.

Register-based access to register devices is accomplished through the use of a Direct
I/O object. The supported transactions are read and write register and read and write
memory.

HP VEE Class 7-15
Instruments
V3.1 ©1996 Hewlett-Packard

� HP VEE: 07INSTRU:0395:
E2110C+24D

HP VEE

VXI Register-Based Access

14a

I-SCPI

SICL

V
X
I

In an embedded environment, you can use State drivers or Direct I/O to access register-based VXI
cards with I-SCPI. In this scenario, you would send the instrument command strings such as
"MEAS:VOLT:DC", which I-SCPI will turn into the appropriate register peeks and pokes. The intent
is to allow you to realize the speed advantage that Register-based VXI provides, while sending the
instrument human-understandable instructions. I-SCPI is a library that will parse the commands for
the VXI card.

HP VEE Class 7-16
Instruments
V3.1 ©1996 Hewlett-Packard

� HP VEE: 07INSTRU:0395:
E2110C+24D

HP VEE

Instrument Advanced I/O

19

Interface Operations
HP-IB, RS-232, or VXIbus commands (CLEAR)

Device Event
Detect specific device event (SPOLL - HP-IB, VXI)
 (Signal Interrupt - VXI)

Interface Event
Asynchronous events (wait for SRQ - HP-IB)
 (Sys Reset - VXI)

With the addition of the VXI bus to the supported I/O matrix, comes the need to add a few new transactions to
what used to be Advanced HP-IB Operations. Those actions are now located under the menu sequence I/O ->
Advanced I/O. The actions have been grouped by their scope of operation (either interface wide or device
specific) and the nature of the service they provide (either performing defined operations or detecting events).

Interface Operations perform a specific, interface wide action. They can be used with any of the interfaces
currently defined in your configuration. The two actions that specifically address VXI are CLEAR and
TRIGGER.

Interface events are objects that capture asynchronous interface events for VXI and HP-IB. These objects can be
configured to detect various interface events. The objects may wait for the event, giving up execution to other
parallel threads, or simply return a Boolean or other indicator of the interface’s state.

If the Interface Event object has been configured to wait for the event, then upon receipt of the event, any parallel
thread hosted by this object will have priority over any other parallel threads and execute to completion. If the
Interface Object has been configured to simply return an indicator of the device’s state, any thread it is a part of
will have normal priority and execute in parallel with other threads.

Device Event transactions let you detect events associated with the device, as opposed to events which affect the
interface as a whole. The Event can be SPOLL, SPOLL on SRQ, or Signal Interrupt.

HP VEE Class 7-17
Instruments
V3.1 ©1996 Hewlett-Packard

� HP VEE: 07INSTRU:0395:
E2110C+24D

HP VEE

20

Using Interface Operations

HP VEE also provides Advanced Interface Operations.

EXECUTE - Sends non-addressed (global) bus commands to all devices.
 - ABORT, CLEAR, TRIGGER, REMOTE, LOCAL, LOCAL LOCKOUT,
 LOCK INTERFACE, UNLOCK INTERFACE

SEND - Sends custom command or data transactions

COMMAND - Sends data with ATN line TRUE (HP-IB command)

MESSAGE - IEEE-488 defined mnemonic commands sent with ATN line TRUE DCL,
 TCT, etc.

DATA - Data sent with ATN line FALSE (HP-IB data)

You can also use the commands:

TALK, LISTEN, UNLISTEN, UNTALK, MTA, MLA, SECONDARY

HP VEE Class 7-18
Instruments
V3.1 ©1996 Hewlett-Packard

Lab 7a

Using MultiDevice Direct I/O with instruments

Objective: To learn to use Direct I/O to communicate with instruments.

Using the I/O=>Advanced I/O=>MultiDevice Direct I/O object, set up the transactions to:

Step 1
Reset the HP34401A and the HP33120A by sending:
*RST to each of them.

Step 2
Query the instruments for their identification by writing:
*IDN? to each of them.

Read back the IDN strings from each instrument and send them to an AlphaNumeric display

Step 3
Send a message to the HP34401A Front Panel Display.
The I/O Transaction format for sending a message is: "Display: Text <quoted string>"

HP VEE Class 7-19
Instruments
V3.1 ©1996 Hewlett-Packard

Lab 7b

Component Driver

Objective: To learn how the Component Driver concept can be used in instrument I/O.

Load the compdrv.vee program and RUN it. Investigate how it is constructed.

HP VEE Class 7-20
Instruments
V3.1 ©1996 Hewlett-Packard

Lab 7c

Using HP Instrument Drivers

Objective: To learn how State Drivers are used in instrument I/O.

Step 1
Using the HP34401A and the HP33120A, measure and plot the frequency response of the low pass
filter over the range of 100 Hz to 10 MHz. Use Instrument Panels for these instruments.

Hints: Remember that the Function Generator is putting out a Sine wave! DC voltage measurements
won’t work to measure the frequency response of the filter. Also, don’t bother with the swept sine
functions of the HP33120A, you will want to step the frequency and measure the response and step the
frequency again ...also try Log stepping the frequency. Check out the Log plotting of the X vs Y Plot
too!

Step 2
Repeat the lab using Component Drivers and note if there are any speed improvements.

Step 3
Now do the setup with Instrument Panels and Component Drivers for repetitive functions.

HP VEE Class 7-21
Instruments
V3.1 ©1996 Hewlett-Packard

����������

Introduction to HP VEE
V3.1 ©1996

Compiled
and
Remote
Functions

� HP VEE: 08COMPIL:0395:
E2110C+24D

HP VEE

Compiled Functions

01

Develop specific functions or routines (data filters, etc.)

Secure functions to protect unwanted access or proprietary
technology

Additional execution speed

Compiled Functions

Compiled Functions allow you to integrate externally compiled functions directly into HP VEE-Test.
You can think of them in much the same way as you thought of CSUB’s in HP BASIC. Compiled
Functions allow you to extend HP VEE’s capabilities by integrating routines you have written in C,
C++, FORTRAN, and Pascal (Pascal calls are only supported on S/700 systems and PCs).

