
Building

an Operator Interface

with HP VEE

Notice

The information contained in this document is subject to change without

notice.

Hewlett-Packard Company (HP) shall not be liable for any errors contained

in this document. HP makes no warranties of any kind with regard to this

document, whether express or implied. HP speciÕcally disclaims the implied

warranties of merchantability and Õtness for a particular purpose. HP shall

not be liable for any direct, indirect, special, incidental, or consequential

damages, whether based on contract, tort, or any other legal theory, in

connection with the furnishing of this document or the use of the information

in this document.

Warranty Information

A copy of the speciÕc warranty terms applicable to your Hewlett-Packard

product can be obtained from your local Sales and Service Oœce.

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to

restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical

Data and Computer Software clause in DFARS 252.227-7013.

Hewlett-Packard Company

3000 Hanover Street

Palo Alto CA 94304 U.S.A

Rights for non-DCD U.S. Government Departments and Agencies are as set

forth in FAR 52.227-19(c)(1,2).

Printing History

Edition 1 - January 1995

Copyright cŒ 1995, Hewlett-Packard Company. All Rights Reserved.

This document contains information which is protected by copyright.

Reproduction, adaptation, or translation without prior written permission is

prohibited, except as allowed under the copyright laws.

Microsoft RŒ and MS-DOS RŒ are U.S. registered trademarks of Microsoft Corp.

WindowsTM or MS WindowsTM is a U.S. trademark of Microsoft Corp.

UNIX RŒ is a registered trademark in the United States and other countries,

licensed exclusively through X/Open Company Limited.

Arial RŒ and Times New Roman RŒ are U.S. registered trademarks of the

Monotype Corporation.

TimesTM and Helvetica
TM are trademarks of Linotype AG and/or its

subsidiaries in the U.S. and other countries.

Times New Roman RŒ

TrueTypeTM is a U.S. trademark of Apple Computer, Inc.

Lucida RŒ is a U.S. registered trademark of Bigelow & Holmes, Inc.

Conventions Used in this Manual

This manual uses the following typographical conventions:

Example Represents

HP VEE Reference Italicized words are used for book titles and for emphasis.

File Computer font represents text you will see on the screen,

including menu names, features, buttons, or text you enter.

dir Õlename In this context, the word in computer font represents text you

type exactly as shown, and the italicized word represents an

argument that you must replace with an actual value.

File ¡¡) Open The \¡¡)" is used in a shorthand notation to show the

location of HP VEE features in the menu. For example,

\File ¡¡) Open" means to select the File menu and

then select Open.

Zoom Out | In 2x | In 5x Choices in computer font, separated with a bar (|), indicate

that you should choose one of the options.

ÄReturnÅ The keycap font graphically represents a key on the keyboard.

Press ÄCtrlÅ+ÄOÅ Represents a combination of keys on the keyboard that you

should press at the same time.

Dialog Box Bold font indicates the Õrst instance of a word deÕned in the

glossary.

v

Contents

1. Building an Operator Interface with Panels

What are Panels? 1-2

Building a Main Panel 1-4

To Add Objects to a Panel 1-4

To Delete Objects from a Panel 1-5

Changing the Appearance of a Panel 1-6

To Change an Object's Border Appearance 1-7

To Label Areas 1-9

To Align Objects 1-9

To Change the Grid Size 1-10

To Match Object Sizes 1-11

To Add a Picture to the Panel 1-11

2. Building UserObject and UserFunction Panels

What is a UserObject Panel? 2-3

To Build a UserObject Panel 2-4

To Build a Pop-Up Panel 2-5

To Keep a Pop-Up Panel Displayed 2-6

To Change the Size of a Pop-Up Panel 2-7

To Change the Location of a Pop-Up Panel 2-7

To Add a UserObject Panel to the Main Panel 2-8

To Add Objects to a Nested UserObject Panel 2-9

To Delete Objects from a Nested UserObject Panel . . 2-10

To Delete a UserObject Panel from the Main Panel . . 2-11

What is a UserFunction Panel? 2-12

To Build a UserFunction Panel 2-12

To Build a UserFunction Pop-Up Panel 2-13

To Change the Size of a UserFunction Pop-Up Panel . . 2-14

To Change the Location of a UserFunction Pop-Up Panel 2-14

Contents-1

Creating a Distribution Package

3. Using the Keyboard to Navigate a Panel View

Making Your Panel Keyboard Navigable 3-3

To Give Focus to an Object or Panel 3-4

To Assign an OK Button to the ÄEnterÅ or ÄEscÅ Key 3-5

To Assign a Button to a Function Key 3-6

Panel View Navigation Techniques 3-8

Panel View Selection Techniques 3-11

4. Guidelines for a Good Interface

Most Important 4-3

Using Colors . 4-4

How to Pick Colors 4-6

Using Fonts . 4-8

Layout Tips . 4-11

To Call Attention to an Object 4-11

5. Advanced Topics

About Built-In Dialog Box Objects 5-3

To Output a Value on Timeout 5-6

Building a Custom Dialog Box 5-8

To Build a Basic Dialog Box 5-8

To Set a Timeout 5-10

To Check for Valid Data 5-13

To Build a Self-Modifying Panel 5-14

Building a Status Panel 5-16

To Build a Status Panel 5-17

To Show a Status Panel 5-17

To Hide a Status Panel 5-18

To Update a Status Panel 5-18

A Status Panel Example 5-19

To Animate Pictures 5-22

Using Multiple Images 5-24

6. Preparing a Program for Distribution to Others

Building a Panel to Run on Multiple Platforms 6-3

To Use Operating System-Dependent Features 6-3

General Tips 6-4

To Choose Fonts for Multiple Platforms 6-5

Font Type 6-5

Font Size . 6-5

Font Style 6-6

Contents-2

Creating a Distribution Package

When Transferring a Program Between UNIX and

Windows 6-6

When Transferring a Program Between Windows Systems 6-7

When Transferring a Program Between UNIX Systems 6-7

To Choose Colors for Multiple Platforms 6-8

When Transferring a Program to a VGA Windows

System 6-8

When Transferring a Program Between UNIX Systems 6-8

Building a Panel With Non-English Text 6-10

Preventing Program Changes 6-11

To Prevent Program Changes 6-13

To Secure a Program 6-14

To Re-Secure a Program 6-15

To Secure a UserObject 6-15

Creating a Distribution Package 6-17

To Include All Needed Files 6-17

To Create an Application Icon in Windows 6-18

To Create an Application Icon in VUE 6-19

A. RGB Values for HP VEE Colors

Index

Contents-3

Figures

1-1. A Detail View . 1-2

1-2. The Corresponding Panel View 1-3

1-3. Border Styles . 1-8

1-4. A Border Width Example 1-8

1-5. A Picture Object With DiÃerent Display Modes 1-13

2-1. Three Ways to Display a UserObject Panel 2-4

3-1. A Slider on a Panel 3-4

3-2. A Simple Tabbing Order Example 3-9

3-3. A Complex Tabbing Order Example 3-9

4-1. A Color Wheel . 4-5

4-2. Displaying DiÃerent Color Text 4-7

4-3. Font Sizes . 4-9

4-4. Serif and Sans Serif Fonts 4-9

5-1. A Message Box . 5-3

5-2. Message Box Properties 5-5

5-3. Outputting a Default Value on Timeout 5-7

5-4. A Basic Custom Dialog Box 5-9

5-5. A Dialog Box With a Timeout 5-11

5-6. The Default Value is Output When the Timeout Period Expires 5-12

5-7. A Dialog Box With Constraint Checking 5-13

5-8. A Self-Modifying Panel 5-14

5-9. A Status Panel . 5-20

5-10. A Status Panel Example Program 5-21

5-11. A Simple Animation 5-23

5-12. The Ocean: A Simple Animation 5-24

5-13. A Picture Cache . 5-25

6-1. Specifying System-SpeciÕc Threads 6-3

Contents-4

Tables

5-1. Dialog Box Object Features 5-4

5-2. DiÃerences Between showPanel() and Show Panel On

Execute . 5-16

Contents-5

Contents

1

Building an Operator

Interface with Panels

Building an Operator Interface with Panels

What are

Panels?

Panel Views (also called panels) are the user interface to your program. You

generally create them after you've completed the functional part of your

program. The Detail View (your development area) and the Panel View are

two views of the same program; just like heads and tails are the two sides of

the same coin.

You generally copy only display and data input objects to the panel. Only the

objects themselves (and not the lines or pins) are displayed.

A Panel View contains a subset of the File menu and no other menus. The

panel environment is a safe place from which your user can run the program

without concern for modifying the program itself. Figure 1-1 shows a Detail

View and Figure 1-2 shows the corresponding Panel View.

Figure 1-1. A Detail View

1-2

Building an Operator Interface with Panels

Figure 1-2. The Corresponding Panel View

HP VEE has three types of panels; they all are similar in the way you create,

modify, and use them:

– Main Panel - The panel associated with the main context. If an object is in

the work area and you add it to the panel, it will be in the Main Panel. The

Main Panel is the panel that is always visible in the Panel View. Building a

Main Panel is described in \Building a Main Panel" in this chapter.

– UserObject Panel - Each UserObject has its own panel. This panel can be

used on its own or added to the Main Panel. This panel can be visible all

the time or popped up when the UserObject is executing (like a dialog box).

Building a UserObject Panel is described in \To Build a UserObject Panel" in

Chapter 2.

– UserFunction Panel - Each UserFunction has its own panel (just like a

UserObject). This panel pops up when the UserFunction is executing or

when speciÕed via a showPanel() object. Building a UserFunction Panel is

described in \To Build a UserFunction Panel" in Chapter 2.

1-3

Building a Main Panel

The Main Panel is the foundation of your user interface. No matter what type

of panel you build, you use the same skills as when building the Main Panel.

To Add Objects to a Panel

1. Put the object in its open view. Most of the time you want the open view

on your panel; once the object is on the panel, you can't minimize or open

it.

2. Select the object(s).

Use either Edit ¡¡) Select Objects or press ÄCtrlÅ while clicking with

the left mouse button on the objects.

3. Select Edit ¡¡) Add To Panel.

You will now see the Panel View of your program. Switch between the Panel

View and the Detail View by pressing the ÄPanelÅ and ÄDetailÅ buttons on the

left side of the tool bar. Any time you want to add other objects to the panel,

start from the Detail View and follow the steps above.

N O T E

The Panel View is a Õxed-size window; there are no scroll bars. Objects selected from the Detail View

are put in relatively the same position when added to the panel, but they are moved to Õt on the

Õxed-sized Panel View.

1-4

Building an Operator Interface with Panels

Building a Main Panel

To Delete Objects from a Panel

1. Make sure you're in the Panel View.

2. Delete the objects.

Either select Delete from the object menu of the object or place the

cursor on the object and press ÄCtrlÅ+ÄDÅ.

The object remains in the Detail View, but is deleted from the Panel View.

If you delete (Cut) an object from the Detail View, it is automatically deleted

from the Panel View.

N O T E

If you Cut and then Paste objects on the Detail View, any associated Panel View objects are

deleted and you'll have to add them to the panel again. Use Copy and Paste instead.

N O T E

When running a program, you cannot Size, Move, Edit Properties, or Delete objects

from the panel. You must pause or stop the program Õrst; press ÄStopÅ once to pause or twice to

stop the program.

1-5

Changing the Appearance of a Panel

Generally, an object's appearance on the Panel View is unlinked from its

appearance on the Detail View. For example, if you change the color of an

object on the Panel View, it does not change the color of the associated object

on the Detail View (and vice-versa). However, the data displayed and other

execution-related information are linked; if changed in one view, it changes in

the other.

Note: Appearance Independence Exception

When an object on the Panel View or the Detail View inherits the default properties (you haven't

changed colors or fonts from the default settings), the properties will change when the system

defaults change.

Properties That Are Not Linked Between Panel and Detail Views

– Show Title Bar (if object is shown in the open view)

– Layout group properties:

Horizontal

Vertical

Rectangular

Circular

Show Digital Display

Show 3-D Border

Scaled

Show Caption

Graph Only

Scales

Scales & Sliders

Traces & Scales

– Color tab: all properties - see the exception above

– Font tab: all properties - see the exception above

1-6

Building an Operator Interface with Panels

Changing the Appearance of a Panel

– Label Justification group properties

– Editing Enabled property (on Note Pad objects)

– Format group properties:

Radio Buttons | Cyclic Button | List | Drop-Down List

| Pop-Up List

Button | Check Box | Vertical Paddle | Horizontal Paddle

| Vertical Rocker | Horizontal Rocker | Vertical Slide

| Horizontal Slide

– Limits group properties:

High Color

Mid Color

Low Color

– Sub-Range Configuration group properties:

Colors

– Icon tab properties:

Picture Õle and display mode

Show Title

– Appearance group properties (available on the Panel View only):

Size & Position (X, Y, Width, Height)

Border

All other properties are linked between Panel and Detail Views (a change in

one view changes both views).

To Change an Object's Border Appearance

In the Panel View, you can change the \depth" appearance of an object by

specifying a border option.

1. From the object menu, select Edit Properties.

2. Select the Appearance tab.

1-7

Building an Operator Interface with Panels

Changing the Appearance of a Panel

3. Choose from the Border group: None, Flat, Sunken, or Raised. Click

OK.

Figure 1-3 shows the appearance of the diÃerent border styles.

Figure 1-3. Border Styles

Note: When The Border Is Set to None

Note that when the border is set to None, you can't use the corner resize shortcut; you must select

Size from the object menu. Also note that an object's color extends to where the border would be.

You can see where the border is when moving or sizing an object.

Regardless of the border setting, the object's size does not change. For

example, if you've sized an OK object without a border, and then choose to

have a border, part of the object text may be obscured by the border. In

Figure 1-4, both objects are the same size. The one on the left has Border

set to None; the one on the right has Border set to Flat.

Figure 1-4. A Border Width Example

1-8

Building an Operator Interface with Panels

Changing the Appearance of a Panel

To Label Areas

To add text to label an area on the panel, use the Label object.

