
How to Use HP VEE





Notice

The information contained in this document is subject to change without

notice.

Hewlett-Packard Company (HP) shall not be liable for any errors contained

in this document. HP makes no warranties of any kind with regard to this

document, whether express or implied. HP speciÕcally disclaims the implied

warranties of merchantability and Õtness for a particular purpose. HP shall

not be liable for any direct, indirect, special, incidental, or consequential

damages, whether based on contract, tort, or any other legal theory, in

connection with the furnishing of this document or the use of the information

in this document.

Warranty Information

A copy of the speciÕc warranty terms applicable to your Hewlett-Packard

product can be obtained from your local Sales and Service Oœce.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to

restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical

Data and Computer Software clause in DFARS 252.227-7013.

Hewlett-Packard Company

3000 Hanover Street

Palo Alto, CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are as set

forth in FAR 52.227-19(c)(1,2).

Printing History

Edition 1 - January 1995



cŒ Copyright 1995 Hewlett-Packard Company. All rights reserved.

This document contains information which is protected by copyright. All

rights are reserved. Reproduction, adaptation, or translation without prior

written permission is prohibited, except as allowed under the copyright laws.

Microsoft RŒ and MS-DOS RŒ are U.S. registered trademarks of Microsoft

Corporation.

Windows or MS Windows is a U.S. trademark of Microsoft Corporation.

UNIX RŒ is a registered trademark in the United States and other countries,

licensed exclusively through X/Open Company Limited.

PostScript
TM

is a trademark of Adobe Systems Incorporated which may be

registered in certain jurisdictions.

Lotus RŒ and 1-2-3 RŒ are U.S. registered trademarks of Lotus Development

Corporation.



About this Manual

This manual is your \task-oriented" guide to using HP VEE. Before you

use this manual, you should learn the basics of HP VEE by reading Getting

Started with HP VEE and completing the exercises in that manual. You

should also be familiar with your computer and its operating system. Refer to

the documentation that came with your computer for further information.

Once you have learned the basics, use this manual to quickly look up how

to do a particular task with HP VEE. You needn't read this manual from

beginning to end | just use it as needed. Chapter 1 covers some \HP VEE

Concepts" to get you started. The rest of this manual (Chapters 2 through 9)

consists of short task sections with titles like \To Create an Array Constant"

and \To Display a Waveform." Related task sections are organized into larger

sections and chapters to help you quickly Õnd the task that you want to

perform.

Using the Manual Examples:

The program Õles for several of the examples in this manual are provided in

your manual examples directory. This directory is found as follows:

– HP VEE for Windows:

C:\VEE\EXAMPLES\MANUAL

– HP VEE for UNIX:

/usr/lib/veetest/examples/manual/

You can open an example program from the HP VEE online help system.

Refer to \To Open an Example Program File" in Chapter 2 for further

information.

v



Conventions Used in this Manual

This manual uses the following typographical conventions:

Example Represents

HP VEE Reference Italicized words are used for book titles and for emphasis.

File Computer font represents text you will see on the screen,

including menu names, features, buttons, or text you have to

enter.

dir Õlename In this context, the word in computer font represents text you

type exactly as shown, and the italicized word represents an

argument that you must replace with an actual value.

File ¡¡) Open The \¡¡)" is used in a shorthand notation to show the

location of HP VEE features in the menu. For example,

\File ¡¡) Open" means to select the File menu and

then select Open.

Zoom Out | In 2x | In 5x Choices in computer font, separated with a bar (|), indicate

that you should choose one of the options.

ÄReturnÅ The keycap font graphically represents a key on the PC

keyboard.

Press ÄCtrlÅ+ÄOÅ Represents a combination of keys on the PC keyboard that you

should press at the same time.

Dialog Box Bold font indicates the Õrst instance of a word deÕned in the

glossary.

vi



Contents

1. HP VEE Concepts

Understanding Propagation . . . . . . . . . . . . . . 1-3

How Objects Operate . . . . . . . . . . . . . . . 1-3

Basic Propagation Order . . . . . . . . . . . . . . 1-5

Pins and Propagation . . . . . . . . . . . . . . . 1-6

Propagation of Threads and Subthreads . . . . . . . 1-8

Propagation Summary . . . . . . . . . . . . . . . 1-10

Understanding Data Containers . . . . . . . . . . . . 1-11

Data Types . . . . . . . . . . . . . . . . . . . . 1-12

Data Shapes . . . . . . . . . . . . . . . . . . . 1-14

2. The Basics

Starting HP VEE . . . . . . . . . . . . . . . . . . 2-3

To Start HP VEE for Windows . . . . . . . . . . . 2-3

To Start HP VEE on a UNIX Workstation . . . . . . 2-4

To Start HP VEE with Command Line Options . . . . 2-4

Finding Files . . . . . . . . . . . . . . . . . . . . 2-7

To Open an HP VEE Program File . . . . . . . . . 2-7

To Open an Example Program File . . . . . . . . . 2-9

To Merge Objects and Programs from Library Files . . 2-11

Controlling Program Flow . . . . . . . . . . . . . . 2-13

To Start an HP VEE Program . . . . . . . . . . . 2-13

To Branch within an HP VEE Program . . . . . . . 2-14

To Loop Part of an HP VEE Program . . . . . . . . 2-17

To Stop an HP VEE Program . . . . . . . . . . . . 2-24

Setting Colors, Fonts, and Titles . . . . . . . . . . . 2-25

To Change Default Colors . . . . . . . . . . . . . 2-26

To Change Colors for the Work Area . . . . . . . . 2-28

To Change Colors for an Object . . . . . . . . . . . 2-29

To Change Default Fonts . . . . . . . . . . . . . . 2-30

To Change Fonts for an Object . . . . . . . . . . . 2-32

To Change an Object or Work Area Title . . . . . . . 2-33

Using the Keyboard Shortcuts . . . . . . . . . . . . 2-35

To Run, Pause, Step, or Continue an HP VEE Program 2-35

To Open an HP VEE Program File . . . . . . . . . 2-35

To Save an HP VEE Program to a File . . . . . . . . 2-36

Contents-1



To Save an HP VEE Program to a New File . . . . . 2-36

To Exit HP VEE . . . . . . . . . . . . . . . . . . . 2-36

To Raise the Pop-Up Edit Menu . . . . . . . . . . 2-36

To Raise the Pop-Up Object Menu . . . . . . . . . 2-37

To Delete an Object . . . . . . . . . . . . . . . . 2-37

To Delete a Line . . . . . . . . . . . . . . . . . 2-37

To View Data on a Line . . . . . . . . . . . . . . 2-37

To Select Objects . . . . . . . . . . . . . . . . . 2-38

To Add a Data Input Terminal to an Object . . . . . 2-38

To Add a Data Output Terminal to an Object . . . . 2-38

To Delete a Terminal from an Object . . . . . . . . 2-39

To Refresh the HP VEE Window . . . . . . . . . . 2-39

To Print or Copy the HP VEE Window . . . . . . . 2-39

To Cancel an Edit in an Entry Field . . . . . . . . . 2-40

To Cancel Edits in a Dialog Box . . . . . . . . . . 2-40

To Move the Text Cursor . . . . . . . . . . . . . . 2-40

To Scroll the Work Area . . . . . . . . . . . . . . 2-40

To Edit a Transaction . . . . . . . . . . . . . . . 2-41

To Navigate the HP VEE Menu . . . . . . . . . . . 2-42

To Navigate an Operator Interface Panel . . . . . . . 2-43

3. Working with Data

Inputting Data . . . . . . . . . . . . . . . . . . . 3-3

To Enter a Number . . . . . . . . . . . . . . . . 3-3

To Change the Number Format . . . . . . . . . . . 3-4

To Change the Trig Mode . . . . . . . . . . . . . 3-7

To Use a Data Constant . . . . . . . . . . . . . . 3-8

To Use a Data Slider . . . . . . . . . . . . . . . . 3-9

To Use a Data-Selection Object . . . . . . . . . . . 3-10

To Use a Data Input Dialog Box . . . . . . . . . . 3-12

Using Mathematical Expressions . . . . . . . . . . . 3-14

To Enter a Formula . . . . . . . . . . . . . . . . 3-14

To Use the Math and AdvMath Objects . . . . . . . 3-16

To Use Mixed Data Types in an Expression . . . . . . 3-17

To Use an Expression in an If/Then/Else Object . . . 3-18

To Use an Expression in a Transaction . . . . . . . . 3-20

Working with Strings . . . . . . . . . . . . . . . . 3-22

To Find the Length of a String . . . . . . . . . . . 3-22

To Obtain a Substring . . . . . . . . . . . . . . . 3-23

To Concatenate Strings . . . . . . . . . . . . . . 3-24

To Compare Two Strings for Equality . . . . . . . . 3-25

Contents-2



To Convert a Number into a String . . . . . . . . . 3-25

To Convert a String into a Number . . . . . . . . . . . 3-27

Working with Arrays . . . . . . . . . . . . . . . . 3-28

To Create an Array Constant . . . . . . . . . . . . 3-28

To Allocate an Array . . . . . . . . . . . . . . . 3-31

To Change Values in an Array . . . . . . . . . . . 3-36

To Extract Values from an Array . . . . . . . . . . 3-41

To Collect Data into an Array . . . . . . . . . . . 3-43

To Use Arrays or Array Elements in Expressions . . . 3-46

To Build an Array in an Expression . . . . . . . . . 3-49

Working with Records . . . . . . . . . . . . . . . . 3-50

To Create a Record Constant . . . . . . . . . . . . 3-50

To Collect Data into a Record . . . . . . . . . . . 3-54

To Extract a Field from a Record . . . . . . . . . . 3-56

To Change a Field in a Record . . . . . . . . . . . 3-58

To Use a Record in an Expression . . . . . . . . . . 3-61

Working with Global Variables . . . . . . . . . . . . 3-63

To Create a Global Variable . . . . . . . . . . . . 3-63

To Use a Global Variable . . . . . . . . . . . . . . 3-64

To Use a Global Array . . . . . . . . . . . . . . . 3-67

4. Creating and Using Data Files

Storing and Retrieving Data . . . . . . . . . . . . . 4-3

To Create a Data File . . . . . . . . . . . . . . . 4-3

To Edit a File I/O Transaction . . . . . . . . . . . 4-4

To Select a File Name Programmatically . . . . . . . 4-6

To Write Data to a File . . . . . . . . . . . . . . 4-7

To Read Data from a File . . . . . . . . . . . . . 4-10

Using File I/O | Some Examples . . . . . . . . . . . 4-12

To Store and Retrieve a Waveform . . . . . . . . . . 4-12

To Store Data for a Spreadsheet Program . . . . . . 4-14

5. Controlling Instruments

Using Instrument Drivers . . . . . . . . . . . . . . . 5-3

To Load an Instrument Driver . . . . . . . . . . . 5-3

To Use an Instrument Panel Object . . . . . . . . . 5-4

To Read Data with an Instrument Panel Object . . . . 5-8

To Set Up an Additional Instrument . . . . . . . . . 5-13

To Delete an Instrument ConÕguration . . . . . . . . 5-17

To Use a Component Driver Object . . . . . . . . . 5-18

Using Direct I/O . . . . . . . . . . . . . . . . . . 5-20

Contents-3



To Use a Direct I/O Object . . . . . . . . . . . . . 5-20

To Read Data Using Direct I/O . . . . . . . . . . . . . 5-22

Handling Service Requests and Bus Messages . . . . . . 5-24

To Poll HP-IB Instruments . . . . . . . . . . . . . 5-24

To Monitor Bus Messages . . . . . . . . . . . . . 5-26

6. Displaying Data

Displaying Alphanumeric Information . . . . . . . . . 6-3

To Display a Scalar Value . . . . . . . . . . . . . 6-3

To Display an Array of Values . . . . . . . . . . . 6-4

To Display a Series of Values in a Log . . . . . . . . 6-5

Using the Indicator Displays . . . . . . . . . . . . . 6-6

To Show an Analog Display of Data . . . . . . . . . 6-6

To Show a Color Alarm . . . . . . . . . . . . . . 6-8

Graphically Plotting Data . . . . . . . . . . . . . . 6-10

To Plot XY Values . . . . . . . . . . . . . . . . 6-11

To Display a Waveform . . . . . . . . . . . . . . 6-13

To Plot Polar Data . . . . . . . . . . . . . . . . 6-16

To Add a Trace . . . . . . . . . . . . . . . . . . 6-17

To Change the Color of a Trace . . . . . . . . . . . 6-18

To Change the Line Type or Point Symbol of a Trace . 6-19

To Zoom into or out of the Display . . . . . . . . . 6-21

To Change the Grid Type . . . . . . . . . . . . . 6-23

To Set Markers in the Display . . . . . . . . . . . . 6-24

To Automatically Re-Scale the Display . . . . . . . . 6-26

To Clear the Display . . . . . . . . . . . . . . . . 6-27

7. Printing and Plotting Techniques

Printing from HP VEE . . . . . . . . . . . . . . . . 7-3

To Change the Printer Palette . . . . . . . . . . . 7-3

To Set Up a Printer . . . . . . . . . . . . . . . . 7-4

To Print the HP VEE Work Area . . . . . . . . . . 7-6

To Print an Entire HP VEE Program . . . . . . . . 7-8

To Print the Objects in an HP VEE Program . . . . . 7-9

To Send Data to a Printer . . . . . . . . . . . . . 7-10

Plotting XY Displays on a Printer or Plotter . . . . . . 7-12

To Set Up a Plotting Device . . . . . . . . . . . . 7-12

To Plot a Graph . . . . . . . . . . . . . . . . . 7-13

Contents-4



8. Creating Custom Objects and Functions

Creating and Using UserObjects . . . . . . . . . . . . 8-3

Some UserObject Concepts . . . . . . . . . . . . . 8-3

UserObject Features . . . . . . . . . . . . . . . . . 8-4

Contexts and UserObjects . . . . . . . . . . . . 8-5

Propagation and UserObjects . . . . . . . . . . . 8-6

Data Output from a UserObject . . . . . . . . . . 8-7

To Add Objects to the UserObject Work Area . . . . 8-8

To Add Input and Output Terminals to a UserObject . 8-8

To Create a UserObject in a Program . . . . . . . . 8-10

To Create a UserObject from Objects in a Program . . 8-13

To Exit a UserObject Early . . . . . . . . . . . . . 8-15

To Add a Panel View to a UserObject . . . . . . . . 8-17

To Create a Library of UserObjects . . . . . . . . . 8-18

To Secure a UserObject . . . . . . . . . . . . . . 8-19

Creating and Using UserFunctions . . . . . . . . . . . 8-20

To Create a UserFunction . . . . . . . . . . . . . 8-20

To Edit a UserFunction . . . . . . . . . . . . . . 8-22

To Call a UserFunction in a Program . . . . . . . . 8-24

9. Debugging and Optimizing an HP VEE Program

Debugging an HP VEE Program . . . . . . . . . . . 9-3

To View Data Flow and Program Execution . . . . . 9-3

To Set and Delete Breakpoints . . . . . . . . . . . 9-5

To Step through a Program . . . . . . . . . . . . . 9-7

To View the Data on a Line . . . . . . . . . . . . 9-8

To Find the Endpoints of a Line . . . . . . . . . . 9-9

To Trap an Error . . . . . . . . . . . . . . . . . 9-9

Making an HP VEE Program Easier to Understand . . . 9-12

To Add Structure to Your Program . . . . . . . . . 9-12

To Document Your Program . . . . . . . . . . . . 9-13

To Add a Bitmap to an Icon . . . . . . . . . . . . 9-14

Improving the Performance of an HP VEE Program . . . 9-16

To Remove Barriers to Program Performance . . . . . 9-16

To Reduce the Number of Objects in a Program . . . . 9-17

To Increase I/O Performance . . . . . . . . . . . . 9-18

Contents-5



A. Data Type Conversion and Array Mappings

Data Type Conversion . . . . . . . . . . . . . . . . A-3

Converting Data Types on Input Terminals . . . . . . A-3

Instrument I/O Data Type Conversions . . . . . . . A-7

Array Mappings . . . . . . . . . . . . . . . . . . . A-8

Glossary

Index

Contents-6



Tables

2-1. Command Line Options for HP VEE for Windows and UNIX . 2-5

2-2. Command Line Options for HP VEE for UNIX Only . . . . . 2-6

2-3. Repeat Objects . . . . . . . . . . . . . . . . . . . . . 2-17

3-1. ISO Numeric Abbreviations . . . . . . . . . . . . . . . . 3-4

A-1. Promotion and

NNNNNNNNNNNNNNNNNNNNNNNNNN

Demotion of Types in Input Terminals . . . A-5

Contents-7



Contents



1

HP VEE Concepts



HP VEE Concepts

The general concept of graphical programming, and how HP VEE programs

work, is covered in Getting Started with HP VEE. This chapter presents some

key HP VEE concepts in additional detail.

1-2



Understanding Propagation

Propagation is the general Œow of execution through your HP VEE program.

The propagation guidelines deÕne the order in which HP VEE objects operate.

In general, propagation is determined by data Œow, that is the Œow of data

from object to object within an HP VEE program. Let's begin with a closer

look at how objects operate.

How Objects Operate

An HP VEE object operates by accepting the data on its input pins,

processing that data, and then returning the resulting data on its output

pins. An HP VEE object will not operate until all of its data input pins are

activated with data on them. (There is one exception. The JCT object has

asynchronous data inputs, and will operate when one of its data input pins is

activated with data.)

Let's look at a simple example. In the program below, the a+b object will not

operate until there is data on both of its data input pins. Thus, both of the

Real constant objects must operate Õrst (in no particular order).

When the a+b object operates, it adds the data and activates its output pin

with the resulting data. The AlphaNumeric object does not operate until its

data input pin has data, so it operates last, displaying the result.

As you can see, data Œow has determined the order of operation of the objects

in the above program. That is, data Œow determines the propagation order.

1-3



HP VEE Concepts

Understanding Propagation

In addition to the data pins, the sequence pins can be used to determine

when an object operates. In the following program, a Confirm OK object has

been added to the previous example:

The sequence output pin of the Confirm OK object is connected to the

sequence input pin of the a+b object. Sequence input pins do not have to be

connected. That is, if a sequence input pin is not connected, it is ignored by

the object. However, if a sequence input pin is connected, the object will not

operate until it has been activated. So, in the above example the a+b object

won't operate until you press (click on) the OK button.

There is one more type of input that aÃects when an object operates |

the XEQ input. The XEQ input is like a data input pin, except that it is

asynchronous. The XEQ input, if present, must be connected. However,

the object can start operating before the XEQ input is activated. Here is an

example:

The For Count object repeats Õve times, outputting data to the Data

input terminal on the Collector. The XEQ terminal is asynchronous, so

it need not be active for the Collector to begin operation. However, the

Collector won't Õnish operating, and won't output any data, until the XEQ

1-4



HP VEE Concepts

Understanding Propagation

terminal is activated. Thus, the Collector collects Õve values into an array,

which it outputs when the XEQ terminal is activated by the sequence output

pin of the For Count object.

N O T E

Remember that you can use Edit Properties from the object menu to turn on Show

Terminals, as described in Getting Started with HP VEE. With Show Terminals turned

on, the data input and output pins become \terminals", showing their names.

Basic Propagation Order

In the previous section we have seen how data Œow aÃects the Œow of

execution, or propagation in an HP VEE program. Now we can state the basic

propagation order.

When you press Run (or Start), the objects in your program operate in the

following order:

1. All Start objects operate Õrst, if they are present. (Note that you need

not include Start objects in your program unless a data feedback loop is

present.)

2. Objects that have no data input pins, and which have no sequence input

pins connected, operate next.

3. Other objects operate in the order determined by data Œow, as described

in the previous section. In other words, objects with data input pins

operate only when data is present on all data inputs, except as noted in

the previous section.

4. The order of propagation can be modiÕed by connecting sequence pins,

which are described in the next section.

1-5



HP VEE Concepts

Understanding Propagation

Pins and Propagation

In the previous two sections we've seen the basic propagation order, and how

data input and output pins, sequence input and output pins, and XEQ inputs

aÃect the operation of an HP VEE program. Now let's summarize all of the

types of pins, and their eÃect on propagation.

– Data pins input or output a data container (refer to \Understanding Data

Containers" for further information).

An object will not operate until all of its data input pins are activated.

(Except the JCT object, which has asynchronous data inputs. The JCT

object operates when any data input pin is activated.)

After an object operates, its data output pins are activated (if no error

conditions have occurred).

– Control pins (optional) are asynchronous inputs that aÃect the state of the

object but have no eÃect on propagation.

Common control pins include Clear, Reset, and Default Value. Control

pins are connected with dashed lines to indicate that propagation is not

aÃected.

– XEQ pins are asynchronous input pins that force an object to operate (even

if a data input pin has not yet been activated). An XEQ pin must be used

on the Collector or Set Values object to tell the object when all data

has been input.

1-6



HP VEE Concepts

Understanding Propagation

You can add an XEQ input pin to a UserObject to force it to operate before

the data and sequence input pins have been activated. However, it is not

normally necessary to add an XEQ pin.

XEQ pins are activated by the presence of a data container, but the data in

the container is ignored.

– Sequence pins are used only to specify the order of execution.

An object operates only after all data input pins and sequence input pins

(if connected) are activated.

A sequence output pin activates after all the data output pins have

activated and data Œow has propagated as far as possible.

You generally do not need to use sequence pins to obtain correct

propagation. In fact it is usually best not to use them | let data Œow

determine the order of execution instead.

Show Terminals has no eÃect on a sequence pin | there is no terminal

label to show.

A sequence input pin is activated by the presence of a data container, but

the data in the container is ignored. A sequence output pin outputs an

empty (nil) container when it activates.

– Error pins (optional). You can add an Error pin to trap an error condition

generated by the object. The Error pin outputs the appropriate error

number if an error condition occurs.

If an error occurs, the Error pin is activated instead of any data output

pins. Only the error pin and the sequence output pin (if connected) are

activated.

N O T E

If you leave any data input pins or XEQ pins (if present) unconnected, an error will occur when you

run your program.

You may leave data output pins, control pins, and Error pins unconnected. Sequence pins, more

often than not, should be left unconnected.

1-7



HP VEE Concepts

Understanding Propagation

Propagation of Threads and Subthreads

So far we've only considered propagation in a very simple HP VEE program|

one that contains only one thread. Let's begin by deÕning what threads and

subthreads are:

– Threads|Each independent set of connected objects in a HP VEE program

is called a thread. A program can contain several threads. For example,

the following program contains two parallel threads:

The two parallel threads are not connected by data or sequence lines,

so they are independent. However, they may be connected by control

(dashed) lines.

– Subthreads|A branch of a thread is called a subthread. When two

subthreads begin at the same data output pin of the same object, and there

are no sequence or data lines between them, they are parallel subthreads.

The following program shows two parallel subthreads branching from the

data output pin of the Real constant object:

1-8



HP VEE Concepts

Understanding Propagation

Parallel threads and subthreads operate round-robin style. Propagation

through each thread or subthread proceeds according to the rules discussed

previously. It is important to understand that multiple threads and

subthreads operate in a parallel manner. That is, no single thread or

subthread takes over and runs to completion before the others. However,

there are two exceptions to this:

– If a thread contains an Interface Event or Device Event object, it takes

over execution when an event is trapped. For example, if Interface

Event detects an HP-IB SRQ message, the thread will continue to

completion before any other thread can continue. Other threads are held

oÃ to allow the event to be serviced. For further information, refer to

Interface Event and Device Event in the HP VEE Reference manual.

– If a thread has a Start object, and if you start the thread by pressing the

Start button, that thread will run to completion before you can start any

other threads.

1-9



HP VEE Concepts

Understanding Propagation

Propagation Summary

The following is a summary of the propagation rules that HP VEE follows:

– Data Œows through objects from left-to-right|sequence Œows from

top-to-bottom.

– All data and XEQ input pins must be connected.

– Start objects operate Õrst. Objects with no data input pins or sequence

input pin connections operate next.

– All data input pins must be activated before an object operates (except for

the JCT object, which has asynchronous data inputs).

– If the sequence input pin is connected, it must be activated before an

object can operate.

– Objects operate only once unless connected to a repeat object (for example,

For Count), or unless forced to operate by an XEQ pin.

– Control pins are asynchronous and do not aÃect the operation of the object.

– When an error is generated from an object with an Error pin, the Error

pin is activated instead of the data output pins. However, the sequence

output pin is activated. (If there is no Error pin, an error message is

displayed.)

– Parallel subthreads may operate in any order.

– Multiple threads operate round-robin style. (They time slice.)

1-10



Understanding Data Containers

As we've mentioned previously, the propagation of data through an HP VEE

program consists of the movement of data containers from one object to

another. The data container is the HP VEE internal data format. Every data

container has both a data type (text, real, and so forth), and a data shape

(scalar, one-dimensional array, and so forth).

A data container may have only a single value in it, or it may have an array

of several values. In either case, only one data container is output on a

particular data output pin when an object operates. Let's look at an example.

In the following program, the Real constant object is conÕgured as a

one-dimensional array. The Integer constant object is conÕgured as a scalar.

As you might expect, when the program runs the Real constant object

outputs a data container that is a one-dimensional real array. The Integer

constant object outputs a data container that is an integer scalar (the value

1). So how does HP VEE add these two containers? There is no problem |

HP VEE provides automatic data type conversion. HP VEE \promotes" the

integer value 1 to become an equivalent real value (1.0). The a+b object

then adds the real value 1.0 to every element in the one-dimensional real

array, and outputs the resulting one-dimensional real array, as shown above.

If you are interested in the speciÕc container that has been passed on any

HP VEE data line, you can use Line Probe to look at that information. Press

and hold the ÄShiftÅ key, move the mouse pointer near the desired line, and

then click the left mouse button. The Container Information box appears.

For example, the container passed on the data output line from the Real

constant object of our example appears as follows.

1-11



HP VEE Concepts

Understanding Data Containers

In general, HP VEE converts data types automatically, and resolves data

shapes if possible. You normally don't have to worry about how this is done.

However, for technical information about this process, refer to Appendix A.

Let's look at the data types and data shapes that HP VEE supports.

Data Types

HP VEE provides 13 data types, but 3 of these types are used only in

instrument I/O transactions. The following 10 data types are used for all

HP VEE operations. That is, every HP VEE data container sent between

HP VEE objects is of one of these 10 types.

N O T E

If an input terminal on an HP VEE object speciÕes Any (the default in many cases), it will accept

containers of any HP VEE data type.

Composite data types (Waveform, Spectrum, and Coord) are associated with particular data shapes.

1-12



HP VEE Concepts

Understanding Data Containers

– Int32 is a 32-bit two's complement integer (-2147483648 to 2147483647).

– Real (or Real64) is a 64-bit real that conforms to the IEEE 754 standard

(approximately 16 signiÕcant decimal digits or «1.7976931348623157E308).

– PComplex is a magnitude and a phase component in the form

(mag, @phase). Phase is in the currently active trigonometric units.

For example, the PComplex number 4 at 30 degrees is represented as

(4, @30) when Trig Mode is set to Degrees. Each component is Real.

– Complex is a rectangular or Cartesian complex number. Each complex

number has a real and an imaginary component in the form (real,imag).

Each component is Real. For example, the complex number 1 +2i is

represented as (1,2).

– Waveform is a composite data type of time domain values that contains the

Real values of evenly-spaced, linearly-mapped points and the total time

span of the waveform. The data shape of a Waveform must be an Array 1D

(a one-dimensional array).

– Spectrum is a composite data type of frequency domain values that

contains the PComplex values of points and the minimum and maximum

frequency values. Spectrum allows the domain data to be uniformly

mapped as log or linear. The data shape of a Spectrum must be an Array

1D.

– Coord is a composite data type that contains at least two components in

the form (x, y, . . . ). Each component is Real. The data shape of a Coord

must be a Scalar or an Array 1D.

– Enum is a text string that has an associated integer value. The Enum data

type is output by the objects found under Data ¡¡) Selection Control

(for example, the Radio Buttons object). You can access the integer value

with the ordinal(x) function. The data shape of an Enum must be

Scalar. Enum cannot be a required data input type.

– Text is a string of alphanumeric characters.

– Record is a data type composed of Õelds. Each Õeld has a name and a

container, which can be of any type (including Record) and any shape.

For further information on data types and data type conversions, refer to

Appendix A.

1-13



HP VEE Concepts

Understanding Data Containers

Special Instrument I/O Data Types:

All integer values are stored and manipulated internally by HP VEE as the

Int32 data type, and all real numbers are stored and manipulated as the

Real (or Real64) data type. However, instruments generally support 16-bit

integers or 8-bit bytes. Also, some instruments support a 32-bit real format.

Therefore, HP VEE supports the following three data types, which are used

only for I/O transactions involving instruments:

– Byte is an 8-bit two's complement byte (-128 to 127). (Byte is used

in READ BINARY, WRITE BINARY, and WRITE BYTE instrument I/O

transactions. The WRITE BYTE transaction is used for specialized character

output to HP-IB instruments.)

– Int16 is a 16-bit two's complement integer (-32768 to 32767).

– Real32 is a 32-bit real that conforms to the IEEE 754 standard

(«3.40282347E«38).

Data Shapes

Composite data types (Waveform, Spectrum, Record, and Coord) are

associated with particular data shapes:

– The Waveform and Spectrum data types are always one-dimensional arrays.

– The Record and Coord data types can be either scalars or one-dimensional

arrays. (They cannot be arrays of two or more dimensions.)

All other data types may be have either a Scalar or an Array data shape:

– Scalar is a single number such as 10 or (32, @10).

– Array is an array with one to ten dimensions.

Arrays may be mapped. (A mapping is a set of continuous or discrete values

that express the independent variables for an array.) Refer to Appendix A for

information about mappings.

In many cases, an HP VEE object has data pins with an input data shape

requirement of Any, meaning that the object accepts containers of more than

one of the data shapes.

1-14



2

The Basics



The Basics

This chapter covers some general tasks that most HP VEE programmers do

routinely.

2-2



Starting HP VEE

To Start HP VEE for Windows

Starting from the Group Window:

The easiest way to start HP VEE for Windows is to double-click on the HP VEE

icon in the HP VEE group window:

In addition to the HP VEE icon, the group window contains icons for Latest

Information and for Õve utility programs: Instrument Finder, Install

Drivers, Configure I/O, HP Driver Writer Tool, and HP ID Compiler.

You can start a utility program by double-clicking on its icon. Refer to the

\HP VEE Utilities" appendix in HP VEE Advanced Programming Techniques

for further information.

Starting from the Program Manager:

You can also start HP VEE for Windows as follows:

1. With MS Windows running, pull down the File menu from the Program

Manager window and select Run.

2. Type C:\VEE\VEE.EXE and press ÄEnterÅ.

(If you have installed HP VEE for Windows in some other directory, substitute

that directory for C:\VEE.)

2-3



The Basics

Starting HP VEE

To Start HP VEE on a UNIX Workstation

To start HP VEE on a UNIX workstation (HP-UX or SunOS):

1. Go to the shell prompt in a window under HP VUE, X11, or

OpenWindows.

2. Type veetest and press ÄReturnÅ.

It doesn't matter what directory you are in because the HP VEE installation

links veetest to the executable.

If you are using HP VUE, you can create a push button or other front panel

control to start HP VEE. Refer to \DeÕning Front Panel Controls" in the

HP Visual User Environment 3.0 User's Guide for further information.

There are several HP VEE utility programs that you can also start from the

shell prompt. Refer to the \HP VEE Utilities" appendix in HP VEE Advanced

Programming Techniques for further information.

You can start multiple copies of HP VEE running on the same workstation.