Some reasons you might want to use Compiled Functions would include but are not limited to:

Allowing you to develop your own data filters and directly integrate them

Secure the functions in cases where proprietary routines or unwanted access are
concerns

Additional execution speed

HP VEE Class 8-1
Compiled & Remote Functions
V3.1 ©1996 Hewlett-Packard

� HP VEE: 08COMPIL:0395:
E2110C+24D

HP VEE

Compiled Functions

02

Allows you to link externally compiled functions directly into VEE

Compiled functions are shared libraries or dynamic link libraries
(DLL)

Supported languages include C, FORTRAN, Pascal (S/700 and PC
for Pascal)

Compiled functions DO NOT allow you to access VEE internals

Are imported and called the same as UserFunctions

You can use any facilities available from the operating system to include RPC procedures, math
routines, instrument I/O, etc. You specifically cannot access any of HP VEE’s internals. Compiled
Functions are functions that you write without access to any of the routines HP VEE uses to build
objects or perform calculations.

HP VEE Class 8-2
Compiled & Remote Functions
V3.1 ©1996 Hewlett-Packard

� HP VEE: 08COMPIL:0395:
E2110C+24D

HP VEE

Pitfalls

03

If your routine crashes, so does VEE

Make sure your variables are of the correct type

Free any dynamically allocated memory your routine creates and
uses

If you are working with arrays:
Pass the size of the array to your routine separately from the array
itself
Use the return value to indicate the new size of the array you
passed into your routine

With the enhanced capabilities of HP VEE come potential pitfalls. Because your routine is now a part
of HP VEE itself, if any part of your routine has a mistake, that mistake propagates back to HP VEE.

It is entirely possible to crash HP VEE if your routine crashes. Be careful to free any dynamically
allocated memory that your routine needs.

Always constrain the data in terminals of the Compiled Function object to accept only the data type
and shape that your routine expects. If your routine accepts arrays as part of your application, make
sure that your routine has a pointer valid for the type of data you are examining, and make sure that
your routine checks the size of the array it is working on. The best way to do this is to pass in, from
HP VEE, the size of the array you are using as an input separate from the array itself.

When you use a Compiled Function the best design goal is to keep the routine’s purpose highly focused
at a specific task. Use Compiled Functions only when the capability or performance you need is not
available via an Execute Program or when you need performance not available from HP VEE or
through a User Function.

HP VEE Class 8-3
Compiled & Remote Functions
V3.1 ©1996 Hewlett-Packard

� HP VEE: 08COMPIL:0395:
E2110C+24D

HP VEE

04

Compiled Functions

Remember:
Load Lib choice lets you
manually link in the C function

Remember:
"Select Function" lets you select
the Function and its terminals.
The Function will only show if
you have IMPORTED it

To use a Compiled Function, you follow a similar process to the one used for User Functions.

Device ==> Function ==> Import

This is the same Import object as in a User Function.

When you choose "Compiled Function" from the "Library Type" selection box, you will see an
additional field at the bottom of the box. That field is a selection box that allows you to choose the file
that contains the definition of your compiled function. We’ll discuss the structure of the definition file
later in this section.

Once you have imported the library, HP VEE treats the compiled function exactly the same as a User
Function that has been imported from disk. You can call the Compiled function from a Call object or a
formula box (or expression field).

Once again, use the Load Lib choice from the Import object’s menu to manually load the compiled
function into HP VEE. After Load Lib is selected, you can then choose Select Function from the Call
object’s menu. This will give a choice of all available functions.

Another interesting selection in the Call object’s menu is Configure Pinouts. Selecting this adds the
appropriate number and type of input and output terminals to your object. Just as with User Functions,
pinouts are also configured automatically when you select a Function from the "Select Function"
choice. A call to a compiled function gets the information about the appropriate pinouts from a
function definition file that you create.

HP VEE Class 8-4
Compiled & Remote Functions
V3.1 ©1996 Hewlett-Packard

If you are a C programmer, using a mix of Compiled Functions and User Function can be very
powerful. As you prototype your application and refine it for added performance, you might first
design your function as a user object that you make into a UserFunction. This is the easiest and most
consistent way to create a UserFunction. Then, as you need additional performance, you could
implement your design in a compiled language. Your program can then take advantage of the
additional speed, while needing to change only a single import object.

HP VEE Class 8-5
Compiled & Remote Functions
V3.1 ©1996 Hewlett-Packard

� HP VEE: 08COMPIL:0395:
E2110C+24D

HP VEE

05

+ Short start-up time + Has protected memory space
+ Communicates by passing + Can service asynchronous events
 data on the stack

- Shares memory space with VEE - Much longer start-up time
- Runs synchronously - Communicates through pipes
- Should not block or catch signals sockets, DDE

Bottom Line
Compiled functions allow fast, direct access to your C functions;
however, if you don’t understand using functions in C or you are
integrating large, slow programs and applications, use execute
program instead.

Compiled Functions vs. Execute Program
 (HP-UX Escape)

There are several valid reasons to use (and not use) Compiled Functions vs. a standard escape to the
operating system. Because the Compiled Function actually ties to HP VEE, and can stop a HP VEE
program, it is always safer to integrate code in another process (Execute Program).

What you give up with Execute Program is speed. If you want to integrate specific functions for speed,
Compiled Functions is the best way. You don’t have to suffer the decreased performance as a result of
waiting for another process to be initiated.

HP VEE Class 8-6
Compiled & Remote Functions
V3.1 ©1996 Hewlett-Packard

� HP VEE: 08COMPIL:0395:
E2110C+24D

HP VEE

06

Remote Functions

Load Lib will confirm the Host
is there, start the service
manager process, load VEE
and the file

Select Function will show the
functions available on that file

The Remote Function is imported by the Import Library Object; called by the Call Object and deleted
by the Delete Library Object.

By selecting Remote Function on the Import Object, you will see that the object now has five fields.
The library type and name work the same as with User Functions and Compiled Functions. The
remote host name field is the name of the remote workstation as assigned by /etc/hosts or the
equivalent IP address. The remote file name field specifies the name of a saved HP VEE program that
contains User Functions. The last entry specifies a time-out. The import object will wait no longer
than the specified amount of time for the remote host to respond.