1. From the Detail View, select Display ¡¡) Label.

2. From the Label object's object menu, select Edit Properties.

3. Change the title to the desired label text.

4. Click OK.

5. Select the Label object and select Edit ¡¡) Add To Panel. Position the

label where you want it.

The Label object color by default is tied to the default Panel View color (set

from File ¡¡) Edit Default Preferences) so that the label background

blends invisibly into the Panel View.

You change the label text from either the Detail or Panel View by changing

the title text via the Properties dialog box. You can also change the

justiÕcation of text by specifying Left, Right, or Center justiÕcation via the

Properties dialog box.

To Align Objects

When you add an object to the Panel View, its upper-left corner is

automatically aligned to a user-deÕnable grid, but the size of the object is not

changed. When you move an object on the Panel View, its upper-left corner

aligns to the nearest grid detent. To resize the object to the grid, move the

cursor to the lower-right corner of the object, get the corner resize cursor,

and click.

Follow these steps to align objects to a speciÕc size or location (not on the

grid):

1. From the object menu of an object on the Panel View, select Edit

Properties.

2. Select the Appearance tab.

1-9

Building an Operator Interface with Panels

Changing the Appearance of a Panel

3. Set the values in the Size & Position group to change the location or

size of the object.

4. Click OK.

Repeat these steps until the object is aligned properly.

Another way to align objects is to set the grid size to 1 and then move or size

the object as desired.

To Change the Grid Size

1. Select File ¡¡) Edit Properties.

2. Select the Panel tab.

3. Set the Grid Size. The smallest grid size is 1.

4. Click OK.

When you change grid size, objects do not automatically align to the grid.

When you click on an object, its upper-left corner aligns to the nearest grid

detent. When you click on the corner resize area, the object resizes to the

nearest grid detent. Any Move or Size aligns the object to the current grid

size.

N O T E

Each panel has its own grid. To change the grid size on a UserObject or UserFunction grid, select

Edit Properties from its object menu and then follow the rest of the steps listed above.

1-10

Building an Operator Interface with Panels

Changing the Appearance of a Panel

To Match Object Sizes

You may want to match the size of one object to the size of another object.

If the object to match is already sized to the grid, use corner resize until the

objects' sizes match.

Follow these steps to match objects' sizes when the size is not a multiple of

the grid size:

1. From the object menu of one object, select Edit Properties.

2. Select the Appearance tab.

3. Under the Size & Position group, note the values for Width and

Height.

4. Click OK.

5. From the object menu of the other object, select Edit Properties.

6. Select the Appearance tab.

7. Under the Size & Position group, set the values for Width and Height

to the values noted in the previous object.

To Add a Picture to the Panel

There are two ways to add a graphical image, such as a bitmap, to the Panel

View.

To add an image directly to the background of the Panel View:

1. Select File ¡¡) Edit Properties.

2. Select the Panel tab.

3. Choose a Background Picture Õle.

4. Select a display mode: Actual, Centered, Scaled, or Tiled. See

Figure 1-5.

1-11

Building an Operator Interface with Panels

Changing the Appearance of a Panel

5. Click OK.

To place one or more movable and sizable images on the Panel

View:

1. From the Detail View, select Display ¡¡) Picture.

2. Choose a Picture Õle.

3. From the object menu of the Picture, select Edit Properties.

4. Select a display mode: Actual, Centered, Scaled, or Tiled. See

Figure 1-5.

5. Click OK.

6. Select the Picture object.

7. Select Edit ¡¡) Add To Panel.

The currently supported graphics formats are:

Bitmap (*.BMP) - WindowsTM and UNIX RŒ

GIF87a (*.GIF) - Windows and UNIX

X11 Bitmap (*.icn or *.xpm) - Windows and UNIX

X11 Window Dump (*.xwd) - UNIX only

1-12

Building an Operator Interface with Panels

Changing the Appearance of a Panel

Picture Display Modes

Figure 1-5 shows the diÃerent display modes.

– Actual - The picture is displayed in its actual size. The object or panel is resized to the size of

the picture.

– Centered - The picture is displayed in its actual size. The picture is centered on the object or

panel (which remains the same size).

– Scaled - The picture scales to the current size of the object or panel. After this choice is

selected, the scaling may take a few moments.

– Tiled - The picture remains at its actual size, but is repeated horizontally and vertically until it

Õlls the entire object or panel.

Figure 1-5. A Picture Object With DiÃerent Display Modes

N O T E

To increase execution speed, HP VEE caches graphic images. If you've loaded an image into HP VEE

and then changed the Õle that contains your image, you need to select a diÃerent image Õle, and then

reselect the original image Õle. Once you've done that, the new image will be used.

1-13

Building an Operator Interface with Panels

Changing the Appearance of a Panel

:

1-14

2

Building UserObject

and UserFunction Panels

Building UserObject

and UserFunction Panels

This chapter describes UserObject and UserFunction Panels and how to build

them. It also describes creating, sizing, and positioning Pop-Up Panels.

2-2

What is a UserObject Panel?

A UserObject Panel is very similar to the Main Panel. Each has its own

context, so each has its own Trig Mode and Edit menu, as well as its own

Panel View. A UserObject Panel is more Œexible than the Main Panel in the

ways it can be displayed.

There are three ways to display UserObject Panels:

– Independent Panel: A Panel on a UserObject.

This method is useful when you want to \bundle" your UserObject for

someone else to use or to simplify parts of your program for someone else

to use without building a Main Panel. This type of panel is not visible from

the Main Panel; it is only visible from the Detail View.

– Pop-Up Panel: A Panel on a UserObject with Show Panel on Execute

speciÕed.

This method is usually used for dialog boxes that query for information,

and then go away. This type of panel pops up on both the Detail View and

Panel View at run time.

– A Panel on the Main Panel: A Panel on a UserObject that is then added to

the Main Panel.

This method is used to group functionality. You can also nest panels on

other panels.

2-3

Building UserObject

and UserFunction Panels

What is a UserObject Panel?

Figure 2-1 shows the diÃerent types of UserObject Panels.

Figure 2-1. Three Ways to Display a UserObject Panel

To Build a UserObject Panel

1. Select the object(s) in the UserObject.

Use either Edit ¡¡) Select Objects from the UserObject's Edit menu,

or press ÄCtrlÅ while clicking the left mouse button on the objects you want.

N O T E

Objects to be put on the UserObject Panel, must be in the UserObject's Detail View. You cannot select

objects from outside the UserObject boundaries or from nested UserObjects.

2. From the UserObject's Edit menu, select Add To Panel.

Now you've created a UserObject Panel View that is independent of the Main

Panel. You switch between the Panel View and the Detail View by pressing

2-4

Building UserObject

and UserFunction Panels

What is a UserObject Panel?

the ÄPanelÅ and ÄDetailÅ buttons on the left side of the UserObject's title bar.

Any time you want to add other objects to the UserObject panel, start from

the Detail View and follow the steps above.

To Build a Pop-Up Panel

Once you've created a UserObject Panel, follow these steps to make the panel

pop up when the UserObject executes:

1. From the UserObject's object menu, select Edit Properties.

2. On the General tab, on the Pop-Up Panel group, select the Show Panel

On Execute check box.

3. Click ÄOKÅ.

While the program runs and the UserObject executes, the UserObject Panel

pops up and is visible on both the Detail View and the Main Panel (if it

exists).

N O T E

To change the appearance of the Pop-Up Panel, set the Show Title Bar and Show Border

properties in the Pop-Up Panel group in the Properties dialog box.

To change the background color of the Panel View, set the Background property in the Panel

View group on the Colors tab in the Properties dialog box.

2-5

Building UserObject

and UserFunction Panels

What is a UserObject Panel?

N O T E

You generally use a Pop-Up Panel when creating a custom dialog box. For details, refer to \Building a

Custom Dialog Box" in Chapter 5.

If you need a simple dialog box, you may not need to create a Pop-Up Panel. Use one of the

Dialog Box objects. For details, refer to \About Built-In Dialog Box Objects" in Chapter 5.

To Keep a Pop-Up Panel Displayed

Once you've created a Pop-Up Panel and run it, you may notice that it

Œashes up and is instantly gone. This action happens because nothing pauses

the execution of the UserObject, therefore you can't see or respond to the

information on the Pop-Up Panel. Follow these steps to add an OK button to

maintain execution of the UserObject until you click on the button.

1. Select Flow ¡¡) Confirm (OK).

2. Place the OK object on the Detail View of the UserObject.

3. Select the OK object.

4. From the UserObject's Edit menu, select Add To Panel.

Now when you run the program, the UserObject Panel pops up and stays up

until you press the OK button.

For details about using ÄOKÅ and ÄCancelÅ buttons and creating custom dialog

boxes, refer to \Building a Custom Dialog Box" in Chapter 5.

2-6

Building UserObject

and UserFunction Panels

What is a UserObject Panel?

To Change the Size of a Pop-Up Panel

The size of a Pop-Up Panel is the size of the Panel View of the UserObject.

Follow these steps to change the size.

1. Put the UserObject in its Panel View by pressing the ÄPanelÅ button on the

left side of the UserObject's title bar.

2. Resize the panel to the desired size.

From the object menu, select Size. Or position your cursor at the lower

right corner of the object and resize by dragging the corner.

When you resize the UserObject Panel, you're including the size of the title

and border.

If the Show Terminals property check box is selected, you'll be resizing the

entire object including the terminal area. The size of the Pop-Up Panel when

it's displayed does not include the terminal area.

To Change the Location of a Pop-Up Panel

The Õrst time you run your program, the Pop-Up Panel is displayed in the

center of the HP VEE work area. You change the location of the Pop-Up Panel

by repositioning the panel while the program is running.

1. Press ÄRunÅ.

2. When the panel pops up, drag it to the desired location.

Every time the program is run, the panel will pop up to that location.

Note that you can position the Pop-Up Panel to any location, the grid does

not aÃect the location.

2-7

Building UserObject

and UserFunction Panels

What is a UserObject Panel?

N O T E

The location of the upper-left corner of the entire Pop-Up Panel stays in the same place regardless of

the Pop-Up Panel properties, or whether Show Title Bar and Show Border are

selected or not. For example, if you have set the location of a Pop-Up Panel and then turn oÃ Show

Title Bar, the panel will shift so that the upper-left corner of the Pop-Up Panel is now located

where the upper-left corner of the Pop-Up Panel's title bar was.

To Add a UserObject Panel to the Main Panel

Once you've created a UserObject Panel, follow these steps to add the panel

to the Main Panel.

1. Put the UserObject in its Panel View.

Press the ÄPanelÅ button on the left side of the title bar.

2. Select the UserObject.

3. Select Edit ¡¡) Add To Panel from the main menu.

Now you'll see the Main Panel with the UserObject Panel displayed on it.

You can nest a UserObject Panel on its \parent" UserObject Panel by following

the same steps above, except you must use the Edit menu of the parent

UserObject.

Once the UserObject Panel has been added to the Main Panel, change its size,

location, and other appearance details the same way you change them for

objects on the Main Panel as described in \Changing the Appearance of a

Panel" in Chapter 1.

2-8

Building UserObject

and UserFunction Panels

What is a UserObject Panel?

N O T E

When you nest a panel on another panel (as described above), you're only making a copy of its

contents. When you need to add or delete objects from the nested panel, you need to delete the

copies and modify the original UserObject Panel and then copy it again. Therefore, make sure that the

layout, colors, and fonts of your original UserObject Panel are as you want before adding objects, so

that if you need to add or delete objects, you won't need to delete any customization.

To Add Objects to a Nested UserObject Panel

Once a UserObject Panel has been added to the Main Panel (or to a parent

UserObject Panel), it cannot be added to easily. You must add objects to the

original UserObject Panel and then add the panel to the Main Panel.

1. From the Main Panel, delete the UserObject Panel.

From the object menu, select Delete or double-click on the object menu

button.

2. Return to the Detail View by pressing the ÄDetailÅ button on the left side of

the tool bar.

3. Put the UserObject in its Detail View by pressing the ÄDetailÅ button on the

left side of the title bar.

4. Add any desired objects to the Detail View of the UserObject.

5. Select the objects to add to the panel.

6. From the UserObject's Edit menu, select Add To Panel.

Now that the new UserObject Panel has been created, add this panel to the

Main Panel following the steps listed earlier in this chapter in \To Add a

UserObject Panel to the Main Panel".

2-9

Building UserObject

and UserFunction Panels

What is a UserObject Panel?

To Delete Objects from a Nested UserObject Panel

1. From the Main Panel, delete the UserObject Panel.

From the object menu select Delete or double-click on the object menu

button.

2. Return to the Detail View by pressing the ÄDetailÅ button on the left side of

the tool bar.

3. Put the UserObject in its Panel View by pressing the ÄPanelÅ button on the

left side of the title bar.

4. Delete the desired objects by selecting Delete from their object menus.

Now add this panel to the Main Panel following the steps listed earlier in this

chapter in \To Add a UserObject Panel to the Main Panel".

N O T E

If you do not follow the steps above and instead delete an object directly from the Panel View that is

nested on the Main Panel, it will be deleted only from that copy. If you make changes to the original

UserObject Panel, and copy it again to the Main Panel, the previously deleted object (from the original

UserObject Panel) will be there.

2-10

Building UserObject

and UserFunction Panels

What is a UserObject Panel?

To Delete a UserObject Panel from the Main Panel

1. Go to the Main Panel by pressing the ÄPanelÅ button on the left of the tool

bar.

2. Delete the UserObject Panel.

From the object menu select Delete or double-click on the object menu

button.

The UserObject Panel still exists, but it is no longer added to the Main Panel.

2-11

What is a UserFunction Panel?

A UserFunction Panel is built and runs basically the same way as a

UserObject Panel. However a UserFunction Panel is only visible when the

UserFunction is executing (a Pop-Up Panel) or if programmatically displayed

via showPanel(). A UserFunction Panel cannot be added to the Main Panel

(or parent UserFunction or UserObject Panels).