However, if two copies of HP VEE attempt to access the same system resource

(for example, an I/O interface) at the same time, unexpected results may

occur.

To Start HP VEE with Command Line Options

HP VEE provides several command line options that you can use to start

HP VEE in a special way. For example, you can specify an HP VEE program

Õle to load when HP VEE starts. In fact, you can choose to load and run an

HP VEE program on startup.

Table 2-1 lists the options that apply to both HP VEE for Windows and

HP VEE for the UNIX workstation. Table 2-2 lists the options that apply

only to the UNIX workstation. (Note that the command-line options are

case-sensitive. For example, you cannot substitute -R for -r.)

2-4



The Basics

Starting HP VEE

To start HP VEE using the command line options:

– HP VEE for Windows:

1. Pull down File ¡¡) Run in the Program Manager window.

2. Type C:\VEE\VEE.EXE, followed by the desired option or options, and

press ÄEnterÅ.

– HP VEE for UNIX:

1. Go to the shell prompt in a window under HP VUE, X11, or

OpenWindows.

2. Type veetest, followed by the desired option or options, and press

ÄReturnÅ.

Table 2-1. Command Line Options for HP VEE for Windows and UNIX

Option Description

Õlename HP VEE is started and the HP VEE program speciÕed by Õlename is loaded into the

HP VEE work area.

-r Õlename The -r option starts HP VEE and runs the HP VEE program speciÕed by Õlename.

When the program Õnishes running, HP VEE exits immediately. However, if an error

occurs, an error message is displayed before HP VEE exits. If you do not specify a

Õle name, HP VEE ignores the -r option.

-noerrdisp If this option is used in conjunction with -r, and the speciÕed program does not

run due to an error, HP VEE exits immediately without displaying an error message.

-d directory The -d option starts HP VEE and uses the related Õles, such as instrument drivers,

located in the speciÕed directory instead of the default HP VEE installation directory.

-iconic The -iconic option starts HP VEE as an icon instead of a window. Double-click

on the icon to open it to a window.

-notoolbar This option is used in conjunction with -r to hide the HP VEE toolbar while the

program is running.

-idmonitor This option starts a copy of HP VEE that contains only the ID Monitor and

the Bus I/O Monitor.

2-5



The Basics

Starting HP VEE

Table 2-2. Command Line Options for HP VEE for UNIX Only

Option Description

-display Xservername SpeciÕes the X Windows display server to use instead of the default X display.

Using this option you can have HP VEE execute on one workstation, but use the

keyboard and display of another workstation.

-geometry width

height xoÃset yoÃset

SpeciÕes an initial window geometry to be used instead of the default geometry.

For example, veetest -geometry 800x500+0-0 starts HP VEE in a

window that is 800 pixels wide and 500 pixels tall, and that is placed in the lower

left corner of the screen.

-help Shows the HP VEE command line options. (Not to be confused with the HP VEE

online help system, which is launched from within HP VEE.)

-name name The -name option starts HP VEE and sets the application name of HP VEE to

name instead of veetest. HP VEE uses name to specify X11 options in

addition to the X11 options speciÕed by the default application class (Vee). Refer

to the \ConÕguring HP VEE" appendix in HP VEE Advanced Programming Techniques

for further information.

Example: Starting HP VEE for Windows Using -r Õlename

To start HP VEE for Windows and automatically run the program

MYPROG.VEE:

1. With MS Windows running, pull down the File menu from the Program

Manager window and select Run.

2. Type C:\VEE\VEE.EXE -r MYPROG.VEE and press ÄEnterÅ.

Example: Starting HP VEE for UNIX Using -r Õlename

To start HP VEE for Windows and automatically run the program myprog:

1. Go to the shell prompt in a window under HP VUE, X11, or

OpenWindows.

2. Type veetest -r myprog and press ÄReturnÅ.

2-6



Finding Files

HP VEE provides convenient ways to Õnd and open Õles that contain user

programs, example programs, and library objects and programs.

To Open an HP VEE Program File

HP VEE for Windows:

To open an HP VEE program Õle from HP VEE for Windows:

1. Select File ¡¡) Open. The Open File dialog box appears:

By default, the Open File dialog box looks for program Õles to open

in the directory C:\VEE_USER. (By default, File ¡¡) Save saves your

programs in that directory.) The dialog box allows you to select a Õle

name or change directories using the standard Windows dialog box

conventions. For further information about Windows dialog boxes, refer to

your Microsoft Windows documentation.

2-7



The Basics

Finding Files

2. Click on the Õle name of the program Õle that you want to open. For

example, to load the program in the Õle named myprog.vee you would

click on myprog.vee, and then click on OK. Or enter the name of a Õle in

the File Name type-in Õeld and click on OK.

HP VEE for UNIX:

To open an HP VEE program Õle from HP VEE on a UNIX workstation:

1. Select File ¡¡) Open. The Open File dialog box appears:

By default, the Open File dialog box looks for program Õles to open in

the directory in which you started HP VEE. For example, if you started

HP VEE by executing veetest in the directory /users/jim/myprogs/,

that is where the Open File dialog box will look for program Õles. (By

default, File ¡¡) Save saves your programs in that directory.)

2. Click on the Õle name of the program Õle that you want to open. For

example, to load the program in the Õle named myprog you would click on

myprog, and then click on OK. Or enter the name of a Õle in the type-in

Õeld and click on OK.

If you want to change directories, click on a directory (for example, ../) to

change the path, or enter a new path in the type-in Õeld.

2-8



The Basics

Finding Files

To Open an Example Program File

HP VEE for Windows:

Several example programs are provided with HP VEE. These examples are

found in subdirectories under C:\VEE\EXAMPLES. For example, the examples

from this manual are found in the subdirectory:

C:\VEE\EXAMPLES\MANUAL

You can open any program Õle, including an example, using File ¡¡) Open.

However, for your convenience you can open an example program Õle from

Help:

1. Select Help ¡¡) Open Example. The Open File dialog box appears, but is

\targeted" on the examples directory:

2. Select a subdirectory, and click on the name of the example Õle you want

to open. Click on OK to open the Õle.

2-9



The Basics

Finding Files

HP VEE for UNIX:

Several example programs are provided with HP VEE. These examples are

found in subdirectories under /usr/lib/veetest/examples/. For example,

the examples from this manual are found in the subdirectory:

/usr/lib/veetest/examples/manual/

You can open any program Õle, including an example, using File ¡¡) Open.

However, for your convenience you can open an example program Õle from

Help:

1. Select Help ¡¡) Open Example. The Open File dialog box appears, but is

\targeted" on the examples directory:

2. Select a subdirectory, and click on the name of the example Õle you want

to open. Click on OK to open the Õle.

2-10



The Basics

Finding Files

To Merge Objects and Programs from Library Files

HP VEE provides several library objects (pre-built UserObjects) and

complete library programs that you can merge into your own HP VEE

program. To do this, use File ¡¡) Merge to merge the appropriate Õle into

the work area.

HP VEE for Windows:

To merge a library object or program into the HP VEE for Windows work

area:

1. Select File ¡¡) Merge. The Merge File dialog box appears:

By default, the Merge File dialog box looks for library objects and

programs in the directory C:\VEE\LIB. You can also merge any HP VEE

program Õle into the work area by changing directories. The dialog box

allows you to select a Õle name or change directories using the standard

Windows dialog box conventions. For further information about Windows

dialog boxes, refer to your Microsoft Windows documentation.

2. Click on the Õle name of the library Õle that you want to open. For

example, to merge the library object named keypad.vee, click on

keypad.vee and then click on OK. The keypad object (a UserObject) is

2-11



The Basics

Finding Files

merged into your workspace. You can connect it into your program like

any HP VEE object.

HP VEE for UNIX:

To merge an HP VEE library object or program Õle into the HP VEE work

area:

1. Select File ¡¡) Merge. The Merge File dialog box appears:

By default, the Merge File dialog box looks for Õles to open in the

directory /usr/lib/veetest/lib/. However, you can change directories

just as with the File Open dialog box. You can merge any HP VEE

program Õle into the HP VEE work area.

2. Click on the Õle name of the library object or program that you want

to merge. For example, to merge the keypad.vee object, click on

keypad.vee and then click on OK. The keypad object (a UserObject) is

merged into the work area and you can connect it into your program like

any other HP VEE object.

If you want to change directories, click on a directory (for example, ../) to

change the path, or enter a new path in the type-in Õeld.

2-12



Controlling Program Flow

The fundamental concepts of HP VEE program Œow are covered in Chapter 1.

The following are some practical ways to control program Œow.

To Start an HP VEE Program

– To start an entire HP VEE program, including all threads within the

program, press (click on) the Run button in the HP VEE tool bar. All

threads within the work area will start, whether or not they have start

buttons.

– If you want to be able to start an individual thread in a program

independently, add a Start button to the thread. When you press a start

button, only the thread that contains the start button will start.

– If a thread employs feedback, the thread must contain a Start object

to indicate where propagation is to begin. This is the only case where a

Start object is required. (If you run a program that includes a thread with

feedback, but no Start object, an error is reported.)

Let's look at an example. The program shown below includes two threads,

each with a Start object.

2-13



The Basics

Controlling Program Flow

If you want to run just the top thread, press its Start button. The thread

runs, displaying \Now is the time" in the AlphaNumeric object, as shown.

However, the bottom thread does not run.

If you press Start in the bottom thread, it runs, but the top thread does not.

If you press Run, both threads of the program will run. In each thread,

propagation begins at the Start object.

To Branch within an HP VEE Program

To branch the Œow of execution within an HP VEE program, use the

If/Then/Else or Conditional ¡¡) objects found under the Flow menu.

By default, the If/Then/Else object tests an input value A against the

conditional test 0<=A AND A<10. The result of the expression is output on

either the Then terminal (if the expression is true) or the Else terminal (if

the expression is false).

To set up a conditional branch using the If/Then/Else object:

1. Add an If/Then/Else object (from the Flow menu) to the work area.

2. Modify the conditional test expression as desired. For example, to test

values to see if they are in the range \greater than or equal to 0.5 and less

than 0.6", use the expression .5<=A AND A<.6. (You can use any of the

logical or relational math operators supported by HP VEE in the expression

Õeld of an If/Then/Else object.)

3. Add additional data input terminals if required by your new expression.

By default, there is only one data input terminal (A). If you want to test a

value A against a value B (for example, A<=B), add a data input terminal

named B.

4. Connect the sources of data to be tested to the data input terminals.

5. Finally, connect the Then and Else output terminals to activate diÃerent

objects or threads in your program, as desired.

2-14



The Basics

Controlling Program Flow

Here is an example using If/Then/Else:

The value output by the Random Number object is tested against the

expression .5<=A AND A<.6. If the value is in the speciÕed range, the

Then output terminal activates the top AlphaNumeric object, which

displays the random number as shown in the above Õgure. If the value is

not in the speciÕed range, the Else output terminal activates the bottom

AlphaNumeric object, which displays Try Again.

The above example, (saved as manual01.vee in your manual examples

directory) illustrates a trivial case. Of course, you can use the Then and Else

terminals to activate any sort of program thread, or a UserObject.

The Conditional Objects:

The objects under Flow ¡¡) Conditional ¡¡) (If A == B, If A ~= B,

If A != B, If A < B, If A > B, If A <= B, and If A >= B) are really

pre-deÕned If/Then/Else objects. Each has two data input terminals (A and

B) and performs a pre-deÕned test comparing the value of A to the value of

B. The Then and Else output terminals work just as in the If/Then/Else

object. In fact, you can add or delete terminals and change the expression

just as you would in an If/Then/Else object. For example, you could add a

C terminal to the If A == B object and change the test to A == B OR B <= C.

2-15



The Basics

Controlling Program Flow

Adding Else If Conditions:

The If/Then/Else and Conditional objects have another feature | the

Else If condition. You can add one or more Else If conditions (object

menu ¡¡) Add Else/If). Each Else If condition is tested if the previous

condition is not met. For example, the following If/Then/Else object has

two Else If conditions:

This object works as follows:

1. The expression 0<=A AND A<10 is evaluated, and the result is output on

the Then terminal if the expression is true.

2. Otherwise, the expression A<20 is evaluated, and the result is output on

the corresponding Else If terminal if the expression is true.

3. If A<20 is false, the expression A<30 is evaluated, and the result is output

on the corresponding Else If terminal if A<30 is true. If false, the result

is output on the Else terminal.

2-16



The Basics

Controlling Program Flow

To Loop Part of an HP VEE Program

You can loop (repeat) part of your HP VEE program using one of the following

objects, found under Flow ¡¡) Repeat:

Table 2-3. Repeat Objects

Object Operation

For Count Outputs the count, starting with 0, repeating the number of times speciÕed in

the entry Õeld. The default is 10, which causes the count to repeat 10 times,

from 0 to 9.

For Range Outputs a value on the data output pin repeatedly, starting with the value From,

incrementing by the value Step on each repeat. For Range repeats until

the output value is greater than the Thru value if Step is positive, or until

the output value is less than the Thru value if Step is negative.

For Log Range Similar to For Range, but on a log scale. The initial value output is From,

but the nth value is From*exp10(n/(/Dec)). For Log Range

repeats until the output value is greater than the Thru value if /Dec is

positive, or until the output value is less than the Thru value if /Dec is

negative.

Until Break Activates its data output pin continuously until a Break object operates within

the thread.

On Cycle Outputs the current time value periodically (the default period is 1 second) until a

Break object operates within the thread.

N O T E

You can create a repeated thread or loop using any of the objects listed in Table 2-3. In addition, you

can include the Next and Break objects (also found under Flow ¡¡) Repeat) in a loop

\hosted" by any of these objects. The Next object causes the loop to immediately begin its next

iteration. The Break object causes the loop to immediately terminate.

2-17



The Basics

Controlling Program Flow

To repeat part of your program in a loop:

1. Add one of the Õve Repeat objects, listed in Table 2-3 to the work area.

2. Connect the data output pin of the Repeat object to the object or thread

that you want repeated. In the following example, the For Count object

causes the Random Number object to operate 10 times:

3. If needed, use the sequence output pin of the Repeat object to indicate

when the Repeat object is done operating (the loop is done repeating). In

the above example, the Collector collects the 10 random values in an

array, but doesn't output the array until the sequence output pin of For

Count activates the XEQ pin on the Collector.

2-18



The Basics

Controlling Program Flow

Example: Taking a Reading Every Second

Let's look at another example, this time using the On Cycle object. On Cycle

outputs the current time periodically (every second by default). In the

following example (manual02.vee in your manual examples directory),

the On Cycle object causes the instrument panel object for the HP 34401A

Multimeter to output a reading every second:

Actually, the above program is set up to produce simulated readings,

since live mode is OFF for the HP 34401A. Refer to Chapter 5 for further

information about using instrument panels.

Each reading is output to the Logging AlphaNumeric display, and to the

If/Then/Else object. The If/Then/Else object causes the Break object to

operate, stopping the loop, on the Õrst value that is greater than or equal to

7. The AlphaNumeric object, conÕgured for the Time Stamp format, reports

the time of each reading as it is taken.

2-19



The Basics

Controlling Program Flow

Example: Parallel and Nested Loops

Your HP VEE program can include parallel loops, which run concurrently. In

the example below, Thread 1 and Thread 2 are parallel loops.

You can also nest a loop within another loop. In the example below,

Subthread 1a is nested within Thread 1. You can even have multiple levels

of nesting.

2-20



The Basics

Controlling Program Flow

When using loops, you should avoid the following situations, which can cause

a propagation paradox and lead to unpredictable results:

1. Do not cross connect parallel loops. Avoid situations like the one shown

below:

2. Do not merge loops (with a JCT or Math object, for example). Avoid

situations like the one shown below:

2-21



The Basics

Controlling Program Flow

Example: Avoiding Loss of Data with Sample & Hold

If your program includes a loop that contains an object that may not output

data on every iteration of the loop, and if an object outside the loop tries to

read data from that object after the loop Õnishes, the data may be lost. This

is because when a loop completes an iteration, all data containers sent during

the previous iteration are invalidated before the next iteration. This prevents

\old" data from a previous iteration of the loop from being reused in the

current iteration.

An example will show this (manual03.vee in your manual examples

directory):

In the above program the For Count object \hosts" the loop consisting of

the If/Then/Else object and the two Counter objects. But because of the

branching performed by the If/Then/Else object, neither Counter operates

on every iteration of the loop. On the last iteration Counter1 operates, but

Counter2 does not, so there is no valid data on the output pin of Counter2

when the For Count object activates the sequence input pin of the Integer

constant. Thus, the A+B object can't operate. (Refer to the propagation rules

in Chapter 1.)

2-22



The Basics

Controlling Program Flow

To solve this problem, add a Sample & Hold object as shown below

(manual04.vee in your manual examples directory):

Each time Counter2 operates, it sends a data container to the

Sample & Hold object, where it is stored internally. When the For Count

object Õnishes and activates the XEQ pin on the Sample & Hold object, the

stored data is output to the A+B object, and the program completes executing.

2-23



The Basics

Controlling Program Flow

To Stop an HP VEE Program

Once you have started an HP VEE program, it will run according to the

propagation rules covered in Chapter 1 until it Õnishes, and then stops.

However, you can stop an HP VEE program before it Õnishes propagating, as

follows:

– The Stop button. You can stop a running HP VEE program by pressing

(clicking on) the Stop button in the HP VEE tool bar:

Click once on the Stop button to pause the program momentarily. Then

use the Cont to continue the program, or the Step button to continue

running the program one step at a time.

Click twice on the Stop button to permanently stop the program. Then

use the Run button to start the program over at the beginning.

– The Stop and Exit Thread objects. You can include a Stop or Exit

Thread object in your program to deÕne when it should terminate. For

example, you can can use an If/Then/Else object to conditionally branch

to a Stop or Exit Thread object. When either of these objects operate,

the program stops permanently just as though you clicked twice on the

Stop button.

– The Raise Error object. You can cause an error to occur, pausing your

program, with the Raise Error object. For further information about the

Raise Error object, and about using Error output terminals, refer to \To

Trap an Error" in Chapter 9.

2-24



Setting Colors, Fonts, and Titles

You can modify the appearance of your HP VEE program by changing the

colors, fonts, and titles used:

– HP VEE allows you to change the default colors and fonts used in the entire

work area (for all of your programs) by changing your default preferences.

Refer to \To Change Default Colors" and \To Change Default Fonts", later

in this section, for information on how to make these global changes.

– HP VEE allows you to change the work area title, and the colors and fonts

used for the tool bar, by changing your work area properties. Refer to \To

Change Colors for the Work Area" and \To Change an Object or Work Area

Title", later in this section, for further information.

– HP VEE allows you to change the title of an object, and some of the colors

and fonts used for the object, by changing the object properties. Refer

to \To Change Colors for an Object", \To Change Fonts for an Object",

\To Change an Object or Work Area Title", later in this section, for further

information.

2-25



The Basics

Setting Colors, Fonts, and Titles

To Change Default Colors

You can change the default colors for all of your programs using the Default

Preferences dialog box:

1. Select File ¡¡) Edit Default Preferences, and select the Colors tab

in the dialog box.

2. Click on the Screen Element Õeld or its arrow. The drop-down list

displays the screen element choices:

3. Click on a screen element in the list. For example, click on Tool Bar. The

drop-down list disappears and the current tool bar color is shown in the

Color Value Õeld. Now click on the Color Value button. The Select

Color dialog box appears:

2-26



The Basics

Setting Colors, Fonts, and Titles

4. The Select Color dialog box displays a palette of the available colors.

The current color selection (Gray) is highlighted in the palette with a

dashed outline. The color is also shown in the Preview area. To select a

new color for the tool bar, click on a diÃerent color in the palette, and then

click on OK to return to the Default Preferences dialog box.

5. Choose how you want to save your color selection:

a. If you want to save your new color selection for the tool bar as a

permanent default color, click on Save. This will save the new default

color in your VEE.RC or .veerc Õle. The new color will be the default

for future HP VEE sessions (until you change it again).

b. If you want to use your new color selection only for the current

HP VEE session (until you select File ¡¡) New, Open, or Exit), click

on OK.

c. If you don't want to save your new color selection at all, click on

Cancel.

Note that you can make color selections for multiple screen elements

before you click on Save, OK, or Cancel.

2-27



The Basics

Setting Colors, Fonts, and Titles

To Change Colors for the Work Area

You can change the background and text colors for the work area tool bar by

using File ¡¡) Edit Properties.

1. Select File ¡¡) Edit Properties. The Work Area Properties dialog

box appears. Select the Colors tab in the dialog box.

2. To change the background color for the tool bar, click on the Background

button:

3. The Select Color for Tool Bar dialog box displays a palette of the

available colors. The current color selection (Default (Gray) in our

example) is highlighted in the palette with a dashed outline. The color is

also shown in the Preview area. To select a new color for the tool bar,

click on a diÃerent color in the palette, and then click on OK to return to

the Work Area Properties dialog box.

4. Click on OK to accept the new color selection, or Cancel to reject it.

2-28



The Basics

Setting Colors, Fonts, and Titles

To Change Colors for an Object

Every object has an object properties dialog box that you can reach from the

object menu. You can change certain colors for the object using this dialog

box. Let's use an AlphaNumeric object in our example:

1. Add an AlphaNumeric object to the work area (Display ¡¡)

AlphaNumeric).

2. Select Edit Properties from the object menu, and then select the

Colors tab in the AlphaNumeric Properties dialog box.

3. The colors that you can change depend on the particular class of object.

For the AlphaNumeric object, click on the Background button under

Title:

4. The Select Color for Object Title dialog box displays a palette of

the available colors. The current color selection (Default (Gray) in our

example) is highlighted in the palette with a dashed outline. The color is

also shown in the Preview area. To select a new color, click on a diÃerent

2-29



The Basics

Setting Colors, Fonts, and Titles

color in the palette, and then click on OK to return to the AlphaNumeric

Properties dialog box.

5. Click on OK to accept the new color selection, or Cancel to reject it. The

new color selection appears in the object and overrides the default color.

The change aÃects only this particular object (not other AlphaNumeric

objects), and is saved when you save the program.

To Change Default Fonts

You can change the default fonts using the Default Preferences dialog box:

1. Select File ¡¡) Edit Default Preferences, and select the Fonts tab in

the dialog box.

2. Click on the Screen Element Õeld or its arrow. The drop-down list

displays the screen element choices:

2-30



The Basics

Setting Colors, Fonts, and Titles

3. Click on a screen element in the list. For example, click on Object Title

Text. The drop-down list disappears and the font value for the Object

Title Text is displayed. Click on the Font Value button. The Select

Font dialog box appears:

4. You can select a font name and font size from the two drop-down lists by

clicking on the corresponding Õelds or their arrows. These lists allow you

to select any font that is installed on your system. You can also select bold

and italic by clicking on the appropriate check boxes. Click on OK to return

to the Default Preferences dialog box.

5. Choose how you want to save your font selection:

a. If you want to save your new font selection for Object Title Text as

a permanent default font, click on Save. This will save the new default

font in your VEE.RC or .veerc Õle. The new font will be the default

for future HP VEE sessions (until you change it again).

b. If you want to use your new font selection only for the current HP VEE

session (until you select File ¡¡) New, Open, or Exit), click on OK.

c. If you don't want to save your new font selection at all, click on

Cancel.

2-31



The Basics

Setting Colors, Fonts, and Titles

Note that you can make font selections for multiple screen elements before

you click on Save, OK, or Cancel.

To Change Fonts for an Object

Every object has a properties dialog box that you can reach from the object

menu. You can change fonts for the particular object using this dialog box.

Let's use a Formula object in an example:

1. Add a Formula object to the work area (Math ¡¡) Formula).

2. Select Edit Properties from the object menu, and then select the Fonts

tab in the Formula Properties dialog box.

3. The Õelds that you can change depend on the particular class of object.

For the Formula object you can change the font for the title text and the

object text. Click on the Text button under Object, as shown below:

2-32



The Basics

Setting Colors, Fonts, and Titles

4. The Select Font for Object Text dialog box appears. To select a font

or font size, click on the appropriate Õeld or arrow. A drop-down list will

display the choices. Also, you can select bold or italic by clicking on the

appropriate checkbox. Once you have made your selections, click on OK to

return to the Formula Properties dialog box.

5. If you click on the checkbox in front of Automatically Resize Object

on Font Change, objects will be automatically resized as needed.

6. Click on OK to accept the new font selection, or Cancel to reject it. The

new font selection appears in the object and overrides the default font.

The change aÃects only this particular object (not other Formula objects),

and is saved when you save the program.

N O T E

If you are writing HP VEE programs to be used on more than one platform (Windows, HP-UX, and

SunOS), be aware that each platform provides a diÃerent set of system fonts. Therefore, your program

may appear slightly diÃerent on each platform.

To Change an Object or Work Area Title

You can change the title of any object, or of the work area, from the

appropriate Properties dialog box. For a Formula object:

1. Select Edit Properties from the object menu (or double-click on the

object title). The Formula Properties dialog box appears:

2-33



The Basics

Setting Colors, Fonts, and Titles

2. The title is already highlighted | just start typing and the old title is

replaced.

3. Type in the new title and press ÄEnterÅ or ÄReturnÅ.

The procedure is the same for the work area title, except that you use the

Work Area Properties dialog box (File ¡¡) Edit Properties).

Shortcut

To change the title of an object, double-click on the object title bar. The object Properties

dialog box appears. Modify the title and press ÄEnterÅ or ÄReturnÅ. To change the title of the work

area, double-click on the tool bar. Then modify the title in the dialog box and press ÄEnterÅ or

ÄReturnÅ.

2-34



Using the Keyboard Shortcuts

You can use keyboard shortcuts to perform many common HP VEE tasks.

Note that the keyboard shortcuts are not case sensitive. (A summary of

the most often used keyboard shortcuts is given on the back cover of each

manual.)

To Run, Pause, Step, or Continue an HP VEE Program

– Press ÄCTRLÅ+ÄGÅ to run an HP VEE program (shortcut for the Run button).

– Press ÄCTRLÅ+ÄCÅ to pause a running HP VEE program. (This is a shortcut

for the Stop button. However, pressing ÄCTRLÅ+ÄCÅ twice will not stop the

program permanently.)

– Press ÄCTRLÅ+ÄTÅ to step a paused HP VEE program (shortcut for the Step

button).

– Press ÄCTRLÅ+ÄVÅ to continue a paused HP VEE program (shortcut for the

Cont button).

To Open an HP VEE Program File

Press ÄCTRLÅ+ÄOÅ. You will be prompted for a Õle name to open (shortcut for

File ¡¡) Open).

2-35



The Basics

Using the Keyboard Shortcuts

To Save an HP VEE Program to a File

Press ÄCTRLÅ+ÄSÅ. The program will be re-saved to the current Õle, or you will

be prompted for a Õle name (shortcut for File ¡¡) Save).

To Save an HP VEE Program to a New File

Press ÄCTRLÅ+ÄWÅ. You will be prompted for a new Õle name, and the

program will be saved there (shortcut for File ¡¡) Save As).

To Exit HP VEE

Press ÄCTRLÅ+ÄEÅ to exit HP VEE (shortcut for File ¡¡) Exit).

To Raise the Pop-Up Edit Menu

Press the right mouse button with the pointer over an empty part of the

HP VEE work area. (This works for a UserObject work area as well.)

2-36



The Basics

Using the Keyboard Shortcuts

To Raise the Pop-Up Object Menu

Press the right mouse button with the pointer over any part of an object.

To Delete an Object

Press ÄCTRLÅ+ÄDÅ with the pointer over the object to be deleted, but not over

a terminal. (If the pointer is over a terminal, the terminal will be deleted

instead.)

To Delete a Line

Press and hold ÄShiftÅ+ÄCTRLÅ, and click the left mouse button with the pointer

over or near the line you want to delete (shortcut for Edit ¡¡) Delete

Line).

To View Data on a Line

Press and hold ÄShiftÅ, and click the left mouse button with the pointer over

or near the line you want to probe (shortcut for Edit ¡¡) Line Probe).

Information about the last container of data on the line is displayed.

2-37



The Basics

Using the Keyboard Shortcuts

To Select Objects

Press and hold ÄCTRLÅ, and click the left mouse button with the pointer over

an object (shortcut for Edit ¡¡) Select Objects). The object becomes

selected (highlighted with a shadow) if it is not currently selected. (If the

object is currently selected, it becomes un-selected.) You can use ÄCTRLÅ+left

mouse button to select multiple objects. Hold down ÄCTRLÅ and click on each

object that you want to select.

To Add a Data Input Terminal to an Object

Press ÄCTRLÅ+ÄAÅ with the pointer in the input terminal area to insert another

data input terminal at the pointer location (shortcut for: object menu ¡¡)

Terminals ¡¡) Add Data Input). If you have just edited a Õeld in the

object, you may have to click the left mouse button Õrst, and then press

ÄCTRLÅ+ÄAÅ.

To add a terminal using ÄCTRLÅ+ÄAÅ, Show Terminals must be active and the

pointer must be over the input terminal area at the left side of the object.

To Add a Data Output Terminal to an Object

Press ÄCTRLÅ+ÄAÅ with the pointer in the output terminal area to insert

another data output terminal at the pointer location (shortcut for: object

menu ¡¡) Terminals ¡¡) Add Data Output). If you have just edited a Õeld

in the object, you may have to click the left mouse button Õrst, and then

press ÄCTRLÅ+ÄAÅ.

To add a terminal using ÄCTRLÅ+ÄAÅ, Show Terminals must be active and the

pointer must be over the output terminal area at the right side of the object.

2-38



The Basics

Using the Keyboard Shortcuts

To Delete a Terminal from an Object

Press ÄCTRLÅ+ÄDÅ with the pointer over the terminal to be deleted. (A

shortcut for: object menu ¡¡) Terminals ¡¡) Delete Input or object menu

¡¡) Terminals ¡¡) Delete Output.) If you have just edited a Õeld in the

object, you may have to click the left mouse button Õrst, and then press

ÄCTRLÅ+ÄDÅ.

To delete a terminal using ÄCTRLÅ+ÄDÅ, Show Terminals must be active and

the pointer must be over the terminal to be deleted. Otherwise, ÄCTRLÅ+ÄDÅ

will delete the object itself.

To Refresh the HP VEE Window

Press ÄCTRLÅ+ÄRÅ to refresh the HP VEE window.

To Print or Copy the HP VEE Window

On a UNIX workstation: Press ÄShiftÅ+ÄPrintÅ to print the HP VEE window

with the current options speciÕed in Printer Config (shortcut for File ¡¡)

Print Screen).

On a PC: To copy the HP VEE window to the MS Windows Clipboard, press

ÄAltÅ+ÄPrint ScreenÅ with HP VEE as the active window. From the Clipboard,

you can paste the HP VEE window into other Windows applications such as

MS Windows Paintbrush.

Note that these shortcuts allow you to capture the HP VEE screen even when

a dialog box is present.

2-39



The Basics

Using the Keyboard Shortcuts

To Cancel an Edit in an Entry Field

Press ÄEscÅ to cancel an edit in an entry (type-in) Õeld.

To Cancel Edits in a Dialog Box

Press ÄEscÅ to cancel all edits in a dialog box. (This is equivalent to clicking on

the Cancel button.)

To Move the Text Cursor

In alphanumeric text entry areas (for example, the Note Pad object) use the

arrow keys (ÄÈÅ, ÄÉÅ, ÄÆÅ, ÄÇÅ) to move the cursor in the direction of the arrow.