As with Compiled Functions or Imported User Functions, you must Import the function before you can
call it. Again, selecting Load Lib from the object menu will allow you to see what functions are
available under the Call object’s menu choice ’Select Function’.

HP VEE Class 8-7
Compiled & Remote Functions
V3.1 ©1996 Hewlett-Packard

� HP VEE: 08COMPIL:0395:
E2110C+24D

HP VEE

07

Use the same import scheme as User and Compiled Function

Allow you to access the resources of another workstation as though
they were local resources

Allow you to create distributed environments

Allow you to create I/O servers

Remote Function (continued)

HP VEE Class 8-8
Compiled & Remote Functions
V3.1 ©1996 Hewlett-Packard

� HP VEE: 08COMPIL:0395:
E2110C+24D

HP VEE

Remote Functions (continued)

08

Import object starts VEE process on remote host
Does not create a window or an icon
X windows need not be running on remote host

Import object pauses the local program until connection is
established

Multiple Import objects that call the same host and the same file
will only start one VEE process on remote host

When the Import object is executed (either from Load Lib or programmatically), the remote machine
will start up a HP VEE process and load in the file named in the local Import Object. The two HP
VEE processes are connected over the network and are able to communicate.

When the Call Object in the local HP VEE is used to call a Remote Function, the data in the Call
object is sent over the network to the remote function. After the remote function is executed, the
results are sent back to the Call object and output on its data output pins.

If the Delete Library Object is used or the "Delete Lib" menu choice on the Import Object is selected,
the remote HP VEE process is terminated and the connection is broken.

The remote HP VEE process has some attributes which are different than a normal HP VEE process.
The remote HP VEE process will only access User Functions from the specified file. Any other
objects, threads, etc. are ignored. The remote HP VEE process has NO views. This means that there
will be no HP VEE icon or HP VEE work area appearing on the screen where the HP VEE program is
running; X does not even need to be present. What runs is the pure functionality of the user functions;
there is no user interaction. This means that user functions will run faster remotely than they will
locally since there are no user events (keystrokes, mouse clicks) to worry about. No views also means
that there are no displays, screen dumps, bitmaps, etc.

HP VEE Class 8-9
Compiled & Remote Functions
V3.1 ©1996 Hewlett-Packard

����������

Introduction to HP VEE
V3.1 ©1996

Communications

� HP VEE: 09COMMUN:0395:
E2110C+24D

HP VEE

Execute Program/Execute Program PC

01

Allows use of HP-UX commands and other programs
Reusability of existing code
Optimized routines
System information

Data can be sent to and received from Execute Program (HP-UX only)
Similar to To/From Stdio (HP-UX only)
Execute Program is child process of HP VEE (HP-UX only)
Child receives data via its stdin, sends data via stdout and stderr
(HP-UX only)
PC can use Files, DDE, etc.

Execute Program gives you the ability to use commands, shells and other programs with HP VEE.
With this object you can:

Reuse existing code. Call programs written in C, Pascal or other programming
languages

Call libraries of optimized programs, and routines

Obtain system information from the operating system

You can send and receive data from a Execute Program object (HP-UX only). This object uses the
transaction box syntax that we saw in other I/O objects previously. Execute Program is similar to the
To/From Stdio objects. Execute Program calls the program as a child process of HP VEE (HP-UX
only). The program receives data and sends data through its standard I/O channels, stdin, stdout and
stderr.

HP VEE Class 9-1
Communications
V3.1 ©1996 Hewlett-Packard

� HP VEE: 09COMMUN:0395:
E2110C+24D

HP VEE

Wait for Child Exit

02

YES:
New process starts whenever Execute Program activates
VEE executes transactions, sends EOF (by closing pipe) (HP-UX only)
VEE waits for process termination
Program MUST terminate for VEE HANGS!!

NO:
Process is allowed to remain active after Execute Program completes
Repeated Execute Programs do not need to restart process
Process must be designed to cooperate with Execute Program

Continuous loop
No unexpected terminations

Process will be restarted as needed after Pre-Run

When do you Wait for Child Exit? What does that really mean? When do you want to exit?

Wait for child exit : YES
HP VEE starts a new process each time it activates this Execute Program
object. HP VEE executes all of the transactions contained in the Execute
Program object. HP VEE then waits for the new process to terminate. The
process MUST terminate for the Execute Program object to complete
operation.

Wait for child exit: NO
The process remains active after the Execute Program object terminates.
Repeated activations of an Execute Program do not need to restart a process.
The called process must be designed to cooperate with the Execute Program
object. It should be a continuous loop with no unexpected terminations. HP
VEE restarts the called process as needed after a PreRun.

HP VEE Class 9-2
Communications
V3.1 ©1996 Hewlett-Packard

� HP VEE: 09COMMUN:0395:
E2110C+24D

HP VEE

Interprocess Communication

03

Multiple HP-UX processes to work in concert on a single problem
Individual processes are less complex
Individual processes may be optimized for task

Benefit:
Complex systems built from less-complex modules
Less coupling means easier maintenance
Re-use existing programs

You will occasionally want several processes to run at the same time, passing information back and
forth to each other. In this manner, each process is less complex and may be optimized for an
individual task.

By doing so, you build complex systems from less complex modules which are easier to maintain.

HP VEE Class 9-3
Communications
V3.1 ©1996 Hewlett-Packard

� HP VEE: 09COMMUN:0395:
E2110C+24D

HP VEE

IPC Facilities

04

HP VEE implements
Ordinary files
Pipes (HP-UX only)
Sockets
DDE (PC only)

Other methods are very specialized - Access via HP-UX Escape
object if required

Shared memory
Semaphores

You may use other methods through the Execute Program object if you find them necessary. These
other methods include:

Shared memory

Semaphores

HP VEE Class 9-4
Communications
V3.1 ©1996 Hewlett-Packard

� HP VEE: 09COMMUN:0395:
E2110C+24D

HP VEE

Using Pipes for IPC (HP-UX Only)

05

Pipes enforce FIFO message order
Multiple processes may write or read
Data can be read once ONLY

Arbitration for multiple readers on pipe

Pipes must exist locally (not NFS mounted)

HP VEE provides access to pipes as an alternate communication link. Pipes enforce FIFO message
order. Multiple processes can read from or write to pipes. However, you must remember that you can
only read the data once.

