
HP VEE Advanced

Programming

Techniques

Notice

The information contained in this document is subject to change without

notice.

Hewlett-Packard Company (HP) shall not be liable for any errors contained

in this document. HP makes no warranties of any kind with regard to this

document, whether express or implied. HP speciÕcally disclaims the implied

warranties of merchantability and Õtness for a particular purpose. HP shall

not be liable for any direct, indirect, special, incidental, or consequential

damages, whether based on contract, tort, or any other legal theory, in

connection with the furnishing of this document or the use of the information

in this document.

Warranty Information

A copy of the speciÕc warranty terms applicable to your Hewlett-Packard

product and replacement parts can be obtained from your local Sales and

Service Oœce.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to

restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical

Data and Computer Software clause in DFARS 252.227-7013.

Hewlett-Packard Company

3000 Hanover Street

Palo Alto, CA 94304 U.S.A.

Rights for non-DoD U.S. Government Departments and Agencies are as set

forth in FAR 52.227-19(c) (1,2).

Use of this manual and magnetic media supplied for this product are

restricted. Additional copies of the software can be made for security and

backup purposes only. Resale of the software in its present form or with

alterations is expressly prohibited.

Printing History

Edition 1 - September 1993

Edition 2 - January 1995

Copyright cŒ 1991|1995 Hewlett-Packard Company. All rights reserved.

This document contains information which is protected by copyright. All

rights are reserved. Reproduction, adaptation, or translation without prior

written permission is prohibited, except as allowed under the copyright laws.

UNIX RŒ is a registered trademark in the United States and other countries,

licensed exclusively through X/Open Company Limited.

Microsoft RŒ and MS-DOS RŒ are U.S. registered trademarks of Microsoft

Corporation.

Windows or MS Windows is a U.S. trademark of Microsoft Corporation.

AdobeTM and PostScriptTM are trademarks of Adobe Systems Incorporated

which may be registered in certain jurisdictions.

Conventions Used in this Manual

This manual uses the following typographical conventions:

Example Represents

HP VEE Reference Italicized words are used for book titles and for emphasis.

File Computer font represents text you will see on the screen, including menu

names, features, buttons, or text you need to enter.

cat Õlename In this context, the word in computer font represents text you type exactly

as shown, and the italicized word represents an argument that you must

replace with an actual value.

File ¡¡) Open The \¡¡)" is used in a shorthand notation to show the location of HP VEE

features in the menu. For example, \File ¡¡) Open" means to select

the File menu and then select Open.

Zoom In | Out 2x |

Out 5x

Choices in computer font, separated with a bar (|), indicates that you

should choose one of the options.

ÄReturnÅ The keycap font graphically represents a key on the computer's keyboard.

Press ÄCTRLÅ+ÄOÅ Represents a combination of keys on the keyboard that you should press at

the same time.

Dialog Box Bold font indicates the Õrst instance of a word deÕned in the glossary.