To Build a UserFunction Panel

If you have already created a UserObject Panel and then made the UserObject

into a UserFunction, the UserFunction Panel automatically exists. If the

UserObject Panel was added to the Main Panel, it was automatically deleted

because a UserFunction Panel cannot be on the Main Panel.

If you have a UserFunction and want to create a panel for it, follow these

steps.

1. Select the object(s) in the UserFunction.

Use either Edit ¡¡) Select Objects from the UserFunction's Edit

menu, or press ÄCtrlÅ while clicking the left mouse button on the objects

you want.

N O T E

Objects on the UserFunction Panel must be in the UserFunction's Detail View. You cannot select objects

from outside the UserFunction boundaries.

2-12

Building UserObject

and UserFunction Panels

What is a UserFunction Panel?

2. From the UserFunction's Edit menu, select Add To Panel.

Now you've created a UserFunction Panel View. Switch between the Panel

View and the Detail View by selecting To Panel or To Detail from the

UserFunction's object menu.

3. Select Close when you are Õnished editing.

Any time you want to add other objects to the panel, start from the

UserFunction's Detail View and follow the previous steps.

To Build a UserFunction Pop-Up Panel

1. Select Edit ¡¡) Edit UserFunction.

2. Select the UserFunction name.

3. From the UserFunction's object menu, select Edit Properties.

4. On the General tab, on the Pop-Up Panel group, select the Show Panel

On Execute check box.

5. Click ÄOKÅ.

The UserFunction Pop-Up Panel operates the same way as a UserObject

Pop-Up Panel as explained in \To Build a Pop-Up Panel" earlier in this

chapter.

To Build a Status Panel

A status panel is programmatically \popped up" with showPanel(). For details refer to \Building

a Status Panel" in Chapter 5.

2-13

Building UserObject

and UserFunction Panels

What is a UserFunction Panel?

To Change the Size of a UserFunction Pop-Up Panel

1. Select Edit ¡¡) Edit UserFunction.

2. Select the UserFunction name.

3. From the UserFunction object menu, select To Panel to see the Panel

View.

4. Resize the panel to the desired size.

From the object menu, select Size. Or position your cursor at the lower

right corner of the object and resize by dragging the corner.

When you resize the UserFunction Panel, you're resizing the entire

UserFunction area including the area with the Close button, the title, and

the border.

If the Show Terminals property check box is selected, you'll be resizing the

entire object including the terminal area. The Pop-Up Panel size when it pops

up does not include the terminal area or the Close button area.

To Change the Location of a UserFunction Pop-Up

Panel

Follow the same steps as with a UserObject Panel shown in \To Change the

Location of a Pop-Up Panel" earlier in this chapter.

2-14

3

Using the Keyboard to

Navigate a Panel View

Using the Keyboard to Navigate a Panel

View

Perhaps your users prefer to navigate around the Panel View using only

the keyboard or perhaps they do not have access to a mouse in their

environment. For these users, build a panel that is keyboard \navigable".

3-2

Making Your Panel Keyboard Navigable

This chapter describes making a keyboard-navigable Panel View.

In general, when using the keyboard to run a program, Õrst an object must

get focus, then the object's data value or state can be changed.

DeÕnition

Focus is a term indicating a location where you can perform an action. In HP VEE, the object or Õeld

that has focus is either surrounded by a marquee (a dotted rectangle) or, for a type-in Õeld, a vertical

\caret" is shown and existing text is shown in inverted colors if the object was tabbed to; if a object

was clicked-on, it gets focus but the appearance of the existing text is not changed.

There are several things to remember about keyboard navigation:

– It's hard for the user to tell when the object on the Panel View has

operated (except ÄOKÅ buttons which are grayed out unless they can be

selected). Inform the user that an object has operated or have the user

indicate when they have Õnished making changes (for example, by pressing

an ÄOKÅ button).

– Without a mouse, the user can't access an object's object menu (this

access is useful with Display object menu choices such as Zoom and Auto

Scale). You can add control input terminals for some of these parameters,

if you need to let your user use them.

– There is an HP VEE-speciÕed pattern of tabbing through a Panel View. The

pattern is discussed in \Panel View Navigation Techniques" later in this

chapter.

– DiÃerent objects have diÃerent rules for keyboard interaction. You must tell

the user what they are; see \Panel View Selection Techniques" later in this

chapter for details.

3-3

Using the Keyboard to Navigate a Panel View

Making Your Panel Keyboard Navigable

To Give Focus to an Object or Panel

Some information about focus:

– You can modify the data on an object only when it has focus.

– When a panel pops up, only objects on the Pop-Up Panel get focus until the

panel is closed.

– Only objects with data Õelds, buttons, or a selection area can get focus.

Note that every data Õeld, button, or selection area can be tabbed into.

For example, if you have a Slider on the panel (as shown in Figure 3-1);

the Õrst ÄTabÅ gives focus to the Min Value Õeld.

Figure 3-1. A Slider on a Panel

To prevent users from tabbing through these Õelds and changing them, add

control input terminals for Õelds such as Min Value and Max Value.

– Selection Control, Toggle Control, and Slider objects execute as

soon as the program starts to run unless the Wait for Input property has

been set. This property allows these objects to execute only after they get

focus and have values changed or selected.

– If ÄEscÅ or ÄEnterÅ is assigned to an OK button and then pressed, the OK

button gets and keeps the focus.

– If a function key is assigned to an OK button and then pressed, the focus

stays on the object that had focus before the function key was pressed.

3-4

Using the Keyboard to Navigate a Panel View

Making Your Panel Keyboard Navigable

N O T E

Do not use HP VEE's built-in Dialog Box objects on a keyboard-driven panel that contains other

objects. After the Dialog Box object Õnish executing, no other object gets focus, so you can't

navigate to other objects via the keyboard. For information about Dialog Box objects, refer to

\About Built-In Dialog Box Objects" in Chapter 5.

To Assign an OK Button to the ÄEnterÅ or ÄEscÅ Key

When creating a panel, you can let your user press the ÄEnterÅ key (ÄReturnÅ on

UNIX) or ÄEscÅ key to \press" a Confirm (OK) button. Otherwise, the user

has to ÄTabÅ to the button and press ÄSpaceÅ. This feature is especially useful

on custom dialog boxes made from Pop-Up Panels. For more information

about building custom dialog boxes refer to \Building a Custom Dialog Box" in

Chapter 5.

To assign these keyboard keys to Confirm (OK), follow these steps:

1. Select Flow ¡¡) Confirm (OK).

2. Add the Confirm (OK) button to the panel.

3. From the OK button's object menu, select Edit Properties.

4. From the General tab, the Panel View Operations group, select Assign

to [Enter] key and/or Assign to [Esc] key check box(es).

3-5

Using the Keyboard to Navigate a Panel View

Making Your Panel Keyboard Navigable

N O T E

You can assign the ÄEnterÅ key to only one OK button per context and you can assign the ÄEscÅ key

to only one OK button per context. If you assign either of these keys to more then one OK button

per context, the previous assignment is automatically turned oÃ.

5. Click OK.

When the program runs, any OK button assigned to ÄEnterÅ has its label appear

in a bold font to indicate that it is the default button.

N O T E

You can only use ÄEnterÅ and ÄEscÅ to \press" an OK button from the Panel View of your program

(or UserObject/UserFunction).

To Assign a Button to a Function Key

When creating a panel, you can let your user press a function key (F1, F2,

F3, etc. at the top of the keyboard) to \press" a Confirm (OK) button.

Otherwise, the user would have to ÄTabÅ to the button and press ÄSpaceÅ. To

assign keyboard function keys to Confirm (OK), follow these steps:

1. Select Flow ¡¡) Confirm (OK).

2. Add the Confirm (OK) button to the panel.

3. From the OK button's object menu, select Edit Properties.

3-6

Using the Keyboard to Navigate a Panel View

Making Your Panel Keyboard Navigable

4. From the General tab, the Function Keys group, select the Assign to

Function Key check box.

5. Select the function key to assign to this OK button (F1 through F12). Some

keyboards have only eight function keys, but HP VEE allows you to select

any of the choices to allow cross-platform development; see \General Tips"

in Chapter 6 for more information. On Windows, the F10 key is a reserved

key that functions the same as ÄAltÅ.

N O T E

You can assign a speciÕc function key to multiple OK buttons. When the function key is pressed, all

of the associated buttons that are currently active will operate.

6. Click OK.

The title of the OK button is automatically changed to reŒect the function key

assignment. You can change the title to exclude the function key information.

N O T E

You can use function keys to \press" an OK button from either the Panel View or the Detail View.

3-7

Panel View Navigation Techniques

To navigate around a Panel View, use the ÄTabÅ key to go forward and

ÄShiftÅ+ÄTabÅ to go back. The order in which the objects and panels are

traversed is as follows:

– After you press ÄRunÅ, HP VEE divides the panel into groups of objects.

The Õrst group is determined by the topmost (lowest y-coordinate value)

object and contains all objects that have a y coordinate close to that of the

topmost object. The Õrst object to get focus is the leftmost object in the

group. ÄTabÅ moves the focus from left to right.

N O T E

If the leftmost object has Auto Execute set, it does not get the focus Õrst, but you can ÄTabÅ

to the object.

The y-position of an object or panel is determined by the location of its

upper-left corner.

– Once the focus has gone as far right as it can in the Õrst group, it continues

with the leftmost object in the next group.

The next group is determined by the topmost object that was not in

the previous group. ÄTabÅ starts at the leftmost object in this group and

continues to the right. This ordering repeats throughout the panel.

3-8

Using the Keyboard to Navigate a Panel View

Panel View Navigation Techniques

Figure 3-2 shows a typical grouping of objects.

Figure 3-2. A Simple Tabbing Order Example

Figure 3-3 shows a more complex grouping of objects. At Õrst it appears

that the Third Text object should be included in the Õrst group. But the

Õrst group is determined by the Second Text object, therefore the Third

Text object is too far down to Õt into the Õrst group.

The third group is determined by the Fifth Text object. The Fourth and

Sixth objects are close enough to be in that group.

Figure 3-3. A Complex Tabbing Order Example

N O T E

An OK button can only be tabbed to when it is activated (when the text is not grayed out).

3-9

Using the Keyboard to Navigate a Panel View

Panel View Navigation Techniques

– If an object has multiple Õelds, ÄTabÅ takes you through all the Õelds before

going to the next object.

– If you are in a UserObject Panel nested on another panel, ÄTabÅ takes you

through all the objects in the UserObject before continuing to the next

object out of the UserObject Panel.

– If you are in a Pop-Up Panel (UserObject or UserFunction), you can ÄTabÅ

only within the Pop-Up Panel until it Õnishes executing.

Remember that you can ÄTabÅ to objects whether or not they've executed

(except OK objects).

3-10

Panel View Selection Techniques

When using a mouse, you click to select a choice or change a value. When

using a keyboard, you tab to the object to give it focus and then you select a

choice or change a value by using the following techniques:

– Radio Buttons and List:

È and É to select a choice.

ÄSpaceÅ to select the current choice.

– Cyclic Button:

ÄSpaceÅ to change the choice.

– Drop-Down List:

É to get the list.

È and É to select a choice.

ÄSpaceÅ or ÄReturnÅ to put the list away.

ÄEscÅ to cancel the choice.

– Pop-Up List:

ÄSpaceÅ to get the list.

È and É to select a choice.

ÄSpaceÅ or ÄReturnÅ to put the list away.

ÄEscÅ to cancel the choice.

– All Toggle Control objects:

ÄSpaceÅ to change the value.

– All Edit Fields (such as Constant objects):

Type in a new value.

ÄTabÅ or ÄEnterÅ to continue to the next Õeld.

ÄEscÅ cancel the changes.

– Start and OK Buttons:

ÄSpaceÅ to select them.

– Objects with multiple Õelds (such as Function Generator):

Select a choice or change a value using one of the techniques listed above

depending on the type of Õeld. And then ÄTabÅ to the next Õeld.

3-11

Using the Keyboard to Navigate a Panel View

Panel View Selection Techniques

N O T E

If you have ÄEscÅ or ÄEnterÅ assigned to an ÄOKÅ object and you use ÄEscÅ or ÄEnterÅ in an Edit

Õeld (such as in Constant and Slider objects), the ÄOKÅ button will be pressed after the Edit

Õeld data is entered.

When a Data ¡¡) object has Wait For Input set, it executes when you

select a choice or change a value as described above. When a Data ¡¡)

object has Auto Execute set, it starts the program running when you

select a choice or change a value as describe above. To see an example that

demonstrates Wait for Input, refer to \To Build a Self-Modifying Panel" in

Chapter 5.

N O T E

Data in Data ¡¡) Constant and Data ¡¡) Slider objects must be changed for Wait

For Input or Auto Execute to work. Replacing a character with the same character is

interpreted as a change.

N O T E

When ÄCtrlÅ+ÄCÅ is pressed to pause the program, it cancels any changes to the edit Õeld that has

focus.

3-12

4

Guidelines for a Good

Interface

Guidelines for a Good Interface

This chapter contains guidelines and general interface design information.

This information is not a substitute for Human Factors help or user input.

4-2

Most Important

– Get advice from a professional user-interface designer. The information in

this chapter contains only rough guidelines. If you have access to human

factors engineers or graphical designers, ask them to look at your Panel

Views and give you input.

– Get user feedback. Let your users use the panel. Ask them if they can Õnd

the information needed. Make sure they can identify what they should do.

Verify that the colors and fonts are useful and that they allow comfortable

long-term use.

General User Interface Design Guidelines

– Know your users and their environment.

– Empower users. Let them control the basic characteristics of the program.

Minimize the number of rules users must learn to use the system.

– Be consistent in user interactions, data presentation, and layout. Group

and order the information displayed.

– Accommodate diÃerent levels of users via defaults, help, or templates for

novice or intermittent users, and accelerators or shortcuts for advanced or

frequent users.