VEE’s To/From Named Pipe will create the pipes for you.

Note that the pipes used with HP VEE must exist locally. They cannot be NFS mounted.

HP VEE Class 9-5
Communications
V3.1 ©1996 Hewlett-Packard

� HP VEE: 09COMMUN:0395:
E2110C+24D

HP VEE

Using Named Pipes

06

Capacity of pipes is limited (4K - 8K typical)
Writing to full pipe "blocks" writer
Reading from empty pipe "blocks" reader

Synchronizing is reliable if only one each reader/writer
Kernel suspends processes until both reader and writer exist
Blocking will synchronize later if needed

Here are a few things to remember while using pipes:

Pipes have a limited capacity, typically 4 to 8 Kbytes

Writing to a full pipe "blocks" the writing processes, causing it to wait until another
process reads data from the pipe

Reading from an empty pipe "blocks" the reading processes, causing it to wait until
another process writes data to the pipe. Read I/O Status

Synchronizing processes with pipes is only reliable if there is only one reading process
and one writing process. The kernel suspends processes until there is both a reader
and a writer. The kernel will block one of the processes if needed for synchronization

Pipes must exist locally - they cannot be NFS mounted

HP VEE Class 9-6
Communications
V3.1 ©1996 Hewlett-Packard

� HP VEE: 09COMMUN:0395:
E2110C+24D

HP VEE

To/From Named Pipes

07

Pipes are automatically created by first attempt to open
Read pipe opened read-only

Allows EOF detection
Write pipe opened write-only

Pipes are closed upon termination of entire program
Not after each object deactivates
Never deleted

Pipes opened as "blocking", but you can get the status to find out if
data’s available

Needed for synchronization
Can hang waiting for data or space available

HP VEE uses the To/From Named Pipe object to communicate with pipes. It automatically creates the
pipe on the first attempt to open the pipe. HP VEE opens a read pipe as read- only, allowing it to
detect an EOF. It also opens a write pipe as write-only.

HP VEE closes pipes upon termination of the entire model, rather than at the termination of an object.
It never deletes a pipe.

Also note that HP VEE opens pipes as "blocking," for synchronization.

HP VEE Class 9-7
Communications
V3.1 ©1996 Hewlett-Packard

Lab 9

How To Use (and NOT Use) Complied Functions

Objective: This lab is designed to show you what is required from HP VEE to call C functions. This
lab does not address how to create the function in C or how to compile the function and build the
shared library. Please reference the HP VEE documentation set for more information

Your HP VEE product includes an example C program designed to add the number 1 to a real array
that is sent to the program.

Step 1
Import and Call the function from the following shared library:

/usr/lib/veetest/examples/concepts/manual49.sl

The header file is stored in:

/usr/lib/veetest/examples/concepts/manual49.h

The function expects two input pins and one output pin.

Use a five element array to send to the array data in pin. Use the new totSize object for the array size
input pin.

Display the results.

Step 2
Replace the totSize object with an integer value of 3. Subtract the array you sent to the Call Function
object from the array you receive back from the function. Notice that this only adds 1 to the number of
elements you specified.

Extra Credit:
WARNING...if you do this exercise, be prepared to kill your VEE process and re-start VEE.

Now, change the integer value on array size to 50. Press RUN.

This is telling the C program that although VEE is giving it a five element array, it is OK to use
enough memory for 50 elements. This allows the C program to step on VEE’s memory.

If this happens, you should always re-start your VEE process!!

Hence, totSize is a good approach.

HP VEE Class 9-8
Communications
V3.1 ©1996 Hewlett-Packard

����������

Introduction to HP VEE
V3.1 ©1996

Records
and
DataSets

� HP VEE: 10RECORD:0395:
E2110C+24D

HP VEE

HP VEE Records and Datasets

01

Records
Combining multiple data types in a single container

| text | real | array | waveform

Dataset
An array of records in a file

| text | real | array| waveform
| text | real | array| waveform
| text | real | array| waveform
| text | real | array| waveform
| text | real | array| waveform

HP VEE Class 10-1
Records & DataSets
V3.1 ©1996 Hewlett-Packard

� HP VEE: 10RECORD:0395:
E2110C+24D

HP VEE

02

Records

Reduce the number of data lines required

Package related information

Serve as a building block for personal data management

Records allow you to "package" together, in a single container, many pieces of data which would have
previously been represented as individual data lines. There are a number of potential benefits, but
probably the most important of these is the ability to reduce the amount of data lines in a program.

Records can carry many types of data in the same program using only one line between boxes. By
combining different types of data in one container, you can have all the information associated with a
particular Unit Under Test maintained in one place.

HP VEE Class 10-2
Records & DataSets
V3.1 ©1996 Hewlett-Packard

� HP VEE: 10RECORD:0395:
E2110C+24D

HP VEE

03

Record Constant

Data ==> Build Data ==> Record

Merge Record

Build 3 Ways

Records

There are three ways to build records. You can use a Build Record object and combine data into a
Record. You can enter information into a record constant, or you can merge together two existing
records.

The following data types can all be used in record fields.

Int32, Real, Complex, PComplex, Waveform, Spectrum, Coord, Text, Enum, Record

HP VEE Class 10-3
Records & DataSets
V3.1 ©1996 Hewlett-Packard

� HP VEE: 10RECORD:0395:
E2110C+24D

HP VEE

04

Record Constant

Default is 2 field - A and B

Field name is VERY
important - that is how the
data is modified or accessed

Field type could include
Real, Integer, Text or Enum

Object menu includes Add,
Insert, or Delete Fields

Another way to build a record is to start with a record constant. This object is used like other HP VEE
constants, except for those specific choices that would only make sense for records. To add additional
records to the default, use the object menu choice: ADD RECORD. Notice that you can click on the
field name and modify the field name and the type of data in the field.