v

Contents

1. Introduction

About This Manual 1-2

HP VEE Example Programs 1-3

Examples Directories 1-3

Running Examples 1-3

2. Global Variables

Using Global Variables 2-2

Using Global Variables in UserObjects 2-6

3. Using Instruments

Instrument Control Fundamentals 3-3

Driver-Based Objects 3-4

Instrument Panels 3-4

Component Drivers 3-5

Direct I/O . 3-7

Summary of Instrument Control Objects 3-10

Support For Register-Based VXI Devices 3-10

Terminating I/O Operations (UNIX) 3-11

Terminating I/O Operations (PC) 3-12

Using Instrument Control Examples 3-13

Understanding Instrument Panels and Component Drivers 3-14

Inside HP Drivers 3-14

Driver Files 3-14

Components 3-14

States . 3-16

How Driver-Based I/O Works 3-17

Instrument Panel Operation 3-18

Component Driver Operation 3-18

Multiple Driver Objects 3-19

The Importance of Names 3-19

Reusing Driver Files 3-20

Choosing the Correct Instrument Object 3-21

ConÕguring Instruments 3-22

Basic Instrument ConÕguration 3-23

Driver ConÕguration 3-26

Contents-1

Direct I/O ConÕguration 3-27

A16 Space ConÕguration (VXI only) 3-28

A24/A32 Space ConÕguration (VXI only) 3-29

Details of ConÕgure I/O Dialog Boxes 3-30

Device ConÕguration Dialog Box 3-30

Name . 3-30

Interface . 3-31

Address . 3-31

HP-IB Address Examples 3-32

VXI Address Examples 3-32

Serial Address Examples 3-32

GPIO Address Example 3-33

Gateway . 3-33

Device Type 3-33

Timeout . 3-33

Byte Ordering 3-33

Live Mode 3-34

ConÕg Buttons 3-34

Instrument Driver ConÕguration Dialog Box 3-35

ID Filename 3-35

Sub Address 3-35

Incremental Mode 3-36

Error Checking 3-37

Direct I/O ConÕguration Dialog Box 3-38

Read Terminator 3-38

EOL Sequence 3-39

Multi-Õeld As 3-39

Array Separator 3-40

Array Format 3-40

Writing Arrays with Direct I/O 3-41

END On EOL (HP-IB Only) 3-42

Conformance 3-42

Binblock 3-42

State . 3-43

Upload String 3-43

Download String 3-43

Serial Interface Settings 3-43

Data Width (GPIO only) 3-44

A16 Space ConÕguration Dialog Box (VXI Only) . . . 3-45

Byte Access 3-45

Word Access 3-45

Contents-2

LongWord Access 3-45

Add Register . 3-45

Delete Register 3-46

A24/A32 Space ConÕguration Dialog Box (VXI only) . 3-47

Byte Access 3-47

Word Access 3-47

LongWord Access 3-47

Add Location 3-48

Delete Location 3-49

Example of ConÕguring a VXI Device 3-49

Advanced Topics 3-50

I/O ConÕguration File 3-50

Sharing Programs 3-51

Running Example Programs 3-51

Programmatic I/O ConÕguration 3-53

LAN Gateways 3-54

ConÕguration 3-55

HP VEE ConÕguration 3-55

LAN Hardware ConÕguration 3-56

Execution Behavior 3-57

Protecting Critical Sections 3-59

Supported Platforms 3-60

Execution Behavior 3-60

Example . 3-61

Using Instrument Panels 3-65

Using Instrument Panels Interactively 3-65

Using Instrument Panels Programmatically 3-66

Using Component Drivers 3-67

Using Component Drivers in a Program 3-67

Advanced I/O Control 3-69

Polling . 3-69

Service Requests 3-71

Monitoring Bus Activity 3-73

Low-Level Bus Control 3-75

Instrument Downloading 3-75

Example of Downloading 3-76

MultiDevice Direct I/O 3-79

Transaction Dialog Box 3-79

Device Field 3-80

Address Field 3-80

Editing Transactions 3-80

Contents-3

Object Menu 3-81

Monitoring Instrument Drivers 3-82

Using the Monitor Window 3-82

Adding an ID to the Monitor Window 3-83

ConÕguring Instruments 3-84

Arranging ID Panels 3-84

Finding an ID 3-84

Updating ID States 3-85

Storing and Recalling Global States 3-85

Removing the Monitor Window 3-86

More About Monitor IDs 3-86

Editing Properties 3-86

Storing and Recalling a Monitor ID State 3-87

Synchronizing Monitor ID State with the Instrument . 3-87

HP VEE Front Panels 3-87

Running Front Panels 3-87

Using Front Panels 3-88

Troubleshooting 3-89

Related Reading 3-91

4. Using Records and DataSets

Record Containers 4-3

Accessing Records 4-5

Building Records 4-8

Editing Record Fields 4-10

Building Records Containing Waveforms 4-12

Using Global Records 4-14

Using DataSets 4-16

5. Creating User-DeÕned Functions

UserFunctions . 5-3

Creating a UserFunction 5-3

Editing a UserFunction 5-6

Calling a UserFunction from an Expression 5-11

Creating a UserFunction Library 5-12

Compiled Functions 5-17

Design Considerations for Compiled Functions 5-18

Importing and Calling a Compiled Function 5-19

Creating a Compiled Function (UNIX) 5-21

The DeÕnition File 5-21

Building a C Function 5-22

Contents-4

Creating a Shared Library 5-26

Binding the Shared Library 5-27

Creating a Dynamic Linked Library (MS-Windows) . . 5-28

Creating the DLL 5-28

Declaring DLL Functions 5-28

Creating the DeÕnition File 5-29

Examples 5-29

Parameter Limitations 5-29

The IMPORT LIBRARY Object 5-29

The CALL FUNCTION Object 5-30

The DELETE LIBRARY Object 5-30

Using DLL Functions in Formula Objects 5-31

Remote Functions (UNIX) 5-32

UNIX Security, UIDs, and Names. 5-35

The .veeio and .veerc Õles 5-37

Timeouts . 5-37

Errors . 5-37

6. Using Transaction I/O

Using Transactions 6-3

Creating and Editing Transactions 6-5

Editing the Data Field 6-7

Adding Terminals 6-9

Reading Data 6-10

Transactions that Read a SpeciÕed Number of Data

Elements 6-11

Read-To-End Transactions 6-13

Non-Blocking Reads 6-16

Suggestions for Experimentation 6-18

Details About Transaction-Based Objects 6-19

Execution Rules 6-19

Object ConÕguration 6-19

End Of Line (EOL) 6-21

Array Separator 6-21

Multi-Field Format 6-21

Array Format 6-22

READ and WRITE Compatibility 6-23

Choosing the Correct Transaction 6-24

Selecting the Correct Object and Transaction 6-26

Example of Selecting an Object and Transaction . . 6-27

Using To String and From String 6-28

Contents-5

Communicating with Files 6-29

Details About File Pointers 6-29

Read Pointers 6-30

Write Pointers 6-30

Closing Files 6-30

The EOF Data Output 6-32

Common Tasks for Importing Data 6-34

Importing X-Y Values 6-34

Importing Waveforms 6-36

Fixed-Format Header 6-36

Variable-Format Header 6-38

Communicating with Programs (UNIX) 6-40

Execute Program (UNIX) 6-40

Execute Program (UNIX) Fields 6-41

Shell . 6-41

Wait for Prog Exit 6-41

Prog With Params 6-42

Running a Shell Command 6-42

Running a C Program 6-45

To/From Named Pipe (UNIX) 6-46

Hints for Using Named Pipes 6-47

To/From Socket 6-48

To/From Socket Fields 6-49

Connect/Bind Port Mode 6-49

Host Name 6-50

Timeout 6-50

Transactions 6-50

Data Organization 6-50

Object Execution 6-51

Example . 6-51

HP BASIC/UX Objects (HP VEE for HP-UX only) . . 6-53

Init HP BASIC/UX 6-54

To/From HP BASIC/UX 6-54

Examples Using To/From HP BASIC/UX 6-55

Sharing Scalar Data 6-55

Sharing Array Data 6-55

Sharing Binary Data 6-56

Communicating with Programs (PC) 6-57

Execute Program (PC) 6-57

Execute Program (PC) Fields 6-58

Run Style 6-58

Contents-6

Wait for Prog Exit 6-58

Prog With Params 6-58

Working Directory 6-59

Using Dynamic Data Exchange (DDE) 6-59

To/From DDE Object 6-60

DDE Examples 6-63

Dynamic Linked Libraries (DLL) 6-68

Communicating with Instruments 6-69

Direct I/O . 6-70

Sending Commands 6-70

WRITE TEXT Transactions 6-70

WRITE BINBLOCK Transactions 6-71

WRITE STATE Transactions 6-71

Learn String Example 6-72

Reading Data 6-73

READ TEXT Transactions 6-74

Interface Operations 6-75

Related Reading 6-78

7. Using the Sequencer Object

Sequence Transactions 7-3

Logging Test Results 7-9

Logging to a DataSet 7-12

Some Restrictions in Logging Test Results 7-13

A Practical Test Example 7-14

8. Troubleshooting Problems

A. ConÕguring HP VEE

Color and Font Settings A-3

Changing X11 Attributes (UNIX) A-4

ConÕguring HP VEE for Windows A-5

General HP VEE Settings A-6

Customizing Icon Bitmaps A-7

Selecting a Bitmap for a Panel View A-8

If You See Colors Changing On Your Screen (UNIX) . . . A-9

Too Many Colors A-9

Applications that Use a Local Color Map (UNIX) . . . A-11

Using Non-USASCII Keyboards (UNIX) A-13

Using Two-Byte Character Sets (HP-UX Only) A-15

Using HP-GL Plotters (UNIX Only) A-17

Contents-7

B. Example Programs and Library Objects

Using the Examples B-3

Using Library Objects B-4

C. ASCII Table

D. HP VEE Utilities

The veedoc Utility for Documenting Programs D-3

The HP Driver Writer Tool D-6

The HP Instrument Driver Compiler D-7

The Instrument Finder (MS-Windows Only) D-8

Install Drivers (PC) D-9

ConÕgure I/O Utility D-10

E. I/O Transaction Reference

WRITE Transactions E-4

Path-SpeciÕc Behaviors E-4

TEXT Encoding E-6

DEFAULT Format E-7

STRING Format E-9

Field Width and JustiÕcation E-9

Number of Characters E-11

Writing Arrays with Direct I/O E-12

QUOTED STRING Format E-13

Field Width and JustiÕcation E-13

Number of Characters E-15

Embedded Control and Escape Characters E-16

INTEGER Format E-18

Number of Digits E-18

Sign PreÕxes E-20

OCTAL Format E-21

Number of Digits E-21

Octal PreÕxes E-21

HEX Format E-23

Hexadecimal PreÕxes E-23

REAL Format E-25

Notations and Digits E-25

COMPLEX, PCOMPLEX, and COORD Formats . . E-27

COMPLEX Format E-28

PCOMPLEX Format E-29

COORD Format E-30

Contents-8

TIME STAMP Format E-31

BYTE Encoding . E-33

CASE Encoding E-34

BINARY Encoding E-35

BINBLOCK Encoding E-37

Non-HP-IB BINBLOCK E-37

HP-IB BINBLOCK E-38

CONTAINER Encoding E-39

STATE Encoding E-39

REGISTER Encoding E-40

MEMORY Encoding E-41

IOCONTROL Encoding E-42

READ Transactions E-44

TEXT Encoding E-46

General Notes for READ TEXT E-47

Read to End E-47

Number of Characters Per READ E-48

EÃects of Quoted Strings E-49

CHAR Format E-51

TOKEN Format E-52

SPACE DELIM E-53

INCLUDE CHARS E-54

EXCLUDE CHARS E-56

STRING Format E-57

EÃects of Control and Escape Characters E-58

QUOTED STRING Format E-59

EÃects of Control and Escape Characters E-60

INTEGER Format E-62

OCTAL Format E-64

HEX Format E-65

REAL Format E-67

COMPLEX, PCOMPLEX, and COORD Formats . . E-70

COMPLEX Format E-70

PCOMPLEX Format E-70

COORD Format E-71

BINARY Encoding E-72

BINBLOCK Encoding E-74

CONTAINER Encoding E-76

REGISTER Encoding E-76

MEMORY Encoding E-78

IOSTATUS Encoding E-79

Contents-9

EXECUTE Transactions E-81

Details About HP-IB E-85

Details About VXI E-87

WAIT Transactions E-89

SEND Transactions E-91

WRITE(POKE) Transactions E-93

READ(REQUEST) Transactions E-94

F. HP VEE for UNIX and HP VEE for Windows DiÃerences

I/O . F-3

Execute Program F-4

DLL versus Shared Library F-5

Data Files . F-6

Memory Usage F-7

G. HP VEE for Windows Instrument I/O Select Codes

I/O Select Code Map G-2

Glossary

Index

Contents-10

Figures

2-1. A Simple Global Variable Example 2-2

2-2. Accessing an UndeÕned Global Variable 2-3

2-3. Accessing a Global Variable Multiple Times 2-4

2-4. Waveform Data in a Global Variable 2-5

2-5. Retrieving a Global Variable in a UserObject 2-7

2-6. Retrieving Multiple Global Variables in a UserObject 2-8

3-1. Instrument Control Objects 3-3

3-2. Two Instrument Panels 3-5

3-3. Combining Instrument Panels and Component Drivers . 3-6

3-4. Combining Instrument Panels and Direct I/O 3-8

3-5. MultiDevice Direct I/O Controlling Several Instruments . 3-9

3-6. Default I/O ConÕguration 3-13

3-7. Accessing Driver Components 3-16

3-8. Two Voltmeter States 3-16

3-9. Example of Instrument ConÕguration Dialog Boxes 3-22

3-10. A16 ConÕguration for the HP E1411B Multimeter 3-49

3-11. Programmatically ReconÕguring Device I/O 3-54

3-12. Gateway ConÕguration 3-55

3-13. Examples of Devices ConÕgured on Remote Machines 3-56

3-14. EXECUTE LOCK/UNLOCK Transactions|HP-IB 3-62

3-15. EXECUTE LOCK/UNLOCK Transactions|VXI 3-63

3-16. A Typical Component Driver 3-67

3-17. Using Instrument Panels and Component Drivers 3-68

3-18. Device Event ConÕgured for Serial Polling 3-70

3-19. Handling Service Requests 3-73

3-20. The Bus I/O Monitor 3-74

3-21. Two Methods of Low-Level HP-IB Control 3-75

3-22. Downloading To An Instrument 3-78

3-23. MultiDevice Direct I/O Controlling Several Instruments . 3-79

3-24. Entering an Instrument Address as a Variable 3-80

3-25. The ID Monitor Window in HP VEE 3-83

3-26. A Monitor ID in the Monitor Window 3-84

3-27. ConÕguring Instruments in the HP Front Panels Utility . . . 3-88

4-1. A Simple Record Container 4-4

4-2. Retrieving Record Fields with Get Field 4-5

4-3. Using Array Syntax in Get Field 4-6

4-4. Retrieving Record Fields with UnBuild Record 4-7

Contents-11

Contents

4-5. The EÃect of Output Shape in Build Record 4-9

4-6. Mixing Scalar and Array Input Data 4-10

4-7. Using Set Field to Edit a Record 4-11

4-8. Building a Record from Waveform Data 4-12

4-9. Using a Global Record 4-14

4-10. Using To DataSet to Save a Record 4-16

4-11. Using From DataSet to Retrieve a Record 4-17

5-1. Program with UserObject 5-4

5-2. UserObject Replaced by Call Function 5-5

5-3. Editing a UserFunction 5-7

5-4. The Edited UserFunction 5-8

5-5. Program Using Edited UserFunction 5-9

5-6. Using Multiple Call Function Objects 5-10

5-7. Calling a UserFunction from Expressions 5-11

5-8. Creating UserObjects for a UserFunction Library 5-13

5-9. Importing a UserFunction Library 5-14

5-10. Importing and Deleting a UserFunction Library 5-15

5-11. Using Import Library for Compiled Functions 5-19

5-12. Using Call Function for Compiled Functions 5-20

5-13. Program Calling a Compiled Function 5-25

5-14. Import Library for Remote Functions 5-33

6-1. Default Transaction in To String 6-3

6-2. A Simple Program Using To String 6-4

6-3. Editing the Default Transaction in To String 6-6

6-4. READ Transaction Using a Variable in the Data Field 6-7

6-5. WRITE Transaction Using an Expression in the Data Field . . 6-7

6-6. Terminals Correspond to Variables 6-10

6-7. Select Read Dimension from List 6-11

6-8. Transaction Dialog Box for Multi-Dimensional Read 6-12

6-9. Transaction Dialog Box for Multi-Dimensional Read-To-End . 6-14

6-10. Using READ IOSTATUS DATAREADY for a Non-Blocking Read . 6-17

6-11. Experimenting with To String 6-18

6-12. The Properties Dialog Box 6-20

6-13. Using the EXECUTE CLOSE Transaction 6-31

6-14. Typical Use of EOF to Read a File 6-33

6-15. Importing XY Values 6-35

6-16. Importing a Waveform File 6-37

6-17. Importing a Waveform File 6-39

6-18. The Execute Program (UNIX) Object 6-41

6-19. Execute Program (UNIX) Running a Shell Command . . . 6-43

Contents-12

Contents

6-20. Execute Program (UNIX) Running a Shell Command using

Read-To-End . 6-44

6-21. Execute Program Running a C Program 6-45

6-22. C Program Listing . 6-46

6-23. The To/From Socket Object 6-49

6-24. To/From Socket Binding Port for Server Process 6-52

6-25. To/From Socket Connecting Port for Client Process 6-53

6-26. To/From HP BASIC/UX Settings 6-55

6-27. The Execute Program (PC) Object 6-58

6-28. The To/From DDE Object 6-60

6-29. The To/From DDE Example 6-61

6-30. Execute PC before To/From DDE 6-62

6-31. I/O Terminals and To/From DDE 6-62

6-32. Lotus 123 DDE Example 6-63

6-33. HP ITG DDE Example 6-64

6-34. Instrument BASIC for Windows DDE Example 6-65

6-35. Excel DDE Example 6-66

6-36. ReŒections DDE Example 6-66

6-37. Word for Windows DDE Example 6-67

6-38. WordPerfect DDE Example 6-67

6-39. ConÕguring For Learn Strings 6-73

7-1. A Simple Sequencer Program 7-3

7-2. Running the Program 7-6

7-3. A Logged Record of Records 7-8

7-4. A Simple Logging Example 7-9

7-5. A Logged Array of Records of Records 7-10

7-6. Analyzing the Logged Test Results 7-11

7-7. Logging to a DataSet 7-12

7-8. Simple Bin Sort Example 7-15

7-9. Improved Bin Sort Example 7-18

A-1. Color Map File Using Words A-11

A-2. Color Map File Using Hex Numbers A-11

E-1. A WRITE TEXT Transaction E-8

E-2. Numeric Data . E-8

E-3. Two WRITE TEXT STRING Transactions E-9

E-4. Two WRITE TEXT STRING Transactions E-10

E-5. A WRITE TEXT STRING Transaction E-11

E-6. Two WRITE TEXT STRING Transactions E-11

E-7. Two WRITE TEXT QUOTED STRING Transactions E-13

E-8. Two WRITE TEXT QUOTED STRING Transactions E-14

E-9. A WRITE TEXT QUOTED STRING Transaction E-15

Contents-13

Contents

E-10. Two WRITE TEXT QUOTED STRING Transactions E-15

E-11. A WRITE TEXT QUOTED STRING Transaction E-17

E-12. Two WRITE TEXT INTEGER Transactions E-19

E-13. A WRITE TEXT INTEGER Transaction E-19

E-14. Two WRITE TEXT INTEGER Transactions E-20

E-15. A WRITE TEXT OCTAL Transaction E-22

E-16. A WRITE TEXT OCTAL Transaction E-22

E-17. A WRITE TEXT HEX Transaction E-24

E-18. A WRITE TEXT HEX Transaction E-24

E-19. Three WRITE TEXT REAL Transactions E-26

E-20. Three WRITE TEXT REAL Transactions E-26

E-21. Three WRITE TEXT REAL Transactions E-27

E-22. A WRITE TEXT COMPLEX Transaction E-28

E-23. Two WRITE TEXT PCOMPLEX Transactions E-29

E-24. A WRITE TEXT PCOMPLEX Transaction E-30

E-25. Two WRITE BYTE Transactions E-33

E-26. Character Data . E-33

E-27. Two WRITE CASE Transactions E-34

E-28. Quoted and Non-Quoted Data E-50

E-29. Data for READ TOKEN E-53

E-30. Data for READ TOKEN E-55

E-31. Data for READ TOKEN E-57

E-32. String Data . E-58

E-33. String Data . E-60

E-34. Octal Data . E-64

E-35. Octal Data . E-65

E-36. Hexadecimal Data . E-66

E-37. Real Data . E-67

E-38. Example of Real Notations E-69

E-39. Data Containing Parentheses E-71

Contents-14

Tables

3-1. Instrument I/O Support 3-2

3-2. Instrument Control Objects 3-10

3-3. Escape Characters . 3-39

3-4. EXECUTE LOCK/UNLOCK Support 3-60

6-1. Editing Transactions With A Mouse 6-5

6-2. Editing Transactions With the Keyboard 6-6

6-3. Typical Data Field Entries 6-8

6-4. Escape Characters . 6-9

6-5. Summary of Transaction-Based Objects 6-25

6-6. Summary of Transaction Types 6-26

6-7. Range of Integers Allowed for Socket Port Numbers 6-50

6-8. Summary of EXECUTE Commands (Interface Operations) . 6-76

6-9. SEND Bus Commands 6-77

8-1. Problems, Causes, and Solutions 8-2

E-1. Summary of Transaction Types E-2

E-2. Summary of I/O Transaction Objects E-3

E-3. WRITE Encodings and Formats E-5

E-4. Formats for WRITE TEXT Transactions E-7

E-5. Escape Characters . E-17

E-6. Sign PreÕxes . E-20

E-7. Octal PreÕxes . E-21

E-8. Hexadecimal PreÕxes E-23

E-9. REAL Notations . E-25

E-10. PCOMPLEX Phase Units E-29

E-11. READ Encodings and Formats E-44

E-12. Formats for READ TEXT Transactions E-46

E-13. Suœxes for REAL Numbers E-69

E-14. IOSTATUS Values . E-80

E-15. Summary of EXECUTE Commands E-81

E-16. EXECUTE ABORT HP-IB Actions E-85

E-17. EXECUTE CLEAR HP-IB Actions E-85

E-18. EXECUTE TRIGGER HP-IB Actions E-85

E-19. EXECUTE LOCAL HP-IB Actions E-86

E-20. EXECUTE REMOTE HP-IB Actions E-86

E-21. EXECUTE LOCAL LOCKOUT HP-IB Actions E-86

E-22. EXECUTE CLEAR VXI Actions E-88

E-23. EXECUTE TRIGGER VXI Actions E-88

Contents-15

Contents

E-24. EXECUTE LOCAL VXI Actions E-88

E-25. EXECUTE REMOTE VXI Actions E-88

E-26. SEND Bus Commands E-91

G-1. HP VEE for Windows I/O Select Codes G-2

Contents-16

1

Introduction

Introduction

About This

Manual

This manual gives detailed information about using advanced features of

HP VEE for tasks that you may want to perform. This manual is meant to be

used as needed, rather than read from beginning to end.

N O T E

Throughout this manual, references to HP VEE apply to HP VEE for HP-UX, HP VEE for Windows, and

HP VEE for SunOS except where noted otherwise.

1-2

HP VEE Example Programs

HP VEE includes many example programs. You can load, run and modify

these programs to help you use and understand HP VEE.

Examples Directories

You will Õnd the example programs in the following directories:

– HP VEE for HP-UX and HP VEE for SunOS

/usr/lib/veetest/examples

– HP VEE for Windows

C:\VEE\EXAMPLES

The examples from the manuals are included in the examples/manual

directory (with Õle names like manual01.vee, etc). Other examples, not

referenced in any of the manuals, are available to illustrate speciÕc HP VEE

concepts, or to illustrate solutions to engineering problems using HP VEE. To

help you Õnd the example you want, the examples directory is divided into

several subdirectories.

Running Examples

You can load and run these example programs using the Help menu. First,

click on Help ¡¡) Open Example on the menu bar. This presents a list of

subdirectories which group similar examples together. Double-click on the

desired subdirectory to see the list of available example programs in that

group. Scroll through the list until you Õnd the desired example. Click on the

example name, then click on OK to open the program. To run the program,

press the Run button on the tool bar.

1-3

Introduction

HP VEE Example Programs

2

Global Variables

Global Variables

Using Global

Variables

A global variable is a named variable that is set globally, and can be used by

name in any context of an HP VEE program.

You can set a global variable with the Set Global object. The simplest way

to get, or retrieve, a global variable is with the Get Global object. In the

following example, the Real array at left is output to the Set Global object,

which sets the global variable named globalA. The Get Global object

retrieves globalA and outputs the array to the AlphaNumeric object.

Figure 2-1. A Simple Global Variable Example

There is a very important point to note in the previous example. The Set

Global must set the global variable before the Get Global attempts to

retrieve it. To ensure this, the sequence output pin of the Set Global object

is connected to the sequence input pin of the Get Global object. If this is

not done, the Get Global may try to access a non-existent global variable,

and an error will occur, as shown in the following example:

2-2

Global Variables

HP VEE Example Programs

Figure 2-2. Accessing an UndeÕned Global Variable

If Delete Globals at PreRun is oÃ, you may not receive this error and

receive old data instead. See the HP VEE Reference for more information

about Delete Globals at PreRun.

Once you have deÕned a global variable, you can access it as many times as

you want in your program. You don't need to use Get Global to retrieve

the global variable. In the following example, the global variable globalA is

retrieved once with a Get Global object, a second time by including the

name globalA in an expression in a Formula object, and a third time by

including the name globalA in a transaction in a To File object:

2-3

Global Variables

HP VEE Example Programs

Figure 2-3. Accessing a Global Variable Multiple Times

In the previous example, the Get Global object just retrieves the global

variable and outputs the data to the AlphaNumeric object. In the Formula

object, the sort function reorders the array and outputs the data to the

second AlphaNumeric object. The To File transaction retrieves the global

variable and outputs the data to the Õle myFile.

N O T E

You can include the name of any global variable in any expression in a Formula object, or in any

other expression that is evaluated at run time.

2-4

Global Variables

HP VEE Example Programs

Global variables can contain complex data types such as waveforms. In the

following example, the output of a Function Generator is output to a Set

Global object, which sets the global variable globW. The Get Global object

retrieves globW and outputs the data to the XY Trace object.

Figure 2-4. Waveform Data in a Global Variable

N O T E

You can use any valid variable name for a global variable. The Õrst character must be a letter, and

letters, numbers and the underscore may be used. Variable names are not case sensitive (uppercase

and lowercase letters are equivalent). Special characters, including spaces, are not allowed.

To retrieve the global variable, you must use the name that you speciÕed in the Set Global

object. If there is a local variable with the same name, the local variable takes precedence.

Now let's look at using global variables within diÃerent contexts in an

HP VEE program; that is, within UserObjects. For information on UserObjects,

see How to Use HP VEE.

2-5

Using Global Variables in UserObjects

A global variable is a named variable that is set globally, then accessible by

name in any context of an HP VEE program. For example, a global variable

can be set with Set Global in the root context of the program, and can be

accessed by name within the context of any UserObject or UserFunction

within the same HP VEE process. This is true even when a UserObject is

nested recursively. Thus, global variables can be used throughout your

HP VEE program, but not in a remote process such as a Remote Function or

Compiled Function.

Let's look at some examples of using global variables in UserObjects. In the

program of the following Õgure, a Real array is output to the Set Global

object, which sets the global variable globalA. The global variable is

accessed by name three times within the UserObject, once by the Get

Global object, once by the expression sort(globalA) in the Formula

object, and once by the expression in the transaction of the To File object.

If you did not use global variables, the Real array would need to be an input

to the UserObject. When you have many nested UserObjects this could

require many input and output connections, making your program harder to

understand and maintain. By using global variables you can eliminate many

connecting lines and improve the readability of your program.

2-6

Global Variables

Using Global Variables in UserObjects

Figure 2-5. Retrieving a Global Variable in a UserObject

To ensure that Set Global sets the global variable before it is retrieved,

you must connect the sequence output pin of the Set Global object to

the sequence input pin of the UserObject. You do not need to connect

the sequence input pins of the individual Get Global, Formula, and To

File objects. This is because none of the objects in the UserObject will

execute until the UserObject sequence input pin is activated. This is a major

advantage of accessing global variables within UserObjects | you don't need

to make sequence connections to every object that accesses a global variable.

Let's look at another example. In the following Õgure, two waveforms (a sine

wave and a noise waveform) are set as global variables with Set Global

objects.

2-7

Global Variables

Using Global Variables in UserObjects

Figure 2-6. Retrieving Multiple Global Variables in a UserObject

The sine wave becomes globalA and the noise waveform becomes globalB.

These waveforms are retrieved within the UserObject by the Get Global

object (which retrieves and outputs the sine wave) and the Formula object

(which retrieves both globalA and globalB, adds them, and outputs the

combined waveform). Again the sequence input pin of the UserObject is used

to hold oÃ retrieval of the global variables until they have been set. However,

in this case, you must ensure that both Set Global objects execute before

the UserObject executes. To do this, you can \chain" the sequence pins of the

two Set Global objects. The order in which the two Set Global objects

execute does not matter, but they both must execute before the UserObject

executes.

For further information about global variables, refer to \Using Global Records"

in Chapter 4, and to the Set Global and Get Global reference sections in

the HP VEE Reference.

2-8

3

Using Instruments

Using Instruments

HP VEE provides several methods for controlling test and measurement

instruments. This chapter describes how to conÕgure and use instrument

control objects.

N O T E

Before you can communicate with any instrument, the computer running HP VEE must be properly

conÕgured. The necessary procedures are described in the installation guide.