To Scroll the Work Area

With the pointer anywhere within the HP VEE work area:

– Press ÄShiftÅ+ÄÈÅ, ÄShiftÅ+ÄÉÅ, ÄShiftÅ+ÄÆÅ, or ÄShiftÅ+ÄÇÅ) to scroll the work

area in the direction of the arrow key.

– Press ÄPage DownÅ (Windows) or ÄNextÅ (UNIX) to scroll the work area up one

screen.

– Press ÄPage UpÅ (Windows) or ÄPrevÅ (UNIX) to scroll the work area down one

screen.

2-40



The Basics

Using the Keyboard Shortcuts

– Press ÄShiftÅ+ÄPage DownÅ (Windows) or ÄShiftÅ+ÄNextÅ (UNIX) to scroll the

work area left one screen.

– Press ÄShiftÅ+ÄPage UpÅ (Windows) or ÄShiftÅ+ÄPrevÅ (UNIX) to scroll the work

area right one screen.

– Press ÄHomeÅ (Windows) or ÄËÅ (UNIX) to move the upper left corner of the

program to the upper left corner of the work area.

– Press ÄShiftÅ+ÄHomeÅ (Windows) or ÄShiftÅ+ÄËÅ (UNIX) to move the lower right

corner of the program to the lower right corner of the work area.

To Edit a Transaction

The following are some shortcuts that you can use when the mouse pointer

is positioned over an object containing transactions (for example, the

Sequencer or To File objects). For further information about transactions,

refer to the chapter \Using Transaction I/O" in HP VEE Advanced

Programming Techniques.

– Press ÄCTRLÅ+ÄKÅ with the pointer over a transaction to cut the transaction

to the \cut-and-paste" buÃer (object menu ¡¡) Cut Trans).

– Press ÄCTRLÅ+ÄYÅ to paste a transaction from the \cut-and-paste" buÃer at

the pointer location (object menu ¡¡) Paste Trans).

– Press ÄCTRLÅ+ÄOÅ to insert a transaction at the pointer location (object

menu ¡¡) Insert Trans).

– Press ÄCTRLÅ+ÄNÅ to move to the next transaction.

– Press ÄCTRLÅ+ÄPÅ to move to the previous transaction.

– Press ÄCTRLÅ+ÄXÅ to step to the next transaction (Sequencer only).

(Sequencer object menu ¡¡) Step Trans.)

2-41



The Basics

Using the Keyboard Shortcuts

To Navigate the HP VEE Menu

You can navigate the HP VEE menu by using the keyboard menu accelerators.

Each menu item has an underlined letter, which acts as an accelerator in

conjunction with the ÄAltÅ key on a PC or the ÄExtend CharÅ key on a UNIX

workstation. The keyboard accelerator letters are case insensitive. In other

words, even though the underlined letter may be capitalized, you can use the

lower case letter as the accelerator. Let's look at an example.

In the Device menu the D is underlined (but d works Õne as the accelerator)

and in the Data menu the t is underlined:

– On the PC, press ÄAltÅ+ÄdÅ to select the Device menu or ÄAltÅ+ÄtÅ to select

the Data menu.

– On the UNIX workstation, press ÄExtend CharÅ+ÄdÅ to select the Device

menu, or ÄExtend CharÅ+ÄtÅ to select the Data menu.

Each sub-menu has its own accelerators, which you can use to navigate

further down the menu tree. For example, to select Data ¡¡) Real Slider:

– On the PC, press ÄAltÅ+ÄtÅ and then ÄrÅ.

– On the workstation, press ÄExtend CharÅ+ÄtÅ and then ÄrÅ.

2-42



The Basics

Using the Keyboard Shortcuts

To Navigate an Operator Interface Panel

If you or another HP VEE programmer have created an operator interface

panel view in an HP VEE program, you can navigate the panel with the

following keys:

– Press ÄTabÅ and ÄShiftÅ+ÄTabÅ to move from one Õeld in the operator interface

panel to the next. The ÄTabÅ key moves focus forward, and ÄShiftÅ+ÄTabÅ

moves focus backward from Õeld to Õeld. When a type-in Õeld has focus

(indicated by an inverse highlight), you can edit it. When a button has

focus (indicated by a dashed outline), you can \push" it as described below.

– Press the space bar to \push" a button that currently has focus.

– Use the appropriate alphanumeric keys to edit a type-in Õeld that currently

has focus. Press ÄEnterÅ or ÄReturnÅ to complete and accept the edit, or press

ÄEscÅ to abort the edit.

– Press ÄEnterÅ or ÄReturnÅ to \push" the default button in the operator

interface panel, if one has been deÕned by the programmer.

Operator interface panel views and how to use them are covered in detail in

Building an Operator Interface with HP VEE.

2-43



The Basics

Using the Keyboard Shortcuts



3

Working with Data



Working with Data

This chapter gives some useful techniques for inputting and analyzing data

using HP VEE.

3-2



Inputting Data

HP VEE provides several types of objects that allow you to enter data.

Let's begin by looking at the conventions HP VEE recognizes for entering a

number.

To Enter a Number

You can enter a number in any HP VEE numeric-entry Õeld using the

following conventions. (Of course, you can enter any arbitrary string of

characters in a text-entry Õeld.)

– Ordinary numeric entry:

1001

1020768 But not 1,020,768

12.12

¡1.223

– Exponential numeric entry:

1.23E3 Equivalent to 1.23x10
3 or 1230

6.0225E23 Equivalent to 6.0225x10
23

6.6256E¡27 Equivalent to 6.6256x10
¡27

– Numeric entry using the ISO abbreviations:

1.23k Equivalent to 1.23x10
3 or 1230

3.61M Equivalent to 3.61x10
6

2.3n Equivalent to 2.3x10
¡9

The following table lists the ISO abbreviations recognized by HP VEE for

entering a number.

3-3



Working with Data

Inputting Data

Table 3-1. ISO Numeric Abbreviations

Abbreviation Suœx Multiple

X exa 10
18

P peta 10
15

T tera 10
12

G giga 10
9

M mega 10
6

k or K kilo 10
3

Abbreviation Suœx Multiple

m milli 10
¡3

u micro 10
¡6

n nano 10
¡9

p pico 10
¡12

f femto 10
¡15

a atto 10
¡18

The hypen (¡) is used as a minus sign and the period (.) is used as a decimal

point. You can include a plus sign (+) in a numeric entry Õeld if desired.

However, the comma (,) is not allowed as a separator.

HP VEE may change the form of the number you enter to another, equivalent

form. For example:

+1.23 Becomes 1.23 (plus signs are dropped)

6.3E¡9 Becomes 6.3n

6.0225E23 Becomes 602.25E21 (in the standard number format)

You can change the number format that HP VEE uses to display numbers.

Refer to the following section for further information.

To Change the Number Format

You can change the number format that HP VEE uses to display numbers:

1. You can change the global number format that HP VEE uses, by default,

for all objects that display numbers.

2. You can change the number format for certain individual objects that

display numbers.

3-4



Working with Data

Inputting Data

To Change the Global Number Format:

To change the global number format for an HP VEE program:

1. Select File ¡¡) Edit Default Preferences, and then click on the

Number tab:

2. Select the desired number format by changing the appropriate Õelds:

– Integer determines the number base for integers: Decimal, Octal,

Hexadecimal, or Binary. (Click on the Õeld or its arrow for the

drop-down list.)

– Real determines the format of real numbers: Standard, Fixed,

Scientific, or Engineering. (Click on the Õeld or its arrow for the

drop-down list.)

– Sig digits determines the number of signiÕcant Õgures. (Type in the

desired number.)

3. Click on Save if you want the changes to be saved as new defaults (in

VEE.RC or .veerc). Or click on OK if you want to use the changes for this

HP VEE session only (until you select File ¡¡) New, Open, or Exit).

3-5



Working with Data

Inputting Data

To Change the Number Format for Certain Objects:

You can select a number format independently for certain objects.

These objects include the numeric slider and constant objects, and the

AlphaNumeric, Logging AlphaNumeric, and Meter display objects. In each

case, the selected number format overrides the global number format, but

only for the particular object.

Let's look at an example. Suppose that you connect an AlphaNumeric

display object to the output of a Now() object. By default the time is

displayed as something like 62.9183G (in seconds). To change this to the

Time Stamp format:

1. Select Edit Properties from the object menu of the AlphaNumeric

object. Then click on the Number tab.

2. Now click on the check-box to turn oÃ Global Format. Once you have

done that, you can click on the Real Õeld (or its arrow) to show the

drop-down menu, as shown below:

3-6



Working with Data

Inputting Data

3. Select the Time Stamp format. Other choices appear. By default, the Date

& Time 24-hour format is used. Click on OK and the time is displayed in

that format:

To Change the Trig Mode

In HP VEE, trigonometric values may be entered and displayed in degrees,

radians, or gradians, depending on the trig mode.

To change the trig mode:

1. Select File ¡¡) Edit Properties. The Work Area Properties dialog

box appears:

3-7



Working with Data

Inputting Data

2. Select the desired trig mode (Degrees, Radians, or Gradians), and then

click on OK.

The new trig mode is active for the duration of the current HP VEE session.

When you restart HP VEE, the trig mode reverts to the default, (Degrees).

N O T E

All internal calculations are done in radians. You'll get slightly faster performance if you set the trig

mode to Radians because HP VEE won't have to make the conversion to radians and back.

To Use a Data Constant

HP VEE provides several types of data constants. To use a scalar data

constant:

1. Select a data constant object (Data ¡¡) Constant ¡¡)). The choices are

Text, Integer, Real, Coord, Complex, PComplex, Date/Time, and

Record.

2. Enter the appropriate type of data in the constant object. The most

common types are the Text, Integer, and Real constant objects:

– In the Text constant, you can enter any text string (the maximum

length is 32,767 characters).

– In the Integer constant, you can enter any 32-bit, two's-complement

integer (the range is ¡2147483648 through +2147483647).

– In the Real constant, you can enter any 64-bit real number (the range is

«1.7976931348623157E308).

3-8



Working with Data

Inputting Data

In the example below, the Text, Integer, and Real constant objects are

connected into HP VEE program threads:

Note that data types are automatically converted as needed by the object

receiving the data. In this example the integer 3 is converted into a real

value and added to 6.24. The A+B object outputs a real value, 9.24. Refer

to Appendix A for further information about data type conversion.

You can also create one-dimensional arrays using the data constant object.

Refer to \To Create an Array Constant", later in this chapter, for further

information.

To Use a Data Slider

HP VEE provides two types of data slider objects: the Real Slider and

Integer Slider. These objects allow you to input a value in your program

by moving a linear slider.

To use a Real Slider:

1. Select Data ¡¡) Real Slider and place the object in the work area.

2. By default the Real Slider object has a range of 0 through 1. By moving

the slider you can change the setting, which is displayed in the Õeld at the

top (0.749 in the example that follows).

3-9



Working with Data

Inputting Data

3. To change the range, click on the upper or lower limit Õeld and change the

value. For example, click on the upper limit of 1 and change the value to

2. Now the slider ranges from 0 through 2.

To Use a Data-Selection Object

HP VEE provides Õve types of data-selection objects: Radio Buttons, Cycle

Button, List, Drop-Down List, and Pop-Up List. For example, to use a

Radio Buttons object:

1. Select Data ¡¡) Selection Controls ¡¡) Radio Buttons and place the

object in the work area:

3-10



Working with Data

Inputting Data

2. Note that the default radio button selections are Item 1, Item 2, and

Item 3. To change these selections, select Edit Enum Values from the

object menu. The Edit Enum Values dialog box appears:

3. Edit the values as needed. Use ÄTabÅ (or ÄÉÅ) to advance, ÄShiftÅ+ÄTabÅ (or

ÄÈÅ) to back up among the Õelds. You can replace the text in each Õeld or,

to add Õelds, tab past the last Õeld and type in additional text:

4. When you are Õnished editing the Õelds, click on OK.

The same techniques are used to edit the Õelds for all Õve types of

data-selection objects. In fact, by selecting Edit Properties from the object

menu you can change the format from one type of object to another. For

example, you can change a Radio Buttons object into a Drop-Down List

object, and so forth.

3-11



Working with Data

Inputting Data

To Use a Data Input Dialog Box

HP VEE provides six built-in dialog box objects under Data ¡¡) Dialog Box

(Text Input, Integer Input, Real Input, Message Box, List Box, and

File Name Selection). You can use the Text Input, Integer Input, and

Real Input objects to prompt for data input.

To use a Real Input pop-up dialog box:

1. Add a Real Input dialog box object to the work area (Data ¡¡) Dialog

Box ¡¡) Real Input):

When the Real Input object operates, it displays a pop-up dialog box

requesting a real number from the user. You can set the following

parameters:

– Prompt/Label determines the message displayed in the dialog box.

– Default Value determines the optional default value to be displayed in

the dialog box.

– Value Constraint determines the range or other test that the value

entered must match.

– Error Message determines the error message to be displayed if the user

responds with data that fails the test in Value Constraint.

2. Change the Prompt/Label Õeld to Please enter a real value.

3-12



Working with Data

Inputting Data

3. Run the program. The pop-up dialog box appears:

4. Enter 11 in the dialog box and click on OK. The following error message

appears:

5. Click on OK in the error message box. Now enter a number in the range 0

through 10 in the Real Input dialog box, and click on OK. The number is

accepted and output on the Value terminal.

The Integer Input and Text Input dialog box objects work in much the

same way. For further information on using dialog boxes, refer to Building

an Operator Interface with HP VEE.

3-13



Using Mathematical Expressions

This section describes some useful techniques for entering and solving

mathematical expressions in HP VEE. For a detailed summary of the HP VEE

mathematical conventions, refer to \Mathematically Processing Data" in

Chapter 3 of the HP VEE Reference manual.

To Enter a Formula

The basic mathematical object in HP VEE is the Formula object:

The Formula object, when selected from the menu and placed in the work

area, includes the expression 2*A+3 (as an example) and has one data input

terminal, A. Note that variable A in the expression corresponds to data input

terminal A.

Whenever HP VEE evaluates an expression in an object, each variable in

the expression is replaced by data on the input terminal with the same

name as the variable. However, variable names and terminal names

are not case-dependent (upper-case and lower-case letters my be used

interchangeably). For example, the variable a in the expression a+1 is

recognized as corresponding to terminal A.

3-14



Working with Data

Using Mathematical Expressions

N O T E

In general, if a named variable in an expression does not have a corresponding input terminal, HP VEE

cannot evaluate the expression and returns an error. However, there is an exception to this. A global

variable requires no corresponding data input terminal. Global variables are covered in \Working with

Global Variables" at the end of this chapter.

To use the Formula object:

1. Add the Formula object to the work area (Math ¡¡) Formula).

2. Click on the expression Õeld in the Formula object and modify

the expression as desired. For example, enter the expression

2*A+abs(B)+sin(C)+6. Refer to Chapter 3 in the HP VEE Reference

manual, or to the online help, for the HP VEE math syntax rules.

3. Add data input terminals as required. (Place the pointer in the data

input terminal area and press ÄCtrlÅ+ÄAÅ.) Delete any unused data input

terminals. (Place the pointer over the terminal and press ÄCtrlÅ+ÄDÅ.)

4. Connect all of the data input terminals to appropriate sources of data, and

the Result data output terminal to a display object, to complete your

program.

The following is a simple example of an HP VEE program that uses the

Formula object to evaluate an expression and display the result:

3-15



Working with Data

Using Mathematical Expressions

To Use the Math and AdvMath Objects

For your convenience, over 150 mathematical objects are provided in the

Math and AdvMath menus. However, all of these objects are really Formula

objects that have been pre-conÕgured with a descriptive title, an expression,

and the appropriate data input terminals. Because these objects are really

Formula objects, you can modify them as follows:

1. Change the expression to any valid HP VEE expression.

2. Change the title to describe the new expression.

3. Add or delete data input terminals as required.

Here are some tips for using these objects:

1. Don't use several math and advanced objects to \wire" an expression.

Instead, combine the mathematical operators and functions into a single

expression in a single object. HP VEE programs run faster when fewer

objects are used.

Don't do this:

Do this instead:

3-16



Working with Data

Using Mathematical Expressions

2. When you modify the expression in a Math or AdvMath object, make sure

that you both change the expression and add the necessary data input

terminals.

3. If you are going to minimize the object to its icon, be sure to change the

title to describe what the new mathematical expression does.

N O T E

You can change the names of the data input terminals for the the Math and AdvMath objects in

the usual way. (Just double-click on the terminal and type in a new name.) However, if you change

the terminal names, make sure you change the corresponding variable names in the expression as well.

To Use Mixed Data Types in an Expression

Because HP VEE automatically converts data types as needed, you can solve

expressions involving mixed data types. In general, you don't need to do

anything special. Just enter the expression in an object such as Formula and

connect the appropriate data sources to the data input terminals.

For example, in the following program the Formula object receives waveform

data on input terminal A and real data on input terminal B.

3-17



Working with Data

Using Mathematical Expressions

The Formula object evaluates the expression abs(A)+B by adding the real

value 0.75 to the absolute value of each of the 256 points in the waveform.

All of the data type conversion occurs automatically.

To Use an Expression in an If/Then/Else Object

HP VEE can evaluate mathematical expressions and branch program Œow

according to the result. The basic conditional object in HP VEE is the

If/Then/Else object:

The default expression in the If/Then/Else object is 0<=A AND A<10.

However, any conditional expression can be used. The expression can be as

simple as A==B. In fact, the If A==B object and the other objects found under

Flow ¡¡) Conditional are really just If/Then/Else objects pre-conÕgured

with expressions, descriptive titles, and data input terminals.

3-18



Working with Data

Using Mathematical Expressions

To use the If/Then/Else object:

1. Add the If/Then/Else object to the work area (Flow ¡¡)

If/Then/Else).

2. Click on the expression Õeld in the If/Then/Else object and modify the

expression as desired. For example, enter the expression A==B OR B>=C.

3. Add data input terminals as required. (Place the pointer in the data

input terminal area and press ÄCtrlÅ+ÄAÅ.) Delete any unused data input

terminals. (Place the pointer over the terminal and press ÄCtrlÅ+ÄDÅ.)

4. Connect all of the data input terminals and one or both of the data output

terminals to complete your program. If the expression is \true," the result

of the expression (generally a 1) is output on the Then terminal. If the

expression is \false" a 0 is output on the Else terminal.

5. If desired, you can add Else If conditions to the object, as described in

\To Branch within an HP VEE Program" in Chapter 2.

In the following program, if the expression A==B OR B*C==50 is true, the

Then output terminal activates UserObject1. If the expression is false, the

Else output terminal activates UserObject2.

3-19



Working with Data

Using Mathematical Expressions

To Use an Expression in a Transaction

HP VEE mathematical expressions can be evaluated and used in an HP VEE

I/O transaction. Several HP VEE objects are transaction based, including the

To File and From File objects, which are covered in detail in Chapter 4.

Let's look at an example of evaluating an expression in a To File

transaction:

1. Add a To File object to the work area (I/O ¡¡) To ¡¡) File).

2. Double-click on the transaction WRITE TEXT a EOL. The I/O Transaction

dialog box appears.

3. Click on the default expression, a, and change the expression to

a+sin(b):

4. Click on OK to save the new transaction (WRITE TEXT a+sin(b) EOL).

5. Add a B data input terminal to the object, and connect the data input

terminals.

3-20



Working with Data

Using Mathematical Expressions

In the following program, the To File object adds the value of a (1) to the

value of sin(b) (the sine of 30 degrees is 0.5), and outputs the result 1.5 to

the Õle named myFile.

For further information about transactions, refer to the \Using Transaction

I/O" chapter in HP VEE Advanced Programming Techniques.

3-21



Working with Strings

This section shows how to use some of the HP VEE string-manipulation

features found under Math ¡¡) String, and how to use some other

techniques to process string data.

To Find the Length of a String

To Õnd the length of a string using the strLen(str) function:

1. Add the strLen(str) object to work area (Math ¡¡) String ¡¡)

strLen(str)).

2. Connect the source of string data to the str data input terminal. Connect

the Result output as desired.

3. Run the program. When the strLen(str) object operates, the length of

the string is output on the Result terminal. For example:

The strLen(str) object outputs the length of the string in bytes as an Int32

number. If str is a one-dimensional string array, strLen(str) returns the

length of each element of the array:

3-22



Working with Data

Working with Strings

To Obtain a Substring

You can use the strFromThru(str,from,thru) function to obtain a

substring, where:

str is the original string.

from is the position where the substring starts.

thru is the position where the substring stops.

All character positions in a string are zero-based. That is, the Õrst character

is at position 0.

To obtain a substring from a string:

1. Add the strFromThru(str,from,thru) object to the work area (Math

¡¡) String ¡¡) strFromThru(str,from,thru)).

2. Connect the source of string data to the str input terminal.

3. Specify the from and thru values:

– Connect data to the from and thru input terminals, or

– Change the expression to explicitly specify from and thru. For

example, the expression strFromThru(str,0,5) returns characters 0

through 5 (the Õrst six characters) of string str. Remember to delete

the from and thru terminals if you do this.

The program below returns the Õrst six characters of the string:

You can also use the strFromLen(str,from,len) function to obtain a

substring. In this case, len speciÕes the length of the substring.

3-23



Working with Data

Working with Strings

To Concatenate Strings

You can use addition (+) and multiplication (*) in HP VEE to concatenate

strings. Here are some examples of what you can do:

– You can concatenate two strings:

– You can concatenate a string and a number (the number is converted to a

string):

– You can multiply a number and a string to repeatedly concatenate the

string:

3-24



Working with Data

Working with Strings

To Compare Two Strings for Equality

You can use the HP VEE conditional tests to compare two strings. For

example, the following program compares two strings for equality:

If the two strings are exactly the same (including spaces), the result of the

expression (in this case, a 1) is output on the Then terminal. (Otherwise, a 0

is output on the Else terminal.) Note that this comparison is case-sensitive

(Now is not equivalent to now).

To Convert a Number into a String

You can convert a number into a string using To String. As an example,

let's convert the current time in seconds into a string in the time stamp

format:

1. Add a To String object to the work area (I/O ¡¡) To ¡¡) String).

Double-click on the icon to show the open view object.

3-25



Working with Data

Working with Strings

2. Double-click on the default transaction WRITE TEXT a EOL. The I/O

Transaction dialog box appears:

3. Click on Default Format (or its arrow) to show the drop down menu.

Select Time Stamp Format and click on OK.

4. Connect a now() object to the data input terminal and a AlphaNumeric

display to the data output terminal of To String.

5. Run the program. The now() object outputs the time in seconds

(something like 62.9185G). This value is converted to the time stamp

format and displayed, as shown below:

For further information about transactions, refer to the \Using Transaction

I/O" chapter in HP VEE Advanced Programming Techniques.

N O T E

You can convert an integer (0 to 255) to an ASCII character by using the intToChar(a)

function. This does not work for two-byte (for example, Kanji) characters.

3-26



Working with Data

Working with Strings

To Convert a String into a Number

If a string includes numeric information that can be read as a number, you

can use From String to extract the number. Let's look at an example:

1. Add a From String object to the work area (I/O ¡¡) From ¡¡) String).

Double-click on the icon to obtain the open view object.

2. The default transaction is READ TEXT a REAL, which reads the string as

text and outputs a real number if possible. Connect a Text constant object

to the data input terminal, and an AlphaNumeric display to the data

output terminal.

3. Enter the string Item number: A1222 in the Text constant and run the

program. The real number value 1222 is output to the display:

N O T E

You can convert an ASCII character to an integer by using the charToInt(a) function. This

does not work for two-byte (for example, Kanji) characters.

3-27



Working with Arrays

HP VEE provides several features for processing arrays. In fact, HP VEE

is optimized for array mathematics. To increase the performance of your

HP VEE programs, use arrays whenever possible if you are processing large

amounts of data.

To Create an Array Constant

You can create one-dimensional arrays using the data constant objects.

Use this technique when you want to manually set each value in a

one-dimensional array.

For example, to create a one-dimensional text array with nine elements:

1. Add a Text constant object to the work area (Data ¡¡) Constant ¡¡)

Text).

2. Select Edit Properties from the object menu. The Text Constant

Properties dialog box appears:

3-28



Working with Data

Working with Arrays

3. By default the Text constant object is conÕgured as a Scalar. Click on

1D Array under Configuration, and then click on the Size Õeld and

change it to 9.

N O T E

If you want your array to have a Õxed number of elements, click on the Size Fixed checkbox

as well. If you want to be able to add additional elements on at the end, leave Size Fixed

unselected.

4. Click on OK. The Text constant object should now appear as follows.

Note that the nine elements run from 0000: through 0008:. All HP VEE

arrays are zero-based.

3-29



Working with Data

Working with Arrays

5. Click to the right of 0000: and type in the Õrst element of your array.

Use ÄTabÅ (or ÄÉÅ) to advance, ÄShiftÅ+ÄTabÅ (or ÄÈÅ) to back up among

the array elements. Type in text strings for each of the elements. The

following is an example of a nine-element, one-dimensional text array.

You can convert any constant object (Integer, Real, and so forth) into an

array using the same technique.

3-30



Working with Data

Working with Arrays

To Allocate an Array

Another way to create an array in HP VEE is to allocate it. Use one of the

Allocate Array features when you want to create an array and set its

values programmatically, and/or when you want to create an array of two or

more dimensions.

To allocate an array, use the appropriate object, found under Data ¡¡)

Allocate Array. These objects include Alloc Text for text arrays and

Alloc Integer, Alloc Real, Alloc Coord, Alloc Complex, and Alloc

Pcomplex for numeric arrays. You can allocate arrays of from 1 to 10

dimensions using these objects. In general, an allocated array is \Õlled"

with a repeated initial value. For example, the following is a Õve-element,

one-dimensional array with an initial value of 1:

0: 1

1: 1

2: 1

3: 1

4: 1

The following is a 3-by-3 matrix (two-dimensional array) with an initial value

of 0 repeated throughout:

0: 1: 2:

0: 0 0 0

1: 0 0 0

2: 0 0 0

Key Points

All HP VEE array indexes are zero based. That is, the Õrst element has index 0 in any dimension.

All HP VEE arrays are passed as single data containers. That is, a three-by-three two-dimensional array

has nine values in it, but the entire array is passed from object to object as a single data container.

3-31



Working with Data

Working with Arrays

For one-dimensional integer and real arrays only, you can initialize the array

with a linear or logarithmic ramp of values. For example, the following is a

Õve-element, one-dimensional, linear-ramp array:

0: 1

1: 2

2: 3

3: 4

4: 5

Now let's allocate some arrays.

To Allocate a One-Dimensional Array:

As an example, let's allocate a one-dimensional real array:

1. Add an Alloc Real object to the work area (Data ¡¡) Allocate Array

¡¡) Real).

2. By default the Alloc Real object allocates a one-dimensional array with a

linear ramp of values. Click on the Lin Ramp Õeld (or its arrow) to show

the drop-down menu:

3. You can select Init Value, Lin Ramp, or Log Ramp. Click on Log Ramp to

select a logarithmic ramp of values.

3-32



Working with Data

Working with Arrays

4. Connect an XY Trace display object to the Alloc Real object and run the

program. Click on the Auto Scale button to see the data trace:

As you can see, the one-dimensional array consists of a logarithmic ramp

of 10 values. The Alloc Real object outputs this array as a single data

container. To verify this, probe the line between the two objects with Line

Probe (ÄShiftÅ+left mouse button with the pointer near the line).

To Allocate a Two-Dimensional Array:

Let's allocate another real array, this one with two dimensions:

1. Add an Alloc Real object to the work area (Data ¡¡) Allocate Array

¡¡) Real).

2. By default the Alloc Real object allocates a one-dimensional array with a

linear ramp of values. Click on the Num Dims Õeld (or its arrow) to show

the drop-down menu:

3-33



Working with Data

Working with Arrays

3. Click on 2 to select a two-dimensional array. (You can select up to 10

dimensions.) The object appears as shown below:

Three changes have occurred:

a. The number of dimensions is now 2.

b. The Lin Ramp Õeld has changed to Init Value, the only choice for an

array of two or more dimensions. The default initial value is 0.

c. A second dimension Õeld appears. Both dimensions have a default size

of 10.

4. Change the size for the Õrst dimension to 4, and for the second to 3. Then

connect an AlphaNumeric display object to the output of the Alloc Real

object.

3-34



Working with Data

Working with Arrays

5. Run the program, and then resize the AlphaNumeric object to show the

entire array:

Of course, an array allocated with 0 values is of little use until you access

those values and change them. Refer to \To Change Values in an Array",

later in this chapter, for further information.

To Allocate an Array of Three or More Dimensions:

You can allocate an array of up to ten dimensions. The procedure is the same

as for two dimensions. Just specify the number of dimensions and specify a

size for each dimension. However, note the following points:

1. HP VEE display objects cannot display more than two dimensions.

2. The memory required to allocate an array is determined by the number

of dimensions, the sizes of the dimensions, and the data type. If your

computer has the recommended amount of memory (and swap space

for UNIX systems), you should be able to allocate arrays of up to Õve

dimensions, each with a default size of 10. To allocate arrays of six or

more dimensions you may need to declare smaller size parameters. If you

try to allocate too large an array, the HP VEE process may run out of

memory, resulting in an error.

3-35



Working with Data

Working with Arrays

To Create an Array Directly:

There are three ways that you can create an array directly, without allocating

it:

1. Create a one-dimensional array directly by creating a data constant. Refer

to \To Create an Array Constant", earlier in this chapter, for further

information.

2. Collect data into an array using the Collector or Sliding Collector

object. Refer to \To Collect Data into an Array", later in this chapter, for

further information.

3. Build the array in an expression. Refer to \To Build an Array in an

Expression", later in this chapter, for further information.

To Change Values in an Array

Once you have allocated an array, you can change values in the array with

the Set Values object. This object refers to a value in an array by its index,

and enters a new value.

To set a new value in a one-dimensional real array:

1. Allocate the array with Alloc Real (refer to \To Allocate an Array",

earlier in this chapter). To save time, load the program manual05.vee

from your manual examples directory. In this program, a Õve-element,

one-dimensional real array is allocated with 0 as the initial value:

3-36



Working with Data

Working with Arrays

2. Add a Set Values object to the work area (Data ¡¡) Access Array ¡¡)

Set Values). Double-click on the icon to show the open view Set Values

object.

3. Connect the Array data output pin of Alloc Real to the Array data

input terminal of Set Values:

4. Connect data constants to the Datum terminal (the value that you want

to put into the array) and the Index 1 terminal (the index where you

want to put the value). For example, in the program below the real value

25.121 is input on the Datum terminal and the integer 2 is input on the

Index 1 terminal. Also, connect the the XEQ terminal, as shown.

3-37



Working with Data

Working with Arrays

In this program, the Set Values object receives the allocated array as an

input, along with the value 25.121 to set at index 2. When the XEQ terminal

is activated, Set Values outputs the new array with 25.121 at index 2 (the

third value in the array).

3-38



Working with Data

Working with Arrays

Examples:

Let's look at some examples where all of the values in an array are changed.

The following program is saved as manual06.vee in your manual examples

directory.

In this program:

1. The Alloc Real object allocates a one-dimensional, ten-element array

with an initial value of 0.

2. The array of zeros is input on the Array input terminal of the Set Values

object, but Set Values outputs nothing until its XEQ terminal is activated.

3. The For Count object repeats 10 times. On each repeat, two things

happen:

a. The Random Number object outputs a new random number to the

Datum input on the Set Values object.

b. The count is output to the Index 1 input on the Set Values object.

Thus, each random number is indexed consecutively into the array.

4. When the For Count object Õnishes operating (after 10 repeats), its

sequence output pin activates the XEQ terminal on the Set Values object,

which then outputs the new array of 10 random numbers.