You can’t have a 2D array of Records; only a scalar or a 1D array. However, you can have a Record
whose Fields are themselves; Records and nesting is unlimited. Note that Records of Records can only
be built with the Data ==> Build Data ==> Record.

HP VEE Class 10-4
Records & DataSets
V3.1 ©1996 Hewlett-Packard

� HP VEE: 10RECORD:0395:
E2110C+24D

HP VEE

05

Record Constant - Config

Edit Properites... - Configuration
scalar/1D Array
size (number of elements if array)
size fixed
schema fixed

Size Fixed assures the number of elements is not inadvertently
changed and maybe breaks a program

Schema Fixed locks the Field Name and Type from any changes

If you choose ’Config’ from Edit Properties... of a Record Constant, you will see three basic choices.

The ’# of elements’ is the same as any other constant. This will allow you to configure this constant to
be an array of records, instead of a single record.

The ’Size Fixed’ choice allows you to lock the number of elements in the array. This choice is also
available with the Config menu of other constants.

The ’Schema Fixed’ choice is really important if you are using a Record Constant for operator input.
This will prevent someone from editing the field name or type of data required for the field.
Additionally, they would not be able to add or delete fields from the record.

HP VEE Class 10-5
Records & DataSets
V3.1 ©1996 Hewlett-Packard

� HP VEE: 10RECORD:0395:
E2110C+24D

HP VEE

06

Build Record As Scalar

Terminal names on Build Record are the field names for the record

The most common way to build a record is with a Build Record object. This defaults with two input
terminals, A and B that can accept any valid data. This default object will yield a record with two
fields, one named A, the other named B.

Field names are extremely important. That is how you will later access the information from within
any given record. To change the field names of a Build Record object, simply double-click on the
terminal and type the new name. You can add fields to the record by adding additional input
terminals.

The Build Record object also includes an additional choice: SCALAR vs. ARRAY. The purpose here
is to give HP VEE users the flexibility of building a single record with one field equal to an entire
array, vs. building an array of records, with the first field equal to each element of the array.

HP VEE Class 10-6
Records & DataSets
V3.1 ©1996 Hewlett-Packard

� HP VEE: 10RECORD:0395:
E2110C+24D

HP VEE

07

Build Record As Array

In the case of the ARRAY choice, the resulting array of records will have the same number of elements
that the original array contained.

HP VEE Class 10-7
Records & DataSets
V3.1 ©1996 Hewlett-Packard

� HP VEE: 10RECORD:0395:
E2110C+24D

HP VEE

08

Merge Record

Building Records: Data ==> Access Record ==> Merge Record

Merge Record
Allows you to create an aggregate record from two or more
individual records
The names associated with the Data In pins are ignored

One caution - suppose you have two Build Record objects, and
you have kept the default name for both sets of data in pins?
Result - HP VEE would give you an error, because each field in
a record must have a unique name

Building Records: Data ==> Access Record ==> Merge Record

The third way to build records relies on your having at least two other records already defined. The
Merge Record object allows you to create an aggregate record from two or more individual records.
The names associated with the data in pins on the Merge Record object are ignored.

One caution: Suppose you have two Build Record objects, and you have kept the default names for
both sets of data in pins?

Result: HP VEE would give you an error, because each field in a record must have a unique name.

HP VEE Class 10-8
Records & DataSets
V3.1 ©1996 Hewlett-Packard

� HP VEE: 10RECORD:0395:
E2110C+24D

HP VEE

09

Records in Expressions

Instead of UnBuilding Data - use formulas!

Record fields can be used in formulas without the use of the UnBuild Data object. This gives us the
capability to directly access the data contained within the field. This is an extremely powerful way to
access information from a record.

The syntax to access the field is simply TERMINALNAME.FIELDNAME.

Notice that the name of the Record in a formula is represented by the name of the input terminal (or
the name of a global). The field name is the name assigned to that field when the record was created.
You cannot use a variable for the fieldname.

Note that the same data types and shapes you could normally apply parallel math to will also work
with the fields within a record.

HP VEE Class 10-9
Records & DataSets
V3.1 ©1996 Hewlett-Packard

� HP VEE: 10RECORD:0395:
E2110C+24D

HP VEE

Data Sets

10

File based array of records

Allows you to easily store records or search through many stored
records to retrieve specific records that match your criteria

All records must have the same size and shape

A Data Set is simply an array of records, stored to a file.

The primary rule of DataSets (or any array of records) is that all fields of the records must have the same type and
shape. So, if the first record in the array has a field with a 25-element array, all records in the array must have
the same field with a 25-element array.

To create a DataSet, choose the I/O ==> To ==> DataSet object from the menu. This object is very similar to a
TO FILE object, except that it only accepts record inputs. The file that is created is a standard ASCII file with a
Schema header that defines the fields and their attributes.

To read data from a Data Set, choose the I/O ==> From ==> DataSet object. This object has three basic fields, the
name of the file, a toggle button for ONE vs. ALL , and a criteria field.

The toggle field either extracts the first record from the dataset to meet your criteria, or it will give you all records
from the dataset that meet the criteria.

The bottom field allows the user to specify which records to get from the dataset. This is a full expression box, so
it has all the same capabilities as a formula object, and allows field comparisons against values and Boolean
expressions.

It is important to note that the name you specify for record field attributes in the expression field must match the
name you assigned that particular record field when you created the original record.

HP VEE Class 10-10
Records & DataSets
V3.1 ©1996 Hewlett-Packard

Lab 10

Manipulating Records

Objective: Learn how to use Records and Datasets.

Step 1
Build a Record with the following:
The first field should accept an integer. The second field should be named time and include the time
right NOW(). The third field should be a four element array.

Hint: A Real Constant can be configured to have multi-elements (like 4).

Merge with that record another record that has a random number between 0 and 1, and a waveform
(Virtual Source). The resultant record should now have 5 fields.

Step 2
Use a Triadic Operator in a formula box to test the random number in the record and display either
the integer from the record or a text string.