Table 3-1. Instrument I/O Support

Platform Supported I/O Interfaces

HP VEE for Windows

(PC, EPC7/8)

– HP-IB or GPIB
1

– Serial (COM1, COM2, COM3, COM4)

– VXI
2

HP VEE for HP-UX

(HP 9000)

– HP-IB
1

– Serial

– GPIO

– VXI
3

HP VEE for SunOS

(Sun SPARCstation)

– GPIB

– Serial

1 Can address VXI devices using HP E1406 Command Module.

2 Direct backplane access with embedded controllers HP RADI-EPC7/8 and

RadiSys EPC7/8. Direct backplane access with external PCs using VXLink.

3 Direct backplane access with embedded controllers HP V/382 and HP V/743. Direct

backplane access for external S700 using MXI.

For the details of speciÕc interface hardware supported, refer to the

installation instructions for HP VEE on your platform.

3-2

Instrument Control Fundamentals

HP VEE supports three types of objects for controlling instruments:

– Instrument Panels (previously called State Drivers.)

– Component Drivers

– Direct I/O

Figure 3-1. Instrument Control Objects

Each of the open-view objects shown in Figure 3-1 controls an HP 3325B

function generator. Notice that each type of instrument control object has a

diÃerent appearance. This appearance directly relates to the diÃerences in

how the objects operate and how you use them.

Instrument Panels and Component Drivers allow you to control

instruments without learning the details of the instrument's programming

mnemonics and syntax.

If you prefer to communicate with your instruments by sending low-level

mnemonics or if a driver is not available for your instrument, you can use

Direct I/O.

3-3

Using Instruments

Instrument Control Fundamentals

Driver-Based Objects

Instrument Panels and Component Drivers are available for a particular

instrument only if there is a driver Õle to support that instrument. The

installation procedure for HP VEE for HP-UX and HP VEE for SunOS

automatically copies driver Õles onto your system disk. HP VEE for Windows

allows you to select which drivers you wish to install. Subsequent sections in

this chapter will explain how to locate and conÕgure the proper driver Õles

for your instruments.

Instrument Panels Instrument Panels serve two purposes in HP VEE:

– They allow you to deÕne a measurement state that speciÕes all the

instrument function settings. When an Instrument Panel operates, the

corresponding physical instrument is automatically programmed to match

the settings deÕned in the Instrument Panel.

– They act as instrument control panels for interactively controlling

instruments. This is useful during development and debugging of your

programs. It is also useful when your instruments do not have a physical

front panel.

As shown in Figure 3-1, the open-view of an Instrument Panel contains a

graphical control panel for the associated physical instrument. If the physical

instrument is properly connected to your computer, you can control the

instrument by clicking on the Õelds in the graphical control panel. You can

also make measurements and display the results by clicking on numeric and

XY displays.

Even if the instrument is not connected to your computer, you can still use

the graphical panel to deÕne a measurement state. In fact, this can be a great

beneÕt if you wish to develop programs before instruments are purchased or

while they are being used elsewhere.

3-4

Using Instruments

Instrument Control Fundamentals

For example, suppose you want to program the HP 3325B function generator

to provide two diÃerent output signals:

1. A square wave with a frequency of 20kHz and an amplitude of 20mV rms

2. A sine wave with a frequency of 50kHz and an amplitude of 50mV rms

Figure 3-2 shows the two Instrument Panels that provide the desired

signals.

Figure 3-2. Two Instrument Panels

Component Drivers In an HP instrument driver, each instrument function and measured value is

called a component. A component is like a variable inside the driver that

records the function setting or measured value. Thus, a Component Driver

is an object that reads or writes only the components you specify as input

and output terminals. This is in contrast to an Instrument Panel, which

automatically writes values for many or all components.

Component Drivers are provided to help you improve the execution

speed of your program; speed is the only advantage they provide over

Instrument Panels. The execution speed of a program is generally

impacted most when an instrument control object is attached to an iterator

object where it must operate many times. In these cases, it is common for

only one or two components to be changing; this is exactly the situation

Component Drivers are designed to handle.

The increase in execution speed provided by a Component Driver will vary

considerably from one situation to another. The increase depends primarily

3-5

Using Instruments

Instrument Control Fundamentals

on the particular driver Õle used. There is no easy way to predict the exact

increase in execution speed.

For example, suppose you want to program the HP 3325B Function Generator

to do the following:

1. Output a sine wave with an initial frequency of 10kHz and an amplitude

determined by operator input.

2. Sweep the frequency output from 10kHz to 1MHz using 5 steps per decade.

In this case, it makes sense to use an Instrument Panel to perform the

initial setup and a Component Driver to repeatedly set the output frequency.

Figure 3-3 shows a program that does this.

Figure 3-3. Combining Instrument Panels and Component Drivers

3-6

Using Instruments

Instrument Control Fundamentals

Direct I/O

Direct I/O objects allow you to read and write arbitrary data to instruments

in much the same way you read from and write to Õles. This allows you full

access to any programmable feature of any instrument including non-HP

instruments; no instrument driver Õle is required. However, you must have a

detailed understanding of your instrument's programming commands to use

Direct I/O.

Direct I/O objects also provide convenient support for learn strings. A learn

string is a special feature supported by some instruments that allows you to

set up measurement states from the front panel of the physical instrument.

Once the instrument is conÕgured, you simply select Upload from the

Direct I/O object menu to upload the entire measurement state of the

instrument to HP VEE. You can recall the measurement state from within

your program by using the Direct I/O object.

3-7

Using Instruments

Instrument Control Fundamentals

To complete the comparisons of instrument-speciÕc I/O objects, consider the

previous program in Figure 3-3. You could replace the Component Driver in

Figure 3-3 with Direct I/O as shown in Figure 3-4.

Figure 3-4. Combining Instrument Panels and Direct I/O

The MultiDevice Direct I/O object lets you control several instruments

from a single object using direct I/O transactions. It appears the same

as the Direct I/O object, except each transaction in MultiDevice

Direct I/O can address a separate instrument. The object is a standard

transaction object, and works with all interfaces that HP VEE supports.

Since the MultiDevice Direct I/O object does not necessarily control a

particular instrument as the Direct I/O object does, the title does not list an

instrument name, address, or live mode condition.

3-8

Using Instruments

Instrument Control Fundamentals

By using the MultiDevice Direct I/O, you can reduce the number of

instrument-speciÕc Direct I/O objects in your program. The resulting

performance increase is especially important for the VXI interface which

is faster than HP-IB at instrument control. The following Õgure shows the

MultiDevice Direct I/O object and its I/O Transaction dialog box

communicating with an HPE 1413B, HPE 1328, and HP 3325.

Figure 3-5. MultiDevice Direct I/O Controlling Several Instruments

This chapter describes how to conÕgure HP VEE to use Direct I/O. For

details about how to use this object, please refer to \Communicating with

Instruments" in Chapter 6. For details about the MultiDevice Direct I/O

object, please refer to \Advanced I/O Control" later in this chapter.

3-9

Using Instruments

Instrument Control Fundamentals

Summary of Instrument Control Objects

Table 3-2. Instrument Control Objects

Object Advantages Disadvantages

Instrument

Panel

– Very easy to use

– Good for interactive control

– Acceptable execution speed in most

cases

– Panels not available for all instruments

Component

Driver

– Almost as easy to use as

Instrument Panels

– Execution speed approaching

Direct I/O

– Panels not available for all instruments

Direct I/O and

MultiDevice

Direct I/O

– Best execution speed

– No driver required

– Access to all supported interfaces

– Not as easy as Instrument

Panel or Component

Driver; you must know the

instrument programming mnemonics

Support For Register-Based

VXI Devices

When using the instrument control objects to directly address VXI devices

on the VXI backplane, you should be aware if devices are message-based

or register-based. HP VEE communicates with message-based devices

by means of SCPI (Standard Commands for Programmable Instruments)

messages. HP VEE also provides Interpreted SCPI (I-SCPI) support for most

Hewlett-Packard register-based devices. I-SCPI drivers let you communicate

with register-based devices as though they are message-based. This means

that an HP VEE program can communicate with a register-based device using

standard SCPI messages, provided there is an I-SCPI driver for that particular

device. If no I-SCPI driver is available for a register-based device, HP VEE

must communicate with that device by directly accessing its registers.

The I-SCPI drivers give you the Œexibility to use any of the instrument

control objects you prefer. You can use the Instrument Panel for easier

programming, or use SCPI commands in Direct I/O for faster execution

speed. When you program HP VEE to communicate with a register-based

device using SCPI messages, HP VEE will inform you if the required I-SCPI

driver is not available. Then you need to access the device registers directly

using Direct I/O or MultiDevice Direct I/O.

3-10

Using Instruments

Instrument Control Fundamentals

N O T E

I-SCPI is supported only on MS Windows, and HP-UX for Series 700.

Terminating I/O Operations (UNIX)

In some cases you may wish to terminate an HP VEE I/O operation from the

keyboard.

If you started HP VEE from a window as a foreground process by typing

veetest (without using &), use this procedure to terminate I/O operations:

1. Use the mouse to position the pointer in the window in which you typed

veetest.

2. Press ÄCTRLÅ-ÄCÅ (or the key indicated by the intr setting when you run

the UNIX stty command). If you have problems with this, ask your

system administrator for help.

If you started HP VEE from a window as a background process by typing

veetest & , use this procedure to terminate I/O operations:

1. Use the mouse to position the pointer in a terminal window.

2. Determine the UNIX process identiÕcation number (PID) for HP VEE using

the UNIX ps command.

3. Type kill -2 vee pid, where vee pid is the PID number determined in

the previous step.

3-11

Using Instruments

Instrument Control Fundamentals

Terminating I/O Operations (PC)

If you are using HP VEE for Windows and wish to terminate an I/O operation

from the keyboard use the following procedure.

Place the cursor in the HP VEE for Windows window and press ÄCtrlÅ-ÄCÅ. If

that does not stop the I/O operation and halt the program continue with the

following.

Press ÄCTRLÅ-ÄALTÅ-ÄDELÅ. Windows will display a screen giving you the option

of:

1. Aborting the application that is no longer responding to Windows,

2. Returning to Windows and continuing your application, or

3. Rebooting your system.

C A U T I O N
Aborting the application or rebooting your system may cause you to lose

data. If you have not saved your program to a Õle, you will also lose your

program.

3-12

Using Instrument Control Examples

HP VEE includes a number of on-line examples that are copied to your

system disk automatically when you install HP VEE. In addition, the Õrst

time you execute HP VEE, it copies a default instrument conÕguration Õle

to your home directory. You must have this I/O conÕguration to open the

on-line examples involving instruments.

You can always conÕgure additional instruments, but do not delete the entries

in Figure 3-6 from the I/O conÕguration if you want to open the on-line

instrument examples:

Figure 3-6. Default I/O ConÕguration

If HP VEE reports errors when you attempt to load the example programs

referenced in this chapter, please refer to the section \Advanced Topics" later

in this chapter.

3-13

Understanding Instrument Panels

and Component Drivers

This section explains some background and details that will help you use

Instrument Panels and Component Drivers more eÃectively.

Inside HP Drivers

The term driver is used so frequently in computer terminology that it can be

confusing. In HP VEE, the term driver has speciÕc meaning, but you should

be aware that people may use the term very casually.

Driver Files

Key Idea

Each HP instrument driver Õle describes the unique personality of a particular test and measurement

instrument. A driver Õle is required to control any instrument using an Instrument Panel or

Component Driver object.

Driver Õles (.cid Õles) are copied onto your system disk when HP VEE is

installed or with the Install Drivers program. Each driver Õle contains

two basic types of information:

1. A description of the instrument's functions and the commands used to set

and query them.

2. A description of the appearance and behavior of the graphical control

panel visible in the open view of an Instrument Panel.

Components

3-14

Using Instruments

Understanding Instrument Panels

and Component Drivers

Key Idea

Internally, Instrument Panels and Component Drivers represent each instrument

function as a component. Component names are analogous to variable names in programming

languages; components are used to hold the value of instrument function settings or measured values.

For example, the HP 3478A voltmeter contains these and other components:

Typical Voltmeter Driver Components

Component Name Instrument Function

ARANGE Autoranging is on or oÃ.

FUNCTION The measurement function is voltage, current, or resistance.

TRIGGER The trigger source is internal, external, fast, or single.

READING The most recent measured value.

Components can be accessed interactively or through a program. To access

a component interactively, click on a labeled button or display in the open

view of an Instrument Panel. To access components using a graphical

program, add them as input or output terminals. For detailed procedures on

using components, refer to the sections \Using Instrument Panels" and \Using

Component Drivers" later in this chapter.

3-15

Using Instruments

Understanding Instrument Panels

and Component Drivers

Figure 3-7. Accessing Driver Components

States An instrument state is a speciÕc set of values for all components in a

particular driver. For example, you must set all the components in a

voltmeter driver to particular values for AC voltage measurements. You must

use a diÃerent set of component values to measure DC current. In other

words, these two diÃerent measurements require two diÃerent states.

Figure 3-8. Two Voltmeter States

3-16

Using Instruments

Understanding Instrument Panels

and Component Drivers

Key Idea

In HP VEE, each instance of an Instrument Panel represents a separate measurement

state. It is common to have more than one Instrument Panel in a program, where each

Instrument Panel programs the same physical instrument to a unique measurement state.

Each Instrument Panel object you create using the same instrument Name will

communicate with the same physical instrument.

How Driver-Based I/O Works

When you place an Instrument Panel or Component Driver in a program,

HP VEE establishes a state record in memory. This state record is speciÕc to a

particular instrument Name. Names are very important and are discussed in

greater detail in the section \The Importance of Names" later in this chapter.

All the driver-based objects that reference a particular Name share a

single state record. The state record reŒects the current values of each

of the instrument's components. When you write to components using

Instrument Panels or Component Drivers, HP VEE updates both the

physical instrument and the state record. If you write to the instrument using

Direct I/O, HP VEE marks the state record as invalid because the state

record no longer matches the true state of the physical instrument. However,

subsequent use of an Instrument Panel or Component Driver causes

HP VEE to recall the instrument's state, which resynchronizes the physical

instrument state and state record.

3-17

Using Instruments

Understanding Instrument Panels

and Component Drivers

Important diÃerences occur when the Instrument Panel and

Component Driver objects operate.

Instrument Panel Operation

Key Idea

When an Instrument Panel operates, it sends only those commands necessary to make the

state of the physical instrument match the state deÕned in the graphical control panel.

If necessary, an Instrument Panel will send commands to reset and

update all settings in the corresponding physical instrument. This behavior

is aÃected by the Incremental Mode setting described in the section,

\Instrument Driver ConÕguration Dialog Box" later in this chapter.

If you set Incremental Mode to ON, HP VEE compares the current state

record to the desired state deÕned in the Instrument Panel and determines

which components must be changed. HP VEE sends only those commands

required to update the aÃected components.

If you set Incremental Mode to OFF or if the current state record is marked

as invalid, HP VEE will explicitly send commands to update each and every

component in order to guarantee synchronization between the desired state

and the state of the physical instrument.

Note that an Instrument Panel operates when its sequence input pin is

activated or when you click on one of the control panel buttons visible in the

open view.

Component Driver

Operation

Key Idea

When a Component Driver operates, it writes only to those components that appear as input

terminals and reads only from those components that appear as output terminals.

3-18

Using Instruments

Understanding Instrument Panels

and Component Drivers

This is why Component Drivers generally operate faster than

Instrument Panels. An Instrument Panel potentially writes to many

components to achieve a particular state; a Component Driver writes to only

the components you specify.

Note that components are read and written in the order that they appear as

terminals, from top to bottom. This order of operation is important in some

cases where you want the instrument to change the value of one component,

based on the value of another. This interaction is called coupling. With

component drivers you must do this manually.

Multiple Driver Objects This section discusses some situations that may be confusing when you are

using multiple objects that:

– Use the same instrument Name

– Use the same instrument address

– Use the same driver Õle

The Importance of Names. This section discusses some concepts related

to conÕguring instruments. If you Õnd this discussion diœcult to understand,

you may wish to wait and read it after you have read the following section,

\ConÕguring Instruments".

Consider how HP VEE maps an instrument object to a speciÕc instrument

conÕguration created via I/O ¡¡) Instrument

Key Idea

It is the Name Õeld in the Device Configuration dialog box that logically maps each

instrument object to the address of a physical instrument and the other conÕguration information. To

determine the Name of an instrument object, click on Show Config in the object menu; the text

in the object title is not necessarily the same as the Name.

For example, the Names of the instruments in the default I/O conÕguration are

scope, dvm, and fgen. Names must be unique; there cannot be more than

one conÕgured instrument with the Name of scope.