3-39



Working with Data

Working with Arrays

The following program (manual07.vee in your manual examples directory)

performs the same basic actions as the previous example. However, this

program uses two For Count objects to index the Index 1 and Index 2

inputs and create a two-dimensional array of random numbers:

3-40



Working with Data

Working with Arrays

To Extract Values from an Array

You can use the Get Values object to extract values from an array:

1. Add a Get Values object to the work area (Data ¡¡) Access Array ¡¡)

Get Values). Double-click on the icon to show the open view object:

2. Connect any data source that outputs an array to the Ary data input

terminal on Get Values. When Get Values operates, the SubAry

terminal outputs a sub-array that depends on the expression in the Get

Values expression Õeld. The default expression Ary causes the entire

original array to be output.

The rest of the data output terminals give information about the original

array on the Ary terminal:

– Type outputs the data type of the array.

– NumDims outputs the number of dimensions in the array.

– DimSizes outputs a one-dimensional array listing the size (the number

of elements) of each dimension.

– TotSize outputs the total size of the array (the total number of

elements).

3-41



Working with Data

Working with Arrays

Examples:

In the following example (manual08.vee in your manual examples directory)

a text constant one-dimensional array is connected to the Ary input terminal

on the Get Values object.

The expression Ary[3:5] causes the sub-array consisting of the elements at

index 3 through index 5 to be output on the SubAry terminal. In addition,

the type, number of dimensions, size of the one dimension, and the total size

of the original array are output. Note that for a one-dimensional array, the

dimension size and total size are the same.

If you only want to obtain a sub-array, without the type and size information,

you can include an expression in a Formula object instead. For example, the

following program uses the expression A[3:5] to obtain the same sub-array

as in the previous example:

3-42



Working with Data

Working with Arrays

Refer to \To Use Arrays or Array Elements in Expressions", later in this

chapter, for further information about using expressions to specify sub-arrays.

To Collect Data into an Array

Very often you may want to collect data into an array, and you may not know

how big an array to allocate. In this case, use the Collector object to collect

the data into an array.

For example, to collect Õve random values into an array:

1. Add a Collector object to the work area (Data ¡¡) Collector).

Double-click on the icon to show the open view object.

2. Add the For Count, Random Number, and AlphaNumeric objects to the

work area and connect the program as shown below:

3. Run the program. (Resize the AlphaNumeric display to show the entire

array.)

The Collector collects data until its XEQ terminal is activated, and then

outputs the collected data as an array. In this case, the For Count object

repeats Õve times, causing Õve random numbers to be generated, and then

activates its sequence output pin. This activates the XEQ terminal on the

Collector causing the array to be output on the Array terminal.

The Collector is set by default to output an array with n+1 dimensions.

(The other choice is 1 Dim Array.) For scalar data, the output array is

one-dimensional, as shown above.

3-43



Working with Data

Working with Arrays

Now let's modify our example to collect one-dimensional arrays of data into a

two-dimensional array:

1. Remove the Random Number object from the previous program, and

replace it with an Alloc Real object.

2. Connect the program as shown below. ConÕgure the Alloc Real object to

allocate a Log Ramp one-dimensional array with a size of 7.

3. Run the program. Resize the AlphaNumeric display to show the entire

array.

In this case, the Collector object is set to output an array of n+1

dimensions. Since n (the number of dimensions in the input arrays) is 1, the

output array has n+1, or 2 dimensions. If you change the Output Shape to

1 Dim Array, the data will be collected into a one-dimensional array with 35

elements.

In addition to the Collector object, you can use the Sliding Collector

object to collect data into an array. The Sliding Collector diÃers from the

Collector in two signiÕcant ways:

1. The output is always a one-dimensional array.

3-44



Working with Data

Working with Arrays

2. There is no XEQ terminal. Instead, the Sliding Collector is set to

trigger after a speciÕed number of values.

The following program (manual09.vee in your manual examples directory)

uses both a Sliding Collector and a Collector to build an array of

simulated readings from an instrument panel object for the HP 34401A

Multimeter:

In most cases, set Array Size and Trigger Every to the same size, as

shown above, for the Sliding Collector object.

The program works as follows:

– The For Count object triggers the dmm (hp34401a) instrument panel

object 20 times.

3-45



Working with Data

Working with Arrays

– The instrument panel object generates a simulated reading (because live

mode is OFF) on each iteration of the loop.

– The Sliding Collector triggers after every Õfth reading, outputting a

one-dimensional array of Õve readings.

– The Collector collects four consecutive one-dimensional arrays from the

Sliding Collector, and outputs all 20 readings as a two-dimensional,

four-by-Õve array.

For further information about using instrument panel objects, refer to

Chapter 5.

To Use Arrays or Array Elements in Expressions

We covered how to use Get Values to extract a sub-array from an array in

\To Extract Values from an Array", earlier in this chapter. We mentioned

there that you can use an expression in either Get Values or in a Formula

object to specify a sub-array. In fact, you can specify an array or sub-array in

an expression in any HP VEE object that has an expression Õeld.

In an expression, any reference to an array uses the following syntax:

– Brackets [ ] are used after the array name to enclose the parameters

specifying a sub-array. For example, if B is a two-dimensional array,

B[0,0] speciÕes the Õrst element in it.

– The comma (,) separates array dimensions. Each sub-array operation must

have exactly one speciÕcation for each array dimension.

– The colon (:) separates a range of elements within one of the array

dimensions.

– The asterisk (*) is a wild-card character to specify all elements from a

particular array dimension.

Note that all HP VEE array indexes are zero based. That is, the Õrst element

has index 0 in any dimension.

3-46



Working with Data

Working with Arrays

Examples:

Assume A is a one-dimensional array, 10 elements long:

0: 100m

1: 0.2

2: 0.3

3: 0.4

4: 0.5

5: 0.6

6: 0.7

7: 0.8

8: 0.9

9: 1

The following expressions extract portions of array A:

– A or A[*] returns the entire array A.

– A[1] returns a scalar, which is the the second element (index 1) in A:

0.2

– A[1:1] returns a one-dimensional array with only one element, which is

the second element (index 1) in A:

0: 0.2

– A[0:5] returns a one-dimensional array that contains the Õrst six elements

(indexes 0 through 5) of A:

0: 100m

1: 0.2

2: 0.3

3: 0.4

4: 0.5

5: 0.6

– A[2:*] returns a one-dimensional array that contains the third through the

tenth elements (indexes 2 through 9) of A. (The indexes are redeÕned as 0

through 7 in the subarray.)

0: 0.3

1: 0.4

2: 0.5

3: 0.6

4: 0.7

5: 0.8

6: 0.9

7: 1

3-47



Working with Data

Working with Arrays

Assume B is a 5-by-5 matrix (a two-dimensional array):

0: 1: 2: 3: 4:

0: 0 0.2 0.4 0.6 0.8

1: 1 1.2 1.4 1.6 1.8

2: 2 2.2 2.4 2.6 2.8

3: 3 3.2 3.4 3.6 3.8

4: 4 4.2 4.4 4.6 4.8

The following expressions extract portions of array B:

– B or B[*,*] returns the entire array B.

– B[*] returns an error because it speciÕes only one parameter, and B is a

two-dimensional array.

– B[1,2] returns a scalar value from the second row (index 1), third element

(index 2):

1.4

– B[1,*] returns all of the second row (index 1) as a one-dimensional array:

0: 1

1: 1.2

2: 1.4

3: 1.6

4: 1.8

– B[1,1:*] returns all of the second row (index 1), except for the Õrst

element (index 0), as a one-dimensional array:

0: 1.2

1: 1.4

2: 1.6

3: 1.8

3-48



Working with Data

Working with Arrays

To Build an Array in an Expression

You can also build an array by specifying portions of other arrays in an

expression. However, within an expression, all sub-arrays speciÕed must

have the same number of dimensions and contain the same number of values

in each dimension.

Assuming B is the 5-by-5 matrix of the previous examples (shown at the top

of the previous page), the expression [ B[1,1] B[2,2] B[0,0] B[2,3] ]

returns the following one-dimensional array:

0: 1.2

1: 2.4

2: 0

3: 2.6

You can also build an array constant in an expression. For example, the

expression [1.1 1.3 1.2] creates a three-element, one-dimensional real

array:

0: 1.1

1: 1.3

2: 1.2

N O T E

Negative values in array constant expressions may cause problems. For example, [5 4 -3 2] is

evaluated as [5 1 2]. So enter [5 4 (-3) 2] instead.

3-49



Working with Records

Arrays, described in the previous section, are extremely useful for handling

large amounts of data. However, arrays have a limitation. You cannot mix

data types within an array. For example, you cannot mix text data and

numeric data in the same array. However, you can use the record data type

for this purpose. You can create a record that contains several diÃerent data

types and data shapes, each in a diÃerent record Õeld.

This section covers some of the basics of using records in HP VEE. For

further information about using records, and about storing records in

DataSets, refer to the \Using Records and DataSets" chapter in HP VEE

Advanced Programming Techniques.

To Create a Record Constant

The best way to see how to create a record constant is to try an example.

Let's create a record constant containing two record Õelds. The Õrst Õeld, a

text Õeld, contains a person's name. The second Õeld, an integer, contains

the person's employee number.

1. Add a Record constant object to the work area (Data ¡¡) Constant ¡¡)

Record).

2. Note that the Record constant is unlike any of the other constant objects.

It has two named Õelds (A and B by default), each of which has a type-in

Õeld. Click on the button labeled A. The Record Field Attributes

dialog box appears:

3-50



Working with Data

Working with Records

3. You can change the name of the Õeld by typing in a new name in place of

A. Change the Õeld name to Name, but leave the data type set to Text and

the number of dimensions set to 0 (scalar). Click on OK.

4. Now click on the button labeled B. Change the Õeld name to Empl_No, and

then click on Real (or the arrow) to show the drop-down menu:

5. Click on Int32 to select the integer data type, but leave the number of

dimensions set to 0. Click on OK.

3-51



Working with Data

Working with Records

6. Enter John Doe in the the type-in Õeld next to Name, and enter 111222

in the type-in Õeld next to Empl_No, as shown below. Connect an

AlphaNumeric display object to the output pin, and run the program:

The record is displayed in the format {"John Doe", 111222}. This is a

single record consisting of two record Õelds. In this case each Õeld is a scalar.

The Õrst Õeld is text, and the second Õeld is an integer.

So far, our record constant can only store one person's name and employee

number. Let's create an array of records to contain this information for a list

of three people:

1. Beginning where we left oÃ above, select Edit Properties from the

object menu of the Record constant:

3-52



Working with Data

Working with Records

2. Now click on the radio button in front of 1D Array to convert the Record

constant into an array of records. Set the Size to 3, and then click on OK.

The object appears as follows:

3. The First, Prev, Next, and Last buttons allow you to scroll

through the array of records. Right now, each record is the same

({"John Doe", 111222}). Let's change this:

a. Click on Next to scroll to the second record. Change the name to Sue

Smith and the number to 111223.

b. Click on Next to scroll to the third (and last) record. Change the name

to Richard Roe and the number to 111224.

4. Now run the program. Re-size the AlphaNumeric display to show the

entire array of records:

3-53



Working with Data

Working with Records

To Collect Data into a Record

Entering individual Õelds into a Record constant could be rather tedious for

large amounts of data. Fortunately, there is another way to create a record,

by using the Build Record object.

To add a Build Record object to the work area, select Data ¡¡) Build Data

¡¡) Record.

Note that the Build Record object has two data input terminals, labeled A

and B by default. The Output Shape is Scalar by default. Click on Scalar

and the shape toggles to Array 1D. Most of the time you will want to leave

the shape set to Scalar.

The Build Record object builds a record from the data on its data input

terminals and outputs a record on its Record output terminal. To see how

this works, let's look at an example. Load the program manual10.vee from

your manual examples directory, and run the program:

3-54



Working with Data

Working with Records

The program works as follows:

– The Text array on input A is a list of names.

– The Integer array on input B is a list of employee numbers.

– The Build Record object is set for an output shape of Scalar, so it

outputs the scalar record {<Text Array 1D>, <Int32 Array 1D>}

consisting of two record Õelds, each containing a one-dimensional array.

The Õrst record Õeld is the array of names, and the second is the array of

employee numbers.

Try changing the output shape:

1. Click on Scalar to display Array 1D.

2. Run the program. The following should be displayed.

3-55



Working with Data

Working with Records

Now the program builds an array of records. The Build Record object

matches each name and employee number to form an individual record

in the array of records to be output on the Record terminal. When the

output shape is set to Array 1D, the input arrays must be of the same size.

(However, this is not true if the output shape is Scalar.)

To Extract a Field from a Record

You can extract a Õeld from a record by using the Get Field object (Data

¡¡) Access Record ¡¡) Get Field):

3-56



Working with Data

Working with Records

The Get Field object is really a Formula object pre-conÕgured with a Rec

input terminal and the expression Rec.A. This expression uses record syntax

to extract a Õeld from a record input on the Rec terminal. The expression

Rec.A means \Õeld A of record Rec". You can use this same syntax to refer

to records from within a Formula object, or other object with an expression

Õeld. For further information on record syntax, refer to \To Use a Record in

an Expression".

Let's look at an example. The following program (manual11.vee in your

manual examples directory) builds a record consisting of two Õelds. The Õrst

Õeld (A) is a waveform, and the second (B) is the time (a scalar).

The upper Get Field object uses the expression Rec.A to extract \Õeld

A of record Rec" (the waveform). The waveform is then displayed by the

Waveform object.

The lower Get Field object uses the expression Rec.B to extract \Õeld B of

record Rec" (the time). The time is then displayed by the AlphaNumeric

object (which has been conÕgured for the time stamp format).

You can also use the UnBuild Record object (Data ¡¡) UnBuild Data

¡¡) Record) to extract Õelds from a record. In the following program

(manual12.vee in your manual examples directory) both Get Field objects

have been replaced with an UnBuild Record object, which extracts Õelds A

and B.

3-57



Working with Data

Working with Records

You can use the UnBuild Record object to extract all of the Õelds in a record.

Also, UnBuild Record returns a Name List (listing the names of all of the

Õelds) and a Type List (listing the data types of all of the Õelds).

To Change a Field in a Record

To change a Õeld in a record, use the Set Field object (Data ¡¡) Access

Record ¡¡) Set Field):

The Set Field object has two expression Õelds:

– The left-hand expression speciÕes a Õeld in the record Rec (the record

connected to the Rec data input terminal). This expression uses the record

syntax Rec.Field where Field can be any Õeld name within the record.

For example, Rec.B speciÕes \Õeld B of record Rec".

3-58



Working with Data

Working with Records

– The right-hand expression contains an expression that speciÕes a new

value for the Õeld speciÕed by the left-hand expression. The default

example is 2*A+3, where A is the variable corresponding to data input

terminal A.

In other words, if the left-hand expression is Rec.B and the right-hand

expression is A, the meaning is:

\Let Õeld B of record Rec be equal to the value on data input terminal A."

N O T E

The syntax of the left-hand expression of the Set Field object is limited. Refer to the Set

Field topic in the HP VEE Reference manual for further information.

Let's look at an example to see how Set Field works. The following

program (manual13.vee in your manual examples directory) uses two Set

Field objects to change Õelds Name and Empl_no in a record constant:

The original record constant has two Õelds: Name has the value "Text

Field" and Empl_no has the value 1.25. The Õrst Set Field object

3-59



Working with Data

Working with Records

changes the value of Name to "John Doe", and the second changes the value

of Empl_no to 111222. It takes two Set Field objects connected in series to

change both Õelds (Name and Empl_no) in the output record.

You can also use Set Field to update an array of records. For example, in

the following program the expression Rec[5].Name = A speciÕes that array

element 5 in the Name Õeld of record Rec is to be set equal to the data on

input terminal A. So Bill Smith replaces Sally Jones in the resulting array

of records.

3-60



Working with Data

Working with Records

To Use a Record in an Expression

You can use the record syntax Rec.Field, where Field is the name of a

Õeld within record Rec, in any HP VEE expression Õeld. For example, in the

following program the expression (A.High + A.Med)/A.Low adds Õelds High

and Med of record A, and divides the result by Õeld Low:

N O T E

To avoid confusion, give your record Õelds descriptive names. For example, if in the above example the

three Õelds were named A, B, and C, the expression would be (A.A + A.B)/A.C, which is

hard to understand.

3-61



Working with Data

Working with Records

You can combine the record syntax with array syntax to access an array

element from a record Õeld. For example, the following program is saved as

manual14.vee in your manual examples directory:

In this program, record Õeld Name is a one-dimensional text array of names,

and Õeld Empl_no is a one-dimensional integer array of employee numbers.

The expression A.Name[7] extracts array element 7 from the array in record

Õeld Name, which is Linda Green. The expression A.Empl_no[7] extracts

array element 7 from the array in record Õeld Empl_no, which is 111229.

For further information about using record syntax in expressions, refer to

\Mathematically Processing Data" in Chapter 3 of the HP VEE Reference

manual.

3-62



Working with Global Variables

Thus far, all of the mathematical expressions in this chapter have used

local variables. A local variable has a value that comes from the data

input terminal with the same name as the variable. For example, if a

Formula object includes the expression 2*A+3, the variable A in the

expression corresponds to the A data input terminal. Local variables require

corresponding data input terminals so that the expression can be evaluated.

Global variables are diÃerent. Once you create a global variable, you can use

it in an expression anywhere in your HP VEE program | you don't need to

include a data input terminal for it. Let's look at how to create and use global

variables.

To Create a Global Variable

To create a global variable, use the Set Global object (Data ¡¡) Globals

¡¡) Set Global). In the following example, a Real constant object is

connected to the Data terminal of a Set Global object.

That's all there is to it. The Set Global object sets the value 1.223 (from

the Real constant) as the value of the global variable named globalA.

3-63



Working with Data

Working with Global Variables

N O T E

You can use any valid variable name in place of globalA for a global variable. Just enter the

desired name in the Set Global object. However, if a global variable has a name that is also

used for a local variable, the local variable takes precedence. To avoid naming conŒicts, don't name a

global variable A, B, or C, or other names used by local variables in your program. Global names are

not case sensitive (globalA is equivalent to GlobalA).

To Use a Global Variable

Once you have created a global variable, you can access it with a Get Global

object (Data ¡¡) Globals ¡¡) Get Global). The following program shows

how to do this:

In this program, the Set Global object creates the global variable globalA,

which has the value 1.223. The Get Global object accesses globalA and

outputs its value.

3-64



Working with Data

Working with Global Variables

Here are two important points:

1. In order to avoid using obsolete data from a previous program run, the

values of all global variables are deleted at PreRun. That is, any \old"

values are cleared when you run the program. (You can turn oÃ Delete

Globals at PreRun with Edit Default Preferences. However, this

cancels the protection against using obsolete data.)

2. Because the value of globalA is deleted at PreRun, it is necessary to

connect the sequence output pin of the Set Global object to the sequence

input pin of the Get Global object. Otherwise, an error occurs because

globalA has no deÕned value.

You cannot include an expression in the name Õeld of a Get Global object.

However, you can use a global variable in an expression in a Formula object,

or other object that includes an expression. For example, in the program

below two Formula objects use globalA in expressions:

Note that in the above program the sequence input pins of both Formula

objects must be connected as shown to ensure that globalA is set before it is

accessed by an expression.

3-65



Working with Data

Working with Global Variables

There is another way to ensure that a global variable is deÕned, without

directly connecting the sequence pins of all of the objects accessing it. You

can deÕne a global variable in the main context of an HP VEE program and

then access the global variable from within the context of a UserObject.

The following program (manual18.vee in your manual examples directory)

shows how this is done:

The sequence output pin of the Set Global object is connected to the

sequence input pin of the UserObject. This ensures that the Set Global

object operates before the UserObject, or any object within it, operates.

Thus, the global variable globalA is deÕned before any object within the

UserObject attempts to access it. This method simpliÕes the program and

makes it easier to understand. For further information about UserObjects

refer to Chapter 8.

3-66



Working with Data

Working with Global Variables

To Use a Global Array

You can declare an array to be a global variable. This makes array handling

easier because you can then access the array from anywhere in your HP VEE

program. Here is a simple example (manual19.vee in your manual examples

directory):

In the above program, the two Formula objects use array syntax to access

elements of the global array. For example, the expression globalA[3]

retrieves element 3 of the global array globalA.

You can do the same thing with a record, or any other type of data. Just

use Set Global to declare the data to be a global variable, and then use an

expression to access the global variable.

3-67



Working with Data

Working with Global Variables



4

Creating and Using Data

Files



Creating and Using Data Files

This chapter shows how to create and use data Õles from HP VEE.

4-2



Storing and Retrieving Data

This section shows how to use the To File object to create data Õles and to

output data to such Õles, and how to use the From File object to retrieve

data from data Õles.

N O T E

HP VEE also provides two special Õle I/O objects to create and access a special kind of data Õle, the

DataSet, which is created from record data. For information about how to use the To DataSet

and From DataSet objects, refer to the \Using Records and DataSets" chapter in HP VEE

Advanced Programming Techniques.

To Create a Data File

You can write data to a new Õle name with the To File object:

1. Add a To File object to your program (I/O ¡¡) To ¡¡) File).

2. Connect the data input pin of the To File object to a source of data that

you want to output to a Õle.

3. Change the name of the destination data Õle to the desired name. To do

this, click on the To File button (by default, this button displays myFile)

and enter a new Õle name in the dialog box. Then click on OK.

For example, in the program that follows the To File object outputs Hello

to a Õle called newfile. If the Õle newfile does not already exist, HP VEE

creates it.

4-3



Creating and Using Data Files

Storing and Retrieving Data

Note that the To File object uses a write transaction (by default,

WRITE TEXT a EOL) to output the data to the Õle. The following section

describes Õle I/O transactions and how to edit them.

To Edit a File I/O Transaction

The To File object uses a write transaction to communicate with the

speciÕed data Õle. The default transaction is WRITE TEXT a EOL, which

writes the data on input A as text, followed by an end-of-line sequence (a

carriage-return/line-feed by default). In the previous example, the text Hello

is written to newfile, terminated with a carriage-return/line-feed. (The From

File object uses similar transactions to read data from a Õle.)

You can edit a transaction by using the I/O Transaction dialog box:

1. Double-click on the transaction Õeld in the To File object. The I/O

Transaction dialog box appears:

2. Click on the Text Õeld (or its arrow). A drop-down menu appears:

4-4



Creating and Using Data Files

Storing and Retrieving Data

3. If you want to change the transaction to a WRITE CONTAINER transaction,

click on CONTAINER, and then click on OK.

Now the program will write the data (Hello) to the Õle named newfile as a

container (the HP VEE internal data format). If you examine the Õle with a

text editor, it will appear as follows:

(Text

(data "Hello" )

)

In general, the container format is useful if you want to retrieve the data back

into HP VEE using From File, but not if you want to access the data Õle with

an external application such as a spreadsheet program. We'll look at this

again later in this chapter.

You can add additional transactions to the To File and From File objects.

You can also conÕgure various options in such transactions, such as the

end-of-line sequence. For a detailed discussion of transactions, refer to

the \Using Transaction I/O" chapter in HP VEE Advanced Programming

Techniques.

4-5



Creating and Using Data Files

Storing and Retrieving Data

To Select a File Name Programmatically

As mentioned previously, you can select a new Õle name in the To File (or

From File) object by clicking on the Õle name button, which by default

displays myFile. Enter a new Õle name in the dialog box, and click on OK to

accept it.

However, you can also set up your program to request a Õle name at run time

by using the File Name Selection dialog object:

1. Add a File Name control input terminal to the To File object. (Object

menu ¡¡) Add Terminal ¡¡) Control Input.)

2. Add a File Name Selection object (Data ¡¡) Dialog Box ¡¡) File

Name Selection) to the work area and connect its File Name output

to the File Name control pin on the To File object. Also, connect the

sequence output pin of the File Name Selection object to the sequence

input pin of the To File object. (This ensures that the To File object

will not operate until a Õle name has been selected.)

3. Change the Select File For Õeld to Writing. (This ensures that the

user is alerted before an existing Õle is overwritten.)

Here is an example program using the File Name Selection object as

described above:

4-6



Creating and Using Data Files

Storing and Retrieving Data

When you run the program, the Enter File Name dialog box appears,

prompting for a Õle name. The following dialog box is displayed by HP VEE

for Windows. Under Save File as Type, select All Files (*.*) since the

Õle to be saved is not a program Õle:

Enter a new Õle name or click on an existing Õle name, and then click on OK.

The data is saved in the named Õle.

To Write Data to a File

Let's take a closer look at using the To File object to write data to a Õle. To

see the versatility of the To File object, follow along and create the simple

program that follows:

1. Create a To File object (I/O ¡¡) To ¡¡) File). Click on the checkbox to

turn on Clear File At PreRun & Open.

4-7



Creating and Using Data Files

Storing and Retrieving Data

N O T E

In general, you'll want to turn on Clear File At PreRun and Open by clicking on the

checkbox. This ensures that the Õle is cleared and that no old data is in the Õle.

2. Double-click on the WRITE TEXT transaction to bring up the I/O

Transaction dialog box.

3. Now click on the Default Format Õeld (or its arrow). A drop-down menu

appears:

4. Click on String Format, and then click on OK. Now the modiÕed

transaction is WRITE TEXT a STR EOL. This transaction writes variable a

(the data on input pin A) to myFile as text data in string format, followed

by an end-of-line sequence (carriage-return/line-feed).

5. Now add a second transaction to the To File object (object menu ¡¡) Add

Trans). The I/O Transaction dialog box appears.

6. Change the variable Õeld (a by default) to b.

4-8



Creating and Using Data Files

Storing and Retrieving Data

7. Click on the Default Format Õeld (or its arrow). The drop-down menu

appears:

8. Click on Real Format, and then click on OK. The second transaction is

WRITE TEXT b REAL STD EOL. This transaction writes variable b (you'll

need to add terminal B) as text in REAL STD format to myFile.

9. Add terminal B to the To File object, and then connect a Text constant

object to terminal A and a Real constant object to terminal B. The Õnished

program should appear as follows:

When you run the program, two lines of data are written to myFile, each

followed by an end-of-line sequence (carriage-return/line-feed). The Õrst is

the string String data. The second is the real number 3.14159. Now let's

read the data back into HP VEE.

4-9



Creating and Using Data Files

Storing and Retrieving Data

To Read Data from a File

Let's continue with the program of the previous section, which writes data to

myFile. We'll add a From File object to the program and read the data back

into HP VEE.

1. Add a From File object to the program (I/O ¡¡) From ¡¡) File).

2. Change the default transaction to READ TEXT x STR using the I/O

Transaction dialog box as described in the previous section.

3. Add a second transaction READ TEXT y REAL, again using the I/O

Transaction dialog box as described in the previous section.

4. Add a Y data output terminal to the From File object.

5. Connect AlphaNumeric displays to both outputs (X and Y).

6. Connect the sequence output pin of the To File object to the sequence

input pin of the From File object. The Õnished program should appear as

follows:

4-10



Creating and Using Data Files

Storing and Retrieving Data

This program writes two types of data to the same Õle (myFile) and then

reads the data back into HP VEE:

– The string data on input terminal A is written by To File, as variable a, to

the Õle. The From File object reads variable x as string data and outputs

the data on terminal X.

– The real number on input terminal B is written by To File, as variable b,

to the Õle. The From File object reads variable y as a real number and

outputs the data on terminal Y.

Note that the sequence pins must be connected in this program to ensure that

data is written to myFile before the From File object attempts to read data

from the Õle.

4-11



Using File I/O | Some Examples

This section shows some practical applications of data Õle I/O.

To Store and Retrieve a Waveform

Waveform data is best stored and retrieved in the form of a data container.

The basic procedure is as follows:

1. Use a WRITE CONTAINER transaction in the To File object to write the

waveform data to a Õle.

2. Use a READ CONTAINER transaction in the From File object to read the

waveform data back from the Õle.

The following example (manual20.vee in your manual examples directory)

shows how this can be done:

4-12



Creating and Using Data Files

Using File I/O | Some Examples

The program works as follows:

1. The waveform data from the Function Generator is written to the

wavedata Õle by the To File object using a WRITE CONTAINER a

transaction.

2. The data is read back from the wavedata Õle as a waveform container by

From File using a READ CONTAINER x transaction. The data is output on

terminal X, and displayed by the Waveform (Time) display.

3. The sequence pin connections ensure that the waveform is written to the

Õle before From File attempts to read it.

Of course, in a more typical situation, one HP VEE program would store the

waveform data into a Õle, and then a second HP VEE program would read the

data back into HP VEE, analyze it, and display it.

4-13



Creating and Using Data Files

Using File I/O | Some Examples

To Store Data for a Spreadsheet Program

You can use HP VEE Õle I/O to produce a data Õle that can be read by a

spreadsheet program such as Microsoft Excel or Lotus 1-2-3. In general, the

steps are as follows:

1. Determine what data Õle format the spreadsheet program requires. For

example, how are rows and columns delimited?

2. Create an HP VEE program that collects the data, and then outputs the

data to a Õle in an ASCII text format using the appropriate delimiters.

Normally, the To File object is the best way to do this.

Let's look at an example of a program that collects (or simulates) 10 voltage

readings, each with a time stamp, and outputs the data to a Õle that can be

read by Microsoft Excel. The following program is saved as manual21.vee in

your manual examples directory:

4-14



Creating and Using Data Files

Using File I/O | Some Examples

The program works as follows:

1. The For Count and Delay objects trigger the following events

approximately every 10 seconds:

a. The Counter object advances by 1.

b. The Now object outputs the current time (to within 1 second), which is

converted to the Time Stamp format by the To String object.

c. The dmm (hp34401a @ (NOT LIVE)) instrument panel simulates a

reading from a HP 34401A Multimeter.

2. The Build Record object builds a record for each reading (every 10

seconds), as follows: Õeld Cnt is the count or test number, Õeld Tm is the

current time for the reading (in the format hh:mm:ss), and Õeld Vlts is

the simulated voltage reading returned by the instrument panel object.

3. The To File object writes the data out to a Õle in text form. In the

transaction WRITE TEXT a.Cnt," ",a.Tm," ",a.Vlts EOL

– a.Cnt represents \Õeld Cnt of record a" (the count),

– " " inserts a space (as a delimiter),

– a.Tm represents \Õeld Tm of record a" (the time),

– " " inserts another space (as a delimiter),

– a.Vlts represents \Õeld Vlts of record a" (the reading), and

– EOL inserts the end-of-line sequence (carriage-return/line-feed).

Thus, each record is converted to string format and output (with spaces as

delimiters) in the following format:

1 11:29:06 5.687753697513882

When the program is Õnished, the Õle myfile will consist of 10 rows of data,

for example:

1 11:29:06 5.687753697513882

2 11:29:16 6.437091378803515

3 11:29:26 7.064658105870967

4 11:29:36 7.439572075814199

5 11:29:46 7.465490768920665

6 11:29:56 7.135229243023529

7 11:30:06 6.53525004955898

8 11:30:16 5.795432812581498

9 11:30:26 6.154398687554457

10 11:30:36 6.844467171462198

4-15



Creating and Using Data Files

Using File I/O | Some Examples

In each row, the Õrst Õeld (the count) is followed by a space (the delimiter),

the second Õeld (the time) is followed by another space, and the third Õeld

(the reading) is followed by an end-of-line sequence.

If you are using HP VEE for Windows on the PC, the output Õle will be a

Windows ASCII Õle, which can be read directly into Microsoft Excel. Just

open the Õle from Excel and, when asked, tell Excel that the Õle is delimited,

and that the delimiter is the space.