If the value is less than .5, then display the first field of the record (the integer).

If the value is greater than .5, send the text string "More than 0.5".

Next, extract the time and the waveform. (Hint: do not use a Formula object or a Get Field object).
Display This Record on an AlphaNumeric object.

Step 3
Replace the integer with a For Count object and step it through 10 iterations. (Be certain to "ping"
the random number generator and the time function on each iteration).

Send the complete record into a To Dataset object.

In a separate thread, get all records from the dataset where the random value is greater than 0.5. Put
the resultant records into a record constant.

Hint: Record Constant Add Terminal=> Control Input=>Default Value.

Step 4
Create a panel display that allows you to edit the information from the Dataset.

Include a button that sends your changes back to the Dataset.

Run this program several times to see that your changes are being stored into the Dataset.

HP VEE Class 10-11
Records & DataSets
V3.1 ©1996 Hewlett-Packard

����������

Introduction to HP VEE
V3.1 ©1996

Sequencer

� HP VEE: 11SEQUEN:0395:
E2110C+24D

HP VEE

HP VEE Sequencer

01

The purpose of the sequencer is to add a ’Control Flow’ capability to this ’Data Flow’ language.

The sequencer is the fundamental building block to create a ’Test Executive’. As a programmer builds
their modular tests, the sequencer can be used to execute the tests given the configuration of the
transactions.

HP VEE Class 11-1
Sequencer
V3.1 ©1996 Hewlett-Packard

� HP VEE: 11SEQUEN:0395:
E2110C+24D

HP VEE

Allows developer to:
Specify order of execution
Branch based on results

During execution, the sequencer can:
Run pre-defined sequences
Interactively modify execution sequence (loop, retest, continue,
stop, goto, etc.)

Also includes:
Access to other sequencers for hierarchical structure
Logging of sequencer actions

Can create a status panel and update it as the various tests are run

HP VEE Sequencer

02

HP VEE Class 11-2
Sequencer
V3.1 ©1996 Hewlett-Packard

� HP VEE: 11SEQUEN:0395:
E2110C+24D

HP VEE

Sequencer

03

Fundamental building block for a Test Executive

Transaction-based Object

Can call User Functions, Compiled Functions, Remote Functions or
Expressions

Compares values from the functions against your TEST SPEC (the
same as a comparator object)

Selects next transaction based on test results

The Sequencer contains a list of tests to be called. Each test called is a Sequence Transaction, which
specifies how and when to call a specified test routine. Each Sequence Transaction evaluates a HP
VEE expression which may contain a call to a User Function, Remote Function, or Compiled
Function. The sequencer will get a return value from the test and then compare the value returned by
that expression against a test specification. Depending on whether the test passes or fails, the
sequencer will then select the next transaction to be executed.

Test Transactions may optionally log their results to the Log output pin, or to a User Function
specified in the Logging Config dialog box.

ShortCuts: See Help on Sequencer

HP VEE Class 11-3
Sequencer
V3.1 ©1996 Hewlett-Packard

� HP VEE: 11SEQUEN:0395:
E2110C+24D

HP VEE

04

Transaction name must be unique

Expression fields allow functions, globals, record math, terminals,
etc.

Rule
s

Sequencer Fields

Test Name:
Is simply a "handle." It allows you to associate a test name with each sequencer transaction. All test
names in a sequencer must be unique. The Sequencer will default the test name to "test1, and
increments for new tests.

Test/Execute Toggle:
This toggle box allows you to specify whether the named test should only be executed (ignoring the test
limits and return values) or should actually perform the comparisons to the specifications you provide.
In "EXEC" option, the Sequencer transaction will remove the references to test specifications and
pass/fail operations. Also, selecting EXEC will disable all logging for these tests.

Function:
The function field specifies which test to run. This line can call User Functions, Compiled Functions,
Remote Functions, or an expression. It is the result of this function call that will be tested against the
specifications. The return value from a UserFunction comes from the top output pin on the function.

Description Line:
A text entry field where you can add descriptive comments to your Sequencer. These comments will
show on the sequencer object and can be logged with the data.

HP VEE Class 11-4
Sequencer
V3.1 ©1996 Hewlett-Packard

� HP VEE: 11SEQUEN:0395:
E2110C+24D

HP VEE

Sequencer - Enabled Field

05

Determines whether this step should run or be skipped

Allows full expression evaluation

Logs all 0s if test is not run

Can test results from a previous test if logging is configured for that
field

An ENABLED button appears on the top line of the sequence dialog box. This allows you to specify
running this test step only if certain conditions exist. There are four possible selections: ENABLED,
DISABLED, ENABLED IF, and DISABLED IF. The choices to ENABLE and DISABLE allow you
to unconditionally mark this test to always execute or never execute.

The choices ENABLED IF and DISABLED IF both evaluate an expression to determine whether this
test gets executed. This field can accept any globals, calls to functions, etc., the same as in a formula
box.

HP VEE Class 11-5
Sequencer
V3.1 ©1996 Hewlett-Packard

� HP VEE: 11SEQUEN:0395:
E2110C+24D

HP VEE

Sequencer - Conditions

06

Then continue execute next logical step

Then return stop at this step - fire output pins and send the
 specified return value

Then goto jump to the specified transaction

Then repeat run the test this # of times

Then error generate an error - don’t fire other pins

Then eval evaluate a returned string to decide next step

Conditions:
Then CONTINUE - Go to the next transaction in the Sequencer list.

Then RETURN - Quit executing transactions in this Sequencer and place the value of the
specified expression on the "Return" output pin of the Sequencer. This is a clean way to exit
the sequencer at this point. A more direct and harsh method of ending the sequence is to
generate an Error (see below).

Then GOTO - Go to the transaction in this Sequencer with the specified transaction name.

Then REPEAT - Execute this transaction again, repeating up to the specified number of
times. If the Pass/Fail condition still exists after the maximum number of repeats, continue
to the next transaction.

Then ERROR - Stop execution of the Sequencer by generating an error condition with the
given error number. An error can be trapped with an Error output pin on this Sequencer.
No other output pins will send data.