3-19

Using Instruments

Understanding Instrument Panels

and Component Drivers

In general, you should have only one conÕgured Name referencing a particular

physical instrument. While it is possible to have more than one Name

referencing the same instrument address, it will cause unpredictable results

in a program using Instrument Panels. HP VEE's internal records of

instrument states are organized by Names. Two Instrument Panels with

diÃerent names will blindly write to the same address, thus invalidating each

other's state records.

In some cases involving Direct I/O, you may need to have more than one

Name for the same physical instrument. This may be necessary if certain

settings in the Direct I/O Configuration dialog box need to be varied

depending on the direct I/O operation. For example, you may wish to send

some commands to an oscilloscope with EOI asserted on the last character of

data and some commands without EOI. In such a case, you can conÕgure one

instrument with the Name Scope (EOI) and another instrument with the

Name Scope. Both Scope and Scope (EOI) have the same Address setting,

but diÃerent settings for END on EOL.

Note that the conÕgured Name appears as the default title in instrument

objects at the time you select them from the menu. However, editing the title

in no way aÃects the relationship to the Name.

Names are also important for saving and opening programs containing

instruments. When you save a program, the Name of each instrument object

in the program is saved. When you open a program, HP VEE looks in the

current I/O conÕguration for the Name of each instrument being loaded. For

example, if you saved a program containing an Direct I/O object with

a name of My Scope, there must be an instrument named My Scope in

the current I/O conÕguration. Names must match exactly, including any

spaces. However, Name is not case-sensitive. Furthermore, if the object

under consideration is a Instrument Panel or Component Driver, the ID

Filename (driver Õle) in the current I/O conÕguration must match the one

used in the saved program.

Reusing Driver Files. It is valid (and not uncommon) to have several

objects with diÃerent names that use the same driver Õle. For example, you

might have a test system that uses three programmable power supplies

named Supply1, Supply2, and Supply3 at three separate addresses that

all use the hp665x.cid driver Õle. Since the Names are diÃerent, HP VEE

maintains a separate state record for each name; an Instrument Panel for

Supply1 will have no eÃect on anything related to Supply2 or Supply3.

3-20

Choosing the Correct Instrument Object

This section presents a simpliÕed set of rules for choosing the appropriate

object for an instrument control application. In this procedure you will take

some steps that appear to be conÕguring an instrument. You are not actually

conÕguring an instrument, this is just the easiest way to locate certain

information.

1. Determine whether a driver Õle is available for your instrument:

a. Click on I/0 ¡¡) Instruments

b. Click on the Add Instrument button in the Instrument Select or

Configure box.

c. Click on Instrument Driver Config in the Device Configuration

dialog box.

d. Click on the ID Filename Õeld.

e. Scroll through the list of available driver Õles.

2. If a driver Õle is available for your instrument:

a. Use it as an Instrument Panel. For details, refer to the following

sections, \ConÕguring Instruments" and \Using Component Drivers".

Go to step 4.

b. If the execution speed of an Instrument Panel is not acceptable,

use a Component Driver. For details, refer to the following sections,

\ConÕguring Instruments" and \Using Instrument Panels". Go to step

4.

3. If a driver Õle is not available for your instrument, or if you prefer to

program it directly, use a Direct I/O object. For details, refer to the

following sections, \ConÕguring Instruments" and \Direct I/O ConÕguration

Dialog Box". Go to step 4.

4. Exit all the pending dialog boxes on your screen by clicking on the Cancel

buttons.

3-21

ConÕguring Instruments

This section contains the step-by-step procedures for conÕguring HP VEE

to communicate with your instruments using Instrument Panels,

Component Drivers, and Direct I/O.

As you follow these procedures, note that some steps apply only to driver

conÕguration, some apply only to direct I/O, and some apply to both. It is

possible to conÕgure a single instrument for both driver-based communication

and direct I/O; if you follow the sections in order, this situation is addressed.

Begin the conÕguration procedure with the following section, \Basic

Instrument ConÕguration". If you need help interpreting any of the Õelds

in the dialog boxes used in this procedure, refer to the section \Details of

ConÕgure I/O Dialog Boxes" later in this chapter.

Figure 3-9. Example of Instrument ConÕguration Dialog Boxes

3-22

Using Instruments

ConÕguring Instruments

Basic Instrument ConÕguration

Follow this procedure for any instrument you plan to use with HP VEE.

1. Click on I/O ¡¡) Instrument

2. Note the device (instrument) entries listed in the Instrument Select or

Configure dialog box.

a. If you need to use instruments that do not appear in the list, go to step

3 in this procedure.

b. If the instruments you need are listed but the addresses or other

settings are incorrect, click on the instrument you wish to modify, then

click on the Edit Instrument button. The Device Configuration

dialog box appears. Go to step 4 in this procedure.

c. If the list properly speciÕes all your instruments, click on the Cancel

button and exit this procedure.

3. Click on the Add Instrument button. The Device Configuration dialog

box appears.

4. HP VEE enters default values in the Õelds inside the Device

Configuration dialog box. If you have diœculty interpreting any of the

Õelds in this dialog box, refer to the section, \Device ConÕguration Dialog

Box" later in this chapter. Complete or modify each entry Õeld as follows:

– Name: Enter the name for this instrument. Note that any spaces are

signiÕcant and Name does not distinguish between upper- and lower-case

letters. Typical entries are Scope, Voltmeter, and Switch.

Note that the entry you specify for Name is a symbolic link between

each instrument object created using this Name and the conÕguration

information you specify in this procedure. This concept is very

important and it is explained in detail in the section, \The Importance of

Names".

– Interface: Identify the type of interface used by the instrument. The

default is HP-IB. Other interface selections are VXI, GPIO, and Serial.

– Address: Enter the digits of the address that identiÕes the instrument.

For HP-IB instruments, the address is of the form xxyyzz, where xx is

the one- or two-digit interface select code and yy is the two-digit bus

address. zz is the two-digit secondary bus address. A secondary address

3-23

Using Instruments

ConÕguring Instruments

is used for accessing devices through a command module in a C size VXI

mainframe, and for addressing devices in a B size VXI mainframe. The

factory default select code for most HP-IB interfaces is 7.

For example, if an oscilloscope is at HP-IB address 6, set Address to

706.

If you need help determining the proper address for HP-IB or other

interfaces, refer to the \Device ConÕguration Dialog Box" and

\Troubleshooting" sections later in this chapter.

– Gateway: On HP VEE running on an S700, set the LAN gateway name

for a remote process. See \LAN Gateways" later in this chapter for more

information.

– Device Type: Enter the manufacturer's program number for the

instrument. This Õeld is for your convenience only; HP VEE does not

use it. If you are going to conÕgure this instrument with a driver,

HP VEE will Õll in this Õeld for you when you specify the driver Õle.

– Timeout: Enter the timeout in seconds. The default value of Õve

seconds works for most applications. It is unadvisable to specify 0

in this Õeld; if you do, HP VEE will never detect a timeout. Certain

Direct I/O transactions for register or memory access of VXI devices

do not support a timeout.

– Byte Ordering: SpeciÕes the order the device uses for reading and

writing binary data. HP VEE uses the byte order value to determine if

byte swapping is necessary. Click on this Õeld to choose between MSB

(Most-SigniÕcant Byte Õrst) and LSB (Least-SigniÕcant Byte Õrst). All

IEEE 488.2-compliant devices must default to MSB order. Please refer to

your device manual for more speciÕc information.

– Live Mode: Set this Õeld to ON if the corresponding instrument is

connected to your computer. Set this Õeld to OFF if the corresponding

instrument is not connected to your computer so that objects will not

attempt to read or write to a non-existent instrument.

5. At this point, you have completed all the conÕguration steps that are

common to drivers and direct I/O. You must still complete the steps for

driver conÕguration, direct I/O conÕguration, or both.

3-24

Using Instruments

ConÕguring Instruments

N O T E

You can conÕgure register-based VXI devices as you would message-based devices if they are supported

by I-SCPI drivers.

– To conÕgure your instrument for use with a driver, go to the following

section,\Driver ConÕguration".

– To conÕgure your instrument for use with direct I/O, go to the following

section, \Direct I/O ConÕguration".

– To conÕgure a VXI device for register access with direct I/O, go to the

\A16 Space ConÕguration (VXI only)" section, later in this chapter.

– To conÕgure a VXI device for extended memory access with direct I/O,

go to the \A24/A32 Space ConÕguration (VXI only)" section, later in this

chapter. We will use the term \extended memory" to indicate either A24

or A32 memory in a VXI device. (A VXI device can implement either

A24 or A32 memory, but not both.)

If you are following this procedure out of sequence and wish to exit now,

you must click on the OK button in the Device Configuration dialog box

and the Save Config button in the Instrument Select or Configure

dialog box to save your newly conÕgured instruments.

3-25

Using Instruments

ConÕguring Instruments

Driver ConÕguration

As you begin this procedure, you should have already completed the

steps in the previous section, \Basic Instrument ConÕguration". The

Device Configuration dialog box should be on the screen.

1. Click on the Instrument Driver Config button. The Instrument

Driver Configuration dialog box appears.

2. Click on the ID Filename Õeld. A list of driver Õles appears.

3. Click on the driver Õle corresponding to your instrument, then click on the

OK button.

4. HP VEE enters default values in the Õelds inside the Instrument Driver

Configuration. In general, you do not need to change these values.

Consult the section, \Instrument Driver ConÕguration Dialog Box" later in

this chapter for details about this dialog box.

5. Click on the OK button in the Instrument Driver Configuration dialog

box.

6. At this point you have completed all the steps necessary to conÕgure this

instrument for use with a driver.

– To conÕgure this instrument for use with direct I/O, go to the following

section, \Direct I/O ConÕguration".

– To conÕgure additional instruments, click on the OK button in the

Device Configuration dialog box. Go to step 3 of the section, \Basic

Instrument ConÕguration" earlier in this chapter.

– To stop conÕguring instruments and save the current conÕguration, click

on the OK button in the Device Configuration dialog box, then click

on the Save Config button in the Instrument Select or Configure

dialog box.

3-26

Using Instruments

ConÕguring Instruments

Direct I/O ConÕguration

As you begin this procedure, you should have already completed the

steps in the previous section, \Basic Instrument ConÕguration". The

Device Configuration dialog box should be on the screen.

1. Click on the Direct I/O Config button. The Direct I/O

Configuration dialog box appears.

2. HP VEE selects default values for all of the Õelds in the Direct I/O

Configuration dialog box based on your previous selection of

Interface. Modify these Õelds as required. For a detailed description of

each Õeld, please refer to the section, \Direct I/O ConÕguration Dialog

Box" later in this chapter.

3. Click on the OK button in the Direct I/O Configuration dialog box.

4. At this point you have completed all the steps required to conÕgure this

instrument for use with direct I/O.

a. To conÕgure additional instruments, click on the OK button in the

Device Configuration dialog box. Go to step 3 of the section, \Basic

Instrument ConÕguration" earlier in this chapter.

b. To stop conÕguring instruments and save the current conÕguration,

click on the OK button in the Device Configuration dialog box,

then click on the Save Config button in the Instrument Select or

Configure dialog box.

To learn how to use the Direct I/O instruments you have just conÕgured,

refer to \Communicating with Instruments" in Chapter 6.

3-27

Using Instruments

ConÕguring Instruments

A16 Space ConÕguration (VXI only)

Before you begin, you should complete the steps in the \Basic Instrument

ConÕguration"section, earlier in this chapter. The Device Configuration

dialog box should be on the screen. From this dialog box you can conÕgure a

VXI device's registers for access with WRITE REGISTER or READ REGISTER

transactions in a Direct I/O object.

1. Click on the A16 Space Config button. The A16 Space Configuration

dialog box appears.

2. The dialog box displays Õelds which are used to conÕgure the memory

access data width, and to conÕgure individual registers within a VXI

device's A16 memory. For a detailed description of each Õeld, refer to the

\A16 Space ConÕguration Dialog Box (VXI Only)" section, later in this

chapter.

3. Click on the OK button in the A16 Space Configuration dialog box.

4. At this point you have completed all the steps required to conÕgure this

VXI instrument for register access with direct I/O.

a. To conÕgure additional instruments, click on the OK button in the

Device Configuration dialog box. Go to step 3 of the section, \Basic

Instrument ConÕguration" earlier in this chapter.

b. To stop conÕguring instruments and save the current conÕguration,

click on the OK button in the Device Configuration dialog box,

then click on the Save Config button in the Instrument Select or

Configure dialog box.

3-28

Using Instruments

ConÕguring Instruments

A24/A32 Space ConÕguration (VXI only)

Before you begin, you should complete the steps in the \Basic Instrument

ConÕguration" section, earlier in this chapter. The Device Configuration

dialog box should be on the screen. From this dialog box you can conÕgure a

VXI device's extended memory (A24 or A32) for access with WRITE MEMORY

or READ MEMORY transactions in a Direct I/O object.

1. Click on the A24/A32 Space Config button. The A24/A32 Space

Configuration dialog box appears.

2. The dialog box displays Õelds which are used to conÕgure the memory

access data width, and to conÕgure individual registers within a VXI

device's extended memory. For a detailed description of each Õeld, refer to

the \A24/A32 Space ConÕguration Dialog Box (VXI only)" section, later in

this chapter.

3. Click on the OK button in the A24/A32 Space Configuration dialog box.

4. At this point you have completed all the steps required to conÕgure this

VXI instrument for memory access with direct I/O.

a. To conÕgure additional instruments, click on the OK button in the

Device Configuration dialog box. Go to step 3 of the section, \Basic

Instrument ConÕguration" earlier in this chapter.

b. To stop conÕguring instruments and save the current conÕguration,

click on the OK button in the Device Configuration dialog box,

then click on the Save Config button in the Instrument Select or

Configure dialog box.

3-29

Details of ConÕgure I/O Dialog Boxes

This section explains in detail the meaning of each Õeld in the

dialog boxes you encounter while conÕguring instruments using

I/O ¡¡) Instrument

Device ConÕguration Dialog Box

Name The Name Õeld uniquely identiÕes a particular instrument conÕguration. The

instrument Name is a symbolic link between each instance of an instrument

control object and all the conÕguration information corresponding to that

Name. Usually, this Õeld is used to give a descriptive name to the instrument,

such as Oscilloscope or Power Supply.

Names must be unique; you cannot conÕgure two instruments with a Name of

Scope. While it is possible to create two diÃerent Names that refer to the

same physical instrument, it can cause problems if you use both Names with

Instrument Panel in the same program.

Do not confuse the Name of an instrument with the text that appears as

the title in an instrument control object. The default title of an instrument

control object is the name, but you can change the title and it has no eÃect

on the Name. If you need to determine the Name of a particular instance of an

instrument control object, select Show Config in the object menu.

N O T E

It is very important that you use Names correctly. This section discusses only the more common

situations. For more details about how HP VEE uses Names please refer to the section \The

Importance of Names" earlier in this chapter.

3-30

Using Instruments

Details of ConÕgure I/O Dialog Boxes

Interface The Interface Õeld speciÕes the type of hardware interface used to

communicate with the instrument: HP-IB, VXI, GPIO, or Serial.

Address The Address Õeld speciÕes the address of the instrument. For instruments

using GPIO or serial interfaces, the address is the same as the interface select

code. An interface select code is a number used by the computer to identify a

particular interface.

For instruments using HP-IB interfaces, the address is of the form xxyyzz,

where:

– xx is the one- or two-digit interface select code. The factory default select

code for most HP-IB interfaces is 7.

– yy is the two-digit bus address of the instrument. Use a leading zero for

bus addresses less than 10; for example, use 09 not 9.

– zz is the secondary address of the instrument. Secondary addresses are

typically used by cardcage-type instruments that use multiple plug-in

modules. Secondary addresses are used to access devices through a

command module in a C size VXI mainframe, and to address devices in a B

size VXI mainframe.

N O T E

The secondary address is the secondary address as deÕned in IEEE 488.1; it is part of the interface

speciÕcation of the instrument hardware. The instrument hardware design determines whether or not a

secondary address is required; secondary addresses are not related to driver conÕguration.

Do not confuse secondary addresses with the Sub Address Õeld used in the Instrument

Driver Configuration dialog box. Subaddresses are a driver-related feature and are used

very rarely.

For instruments using VXI interfaces (connected to embedded controllers or

controllers with direct access to the VXI backplane), the address is of the

form xxyyy, where:

3-31

Using Instruments

Details of ConÕgure I/O Dialog Boxes

– xx is the one- or two-digit select code of the VXI backplane interface of an

embedded or external controller.