– Build users' conÕdence. Help them accomplish their tasks quickly and

without frustration. Do not use accusative wording like \user error".

– Provide feedback to users. Let them conÕrm data input or directly see the

result of their actions.

– Orient users. Provide them with enough information to understand the

current state of the program and how to respond to this state.

– Design for error recovery. When users make mistakes, they need a chance

to recover from them.

– Verify your design with the real users of the program.

4-3

Using Colors

When using colors in your panels, consider the limitations of colors for your

audience and the speciÕc uses for color.

Facts about Colors

– Older people are often less sensitive to color and may need brighter color

levels. The ability to discern shades of blue may be diminished. However,

younger users may Õnd brighter colors more fatiguing.

– Eight percent of men and 0.5 percent of women have some form of color

deÕciency. The most common deÕciency is an inability to distinguish

between red and green.

– There are individual variations in color perception. DiÃerent monitors,

diÃerent environmental lighting, cultural and occupational connotations,

and personal preferences for colors can all aÃect the way people see,

distinguish, and perceive color.

– Be aware that colors have diÃerent meanings in diÃerent cultures; it's best

to use neutral colors for large areas.

Redundant Cues

Because of the reasons listed above, use color only as an additional form of communication. For

example, to distinguish a Stop from a Go button, don't just change the color from Red to Green;

also make sure there is explanatory text that changes. One way to make sure your color is used as a

redundant cue is to Õrst create the panel without specifying colors, and then add them as needed.

– Use as few colors as possible. More than four or Õve diÃerent colors on a

single panel or seven diÃerent colors in your entire user interface, may be

distracting and confusing.

– Colors project an image about your program. Bright colors may project

a toy-like quality. Muted or subtle colors may create an impression of

sophistication or professionalism.

4-4

Guidelines for a Good Interface

Using Colors

– For background and text (foreground) combinations, use colors that have

high contrast; but avoid putting colors from opposite sides of the color

wheel together (like yellow and blue). The contrast is good, but boundaries

may \bleed" into one another. Figure 4-1 shows the colors on a color

wheel.

Figure 4-1. A Color Wheel

– Use generally-accepted color encodings, such as Green for \Go" or \Normal

Status" and Red for \Stop" or \Emergency". This color coding may be

dependent on cultural or occupational standards.

– Consider the printing needs of your audience. If the user prints a color

screen to a color printer, the colors on the printer won't necessarily match

those on the screen due to printer limitations. If the screen is printed

to a non-color printer, make sure the colors translate well to black and

white. Note that on the Default Preferences Properties dialog box, the

Printing tab Screen Element settings do not apply to color changes from

the default colors. When you've changed colors from the defaults, HP VEE

automatically gray-scales the colors on the printout.

So if it's so troublesome, why use color?

– To enhance the aesthetics. An interface with pleasant-looking colors is

easier to operate and view for long periods of time.

– To group objects together visually.

– To aid navigation and recognition.

4-5

Guidelines for a Good Interface

Using Colors

– To enhance readability.

– To show what is similar and what is diÃerent. DiÃerent colors distinguish

diÃerent groups of information from each other.

– To call attention to an object or event. It's easy to Õnd information if it is

colored diÃerently.

– To accentuate information encoding. Color information can aid

understanding, especially when using common encodings like Yellow for

caution, Red for danger or failed, Blue for water or cooling.

Use a basic overall color scheme, keeping similar functions the same color and

only use contrasting colors when needed.

How to Pick Colors

Here are some guidelines to help you pick colors that enhance the usability

and readability of your panel.

Generally you want to use a neutral-colored background, White or Gray is

best. However, lighter colored backgrounds increase the perception of Œicker

(the amount depends on the system monitor). Shades of Blue are also very

good for backgrounds (for both objects and panels).

If your background color is too light, the border highlight of a \3-D" object

may not stand out. If the background color is too dark, the object's border

shadow may not stand out.

When displaying text, pick colors that have good contrast with the

background. For example, if the background color is White, the following

colors are the best and worst for text:

– Black - Best

– Blue - Best

– Red - Best

– Yellow - Worst (low contrast)

– Cyan - Worst (low contrast)

If the background color is Black, the following colors are the best and worst

for text:

4-6

Guidelines for a Good Interface

Using Colors

– Yellow - Best

– White - Best

– Green - Best

– Blue - Worst

– Red - Worst (may \bleed" into the background)

– Magenta - Worst (may \bleed" into the background)

Note that on HP VEE display objects (such as X vs Y), you'll have a black

background for the graph area and you'll want to pick good colors for the

graph lines.

Figure 4-2 shows how these colors can be used:

Figure 4-2. Displaying DiÃerent Color Text

This program is saved as colors.vee in your manual examples directory.

Open this example to see what these colors look like on your screen.

Regardless of the background color, make sure that the color of the text

displayed is about the same level of brightness and has good contrast. These

guidelines for object background and text also apply to panel backgrounds

and objects placed on them.

Generally shades of Blue work best as a background. To use Blue as a text

color, use a greenish blue (like Teal).

4-7

Using Fonts

Facts about Fonts

– It takes users about 25% more time to read text on a computer screen than

on paper. Comprehension is about the same. Therefore, putting large

amounts of text on your panel will slow down your user.

– There are proportional and non-proportional fonts. A proportional font

uses diÃerent widths for diÃerent letters; for example, the space used

to print the letter \w" is wider than the space used to print the letter

\i". Proportional fonts are generally easier to read and look better. Some

common proportional fonts are: Lucida RŒ, Arial RŒ, and HelveticaTM.

A non-proportional font uses the same width for all letters and is

used when you need to vertically align data in a table. Some common

non-proportional fonts (also called mono-spaced fonts) are Courier New,

Courier, and MS LineDraw.

The fonts available in HP VEE depend on the fonts installed on your

system.

– If your program is run on a diÃerent system than the development system,

some fonts may not be available. Refer to \To Choose Fonts for Multiple

Platforms" in Chapter 6 for information on using fonts on multiple systems.

– Font size indicates the height of characters, not the width. So if you change

the font type, but keep the font size the same, you may have to resize the

object to accommodate the text width.

4-8

Guidelines for a Good Interface

Using Fonts

– Generally, use a 12-point font size for text meant for general reading. You

may want to use a larger font or a bold font for emphasis. Although font

size on paper is an absolute size (like inches or centimeters), fonts on a

computer screen are based on \logical" font size, which varies according to

your monitor resolution. So no matter what size font you use, you'll need

to make sure it is readable on the screen. Figure 4-3 shows diÃerent font

sizes.

Figure 4-3. Font Sizes

N O T E

Some windowing systems may not scale large-sized fonts well. SunOS Open Windows version 3.0 does

not scale some characters properly above 96 point.

– Some studies show that serif fonts (those with thin lines at the top and/or

bottom of the main strokes of the letter) allow the user to read faster than

sans serif fonts. You'll need to see if this makes a diÃerence for your users.

Figure 4-4 shows a serif and a sans serif font.

Figure 4-4. Serif and Sans Serif Fonts

– Text is faster to read if it is left-justiÕed with a ragged right margin.

4-9

Guidelines for a Good Interface

Using Fonts

– Use no more than three diÃerent font types, and four font colors per

program. Use fonts consistently to help the user understand which text is

more important. Generally, larger text is the most important.

Use font types and sizes consistently to make it easier for you to align and

balance the text across the screen.

– Blue is generally a bad color for text - the eye is least sensitive to this color.

– Verify your font choices with the users of your program to ensure legibility.

4-10

Layout Tips

– Maintain a consistent layout even as the panel's content changes. For

example, if you have a message area at the bottom of the screen, a display

area on the side, and a status area at the top - stay with this layout; don't

move elements around as the program runs.

– Group related information.

– Balance information through the available screen area.

– Remember to leave \white" space (blank areas without objects) to make

your panel easier to use. If the screen is full, with objects positioned

against other objects with no space between them, it is harder for your

user to Õnd needed information.

– Always place navigation controls in the same place on every panel.

– Align and size objects in related groups so they are the same size. Align

them horizontally or vertically so that there is not a ragged edge to disrupt

identifying and scanning the objects. Make the spacing between objects a

constant distance.

– Use dialog boxes to present infrequent or low-use features. This lets the

user respond and be done with this information, and reduces clutter on the

Main Panel.

To Call Attention to an Object

Use visual attributes to call attention to areas on the screen:

– Use object size. The eye is naturally drawn to larger objects. There also is

a connotation of importance. If you are diÃerentiating information by size,

use a maximum of Õve diÃerent sizes.

– Use border characteristics to distinguish objects. Use lighter colors on

the raised surfaces and darker colors on the recessed surfaces. Refer to

Figure 1-3 to see the diÃerent border styles.

4-11

Guidelines for a Good Interface

Layout Tips

– Use diÃerent colors to indicate diÃerent levels of importance. You should

use a maximum of four or Õve diÃerent colors on a panel. And a maximum

of seven diÃerent colors in your entire user interface. If you decide to use

more, supply a legend to explain each color's purpose or meaning.

– For Õne details or small areas, black, white, and gray give the best

readability.

– Brighter colors attract more attention than dimmer colors (for example,

using Blue, Yellow, or Red, instead of Blue Gray, Gold, or Light Red). Users

can diÃerentiate between a maximum of Õve diÃerent brightnesses.

– Lighter colors and warmer colors (such as Red) appear to \advance" to the

user. Darker colors and cooler colors (such as Blue) appear to \recede".

– Use font size. Use at least four points of size diÃerence to denote relative

importance.

– Use font styles such as bold and italics. Italics makes text slower to read,

so don't use italics for text requiring quick reading.

– Blinking/Flashing is an excellent way to get attention. With HP VEE,

some ways to direct attention are to pop-up a panel, change bitmaps in a

Picture object, change colors and text in a Color Alarm object, or use a

Dialog Box object. No more that four items should be blinking or Œashing

at a time.

Another way to draw attention is to use sound. Use the Beep object (if the

hardware supports it).

Each of these attributes should be used in a consistent way throughout your

program.

4-12

5

Advanced Topics

Advanced Topics

This chapter presents some advanced topics and tasks you may use when

creating your operator interface;

– Information About Built-In Dialog Box Objects

– Building a Custom Dialog Box

– Building a Status Panel

– Using Animation

5-2

About Built-In Dialog Box Objects

Before creating a custom dialog box, consider if the built-in Dialog Box

objects (located under the Data menu) will meet your needs. They are easy

to use and have many useful features.

The diÃerences between Dialog Box objects and Pop-Up Panels (used to

build custom dialog boxes) are:

– Dialog Box objects do not need to be added to a panel, they pop up on

both the Panel View and the Detail View automatically. Figure 5-1 shows a

Message Box object and the panel it generates.

Figure 5-1. A Message Box

– Dialog Box objects perform only one operation per object - they ask for

speciÕc user input. If you need to ask the user several questions at once, or

to display data, then create a custom dialog box.

– Dialog Box objects are modal. In other words, while they are popped up,

the rest of the program is stopped.

This is diÃerent than Pop-Up Panels; while Pop-Up Panels are popped up,

the rest of the program continues to execute.

– Dialog Box objects should not be used on a keyboard-driven panel. After

they Õnish executing, no other object gets focus, so you can't navigate to

other objects via the keyboard.

– Dialog Box objects already have many built-in features. You don't have

to write a program to get features such as constraint checking or timeouts.

The built-in features of the Dialog Box objects are listed in Table 5-1.

5-3

Advanced Topics

About Built-In Dialog Box Objects

Table 5-1. Dialog Box Object Features

Dialog Box Object Constraint

Checking

Password

Masking

Timeout Custom

Button

Text

Formatting

Options

Text Input

Gets text input

p p p p p

Field Width

Integer Input

Gets integer input

p p p p p

Field Width

Real Input

Gets real input

p p p p p

Field Width

Message Box

Displays information

n.a. n.a.
p p p

Multiple Line

Messages

List Box

Allows single or multiple selection

from a list

n.a. n.a.
p p p

List Height

File Name Selection

Allows Õle name selection

p
1

n.a.

1
Gives a warning if overwriting an existing Õle. Doesn't allow opening a

non-existent Õle.

5-4

Advanced Topics

About Built-In Dialog Box Objects

Dialog Box objects have additional color and font properties so you can

easily control the appearance of the pop-up panel. Figure 5-2 shows these

properties.

Figure 5-2. Message Box Properties

Dialog Box objects are easy to use without a mouse. You press the ÄEnterÅ

key (ÄReturnÅ on UNIX) to \press" the default button; or press the ÄEscÅ key to

\press" the rightmost button (usually Cancel). Use ÄTabÅ and ÄShiftÅ+ÄTabÅ to

move the focus to input Õelds or buttons. Press ÄSpaceÅ to \press" a button

that has focus. Refer to \Making Your Panel Keyboard Navigable" in Chapter 3

for information about focus.

For details on the Dialog Box objects, refer to HP VEE Reference.

5-5

Advanced Topics

About Built-In Dialog Box Objects

To Output a Value on Timeout

When you set a Timeout on a Dialog Box object (via the Properties dialog

box), and the timeout period expires, the value 1 is output on the Timeout

data output pin. Often you want a value (such as the Default value) output

when the timeout period expires; to do this, follow these steps:

1. Set the Timeout.

Select Edit Properties from the object menu. Select the Timeout

Enabled check box. Set the Pop-Up Duration. Click OK.

2. Add the Default Value data input pin.

3. Select Data ¡¡) Constant ¡¡) Text to input the default value. (Select a

Data ¡¡) Constant object appropriate to your needs to input the default

value.)

4. Input the default value into the Text object.

5. Connect the Text data output pin to the Default Value data input pin.

6. Select Flow ¡¡) Gate.

7. Connect the data output pin of the Text to the data input pin of the Gate.

8. Connect the Timeout data output pin to the sequence input pin of the

Gate. When the timeout period expires, the default value is output

through the Gate.