If you are using HP VEE on a UNIX workstation, the data Õle will be a UNIX

text Õle. You will have to transfer the UNIX text Õle to the PC. If you use ftp

to transfer the Õle, it will automatically be converted into a Windows ASCII

Õle, which Excel can read.

The data should appear as follows in the Excel spreadsheet:

By using appropriate delimiters you can create Õles that can be read by a

variety of spreadsheet programs.

If you are using HP VEE for Windows you can automate the process by using

DDE (Dynamic Data Exchange). Refer to HP VEE Advanced Programming

Techniques for information about using DDE.

4-16



5

Controlling Instruments



Controlling Instruments

HP VEE provides several features to make it easy to control instruments

from your HP VEE program. If you have read through Getting Started

with HP VEE, you already know about the three primary types of HP VEE

instrument I/O objects:

– Instrument panel objects provide a virtual \front panel" for your

instrument. When you change parameters in the instrument panel object,

the corresponding state of the instrument is changed. To use an instrument

panel, you must Õrst install an instrument driver (.cid) Õle for the

instrument.

– Component driver objects provide similar capabilities to those of

instrument panel objects, but without the front panel and without the

direct control over the state of the instrument. However, component

drivers oÃer slightly more eœcient I/O performance. To use a component

driver you must also install an instrument driver Õle for the instrument.

– Direct I/O objects provide a means of communicating with instruments

without the use of instrument drivers. Also, Direct I/O objects oÃer the

most eœcient I/O performance.

This chapter shows how to use these objects to control instruments. We'll

also cover how to use the Device Event, Interface Event, and Bus

I/O Monitor objects to poll instruments and monitor bus messages. For a

more detailed discussion of instrument I/O, refer to the \Using Instruments"

chapter in HP VEE Advanced Programming Techniques.

N O T E

The examples in this chapter use instrument panels, component drivers, and Direct I/O objects

for the HP 34401A Multimeter. If you have this instrument connected to your system, you can use

the examples to communicate with the instrument by turning live mode ON. However, the examples

will run without the instrument if you leave live mode OFF.

5-2



Using Instrument Drivers

Let's begin by looking at how you can use instrument drivers to control

instruments and obtain data from them.

To Load an Instrument Driver

Before you can use either an instrument panel object or a component driver

object, the appropriate instrument driver (.cid) Õle must be installed on your

hard disk:

– HP VEE for Windows|A package of instrument driver disks is provided

with HP VEE for Windows. Only a few instrument driver Õles are installed

by default when you install HP VEE. To install additional instrument driver

Õles, select the Install Drivers icon in the HP VEE group window.

Follow the instructions in the Installing HP VEE for Windows manual.

– HP VEE for the UNIX Workstation|All of the instrument driver Õles

supplied with HP VEE are installed when you install HP VEE. If you need

to install additional instrument drivers, copy them to your hard disk in the

directory /usr/lib/veetest/instruments/.

N O T E

From time to time additional, updated instrument driver Õles become available. For your convenience,

Hewlett-Packard has established a computer bulletin board for downloading the latest drivers. Refer to

Latest Information in HP VEE Help for further information.

5-3



Controlling Instruments

Using Instrument Drivers

To Use an Instrument Panel Object

To add an instrument panel object to the work area, use the Instrument

Select or Configure dialog box. Let's try an example:

1. Select I/O ¡¡) Instrument . . . . The dialog box appears:

The dialog box lists several I/O devices that are preconÕgured as part of

the HP VEE installation. Let's add an instrument panel for the HP 34401A

Multimeter to the work area.

2. Select the dmm (hp34401a @ (NOT LIVE)) Õeld by clicking on it (if it is

not already highlighted). Make sure that the Instrument Panel checkbox

is selected under Instrument Type, and then click on the Get Instr

button.

5-4



Controlling Instruments

Using Instrument Drivers

3. The outline of the instrument panel object appears. Place the outline

where you want it in the work area, and click the mouse button. The

object appears:

N O T E

By default, the instrument panel is conÕgured with live mode OFF, indicated by (Not Live) in

the title bar. This makes it possible to run your I/O program even if an instrument is not present.

Once you've tested the program and connected an instrument, you can set live mode to ON.

5-5



Controlling Instruments

Using Instrument Drivers

4. With live mode OFF, the hp34401a instrument panel generates simulated

data. Try clicking on the ? in the display Õeld. A simulated reading

appears:

5. The Measure Panel is shown by default, which allows you to select the

Function, Range, and so forth. Let's try changing the Function. Click

on the Function button labeled DC Volts. The following dialog box

appears:

5-6



Controlling Instruments

Using Instrument Drivers

6. To change the function to DC Amps, double-click on DC Amps in the list. To

change back to DC Volts, click on the Function button, now labeled DC

Amps, and then double-click on DC Volts in the list.

N O T E

With live mode OFF, none of these changes aÃect an instrument, even if one is connected to your

system. However, if live mode is ON and you have an HP 34401A Multimeter connected to the

HP-IB (correctly addressed and conÕgured), the changes on the HP VEE instrument panel object will

automatically change the state of the instrument.

7. The Measure Panel is only one of several panels that you can select.

Click on the Measure Panel button at the upper-right corner of the

object. The following dialog box appears:

5-7



Controlling Instruments

Using Instrument Drivers

8. Double-click on Status Panel in the list. The Status Panel appears:

9. To go back to the Measure Panel, click on the Status Panel button and

double-click on Measure Panel.

The various panels in an instrument panel object allow you to control almost

all functions of an instrument. However, you need to be familiar with a

particular instrument in order to use the instrument panel eÃectively. Refer

to the instrument owner's manual for further information. For information

about an instrument panel object, select Help from the object menu.

To Read Data with an Instrument Panel Object

Let's create a simple program that displays simulated voltage readings from

an instrument panel object for an HP 34401A Multimeter.

1. Add an instrument panel object for the HP 34401A as described in the

previous section.

2. Select Add Terminal ¡¡) Data Output from the object menu of the

instrument panel. The following dialog box appears:

5-8



Controlling Instruments

Using Instrument Drivers

3. Scroll down the list and select the Reading output terminal (double-click

on it):

5-9



Controlling Instruments

Using Instrument Drivers

N O T E

Another output terminal selection is Readings, which is diÃerent. The Reading terminal

outputs a scalar, while the Readings terminal outputs an array of data, provided the instrument is

conÕgured to output multiple readings.

4. Add an AlphaNumeric display object to the work area, connect it as

shown below, and run the program.

Since live mode is OFF, the data is simulated, which is indicated by the

Simulated Data label (and by (NOT LIVE) in the title bar).

5. To turn live mode ON, select I/O ¡¡) Instrument . . . , select dmm

(hp34401a @ (NOT LIVE)) in the list (if it is not already highlighted), and

then click on Edit Instrument. The Device Configuration dialog box

appears showing the conÕguration for the HP 34401A Multimeter:

5-10



Controlling Instruments

Using Instrument Drivers

6. If the address shown (the default is 722) doesn't match the address of the

instrument, enter the correct address. (For information on addressing a

particular instrument, refer to the instrument owner's manual.)

7. Click on the button to the right of Live Mode. The button toggles from

OFF to ON. Then click on OK.

8. Click on the Save Config button in the Instrument Select or

Configure dialog box. The instrument panel now has live mode ON, as

shown below:

5-11



Controlling Instruments

Using Instrument Drivers

The new title, dmm (hp34401a @ 722), shows that live mode is ON and

that the instrument panel is conÕgured to communicate with an HP

34401A Multimeter at HP-IB address 722. Of course, the program will time

out unless there actually is an HP 34401A at address 722.

At this point, if you have an HP 34401A Multimeter, you can connect it and

run the program. Otherwise, use the Device Configuration dialog box

(I/O ¡¡) Instrument . . . ¡¡) Edit Instrument) to return to live mode

OFF.

N O T E

You can add a wide variety of additional input and output terminals to an instrument panel object. For

further information, refer to the \Using Instruments" chapter in the HP VEE Advanced Programming

Techniques manual.

5-12



Controlling Instruments

Using Instrument Drivers

To Set Up an Additional Instrument

As we've seen in the previous sections, it is easy to use an instrument panel

object for an I/O device once that device is listed in the Instrument Select

or Configure dialog box. Now let's add another instrument conÕguration to

the dialog box.

1. Select I/O ¡¡) Instrument . . . . The Instrument Select or

Configure dialog box appears.

2. Click on Add Instrument. The Device Configuration dialog box

appears:

3. This dialog box allows you to conÕgure the new instrument. For our

example, let's use the default name (newDevice) and interface (HP-IB). To

select an instrument driver Õle, click on the Instrument Driver Config

button.

5-13



Controlling Instruments

Using Instrument Drivers

4. The Instrument Driver Configuration dialog box appears. Click on

the ID Filename button (the \blank" button) and the Read from what

Instrument Driver? dialog box appears:

(The HP VEE for Windows dialog box is shown. The UNIX dialog box is

diÃerent, but the procedure is similar.)

5. Let's select the instrument driver Õle named hp34401a.cid. (This is the

compiled instrument driver (\.cid") Õle for the HP 344401A Multimeter.)

a. Select hp34401a.cid in the list of Õle names. Click on the Õle name

and then click on OK to exit the Read from what Instrument Driver?

dialog box.

b. Click on OK to exit the Instrument Driver Configuration dialog

box and return to the Device Configuration dialog box.

5-14



Controlling Instruments

Using Instrument Drivers

N O T E

If no instrument driver Õle is listed for the instrument you want to add, you must load the appropriate

Õle. Refer to \To Load an Instrument Driver", earlier in this chapter, for further information.

6. Now enter an HP-IB address for the instrument in the Address Õeld, for

example 722. Click on the Õeld, enter the address, and then tab to the

next Õeld. Note that the Live Mode button automatically toggles to ON

when you enter an address.

N O T E

For information about determining what address to use for a particular instrument, refer to the \Using

Instruments" chapter in HP VEE Advanced Programming Techniques, and to the owner's manual for the

instrument.

5-15



Controlling Instruments

Using Instrument Drivers

7. Click on OK to exit the Device Configuration dialog box. The

new selection, newDevice (hp34401a @ 722), is highlighted in the

Instrument Select or Configure dialog box:

8. If the Instrument Panel checkbox is not already selected, click on it.

9. Click on the Get Instr button to add the instrument panel object to the

work area:

5-16



Controlling Instruments

Using Instrument Drivers

To Delete an Instrument ConÕguration

In the previous sections we've seen how to add an additional instrument

to the Instrument Select or Configure dialog box, and how to edit an

instrument conÕguration. You can also delete an instrument from the dialog

box. To delete the newDevice conÕguration of the previous example:

1. Select I/O ¡¡) Instrument . . . . Then select the instrument

conÕguration newDevice (hp34401a @ 722) by clicking on it:

2. Click on the Delete Instrument button. The selection is removed from

the list.

3. Click on the Save Config button to close the dialog box and save the new

conÕguration.

5-17



Controlling Instruments

Using Instrument Drivers

To Use a Component Driver Object

Although instrument panel objects give you direct control over an

instrument, sometimes you don't need such direct control. If so, you can

gain a slight increase in performance by using a component driver object.

A component driver object uses the same instrument driver Õle as an

instrument panel object for the same instrument. Let's add a component

driver object for the HP 34401A Multimeter.

1. Select I/O ¡¡) Instrument . . . . The Instrument Select or

Configure dialog box appears.

2. Select the dmm (hp34401a @ (NOT LIVE)) conÕguration (if it is not

already highlighted). Then click on the checkbox for Component Driver,

as shown below:

3. Click on the Get Instr button and place the component driver object in

the work area.

4. The component driver object appears as an icon. Double-click on the icon

to display the open view.

5-18



Controlling Instruments

Using Instrument Drivers

5. Add a Reading terminal to the component driver object (object menu ¡¡)

Add Terminal ¡¡) Data Output).

The following program (manual22.vee in your manual examples directory)

uses a component driver to collect a series of data points. (With live mode

OFF, this program collects a series of 0 values. If you have an HP 34401A

Multimeter connected to your system, you can use this program to collect real

data.)

In the program, the For Count and Delay objects cause the component

driver object to input a reading approximately every 10 seconds until 5

readings are taken. The Collector object collects the readings until its XEQ

terminal is activated, and then outputs an array. This is a useful technique

for taking readings on a timed basis, as long as you don't need to take the

readings at an exact time.

5-19



Using Direct I/O

Direct I/O allows you to directly specify the messages to be sent an

instrument, and to directly read the information sent back by an instrument.

To do this, use I/O transactions in the Direct I/O object. Direct I/O provides

the following advantages:

1. Direct I/O allows you to communicate with any instrument connected to

one of the supported interfaces. You don't need an instrument driver to

use direct I/O.

2. Direct I/O provides the fastest instrument I/O communication.

To Use a Direct I/O Object

To add a direct I/O object, conÕgured to to communicate with an HP 34401A

Multimeter at HP-IB address 722, to the work area:

1. Select I/O ¡¡) Instrument . . . . The Instrument Select or

Configure dialog box appears.

2. Click on the checkbox for Direct I/O and select dmm (hp34401a @ NOT

LIVE)).

3. Click on Edit Instrument . . . , and then turn on live mode by clicking

on the Live Mode button.

5-20



Controlling Instruments

Using Direct I/O

You don't need to conÕgure an instrument driver, but you can conÕgure

parameters for direct I/O (such as the EOL sequence) using Direct I/O

Config. Refer to the \Using Instruments" chapter in HP VEE Advanced

Programming Techniques for further information.

4. Click on OK, and then click on Get Instr. Place the direct I/O object in

the work area:

The next section shows how to use the direct I/O object in a simple program

to read data from an HP 34401A Multimeter.

5-21



Controlling Instruments

Using Direct I/O

To Read Data Using Direct I/O

As an example, let's use the direct I/O object to read data from an HP 34401A

Multimeter.

1. Add a direct I/O object, conÕgured for address 722, to the work area as

shown in the previous section.

2. The direct I/O object uses transactions to communicate with an

instrument. Double-click on the \blank" transaction (the highlighted Õeld)

in the object. The I/O Transaction dialog box appears with the variable

a highlighted. Enter the string "MEAS:VOLT:DC?" in its place:

3. Click on OK to create the transaction WRITE TEXT "MEAS:VOLT:DC?".

Then select Add Trans from the object menu to add a second transaction.

Change this transaction to a READ TEXT transaction as shown:

5-22



Controlling Instruments

Using Direct I/O

4. Click on OK. Now add a data output terminal to the object. (Use the object

menu or the shortcut, ÄCtrlÅ+ÄAÅ.)

The direct I/O object now has two transactions:

a. WRITE TEXT "MEAS:VOLT:DC?" EOL writes the command string

"MEAS:VOLT:DC?" to the instrument at address 722.

b. READ TEXT x REAL reads text data in the real format from the

instrument at address 722, and outputs the data on the X data output

terminal.

5. To complete the program, add an AlphaNumeric display object to the

work area, and connect it as shown below. (You can run this program if

you have an HP 34401A Multimeter connected to the HP-IB at address

722.)

To the HP 34401A Multimeter, the command string MEAS:VOLT:DC? means

\output one dc voltage reading." The reading is read by the direct I/O

object and output to the AlphaNumeric display.

The commands to control an instrument depend upon the particular

instrument. Refer to the owner's manual for your instrument for further

information. For further information on transaction I/O, refer to the \Using

Transaction I/O" chapter in HP VEE Advanced Programming Techniques.

5-23



Handling Service Requests and Bus Messages

HP VEE provides objects to handle service requests and to monitor the

instrument bus for messages. This section shows how to use these objects.

For further information, refer to the \Using Instruments" chapter in HP VEE

Advanced Programming Techniques.

To Poll HP-IB Instruments

From time to time an HP-IB instrument sends a service request (\SRQ") on

the bus. HP VEE provides two devices that help you determine what device

has requested service, and what the problem is. Both of these objects are

found under I/O ¡¡) Advanced I/O.

– The Interface Event object reports an event for the entire bus. For

example, if Interface Event is set to report an SRQ for hpib7, any

device on the interface at select code 7 can cause an event. You can also

use the Interface Event object to detect events on the serial and VXI

interfaces, if such instruments are conÕgured.

– The Device Event object returns the status byte from a particular

instrument. On the HP-IB, use Device Event objects to poll the individual

devices on the bus.

The following program shows how you can use the Interface Event and

Device Event objects to process HP-IB service requests:

5-24



Controlling Instruments

Handling Service Requests and Bus Messages

In the program the Interface Event object waits for an event on hpib7,

that is, on the HP-IB interface at select code 7. However, the Interface

Event object does not indicate which device on the bus caused the event.

The event output of the Interface Event object activates both of the

Device Event objects, which individually poll two HP-IB instruments (the

HP 34401A and HP 54600A). Each Device Event object has its action set

to Any Set and its mask set to #H10. Any Set causes the object to wait

for an event to occur, and then perform a logical AND of the returned value

with the mask #H10, which corresponds to bit 4 in the status byte (DAV, or

\data available"). The result is returned on the status output terminal.

For further information, refer to the Device Event section in the HP VEE

Reference manual.

5-25



Controlling Instruments

Handling Service Requests and Bus Messages

To Monitor Bus Messages

HP VEE communicates with an instrument by means of a series of messages.

On the HP-IB, the bus messages follow the IEEE-488 standard. Normally,

these messages are not seen. However, when you debug your I/O program

you may want to monitor the messages on the bus. To do this, add a Bus I/O

Monitor object to your program. You can also use this object to monitor VXI

or serial interface messages.

For example, to add a Bus I/O Monitor object to monitor the HP-IB at select

code 7:

1. Select I/O ¡¡) Bus I/O Monitor. The Select I/O Channel dialog

appears.

2. Select hpib7 and click on OK.

3. Place the object in the work area.

Here is an example showing the Bus I/O Monitor object monitoring the bus:

Each time you run the program, the sequence of bus messages is recorded.

When the program stops, you can scroll through the messages. By default,

the Bus I/O Monitor object can save 256 lines of information in its buÃer.

However, you can change the buÃer size. Refer to the Bus I/O Monitor

section in the HP VEE Reference manual for further information.

5-26



Controlling Instruments

Handling Service Requests and Bus Messages

The Bus I/O Monitor object slows down your program, and is generally

used for diagnostic purposes. Many programmers create a program using

an instrument panel or component driver to control an instrument, and

then use Bus I/O Monitor to \capture" the commands and messages used

to communicate with the instrument. You can then use these commands

and messages to communicate with the instrument using direct I/O, which

provides increased I/O performance.

5-27



Controlling Instruments

Handling Service Requests and Bus Messages



6

Displaying Data



Displaying Data

HP VEE provides several types of display objects, found under the Display

menu. This chapter shows how to use several of these objects to display

various types of data.

N O T E

For information on using dialog boxes, Picture objects, and panel views to create an operator

interface for your program, refer to Building an Operator Interface with HP VEE.

6-2



Displaying Alphanumeric Information

You can use the AlphaNumeric and Logging AlphaNumeric objects to

display alphanumeric data in HP VEE programs.

To Display a Scalar Value

To display a scalar value:

1. Add an AlphaNumeric display to the work area (Display ¡¡)

AlphaNumeric).

2. Connect the data input pin of the AlphaNumeric object to a source of

scalar data (for example, a Real constant object).

3. Run the program to display the data.

In the example below, the AlphaNumeric object displays the scalar real value

1.223 from the Real constant object.

6-3



Displaying Data

Displaying Alphanumeric Information

To Display an Array of Values

You can also use the AlphaNumeric object to display an array.

1. Add an AlphaNumeric display to the work area (Display ¡¡)

AlphaNumeric).

2. Connect the data input pin of the AlphaNumeric object to a source of

array data (for example, an Alloc Real object).

3. Run the program to display the data.

4. Resize the AlphaNumeric object to show the entire array.

In the example below the AlphaNumeric object displays a one-dimensional

array output by the Alloc Real object:

This array is a single data container consisting of 10 elements.

6-4



Displaying Data

Displaying Alphanumeric Information

To Display a Series of Values in a Log

You can use the Logging AlphaNumeric object to display a series of values

in a log.

1. Add a Logging AlphaNumeric display to the work area (Display ¡¡)

Logging AlphaNumeric).

2. Connect the data input pin of the Logging AlphaNumeric object to a

repeating source of data (for example, a For Count object).

3. Run the program to display the log of data.

In the following example, the Logging AlphaNumeric object displays a log of

values as the For Count object repeats 10 times.

This log of values consists of 10 scalar values from the For Count object.

Note the diÃerence between this log and the array displayed in the previous

section:

– The AlphaNumeric object clears itself and displays only the new data

received each time it executes.

– The Logging AlphaNumeric object keeps a \history log" of the data it

receives.

6-5



Using the Indicator Displays

HP VEE provides Õve indicator display objects under Display ¡¡)

Indicator in the menu. You can use these objects to display an analog

indication of data, or to display color alarms.

To Show an Analog Display of Data

You can use a Meter, Thermometer, Fill Bar, or Tank display object to

display an analog indication of data. For example, the Thermometer object

displays an analog indication that resembles the \mercury" in a conventional

thermometer. Let's look at how to use the Thermometer object:

1. Add a Thermometer object to the work area (Display ¡¡) Indicator

¡¡) Thermometer).

2. Connect an Integer Slider object to the data input pin of the

Thermometer. Move the slider to select a value, and run the program:

6-6



Displaying Data

Using the Indicator Displays

Note how the \mercury" rises to show the value set by the slider. (Press

Run each time you move the slider.) The value is also shown by the digital

display at the bottom of the Thermometer. Note that the \mercury"

changes color as you move up the scale (green, yellow, and then red).

3. Try changing the range of the Thermometer scale. Click on the lower

range Õeld (0) and enter a new value. Do the same for the upper range

Õeld (100). Note that the thermometer scale changes to conform to the

new range.

Now let's try changing the conÕguration of the Thermometer object:

1. Click on Edit Properties from the object menu of the Thermometer.

The Thermometer Properties dialog box appears:

2. Try changing a few parameters:

– From the Layout section of the dialog box you can select either a

vertical (the default) or a horizontal layout for the Thermometer. You

can also turn the digital display on or oÃ.

– From the Limits section of the dialog box you can select a color for

each range (low, mid, and high). Click on a color button to show the

6-7



Displaying Data

Using the Indicator Displays

possible colors. You can also set the lower and upper limit values to

determine where each color range begins.

3. Click on OK to see the eÃect of your changes.

The Tank and Fill Bar objects work very much like the Thermometer.

The Meter object also provides an analog indication, but with a needle

resembling an analog panel meter. All of these objects provide three-color

range indication.

To Show a Color Alarm

The Color Alarm object displays one of three pre-set color indications

(green=Low, yellow=Mid, and red=High) depending on the value on its data

input pin. Let's look at how to use the Color Alarm.

1. Add a Color Alarm object to the work area (Display ¡¡) Indicator ¡¡)

Color Alarm).

2. Connect a Real Slider object to the data input pin of the Color Alarm.

Move the slider to select a value, and run the program:

Note how the color and text displayed by the Color Alarm change as you

change the slider position. (Press Run each time you move the slider.)

6-8



Displaying Data

Using the Indicator Displays

Now let's try changing the conÕguration of the Color Alarm object:

1. Click on Edit Properties from the object menu of the Color Alarm

object. The Color Alarm Properties dialog box appears:

2. Try changing a few parameters:

– From the Layout section of the dialog box you can select either a

circular (the default) or a rectangular layout for the Color Alarm. You

can also turn the digital display and the \three dimensional" border on

or oÃ.

– From the Limits section of the dialog box you can select a color for

each range (low, mid, and high). Click on a color button to show the

possible colors. You can also change the text for each range, and you can

set the lower and upper limit values to determine where each range

begins.

3. Click on OK to see the eÃect of your changes.

6-9



Graphically Plotting Data

HP VEE provides 10 display objects that allow you to plot data graphically.

These include:

– XY Trace|Displays a two-dimensional Cartesian plot of Y input values

versus either points or, for a waveform, time.

– Strip Chart|Displays continuously-generated data in a \strip-chart"

format.

– Complex Plane|Displays complex data as a Cartesian plot.

– X vs Y Plot|Displays a two-dimensional Cartesian plot of Y input values

versus X input values.

– Polar Plot|Displays a polar coordinate graph.

– Waveform (Time)|Displays waveform (time-domain) data in a

two-dimensional plot.

– Magnitude Spectrum|Displays the magnitude of a frequency-domain

spectrum.

– Phase Spectrum|Displays the phase of a frequency-domain spectrum.

– Magnitude vs Phase (Polar)|Displays a polar plot of magnitude against

phase for a complex spectrum.

– Magnitude vs Phase (Smith)|Displays a Smith plot of magnitude

against phase for a complex spectrum.

For a detailed description of each of these objects, refer to the HP VEE

Reference manual. The rest of this chapter gives some examples showing how

to use the graphical display objects.

6-10



Displaying Data

Graphically Plotting Data

To Plot XY Values

The XY Trace and X vs Y Plot objects are probably the most generally

applicable of the graphical displays.

If you want to plot a series of values, use the XY Trace object:

1. Add an XY Trace object to the work area (Display ¡¡) XY Trace).

2. Connect a source of data to the data input pin on the XY Trace object.

The data can either be a continuously-generated series of points, or a

waveform.

3. Run the program. If you aren't sure of the appropriate scale, press the

Auto Scale button to automatically re-scale the display and show the

trace.

Here is an example of a program that generates a series of points, and then

plots them on the XY Trace object.

In this program, the For Range object repeats 37 times, generating the series

of values 0, 10, 20, and so forth, up to 360. The Formula object calculates

the sine of each value and outputs the result to the XY Trace object, which

plots the resulting curve.

6-11



Displaying Data

Graphically Plotting Data

If an XY Trace object receives waveform data on its data input pin, it

automatically displays the waveform in the time domain. See \To Display a

Waveform" for an example.

If you want to plot a series of Y values against X values, use the X vs Y Plot

object:

1. Add an X vs Y Plot object to the work area (Display ¡¡) X vs Y Plot).

2. Connect the XData and YData1 data input terminals to the appropriate

sources of data. You can plot a continuously-generated series of Y points

against X points, or you can plot a waveform against a waveform.

However, you cannot mix data shapes.

3. Run the program. If you aren't sure of the appropriate scale, press the

Auto Scale button to automatically re-scale the display and show the

trace.

Here is an example of a program that plots Y points against X points:

In this program, the For Log Range object repeats 14 times, generating a

logarithmic series of Y data points. The Counter outputs the current count

to the XData input terminal, while the For Log Range object outputs the

logarithmic series to the YData1 input terminal. The X vs Y Plot object

displays the resulting curve.

The X vs Y Plot object is also capable of displaying waveforms on both axes

in the time domain. See \To Display a Waveform" for further information.

6-12



Displaying Data

Graphically Plotting Data

To Display a Waveform

To display waveform data you can use the Waveform (Time) display object

or the XY Trace object. To display one waveform against another you can

use the X vs Y Plot object.

For example, to display a sine wave from a Function Generator object on

an XY Trace object:

1. Add an XY Trace object to the work area (Display ¡¡) XY Trace).

2. Add a Function Generator object to work area. Connect the Func

output of the Function Generator to the data input pin on the XY Trace

object.

3. Change the settings on the Function Generator to output a 50 Hz sine

wave, as shown below. Run the program and click on Autoscale to show

the waveform.

Note that in this program the XY Trace object displays the waveform in the

time domain. The magnitude of the waveform is plotted against a time scale

of from 0 to 20m (20 milliseconds) to match the time span of the waveform.

The XY Trace object does this automatically if the input data is a waveform.

Otherwise, the X axis is simply the number of points plotted, as shown in the

previous section.

6-13



Displaying Data

Graphically Plotting Data

Here is another example, using the X vs Y Plot object to display one

waveform against another:

In the above program, the Function Generator objects generate two 50 Hz

sine waves, which are 45 degrees out of phase. These waveforms are plotted

against each other, displaying a classic Lissajous Õgure.

6-14



Displaying Data

Graphically Plotting Data

Here is a third example, showing two waveforms plotted on separate traces

using the Waveform (Time) display object.

In this example, each Function Generator object generates a 50 Hz sine

wave, but the second has a d.c. oÃset of -0.8. The Waveform (Time)

object displays the two waveforms as Trace 1 and Trace 2. (The Waveform

(Time) object has only one trace by default, but you can add a trace from

the object menu. Refer to \To Add a Trace" for further information.)

N O T E

You can also use the XY Trace, X vs Y Plot, and Waveform (Time) objects to

display waveform data from an instrument. To do this, use an instrument panel, component driver, or

Direct I/O object (refer to Chapter 5).

6-15



Displaying Data

Graphically Plotting Data

To Plot Polar Data

You can plot polar data with the Polar Plot display object. Let's create a

simple program that plots a trigonometric formula against angular data.

1. Add a Polar Plot display object to the work area (Display ¡¡) Polar

Plot).

2. Add a For Range object and a Formula object. Connect the program as

shown below. Enter the desired trigonometric formula in the Formula

object and run the program. Click on Autoscale to see the result:

In the example shown above the trigonometric formula is

1-(sin(360-A)/3)-cos(A), which creates the \heart-shaped" Õgure.

However, you can enter any formula that you want. The For Range object

repeats, stepping the angle one degree at a time from 0 to 360 degrees.

The Polar Plot object plots the trigonometric data against the angle.

6-16



Displaying Data

Graphically Plotting Data

To Add a Trace

You can add a trace to any of the graphical display objects. For example,

suppose you want to add a trace to a Waveform (Time) object:

1. Select Add Terminal ¡¡) Data Input from the object menu of the

Waveform (Time) object.

2. The Trace2 input is added to the object. If you want to see the terminals,

select Edit Properties from the object menu and click on the checkbox

for Show Terminals in the dialog box. Then click on OK. The object

should show two terminals, Trace1 and Trace2, as shown below:

Once you've added the terminals that you want, connect a source of data to

each.

6-17



Displaying Data

Graphically Plotting Data

To Change the Color of a Trace

The procedure for changing the color of a trace is the same for all of the

graphical display objects. For the XY Trace object:

1. Select Edit Properties from the object menu.

2. Click on the Traces & Scales button in the Y Plot Properties dialog

box.

3. The default pen color is Pen 4. Click on the Pen 4 button to the right of

Color in the Traces and Scales dialog box:

4. The list of pen colors is displayed, as shown. Click on the checkbox for

the color you want. Then click on OK in each dialog box to get back to the

work area.

6-18



Displaying Data

Graphically Plotting Data

The new pen color is now active. Connect a source of data to the display

object and run the program. The trace should be the color you selected.

To Change the Line Type or Point Symbol of a Trace

The procedure for changing the line type or point symbol of a trace is the

same for all of the graphical display objects. For the XY Trace object:

1. Select Edit Properties from the object menu.

2. Click on the Traces & Scales button in the Y Plot Properties dialog

box.

3. You can change both the line type and the point symbol from the Traces

and Scales dialog box:

6-19



Displaying Data

Graphically Plotting Data

a. To change the line type, click on the button to the right of Lines: |

each time you click, the line type changes. The default is a solid line.

You can choose one of several types of dashed lines. When you have

cycled through all of the selections, you start over with a solid line.

b. To change the point symbol, click on the button to the right of Points:

| each time you click, the point symbol changes. The default is

a simple point (.). You can choose one of several point symbols,

including the diamond (shown), square, x, +, and so forth. When you

have cycled through all of the selections, you start over with a simple

point.