– yyy is the logical address of the VXI device. Use leading zeros for logical

addresses less than 100. (For example, use 008 not 8.)

N O T E

Setting the Address Õeld to 0 has special meaning. Setting the Address Õeld to 0 (for any

interface) means that there is no physical instrument matching this device description connected to the

computer. An address of 0 automatically sets Live Mode to OFF.

HP-IB Address Examples. For example, if you wish to control an HP-IB

instrument at bus address 9 using the built-in HP-IB interface on an HP

computer. The factory default select code for built-in HP-IB interfaces is 7.

Assuming that the select code has not been changed, the proper Address

Õeld setting for this instrument is 709.

If you wish to address a plug-in module in this same instrument with a

secondary bus address of 2, the proper Address Õeld setting is 70902.

VXI Address Examples. For instruments using VXI interfaces (connected

to embedded controllers or controllers with direct access to the VXI

backplane), assume you wish to control a VXI instrument, logical address

28, using either an embedded VXI controller (such as the HP V/743 VXI

Controller), or a VXI controller with direct access interface to the VXI

backplane (such as the E1489I MXI Interface - Series 700). If the select code

is 16, the proper Address Õeld setting is 16028, (Logical addresses for VXI

instruments are in the range 1{255, inclusive.)

Serial Address Examples. Assume you wish to control an instrument

using an HP 98644 Serial Interface. The factory default select code for this

interface is 9. Assuming the select code has not been changed, the proper

Address Õeld setting for this instrument is 9.

Assume you wish to control an instrument using an HP 98642 Four-Channel

Multiplexer. The instrument is connected to port 3, the highest-numbered

port available on the interface. The default interface select code is 17.

3-32

Using Instruments

Details of ConÕgure I/O Dialog Boxes

Assuming that the select code has not been changed, the proper Address

Õeld setting for this instrument is 1703. Note that the HP 98642 interface

supports separate addresses for each port: 1700, 1701, 1702, and 1703.

GPIO Address Example. Assume you wish to control a custom-built

instrument using an HP 98622 GPIO Interface. The factory default select code

for this interface is 12. Assuming the select code has not been changed, the

proper Address Õeld setting for this instrument is 12.

Gateway This Õeld only appears when running HP VEE on an HP 9000 Series 700

computer. Use the Gateway Õeld set to the name of the LAN gateway used

during a remote process. See \LAN Gateways" later in this chapter for more

information.

Device Type The Device Type Õeld is used to record the manufacturer's model number.

For example, the Device Type for the HP 54504A oscilloscope could be

hp54504a. This Õeld is provided for your convenience; HP VEE does not use

it.

You may notice that if you conÕgure the instrument for use with a driver,

HP VEE will automatically Õll in the Device Type Õeld using the driver Õle

name as a default. You can change this default to anything you want; it will

not aÃect HP VEE.

Timeout The Timeout Õeld speciÕes how many seconds HP VEE will wait for an

instrument to respond to a request for communication before generating an

error. The default value of Õve seconds works well for most applications. In

general, you should not set this Õeld to 0; if you do, HP VEE will never detect

a timeout. Certain Direct I/O transactions for register or memory access of

VXI devices do not support a timeout.

Byte Ordering Use this Õeld to specify the order the device uses for reading and writing

binary data. HP VEE uses the value in this Õeld to determine if byte

swapping is necessary. Click on this Õeld to choose between MSB (send

Most-SigniÕcant Byte Õrst) and LSB (send Least-SigniÕcant Byte Õrst). All

IEEE 488.2-compliant devices must default to MSB order. Please refer to your

device manual for more speciÕc information.

3-33

Using Instruments

Details of ConÕgure I/O Dialog Boxes

Live Mode The Live Mode Õeld determines whether or not HP VEE will attempt to

communicate with an instrument at the speciÕed address. To actually

communicate with a physical instrument connected to your computer, you

must set Live Mode to ON.

Note that if Live Mode is OFF for instrument X, you can run programs

containing Instrument Panels, Component Drivers, or Direct I/O

objects that would otherwise read and write to instrument X. However,

no instrument communication actually takes place. The latter behavior

can be useful if you wish to develop or debug portions of a program while

instruments are not available.

ConÕg Buttons If you plan to control the conÕgured instrument using Instrument Panels

or Component Drivers, you must click on the Instrument Driver Config

button and complete the resulting dialog box. Please refer to the section

\Driver ConÕguration" earlier in this chapter for details.

If you plan to control the conÕgured instrument using Direct I/O, you must

click on the Direct I/O Config button and complete the resulting dialog

box. Please refer to the section \Direct I/O ConÕguration" earlier in this

chapter for details.

However, if you want to control a VXI instrument by using Direct I/O to

access the instrument's registers or extended memory, there is an additional

step:

– If you want to use Direct I/O to access the device's registers, click on the

A16 Space Config button and complete the resulting dialog box. (Refer to

the \A16 Space ConÕguration (VXI only)" section, earlier in this chapter,

for details.)

– If you want to use Direct I/O to access the device's extended memory,

click on the A24/32 Space Config button and complete the resulting

dialog box. (Refer to the \A24/A32 Space ConÕguration (VXI only)"

section, earlier in this chapter, for details.)

3-34

Using Instruments

Details of ConÕgure I/O Dialog Boxes

Instrument Driver ConÕguration Dialog Box

This section describes the meaning of all the Õelds in the Instrument

Driver Configuration dialog box. Interfaces currently supported by

Instrument Drivers include HP-IB and VXI (message-based devices only).

N O T E

You can conÕgure register-based VXI devices as message-based if they are supported by I-SCPI drivers.

ID Filename The ID Filename Õeld speciÕes the Õle that contains the desired driver. Note

that Õles are named according to instrument model number. Be certain to

choose the name corresponding to the exact model number you are using;

there are similar Õle names, such as hp3325a.cid and hp3325b.cid.

If you are unsure which driver to use, please refer to the on-line information

in Help ¡¡) Instruments.

Sub Address The Sub Address Õeld speciÕes the subaddress used by certain drivers

to identify plug-in modules in cardcage-type instruments, such as data

acquisition systems and switches. If you are not conÕguring a driver for one

of these plug-ins, set this Õeld to "" (the NULL string).

N O T E

Since very few drivers use subaddresses, the default setting of "" (the NULL string) is the proper

setting in 99% of all situations.

3-35

Using Instruments

Details of ConÕgure I/O Dialog Boxes

If you are conÕguring a driver for one of these plug-ins, refer to the on-line

help for the instrument driver to determine if and how subaddresses are

used. To get help on instrument drivers, click on Help ¡¡) Instruments.

N O T E

Do not confuse the Sub Address Õeld with a secondary address for HP-IB instruments.

Subaddresses are part of the driver conÕguration; they are not part of the hardware address.

Incremental Mode The Incremental Mode Õeld speciÕes whether or not incremental state recall

is used with Instrument Panel objects.

N O T E

The proper setting for Incremental Mode is ON in 99% of all situations.

When Incremental Mode is set to ON, HP VEE automatically minimizes the

number of commands sent to the instrument to change its state. To do this,

HP VEE compares its record of the current state the physical instrument to

the new state speciÕed in the Instrument Panel. HP VEE determines which

component settings are diÃerent, then sends only those commands needed to

change components that do not match the desired state. In most cases, you

should set Incremental Mode to ON; it provides the best execution speed.

When Incremental Mode is set to OFF, HP VEE explicitly sets the values of

every component when a corresponding Instrument Panel operates. This

is generally used only when there is a chance that HP VEE's record of the

instrument state does not match the true state of the physical instrument.

Note that the Incremental Mode setting aÃects only Instrument Panels.

3-36

Using Instruments

Details of ConÕgure I/O Dialog Boxes

These things do suggest setting Incremental Mode to OFF:

– Allowing front panel operation of an instrument at any time

– Changing instrument settings outside of the HP VEE environment through

C programs, HP BASIC programs, or shell commands

Using combinations of Component Drivers, Instrument Panels, and

Direct I/O objects in a program does not imply that you need to set

Incremental Mode to OFF.

Error Checking The Error Checking Õeld determines whether or not HP VEE queries the

instrument for errors after setting component values. Set this Õeld to ON

unless execution speed is not acceptable.

3-37

Using Instruments

Details of ConÕgure I/O Dialog Boxes

Direct I/O ConÕguration Dialog Box

This section explains each Õeld in the Direct I/O Configuration dialog

box. Interfaces that support transactions conÕgured with this dialog box

include HP-IB, VXI, GPIO, and serial.

N O T E

When addressing VXI devices directly on the VXI backplane, you can use SCPI messages to control

register-based devices if I-SCPI drivers exist for them. HP VEE will inform you if required I-SCPI drivers

are not available. If I-SCPI drivers are not available, you must then control register-based devices by

direct read/write access to device registers or device memory. Refer to \A16 Space ConÕguration

Dialog Box (VXI Only)" or \A24/A32 Space ConÕguration Dialog Box (VXI only)" for details.

Read Terminator The Read Terminator Õeld speciÕes the character that terminates READ

transactions. The entry in this Õeld must be a a single character surrounded

by double quotes. \Double quote" means ASCII 34 decimal. HP VEE

recognizes any ASCII character as a Read Terminator as well as the escape

characters shown in Table 3-3.

The character you should specify is determined by the design of your

instrument. Most HP-IB instruments send newline after sending data to the

computer. Consult your instrument programming manual for details.

3-38

Using Instruments

Details of ConÕgure I/O Dialog Boxes

Table 3-3. Escape Characters

Escape Character ASCII Code

(decimal)

Meaning

\n 10 Newline

\t 9 Horizontal Tab

\v 11 Vertical Tab

\b 8 Backspace

\r 13 Carriage Return

\f 12 Form Feed

\" 34 Double Quote

\' 39 Single Quote

\\ 92 Backslash

\ddd The ASCII character corresponding to the

three-digit octal value ddd.

EOL Sequence The EOL Sequence Õeld speciÕes the characters that are sent at the end of

WRITE transactions that use EOL ON. The entry in this Õeld must be zero or

more characters surrounded by double quotes. \Double quote" means ASCII

34 decimal. HP VEE recognizes any ASCII characters within EOL Sequence

including the escape characters shown previously in Table 3-3.

Multi-Õeld As The Multi-field As Õeld speciÕes the formatting style for multi-Õeld data

types for WRITE TEXT transactions. The multi-Õeld data types in HP VEE

are Coord, Complex, PComplex, and Spectrum. Other data types and other

formats are unaÃected by this setting.

Specifying a multi-Õeld format of (. . .) Syntax surrounds each multi-Õeld

item with parentheses. Specifying Data Only omits the parentheses, but

retains the separating comma. For example, the complex number 2+2j

could be written as (2,2) using (. . .) Syntax or as 2,2 using Data Only

syntax.

3-39

Using Instruments

Details of ConÕgure I/O Dialog Boxes

Array Separator The Array Separator Õeld speciÕes the character string used to separate

elements of an array written by WRITE TEXT transactions. The entry in this

Õeld must be a a single character surrounded by double quotes. \Double

quote" means ASCII 34 decimal. HP VEE recognizes any ASCII character as

an Array Separator as well as the escape characters shown previously in

Table 3-3.

WRITE TEXT STR transactions in Direct I/O objects that write arrays are a

special case. In this case, the value in the Array Separator Õeld is ignored

and the linefeed character (ASCII 10 decimal) is used to separate the elements

of an array. This behavior is consistent with the needs of most instruments.

Note that HP VEE allows arrays of multi-Õeld data types; for example you can

create an array of Complex data. In such a case, if Multi-Field Format is

set to (. . .) Syntax, the array will be written as:

(1,1)array sep(2,2)array sep ...

where array sep is the character speciÕed in the Array Separator Õeld.

Array Format The Array Format determines the manner in which multidimensional arrays

are written. For example, mathematicians write a matrix like this:

1 2 3

4 5 6

7 8 9

HP VEE writes the same matrix in one of two ways, depending on the setting

of Array Format. In the two examples that follow, EOL Sequence is set to

"\n" (newline) and Array Separator is set to

" " (space).

1 2 3 Block Array Format

4 5 6

7 8 9

1 2 3 4 5 6 7 8 9 Linear Array Format

Either array format separates each element of the array with the Array

Separator character. Block Array Format takes the additional step of

separating each row in the array using the EOL Sequence character.

3-40

Using Instruments

Details of ConÕgure I/O Dialog Boxes

In the more general case (arrays greater than two dimensions), Block

Array Format outputs an EOL Sequence character each time a subscript

other than the right-most subscript changes. For example, if you write the

three-dimensional array A[x,y,z] using Block array format with this

transaction:

WRITE TEXT A

an EOL Sequence will be output each time x or y changes value. If the size

of each dimension in A is two, the elements will be written in this order:

A[0,0,0] A[0,0,1]<EOL Sequence>

A[0,1,0] A[0,1,1]<EOL Sequence>

<EOL Sequence>

A[1,0,0] A[1,0,1]<EOL Sequence>

A[1,1,0] A[1,1,1]<EOL Sequence>

Notice that after A[0,1,1]] is written, x and y change simultaneously and

consequently two <EOL Sequence>s are written.

Writing Arrays with Direct I/O. WRITE TEXT STR transactions that write

arrays to direct I/O paths ignore the Array Separator setting for the

Direct I/O object. These transactions always use linefeed (ASCII decimal

10) to separate each element of an array as it is written. This behavior is

consistent with the needs of most instruments.

N O T E

This special behavior for arrays does not apply to any other types of transactions.

3-41

Using Instruments

Details of ConÕgure I/O Dialog Boxes

END On EOL (HP-IB Only) END on EOL controls the behavior of EOI (End Or Identify). If END on EOL

is YES, the EOI line is asserted on the bus at the time the last data byte is

written under one of the following circumstances:

1. A WRITE transaction with EOL ON executes.

2. A WRITE transaction executes as the last transaction listed in the

Direct I/O object.

3. One or more WRITE transactions execute without asserting EOI and are

followed by a non-WRITE transaction, such as READ.

Many instruments accept either EOI or a newline as valid message

terminators. Some block transfers may require EOI. Consult your

instrument's programming manual for details.

Conformance Conformance speciÕes whether an instrument conforms to the IEEE 488.1

or IEEE 488.2 standard. Refer to your instrument programming manual to

determine the standard to which your instrument conforms, and then set the

Conformance Õeld accordingly.

Each of these standards deÕnes communication protocols for the HP-IB

interface. However, IEEE 488.2 speciÕes rules for block headers and

learn strings that are left undeÕned in IEEE 488.1. All message-based

VXI instruments are IEEE 488.2 compliant, as well as register-based VXI

instruments supported by I-SCPI drivers.

If you set Conformance to IEEE 488 (which denotes IEEE 488.1), you may

optionally specify additional settings to handle block headers and learn

strings. Do this using the Õelds that appear below Conformance:

– Binblock

– State

– Upload String

– Download String

Binblock. The Binblock Õeld speciÕes the block data format used for

WRITE BINBLOCK transactions. Binblock may specify IEEE 728 #A, #T, or

#I block headers. If Binblock is None, WRITE BINBLOCK writes an IEEE

488.2 DeÕnite Length Arbitrary Block Response Data block.

3-42

Using Instruments

Details of ConÕgure I/O Dialog Boxes

IEEE 728 block headers are of the following forms:

#A<Byte_Count><Data>

#T<Byte_Count><Data>

#I<Data><END>

where:

<Byte_Count> is a 16-bit unsigned integer that speciÕes the number of

bytes that follow in <Data>.

<Data> is a stream of arbitrary bytes.

<END> indicates that EOI is asserted with the last data byte transmitted.

State. The State Õeld indicates whether or not the instrument has been

conÕgured for uploading and downloading learn strings. If the State entry is

Not Config'd and you wish to conÕgure the instrument for use with learn

strings, click on the State Õeld and the Upload String and Download Õelds

will appear. If the State entry is Not Config'd, the Upload String and

Download String Õelds are set to the null string.

Upload String. The Upload String Õeld speciÕes the command that is

sent to the instrument when you select Upload State from the Direct I/O

object menu. Specify the command that causes the instrument to output its

learn string; consult your instrument programming manual for details. Note

that you must surround the command with double quotes.

Download String. The Download String Õeld speciÕes the string that is

sent to the instrument immediately before the learn string as the result of

a WRITE STATE transaction in a Direct I/O object. This Õeld is provided

to support instruments that require a command preÕx when downloading a

learn string; consult your instrument programming manual for details.

Serial Interface Settings Several Õelds are provided to allow Œexible conÕguration of serial interfaces.