5-6

Advanced Topics

About Built-In Dialog Box Objects

Figure 5-3 shows a program that uses a JCT object to output either the

entered value or the default value if the timeout occurred. This program is

saved as timeout.vee in your manual examples directory.

Figure 5-3. Outputting a Default Value on Timeout

5-7

Building a Custom Dialog Box

When a built-in Dialog Box object doesn't Õt your needs, create a custom

dialog box. This section explains how to create custom dialog boxes from

Pop-Up Panels. These steps show you how to create basic dialog boxes. Once

they are created, you add the controls, displays or other objects as needed.

If you prefer not to build programs by following the steps below, open the

Õles (via Help ¡¡) Open Example) that contain the dialog box programs and

modify them to suit your needs.

To create a Pop-Up Panel, follow the steps in \To Build a UserObject Panel"

in Chapter 2. You can make the Pop-Up Panel from either a UserObject or a

UserFunction. Unless otherwise speciÕed, the instructions below assume the

use of a UserObject.

To Build a Basic Dialog Box

1. Once you've built a Pop-Up Panel, follow the steps in \To Keep a Pop-Up

Panel Displayed" in Chapter 2 twice. The Õrst time to add an OK object

so that users can conÕrm their choices, and the second time to add an OK

object to be the Cancel button so that users can cancel their choices.

2. Assign the ÄEscÅ key to the Cancel button.

Select Edit Properties from the second OK object's object menu.

Change the Title to Cancel and select the Assign to [Esc] key check

box. Click OK.

Now the OK button is assigned to the ÄEnterÅ key (by default) and the

Cancel button is assigned to the ÄEscÅ key.

3. Select Flow ¡¡) Exit UserObject and place it in the Detail View of the

UserObject.

4. Connect the data output pin of the Cancel button to the sequence input

pin of Exit UserObject.

5-8

Advanced Topics

Building a Custom Dialog Box

5. Select Data ¡¡) Constant ¡¡) Text. (This could be any object to get

user input.)

6. Connect the data output pin of the OK button to the sequence input pin

of the Text object.

7. Create a data output terminal on the UserObject.

8. Connect the data output pin of the Text object to the data output pin of

the UserObject.

9. Select Flow ¡¡) Exit UserObject.

10. Connect the sequence output pin of the Text object to the sequence

input pin of the Exit UserObject.

Now the dialog box outputs the value if OK (or ÄEnterÅ) is pressed. No value is

output if Cancel (or ÄEscÅ) is pressed.

Figure 5-4 shows the program created using these steps.

Figure 5-4. A Basic Custom Dialog Box

This program is saved as dialog1.vee in your manual examples directory.

Details about this example:

The OK button must be connected to the Text object; if it was not, the Text

object would operate as soon as the UserObject began to run. Therefore, the

default data would get propagated to the UserObject output data pin. The OK

5-9

Advanced Topics

Building a Custom Dialog Box

button prevents the Text object from operating until the user, after typing in

the Text object, presses OK.

The threads with OK and Cancel must be connected to Exit UserObject

objects. If they were not, the user would have to press both OK and Cancel

for data to be output from the UserObject, because a UserObject does not

propagate its output data until all objects inside it have Õnished operating.

To see these execution principles demonstrated, follow these steps:

1. Select File ¡¡) Edit Default Preferences.

2. In the Debug Animation group, make sure that Execution Flow is

selected.

3. Click OK.

4. Select Edit ¡¡) Animate.

5. Show the Detail View of the UserObject.

6. Run the program.

To Set a Timeout

If you want to have the dialog box go away after a period of time, set a

timeout. Follow these steps to add a timeout to the custom dialog box created

in \To Build a Basic Dialog Box" earlier in this chapter.

1. Select Flow ¡¡) Delay and place it in the Detail View of the UserObject.

2. Select Flow ¡¡) Exit UserObject.

3. Connect the data output pin of the Delay object to the sequence input pin

of the Exit UserObject.

4. Specify the pop-up duration (in seconds) in the Delay edit Õeld. When the

time is up, the Pop-Up Panel is put away.

5. Add a second data output terminal to the UserObject.

6. Connect the Delay object's data output pin to the second data output pin.

5-10

Advanced Topics

Building a Custom Dialog Box

When the timeout period expires, an empty container is output on this

terminal.

Figure 5-5 shows the program created using these steps.

Figure 5-5. A Dialog Box With a Timeout

This program is saved as dialog2.vee in your manual examples directory.

When the timeout expires in dialog2.vee, no value is output from the

UserObject. Often you want the UserObject to output the default value when

it times out as shown in Figure 5-6.

5-11

Advanced Topics

Building a Custom Dialog Box

Figure 5-6. The Default Value is Output When the Timeout Period Expires

This program is saved as dialog3.vee in your manual examples directory.

5-12

Advanced Topics

Building a Custom Dialog Box

To Check for Valid Data

Figure 5-7 shows a program that checks the input value against some

constraint, before outputting the value. If the value does not meet the

constraint, another dialog box pops up to inform the user.

Figure 5-7. A Dialog Box With Constraint Checking

This program is saved as dialog4.vee in your manual examples directory.

The important aspects of this example are:

– The Until Break object allows you to retype a number after the Error

Pop-Up Panel executes, or to retype a number after the Enter a

number . . . object has already executed once.

– The Error Pop-Up Panel is a UserObject Pop-Up Panel that displays a

message, and responds to ÄEnterÅ or ÄEscÅ. It times out after Õve seconds.

5-13

Advanced Topics

Building a Custom Dialog Box

To Build a Self-Modifying Panel

To have a panel present choices to the user based on previous user selections,

create a \self-modifying" panel.

Figure 5-8 shows a program that changes the choices in a Drop-Down List,

based on the selection made in a Radio Buttons object. The Pop-Up Panel is

shown in the upper right of the Õgure.

Figure 5-8. A Self-Modifying Panel

This program is saved as dialog5.vee in your manual examples directory.

The important aspects of this example are:

– The Select a Product (Radio Buttons) object has Wait for Input set

on its Properties dialog box.

– Until Break allows the user to change choices. If Until Break was not

there, the user could select only one product name and the thread would

5-14

Advanced Topics

Building a Custom Dialog Box

execute only once. The Until Break loop allows the user to try various

selections before Õnalizing the choice by pressing OK.

– Phantom Tests, Beetle Tests, and Viper Tests are Text arrays

that contain the list of tests to input to the Select the test to run,

Drop-Down List object via an Enum Values control input pin.

5-15

Building a Status Panel

To display a status panel while your tests run and to update it with current

test data, use a UserFunction Panel. Show it with the showPanel() object

and run it with the Call Function object.

When you use showPanel(), you cannot use Show Panel On Execute (on

the UserFunction Properties dialog box). Table 5-2 summarizes the diÃerences

between the way showPanel() and Show Panel On Execute execute.

Table 5-2.

DiÃerences Between showPanel() and Show Panel On Execute

showPanel() Show Panel On Execute

The panel stays up until a hidePanel() object is

executed or the program stops.

The panel stays up until the UserFunction is Õnished

executing or the program stops.

The UserFunction is executed with Call

Function, and the panel is displayed with

showPanel(). Therefore, the UserFunction can be

executed multiple times while the panel remains visible.

The UserFunction is executed and the panel is displayed

with Call Function. Therefore, each time the

UserFunction is called, the panel is automatically

displayed; after the UserFunction has Õnished executing,

the panel is automatically hidden.

The displayed position can be set programmatically at

run time.

The displayed position is set manually at development

time.

The displayed panel size can be diÃerent than the size

of the Panel View.

The displayed panel size is the same size as the Panel

View.

The user cannot move the panel when it's visible. The user can move the panel when it's visible.

The panel can be located outside of the HP VEE

window. It doesn't need to Õt within the HP VEE

window, and the parts outside the HP VEE window are

not visible.

The panel must be located within the HP VEE window.

5-16

Advanced Topics

Building a Status Panel

To Build a Status Panel

Build a status panel by building a UserFunction Panel as described in \To

Build a UserFunction Panel" in Chapter 2. Make sure the Show Panel On

Execute check box is not set in the UserFunction's Properties dialog box.

To Show a Status Panel

Use the showPanel() object to show a status panel.

1. Select Device ¡¡) Panel ¡¡) showPanel().

You can select any of the of the showPanel() objects; the diÃerent objects

show examples of the diÃerent parameters you can use.

2. Type the UserFunction name between the quotes, replacing UFname.

3. To specify a location, type the x and y coordinates to specify the

position in the HP VEE window of the UserFunction Panel's upper-left

corner. The coordinates for the upper-left corner of the HP VEE

window is 0, 0. The edit Õeld on the showPanel object looks like:

showPanel("MyFunc",300,300).

If you do not specify a location, the panel is displayed in the center of the

screen.

4. To specify the size of the panel displayed, you must have speciÕed the

location. Specify the width and height of the panel in pixels.

If this size is smaller than the existing UserFunction Panel View, the

upper-left part of the panel is displayed. If the the size speciÕed is bigger

than the existing Panel View, the panel displayed has additional area

added on its bottom right.

If there is a background picture, it is displayed in the size speciÕed, and

is shown according to its display mode. For example, if the display mode

is Scaled, the background image is scaled to the size speciÕed in the

showPanel() object.

5-17

Advanced Topics

Building a Status Panel

When you specify the location and size, the edit Õeld on the showPanel

object looks like: showPanel("MyFunc",300,300,100,100).

You can display only one panel for each UserFunction. If you execute a

second showPanel(), the Õrst panel is \hidden" and the panel is shown as

speciÕed in the second showPanel() call.

To Hide a Status Panel

When the program Õnishes executing, all panels shown with showPanel()

are no longer displayed. To hide a panel while the program is running, follow

these steps:

1. Select Device ¡¡) Panel ¡¡) hidePanel().

2. Type the UserFunction name between the quotes, replacing UFname.

When this object operates, the named panel is hidden.

To Update a Status Panel

The showPanel() object only shows the panel; it does not execute the

UserFunction. Use the Call Function object (located in Device ¡¡)

Function ¡¡) Call) to send new data to the status panel and update the

display. You can also call the UserFunction from any expression such as in a

Formula or a Sequencer object.

You can also use showPanel() in any expression such as in a Formula or

a Sequencer object. For example, use showPanel() as an expression in

the Õrst transaction of a Sequencer. As each test runs, the data on the

status panel is updated. Use hidePanel() in the last transaction of the

Sequencer.

5-18

Advanced Topics

Building a Status Panel

After you've sent new data via the Call Function object, you do not need

to call showPanel() again; the contents of the displayed panel are updated

automatically.

A Status Panel Example

Figure 5-9 shows a simple status panel that is updated with information.

After you make a choice in the List Box object, the data associated with that

test is displayed on the panel.

Figure 5-10 shows the program that displays the status panel. This program

is saved as status.vee in your manual examples directory.

5-19

Advanced Topics

Building a Status Panel

Figure 5-9. A Status Panel

5-20

Advanced Topics

Building a Status Panel

Figure 5-10. A Status Panel Example Program

The important aspects of this example are:

– The Record constant sets the record of test results. This could be the log

output from a Sequencer.

– The Until Break object lets you choose the test information multiple

times.

– The Get Field object resets the List Box to the value selected in the last

iteration.

– When the Done button is pressed on the List Box, the status panel is

hidden and the Until Break loop is completed.

The UserFunction contains a Panel View that is updated each time the

UserFunction is called.

The mfgtest.vee program in the new examples directory demonstrates

a more complete program that uses status panels in conjunction with the

Sequencer.

5-21

Advanced Topics

Building a Status Panel

To Animate Pictures

You can use showPanel() and hidePanel() to perform animation. Follow

these steps to create a simple animation program:

1. Create a Panel View by adding an object to the Panel and then deleting

the object.

2. Select a background color for the Main Panel.

This color is important, because you'll use that same color for the

background of the animation Õle(s). The RGB values for the HP VEE

colors are listed in Appendix A to help you match colors.

3. Create a graphics Õle of the image you want to animate.

4. Select Display ¡¡) Picture. Specify your graphics Õle via the

Properties dialog box.

5. Place the Picture object into a UserObject and add it to the UserObject

Panel.

6. From the Picture object menu, select Edit Properties.

7. Turn oÃ the Picture border and title bar, and place the Picture in the

upper-left corner of the UserObject Panel.

8. From the UserObject object menu, select Edit Properties.

9. Turn oÃ the UserObject Panel's title bar and border from the Pop-Up

Panel group.

10. Change the Panel View background color to the Main Panel's background

color.

11. Click OK.

12. Make the UserObject into a UserFunction.

13. Delete the Call Function object.

14. Select Device ¡¡) Panel ¡¡) showPanel().

15. Type the UserFunction name between the quotes, replacing UFname.

16. Add two data input terminals.

5-22

Advanced Topics

Building a Status Panel

17. Use the terminal names in the edit Õeld so it looks like

showPanel("MyFunc",a,b).

18. Select Flow ¡¡) Repeat ¡¡) For Range. Do this twice.

19. For each For Range object, Õll in the range of x or y coordinates.

20. Connect each For Range object to one of the data input pins on the

showPanel().

21. Press the Panel button to see the Panel View.

22. Run the program and see how the picture moves across your Panel View.

Figure 5-11 shows the program created using these steps.

Figure 5-11. A Simple Animation

This program is saved as animate.vee in your manual examples directory.

5-23

Advanced Topics

Building a Status Panel

Figure 5-12 shows the Panel View of a program that uses simple animation in

HP VEE.

Figure 5-12. The Ocean: A Simple Animation

This program is saved as ocean.vee in the new examples directory. The

wheel.vee and slots.vee programs in the new directory demonstrate more

complex animation.

Using Multiple Images You can create animations with multiple images by adding a data input

terminal to the Picture object, and programmatically inputting the Õle name

to the Picture at run time. When the Picture display mode is Scaled,

images take longer to display than if Centered or Actual are selected. If

you use multiple images for animation, you can decrease execution time by

loading the images into HP VEE before running your program and having

HP VEE cache the images into memory.