Then EVALUATE - Call out to another User Function and expect a return string that looks
like the the other dialog choices. Valid string results from the expression are: "Continue",
"Return <expr>", "Goto <name>", "Repeat <expr>", "Error <expr>", where <expr> is any
valid HP VEE expression, and <name> is the name of a transaction in this sequence. This
feature allows test developers to prompt operators for which action the sequencer should
take next (Quit, Test Again, Start Over, etc).

HP VEE Class 11-6
Sequencer
V3.1 ©1996 Hewlett-Packard

� HP VEE: 11SEQUEN:0395:
E2110C+24D

HP VEE

"SHOW ON EXEC" will show which transaction is currently
executing

Object Menu ==> step trans (ctl X) will execute 1 step at a time

Edit ==> User Function and Edit ==> View Globals may be used
to observe what is occurring in the functions that are being
referenced

Debugging Sequencer Tests

07

To debug the sequence of tests as you are developing your program, there are several features of HP
VEE that will come in handy. The Edit->Animate choice will let you see which transaction is
executing. The Step Key at the top of your HP VEE environment will not allow you to step from one
test to the next, because you are in one object. To allow you to execute the sequencer one test at a time,
HP VEE has a choice on the sequencer’s object menu called STEP TRANS. There is also a short-cut
key to STEP TRANS-Cntrl X.

HP VEE allows you to keep several Edit UserFunction windows open at a time allowing you to see
several tests as they are being called from the sequencer.

HP VEE Class 11-7
Sequencer
V3.1 ©1996 Hewlett-Packard

� HP VEE: 11SEQUEN:0395:
E2110C+24D

HP VEE

EXEC TRANS

08

Data Pin to specify which test to execute

Accepts text string or array or strings containing the test name

Ignores Pass/Fail/Enabled conditions

You may not always want the sequencer object to run all tests listed. For additional control over
specific tests to run, you can add an ’Exec Trans’ data pin to the sequencer object. This pin causes the
Sequencer to execute only the transaction(s) with the specified name(s) in the order given.

It requires a Text scalar or ID array on the control input. The highlight bar will be moved to the
transaction being currently executed. The IF PASS or IF FAIL expressions will be evaluated as usual,
but the result of the THEN field will have no effect on the next transaction to be executed.

HP VEE Class 11-8
Sequencer
V3.1 ©1996 Hewlett-Packard

� HP VEE: 11SEQUEN:0395:
E2110C+24D

HP VEE

09

Sequencer - Logging

Each transaction logs a record

Transactions don’t log if:
it is an EXEC transaction
logging is disabled for that transaction

Each transaction is temporarily logged to "thistest" for use in
expressions

After the sequencer completes - output terminal.log will send a
RECORD of RECORDS!

The output data will only be from the last time the transaction
executed

Every sequencer test transaction logs a record of information about that particular test step. The
default record consists of the name of the test, the return value, and whether the test passed or failed.
While each test is running, that record is stored in a temporary record called "thistest". After the test
step is complete, the record can be accessed by calling the testname.field (test1.result). This way, a
later test can use data from previous tests for enabled conditions, test limits, etc. (ENABLED IF:
Test1.Pass = 1).

After the sequencer successfully completes, all of the records from the test steps will be logged from
the LOG data output terminal of the sequencer.

If your test step is not logging the information, it could be because:

1. Logging can be disabled for the test. This will not log any record of the test.

2. Your test may be an EXEC test that does not compare results. EXEC tests
do not log information.

3. If you have disabled the test, the sequencer will log all 0’s.

4. If your test choice is to ERROR, the LOG output terminal will not send any
information.

HP VEE Class 11-9
Sequencer
V3.1 ©1996 Hewlett-Packard

� HP VEE: 11SEQUEN:0395:
E2110C+24D

HP VEE

Sequencer - Logging Configuration

10

The records from each test will only include test name, test result, and pass status by default. To add
additional fields to log, there is a choice on the Sequencer’s Edit Properties... labeled LOGGING
CONFIG.

The selection box allows you to decide which pieces of information you wish to log for all tests in the
sequencer. At the bottom of this dialog box is a choice to LOG TO OUTPUT PIN ONLY. This is a
toggle box that allows you to log specific information to another function when each test is run. This
is useful because the standard log output pin will only show the data from the last time each test was
called. If your sequencer calls the same test step several times, you will not get a data on previous calls
unless you use this config option.

HP VEE Class 11-10
Sequencer
V3.1 ©1996 Hewlett-Packard

� HP VEE: 11SEQUEN:0395:
E2110C+24D

HP VEE

Sequencer Logging After One
Execution

12

Sequencer

test1

test2

test3

Return

Log
Sequencer Log Record

Result

Pass

Name
ELEMENT

RECORD

RECORD OF
RECORD

test1 test2 test3 test4

Rec.test1.pass = 1
Rec.test3 = Record

name = "test3"
pass = 0
result = 3.142

test4

This slide shows an example of one run of the sequencer. The Log output terminal would send a
single record (REC) that contained four other records: test1, test2, test3, and test4. Each of the test
records would contain three fields: name, pass, and result.

The reference to Rec.test1.pass will answer with a 1 if the test1 transaction test passed.

The reference to Rec.test3 would actually reference a record with the following fields: the name, ’test3’,
whether it passed, ’1 or 0’ and the result that test3 returned to the sequencer when it was called.

HP VEE Class 11-11
Sequencer
V3.1 ©1996 Hewlett-Packard

� HP VEE: 11SEQUEN:0395:
E2110C+24D

HP VEE

Sequencer Logging (continued)

13

Sequencer Data Set

Result
Pass

Name

test1 test2 test3 test4

board1

board2

board3

Result
Pass

Name

test1 test2 test3 test4

board1

board2

board3

Sequencer Data Set

Rec[1] Rec[0].test1

Collector

Build Array

of Records
Log

Run 3 times

Test 1
Test 2
Test 3
Test 4

Rec[0]
Rec[1]
Rec[2]

Here is another illustration of sequence logging based on the previous example. This time, however,
after the test has been run three times on different units, the results are gathered into an array of
records.