– Baud Rate

– Character Size

– Stop Bits

– Parity

– Handshake

– Receive Buffer (on S700 and PC only)

3-43

Using Instruments

Details of ConÕgure I/O Dialog Boxes

For HP-UX on S300 and for SunOS, the transmission and reception queue size

is set at 512 characters. For the PC and HP-UX on S700, the reception queue

size can be set by the user.

Data Width (GPIO only) The Data Width Õeld speciÕes the number of bits of parallel data transmitted

as a unit across the GPIO interface. This Õeld conÕgures the interface to read

and write data eight or sixteen bits wide. No hardware switches need to be

set in conjunction with this Õeld.

3-44

Using Instruments

Details of ConÕgure I/O Dialog Boxes

A16 Space ConÕguration Dialog Box (VXI Only)

This section explains each Õeld in the A16 Space Configuration dialog box.

This conÕgures VXI device registers and memory for access with read and

write transactions in a Direct I/O object.

Byte Access The Byte Access Õeld speciÕes whether the VXI device supports 8-bit A16

memory accesses. The possible choices for this Õeld are:

– NONE - Device does not support byte access.

– ODD ACCESS - Device supports byte access, but only on odd byte

boundaries (D08(O)).

– ODD/EVEN ACCESS - Device supports byte access on all boundaries

(D08(EO)).

Word Access The Word Access Õeld is not editable. All VXI devices must support 16-bit

access (D16).

LongWord Access The LongWord Access Õeld speciÕes whether the VXI device supports 32-bit

A16 memory accesses. The possible choices are:

– NONE - Device does not support 32-bit access.

– D32 ACCESS - Device supports 32-bit A16 memory access.

Add Register When you click on the Add Register Õeld, it adds a row of Õelds to the

bottom of the dialog box. These Õelds allow you to conÕgure access to a

device's A16 memory. The four Õelds are:

– Name - The symbolic name of the register, which is used to refer to the

particular register in a Direct I/O object using

READ REGISTER or WRITE REGISTER transactions.

– Offset - The oÃset in bytes from the relative base of a device's A16

memory for the register being conÕgured.

3-45

Using Instruments

Details of ConÕgure I/O Dialog Boxes

– Format - The data format that will be read from, or written to, the register

being conÕgured. The read or write access will take place at the byte

speciÕed in the Offset Õeld. The possible formats are:

BYTE - Read or write a byte. The device must support and be conÕgured

correctly for 8-bit access by using the BYTE Õeld discussed above. If the

BYTE Õeld is ODD, the byte location speciÕed in the Offset Õeld must be

an odd number.

WORD16 - Read or write a 16-bit word. The 16-bits are represented as a

two's complement integer. All VXI devices explicitly support this format.

WORD32 - Read or write a 32-bit word. The 32-bits are represented as

a two's complement integer. HP VEE supports this format even if the

LongWord Access Õeld is speciÕed as NONE (by using two D16 accesses

to read or write all 32 bits). If the LongWord Access Õeld is speciÕed as

D32 ACCESS, all 32 bits are accessed.

REAL32 - Read or write a 32-bit word. The 32-bits are represented as a

IEEE 754 32-bit Œoating-point number. HP VEE supports this format

even if the LongWord Access Õeld is speciÕed as NONE (by using two

D16 accesses to read or write all 32 bits). If the LongWord Access Õeld

is speciÕed as D32 ACCESS, all 32 bits are accessed.

– Mode - Specify what I/O mode the register will support. The choices are:

READ - This register will appear as a choice in a READ REGISTER

transaction only.

WRITE - This register will appear as a choice in a WRITE REGISTER

transaction only.

READ/WRITE - This register will appear as a choice in both a

READ REGISTER and WRITE REGISTER transaction.

Delete Register When you click on the Delete Register Õeld, it will display a list of the

symbolic names of the currently conÕgured registers. The selected register

will be removed from the dialog box.

3-46

Using Instruments

Details of ConÕgure I/O Dialog Boxes

A24/A32 Space ConÕguration Dialog Box (VXI only)

This section explains each Õeld in the A24/A32 Space Configuration dialog

box. This conÕgures VXI device registers and memory for access with read

and write transactions in a Direct I/O object.

N O T E

We use the term \extended memory" to indicate either A24 or A32 memory in a VXI device. (A VXI

device can implement either A24 or A32 memory, but not both.)

Byte Access The Byte Access Õeld speciÕes whether the VXI device supports 8-bit

extended memory accesses. The possible choices for this Õeld are:

– NONE - Device does not support byte access.

– ODD ACCESS - Device supports byte access, but only on odd byte

boundaries (D08(O)).

– ODD/EVEN ACCESS - Device supports byte access on all boundaries

(D08(EO)).

Word Access The Word Access Õeld is not editable. All VXI devices must support 16-bit

access (D16) for all memory spaces.

LongWord Access The LongWord Access Õeld is speciÕes whether the VXI device supports

32-bit extended memory accesses. The possible choices are:

– NONE - Device does not support 32-bit access.

– D32 ACCESS - Device supports 32-bit extended memory access.

3-47

Using Instruments

Details of ConÕgure I/O Dialog Boxes

Add Location When you click on the Add Location Õeld, it adds a row of Õelds to the

bottom of the dialog box. These Õelds allow you to conÕgure access to a

device's extended memory. The four Õelds are:

– Name - The symbolic name of the location, which is used to refer to the

particular memory location in a Direct I/O object using READ MEMORY or

WRITE MEMORY transactions.

– Offset - The oÃset in bytes from the relative base of a device's extended

memory for the location being conÕgured.

– Format - The data format that will be read from, or written to, the location

being conÕgured. The read or write access will take place at the byte

speciÕed in the Offset Õeld. The possible formats are:

BYTE - Read or write a byte. The device must support and be conÕgured

correctly for 8-bit access by using the BYTE Õeld discussed above. If the

BYTE Õeld is ODD, the byte location speciÕed in the Offset Õeld must be

an odd number.

WORD16 - Read or write a 16-bit word. The 16-bits are represented as a

two's complement integer. All VXI devices explicitly support this format.

WORD32 - Read or write a 32-bit word. The 32-bits are represented as

a two's complement integer. HP VEE supports this format even if the

LongWord Access Õeld is speciÕed as NONE (by using two D16 accesses

to read or write all 32 bits). If the LongWord Access Õeld is speciÕed as

D32 ACCESS, all 32 bits are accessed.

REAL32 - Read or write a 32-bit word. The 32-bits are represented as a

IEEE 754 32-bit Œoating-point number. HP VEE supports this format

even if the LongWord Access Õeld is speciÕed as NONE (by using two

D16 accesses to read or write all 32 bits). If the LongWord Access Õeld

is speciÕed as D32 ACCESS, all 32 bits are accessed.

– Mode - Specify what I/O mode the location will support. The choices are:

READ - This location will appear as a choice in a READ REGISTER

transaction only.

WRITE - This location will appear as a choice in a WRITE REGISTER

transaction only.

READ/WRITE - This location will appear as a choice in both a

READ REGISTER and WRITE REGISTER transaction.

3-48

Using Instruments

Details of ConÕgure I/O Dialog Boxes

Delete Location When you click on the Delete Location Õeld, it will display a list of the

symbolic names of the currently conÕgured location. The selected register

will be removed from the dialog box.

Example of ConÕguring a

VXI Device

The following examples of VXI device conÕguration apply to both A16 and

extended (A24/A32) memory.

Figure 3-10 shows the A16 Space Configuration dialog box with the

register conÕguration of an HP E1411B Multimeter. The Offset Õeld is

conÕgured with the oÃset in bytes of each register from the relative base of

the device's A16 space. Notice that there are two registers with an oÃset of

four bytes, status and control. Register status is conÕgured for READ

mode only, while register control is conÕgured for WRITE mode only. While

two separate register locations could have the same mode, the Name Õeld

must be unique.

Note that it would be possible for the register at byte location 4 to be named

statuscontrol with a mode of READ/WRITE.

Figure 3-10. A16 ConÕguration for the HP E1411B Multimeter

3-49

Advanced Topics

I/O ConÕguration File

This section discusses a special Õle that you may occasionally need to modify.

This Õle is .veeio on UNIX and VEE.IO on PCs, the I/O conÕguration Õle. It

is stored in your $HOME directory (typically your /users directory), or the

HP VEE installation directory on PCs. If you have diœculty understanding

this section, ask your system administrator for help.

When you conÕgure instruments using I/O ¡¡) Instrument, you click on the

Save Config button in the Instrument Select or Configure dialog box

to save the settings. These settings are saved not only in memory for the

remainder of your work session, but also in .veeio or VEE.IO. This way, the

next time you start HP VEE, you can continue working with your existing I/O

conÕguration.

If you do not have a .veeio or VEE.IO Õle in your $HOME directory when

you run HP VEE, HP VEE creates a default .veeio or VEE.IO Õle for you.

This default Õle is also created when you run HP VEE for the Õrst time. The

default conÕguration contains the instruments used in the on-line examples

included with HP VEE.

You cannot open any program containing an instrument control object

unless your I/O conÕguration contains a device with a matching Name. In

this discussion, Name means the entry in the Name Õeld in the Instrument

Select or Configure dialog box, not the text in the object's title bar.

Furthermore, if the object is an Instrument Panel or Component Driver,

the ID Filename must also match your conÕguration. Settings other than

Name and ID Filename do not aÃect your ability to open these programs,

although other setting aÃect how the programs execute.

Most of the time, HP VEE takes care of .veeio or VEE.IO for you. But there

may be times when you want to erase, update, or copy this Õle outside of the

HP VEE environment. The rest of this section explains two situations when

you might want to do this.

3-50

Using Instruments

Advanced Topics

Sharing Programs Assume Susan develops an instrument control program that she wants to

share with you. How can you get the same I/O conÕguration as Susan so you

can run her program? You can either manually add all of Susan's instruments

to your conÕguration via I/O ¡¡) Instrument or you can copy Susan's

.veeio or VEE.IO Õle to your $HOME directory, or C:\VEE directory on PC's.

If you use the Õle copying method, save a copy of your original .veeio Õle to

another name (such as .oldveeio or veeio.old on PC's) in case you need

it later. Make sure that any .veeio Õle you place in your $HOME directory

has write permissions set to allow HP VEE to write to it.

Running Example Programs Assume that you want to open one of the on-line example programs.

Unfortunately, you have accidentally deleted the default instrument

conÕguration. There are two ways to solve this problem:

1. Manually add the default instrument conÕguration to your current

conÕguration using I/O ¡¡) Instrument

2. Rename your .veeio or VEE.IO Õle and restart HP VEE.

3. Simply load the program. If HP VEE Õnds any conŒicts it will ask

if you wish to add the device now. If you answer yes, a Device

Configuration dialog box will appear with the correct name in the name

Õeld. Fill in any addition information needed and press OK. HP VEE will

then continue loading the Õle.

3-51

Using Instruments

Advanced Topics

If you choose method 1, conÕgure the following instruments using the

procedures outlined in the section, \ConÕguring Instruments" earlier in this

chapter:

Default I/O ConÕguration

Name Field Entry ID Filename Field Entry

dmm hp34401a.cid

dvm hp3478a.cid

fgen hp3325b.cid

funcgen hp33120a.cid

oscope hp54600.cid

scope hp54504a.cid

If you choose method 2, follow these procedures:

On UNIX systems:

1. Exit HP VEE.

2. Go to your $HOME directory (/users/YourName).

3. Type mv .veeio .oldveeio ÄReturnÅ. This renames your .veeio Õle.

4. Execute veetest. HP VEE will look for .veeio and when it Õnds

that it does not exist, it will create one for you using the default I/O

conÕguration.

On PC systems:

1. Exit HP VEE.

2. Go to your C:\VEE directory.

3. Type rename vee.io veeio.old ÄReturnÅ. This renames your VEE.IO Õle.

4. Run HP VEE. It will look for VEE.IO and when it Õnds that it does not

exist, it will create one for you using the default I/O conÕguration.

3-52

Using Instruments

Advanced Topics

Programmatic I/O ConÕguration

You can conÕgure device I/O programmatically. Control pins are available for

the Instrument Panel, Component Driver, and Direct I/O instrument

control objects that let you input other values for device address and timeout.

Control pins for setting timeout values are also available for the Interface

Operations, Device Event, and Interface Event objects. When a new

timeout or address pings one of the control pins, the new value is changed

globally for that device. This means that all of the instrument control objects

communicating with a particular device would begin using the new timeout

or address value. The new value can be diÃerent than that entered in the

Device ConÕguration dialog box and placed in the HP VEE conÕguration Õle.

However, this new value is never written to the HP VEE conÕguration Õle.

The following example shows a Direct I/O object with an Address control

pin. The HPE 1413B is originally conÕgured for address 16032 as shown in

the title bar. The input to the control pin is 16040, the new address. When

the control pin is pinged that new address, 16040, is put in place for any

other objects communicating with the HPE 1413B. The Direct I/O object's

title bar will change to reŒect the new address, then communicate with the

device to perform any transactions it contains.

3-53

Using Instruments

Advanced Topics

Figure 3-11. Programmatically ReconÕguring Device I/O

LAN Gateways

HP VEE running on an HP 9000 Series 700 computer with HP-UX 9.0 or

greater can access LAN gateways to control instruments. A LAN gateway

is a controller (or the HP E2050A LAN/HP-IB Gateway) that allows access

to its VXI, HP-IB, GPIO, and Serial interfaces and the instruments on these

interfaces from a remote process.

The client-server model best represents the arrangement. An HP VEE process

acts as the client when accessing a LAN gateway on a remote computer, the

server. The server computer has a committed process, known as a daemon,

which is part of the SICL process running on the server. The daemon

3-54

Using Instruments

Advanced Topics

communicates with the HP VEE client and allows access to its interfaces and

their devices. The client process calls SICL in order to control devices on

the interfaces which SICL supports. These interfaces are usually conÕgured

on the LAN gateway on which the SICL process is running. By using the

LAN gateway, these interfaces can be on a remote computer. As far as the

client is concerned, the fact that the interfaces and their devices are attached

physically to a remote computer is invisible.

ConÕguration You must complete conÕguration tasks in HP VEE and for the LAN hardware

to use the LAN gateway.

HP VEE ConÕguration. ConÕguring HP VEE for gateway access is done

during device conÕguration described in \Basic Instrument ConÕguration" and

\Details of ConÕgure I/O Dialog Boxes" earlier in this chapter. The following

Õgure shows the Device Configuration dialog box with the Gateway Õeld.

Figure 3-12. Gateway ConÕguration

3-55

Using Instruments

Advanced Topics

You can select the gateway name in the Device Configuration dialog box.

The available list box uses This host as the default choice. The list box also

contains all of the gateways that have been conÕgured previously. This host

always points to the computer on which HP VEE is running. If there are no

other choices for gateways, you may type in a name for a gateway. The name

must be resolvable to an IP address either by a local host name table or by a

name-server. Alternatively, an IP address in dot-format may be entered as a

name, such as 15.11.29.103. Beyond selecting a gateway, the conÕguration

process remains the same. Instrument Panels and Direct I/O are conÕgured

as before. The following Õgure shows the various I/O devices conÕgured for

interfaces and devices on remote computers.

Figure 3-13. Examples of Devices ConÕgured on Remote Machines

LAN Hardware ConÕguration. The SICL LAN gateway support is

dependent on the conÕguration of the machine on which HP VEE is running,

the machine on which the gateway daemon is running, and the overall

conÕguration of the LAN. You should consult with your system administrator

to conÕgure the LAN and ensure that names and IP addresses are resolvable.

3-56

Using Instruments

Advanced Topics

For the machine running the gateway daemon it is assumed that the daemon

install procedures will conÕgure the local networking Õles correctly. If you are

using the HP E2050A LAN/HP-IB Gateway, it is self-contained and all internal

conÕguration is done.

For networks using the HP-UX operating system, the client machine does

not need any special network conÕguration Õles. However, the following line

must be in the SICL conÕguration Õle hwconfig.cf.

#

LAN Configuration

<lu> <symname> ilan <not used> <not used> <sicl_infinity> <lan_timeout_delta>

30 lan ilan 0 0 120 25

This entry contains the normal logical unit/symbolic name keys for SICL.

The interface type is ilan. The sicl_infinity and lan_timeout_delta

entries are special timeouts and will be discussed in the next section.

For the server machines, entries need to be made in two Õles, /etc/rpc and

/etc/inetd.conf.