To cache the images before running, follow these steps:

1. Select Device ¡¡) UserObject.

2. Select Display ¡¡) Picture. Put as many Picture objects inside the

UserObject as you have images.

3. Load each of the image Õles into its own Picture object via the Picture

object's Properties dialog box.

4. Select Flow ¡¡) If/Then/Else and place it outside the UserObject.

5-24

Advanced Topics

Building a Status Panel

5. In the If/Then/Else object, type 0.

6. From the If/Then/Else, delete the data input pin.

7. Connect the Then data output pin of the If/Then/Else to the sequence

input pin of the UserObject. Now the UserObject will never execute, but

when the program is loaded, all the picture images are loaded into a cache.

Figure 5-13 shows the program created using these steps.

Figure 5-13. A Picture Cache

5-25

Advanced Topics

Building a Status Panel

6

Preparing a Program for

Distribution to Others

Preparing a Program for Distribution to

Others

There are many considerations when delivering a program for others to use.

This chapter discusses the following topics:

– Building a Panel to Run on Multiple Platforms

– Building a Panel with Non-English Text

– Making a Program Secure from User Changes

– Creating a Distribution Package

6-2

Building a Panel to Run on Multiple Platforms

One of the features of HP VEE is the ability to create a program on one

platform and deliver it for use on another platform. It's common to deliver

a program to a destination system that has diÃerent hardware, operating

system, or screen resolution.

To Use Operating System-Dependent Features

The two objects whichOS() and whichPlatform() (located under Data ¡¡)

System Info ¡¡)), allow you to use operating system-dependent features

such as calls to the operating system with Execute Program, or use DDE

when running on Windows and use named pipes when running on UNIX.

Figure 6-1 shows how the whichOS() and whichPlatform() objects can be

used. In this program, a diÃerent subthread is executed depending on the

system (operating system or hardware platform). This program is saved as

whichos.vee in your concepts examples directory.

Figure 6-1. Specifying System-SpeciÕc Threads

6-3

Preparing a Program for Distribution to Others

Building a Panel to Run on Multiple Platforms

You can also use whichOS() and whichPlatform() in any expression such

as in a Formula or a Sequencer object.

General Tips

– When developing your program, use a screen resolution the same as (or

similar to) the destination system. The Panel View is a speciÕc-sized

window (by the number of pixels) that does not scroll. You need to make

sure that the Panel View will Õt on the destination system's screen.

On UNIX, you can specify the size of the Panel View before you create it.

When you start HP VEE, use the command line line option -geometry, to

specify the size of the Detail View, and therefore specifying the size of the

Panel View when it is created.

– If there are multiple destination system types, when developing your

program use a system that is the \lowest common denominator" so you

can get a realistic feel for the worst case for resolution (text readability),

execution speed, and color use.

– Test your program on the destination system before Õnalizing the program.

– If developing on UNIX and delivering on Windows, remember not to assign

the F10 function key to a Confirm (OK) object. On Windows, F10 is a

reserved key that functions the same as ÄAltÅ.

– If transferring your program between UNIX and Windows, consider the

following diÃerences:

There are eight function keys on some keyboards and 12 on others.

The ÄEnterÅ key on Windows is the same as the ÄReturnÅ on UNIX. This is

important when giving instructions to your user.

There may be other keyboard diÃerences that are important when

giving instructions to your user. For example, ÄEscÅ may be in a diÃerent

location on the keyboard.

Don't use binary data Õles. Save data Õles as ASCII.

6-4

Preparing a Program for Distribution to Others

Building a Panel to Run on Multiple Platforms

To Choose Fonts for Multiple Platforms

DiÃerent computers have diÃerent available fonts. When creating your

program, make sure to use the fonts that are on the destination platform or

will translate comparably.

HP VEE uses \logical font sizes" to ensure that text will Õt on an object

regardless of the screen resolution. On paper, a 12-point font size is always

the same height, but on a computer screen a \logical font size" (which is

approximately 30-40% bigger than the physical font size) is scaled based on

the screen resolution. Because HP VEE object appearance is also based on

the screen resolution, the fonts Õt on the objects, no matter what the screen

resolution.

N O T E

HP VEE object size is speciÕed by the number of pixels, so if an object is shown on a high-resolution

monitor, the object appears smaller. If the same object is shown on a low-resolution monitor, it will

appear bigger.

Font Type When you load an HP VEE program onto a diÃerent system, HP VEE looks

for the fonts to use by the speciÕc font names. If it does not Õnd a font

with exactly the same name, it asks for a diÃerent font as discussed in the

following sections.

Font Size HP VEE uses the same font size as speciÕed in the program. If the size is not

available for the font type it uses the closest size, with a preference to the

smaller size so that text is not clipped.

6-5

Preparing a Program for Distribution to Others

Building a Panel to Run on Multiple Platforms

Font Style If the font style (such as bold or italics) for the speciÕed font type and font

size is not available on the destination system, it is not used.

When Transferring a

Program Between UNIX

and Windows

When your program is delivered on a diÃerent operating system, fonts types

get translated as shown in the following table.

MS Windows Font UNIX Font

speciÕc font name ! speciÕc font name

Arial ! lucida

Courier New ! courier

Times New Roman RŒ! timesTM

MS Mincho (Kanji) ! Gothic (Kanji)

all other fonts ! lucida

Arial all other fonts

As you can see from the table above, it's best to use a font type that is

common to both systems, or else use Arial, Courier New, and Times New

Roman on Windows and lucida, courier, and times on UNIX. These fonts are

the most common and they translate well. Note that Courier New and courier

are the only non-proportional fonts in the list above.

N O T E

Arial and Courier New are narrower fonts than lucida and courier. So if you create your program

on Windows and use Arial and Courier New, you must \over size" your objects so that when your

program is run on UNIX, the text Õts on the object.

Conversely, if you create your program on UNIX and use lucida and courier, when your program is

loaded on Windows there will be extra space around the text.

6-6

Preparing a Program for Distribution to Others

Building a Panel to Run on Multiple Platforms

When Transferring a

Program Between

Windows Systems

It's best to use fonts you know will be on the destination machine when

creating the Panel View.

To Õnd the fonts that are available from Windows (on the destination system),

follow these steps:

1. From the Main group select Control Panel.

2. Select Fonts.

3. You'll see a list of all the fonts available on the system.

4. HP VEE uses only TrueTypeTM fonts in regular, bold, italic, and bold italic

styles (styles such as half bold are not supported in HP VEE).

HP VEE supports ASCII, Symbol, and Kanji character sets.

When Transferring a

Program Between UNIX

Systems

It's best to use fonts you know will be on the destination machine when

creating the Panel View.

To Õnd the fonts that are available from UNIX (on the destination system),

follow these steps:

1. Run xlsfonts | more from the command line.

2. You'll see a list with each font containing many speciÕcations on the same

line. Those with the last Õeld of iso8859-x, symbol, or japanese-15

are fonts that HP VEE uses. Unless you're on an older version of X11 (R4

or older), all these fonts are scalable (i.e., all font sizes are available).

6-7

Preparing a Program for Distribution to Others

Building a Panel to Run on Multiple Platforms

To Choose Colors for Multiple Platforms

Generally, Colors Are the Same

Generally, there is no problem with color when transferring your program between UNIX systems or

Window systems with S-VGA (800-by-600) or higher resolution. The colors on the destination system

are the same as on the development system. The only diÃerences are the monitor resolution and other

monitor characteristics (such as brightness).

When Transferring a

Program to a VGA

Windows System

When your development system has 256 or more colors available and then

you take your program to a system with a VGA (16-color) system, all the

colors will exist on the VGA system, but some will be dithered. Avoid using

the colors that dither the most; they are:

– Blue Gray

– Light Blue Gray

– Medium Light Gray

– Beige

– Light Beige

– Lightest Gray

– Dark Gold

When Transferring a

Program Between UNIX

Systems

There is a Õnite number of colors that can be displayed on a UNIX system.

For example, a system could display 256 diÃerent colors at one time - the

colors themselves vary as diÃerent applications request speciÕc colors when

starting, and release them when done.

When applications ask for the colors they need, there are usually enough

colors to give them. But sometimes all the colors have been allocated, so the

next application that asks for colors may not get the colors it wants.

A bitmap with many colors may use up large amounts of the available colors

in the system.

6-8

Preparing a Program for Distribution to Others

Building a Panel to Run on Multiple Platforms

HP VEE asks for the colors it needs. If there are not enough colors available,

HP VEE checks the other applications on the system and displays an existing

color that is close to the one needed.

So if there are many colorful bitmaps and color-intensive applications running

on the destination system, the colors in your program may not look exactly

as you speciÕed. If you have bitmaps in your program, they may not display

using all the correct colors. If this is a problem for you, you may want to shut

down these applications or not display these bitmaps before running HP VEE.

6-9

Building a Panel With Non-English Text

To build a panel with non-English text you need to have your environment

set up to display non-English characters. For information on how to do this,

refer to HP VEE Advanced Programming Techniques.

There are a few things in HP VEE that are in English and cannot change on

your panel:

– Some objects have English text. For example, Data ¡¡) Selection

Control ¡¡) Pop-Up List. When the list is popped up, the title of the

pop up is Make Selection. The buttons are OK and Cancel.

– The menu choices in the Panel View are in English, as are the associated

dialog boxes, such as Open, Save, and Save As.

– The object menu choices are in English.

After setting the environment to display non-English characters, you can

type non-English text in HP VEE in any place you can type English text. For

example, Labels, Constant objects, titles on objects, Confirm (OK) buttons,

and Dialog Box objects (and the buttons on them).

6-10

Preventing Program Changes

When delivering a program for others to run, you generally don't want to let

them modify it. There are two basic ways to prevent accidental modiÕcation:

– File ¡¡) Secure - When Secure is selected, the program's Detail View

is deleted. The user can Open and run the secured version the same way

as the original program, but there is no Detail View. Because there is no

\Unsecure", you must save the unsecured version before securing it.

– -r Õle name - This command line option is used when running an HP VEE

program. When HP VEE starts, it loads the program in Õle name, and runs

the program. As soon as the program is done, HP VEE exits. If you use this

option, you need to save your program from the Panel View so that your

users see the panel as the program executes.

The table below compares the diÃerences between using Secure and the -r

command line option.

Comparing Secure with -r

Secure -r Õlename

Highest level of security. Lower level of security. The appearance

of the Detail View can be modiÕed if the

Panel/Detail buttons are available

(see the note below).

The Secured Õle is a separate Õle

from your program Õle, so you have

two Õles to maintain.

The program Õle is run, so you have

only one Õle to maintain.

The Secured Õle loads faster than

the program Õle because it is a

smaller Õle.

The program Õle loads slower than the

Secured Õle because it is a larger Õle.

The user can pause, stop, and run

the program.

The user does not have control over the

program execution. When the program

stops running, the window goes away.

The user has no control over this.

There is no Panel/Detail button

(the user can't access the Detail

View).

The Panel/Detail button is available

(unless -notoolbar is also speciÕed -

see the note on the next page).

6-11

Preparing a Program for Distribution to Others

Preventing Program Changes

Objects can't be moved, resized, or

deleted.

Objects can't be moved, resized, or

deleted on the Panel View, but from

the Detail View, the following object

menu choices are available: Move, Size,

Minimize, Help, Edit Properties,

and Edit Description.

There is no access to object menu

choices.

There is access to object menu choices

such as Zoom, Auto Scale, and Clear

Control.

The File menu is the only menu

available.

No Panel View menus are available.

The File menu choices available

are: New, Open, Save, Save As,

Show Description, Print

Screen, and Exit.

No Panel View menu choices are

available.

N O T E

When using the -r command line option, you may also want to use the -notoolbar command

line option to prevent the user from having access to the Panel and Detail buttons. This

prevents the user from accessing the Detail View and making any changes.

N O T E

When using the -r command line option, if an error occurs, the user will see the program error

message boxes. When the user presses ÄOKÅ, the error message box closes, the program stops, and

the window closes.

To prevent the user from seeing error messages, use the command line option -noerrdisp. If

the program does not run due to an error, HP VEE exits immediately without displaying an error

message.

6-12

Preparing a Program for Distribution to Others

Preventing Program Changes

To Prevent Program Changes

The following list contains some tips to use when getting ready to deliver

your program:

– To prevent users from editing text in Note Pad objects, turn oÃ editing for

the Note Pad. From the Panel View, select the object's Properties dialog

box; in the Editing group, unselect the Enabled check box.

– To prevent users from changing maximum and minimum values on

Slider, Meter, Thermometer, Fill Bar, and Tank objects, add control

pins for Max Value and Min Value.

– To prevent users from moving UserObject or UserFunction Pop-Up Panels,

use a UserFunction Panel instead and display it programmatically with the

showPanel() object. Refer to \Building a Status Panel" in Chapter 5 for

details about showPanel().

– To prevent users from changing the scale on HP VEE graphical Display

objects, change the Layout. From the Panel View, select the object's

Properties dialog box; in the Layout group, select Graph Only or Scales.

– To prevent any of the HP VEE default colors and fonts on the destination

system from being used, save the program with all your default colors and

fonts.

1. Select File ¡¡) Edit Default Preferences.

2. Select the Save Default Colors/Fonts with Program check box.

3. Click OK.

4. Select File ¡¡) Save.

All the colors and fonts used in your program are now explicitly saved

in your program.

6-13

Preparing a Program for Distribution to Others

Preventing Program Changes

To Secure a Program

If you decide to Secure your program before distributing it, follow these

steps:

1. Select File ¡¡) Save to save any changes to the unsecured program Õle.

Caution

If you do not save these changes, the secured Õle will be out of synchronization with the unsecured

version. You will have program changes in the secured version that are not in the unsecured version.

2. Select File ¡¡) Secure.

Now you see just the secured Panel View.

3. Select File ¡¡) Save to save the secured program Õle.

Caution

There is no way to unsecure a Õle; you must save the unsecured version separately.

Make sure you save the secured version to a diÃerent Õle name than the unsecured version.