4. Click on OK in each dialog box to get back to the work area.

The following is an example showing an XY Trace object displaying a dashed

line with a diamond point symbol:

6-20



Displaying Data

Graphically Plotting Data

To Zoom into or out of the Display

You can zoom into or out of the display in any of the graphical (XY) display

objects. To see how to do this, open the program saved as manual23.vee in

your manual examples directory, and try these steps:

1. Run the program to display a trace.

2. Select Zoom ¡¡) In from the object menu of the XY Trace object.

3. Move the pointer to the upper right-hand corner of the area on which

you want to zoom. Then click and drag the pointer to deÕne the area, as

shown in the following Õgure.

6-21



Displaying Data

Graphically Plotting Data

4. Release the mouse button. The zoomed area is displayed:

5. Click on Auto Scale to return to the original display.

6. Now select Zoom ¡¡) Out 2 X from the object menu of the XY Trace

object.

7. Note how the display zooms out to twice its original size. Click on Auto

Scale at any time to return to the original display.

6-22



Displaying Data

Graphically Plotting Data

To Change the Grid Type

You can change the grid type of any of the graphical display objects using

Edit Properties from the object menu. For the XY Trace object:

1. Select Edit Properties from the object menu. The Y Plot Properties

dialog box appears:

2. Under Grid Type, click on the checkbox for the type of grid that you want

(the default is Lines).

3. Click on OK to exit the dialog box and see the changes.

6-23



Displaying Data

Graphically Plotting Data

To Set Markers in the Display

You can set markers in any of the graphical display objects using Edit

Properties. For the XY Trace object:

1. Select Edit Properties from the object menu. The Y Plot Properties

dialog box appears:

2. Under Markers, click on the desired checkbox:

– Off turns markers oÃ (the default).

– One turns on one marker. The marker position is displayed at the

bottom of the object.

– Two turns on two markers. The position of each is displayed at the

bottom of the object.

– Delta turns on two markers. The position of each, and the diÃerence

between the two positions, is displayed at the bottom of the object.

6-24



Displaying Data

Graphically Plotting Data

In addition, if you click on the Interpolate checkbox, you can place the

markers between the displayed data points. (The marker positions are

calculated by linear interpolation.)

3. Click on OK to exit the dialog box. The following example shows what an

XY Trace object looks like with two markers set:

Once you have set a marker, you can move it along a trace by clicking and

dragging on it with the mouse.

Let's try an example. The program shown above is saved as manual24.vee

in your manual examples directory.

1. Load and run the program to display a waveform on the XY Trace object.

2. Try moving the markers. Note the position data at the bottom of the XY

Trace object. You can use the markers to identify the positions of peaks

and valleys.

In the Õgure shown above, the markers report the following data:

X = 12.5781m and Y = 0.499398 (The peak.)

X = 7.42188m and Y = -0.499398 (The valley.)

6-25



Displaying Data

Graphically Plotting Data

To Automatically Re-Scale the Display

You can re-scale any of the graphical displays at any time by clicking on the

Auto Scale button. However, it is often more convenient to have the display

automatically re-scale itself each time it executes. To do this, add a control

pin to the display object:

1. Select Add Terminal ¡¡) Control Input from the object menu of the

graphical display object.

2. Select the appropriate control input to add:

– Auto Scale re-scales both axes.

– Auto Scale X re-scales the X axis.

– Auto Scale Y re-scales the Y axis.

3. Connect the sequence output pin of the graphical display object to the

control terminal.

Here is an example showing how this works:

Whenever the Waveform (Time) object displays a trace, it automatically

re-scales the display to show the entire trace.

6-26



Displaying Data

Graphically Plotting Data

To Clear the Display

Use either of the following ways to clear the display on any graphical display

object:

– Select Clear Control ¡¡) Display from the object menu.

or

– Add a Clear control input terminal to the object. The display is cleared

whenever the Clear terminal is activated.

6-27



Displaying Data

Graphically Plotting Data



7

Printing and Plotting

Techniques



Printing and Plotting Techniques

This chapter shows how to use printers and plotting devices with HP VEE.

HP VEE supports the HP LaserJet, HP DeskJet, and most PostScript
TM

printers. These printers can be used for HP VEE printing operations, and

for plotting operations as well. In addition, HP VEE supports most HP-GL

compatible plotting devices. For further information about supported printers

and plotters, refer to the installation guide for your version of HP VEE.

7-2



Printing from HP VEE

You can use your system printer to print HP VEE data, to print the HP VEE

work area, to print the objects in an HP VEE program, or to print a visual

representation of an entire HP VEE program.

To Change the Printer Palette

You can change the gray-scale palette that HP VEE uses for printing by means

of the Default Preferences dialog box:

1. Select File ¡¡) Edit Default Preferences to display the Default

Preferences dialog box. Then click on the Printing tab.

2. The Screen Element and B&W Printer Darkness Õelds both provide

drop-down lists. To change the darkness (gray-scale value) for the Detail

View, click on B&W Printer Darkness (or the arrow):

7-3



Printing and Plotting Techniques

Printing from HP VEE

3. Now click on the desired darkness. If you want the Detail View

background to be white, click on 0 % (White). (Most HP VEE elements

are set to Automatic grayscale by default. The colors in your screen

palette are automatically converted to appropriate shades of gray.)

4. If you want to change the Print Magnification value, click on the Õeld

and edit the value. (The default is 100 percent. You can set values greater

or less than 100 to change the size of the printed image.)

5. Click on Save if you want the changes to be saved as new defaults (in

VEE.RC or .veerc). Or click on OK if you want to use the changes for this

HP VEE session only (until you select File ¡¡) New, Open, or Exit).

To Set Up a Printer

The procedure for setting up a printer is diÃerent for HP VEE for Windows

and HP VEE for UNIX.

HP VEE for Windows:

To change the printer conÕguration for HP VEE for Windows, follow these

steps. (In most cases the default printer conÕguration will work.)

1. Select File ¡¡) Print Setup. The following dialog box appears:

7-4



Printing and Plotting Techniques

Printing from HP VEE

2. Select the printer conÕguration that you want, using the standard

Microsoft Windows techniques for the Print Setup dialog box.

3. Click on Options for more printing options, or click on OK to conÕrm your

selections.

HP VEE for UNIX:

To change the printer conÕguration for HP VEE on a UNIX workstation, follow

these steps. (In most cases the default printer conÕguration will work.)

1. Select File ¡¡) Edit Default Preferences to display the Default

Preferences dialog box. Then click on the Printing tab.

2. Click on the Printer Setup button to display the Printer

Configuration dialog box:

3. Select the desired printer conÕguration:

– Click on the Default button to the right of Graphics Printer and

use the drop-down menu to select a graphics printer. Or click on the

Graphics Printer button to toggle to Graphics Directory.

– Click on the Default button to the right of Text Printer and use the

drop-down menu to select a text printer.

– Select other options by editing the appropriate Õelds.

4. Click on OK to conÕrm your new printer conÕguration and return to the

Default Preferences dialog box.

7-5



Printing and Plotting Techniques

Printing from HP VEE

5. Click on Save if you want the changes to be saved as new defaults (in

the .veerc Õle). Or click on OK if you want to use the changes for this

HP VEE session only (until you select File ¡¡) New, Open, or Exit).

To Print the HP VEE Work Area

You can print the HP VEE work area (actually, the HP VEE Window) using the

Print Screen feature.

1. Select File ¡¡) Print Screen. The print dialog box appears (the dialog

box is diÃerent for Windows and UNIX):

7-6



Printing and Plotting Techniques

Printing from HP VEE

2. If the printing conÕguration is acceptable, click on OK to print the HP VEE

work area. Or change the parameters and then click on OK. The work area

is printed, complete with the window border.

Shortcuts

If you are using HP VEE on a UNIX workstation, you can print the work area by pressing

ÄShiftÅ+ÄPrintÅ at any time. (If a program is running, it will pause several seconds for the printout.)

If you are using HP VEE for Windows, you can capture the HP VEE window in the Microsoft Windows

clipboard by pressing ÄAltÅ+ÄPrint ScreenÅ at any time. (If a program is running, it will pause

momentarily.) You can then paste the image into Microsoft Paintbrush or other Windows graphics

applications.

These shortcuts allow you to capture the HP VEE screen even when a dialog box is displayed and the

menu is inaccessible.

7-7



Printing and Plotting Techniques

Printing from HP VEE

To Print an Entire HP VEE Program

You can print a representation of an entire HP VEE program using the Print

All feature.

1. Select File ¡¡) Print All. The Print All dialog box appears:

2. Now click on OK. The print dialog box appears. Change the printing

conÕguration if desired.

3. Click on OK again to print a representation of the entire program.

By default, the Print All dialog box has Print Complete Network turned

on, which causes the entire program to be printed (even if it doesn't Õt in the

visible screen). Multiple pages are printed if necessary to show the entire

program, with objects connected together with lines to show the complete

network.

With Include All UserObjects and Include All UserFunctions turned

on, the objects inside of UserObjects and UserFunctions are included in the

printout.

7-8



Printing and Plotting Techniques

Printing from HP VEE

To Print the Objects in an HP VEE Program

You can print all of the objects in an HP VEE program using the Print All

feature.

1. Select File ¡¡) Print All. The Print All dialog box appears.

2. By clicking on the checkboxes, turn Print All Objects on, and turn

Print Complete Network oÃ, as shown below:

3. Now click on OK. The print dialog box appears. Change the printing

conÕguration if desired.

4. Click on OK again to print all of the objects in the program.

With Print All Objects turned on, Print All causes all of the objects in

the program to be printed out sequentially, not showing the connections in

the program. Multiple pages are printed if necessary.

With Include All UserObjects and Include All UserFunctions turned

on, the objects inside of UserObjects and UserFunctions are included in the

printout.

7-9



Printing and Plotting Techniques

Printing from HP VEE

To Send Data to a Printer

You can send data from your HP VEE program directly to a printer by using

the To Printer object.

1. Add a To Printer object to your program (I/O ¡¡) To ¡¡) Printer)

and connect the data input pin to the source of the data that you want to

print.

2. Double-click on the To Printer icon to display the open view. Note that

the To Printer object uses I/O transactions to output data, just like the

To File object described in Chapter 4.

3. The default output transaction is WRITE TEXT a EOL. If desired, change the

transaction to output the data in some other form. (Refer to \To Edit a File

I/O Transaction" in Chapter 4. The procedure is the same.)

4. Run the program. When the To Printer object operates, the data is

output to the printer, which prints the data using the current printing

conÕguration.

Tip for Windows Users

On UNIX workstations, the To Printer object outputs straight ASCII text to the printer, including

carriage-return/line-feed characters, tab characters, and escape characters. However, if you are using

HP VEE for Windows, the To Printer object outputs data through the Windows printer driver,

which adds a header and changes the fonts. If you want to output straight ASCII text to a printer

from HP VEE for Windows, use the To File object with the Õle name set to LPT1 (or whichever

printer port you are using). Refer to Chapter 4 for further information about using To File.

Let's look at an example:

7-10



Printing and Plotting Techniques

Printing from HP VEE

In this example the Function Generator is conÕgured to output a 100 Hz

sine wave with only 32 points. The waveform is output to the To Printer

object (shown in its open view), which outputs the data to the system printer

using the WRITE TEXT a EOL transaction. The resulting printout is a list of

the 32 points:

0

0.3826834323650898

0.7071067811865475

0.9238795325112867

1

0.9238795325112867

0.7071067811865477

0.3826834323650894

1.224646752988016E-16

-0.3826834323650897

-0.7071067811865477

-0.9238795325112868

-1

-0.9238795325112866

-0.707106781186547

-0.3826834323650896

-2.449293505976033E-16

0.3826834323650899

0.7071067811865474

0.9238795325112868

1

0.9238795325112867

0.7071067811865471

0.3826834323650889

3.673940362910631E-16

-0.3826834323650898

-0.7071067811865479

-0.9238795325112871

-1

-0.9238795325112867

-0.7071067811865472

-0.3826834323650889

7-11



Plotting XY Displays on a Printer or Plotter

You can output a plot from an XY display object (for example, XY Trace) to

an external plotting device, which may be a printer or an HP-GL plotter.

To Set Up a Plotting Device

If you are using HP VEE for Windows, the Plot function uses the standard

Windows printer drivers for plotting. So you don't need to do anything

special to set up a plotting device.

If you are using HP VEE on a UNIX workstation, you can set up a plotting

device as follows:

1. Select File ¡¡) Edit Default Preferences to display the Default

Preferences dialog box. Then click on the Printing tab.

2. Click on the Plotter Setup button to display the Plotter

Configuration dialog box:

7-12



Printing and Plotting Techniques

Plotting XY Displays on a Printer or Plotter

3. Select the desired plotter conÕguration:

– Click on the Default button to the right of Plotter Device and

use the drop-down menu to select a device. Or click on the Plotter

Device button to toggle to Plot to File.

– Select a Plotter Type, Number of Pens, Paper Size, and so forth by

editing the appropriate Õelds.

4. Click on OK to conÕrm your new plotter conÕguration and return to the

Default Preferences dialog box.

5. Click on Save if you want the changes to be saved as new defaults (in

the .veerc Õle). Or click on OK if you want to use the changes for this

HP VEE session only (until you select File ¡¡) New, Open, or Exit).

To Plot a Graph

There are two ways that you can plot a graph from an XY display (for

example, an XY Plot or Waveform (Time) display) to your plotting device.

– Select the Plot command from the object menu of the XY display.

– Add a Plot control input terminal to the XY display. (Object Menu ¡¡)

Add Terminal ¡¡) Control Input ¡¡) Plot.) Use the Plot terminal to

programmatically plot the graph.

Let's look at an example of the latter technique. In the following program,

the Function Generator object outputs a 100 Hz cosine wave to the

Waveform (Time) display object.

7-13



Printing and Plotting Techniques

Plotting XY Displays on a Printer or Plotter

The Waveform (Time) object has a Plot control input terminal, which is

connected to the sequence output pin of the Function Generator. Thus,

when the Function Generator Õnishes operating, it activates the Plot

terminal, and the graph is output to the plotting device. The resulting graph

is shown below:

7-14



8

Creating Custom Objects

and Functions



Creating Custom Objects and Functions

This chapter shows how to create your own custom objects and functions.

You can encapsulate a group of HP VEE objects, which together perform a

particular task, into a UserObject. You can also create a custom function by

converting a UserObject into a UserFunction. Let's begin by looking at

UserObjects.

8-2



Creating and Using UserObjects

In this section we will look at some examples showing how to create and use

UserObjects. You can use UserObjects to add structure to your program.

Let's begin by looking at some UserObject concepts.

Some UserObject Concepts

A UserObject provides the means for you to encapsulate a group of objects

that perform a particular task into a single, custom object. This encapsulation

allows you to:

– Use modular design techniques in building your HP VEE program. This

allows you to solve a complex problem through an organized approach.

UserObjects allow you to use top-down design techniques to create a

more Œexible and maintainable program.

– Build user-deÕned objects that you can save in a library for later re-use.

Once a UserObject is created and saved, you can Merge it in other

programs.

8-3



Creating Custom Objects and Functions

Creating and Using UserObjects

UserObject Features The following Õgure shows an \empty" UserObject and identiÕes its

features:

– Like all other HP VEE objects, each UserObject has an object menu

button, which raises the object menu, and a minimize button, which

minimizes the UserObject. In addition, the UserObject has a maximize

button, which maximizes the UserObject to occupy the available space.

– The UserObject work area is similar to the main HP VEE work area. You

can create an HP VEE program segment within the UserObject by adding

objects to the UserObject work area and connecting them.

– The UserObject input terminal area and output terminal area allow you

to add data terminals and control terminals, so that the UserObject can

communicate with the rest of your HP VEE program.

8-4



Creating Custom Objects and Functions

Creating and Using UserObjects

Contexts and UserObjects A UserObject represents a separate context within an HP VEE program,

just as a subprogram represents a separate context within a C or BASIC

program. You can nest UserObjects in an HP VEE program, as shown

below:

Each UserObject has a diÃerent context depending on its location in the

program. There are four contexts in the above example:

1. Object A, UserObject1, and UserObject2 are in the root context of the

program. That is, they are in the main work area.

2. Object B is in the context of UserObject1. That is, it is in the work area

of UserObject1.

3. Object C and UserObject3 are in the context of UserObject2.

4. Object D is in the context of UserObject3.

8-5



Creating Custom Objects and Functions

Creating and Using UserObjects

Propagation and

UserObjects

Propagation in a program containing UserObjects is aÃected by the fact that

a UserObject is a separate context. The UserObject propagation rules are

as follows:

– All data input terminals (and the sequence input terminal if connected)

of the UserObject must be activated before any objects within the

UserObject operate.

– Once the data input terminals (and the sequence input terminal if

connected) of the UserObject have been activated, the UserObject

operates. The objects within the UserObject operate following the rules of

propagation listed under \Propagation Summary" in Chapter 1. However,

the objects within the UserObject time-share in operation with external

objects on diÃerent subthreads. The UserObject does not block the

operation of external objects on diÃerent subthreads.

– If the optional XEQ input terminal is activated, the UserObject

immediately begins operation of the objects within its work area, using

whatever \old" data may be on the unactivated input terminals of the

UserObject. In most cases, you need not use the XEQ terminal for a

UserObject.

– The UserObject data output terminals are not activated until all objects

within the UserObject Õnish operating (unless the UserObject is exited

prematurely by an error or an Exit UserObject). Only those output

terminals activated from inside the UserObject pass data to objects

outside the UserObject. When activated, each data output terminal

outputs only one data container.

For more information about the propagation rules, refer to \Propagation

Summary" in Chapter 1.

N O T E

If there is a Start object in a UserObject (to handle feedback), pressing Start causes

only the objects within the UserObject to run. No data will be read from the input terminals of

the UserObject, nor will its output terminals be activated. Therefore, no propagation outside the

UserObject takes place.

8-6



Creating Custom Objects and Functions

Creating and Using UserObjects

Data Output from a

UserObject

As stated in the propagation rules, each data output terminal of a

UserObject outputs only one data container (the last received by the

terminal) to the context outside the UserObject when the objects within the

UserObject Õnish propagating. This can lead to unexpected results in your

program if you neglect to account for it. The following example illustrates

this situation:

Although the For Count object sends 10 data containers (the numbers

0 through 9) to the Count output terminal, only one data container (the

last number) is output from the UserObject. However, you can use a

Collector object to collect the data from the For Count object into an

array. The Array output terminal also outputs only one data container, but

that container is a one-dimensional array of 10 values (0 through 9).

8-7



Creating Custom Objects and Functions

Creating and Using UserObjects

To Add Objects to the UserObject Work Area

Any object that you place inside the UserObject work area becomes part of

the UserObject. Use any of the following methods:

– Select the appropriate object from the main menu and place the object in

the UserObject work area.

– Move an object from the main HP VEE work area to the UserObject work

area.

– Copy (use Edit ¡¡) Copy) or clone (use Edit ¡¡) Clone) an object from

the main work area and place the copy in the UserObject work area.

To Add Input and Output Terminals to a UserObject

In general, you can add input and output terminals to a UserObject using

the same techniques that you would for any other object.

– Select Add Terminal from the object menu, and then select the type of

terminal you want to add: Data Input, Control Input, XEQ Input,

Data Output, or Error Output.

– Place the mouse cursor in the data input terminal area and press ÄCtrlÅ+ÄAÅ.

A data input terminal is added to the UserObject each time you press

ÄCtrlÅ+ÄAÅ.

– Place the mouse cursor in the data output terminal area and press

ÄCtrlÅ+ÄAÅ. A data output terminal is added to the UserObject each time

you press ÄCtrlÅ+ÄAÅ.

8-8



Creating Custom Objects and Functions

Creating and Using UserObjects

Shortcut

There is a shortcut for adding input and output terminals to a UserObject:

– Connect an output terminal of an object within the UserObject to an input terminal of an

external object. A data output terminal automatically appears on the UserObject.

– Connect an output terminal of an external object to an input terminal of an object within the

UserObject. A data input terminal automatically appears on the UserObject.

The appropriate connections through the new UserObject terminals are automatically made. Also,

the terminals are automatically given appropriate names.

In addition to data terminals, you can connect to other types of terminals on objects inside a

UserObject (sequence, control, XEQ, and Error terminals, for example). However, the

corresponding terminals created for the UserObject will be data terminals. For example, if you

connect the Error output terminal of an object within a UserObject to an external object, a

data output terminal named Error appears on the UserObject.

You can connect an object within one UserObject to an object that is in another

UserObject.

8-9



Creating Custom Objects and Functions

Creating and Using UserObjects

To Create a UserObject in a Program

The following example shows, step-by-step, how to create a simple

UserObject and connect it in an HP VEE program.

1. Add a UserObject to the main HP VEE work area:

To add a UserObject to the main HP VEE work area, select Device ¡¡)

UserObject from the menu, and place the UserObject in the work area.

An \empty" UserObject appears:

2. Add objects to the UserObject work area:

For our example, select the + object from the Math menu and the Noise

Generator object from the Device menu, and place each of them in the

UserObject work area. Then connect them as follows:

8-10



Creating Custom Objects and Functions

Creating and Using UserObjects

3. Add input and output terminals to the UserObject:

Place the mouse cursor in the input terminal area of the UserObject and

press ÄCtrlÅ+ÄAÅ. The data input terminal A appears:

8-11



Creating Custom Objects and Functions

Creating and Using UserObjects

Now you can use the data input terminal A to connect an external object to

the UserObject. In this case, add a Function Generator object (Device

¡¡) Virtual Source ¡¡) Function Generator) to the main work area and

connect terminal A as shown in the following Õgure:

There is a shortcut for adding data input terminals and data output

terminals to a UserObject. You can connect objects within a UserObject

to objects outside the UserObject directly. For example, add a Waveform

display to our main program. Then connect the data output terminal of the

+ object inside the UserObject to the data input terminal of the Waveform

object. The Result data output terminal automatically appears on the

UserObject:

8-12



Creating Custom Objects and Functions

Creating and Using UserObjects

4. Test the UserObject in the program:

Let's see what the program does. First, change the Function setting on the

Function Generator object to Square. Also, change the Frequency setting

to 100. Then run the program. You should see something like the following:

The UserObject adds a noise component to the waveform on input A.

You can save screen space in your program by minimizing a UserObject.

However, change the UserObject title to something descriptive Õrst, so you

can identify the UserObject by its function in the program.

To Create a UserObject from Objects in a Program

Once you have written an HP VEE program you may decide that you want

to make part of the program into a UserObject. In Chapter 3 we showed

how to create a program to generate a one-dimensional array of random

numbers. Let's look at how to convert several objects in this program into a

UserObject.

8-13



Creating Custom Objects and Functions

Creating and Using UserObjects

1. Open the program (manual06.vee in your manual examples directory).

2. Click on Edit ¡¡) Select Objects. The message Select Desired

Objects is displayed on the tool bar.

3. Click on each of the following objects to select them: Alloc Real, For

Count, Random Number, and Set Values. The selected objects are

highlighted with shadows, as shown below:

4. When you are done selecting objects, click in an empty space in the work

area to turn oÃ Select Desired Objects mode, and then select Edit

¡¡) Create UserObject.

5. Change the title of the UserObject to Random Array and run the

program. You should see something like this:

8-14



Creating Custom Objects and Functions

Creating and Using UserObjects

Note that when the UserObject is created, the connection to the

AlphaNumeric object is retained and an Array output terminal is

automatically created. (This program is saved as manual25.vee in your

manual examples directory.)

To Exit a UserObject Early

There are two objects that force propagation to exit a UserObject before

all of the objects within the UserObject have operated. These are Exit

UserObject and Raise Error. The Exit UserObject object, when

activated, causes an immediate exit from the UserObject context to the

context outside it (for example, the main program). The Raise Error object

generates a user-deÕned error message box, and also causes propagation to

exit the UserObject. (No data is output from the UserObject unless there

is an Error output pin.)

8-15



Creating Custom Objects and Functions

Creating and Using UserObjects

Let's look at an example using Exit UserObject:

To see how Exit UserObject works, open and run this program (saved as

manual26.vee in your manual examples directory). Turn on animation

by selecting Edit ¡¡) Animate to see the order of propagation. The OK

and Cancel buttons both become active when the program is run, pausing

execution in the UserObject. (The Cancel button is just an OK button with

the title changed.)

– If you press the OK button, the upper thread in the UserObject Õnishes

propagating. The A+B object adds its two inputs, the result is propagated to

output terminal X, and then the Exit UserObject is activated. The result

on terminal X is output to the AlphaNumeric display as the UserObject

exits.

– If you press Cancel, the Exit UserObject in the lower thread operates.

This causes an exit from the UserObject without Õnishing propagation of

the upper thread. No data is output.

8-16



Creating Custom Objects and Functions

Creating and Using UserObjects

To Add a Panel View to a UserObject

A panel view is a view of an HP VEE program or UserObject that shows

only those objects needed by an operator to run the program and view the

resulting data. Refer to Getting Started with HP VEE for an example of

adding a panel view to an HP VEE program. The following example shows

how to add a panel view to a UserObject:

1. Open the program manual26.vee in your manual examples directory.

2. Raise the Edit menu for the UserObject (click the right mouse button

within the UserObject work area) and click on Select Objects.

3. Click on the OK and Cancel buttons to select them, highlighting them as

shown below:

4. Click on any empty area to turn oÃ Select Desired Objects mode, and

then select Add To Panel from the Edit menu of the UserObject.

5. The panel view appears, showing just the OK and Cancel buttons. You

can move the buttons and re-size the UserObject to obtain a panel view

similar to the one that follows.

8-17



Creating Custom Objects and Functions

Creating and Using UserObjects

In the panel view, only the objects that you added to the panel show.

However, the UserObject functions just as before. Press Detail if you want

to see the detail view, which is unchanged. You can change the colors and

fonts, select a background bitmap, and otherwise enhance the panel view

without aÃecting the detail view. For further information about using panel

views to create an operator interface, refer to your Building an Operator

Interface with HP VEE manual.

To Create a Library of UserObjects

You can save one or more UserObjects in a Õle by using Save Objects:

1. Create the UserObject(s) in your work area.

2. Select the UserObject(s).

3. Select File ¡¡) Save Objects. You'll be prompted for a Õle name in

which to save the UserObject(s).

You can merge the UserObject(s) from your library into the work area by

using Merge:

1. Select File ¡¡) Merge. You'll be prompted for a Õle name.

2. Select the Õle name for your library. The UserObject(s) in the Õle are

merged into the work area. Place them where you want them in your

program.

8-18



Creating Custom Objects and Functions

Creating and Using UserObjects

To Secure a UserObject

After the design of a UserObject is Õnal, you may want to secure it. This

prevents others from viewing the contents or changing the UserObject.

Caution

Don't secure your only copy of a UserObject. Once you secure a UserObject, it cannot be

unsecured!

To secure a UserObject:

1. Select Secure from the object menu of the UserObject.

2. You will be prompted for a Õle name in which to save an unsecured

version of the UserObject. Enter a descriptive Õle name.

3. Click on Save, then secure. (Don't select Secure without saving

unless you already have made an unsecured copy.)

If the UserObject does not have a panel view, the secured version is

displayed only as an icon. The open view is not available, so no one can view

or edit the contents.

If the UserObject has a panel view, the secured version is displayed either

as an icon or open, showing the panel view. The detail view is not available,

and the panel view cannot be modiÕed.

8-19



Creating and Using UserFunctions

A UserFunction is a user-deÕned function created from a UserObject by

selecting Make UserFunction from the object menu. The UserFunction

exists in the background within the HP VEE process, but provides the same

functionality as the original UserObject. You can call a UserFunction with

the Call Function object, or from an expression. The major advantage of

creating a UserFunction is that you can call the same UserFunction several

times in your program. Thus, there is only one UserFunction to maintain,

rather than several copies of a UserObject.

We'll just look at the basics of creating and using UserFunctions here. For a

complete discussion of UserFunctions, as well as Compiled Functions and

Remote Functions, refer to the \Creating User-DeÕned Functions" chapter in

the HP VEE Advanced Programming Techniques manual.

To Create a UserFunction

The Õrst step in creating a UserFunction is to create a UserObject. We'll

start with one of the examples from earlier in this chapter.

1. Open the program named manual25.vee (saved in your manual examples

directory).

8-20



Creating Custom Objects and Functions

Creating and Using UserFunctions

2. Select Make UserFunction from the object menu of the Random Array

UserObject. If the UserObject name isn't valid as a function name,

you'll be prompted for a function name:

3. Assign a function name (for example, RandomArray) that conforms to the

following:

– Only alphanumeric characters and underscores are allowed (no hyphens,

spaces, commas, or other punctuation).

– The name must be unique (not used for another function).

8-21



Creating Custom Objects and Functions

Creating and Using UserFunctions

4. The UserObject is transformed into a UserFunction, and a Call

Function object is automatically created as an example of how to call

the new UserFunction. When you run the program, a set of 10 random

numbers is generated:

To Edit a UserFunction

To edit a UserFunction, the HP VEE program containing the UserFunction

must be open. Let's edit the UserFunction you created in the last section:

1. With the program of the previous section still open, select Edit ¡¡) Edit

UserFunction. The Edit UserFunction dialog box appears:

8-22



Creating Custom Objects and Functions

Creating and Using UserFunctions

2. Select the UserFunction named RandomArray (or whatever name you

assigned), and click on OK. The Edit UserFunction work area appears:

3. Make your changes. For example, change both the Size parameter in

the Alloc Real object and the value in the For Count object to 9. This

changes the UserFunction to generate 9, rather than 10, random numbers.

4. Click on the Close button. Any changes that you have made will aÃect

all calls to the UserFunction (see the next section).

Shortcut

You can also select Edit UserFunction from the object menu of the Call Function

object, which opens the called function for editing.

8-23



Creating Custom Objects and Functions

Creating and Using UserFunctions

For further information about editing a UserFunction, refer to the \Creating

User-DeÕned Functions" chapter in HP VEE Advanced Programming

Techniques.

To Call a UserFunction in a Program

Once you have created a UserFunction, you can call it multiple times

within an HP VEE program. You can call the UserFunction by using the

Call Function object, or by including the UserFunction name in an

expression. In the following example (manual51.vee in your manual

examples directory), the RandomArray UserFunction (created and edited in

the previous two sections) is called three times:

– The Call Function object calls RandomArray and outputs the returned

array, as we've seen before.

– The expression 1+RandomArray() in the Formula object adds 1 to each

element of the returned array.

– The transaction WRITE CONTAINER RandomArray() in the To File

object writes the array returned by RandomArray to the Õle myFile as a

container.

N O T E

You can also include a UserFunction name in an expression in the Sequencer object. Refer to the

\Using the Sequencer Object" chapter in the HP VEE Advanced Programming Techniques manual for

further information.

8-24



Creating Custom Objects and Functions

Creating and Using UserFunctions

Here are some key points:

– You can call the RandomArray UserFunction as many times as you like

within a program.

– Each call of a UserFunction is independent. (Each call to RandomArray

generates a diÃerent set of random numbers.)

– In the Call Function object, just specify the name of the function to

call (for example: RandomArray). However, if you call the UserFunction

from an expression, you must use the expression syntax, for example:

RandomArray().

– UserFunction names are case-insensitive (like global variable names).

– UserFunction names must be unique.

For a complete discussion of calling and using UserFunctions, refer to

the \Creating User-DeÕned Functions" chapter in HP VEE Advanced

Programming Techniques.

8-25



Creating Custom Objects and Functions

Creating and Using UserFunctions



9

Debugging and Optimizing

an HP VEE Program



Debugging and Optimizing an HP VEE

Program

In this chapter we'll look at some techniques for debugging your program.

Also, we'll look at how to optimize your program, both to make your program

easy to understand and maintain, and to improve performance.