To /etc/rpc add the following line:

siclland 395180

To /etc/inetd.conf add the following line:

rpc stream tcp nowait root /usr/etc/siclland 395180 1 siclland -e -l /tmp/siclland.log

On the server machine, the inet daemon must be made to reread the

inetd.conf Õle by executing the following command with sys-admin (root)

privileges:

/etc/inetd -c

If the LAN resource discovery is not managed by the local Õles but by

Network Information Services (NIS, see Yellow Pages), then the same Õles

must be modiÕed on the database machine and the database recompiled (we

mention this in the SUN install since SUN LANs tend to be NIS, however,

some heterogeneous LANs with both HP and SUN machines may be NIS).

Execution Behavior Ideally, I/O operations through the gateway work as though the interfaces

and devices are attached directly to the client computer. However, the

nondeterministic nature of the LAN can cause response times to vary.

Response times vary depending on the LAN conÕguration including the

number of connected hosts, LAN-to-LAN gateways, and current load.

3-57

Using Instruments

Advanced Topics

Sometimes, a connection is terminated by disconnected cables or computer

failures on the LAN. These events must be accommodated by conÕguring

timeout periods.

When the server receives an I/O request from the client application,

HP VEE, the server uses the timeout value that you enter in the Device

Configuration dialog box. This is called the SICL timeout. If the server's

operation is not completed in the speciÕed time, then the server will send a

reply to the client indicating that a timeout occurred, and the normal HP VEE

timeout error will occur.

When the client sends an I/O request to the server, the client starts a timer

and waits for the reply from the server. If the server does not reply in

time, a timeout occurs and an HP VEE timeout error is produced. This is

called the LAN timeout. The client timeout diÃers from the server timeout

because the I/O transaction time for the server is usually diÃerent than the

transmission time over the LAN. SpeciÕcally, the server may complete an I/O

transaction within Õve seconds (the HP VEE default timeout period), but the

actual transmission over the LAN back to the client may take longer than Õve

seconds due to LAN operating characteristics.

The two timeouts are separate values that are adjusted using two entries in

the SICL conÕguration Õle:

sicl_infinity Used by the server if the user-deÕned timeout

(the SICL timeout), entered in the Device

Configuration dialog box, is inÕnity (0). The

server does not allow an inÕnite timeout period.

The value speciÕes the number of seconds to

wait for a transaction to complete within the

server.

lan_timeout_delta Value added to the server's timeout value to

determine the client's timeout period (LAN

timeout). The calculated LAN timeout only

increases as necessary to meet the needs of the

I/O devices, and never decreases. This avoids

the overhead of readjusting the LAN timeout

every time the SICL timeout changes.

3-58

Using Instruments

Advanced Topics

Protecting Critical Sections

In a multiprocess test system, sharing a resource, such as an instrument,

among the processes requires that a locking mechanism be available to

protect critical sections. A critical section is needed when one of the

processes needs exclusive access to a shared instrument resource. To prevent

another process from accessing the instrument during the critical section, the

Õrst process locks the instrument. The lock remains in eÃect for the time

necessary to complete its task. During this time, the second process is unable

to execute any interaction with the instrument including any attempt to lock

the instrument for its own use.

The following EXECUTE transactions let you protect critical sections and can

be used in the Direct I/O, MultiDevice Direct I/O, and Interface

Operations transaction objects. Notice that the transaction syntax varies

depending on the interface and transaction object being used. For HP-IB,

Serial, and GPIO, the entire interface is locked. For VXI, individual devices

are locked.

To lock VXI devices via direct backplane access in the Direct I/O object, use

the transactions

EXECUTE LOCK DEVICE

EXECUTE UNLOCK DEVICE

In the MultiDevice Direct I/O object, use the transactions

EXECUTE vxiScope LOCK DEVICE

EXECUTE vxiScope UNLOCK DEVICE

where vxiScope is the conÕgured name of a VXI oscilloscope such as the

HPE 1428B.

To lock HP-IB, Serial, and GPIO Interfaces in the Interface Operations

object, use the transactions

EXECUTE LOCK INTERFACE

EXECUTE UNLOCK INTERFACE

3-59

Using Instruments

Advanced Topics

Supported Platforms
Table 3-4. EXECUTE LOCK/UNLOCK Support

Platform Supported I/O Interfaces

HP VEE for Windows

(PC, EPC7/8)

– HP-IB, GPIB
1

– Serial

– VXI (EPC7/8 and VXLink)
2

HP VEE for HP-UX

(HP 9000)

– HP-IB (S300 and S700)

– Serial (S700)

– GPIO (S300 and S700)

– VXI (S700 with MXI, VXLink or embedded)
2

HP VEE

(Sun SPARCstation)

– GPIB
3

1 National Instruments GPIB does not lock

2 Register and memory access of VXI devices (READ/WRITE REGISTER/MEMORY transactions)

are not lockable. Only the very Õrst execution of a transaction that attempts a direct

memory access could be locked out if the memory is mapped into the HP VEE process

space) by a prior lock in another process. After that there is no way to prevent multiple

processes from simultaneously accessing a memory location since this is shared memory.

3 Except National Instruments GPIB. IOTech Sbus GPIB card has lock and unlock interface

capabilities but they do not stack.

Execution Behavior When a version of the EXECUTE LOCK transaction executes, an attempt is

made to acquire a lock on the device or interface. If there is no pre-existing

lock owned by another process then the transaction executes completely and

the lock acquisition succeeds. If, however, a prior lock exists, the transaction

will block for the current timeout conÕgured for that device or interface. If

the other process gives up the lock within the timeout period the transaction

completes and acquires the lock. If the timeout period lapses, an error occurs

and an error message box appears. This error can be captured by an error

pin on the transaction object.

After the lock has been acquired, all subsequent I/O from Direct I/O,

MultiDevice Direct I/O, Instrument Drivers, Component Drivers,

and Interface Operations objects will be protected from any other process

attempting to communicate to that device or interface. After the critical

section has passed, the corresponding version of the EXECUTE UNLOCK

transaction can be executed.

3-60

Using Instruments

Advanced Topics

Locks only protect critical sections across process boundaries. A single

process can create nested locks by performing two EXECUTE LOCK

transactions in sequence. Both transactions will succeed as long as there

are no prior locks by another process. The process must then perform two

EXECUTE UNLOCK transactions. If only one EXECUTE UNLOCK transaction

is executed the device or interface remains locked. If a transaction attempts

an unlock without a prior lock, a run-time error occurs.

Locks only exist while the HP VEE program is executing. When an HP VEE

program Õnishes executing, all locks are removed from devices and interfaces.

This protects the user from leaving devices or interfaces locked if the program

stops executing due to normal completion, run-time errors, or a pressed Stop

button, and no EXECUTE UNLOCK transaction has executed.

Example The following program example shows the EXECUTE LOCK/UNLOCK

INTERFACE transactions in an Interface Operations object conÕgured for

HP-IB. This example would be identical for a Serial interface, too. The lock

and unlock transactions frame the UserObjects performing I/O to the devices

on the HP-IB interface at select code 7. This program will attempt to acquire

the lock three times. If the lock cannot be acquired after three attempts, a

user-deÕned error occurs.

3-61

Using Instruments

Advanced Topics

Figure 3-14. EXECUTE LOCK/UNLOCK Transactions|HP-IB

For each attempt, the EXECUTE LOCK INTERFACE transaction tries to

acquire the lock in the time allowed by the conÕgured timeout period. You

can set the timeout period in the Properties dialog box of the Interface

Operation object. The error pin attached to the Next object in the Õrst

transaction object will cause the thread to be re-executed in another attempt.

The break object after the last transaction object ensures that the thread does

not get executed, unnecessarily, a second time.

The following example shows the EXECUTE LOCK/UNLOCK DEVICE

transactions in a MultiDevice Direct I/O object. You could use the

Direct I/O object, instead of the MultiDevice Direct I/O, but that would

3-62

Using Instruments

Advanced Topics

mean using an object for each device instead of one object for the group of

devices. This is very similar to the program in the previous Õgure. A For

Count object drives a thread which tries to acquire locks on three diÃerent

devices. After the I/O activity is done in the user objects, a series of unlocks

are executed.

Figure 3-15. EXECUTE LOCK/UNLOCK Transactions|VXI

Each transaction tries to acquire its respective lock for the timeout period

conÕgured for each device. If any of the three transactions timeout an error

occurs which is trapped by the error pin. If a successful lock is followed

by an attempt resulting in a timeout error, the error pin traps the error.

However, before the program can re-execute the lock transactions, all

acquired locks must be unlocked. That is the reason for the MultiDevice

Direct I/O object attached to the error pin. It is very important that this

object try to unlock each device in the same order as the Õrst object acquired

3-63

Using Instruments

Advanced Topics

the locks. Since an error occurs if an unlock transaction is executed before

the lock transaction, an error pin is also added to the object with the unlock

transactions. If a transaction fails to acquire the lock in the Õrst object then

the same unlock transaction fails in the following object.

3-64

Using Instrument Panels

Using Instrument Panels Interactively

The open view of an Instrument Panel provides a graphical control panel

that you can use to interactively construct a measurement state. If you

connect the corresponding physical instrument to your computer and turn

Live Mode on, you can control the physical instrument interactively as you

build the measurement state. To change an individual setting, click on the

corresponding Õeld in the graphical control panel and complete the resulting

dialog box. To make a measurement and view the result, click on the display

region of a numeric or XY display. Note that XY displays may take a few

seconds to update.

3-65

Using Instruments

Using Instrument Panels

Using Instrument Panels Programmatically

To add an Instrument Panel to your program:

1. Click on I/O ¡¡) Instrument The Instrument Select or

Configure dialog box appears.

2. Click on the desired instrument to highlight it, then click on the

Instrument Panel button.

If the instrument has not been conÕgured with an instrument driver,

HP VEE will give you a choice of instrument drivers to use. Refer to the

section \ConÕguring Instruments" earlier in this chapter for conÕguration

procedures.

3. Click on the desired instrument again, or on the Get Instr button.

4. When the object outline appears, position the cursor and click once to

place the object in the work area.

To use Instrument Panels in a program, you will often use input or output

terminals to set the values of components. Each input or output terminal

actually corresponds to a component in the driver. There are two ways to

add a terminal:

– Select Add Terminal ¡¡) Data Input or Add Terminal ¡¡) Data Output

from the Instrument Panel object menu. A list box appears that lists all

the valid driver components not yet used as terminals. Double-click on the

component in the list that you wish to add as a terminal.

– Select Add Terminal by Component ¡¡) Select Input Component or

Add Terminal by Component ¡¡) Select Output Component from the

Instrument Panel object menu. After making this selection, click on

one of the Õelds or display areas in the graphical control panel to add the

corresponding component as a terminal.

In general, it is more convenient to use the Õrst method listed above because

you do not need to guess the name of the component you wish to use.

However, some components are not visible on any part of the graphical

control panel; you must access these using the second method.

3-66

Using Component Drivers

Figure 3-16. A Typical Component Driver

Using Component Drivers in a Program

To add a Component Driver to a program:

1. Click on I/O ¡¡) Instrument A list of conÕgured instruments

appears.

2. Click on the desired instrument to highlight it, then click on the

Component Driver radio button.

If the instrument has not been conÕgured with an instrument driver,

HP VEE will give you a choice of instrument drivers to use. Refer to the

section \ConÕguring Instruments" earlier in this chapter for conÕguration

procedures.

3. Click on the desired instrument again, or on the Get Instr button.

4. When the object outline appears, position the pointer and click once to

place the object in the work area.

Component Drivers are generally used when you need to repeatedly

execute an instrument control object while changing only a few components.

Component Drivers are preferred over Instrument Panels in these

situations because Component Drivers write and read only the components

you specify and, as result, they execute faster.

3-67

Using Instruments

Using Component Drivers

Figure 3-17 illustrates this type of situation. This program measures the

frequency response of a Õlter by sweeping the input frequency sourced by

fgen and measuring the response using dvm. Since the subthread attached to

For Log Range executes repeatedly, component drivers are used to improve

execution speed. Note that state drivers are still appropriate for the initial set

up of fgen and dvm.

Figure 3-17. Using Instrument Panels and Component Drivers

The program shown in Figure 3-17 is stored in the Õle manual15.vee in your

examples directory.

3-68

Advanced I/O Control

This section explains the objects accessed via the I/O ¡¡) Advanced I/O

menu and how to download measurement subprograms to instruments.

Polling

HP VEE supports all the serial poll operations deÕned by IEEE 488.1. All

HP-IB instruments, and all VXI message-based instruments, support serial

poll operations. VXI message-based devices are, by deÕnition, IEEE 488.2

compliant. VXI register-based devices are IEEE 488.2 compliant if an I-SCPI

driver is available. HP VEE does not support parallel poll operations.

You can obtain an instrument's serial poll response in two ways:

Object Serial Poll Behavior

Device Event The Device Event object can poll the speciÕed

instrument once and output a scalar integer, which is

the serial poll response using the NO WAIT option. The

Device Event object can also wait for a speciÕc bit

pattern within the serial poll response byte by using a

user supplied bit mask and the ALL CLEAR and ANY SET

options.

Direct I/O Direct I/O objects for HP-IB instruments support a

WAIT SPOLL transaction. This transaction repeatedly

polls an instrument until the serial poll response byte

matches a speciÕc bit pattern, using a user-supplied bit

mask and the ALL CLEAR or ANY SET options. Refer to

Chapter 6 for details about Direct I/O.

3-69

Using Instruments

Advanced I/O Control

The Device Event object has special execution properties when conÕgured

for Spoll that are discussed in the next section, \Service Requests." This

behavior allows for other concurrent threads to continue execution while

waiting for a speciÕc bit pattern using the mask value and the ALL CLEAR or

ANY SET options. NO WAIT will simply execute immediately and return the

status byte of the HP-IB or message-based VXI instrument. Both objects have

a Timeout control input available from their object menus (Add Terminal) so

you can programmatically set a timeout period.

Figure 3-18. Device Event ConÕgured for Serial Polling

3-70

Using Instruments

Advanced I/O Control

Service Requests

To detect a service request (SRQ message) for a VXI instrument, use

the Device Event object (I/O ¡¡) Advanced I/O ¡¡) Device Event).

To detect a service request for an HP-IB instrument or RS-232, use the

Interface Event object (I/O ¡¡) Advanced I/O ¡¡) Interface Event).

The Device Event and Interface Event objects provide special behavior

for interrupt-like execution. To view this behavior, you may wish to execute

your program with Edit ¡¡) Show Exec Flow enabled.

For example, Interface Event behaves in a program as follows:

1. Before an Interface Event object (conÕgured for HP-IB and with the

WAIT option speciÕed) operates, execution proceeds normally with each

thread sharing execution with equal priority.

2. When a Interface Event object operates, execution of the

thread attached to the Interface Event data output pauses at

the Interface Event object. Other threads not attached to

Interface Event will continue to execute.

3. When an SRQ is detected on the speciÕed interface, the data output of

Interface Event is activated.

At this point, execution of all other threads is blocked until the thread

attached to the data output of Interface Event completes execution.

The program shown in Figure 3-19 shows how to handle service requests. In

the case shown, it is possible that either dvm or scope is responsible for a

service request. The program determines the originator of the service request

by using Device Event to obtain the status byte of each instrument. Each

status byte is tested using If/Then/Else and the bit(x,n) function to

determine if bit 6 is true. If bit 6 is set, then the corresponding instrument is

responsible for the service request. The Until Break object automatically

re-enables the entire thread to handle any subsequent service requests. The

Device Event object is conÕgured for NO WAIT, meaning the status byte is

returned without using the mask value. If a mask value of 64 is used and

the Device Event object is conÕgured for ANY SET, the If/Then/Else and

bit(x,n) function need not be used.

Note that diÃerent instruments have diÃerent requirements for clearing

and re-enabling service requests. In Figure 3-19, dvm requires only a serial

3-71

Using Instruments

Advanced I/O Control

poll to clear and re-enable its SRQ capability. However, scope requires the

additional step of clearing the originating event register.

The Device Event object can be used to detect a service request from

a message-based VXI instrument. The instrument that writes a request

true event (RT), which is evaluated as a request for service, into the VXI

controller's signal register will receive a Read STB word serial protocol

command. The message-based instrument will send its status byte back

to the controller, and will write a request false event (RF) into the VXI

controller's signal register. The status byte will be used with the supplied

mask value and the ANY SET or ALL CLEAR options to determine which bit

(besides bit 6) is set. Thus one object, the Device Event can be used to

detect a service request from a message-based VXI device and determine why

the request occurred.

Both objects have a Timeout control input available from their object menus

(Add Terminal) so you can programmatically set a timeout period. For

further information see the Device Event and Interface Event entries in

the HP VEE Reference.