To Rec[1] is the reference to the second element of the array, and would return a single record with
subrecords for test 1 through test 4 and the fields for each record.
The reference to Rec[0].test1 would return a record with three fields, the result of the first run, the first
test, all fields.

HP VEE Class 11-12
Sequencer
V3.1 ©1996 Hewlett-Packard

Lab 11a

Using the Test Sequencer

Objective: Become familiar with the capabilities of the Test Sequencer

Step 1
Create a simple user function called UpperLimit that is a pop-up panel with a Real Slider and an OK
confirm object. Send the output of the slider to a Global called UL and also to an output terminal.

Test1 in the Sequencer should be an Exec transaction that calls UpperLimit.

Create another UserFunction called AddRand that adds a Random Number to Zero "Passed" in by
calling AddRand(0) from within the Sequencer object.

Test the value returned by AddRand using a limit compare < Global UL as the limit value.

If it passes, THEN RETURN "Pass" +test2.result.
If it fails, THEN RETURN "Failed"+test2.result.

Put an AlphaNumeric display on the Return pin of the Sequencer.

Have the Sequencer object’s Sequence output pin ping a Get Global object (UL) and send that value
to another AlphaNumeric display.

Run the program several times.

Step 2
Disable the first test step. Assuming you don’t need the global anywhere else, you can call the
UpperLimit UserFunction directly. Change Test2 so that it compares the Output value against the
result of the UpperLimit function directly no longer using the Global in the limit check.

Extra Credit:
Load the example
Help=>Open Example=>Examples\new\mfgtest.vee

Look at the two Sequencer objects in this example. The first, Login Control prompts for a user’s
name and compares the password. The second Sequencer uses the Exec Trans control pin and accepts
a real array of test strings to call specific tests.

HP VEE Class 11-13
Sequencer
V3.1 ©1996 Hewlett-Packard

Lab 11b

Logging Sequencer Data

Objective: To learn how the sequencer works and logs data.

Step 1
Edit a Test1 Sequencer transaction that simply calls the VEE function Random(). Compare the
results against a Limit < 0.5.

Copy the Test1 transaction and Paste it back several times until you have a total of 4 tests.

Step 2
Build a program to run the Sequencer five times with each Sequencer Log record going into a
Collector array and a Dataset.

Using the Collected array data , find the Min, the Max, the Mean, and the Standard Dev of the
results of the second test.

Hint: Use a formula box with <record>.<record>.<field>

Step 3

In a separate thread, get all of the records from the Dataset where the first test passed OR the second
test failed. Print the timestamp field from the records on an AlphaNumeric display.

Hint: You may need to access the Logging Config menu of the Sequencer’s object menu!

HP VEE Class 11-14
Sequencer
V3.1 ©1996 Hewlett-Packard

����������

Introduction to HP VEE
V3.1 ©1996

Appendix

� HP VEE: 12APPEND:0395:
E2110C+24D

HP VEE

01

SCPI*

HP-IB and RS-232: "HOW" to talk to devices

VXIbus: "HOW" to talk to VXI devices
addressing devices (M/B or R/B)

Message-Based (Word Serial Protocol)
Register-Based with I-SCPI only

Interface standards do not define "WHAT" to say

SCPI: Standardizes "WHAT" to say

* Standard Commands for Programmable Instruments

SCPI Consortium Founding Members
HP, TEK, FLUKE, Phillips, WaveTek, Racal Dana, Keithly, K&B, NI

Founded in 1990

Originated with TMSL (Test & Measurement Systems Language) from HP

Based upon IEEE 488.2 Codes, Formats, Protocols and Common Commands

HP VEE Class 12-1
Appendix
V3.1 ©1996 Hewlett-Packard

� HP VEE: 12APPEND:0395:
E2110C+24D

HP VEE

Benefits of SCPI

02

Protects user written software

Reduces learning/re-learning curve
Easier to learn (R&D, Mfg and Support)
Easier to bridge instrument knowledge

Parsing can be faster
Efficient parsing algorithms

SCPI compatible software should be protected since as instruments get replaced by new models for by
different instrument types. See Horizontal and Vertical Comp.

Once the command structure is learned once, there is no need to learn new commands/mnemoics since
they will stay the same. You would need to learn new command as Functions are added.

The parser is optimized for SCPI.

HP VEE Class 12-2
Appendix
V3.1 ©1996 Hewlett-Packard

� HP VEE: 12APPEND:0395:
E2110C+24D

HP VEE

SCPI - Provides Compatibility
Horizontal and Vertical Compatibility

03

DMMs Counters S copes

DMMs Counters S copes

TODAY’S PRODUCTS

Common Instrument
Commands

T OMOR R OW’S PR ODUCT S

Horizontal compatibility implies that instruments will have a common mnemonic for common
instruments. An example would be "MEAS:VOLT:DC" for a DMM and Scope.

Vertical compatibility implies that instruments will have common commands ACROSS a product line
or as new generations of instruments come out (i.e. 34401, 3440x).

HP VEE Class 12-3
Appendix
V3.1 ©1996 Hewlett-Packard

� HP VEE: 12APPEND:0395:
E2110C+24D

HP VEE

04

Different types of instruments: same attributes

Different generations: Same instrument type

Horizontal Compatibility:
OUTPUT@ Dmm;"TRIG:SOURce EXT"
OUTPUT@ Arb;"TRIG:SOURce EXT
OUTPUT@ FGen;"TRIG:SOURce EXT"

Vertical Compatibility:
OUTPUT @34701A;"*RST"
OUTPUT @34703A;"*RST"
OUTPUT @34705A;"*RST"

Examples of Compatibility

Same IEEE 488.2
command resets all

instruments

Programs the same
function on all

instruments

HP VEE Class 12-4
Appendix
V3.1 ©1996 Hewlett-Packard

HP VEE Class 12-5
Appendix
V3.1 ©1996 Hewlett-Packard

	c00intro
	c01fundam
	c02dataob
	c03object
	c04functi
	c05operat
	c06tansa
	c07instru
	c08compil
	c09commun
	c10record
	c11sequen
	c12append