For example, save the unsecured program as prog.vee and save the secured program as

prog.sec.

6-14

Preparing a Program for Distribution to Others

Preventing Program Changes

N O T E

Only programs with Panel Views can be secured. If you do not have a Panel View, but have Pop-Up

Panels, or you want your program to run without user intervention, you must Õrst create a Panel View

by adding an object to the panel as described in \To Add Objects to a Panel" in Chapter 1. Then

delete the object from the Panel View as described in \To Delete Objects from a Panel" in Chapter 1.

The Panel View will remain. Follow the steps listed above to secure the program.

To Re-Secure a Program

When distributing a Secured program to your users, each time you change

the original program, you must save it secured again. and redistribute it.

Refer to \To Secure a Program" earlier in this chapter.

To Secure a UserObject

When you're distributing a UserObject for others to use, you may want to

Secure the UserObject so that only the icon view or Panel View is available

to them.

1. From the UserObject's object menu, select Secure.

2. You'll see a dialog box prompting you to save the unsecured version of the

UserObject.

To save an unsecured version of the UserObject, type the name of the Õle

and click on Save, then secure. Remember, there is no \unsecure" so

6-15

Preparing a Program for Distribution to Others

Preventing Program Changes

you must save the unsecured version of a UserObject so you can edit it in

the future.

If the program containing the UserObject has already been saved, or

you've saved the UserObject via File ¡¡) Save Objects, you may not

want to save the UserObject again. In this case, select Secure without

saving.

If the UserObject had a Panel View, now only the Panel View exists. If the

UserObject did not have a Panel View, only the icon view exists.

3. Now save the secured UserObject.

Select the UserObject by clicking on it (so that it has a shadow). Select

File ¡¡) Save Objects. Make sure you save it to a diÃerent Õle name

than the unsecured UserObject.

4. When others want to use the secured UserObject, they select File ¡¡)

Merge, and then select the Õle name of the secured UserObject. They use

the secured UserObject in the program just like any other object.

6-16

Creating a Distribution Package

Now your program is complete. You know the colors and fonts used will

work on the destination system. You've decided how to prevent users from

accidentally modifying your program (Secure vs. -r).

This section explains the Õles you need and some methods that allow users to

run your application easily.

To Include All Needed Files

When distributing your program, you need to include your instrument

conÕguration Õle. It is located in C:\VEE\VEE.IO on Windows and

$HOME/.veeio on UNIX. Other Õles you must include (if you use them) are:

– Data Õles.

– *.cid Õles for instrument drivers you've written.

– *.cid Õles for instrument drivers not installed on the destination system.

– Graphics Õles you've created.

– DLLs or compiled functions that you call.

6-17

Preparing a Program for Distribution to Others

Creating a Distribution Package

To Create an Application Icon in Windows

It is convenient for your users to double-click on a program icon to start up

HP VEE and your program. To set up the icon, follow these steps on the

destination system.

1. Create a group for your application.

From the Windows Program Manager, select File ¡¡) New. Select

Program Group and click OK.

2. Type the title of your group in the Description Õeld and click OK. The

group is now created.

3. Make sure your group is active (with the highlighted title bar).

4. From the Windows Program Manager, select File ¡¡) New. Select

Program Item and click OK.

5. Type the name of the icon into the Description Õeld.

6. Type the HP VEE command line into the Command Line Õeld. It could look

something like C:\VEE\VEE.EXE -r -notoolbar MY_APP.VEE. The entire

list of HP VEE command line options are listed in How To Use HP VEE.

7. Specify a Working Directory, if needed.

8. Click on Change Icon to select an icon. If you have a *.ICO Õle, you

can select it by using Browse. Or you can use the HP VEE icon which is

located in C:\VEE\VEEY3.DLL. You can also pick an icon from the set that

is included by Microsoft. Click OK.

9. Click OK. The icon is displayed in the group. When a user double-clicks on

it, your application will be launched.

For details about this procedure, refer to the MS Windows documentation and

online help.

6-18

Preparing a Program for Distribution to Others

Creating a Distribution Package

To Create an Application Icon in VUE

It is convenient for your users to double-click on a program icon to start up

HP VEE and your program. To set up the icon, follow these steps on the

destination system:

1. Select the Personal Toolbox by double-clicking on the Toolbox on the

Front Panel.

2. Select the CreateAction icon.

3. Type the name of the icon in the Name: Õeld.

4. Type the HP VEE command line into the Command Line Õeld. It could

look something like veetest -r -notoolbar ~/apps/myprog.vee. The

entire list of HP VEE command line options are listed in How To Use HP

VEE.

5. Select a Window Type of X Windows. HP VEE creates its own window.

6. If you've created an icon to run your application, type the name in the

Large Icon and/or the Small Icon Õelds. Or you can use the HP VEE

icon which is located in /usr/lib/veetest/config/vee.xpm (or

/usr/lib/veerun/config/vee.xpm if the destination system is using

HP VEE RunOnly).

7. Click Apply.

8. Verify the icon that was created does what you want it to do.

9. Once the icon is veriÕed, click Close in the CreateAction dialog box.

For details about this procedure, refer to the HP VUE documentation and

online help.

6-19

Preparing a Program for Distribution to Others

Creating a Distribution Package

A

RGB Values for HP VEE

Colors

RGB Values for HP VEE Colors

Use these RGB values when you're making a custom bitmap and need to

match an HP VEE color, for example, to match a panel background color.