9-2



Debugging an HP VEE Program

The following are some useful techniques for debugging your program.

To View Data Flow and Program Execution

Use the Animate feature to view data Œow and program execution in a

running HP VEE program. To turn animation on:

1. Select the Edit menu and look at the Animate selection. If there is a

checkmark in front of it, animation is already on.

2. If there is no checkmark, click on Animate to turn it on.

The following program (manual36.vee in your manual examples directory)

shows how animation works. Open the program, turn animation on as

described above, and run the program.

By default, Data & Execution Flow is shown by Animate:

– Data containers are indicated by small square markers (commonly called

\torpedoes" by HP VEE programmers). For example, in the above Õgure

a data container is traveling from the For Count object to the Random

Number object.

9-3



Debugging and Optimizing an HP VEE Program

Debugging an HP VEE Program

– Execution Œow is shown by highlighting each object as it operates. The

highlight is a yellow outline around the object. For example, in the Õgure,

the For Count object is highlighted, showing that it is operating.

You can change the animate feature's operation from the Default

Preferences dialog box:

1. Select File ¡¡) Edit Default Preferences to show the dialog box:

2. Under Debug Animation you can select one of the following by clicking

on its radio button:

– Data & Execution Flow (the default)

– Data Flow Only

– Execution Flow Only

You can also change the animation speed. Click on the Data Flow Rate

arrow to show the drop-down list. You can set a rate from 1 (the slowest)

to 10 (the fastest).

3. Click on Save if you want the changes to be saved as new defaults (in

VEE.RC or .veerc). Or click on OK if you want to use the changes for this

HP VEE session only (until you select File ¡¡) New, Open, or Exit).

Be sure to turn Animate oÃ when you don't need it. It slows down your

program considerably.

9-4



Debugging and Optimizing an HP VEE Program

Debugging an HP VEE Program

To Set and Delete Breakpoints

If you set a breakpoint on an object in your program, the program will pause

just before that object operates. You can then use Line Probe to see the data

containers on each line, and you can use Step or Cont to continue program

execution.

Let's add a breakpoint to the Random Number object in the program of the

previous section:

1. Open the program (manual36.vee in your manual examples directory).

2. Select Edit Properties from the object menu of the Random Number

object. Then, click on the checkbox for Breakpoint Enabled:

3. Click on OK. The Random Number object is now highlighted with a black

outline, showing that it has a breakpoint set.

9-5



Debugging and Optimizing an HP VEE Program

Debugging an HP VEE Program

4. Run the program.

Note that the program pauses just before the Random Number object operates.

Click on the Cont button to continue the program. The program again pauses

just before the Random Number object operates. Use a breakpoint to pause

the program at a desired point, then press Cont to resume execution or Step

to proceed to the next object.

To delete a breakpoint:

1. Select Edit Properties from the object menu of the object that has the

breakpoint set.

2. Click on the Breakpoint Enabled checkbox in the dialog box to turn oÃ

the breakpoint, and then click on OK.

Shortcuts:

Use the following features (found under Edit ¡¡) Breakpoints ¡¡)) to

enable and disable breakpoints:

– Use Set Breakpoints to set breakpoints on multiple objects. Select each

desired object using Select Objects, and then select Set Breakpoints.

– Use Clear Breakpoints to clear breakpoints on multiple objects. Select

each desired object using Select Objects, and then select Clear

Breakpoints.

– Use Clear All Breakpoints to clear all breakpoints from a program once

you have Õnished debugging it.

9-6



Debugging and Optimizing an HP VEE Program

Debugging an HP VEE Program

– When Activate Breakpoints is checked, breakpoints are active and you

can debug your program. When Activate Breakpoints is not checked,

breakpoints are disabled.

To Step through a Program

Use the Step button in the HP VEE tool bar to run your program one object

at a time.

– From a stopped program, the Õrst time you press Step the program

PreRuns. Press Step to operate each object in turn. A green highlight

indicates the object that will operate next.

– If you run your program (by pressing Run) with a breakpoint enabled, the

program will PreRun and then execute up to the breakpoint. From there,

you can use Step to operate each object in turn.

– At any point, you can press Cont to continue running the program. To

pause the program, press Stop once. If you press Stop twice, the program

will stop, and will go through PreRun when restarted.

When you encounter a UserObject when stepping through a program, the

following occurs:

– If the UserObject is in its open view, the objects in the UserObject

operate one at a time. You'll need to press Step for each object executed in

the UserObject.

– If the UserObject is an icon, is showing a panel view, or has Show Panel

on Exec set, the entire UserObject operates when you press Step.

9-7



Debugging and Optimizing an HP VEE Program

Debugging an HP VEE Program

To View the Data on a Line

Use Line Probe to view the data container that has been passed on any

HP VEE data line. With the program paused or stopped:

1. Select Edit ¡¡) Line Probe.

2. Move the mouse pointer near the line to be probed and click the left

mouse button.

The Container Information dialog box appears. In the example below, the

data output line from the Real constant object has been probed.

If you probe a line on which no data has been transmitted (or on which a

sequence pin \ping" has been transmitted), the Container Information

dialog box reports Nil (empty) container.

Shortcut

To probe a line, move the mouse pointer near the line, press and hold the ÄShiftÅ key, and click the

left mouse button.

9-8



Debugging and Optimizing an HP VEE Program

Debugging an HP VEE Program

To Find the Endpoints of a Line

Use Line Probe to trace a line and show its endpoints. Select Line Probe

(ÄShiftÅ+left mouse button) and drag the mouse pointer across the line. The

line endpoints are indicated with small square markers, as shown:

If you release the mouse button over a line, the Container Information

dialog box appears.

To Trap an Error

Normally, all HP VEE errors are reported by the Error Message dialog box.

However, you can trap an error generated by a particular object by adding an

Error output terminal to that object.

To add an Error output terminal to an object, select Add Terminal ¡¡)

Error Output from the object menu.

If an object that has an Error output terminal generates an error, the Error

Message dialog does not appear. Instead, the Error terminal outputs the

error number.

There are various ways to use the Error output terminal. You can use

it to activate another object, such as Raise Error. Or you can use

If/Then/Else to determine an action based on the error number.

9-9



Debugging and Optimizing an HP VEE Program

Debugging an HP VEE Program

The following program (manual37.vee in your manual examples directory)

illustrates some useful techniques for trapping errors. In this program, we

expect error number 511 (Division/Modulo by zero) to occur, and we want

to trap that error.

When a division-by-zero condition occurs, the Error terminal on the A/B

object outputs error number 511. The If/Then/Else object tests the error

number for equality to 511 and activates its Then terminal, causing the

Raise Error #1 object to operate. Raise Error #1 generates the error

dialog shown, displaying the message You Cannot Divide By Zero. Enter

another value for B. and the error code 2001.

But, we also need to provide for other errors that the A/B object might

generate. (Remember, with an Error terminal present, the normal HP VEE

error message dialog won't appear.) For this, the program has a second

Raise Error object connected to the Else terminal of the If/Then/Else

object:

9-10



Debugging and Optimizing an HP VEE Program

Debugging an HP VEE Program

In the above Õgure, we've forced the A/B object to generate error number

603 (Variable was not found: C) by changing the expression to A/C.

The If/Then/Else object tests for equality to 511, and activates its Else

terminal, which activates the sequence input pin on Raise Error #2.

Raise Error #2 passes through the error number (603) on its Code data

input terminal, and generates the error dialog shown. It displays See online

help for error number below:, along with the error number 603.

This technique is useful for trapping one or more speciÕc errors, and

providing an \escape" to pass through other errors generated by an object.

You can use as many If/Then/Else and Raise Error objects as are

necessary.

9-11



Making an HP VEE Program Easier to Under-

stand

The following are some techniques for making your program easier to

understand and maintain.

To Add Structure to Your Program

Just as you can add structure to a program in a conventional programming

language, you can add structure to an HP VEE program.

1. Analyze what your HP VEE program does. Can you identify a group of

objects that together perform a speciÕc sub-task? Create a UserObject

from those objects.

2. Are there sub-tasks that appear multiple times in your program? If so,

create a UserObject to do the sub-task, convert the UserObject into a

UserFunction, and call the UserFunction each time it is needed.

3. Proceed through your program, building a hierarchical structure using

UserObjects and UserFunctions.

4. If you pass a single data container to several objects, consider using a

global variable to pass that data.

For further information on UserObjects and UserFunctions, refer to

Chapter 8.

9-12



Debugging and Optimizing an HP VEE Program

Making an HP VEE Program Easier to Understand

To Document Your Program

You can make your program easier to use, debug, and maintain by using the

following techniques:

– Give your program a descriptive name. You can name your program in the

HP VEE title bar. (Double-click on the title area and change the title in the

dialog box.)

– Rename objects to names that are more meaningful to you. For example,

Repeat 100x may be more useful than For Count. (Double-click on the

title area and change the title in the dialog box.)

– Rename input and output terminals to descriptive names. For example,

if terminal A inputs a Œow rate, you may want to change the name to

Flow_Rate. (Double-click on the terminal and change the title in the

dialog box.) Note that you cannot change the title of some terminals.

– Add descriptions to key objects by using Edit Description in the object

menu. The information may include why you used that particular object,

details about the inputs and outputs, and the options that you used on the

object.

– Add notes to yourself or others using the Note Pad display object (Display

¡¡) Note Pad). The information could include:

Your name, phone number, and the date you created the program.

What this program does.

The dates that you made changes and what the changes were.

– Customize icons, such as UserObject icons, by adding a descriptive

bitmap. Refer to \To Add a Bitmap to an Icon" for further information.

9-13



Debugging and Optimizing an HP VEE Program

Making an HP VEE Program Easier to Understand

To Add a Bitmap to an Icon

You can add a bitmap to any iconiÕed HP VEE object. For example, to add a

bitmap to a UserObject icon, follow these steps:

1. Select Edit Properties from the object menu of the UserObject. Then

select the Icon tab.

2. The available bitmaps in your bitmaps directory are displayed. Scroll

through the list and click on the Õle name that you want. For example, if

you click on BEEP.ICN, the Beep icon is shown in the preview area:

(If you want to browse through other directories, click on Browse. The

Select File dialog box appears and you can navigate through the

directories to select a bitmap Õle.)

3. Once you have selected an icon, click on OK. The following is a

UserObject icon with the Beep bitmap:

9-14



Debugging and Optimizing an HP VEE Program

Making an HP VEE Program Easier to Understand

The procedure for adding a custom bitmap is the same as for adding one of

the standard bitmaps. However, you must Õrst create the bitmap. To create

a custom bitmap, use an appropriate bitmap editor for your computer (for

example, the Microsoft Windows PaintBrush program for a PC). The following

Õle formats are supported:

– Windows: BMP, ICN, or GIF

– UNIX: BMP, ICN, GIF, or XWD

The default bitmap directories are as follows:

– Windows: C:\VEE\BITMAPS

– UNIX: /usr/lib/veetest/bitmaps

9-15



Improving the Performance of an HP VEE

Program

The following sections describe some techniques that you can use to optimize

the performance of your HP VEE program.

To Remove Barriers to Program Performance

The following are some general techniques that you may be able to use to

improve program execution speed.

– Leave data input terminals set to Any for data type and shape. HP VEE will

convert data types only when necessary, saving execution time.

– Turn oÃ Clear at PreRun and Clear at Activate on displays where not

needed.

– Use Initialize at PreRun and Initialize at Activate on data

objects instead of setting defaults with control pins.

– Collect data for graphical displays into an array, and plot the entire array

at once rather than plotting each individual scalar point. If the X values

of a plot are regularly spaced, use an XY Trace object rather than an

X vs Y Plot object.

– Run the program from the panel view. If the panel view contains fewer

objects than the detail view, the program will run faster.

– Set graphical displays to be as plain as possible. The settings that allow

the fastest update times are Grid Type ¡¡) None and Layout ¡¡) Graph

Only.

– Iconify those objects that continuously update their displays (such as the

Timer, Counter, Accumulator, AlphaNumeric, and graphical display

objects) if you don't need to see the displayed information.

– If using a Strip Chart display, set the buÃer size as small as possible.

– Collect data for processing into an array, and then process the data as an

array.

9-16



Debugging and Optimizing an HP VEE Program

Improving the Performance of an HP VEE Program

– Use Complex data in expressions rather than PComplex. Most of the math

libraries will convert PComplex to Complex, calculate the answer, and

convert Complex back to PComplex.

– To display PComplex data, set Trig Mode (under File ¡¡) Edit

Properties) to Radians. HP VEE stores PComplex values internally as

radians.

– In general, the fewer objects that need to operate, the faster the program

will run. Perform as many functions as possible in each object. For further

information about objects performing multiple functions, refer to the

following section.

To Reduce the Number of Objects in a Program

Many HP VEE objects can perform a set of functions. Your programs will be

more compact, easier to maintain, and will run faster if you use the following

techniques:

– Enter equations in a Formula object instead of using multiple constant and

single-function math objects. You can nest functions in a Formula object.

For example, you can enter the expression (sin(ramp(100, 0, 360))).

– Use one If/Then/Else object with multiple conditions (for example,

A == B OR A<=C AND A>D) instead of using multiple If/Then/Else or

Conditional objects.

– To input a one-dimensional array of data, use a Constant object conÕgured

as an array instead of using one Constant object for each value and then

building an array.

– To read all of \the rest" of the data in a Õle, use the ARRAY 1D TO END:(*)

transaction in a From File object. This is simpler and faster than looping

on single-element reads and collecting the result into an array.

– Use the Sequencer to control the Œow of execution of several

UserFunctions. Refer to the chapter \Using the Sequencer Object" in

HP VEE Advanced Programming Techniques for further information.

9-17



Debugging and Optimizing an HP VEE Program

Improving the Performance of an HP VEE Program

– When using the Sequencer, only enable logging for transactions where the

Log record is required. If the Log output terminal is not used, delete it to

speed up execution slightly.

To Increase I/O Performance

In general, direct I/O provides the fastest I/O performance. To optimize the

I/O performance of your HP VEE program:

1. Create your program using an instrument panel object (or component

driver object) to communicate with the instrument. Test and debug the

program and instrument conÕguration.

2. Add a Bus I/O Monitor object to the program. Run the program and

\capture" the messages sent to the instrument, and received from it, by

the instrument panel or component driver.

3. Rewrite the program so that it uses a Direct I/O object to communicate

with the instrument using the \captured" messages. This will speed up I/O

performance in the Õnal program.

For further information, refer to Chapter 5.

In rare cases where extremely fast I/O is required, you can create a compiled

function to perform the instrument I/O function. Refer to the \User-DeÕned

Functions" chapter in HP VEE Advanced Programming Techniques for

further information.

9-18



A

Data Type Conversion and

Array Mappings



Data Type Conversion and Array Mappings

This appendix provides information about how HP VEE converts data types

internally, and how arrays are mapped.

A-2



Data Type Conversion

The following sections describe what HP VEE does, and when, to convert

between data types.

Converting Data Types on Input Terminals

In conventional programming languages, you manually convert between data

types. HP VEE automatically converts between most data types.

N O T E

Data shapes are not converted on input terminals, but data types and shapes may be automatically

converted when used in math functions. Refer to the \Mathematically Processing Data" section in

Chapter 3 of the HP VEE Reference manual for further information.

Most objects accept any data type on their data input terminals, but a few

objects require a particular data type or shape. For these objects, the data

input terminal automatically attempts to convert the input container to the

desired data type.

For example, a Magnitude Spectrum display needs Spectrum data. If

the output of a Function Generator (a Waveform) is connected to the

Magnitude Spectrum display, the input terminal of the Magnitude

Spectrum automatically does an FFT to convert time-domain data to

frequency-domain data (Waveform to a Spectrum).

The conversion can be a promotion or demotion. A promotion is the

conversion from a data type with less information to one with more. For

example, a conversion from an Int32 to Real is a promotion. Such promotions

A-3



Data Type Conversion and Array Mappings

Data Type Conversion

take place automatically as needed | you rarely if ever need to be concerned

with them.

A demotion is a conversion that loses data. For example, the conversion

from a Real to an Int32 is a demotion because the fractional part of the

Real number is lost. A demotion of data type occurs only if you force it by

specifying a certain data type for an input on an object. Once you have

speciÕed a data type, the demotion will occur automatically if it is needed and

is possible.

For example, if you change the input on a Formula object to Int32, and

another object supplies a Real number to that input (such as 28.2), the value

will be demoted to an Int32 (28).

To change the data type on the Formula input from Any to Int32, just

double-click on the input terminal's information area (not the pin), and then

click on the Required Type Õeld. Click on Int32 in the drop-down list to

change types.

N O T E

The conversion of data types for instrument I/O transactions is a special case. Refer to \Instrument I/O

Data Type Conversions" for further information.

When the conversion can't be done, HP VEE returns an error. The following

table shows when conversion is automatic (yes) or when HP VEE returns an

error (no). Demotions are indicated by

NNNNNNNNNNNNNNNNNNNNNNN

shading .

N O T E

The Record data type has the highest priority. However, HP VEE does not automatically promote to or

demote from the Record data type. To convert between Record and non-Record data, use Build

Record and Unbuild Record. For further information, refer to \Using Records and DataSets"

in the HP VEE Advanced Programming Techniques manual.

A-4



Data Type Conversion and Array Mappings

Data Type Conversion

Table A-1. Promotion and

NNNNNNNNNNNNNNNNNNNNNNNNNN

Demotion of Types in Input Terminals

To Ç

É From

Int32 Real Complex PComplex Waveform Spectrum Coord Enum Text

Int32 n/a yes yes
(1)

yes
(1)

no no yes
(2)

no yes

Real
FFFFFFFFFF

yes
(3)

n/a yes
(1)

yes
(1)

no no yes
(2)

no yes

Complex
FFFFFFF

no
FFFFFFF

no
(4)

n/a yes no no no no yes

PComplex
FFFFFFF

no
FFFFFFF

no
(4)

yes n/a no no no no yes

Waveform
FFFFFFFFFF

yes
(3)

FFFFFFFFFF

yes
(8)

FFFFFFF

no
FFFFFFF

no n/a yes
(5)

yes no yes

Spectrum
FFFFFFF

no
FFFFFFF

no
FFFFFFFFFF

yes
(8)

FFFFFFFFFF

yes
(8)

yes
(5)

n/a yes no yes

Coord
FFFFFFF

no
FFFFFFF

no
FFFFFFF

no
FFFFFFF

no
FFFFFFF

no
FFFFFFF

no n/a no yes

Enum
FFFFFFF

no
(6)

FFFFFFF

no
FFFFFFF

no
FFFFFFF

no
FFFFFFF

no
FFFFFFF

no
FFFFFFF

no n/a yes

Text
FFFFFFFFFF

yes
(7)

FFFFFFFFFF

yes
(7)

FFFFFFFFFF

yes
(7)

FFFFFFFFFF

yes
(7)

FFFFFFF

no
FFFFFFF

no
FFFFFFFFFF

yes
(7)

FFFFFFF

no n/a

Notes:

n/a = Not applicable.

(1) An Int32, or Real value promotes to Complex (value, 0) or to PComplex

(value, @0).

(2) The independent component(s), which are the Õrst n-1 Õeld(s) of

an n-Õeld Coord, are the array indexes of the value unless the array is

mapped. If the array is mapped, the independent component(s) are derived

from the mappings of each dimension. The dependent component, y, is the

array element. If the container is a Scalar (non-array), conversion fails

with an error.

(3) These demotions will cause an error if the value is out of range for the

destination type.

(4) This demotion is not done automatically, but can be done with the

re(x), im(x), mag(x), and phase(x) objects or the Build/UnBuild ¡¡)

objects.

(5) An FFT or inverse FFT is automatically done.

(6) This demotion is not done automatically, but can be done with the

ordinal(x) object.

A-5



Data Type Conversion and Array Mappings

Data Type Conversion

(7) This demotion causes an error if the text value is not a number (such as

34 or 42.6) or is not in an acceptable numerical format. The acceptable

formats are as follows (spaces, except within each number, are ignored):

– Text that is demoted to an Int32 or Real type may also include:

A preceding sign. For example, -34.

A suœx of e or E followed by an optional sign or space and an integer.

For example, 42.6E-3.

– Text demoted to Complex must be in the following format: (number,

number).

– Text demoted to PComplex must be in the following format: (number,

@number). The phase (the second component) is considered to be

radians for this conversion, regardless of the Trig Mode setting.

– Text demoted to a Coord type must be in the following format: (number,

number, . . . ).

(8) These demotions keep the Waveform and Spectrum mappings.

A-6



Data Type Conversion and Array Mappings

Data Type Conversion

Instrument I/O Data Type Conversions

On instrument I/O transactions involving integers, HP VEE performs an

automatic data-type conversion according to the following rules:

N O T E

These data-type conversions are completely automatic, so you won't normally need to be concerned

with them. However, the following list shows what happens.

– On an input transaction (read), Int16 or Byte values from an instrument

are converted to Int32 values, preserving the sign extension. Also,

Real32 values from an instrument are converted to 64-bit Real numbers.

– On an output transaction (write), Int32 or Real values are converted to

the appropriate output format for the instrument:

If an instrument supports the Real32 format, HP VEE converts 64-bit

Real values to Real32 values, which are output to the instrument. If

the Real value is outside of the range for Real32 values, an error will

occur.

If an instrument supports the Int16 format, HP VEE truncates Int32

values to Int16 values, which are output to the instrument. Real

values are Õrst converted to Int32 values, which are then truncated and

output. However, if a Real value is outside the range for an Int32, an

error will occur.

If an instrument supports the Byte format, HP VEE truncates Int32

values to Byte values, which are output to the instrument. Real values

are Õrst converted to Int32 values, which are then truncated and

output. However, if a Real value is outside the range for an Int32, an

error will occur.

A-7



Array Mappings

A mapping is a set of continuous or discrete values that express the

independent variables for an array. For example, the mappings on a

Waveform are the times for each amplitude value. Waveform, Spectrum, and

Coord data types are mapped. Arrays of other data types can also be mapped

by using Data ¡¡) Access Array ¡¡) Set Mappings''.

Mappings are either continuous (Waveform, Spectrum, or mapped arrays

created with Set Mappings) or discrete (Coord). Continuous mappings are

attached to the array and may be viewed on the terminal or by using Line

Probe, but are not part of the array and are diÃerent than the array indices.

Discrete mappings are part of the array and are displayed as the Õrst n-1

Õelds in a Coord value with n Õelds.

The sampling interval of linear mappings is the maximum value minus

the minimum value, divided by the number of points. There are the same

number of points as sampling intervals; each point is at the beginning of

a sampling interval. For example, if array A (where A = [1, 2, 3, 4]) is

linearly mapped from 10 to 50, the mappings and sampling intervals are as

shown in the Õgure below. Note that the mappings are from the Õrst element

to the end of the last interval.

When mapped values (except Coord) are displayed, the X axis displays the

mappings.

To get information about a continuous-mapped array, use

Data ¡¡) Access Array ¡¡) Get Mappings''. Get Mappings gives you the

type of mapping (log or linear) and the minimum and maximum mapping

values for each dimension.

A-8



Glossary



Glossary

This Glossary deÕnes several terms used to name or describe HP VEE

features.

Activate

1. To send a container to a terminal. See also \Container" and

\Terminal."

2. The action that resets the context of a UserObject before it operates

each time. See also \Context" and \PreRun."

Allocate

To initialize an HP VEE array. Allocation sets the number of dimensions,

the number of elements in each dimension, and Õlls the array with initial

data. For example, a two-dimensional integer array is Õlled with 0 values

by default.

Array

An HP VEE data shape corresponding to a mathematical array, which

contains a grouping of data items (all of the same data type) in one or

more dimensions. The data items are accessed by means of array indexes.

See also \Data Shape."

Asynchronous

In asynchronous operation, a device operates without a common signal

to synchronize events|the events occur at unspeciÕed times. HP VEE

control pins (for example, the Clear pin on a display object) are

asynchronous.

Auto Execute

An option on the object menus of the data constant objects. If Auto

Execute is set, and if the program is not already running, the object

operates when its value is edited. Auto Execute is ignored while the

program is running.

Bitmap

A bit pattern or picture. In HP VEE you can display a bitmap with a

Picture object or on any icon. You can also display a bitmap on the

background of a main program panel view, a UserObject panel view, or

a UserFunction panel view.

Glossary-2



Breakpoint

A tool for debugging an HP VEE program. If you set a breakpoint for an

object, the program will pause just before that object executes.

BuÃer

An area in memory where information is stored temporarily.

Button

A graphical object in HP VEE that simulates a momentary switch or

selection button, and which appears to pop out from your screen. When

you \press" a button in HP VEE, by clicking on it with the mouse, an

action occurs. (May also refer to the left or right mouse button.)

Cascading Menu

A sub-menu on a pull-down or pop-up menu that provides additional

selections.

Checkbox

A recessed square box on HP VEE menus and dialog boxes that allows

you to select a setting. To select a setting, click on the box and an \x"

appears in the box to indicate a selection has been made. To cancel the

setting, simply click on the box again.

Click

To press and release a mouse button. Clicking usually selects a menu

feature or object in the HP VEE window. See also \Double-Click" and

\Drag."

Compiled Function

A user-deÕned function created by dynamically linking a program, written

in a programming language such as C, into the HP VEE process. For

UNIX systems, the user must create a shared library Õle and a deÕnition

Õle for the program to be linked. For Windows, the user must create a

DLL (Dynamically Linked Library) Õle and a deÕnition Õle. The Import

Library object attaches the shared library or DLL to the HP VEE process

and parses the deÕnition Õle declarations. The Compiled Function

can then be called with the Call Function object, or from certain

expressions. See also \UserFunction" and \Remote Function."

Component

A single instrument function or measurement value in an HP VEE

instrument panel or component driver. For example, a voltmeter driver

contains components that record the range, trigger source, and latest

Glossary-3



reading. See also \Component Driver," \Driver Files," \State," and

\Instrument Panel."

Component Driver

An instrument control object that reads and writes values to components

you speciÕcally select. Use component drivers to control an instrument

using a driver by setting the values of only a few components at a time.

(Component drivers do not support coupling.)

Composite Data Type

A data type that has an associated shape. See also \Data Shape" and

\Data Type."

Container

See \Data Container."

Context

A level of the work area that can contain other levels of work areas (such

as nested UserObjects), but is independent of them.

Control Pin

An asynchronous input pin that transmits data to the object without

waiting for the object's other input pins to contain data. For example,

control pins in HP VEE are commonly used to clear or autoscale a display.

Coupling

The inter-relationship of certain functions in an instrument. If, in an

instrument panel, functions A and B are coupled, changing the value of A

may automatically change the value of B, even though you do not change

B explicitly.

Cursor

A pointer (caret) in an entry Õeld that shows where alphanumeric data

will appear when you type information from the keyboard.

Cut BuÃer

The buÃer that holds objects that you cut or copy. You can then paste the

object back into the work area with Edit ¡¡) Paste

Data Container

The data package that is transmitted over lines and is processed by

objects. Each data container contains data and the data type, data shape,

and mappings (if any).

Glossary-4



Data Field

The Õeld within a transaction speciÕcation in which you specify either the

expression to be written (WRITE transactions), or the variable to receive

data that is read (READ transactions). See also \Transactions."

Data Flow

The Œow of data through and between HP VEE objects. Data Œows from

left to right through objects, but an object does not execute until it has

data on all of its data input pins. Data is propagated from the data output

pin of one object to the data input pin of the next object. Data Œow is the

chief factor that determines the execution of an HP VEE program.

Data Input Pin

A connection point on the left side of an object that permits data to Œow

into the object.

Data Output Pin

A connection point on the right side of an object that propagates data Œow

to the next object and passes the results of the Õrst object's operation on

to the next object.

DataSet

A collection of \Record" containers saved into a Õle for later retrieval.

The To DataSet object collects Record data on its input and writes that

data to a named Õle (the DataSet). The From DataSet object retrieves

Record data from the named Õle (the DataSet) and outputs that data as

Record containers on its Rec output pin. See also \Record."

Data Shape

Each data container has both a shape and type. The data shape can be

either a scalar or an array (Array 1D, Array 2D, and so forth).

Data Type

Each data container has both a type and shape. HP VEE supports several

data types including Text, Real, and Integer.

DDE (Dynamic Data Exchange)

A communication mechanism that allows HP VEE for Windows to

communicate with other Windows applications that support DDE. HP VEE

can send data to, and receive data from, such applications. Also, HP VEE

can execute commands in another application. Examples of Windows

applications that support DDE are Microsoft Excel and Microsoft Word for

Windows.

Glossary-5



Default

A value or action that HP VEE automatically selects. For example,

HP VEE uses certain default colors and fonts, which you can change using

the Default Preferences dialog box.

Default Button

The button in a dialog box that is activated by default if ÄEnterÅ or ÄReturnÅ

is pressed, or the selection is double-clicked. The label of the default

button is in bold text.

Demote

To convert from a data type that contains more information to one that

contains less information. See also \Data Type" and \Promote."

Detail View

The view of an HP VEE program that shows all the objects and the lines

between them.

Device

An instrument attached to or plugged into an HP-IB, RS-232, GPIO, or VXI

interface. SpeciÕc HP VEE objects such as the Direct I/O object send

and receive information to a device.

Device Driver

See \Interface Driver."

Dialog Box

A secondary window displayed when HP VEE requires information from

you before it can continue. For example, a dialog box may contain a list of

Õles from which you may choose.

Direct I/O Object

An instrument control object that allows HP VEE to directly control an

instrument without using an instrument driver.

DLL (Dynamically Linked Library)

A collection of functions written in C that can be called from HP VEE for

Windows. DLLs can be created by experienced C programmers using tools

available from Microsoft and Borland. DLLs in the Windows environment

are similar to shared libraries in the UNIX environment.

Glossary-6



Double-Click

To press and release a mouse button twice in rapid succession.

Double-clicking is usually a short-cut to selecting and performing an

action. For example, double-clicking on a Õle name from File ¡¡) Open

will select the Õle and open it.

Drag

To press and continue to hold down a mouse button while moving the

mouse. Dragging moves something (for example, an object or scroll bar).

Driver

Software that allows a computer to communicate with other software

or hardware. See also \Component Driver," \Driver Files," \Interface

Driver," and \Instrument Panel."

Driver Files

A set of Õles included with HP VEE that contains the information needed

to create instrument panel and component driver objects for instrument

control.

Drop-Down List

A list of selections obtained by clicking on the arrow to the right of a

selection Õeld.

Entry Field

A Õeld that is typically part of a dialog box or an editable object,

and which is used for data entry. An entry Õeld is editable when its

background is white.

Error Message

Information that appears in an error dialog box, explaining that a problem

has occurred.

Error Pin

A pin that traps any errors that occur in an object. Instead of getting an

error message, the error number is output on the error pin. When an

error is generated, the data output pins are not activated.

Execute

The action of a program, or parts of a program, running.

Glossary-7



Execution Flow

The order in which objects operate. See also \Data Flow."

Expression

An equation in an entry Õeld that may contain input terminal names,

global variable names, Math and AdvMath functions, and user-deÕned

functions. An expression is evaluated at run-time. Expressions are

allowed in Formula, If/Then/Else, Get Values, Get Field, Set

Field, Sequencer, and Dialog Box objects, and in I/O transaction

objects.

Feedback

A continuous thread path of sequence and/or data lines that uses values

from the previous execution to change values in the current execution.

Flow

See \Data Flow" and \Execution Flow."

Font

HP VEE allows you to change the \font"|the size and style of type|used

to display text for various HP VEE objects, titles, and so forth.

Function

The name and action of objects where the output is a function of the

input. These objects are located under Math or AdvMath menus and may

be used in the Formula object. For example sqrt(x) is a function; + is

not.

Global Variable

A named variable that is set globally, and which can be used by name in

any context of an HP VEE program. For example, a global variable can

be set with Set Global in the root context of the program, and can be

accessed by name with Get Global or from certain expressions within

the context of a UserObject. However, a local variable with the same

name as the global variable takes precedence in an expression.

Grayed Feature

A menu feature that is displayed in gray rather than black, indicating

that the feature is not active or not available. Dialog box items such as

buttons, checkboxes, or radio buttons may also be grayed.

Glossary-8



Group Window

A group window in Microsoft Windows is a window that contains icons for

a group of applications. Each icon starts an application in the group.

Highlight

1. The colored band or shadow around an object that provides a visual

cue to the status of the object.

2. The change of color on a menu feature that indicates you are pointing

to that feature.

Host

To begin a thread or subthread. For example, the subthread that is hosted

by For Count is the subthread that iterates.

HP-UX

Hewlett-Packard Company's enhanced version of the UNIX operating

system.

Hypertext

A system of linking topics so that you can jump to a related topic when

you want more information. In online help systems, typically hypertext

links are designated with underlined text. When you click on such text,

related information is presented.

Icon

1. A small, graphical representation of an HP VEE object, such as the

representation of an instrument, a control, or a display.

2. A small, graphical representation of a Microsoft Windows application

within a group window. See \Group Window."

Instrument Driver

See \Driver Files," \Component Driver," and \Instrument Panel."

Instrument Panel

An instrument control object that forces all the function settings in the

corresponding physical instrument to match the settings in the control

panel displayed in the open view of the object.

Interface

HP-IB, RS-232, GPIO, and VXI are referred to as interfaces used for I/O.

SpeciÕc HP VEE objects, such as the Interface Event object can only

send commands to an interface.

Glossary-9



Interface Driver

Software that allows a computer to communicate with a hardware

interface, such as HP-IB or RS-232. Also called device driver in the UNIX

operating system, interface drivers are conÕgured into the kernel of the

operating system.

Iterate

To repeat (loop) part of an HP VEE program using one of the Repeat

objects (for example, For Count).

Library

A collection of often-used objects or programs grouped together for easy

access.

Line

A link between two objects in HP VEE that transmits data containers to

be processed. See also \Subthread" and \Thread."

Loop

To repeat part of an HP VEE program using one of the Repeat objects (for

example, For Count).

Main Menu

The menus located in the HP VEE menu bar. To open a main menu,

click on the appropriate menu title in the menu bar. You can also use

accelerators. For example, on the PC use ÄAltÅ+ÄFÅ to open the File

menu. On an HP Series 300/700 workstation, use ÄExtend CharÅ+ÄFÅ to do

the same thing.

Main Work Area

The area where you create a program. The main work area is the parent

context of all other contexts.

Mapping

A set of continuous or discrete values that express the independent

variables for an array (for example, the time span of a waveform).

Maximize

To enlarge a UserObject or a window to Õll the available space using a

maximize button. For a UserObject, this resizes the UserObject to

occupy all of the HP VEE work area.

Glossary-10



Maximize Button

A button on a UserObject, or the HP VEE window, that makes the

UserObject, or the HP VEE window, occupy all of the available screen

space.

Menu

A collection of features that are presented in a list. See also \Cascading

Menu," \Main Menu," \Object Menu," \Pop-Up Menu," and \Pull-Down

Menu."

Menu Bar

The bar at the top of the HP VEE window that displays the titles of the

pull-down, main menus, from which you select features.

Menu Title

The name of a menu within the HP VEE menu bar. For example, File or

Edit.

Minimize

1. To reduce an open view of an object to its smallest size|an icon.

2. To reduce a window to its smallest size|an icon.

Minimize Button

A button on an object, or the HP VEE window, that iconiÕes the object, or

the HP VEE window.

Mouse

A pointing device that you move across a surface to move a pointer

within the HP VEE window.

Mouse Button

One of the buttons on a mouse that you can click or double-click to

perform a particular action with the corresponding pointer in the HP VEE

window.

Network

A group of computers and peripherals linked together to allow the sharing

of data and work loads.

Object

A graphical representation of an element in a program, such as an

instrument, control, display, or mathematical operator. An object is

Glossary-11



placed in the work area and connected to other objects to create a

program.

Object Menu

The menu associated with an object that contains features that operate

on the object (for example, moving, sizing, copying, and deleting the

object). To obtain the object menu, click on the object menu button at the

upper-left corner of the object, or click the right mouse button with the

pointer over the object.

Object Menu Button

The button at the upper-left corner of an open view object, which

displays the object menu when you click on it.

Open

To start an action or begin working with a text, data, or graphics Õle.

When you select Open from HP VEE, a program is loaded into the work

area.

Open View

The representation of an HP VEE object that is more detailed than an

icon. Most object open views have Õelds that allow you to modify the

operation of the object.

Operate

The action of an object processing data and outputting a result. An object

operates when its data and sequence input pins have been activated. See

\Activate."

Operator Interface

The interface that the HP VEE programmer creates to allow the operator

(end-user) to control the program. A typical operator interface involves

panel views and dialog boxes.

Outline Box

A box that represents the outer edges of an object or set of objects and

indicates where the object(s) will be placed in the work area.

Palette

The set of possible colors available in HP VEE.

Glossary-12



Panel View

The view of an HP VEE program, or of a UserObject, that shows only

those objects needed for the user to run the program and view the

resulting data. You can use panel views to create an operator interface for

your program.

Pin

An external connection point on an object to which you can attach a line.

Pointer

The graphical image that maps to the movement of the mouse. The

pointer allows you to make selections and provides you feedback on a

particular process underway. HP VEE has pointers of diÃerent shapes that

correspond to process modes, such as an arrow, crosshairs, and hourglass.

Pop-Up Menu

A menu that is raised by clicking the right mouse button. For example,

you can raise the Edit menu by clicking the right mouse button in an

empty area within the work area. Or you can raise the object menu by

clicking the right mouse button on an inactive area of an object.

PostRun

The set of actions that are performed when the program is stopped.

Preferences

Preferences are attributes of the HP VEE environment that you can

change using File ¡¡) Edit Default Preferences. For example, you

can change the default colors, fonts, and number format.

PreRun

The set of actions that resets the program and checks for errors before the

program starts to run.

Program

In HP VEE, a graphical program that consists of a set of objects connected

with lines. The program typically represents a solution to an engineering

problem.

Promote

To convert from a data type that contains less information to one that

contains more information. See also \Data Type" and \Demote."

Glossary-13



Propagation

The rules that objects and programs follow when they operate or run. See

also \Data Flow."

Properties

Object properties are attributes of HP VEE objects that you can change

using object menu ¡¡) Edit Properties. Work area properties are

attributes of the HP VEE work area that you can change using File ¡¡)

Edit Properties. Properties include colors, fonts, and titles.

Pterodactyl

Any of various extinct Œying reptiles of the order Pterosauria of the

Jurassic and Cretaceous periods. Pterodactyl are characterized by wings

consisting of a Œap of skin supported by the very long fourth digit on each

front leg.

Pull-Down Menu

A menu that is pulled down from the menu bar when you position the

pointer over a menu title and click the left mouse button.

Radio Button

A diamond-shaped button in HP VEE dialog boxes that allows you to

select a setting that is mutually exclusive with other radio buttons in that

dialog box. To select a setting, click on the radio button. To remove the

setting, click on another radio button in the same dialog box.

Record

An HP VEE data type that has named data Õelds which can contain

multiple values. Records are typically used to group related articles of

information. However, each record Õeld can contain a diÃerent data type.

Each Õeld can contain another Record container, a Scalar, or an Array.

The Record data type has the highest precedence of all HP VEE data

types. However, data cannot be converted to and from the Record data

type through the automatic promotion/demotion process. Records must be

built/unbuilt using the Build Record and UnBuild Record objects.

Remote Function

A UserFunction running on a remote host computer, which is callable

from the local host. (Remote functions are supported only on UNIX

systems.) The Import Library object starts the process on the remote

host and loads the Remote File into the HP VEE process on the local host.

You can then call the Remote Function with the Call Function object,

Glossary-14



or from certain expressions. See also \UserFunction" and \Compiled

Function."

Restore

To return a minimized window or an icon to its full size as a window or

open view by double-clicking on it.

Run

To start the objects on a program or thread operating.

Save

To write a Õle to a storage device, such as a hard disk.

Scalar

A data shape that contains a single value. See also \Data Shape."

Schema

The structure or framework used to deÕne a data record. This includes

each Õeld's name, type, shape (and dimension sizes), and mapping.

Screen Dump

A graphical printout of a window or part of a window.

Scroll

The act of using a scroll bar either to move through a list of data Õles or

other choices in a dialog box, or to pan the work area.

Scroll Arrow

An arrow that, when clicked on, scrolls through a list of data Õles or other

choices in a dialog box, or moves the work area.

Scroll Bar

A rectangular bar that, when dragged, scrolls through a list of data Õles or

other choices in a dialog box, or moves the work area.

Select

To choose an object, an action to be performed, or a menu item. Usually

you select by clicking with your mouse.

Select Code

A number used to identify the logical address of a hardware interface. For

example, the factory default select code for most HP-IB interfaces is 7.

Glossary-15



Selection

1. A menu selection (feature).

2. An object or action you have selected in the HP VEE window.

Selection Field

A Õeld in an object or dialog box that allows you to select choices from a

drop-down list.

Sequence Input Pin

The top pin of an object. When connected, execution of the object is held

oÃ until the pin receives a container (is \pinged").

Sequence Output Pin

The bottom pin of an object. When connected, this output pin is activated

when the object and all data propagation from that object Õnishes

executing.

Sequencer

An object that controls execution Œow through a series of sequence

transactions, each of which may call a \UserFunction," \Compiled

Function," or \Remote Function." The sequencer is normally used to

perform a series of tests by specifying a series of sequence transactions.

Shared Library

A collection of functions, written in a programming language such as

C, that can be called from HP VEE running on a UNIX system. Shared

libraries can be created by experienced programmers. Shared libraries in

the UNIX environment are similar to DLLs in the Windows environment.

Shell

In a UNIX system, the program that interfaces between the user and the

operating system.

Shell Prompt

In a UNIX system, the character or characters that denote the place

where you type commands while at the operating system shell level. The

prompt you see displayed (for example, $) depends upon the type of shell

you are running.

Sleep

An object sleeps during execution when it is waiting for an operation or

time interval to complete, or for an event to occur. A sleeping object will

Glossary-16



allow other parallel threads to run concurrently. Once the event, time

interval, or operation occurs, the object will execute, allowing execution

to continue.

Startup Directory

The directory from which you start HP VEE on a UNIX system. This

directory determines the default paths for most Õle actions including Save

and Open. In HP VEE for Windows, this is referred to as the \working

directory."

State

A particular set of values for all of the components related to an

HP VEE instrument panel, which represents the measurement state

of an instrument. For example, a digital multimeter uses one state for

high-speed voltage readings and a diÃerent state for high-precision

resistance measurements. See also \Instrument Panel."

Status Field

A Õeld displaying information that cannot be edited. A status Õeld looks

like an entry Õeld, but has a gray background.

Step

The action of operating an HP VEE program one object at a time (to debug

the program). The object that will operate next is indicated by a green

highlight.

Terminal

The internal representation of a pin that displays information about the

pin and the data container held by the pin. Double-click on a terminal to

view the container information.

Terminal Area

The areas on the left and right sides of an object where terminals are

displayed when Show Terminals is active for that object. The input

terminal area is on the left, and the output terminal area is on the right

side of an object.

Thread

A set of objects connected by solid lines in an HP VEE program. A

program with multiple threads can run all threads simultaneously.

Glossary-17



Title Bar

The rectangular bar at the top of the open view of an object or window,

which shows the title of the object or window. You can turn oÃ an object

title bar using object menu ¡¡) Edit Properties.

Tool Bar

The rectangular bar at the top of the HP VEE window which provides the

Run, Stop, Cont, and Step buttons to control HP VEE programs. The

tool bar also displays the title of a program, and the Panel and Detail

buttons if present.

Transaction

The speciÕcations for input and output (I/O) used by certain objects in

HP VEE. These include the To File, From File, Direct I/O, and

Sequencer objects. Transactions appear as phrases listed in the open

view of these objects.

Trig Mode

The Trig Mode is an attribute that determines whether trigonometric

values are displayed in degrees, radians, or gradians. Note that HP VEE

automatically converts trigonometric values to radians for calculation

purposes.

User-DeÕned Function

A function that you can create, and then call in an HP VEE program.

You can create three types of user-deÕned functions that can be called

using the Call Function object, or from certain expressions. See also

\UserFunction," \Compiled Function," and \Remote Function."

UserFunction

A user-deÕned function created from a \UserObject" by executing Make

UserFunction. The UserFunction exists in the background of the

HP VEE process, but provides the same functionality as the original

UserObject. You can call a UserFunction with the Call Function object,

or from certain expressions. A UserFunction can be created and called

locally, or it can be saved in a library and imported into an HP VEE

program with Import Library. See also \Compiled Function," \Remote

Function," and \UserObject."

UserObject

An object that can encapsulate a group of objects to perform a particular

purpose within a program. A UserObject allows you to use top-down

Glossary-18



design techniques when building a program, and to build user-deÕned

objects that can be saved in a library and reused.

View

See \Detail View," \Icon," \Open View," and \Panel View."

Wait

See Sleep.

Window

A rectangular area on the screen that contains a particular application

program, such as HP VEE.

Work Area

The area within the HP VEE window or the open view of a UserObject

where you group objects together. When you Open a program, it is loaded

into the main work area.

Working Directory

The directory in which HP VEE for Windows runs (C:\VEE is the default).

On UNIX systems this corresponds to the \startup directory."

X Window System (X11)

An industry-standard windowing system used on UNIX computer systems.

X11 Resources

A Õle or set of Õles that deÕne your X11 environment in a UNIX system.

XEQ Pin

A pin that forces the operation of the object, even if the data or sequence

input pins have not been activated. See also \Control Pin," \Data Input

Pin," and \Sequence Input Pin."

Glossary-19





Index



Index

Special

characters

@

as used in PComplex, 1-13

A adding a data input, 2-38

adding a data output, 2-38

adding instruments, 5-13{16

adding traces, 6-17

AdvMath objects, 3-16

allocating

arrays, 3-31{36

multi-dimensional arrays, 3-35

one-dimensional arrays, 3-32

two-dimensional arrays, 3-33

alphanumeric data

displaying, 6-3{5

analog displays, 6-6

analyzing data, 3-2{67

Any

description of, 1-12, 1-14

application

storing data for, 4-14

Array data shape

description of, 1-14

arrays

allocating, 3-31{36

changing values, 3-36

collecting data into, 3-43

creating, 3-31{36

data constant, 3-28

displaying, 6-4

extracting values, 3-41

global, 3-67

mapping, A-8

multi-dimensional, 3-35

one-dimensional, 3-32

processing, 3-28{49

two-dimensional, 3-33

using in expressions, 3-46

Index-2



B basic techniques, 2-2{43

bitmaps

adding to an icon, 9-14

branching

program, 2-14

with a loop, 2-22

breakpoints

deleting, 9-5

setting, 9-5

building records, 3-54

Bus I/O Monitor object, 5-26

bus messages, 5-24{27

monitoring, 5-26

Byte

description of, 1-14

C calling UserFunctions, 8-24

canceling an edit, 2-40

case-select, 2-14, 3-18

changing

colors, 2-25{30

default colors, 2-26

default fonts, 2-30

fonts, 2-25, 2-30{33

number format, 3-4{7

object colors, 2-29

object fonts, 2-32

printer palette, 7-3

titles, 2-25, 2-33

trig mode, 3-7

work area colors, 2-28

clearing displays, 6-27

collecting data into arrays, 3-43

color alarm object, 6-8

colors

changing, 2-25{30

command line options, 2-4{6

comparing two strings, 3-25

Complex

data type conversion of, A-5

description of, 1-13

Complex Plane object, 6-10

component drivers

deÕned, 5-2

using, 5-18

composite data types

deÕnition of, 1-12

concatenating strings, 3-24

Index-3



concepts

HP VEE, 1-2{14

UserObject, 8-3{7

conditional object, 2-14

conÕguring instruments, 5-4{8, 5-13{16

containers

data, 1-11{14

viewing, 9-8

contexts

UserObject, 8-5

continuing a program, 2-35

controlling

program Œow, 2-13{24

controlling instruments, 5-2{27

control pins

description of, 1-6

eÃect on operation, 1-10

conversion

number to string, 3-25

string to number, 3-27

Coord

data type conversion of, A-5

description of, 1-13

mappings on, A-8

copying HP VEE window, 2-39

creating

a data constant, 3-8

a data-selection object, 3-10

a data slider, 3-9

a dialog box, 3-12

arrays, 3-31{36

data Õles, 4-3

global variables, 3-63

record constants, 3-50

UserFunctions, 8-20

UserObjects, 8-10, 8-13

D data

analysis, 3-2{67

displaying, 6-2{27

Õle, 4-7, 4-10

Õles, 4-2{16

Õles, creating, 4-3

input, 3-3{13

plotting, 6-10{27

printing, 7-10

processing, 3-2{67

reading from a Õle, 4-10

Index-4



retrieving, 4-3{11

storing, 4-3{11

writing to a Õle, 4-7

data constants, 3-8

arrays, 3-28

data containers, 1-11{14

viewing, 9-8

data Œow

viewing, 9-3

data pins

description of, 1-6

must be connected, 1-10

data-selection object, 3-10

data shapes

Any (constraint), 1-14

description of, 1-14

data slider, 3-9

data types

Any (constraint), 1-12

Byte, 1-14

Complex, 1-13

conversion for instrument I/O, A-7

conversion on input terminals, A-3{6

Coord, 1-13

demotion of, A-4

description of, 1-12

Enum, 1-13

instrument, 1-14

Int16, 1-14

Int32, 1-13

mixed, 3-17

PComplex, 1-13

promotion of, A-3

Real, 1-13

Real32, 1-14

Record, 1-13

Spectrum, 1-13

Text, 1-13

Waveform, 1-13

debugging programs, 9-3{11

default

colors, 2-26

fonts, 2-30

deleting a line, 2-37

deleting an object, 2-37

deleting a terminal, 2-39

deleting breakpoints, 9-5

deleting instruments, 5-17

demotion of data types

Index-5



deÕnition of, A-4

Device Event object, 5-24

dialog box, 3-12

direct I/O

deÕned, 5-2

object, creating, 5-20

reading data, 5-22

using, 5-20{23

directory

example, 2-9{10

library, 2-11{12

program Õle, 2-7{8

displaying

alphanumeric data, 6-3{5

arrays, 6-4

data, 6-2{27

graphs, 6-10{27

log of values, 6-5

polar data, 6-16

scalars, 6-3

waveforms, 6-13

XY values, 6-11

display objects, 6-2{27

-display option, 2-5

displays

analog, 6-6

clearing, 6-27

graphical, 6-10{27

grid type, 6-23

indicator, 6-6{9

re-scaling, 6-26

setting markers, 6-24

zooming, 6-21

documenting programs, 9-13

-d option, 2-5

drivers, loading, 5-3

E editing

transactions, 2-41, 4-4

UserFunctions, 8-22

entering

data, 3-3{13

formulas, 3-14

numbers, 3-3

Enum

data type conversion of, A-5

description of, 1-13

error pins

Index-6



aÃect on propagation, 1-10

description of, 1-7

errors

custom messages, 9-9

handling, 9-9

on data type conversions, A-4

trapping, 9-9

example

directory, 2-9{10

opening, 2-9{10

executing order, 1-3{10

execution Œow

viewing, 9-3

exiting

a UserObject, 8-15

HP VEE, 2-36

exponential numeric entry, 3-3

expressions

arrays, 3-46

global variables, 3-65

in transactions, 3-20

mathematical, 3-14{21

records, 3-56, 3-58, 3-61

Set Field object, 3-58

UserFunctions in, 8-24

F Õeld, record, 3-56, 3-58

Õle

names, 4-6

Õle I/O

transactions, 4-4

waveform data, 4-12

Õles

data, 4-2{16

Õnding, 2-7{12

Œow of execution, 1-3{10

Œow, viewing, 9-3

fonts

changing, 2-25, 2-30{33

formula

entering, 3-14

frequency domain, 1-13

From File object, 4-10

Index-7



G general techniques, 2-2{43

-geometry option, 2-5

Get Global object, 3-64

Get Mappings, A-8

global variables

arrays, 3-67

creating, 3-63

deÕned, 3-63

expressions, 3-65

processing, 3-63{67

using, 3-64

graphical displays, 6-10{27

graphs, displaying, 6-10{27

grid type, changing, 6-23

group window, 2-3

H handling errors, 9-9

-help option, 2-5

HP-UX

starting HP VEE, 2-4

HP VEE

concepts, 1-2{14

for UNIX, starting, 2-4

for Windows, icon, 2-3

for Windows, starting, 2-3

programs, starting, 2-13

programs, stopping, 2-24

starting, 2-3{6

utilities, 2-3, 2-4

HP VUE

starting HP VEE, 2-4

I icon

adding bitmaps, 9-14

HP VEE for Windows, 2-3

-iconic option, 2-5

If/Then/Else object, 2-14, 3-18

imaginary component of a PComplex, 1-13

improving program performance, 9-16{18

indicator displays, 6-6{9

inputting data, 3-3{13

installing drivers, 5-3

instrument data types, 1-14

instrument drivers

loading, 5-3

using, 5-3{19

instrument panels

Index-8



deÕned, 5-2

taking readings, 5-8{12

using, 5-4{8, 5-8{12

instruments

adding, 5-13{16

conÕguring, 5-4{8, 5-13{16

controlling, 5-2{27

deleting, 5-17

I/O, 5-2{27

polling, 5-24

Int16

description of, 1-14

Int32

data type conversion of, A-5

description of, 1-13

Interface Event object, 5-24

interval

deÕnition of, A-8

I/O

Õle, 4-2{16

instrument, 5-2{27

speeding up, 9-18

ISO numeric abbreviations, 3-3

K keyboard shortcuts, 2-35{43

L library

directory, 2-11{12

UserObjects, 8-18

Line Probe, 2-37, 9-8, 9-9

lines

viewing endpoints, 9-9

loading drivers, 5-3

local variables

deÕned, 3-63

loop, 2-17

nested, 2-20

parallel, 2-20

with branching, 2-22

looping a thread, 2-17

Index-9



M magnitude of a PComplex, 1-13

Magnitude Spectrum object, 6-10

Magnitude vs Phase object, 6-10

mappings, A-8

deÕnition, A-8

Get Mappings, A-8

interval deÕnition, A-8

shown with Line Probe, A-8

markers, display, 6-24

mathematical expressions, 3-14{21

Math objects, 3-16

merging

objects, 2-11{12

program Õle, 2-11{12

Meter object, 6-6

modular design, 8-3

monitoring bus messages, 5-26

move cursor, 2-40

multiple threads

operation order, 1-10

N -name option, 2-5

navigating a panel view, 2-43

navigating the menu, 2-42

nested loops, 2-20

number format

changing, 3-4{7

numeric

abbreviations, 3-3

entry, 3-3

O objects

Bus I/O Monitor, 5-26

changing colors, 2-29

changing fonts, 2-32

color alarm, 6-8

Complex Plane, 6-10

conditional, 2-14

Device Event, 5-24

direct I/O, 5-20

display, 6-2{27

From File, 4-10

Get Global, 3-64

If/Then/Else, 2-14, 3-18

Interface Event, 5-24

Magnitude Spectrum, 6-10

Magnitude vs Phase, 6-10

Index-10



Math and AdvMath, 3-16

merging, 2-11{12

Meter, 6-6

operation, 1-3

Phase Spectrum, 6-10

Polar Plot, 6-10

printing, 7-9

repeat, 2-17

Sample & Hold, 2-22

single operation of, 1-10

Strip Chart, 6-10

Thermometer, 6-6

To File, 4-3, 4-7

UserObject, 8-3{19

Waveform, 6-10, 6-14

X vs Y Plot, 6-10, 6-11, 6-13

XY Trace, 6-10, 6-11, 6-13

opening

example Õles, 2-9{10

program Õles, 2-7{8, 2-35

OpenWindows

starting HP VEE, 2-4

optimizing an HP VEE program, 9-12{18

options, 2-4{6

order of operation, 1-3{10

P parallel loops, 2-20

pausing a program, 2-35, 9-5

PComplex

data type conversion of, A-5

description of, 1-13

performance

improving, 9-16{18

I/O, improving, 9-18

performance barriers, removing, 9-16{18

phase of a PComplex, 1-13

Phase Spectrum object, 6-10

pins

control, 1-6

data, 1-6

data connection rules, 1-10

error, 1-7

sequence, 1-7

sequence activation rules, 1-10

types of, 1-6{8

XEQ, 1-6

XEQ:using in UserObjects, 8-6

plotters

Index-11



output to, 7-12{14

supported, 7-2

plotting

a graph, 7-13

data, 6-10{27

external device, 7-12{14

polar data, 6-16

waveform data, 6-13

XY values, 6-11

plotting device, set up, 7-12

polar data, plotting, 6-16

Polar Plot object, 6-10

polling instruments, 5-24

printers

changing the palette, 7-3

output to, 7-3{11

setting up, 7-4

supported, 7-2

printing

data, 7-10

from HP VEE, 7-3{11

HP VEE program, 7-8

HP VEE window, 2-39

HP VEE work area, 7-6

objects, 7-9

probing lines, 9-8

processing

arrays, 3-28{49

data, 3-2{67

global variables, 3-63{67

records, 3-50{62

strings, 3-22{27

program

branching, 2-14

directory, 2-7{8

merging, 2-11{12

opening, 2-7{8

printing, 7-8

starting, 2-13

stopping, 2-24

program contexts, 8-5

program Œow, 1-3{10

controlling, 2-13{24

viewing, 9-3

program manager

starting HP VEE, 2-3

programs

debugging, 9-3{11

documenting, 9-13

Index-12



improving performance, 9-16{18

optimizing, 9-12{18

order of operation, 1-3{10

pausing, 9-5

stepping, 9-7

structure, 9-12

promotion of data types

deÕnition of, A-3

propagation, 1-3{10

basic order, 1-5

in UserObjects, 8-6

subthreads, 1-8

summary, 1-10

threads, 1-8

R reading data, 5-8{12

reading data with direct I/O, 5-22

Real

data type conversion of, A-5

description of, 1-13

Real32

description of, 1-14

real component of a PComplex, 1-13

Record, 1-13

records

building, 3-54

changing a Õeld, 3-58

constants, creating, 3-50

deÕned, 3-50

expressions, 3-61

extracting a Õeld, 3-56

processing, 3-50{62

syntax, 3-56, 3-58

refreshing HP VEE window, 2-39

repeating a thread, 2-17

repeat objects, 2-17

re-scaling a display, 6-26

retrieving data, 4-3{11

-r option, 2-5

running a program, 2-35

Index-13



S Sample & Hold object, 2-22

saving a new program Õle, 2-36

saving a program Õle, 2-36

Scalar data shape

description of, 1-14

scalars

displaying, 6-3

screen

printing, 7-6

scrolling work area, 2-40

securing a UserObject, 8-19

selecting Õle names, 4-6

selecting objects, 2-38

sending data to a printer, 7-10

sequence pins

description of, 1-7

must be activated, 1-10

service requests, 5-24{27

polling, 5-24

setting breakpoints, 9-5

shortcuts

adding a data input, 2-38

adding a data output, 2-38

canceling an edit, 2-40

continuing a program, 2-35

copying HP VEE window, 2-39

deleting a line, 2-37

deleting an object, 2-37

deleting a terminal, 2-39

editing transactions, 2-41

exiting HP VEE, 2-36

keyboard, 2-35{43

line probe, 2-37

move cursor, 2-40

navigating a panel view, 2-43

navigating the menu, 2-42

opening a program Õle, 2-35

pausing a program, 2-35

printing HP VEE window, 2-39

refreshing HP VEE window, 2-39

running a program, 2-35

saving a new program Õle, 2-36

saving a program Õle, 2-36

scrolling work area, 2-40

selecting objects, 2-38

stepping a program, 2-35

Spectrum

data type conversion of, A-5

description of, 1-13

Index-14



mappings on, A-8

speeding up I/O, 9-18

speeding up your program, 9-16{18

spreadsheet

storing data for, 4-14

Start

operates Õrst, 1-10

using in UserObjects, 8-6

starting

HP VEE, 2-3{6

HP VEE for UNIX, 2-4

HP VEE for Windows, 2-3

HP VEE, HP-UX, 2-4

HP VEE, HP VUE, 2-4

HP VEE, OpenWindows, 2-4

HP VEE programs, 2-13

HP VEE, SunOS, 2-4

HP VEE, X11, 2-4

startup options, 2-4{6

stepping a program, 2-35, 9-7

stopping a program, 2-24

storing data, 4-3{11

strings

comparing, 3-25

concatenate, 3-24

length of, 3-22

processing, 3-22{27

substring, 3-23

Strip Chart object, 6-10

structure

adding to a program, 9-12

subthread

deÕned, 1-8

propagation, 1-8

summary of propagation, 1-10

SunOS

starting HP VEE, 2-4

T techniques

general, 2-2{43

terminals

adding, 8-8

data type conversion on, A-3{6

types of, 1-6{8

XEQ:using in UserObjects, 8-6

Text, 1-13

data type conversion of, A-5

Thermometer object, 6-6

Index-15



thread

deÕned, 1-8

looping, 2-17

propagation, 1-8

repeating, 2-17

time domain, 1-13

titles

changing, 2-25, 2-33

To File object, 4-3, 4-7

top-down approach, 9-12

top-down design, 8-3

traces

adding, 6-17

changing color, 6-18

changing line type, 6-19

changing point symbol, 6-19

transactions

editing, 4-4

expressions in, 3-20

Õle I/O, 4-4

trapping errors, 9-9

Trig Mode

aÃecting PComplex, 1-13

changing, 3-7

types of pins, 1-6{8

U UserFunction

calling, 8-24

creating, 8-20

editing, 8-22

in expressions, 8-24

using, 8-20{25

UserObject

adding a panel view, 8-17

adding objects to, 8-8

adding terminals, 8-8

concepts, 8-3{7

contexts, 8-5

creating a library, 8-18

creating from objects, 8-13

creating in a program, 8-10

data output, 8-7

exit, 8-15

features, 8-4

modular design, 8-3

propagation in, 8-6

securing, 8-19

using, 8-3{19

Index-16



using XEQ pins, 8-6

work area, 8-4

using

data Õles, 4-2{16

global variables, 3-64

instrument drivers, 5-3{19

instrument panels, 5-4{8, 5-8{12

utilities

HP VEE, 2-3, 2-4

V viewing

data containers, 9-8

data Œow, 9-3

execution Œow, 9-3

line endpoints, 9-9

W waveform

retrieving from a Õle, 4-12

storing to a Õle, 4-12

Waveform

data type conversion of, A-5

description of, 1-13

mappings on, A-8

waveform, displaying, 6-13

Waveform object, 6-10, 6-14

work area

printing, 7-6

UserObject, 8-4

work area colors

changing, 2-28

X X11

starting HP VEE, 2-4

X11 options

display, 2-5

geometry, 2-5

name, 2-5

XEQ pins

description of, 1-6

using in UserObjects, 8-6

X vs Y Plot object, 6-10, 6-11, 6-13

XY Trace object, 6-10, 6-11, 6-13

XY values, plotting, 6-11

Z zooming the display, 6-21

Index-17