These RGB values may change in future releases of HP VEE

Warning Red r:230 g:30 b:30

Dark Red r:128 g:0 b:0

Brown r:150 g:110 b:75

Dark Brown r:96 g:64 b:64

Dark Beige r:105 g:95 b:80

Black r:0 g:0 b:0

Darkest Gray r:96 g:96 b:96

Red r:255 g:0 b:0

Hot Pink r:255 g:0 b:128

Dark Magenta r:128 g:0 b:128

Dark Purple r:90 g:0 b:170

Dark Blue r:0 g:0 b:128

Beige r:148 g:139 b:123

Dark Gray r:128 g:128 b:128

Light Red r:255 g:128 b:128

Pink r:255 g:128 b:192

Magenta r:255 g:0 b:255

Purple r:128 g:0 b:255

Med Dark Blue r:70 g:0 b:240

Blue r:0 g:0 b:255

Med Dark Gray r:160 g:160 b:164

A-2

RGB Values for HP VEE Colors

Creating a Distribution Package

Gold r:176 g:145 b:91

Orange r:255 g:128 b:0

Light Magenta r:255 g:128 b:255

Lavender r:128 g:128 b:255

Dark Green r:0 g:96 b:0

Med Light Blue r:0 g:128 b:255

Gray r:192 g:192 b:192

Light Gold r:203 g:182 b:128

Dark Gold r:149 g:108 b:54

Green r:0 g:193 b:19

Med Dark Green r:0 g:130 b:70

Dark Teal r:0 g:128 b:128

Light Blue r:96 g:192 b:255

Med Light Gray r:208 g:208 b:208

Yellow r:255 g:255 b:0

Dark Yellow r:192 g:192 b:0

Light Teal r:0 g:192 b:192

Teal r:0 g:160 b:160

Blue Gray r:120 g:184 b:210

Light Blue Gray r:195 g:211 b:219

Light Gray r:224 g:224 b:224

Light Yellow r:255 g:255 b:128

Yellow Green r:128 g:255 b:0

Light Green r:128 g:255 b:128

Cyan r:0 g:255 b:255

Light Beige r:220 g:211 b:184

White r:255 g:255 b:255

Lightest Gray r:240 g:240 b:240

A-3

RGB Values for HP VEE Colors

Creating a Distribution Package

Index

Index

A accessing

object menus, 1-5, 3-3

Actual

display mode, 1-11, 1-12

adding

control pins to prevent changes, 6-13

labels to panels, 1-9

objects to nested UserObject Panels, 2-9

objects to panels, 1-4

pictures to panels, 1-11

UserObject Panels to the Main Panel, 2-8

aligning objects, 1-9

ÄAltÅ, 3-6, 6-4

animate.vee example program, 5-23

animating

pictures, 5-22

using multiple images, 5-24

appearance

of object borders, 1-7

Appearance group properties, 1-7

ASCII data Õles, 6-4

assigning

ÄEnterÅ to OK, 3-5

ÄEscÅ to OK, 3-5

F10 to Confirm (OK), 6-4

function keys to OK, 3-6

attention

calling to objects, 4-11

Auto Execute, 3-8, 3-12

B background

adding pictures to panels, 1-11

changing panel color, 2-5, 5-22

color choices, 4-4, 4-6

Beep, 4-12

binary data Õles, 6-4

bitmap, 1-12

Border, 1-7

borders

when sizing objects, 1-8

building

custom dialog boxes, 5-8

Index-2

Creating a Distribution Package

Main Panel, 1-4

panels, 1-4

panels with non-English text, 6-10

Pop-Up Panels, 2-5

programs to run on multiple systems, 6-3

self-modifying panels, 5-14

status panels, 2-13, 5-16

UserFunction Panels, 2-12{14

UserFunction Pop-Up Panels, 2-13

UserObject Panels, 2-3{11

VUE application icon, 6-19

Windows application icon, 6-18

Button, 1-7

C caching

pictures, 1-13, 5-24

Call Function, 5-18

calling

attention to objects, 4-11

Centered

display mode, 1-11, 1-12

changing

grid size, 1-10

image Õles, 1-13

Label text, 1-9

Label text justiÕcation, 1-9

location of Pop-Up Panels, 2-7

location of UserFunction Pop-Up Panels, 2-14

object border, 1-7

object colors on a panel, 1-6

object fonts on a panel, 1-6

panel background color, 2-5

Pop-Up Panels size, 2-7

the appearance of a panel, 1-6

UserFunction Pop-Up Panels size, 2-14

values via the keyboard , 3-11

Check Box, 1-7

*.cid, 6-17

Circular, 1-6

Color Alarm, 4-12

properties, 1-6

colors

as a redundant cue, 4-4

changing on a panel, 1-6

choosing for cross-system delivery, 6-8

dithered, 6-8

keeping defaults with programs, 6-13

label, 1-9

Index-3

Creating a Distribution Package

printing, 4-5

RGB values for, A-2

selecting, 4-6

setting for Dialog Box object panels, 5-4

UNIX system, 6-8

used for backgrounds, 4-4, 4-6

used for text, 4-6

uses for, 4-5

using, 4-4

using default, 1-6

VGA systems, 6-8

Colors, 1-7

colors.vee example program, 4-7

command line options

-geometry, 6-4

-noerrdisp, 6-12

-notoolbar, 6-12

-r, 6-11, 6-12, 6-18, 6-19

-toolbar, 6-18, 6-19

Confirm (OK), 6-10

assigning ÄEnterÅ to, 3-5

assigning ÄEscÅ to, 3-5

assigning F10 to, 6-4

assigning function keys to, 3-6

displaying Pop-Up Panels, 2-6

selecting, 3-11

tabbing to, 3-9

Constant objects, 6-10

changing, 3-11

constraint checking

in Dialog Box objects, 5-4

with custom dialog boxes, 5-13

CreateAction, 6-19

creating

panels, 1-4

VUE application icon, 6-19

Windows application icon, 6-18

cross-platform development, 6-3

choosing colors for, 6-8

choosing fonts for, 6-5

ÄCtrlÅ+ÄCÅ , 3-12

custom button text

in Dialog Box objects, 5-4

custom dialog boxes, 2-5

building, 5-8

constraint checking with, 5-13

diÃerences from Dialog Box objects, 5-3

outputting a value on timeout, 5-12

self-modifying, 5-14

Index-4

Creating a Distribution Package

setting a timeout on, 5-10

cutting objects from a panel, 1-5

Cyclic Button, 1-7

selecting, 3-11

D data Õles

binary vs. ASCII, 6-4

Debug Animation, 5-10

default

colors, 1-6

colors and fonts, 1-6

colors and fonts saved in program, 6-13

fonts, 1-6

label color, 1-9

Delete

accessing while program is running, 1-5

deleting

objects from a panel, 1-5

objects from nested UserObject Panels, 2-10

UserObject Panels from Main Panel, 2-11

delivering a program on diÃerent systems, 6-3

Detail View

appearance links with Panel View objects, 1-6

contrasting with Panel View, 1-2

switching to Panel View, 1-4

switching to UserFunction Panel View, 2-13

switching to UserObject Panel View, 2-4

dialog1.vee example program, 5-9

dialog2.vee example program, 5-11

dialog3.vee example program, 5-12

dialog4.vee example programs, 5-13

dialog5.vee example program, 5-14

Dialog Box objects, 4-12, 5-3, 6-10

built-in features, 5-4

diÃerences from custom dialog boxes, 5-3

focus on, 3-4

panel properties, 5-4

using the keyboard with, 5-5

diÃerences between Dialog Box objects and custom dialog boxes, 5-3

diÃerences between showPanel() and Show Panel On Execute, 5-16

displaying

Pop-Up Panels, 2-6

status panels, 5-17

UserFunction Panels, 2-12

UserObject Panels, 2-3

display modes, 1-11, 1-12

distribution Õles, 6-17

dithered colors, 6-8

Index-5

Creating a Distribution Package

Drop-Down List, 1-7

selecting, 3-11

E edit Õelds, 3-11, 3-12

tabbing through, 3-4

Editing Enabled property, 1-7

Edit Properties

accessing while program is running, 1-5

ÄEnterÅ, 3-11, 6-4

assigning to OK, 3-5

getting focus, 3-4

ÄEscÅ, 3-11

assigning to OK, 3-5

getting focus, 3-4

example programs

animate.vee, 5-23

colors.vee, 4-7

dialog1.vee, 5-9

dialog2.vee, 5-11

dialog3.vee, 5-12

dialog4.vee, 5-13

dialog5.vee, 5-14

mfgtest.vee, 5-21

ocean.vee, 5-24

slots.vee, 5-24

status.vee, 5-19

timeout.vee, 5-6

wheel.vee, 5-24

whichos.vee, 6-3

Execution Flow, 5-10

Exit UserObject, 5-8

F F10, 3-6, 6-4

Õelds

tabbing through, 3-10

Õles needed, 6-17

Fill Bar, 6-13

properties, 1-6

Flat

border, 1-7

focus

deÕnition of, 3-3

on objects, 3-4

on OK, 3-4

on Pop-Up Panels, 3-4

tabbing to, 3-4

when selecting, 3-11

Index-6

Creating a Distribution Package

with Dialog Box objects, 3-4

fonts

available on UNIX, 6-7

available on Windows, 6-7

changing on a panel, 1-6

choosing for cross-system delivery, 6-5

keeping defaults with programs, 6-13

logical font size, 4-8, 6-5

non-proportional, 4-8, 6-6

proportional, 4-8, 6-6

setting for Dialog Box object panels, 5-4

size, 4-8, 6-5

style, 6-6

type, 6-5

UNIX and Windows, 6-6

using, 4-8

using default, 1-6

when changing on a panel, 1-6

Format group properties, 1-7

formatting

in Dialog Box objects, 5-4

Formula, 5-18

Front Panel, 6-19

Function Key group, 3-6

function keys

assigning to OK, 3-6

getting focus, 3-4

G -geometry command line option, 6-4

GIF, 1-12

giving

focus to objects, 3-4

graphic images

adding to a panel, 1-11

animating, 5-22

caching, 1-13, 5-24

formats supported, 1-12

graphics images

including Õles for distribution, 6-17

Graph Only, 1-6, 6-13

grid

setting detent on, 1-10

using to align objects, 1-9

guidelines

for user interfaces, 4-2{12

Index-7

Creating a Distribution Package

H height

matching object's, 1-11

Height, 1-7

hidePanel(), 5-18

when animating, 5-22

hiding

status panels, 5-18

High Color, 1-7

Horizontal, 1-6

Horizontal Paddle, 1-7

Horizontal Rocker, 1-7

Horizontal Slide, 1-7

I *.icn, 1-12

*.ICO, 6-18

icons

vee.xpm, 6-19

VEEY3.DLL, 6-18

Icon tab properties, 1-7

images

adding to a panel, 1-11

animating, 5-22

caching, 1-13, 5-24

formats supported, 1-12

including Õles for distribution, 6-17

Independent Panel

deÕnition of, 2-3

Indicator object

properties, 1-6

Indicator objects, 6-13

inherating default colors and fonts, 1-6

instrument conÕguration Õle, 6-17

iso8859-x, 6-7

J japanese-15, 6-7

K keeping

Pop-Up Panels displayed, 2-6

keyboard

navigation, 3-8

operations, 3-3

selection techniques, 3-11

using with Dialog Box objects, 5-5

Index-8

Creating a Distribution Package

L Label, 6-10

changing justiÕcation, 1-9

changing text, 1-9

labeling areas, 1-9

Label Justification group properties, 1-6

laying out

panels, 4-11

Layout

group properties, 1-6, 6-13

Limits group properties, 1-7

lining up objects, 1-9

links between Panel View and Detail View objects, 1-6

List, 1-7

selecting, 3-11

List Box, 5-19

location

of Pop-Up Panels, 2-7

of status panels, 5-17

of UserFunction Pop-Up Panels, 2-14

logical font size, 4-8, 6-5

Low Color, 1-7

M Main Panel

adding objects to, 1-4

adding UserObject Panels to, 2-8

building, 1-4

deÕnition of, 1-3

deleting UserObject Panels from, 2-11

switching between Datail and Panel Views, 1-4

marquee

deÕnition of, 3-3

matching object sizes, 1-11

merging

secured UserObjects, 6-16

Meter, 6-13

properties, 1-6

mfgtest.vee example program, 5-21

Mid Color, 1-7

mono-spaced fonts, 4-8

mouseless operations, 3-3

Move

accessing while program is running, 1-5

multiple Õelds

selecting, 3-11

tabbing through, 3-10

Index-9

Creating a Distribution Package

N navigating

via keyboard, 3-8

needed Õles, 6-17

nested UserObject Panels

adding objects to, 2-9

creating, 2-8

deÕnition of, 2-3

deleting objects from, 2-10

-noerrdisp, 6-12

None

border, 1-7

non-English text, 6-10

non-proportional fonts, 4-8, 6-6

Note Pad, 1-7

disabling editing on, 6-13

-notoolbar, 6-12, 6-18, 6-19

O object menu

accessing, 3-3

accessing while program is running, 1-5

objects

adding to nested UserObject Panels, 2-9

adding to panels, 1-4

aligning, 1-9

calling attention to, 4-11

changing border of, 1-7

deleting from a panel, 1-5

deleting from nested UserObject Panels, 2-10

giving focus to, 3-4

matching sizes of, 1-11

menu access, 3-3

menu access while program is running, 1-5

resizing, 1-9

selecting, 1-4

selecting with multiple Õelds, 3-11

sizing with borders, 1-8

tabbing through multiple Õelds, 3-10

ocean.vee example program, 5-24

OK, 6-10

assigning ÄEnterÅ to, 3-5

assigning ÄEscÅ to, 3-5

assigning function keys to, 3-6

displaying Pop-Up Panels, 2-6

getting focus, 3-4

selecting, 3-11

tabbing to, 3-9

operating system-dependent features

using , 6-3

Index-10

Creating a Distribution Package

order of tabbing, 3-8

outputting

a value on timeout, 5-6, 5-12

P panels

adding a label to, 1-9

adding objects to, 1-4

adding pictures to, 1-11

aligning objects on, 1-9

building UserFunction, 2-12{14

building UserObject, 2-3{11

changing grid size on, 1-10

changing the appearance of, 1-6

deleting objects from, 1-5

layout, 4-11

self-modifying, 5-14

tabbing through, 3-10

user interface guidelines, 4-2{12

Panel View

appearance links with Detail View objects, 1-6

available after securing, 6-14

building, 1-4

changing the appearance of, 1-6

contrasting with Detail View, 1-2

deÕnition of, 1-2

deleting objects from, 1-5

switching to Detail View, 1-4

switching to UserFunction Detail View, 2-13

switching to UserObject Detail View, 2-4

window size, 1-4

Panel View Operations group, 3-5

password masking

in Dialog Box objects, 5-4

pausing a program, 1-5

Personal Toolbox, 6-19

picking

colors, 4-6

Picture, 1-7, 4-12

pictures

adding to panels, 1-11

animating, 5-22

caching, 1-13, 5-24

formats supported, 1-12

Pop-Up List, 1-7

selecting , 3-11

Pop-Up Panels

building, 2-5, 2-13

building a custom dialog box with, 5-8

Index-11

Creating a Distribution Package

changing location of, 2-7, 2-14

deÕnition of, 2-3

diÃerences from Dialog Box objects, 5-3

focus on, 3-4

keeping displayed, 2-6

resizing, 2-7, 2-14

tabbing through, 3-10

Position, 1-7

positioning

objects, 1-9

Pop-Up Panels, 2-7

status panels, 5-17

text on labels, 1-9

UserFunction Pop-Up Panels, 2-14

preventing

Note Pad editing, 6-13

panel moving, 6-13

program changing, 6-11, 6-13

scale changing, 6-13

printing

colors screens, 4-5

program

pausing, 1-5

stopping, 1-5

Program Group, 6-18

Program Icon, 6-18

properties

linked between Panel View and Detail View, 1-6

not linked between Panel View and Detail View, 1-6

proportional fonts, 4-8, 6-6

R -r, 6-12, 6-18, 6-19

deÕnition of, 6-11

diÃerences from Secure, 6-11

Radio Buttons, 1-7

selecting, 3-11

Raised

border, 1-7

Rectangular, 1-6

resecuring programs, 6-15

resizing

objects, 1-9

Pop-Up Panels, 2-7

status panels , 5-17

UserFunction Pop-Up Panels, 2-14

ÄReturnÅ, 6-4

assigning to OK, 3-5

same as ÄEnterÅ on Windows, 3-5

Index-12

Creating a Distribution Package

RGB color values, A-2

S sans serif fonts, 4-9

Save Default Colors/Fonts with Program, 6-13

Scaled, 1-6

display mode, 1-11, 1-12

Scales, 1-6, 6-13

Scales & Sliders, 1-6

screen resolution, 6-4

Secure

deÕnition of, 6-11

diÃerences from -r, 6-11

securing

keep separate Õles, 6-14

programs, 6-14

UserObject Panels, 6-15

selecting

background color, 4-4, 4-6

background panel color, 5-22

colors, 4-6

font size, 4-8

multiple Õeld objects , 3-11

objects, 1-4

text color, 4-6

via the keyboard, 3-11

Selection Control objects, 1-7, 3-4

changing values on, 3-11

Sequencer, 5-18

serif fonts, 4-9

setting

a picture Õle, 1-11

colors and fonts for Dialog Box object panels, 5-4

environment for non-English text, 6-10

objects to a speciÕc size, 1-11

picture diaplay modes, 1-11, 1-12

status panel location, 5-17

status panel size, 5-17

timouts, 5-10

Show 3-D Border, 1-6

Show Border, 2-5, 2-7

Show Caption, 1-6

Show Digital Display, 1-6

showing

status panels, 5-17

showPanel(), 2-13, 6-13

diÃerences from Show Panel On Execute, 5-16

when animating, 5-22

Show Panel on Execute, 2-5, 2-13

Index-13

Creating a Distribution Package

Show Terminals, 2-7, 2-14

Show Title, 1-7

Show Title Bar, 1-6, 2-5, 2-7

Size, 1-7

accessing while program is running, 1-5

sizes

of fonts, 6-5

of objects, 6-5

of panels , 6-4

of Panel View, 1-4

sizing

objects, 1-9

objects to same size, 1-11

Pop-Up Panels, 2-7

UserFunction Pop-Up Panels, 2-14

Slider, 3-4, 6-13

properties, 1-6

slots.vee example program, 5-24

ÄSpaceÅ, 3-11

Start

selecting, 3-11

status panels, 2-13

building, 5-16

displaying, 5-17

example of, 5-19

hiding, 5-18

positioning, 5-17

sizing, 5-17

updating, 5-18

status.vee example program, 5-19

stopping a program, 1-5

Sub-Range Configuration group properties, 1-7

Sunken

border, 1-7

switching

between Detail and Panel Views on Main Panel, 1-4

between Detail and Panel Views on UserFunction Panel, 2-13

between Detail and Panel Views on UserObject Panel, 2-4

symbol, 6-7

T tabbing

examples of, 3-8

OK, 3-9

order, 3-8

through edit Õelds, 3-4

through multiple Õelds, 3-10

through Pop-Up Panels, 3-10

through UserObject Panels, 3-10

Index-14

Creating a Distribution Package

to give focus, 3-4

Tank, 6-13

properties, 1-6

text

color choices, 4-6

text justiÕcation

on labels, 1-9

Thermometer, 6-13

properties, 1-6

Tiled

display mode, 1-11, 1-12

timeout

in Dialog Box objects, 5-4

outputting a value, 5-6, 5-12

setting on a custom dialog box, 5-10

timeout.vee example program, 5-6

Toggle Control objects, 1-6, 1-7, 3-4

changing state of, 3-11

Toolbox, 6-19

Traces & Scales, 1-6

transferring programs

between UNIX and Windows, 6-6

between UNIX systems, 6-7, 6-8

between Windows systems, 6-7

to VGA systems, 6-8

TrueType fonts, 6-7

U UNIX

available fonts, 6-7

choosing colors for , 6-8

choosing fonts for, 6-6

command line, 6-19

-geometry, 6-4

graphic formats supported on, 1-12

instrument conÕguration Õle, 6-17

keyboard diÃerences from Windows, 6-4

ÄReturnÅ, 6-4

VUE application icon, 6-19

updating

status panels, 5-18

usability guidelines, 4-2{12

UserFunction Panels

building, 2-12{14

building Pop-Up, 2-13

building status panels with, 5-16

deÕnition of, 1-3, 2-12

displaying, 2-12

switching between Detail and Panel Views, 2-13

Index-15

Creating a Distribution Package

UserFunction Pop-Up Panels

building custom dialog boxes with , 5-8

changing location of, 2-14

focus on, 3-4

preventing moving, 6-13

resizing, 2-14

tabbing through, 3-10

user interface guidelines, 4-2{12

UserObject Panels

adding objects to nested, 2-9

adding to the Main Panel, 2-8

building, 2-3{11

building Pop-Up, 2-5

deÕnition of, 1-3, 2-3

deleting from Main Panel, 2-11

deleting objects from nested, 2-10

displaying, 2-3

merging, 6-16

nesting, 2-8

securing, 6-15

switching between Detail and Panel Views, 2-4

tabbing through, 3-10

UserObject Pop-Up Panels

building custom dialog boxes with, 5-8

focus on, 3-4

preventing moving, 6-13

tabbing through, 3-10

using

colors, 4-4

Dialog Box objects, 5-3

fonts, 4-8

operation system-dependent features, 6-3

V .veeio, 6-17

VEE.IO, 6-17

vee.xpm, 6-19

VEEY3.DLL, 6-18

Vertical, 1-6

Vertical Paddle, 1-7

Vertical Rocker, 1-7

Vertical Slide, 1-7

Index-16

Creating a Distribution Package

W Wait for Input, 3-4, 3-12, 5-14

wheel.vee example program, 5-24

whichOS(), 6-3

whichos.vee example program, 6-3

whichPlatform(), 6-3

width

matching object's, 1-11

Width, 1-7

Windows

application icon, 6-18

available fonts, 6-7

choosing fonts for, 6-6

command line, 6-18

ÄEnterÅ, 6-4

graphic formats supported on, 1-12

instrument conÕguration Õle, 6-17

keyboard diÃerences from UNIX, 6-4

VGA systems, 6-8

window size

of Panel View, 1-4

X xlsfonts, 6-7

*.xpm, 1-12

*.xwd, 1-12

Index-17

Creating a Distribution Package