3-72

Using Instruments

Advanced I/O Control

Figure 3-19. Handling Service Requests

The program shown in Figure 3-19 is saved in the Õle manual16.vee in your

examples directory.

Monitoring Bus Activity

You can use Bus I/O Monitor to record all bus messages transmitted

between HP VEE and any talkers and listeners. Note that Bus I/O Monitor

records only those bus messages inbound or outbound from HP VEE.

3-73

Using Instruments

Advanced I/O Control

You can monitor any supported interface (HP-IB, VXI, serial, or GPIO) using

a Bus I/O Monitor. Each instance of a Bus I/O Monitor monitors exactly

one hardware interface.

Figure 3-20 shows the bus messages sent to write *RST to an instrument at

HP-IB address 717.

Figure 3-20. The Bus I/O Monitor

The display area of Bus I/O Monitor contains Õve columns:

– Column 1 - Line number

– Column 2 - Bus command (*), or outbound data (>), or inbound data (<)

– Column 3 - Hexadecimal value of the byte transmitted

– Column 4 - 7-bit ASCII character corresponding to the byte transmitted

– Column 5 - Bus command mnemonic (bus commands only, blank for data)

Note that the Bus I/O Monitor executes much faster as an icon than as an

open view.

3-74

Using Instruments

Advanced I/O Control

Low-Level Bus Control

You can send low-level bus messages in two ways:

Object Bus Message Capability

Interface

Operations

This object allows you to send arbitrary bus messages to any

HP-IB device, or reset the VXI interface and Õre various VXI

backplane trigger lines.

Direct I/O Direct I/O objects for HP-IB, message-based VXI

instruments, and I-SCPI supported register-based VXI

instruments lets you send CLEAR, LOCAL, REMOTE, and

TRIGGER commands using EXECUTE transactions.

For details about Interface Operations and Direct I/O, please refer to

\Communicating with Instruments" in Chapter 6.

Figure 3-21. Two Methods of Low-Level HP-IB Control

Instrument Downloading

Some instruments allow you to download macros, measurement routines,

or complete measurement programs. For example, some HP instruments

support HP Instrument BASIC; you can write complete HP Instrument BASIC

3-75

Using Instruments

Advanced I/O Control

programs that execute inside the instrument. Here is one approach for using

HP VEE to download a measurement routine to an instrument:

1. Create and maintain your measurement routine using a text editor, such as

vi. Save the measurement routine in an ordinary text Õle.

2. Use From File to read the Õle.

3. Use Direct I/O to write the contents of the Õle to the instrument.

The following section presents a complete example of downloading using

this approach. Please refer to Chapter 6 for details about From File and

Direct I/O.

Example of Downloading Figure 3-22 shows a program that downloads a measurement subprogram to

the HP 3852A. This example downloads a simple subprogram, BEEP2, that

beeps twice and displays a message.

Since the HP 3852A is not included in the default I/O conÕguration, you must

follow these steps to open the on-line example:

1. Use I/O ¡¡) Instrument . . . to add a device with the settings listed

here. Enter these settings in the Device Configuration dialog box

exactly including spaces:

Name: HP 3852A

Interface: HP-IB

Address: Enter 0 if you do not have an HP 3852A connected to your

computer. If you do have an HP 3852A, enter its address instead; the

factory default is 709.

Device Type: HP 3852A

Timeout: 5

Byte Ordering: MSB

Live Mode: Enter OFF if an HP 3852A is not connected to your

computer or ON if an HP 3852A is connected.

2. Click on the Save button.

3-76

Using Instruments

Advanced I/O Control

Here are the contents of the downloaded Õle manual17.dat:

DISP MSG "LOADING BEEP2"

WAIT 1

SUB BEEP2

DISP "BEEP2 CALLED"

BEEP

WAIT .5

BEEP

SUBEND

DISP MSG "BEEP2 LOADED"

The manual17.dat Õle is in the Instrument I/O section of your examples

directory.

3-77

Using Instruments

Advanced I/O Control

Figure 3-22. Downloading To An Instrument

The program shown in Figure 3-22 is saved in the Õle manual17.vee in the

Instrument I/O section of your examples directory.

3-78

Using Instruments

Advanced I/O Control

MultiDevice Direct I/O

The MultiDevice Direct I/O object lets you control several instruments

from a single object using direct I/O transactions. The object is a standard

transaction object, and works with all interfaces that HP VEE supports. It

appears the same as the Direct I/O object, except each transaction in

MultiDevice Direct I/O can address a separate instrument. Since the

MultiDevice Direct I/O object does not necessarily control a particular

instrument as the Direct I/O object does, the title does not list an

instrument name, address, or live mode condition.

By using the MultiDevice Direct I/O, you can reduce the number of

instrument-speciÕc Direct I/O objects in your program, which optimizes

icon-to-icon interpretation time. This performance increase is especially

important for the VXI interface which is faster than HP-IB at instrument

control. The following Õgure shows the MultiDevice Direct I/O object and

its I/O Transaction dialog box communicating with an HPE 1413B, HPE

1328, and HP 3325.

Figure 3-23. MultiDevice Direct I/O Controlling Several Instruments

Transaction Dialog Box The I/O Transaction dialog box is similar to the one used by Direct I/O,

except it contains two additional Õelds. The common Õelds work the same

way. The following sections describe the two additional Õelds.

3-79

Using Instruments

Advanced I/O Control

Device Field. The Device Field contains the name of any of the currently

conÕgured instruments. Clicking on the down arrow presents a list of

available conÕgured instruments. You can select a diÃerent instrument for

each transaction.

Address Field. The Address Field speciÕes the address of the device

showing in the Device Field. The Address Field has two modes|Default

Address and Address:. Default Address sets HP VEE to use the address

entered when the instrument was originally conÕgured. Address: includes

a text box that lets you enter a diÃerent address. You can enter a speciÕc

numeric value, a variable name, or an expression. The entry must evaluate

to a valid address. The value entered for Address: will change the device's

address when the object executes, which is like the address control pin

action. The following Õgure shows the I/O Transaction dialog box using

Address:.

Figure 3-24. Entering an Instrument Address as a Variable

Editing Transactions As you edit transactions using the I/O Transaction dialog box, only those

transactions allowed by the type of instrument are accepted. For example,

if the name showing in the Device Field is conÕgured as a VXI device

controlled via the VXI backplane, then you can conÕgure a REGISTER or

MEMORY access transaction.

If the I/O Transaction dialog box is conÕgured for a particular type of

transaction and you change the Device Field name, then the transaction

must remain correct for the diÃerent instrument. If the transaction is

incorrect, entries in the I/O Transaction dialog box will change to the last

valid transaction for that instrument type. A REGISTER access transaction for

3-80

Using Instruments

Advanced I/O Control

a VXI device would be incorrect if you change the Device Field name to a

non-VXI instrument.

Object Menu The menu for MultiDevice Direct I/O is similar to the Direct I/O

menu. The MultiDevice Direct I/O menu does not include the Show

Config . . . or Upload State menu choices. These menu choices are for

speciÕc instrument conÕgurations. Use the Direct I/O object to show an

instrument's conÕguration or to upload a physical instrument's settings.

There is no live mode indicator for any of the possible devices in the

transactions. To control live mode for an instrument, click on I/O ¡¡)

Instrument, then edit the selected instrument's conÕguration.

3-81

Monitoring Instrument Drivers

This section explains how to use the ID Monitor to observe and control the

states of HP Instrument Drivers as you develop HP VEE programs. The ID

Monitor lets you arrange ID panels in a separate window so you can easily

monitor and interact with the instrument controls. This is especially useful

when using VXI devices which usually have no display to indicate status.

The main view of the ID Monitor is the Monitor Window. You can open the

Monitor Window in the HP VEE program space or in a separate utility called

HP VEE Front Panels.

During program development, you can use the ID Monitor in the HP VEE

window as a debugging tool to observe and adjust instrument settings. Using

the ID Monitor in HP VEE Front Panels provides an environment to run

HP VEE programs in one window, and interact with instruments in a separate

window. Again, a beneÕt of the ID Monitor is the visibility of VXI instrument

states.

Using the Monitor Window

To open the Monitor Window in the HP VEE program space, click on I/O ¡¡)

ID Monitor. Only one Monitor Window can be open at a time in HP VEE.

You can then reposition and resize the window as needed. Once the Monitor

Window is open, it visible and operable in the detail and panel views of a

HP VEE program.

3-82

Using Instruments

Monitoring Instrument Drivers

Figure 3-25. The ID Monitor Window in HP VEE

The Monitor Window's object menu and the buttons at the bottom let you use

its features. Several of the object menu commands are the same as those in

other HP VEE object menus. The following sections describe the tasks you

can do using the object menu commands that are speciÕc to the Monitor

Window and the buttons.

Adding an ID to the

Monitor Window

The IDs added to the Monitor Window are called Monitor IDs. To add a

Monitor ID to the Monitor Window, click on Add ID to Monitor Window . . .

in the object menu. This lets you add IDs that are currently deÕned in the

HP VEE I/O conÕguration Õle, and have an associated ID Õle name. An ID

already in the Monitor Window will not appear in the list.

3-83

Using Instruments

Monitoring Instrument Drivers

Figure 3-26. A Monitor ID in the Monitor Window

ConÕguring Instruments To add new instruments or reconÕgure existing ones, click on Configure

Instruments . . . in the object menu. This gives you the opportunity to

conÕgure instruments from the Monitor Window as well as the HP VEE I/O

menu.

Arranging ID Panels To organize ID panels in the window, click on Arrange in the object menu.

You have two arrangement choices: Tile and Cascade.

Finding an ID If you have many ID panels in the Monitor Window, you can quickly Õnd a

particular ID. Click on Find ID . . . in the object menu. A list box appears

with a list of ID names currently in the Monitor Window. Select the panel

name you want, then click on OK. The selected panel appears in the Monitor

Window's upper left corner.

3-84

Using Instruments

Monitoring Instrument Drivers

Updating ID States In an HP VEE program containing one or more views of an ID and

corresponding Monitor IDs in the Monitor Window, the IDs in the program

change states as the program runs. The ID Monitor displays these state

changes depending on the update mode's status.

– In the update mode, the Monitor IDs go into a free run mode. In free run,

the Monitor IDs continually take readings directly from the associated

instruments that are connected to the interface. The Monitor IDs reŒect the

physical instrument's actual settings. There is no interaction with the ID

states in HP VEE program.

– When the update mode is suspended, the Monitor IDs interact with the

IDs in the HP VEE program. As the program runs and instrument states

change, the Monitor IDs always reŒect each instrument state as they occur.

To start the update mode, click on the Update button in the Monitor Window.

To stop the update mode, click on the Suspend button. The update mode also

stops if an error occurs during updates, and you re-run or continue your

HP VEE program.

In the update mode, the ID Monitor updates the panels in the order that they

were added to the Monitor Window. The Monitor IDs must meet the following

rules to be updated:

– The ID code contains an update component.

– The ID in the HP VEE program is in live mode. (Use I/O¡¡)

Instrument . . . , then Edit Instrument in the Instrument Select or

Configure dialog box).

– The Monitor ID has the auto-update property turned on. (Use Edit

Properties . . . in the Monitor ID object menu.)

Storing and Recalling

Global States

You can store the current instrument states of all of the Monitor IDs in the

Monitor Window in a state Õle, then recall them later when needed. To store

the instrument states, click on Store Global State in the object menu. A

dialog box appears that lets you enter the Õle name.

To recall a previously stored state Õle, click on Recall Global State. Only

IDs contained in the state Õle will appear in the Monitor Window. Each ID

with an entry in the state Õle, but is not currently in the Monitor Window,

will be added to the window. All other IDs in the window are removed. The

state of each of the IDs in the Monitor Window will then be set to the state

saved in the Õle.

3-85

Using Instruments

Monitoring Instrument Drivers

Removing the Monitor

Window

To remove the ID Monitor window from the HP VEE program space, click on

Cut. This removes the window and all IDs contained in it from the HP VEE

program space and deletes all information about the IDs that were in the

window. To resume monitoring a program, you would need to open the ID

Monitor again, and add the IDs.

More About Monitor IDs

The IDs that you add to the Monitor Window are called Monitor IDs. Monitor

IDs are diÃerent from IDs used in HP VEE programs because they do not

use input or output terminals. Monitor IDs are useful during program

development because they convenient way to observe the state changes of

instruments used in your program, and let you interact directly with the

instruments to change their settings as needed.

To add a Monitor ID, click on Add ID to Monitor Window . . . in the Monitor

Window's object menu. Once the ID appears in the Monitor Window, you can

interact with its settings when a HP VEE program is running and when the

Monitor Window is updating ID states. Timeouts are trapped in the same

manner as in HP VEE. If you try to load a Monitor ID that has not been

compiled, the ID Monitor will run the ID compiler, then load the compiled ID.

Most of the commands in a Monitor ID object menu work the same as other

object menus in HP VEE. The following sections explain how to use the

commands that are speciÕc to Monitor IDs.

Editing Properties The ID Monitor can update an ID's state when its auto-update property is

enabled. To enable auto-update, click on Edit Properties . . . in the

Monitor ID's object menu. The Auto-update Õeld in the resulting dialog

box will be active if the instrument in HP VEE is conÕgured with live mode

on, and the ID code has an update component. The Auto-update Õeld is

grayed out if the ID does not contain an update component, whether or not

live mode is on.

3-86

Using Instruments

Monitoring Instrument Drivers

Storing and Recalling a

Monitor ID State

To store the current state of a Monitor ID to a Õle, click on Store State . . .

in its object menu.

To recall a previously stored state Õle for a Monitor ID, click on Recall

State . . . in its object menu. The Monitor ID state is immediately set to

the settings contained in the recalled state Õle. The physical instrument is

also set to the recalled stated if it is connected to the interface and set to live

mode.

Synchronizing Monitor ID

State with the Instrument

To synchronize a Monitor ID's state to the state of the instrument, click on

Sync in its object menu. This command executes immediately when selected.

The Sync command is active under the following conditions:

– The ID code contains a sync component.

– The Monitor ID has live mode turned on.

– The Monitor Window is not automatically updating Monitor IDs.

HP VEE Front Panels

HP VEE Front Panels is a separate utility that appears similar to the main

HP VEE application, and runs in a separate window. Front Panels runs the ID

Monitor which gives you a convenient way to monitor and control instrument

states outside of the HP VEE program space as you run programs in HP VEE.

The menu bar contains only a reduced set of the File and I/O menus, a

complete Help menu, and does not contain the toolbar buttons. You can

run HP VEE and Front Panels at the same time, and they share the same

conÕguration Õles. Besides providing the same ID Monitor functions described

in the previous sections, Front Panels lets you conÕgure instruments and

monitor bus I/O as in HP VEE.

Running Front Panels To start HP VEE Front Panels on UNIX systems, enter the following

command:

veetest -idmonitor

3-87

Using Instruments

Monitoring Instrument Drivers

On MS Windows systems, use the Run command in the Windows Program

Manager. Select File ¡¡) Run . . . , then enter the command:

\VEE\VEE.EXE -IDMONITOR

You may need to include your HP VEE installation directory name if it is

diÃerent.

Using Front Panels The File and I/O menus contain a reduced set of commands appropriate for

using Front Panels. All File commands available in Front Panels behave as

described for HP VEE.

To add and conÕgure instruments, click on I/O ¡¡) Instrument . . . As

shown in Figure 3-27, the resulting Instrument Configure dialog box lets

you add new instruments and edit conÕgurations of listed instruments. The

dialog box looks diÃerent than the one used in HP VEE since Front Panels

uses only instrument panels, not component drivers or Direct I/O. HP VEE

and Front Panels use the same .veeio Õle, so conÕguration changes made in

one application aÃect the other.

Figure 3-27. ConÕguring Instruments in the HP Front Panels Utility

To open the ID Monitor, click on I/O ¡¡) ID Monitor. The ID Monitor

behaves as described in the previous sections.

To monitor bus activity in Front Panels, click on I/O ¡¡) Bus I/O Monitor.

This is the same bus monitor object used in HP VEE. See \Advanced I/O

Control" for more information.

3-88

Troubleshooting

Instrument Control Troubleshooting

Problem Remedy/Cause

Instruments do not respond at

all.

All these conditions must be met:

– Instruments must be powered on.

– Instruments must be connected to the interface by a functioning cable.

– The interface select code and instrument addresses must match settings in

the Address Õeld of the Device Configuration dialog box.

The address for each physical instrument must be unique.

– The Live Mode Õeld in the Device ConÕguration dialog box must be

set to ON.

– You or your system administrator must properly conÕgure HP VEE to work

with instruments. Normally this is done during HP VEE installation; refer to

the installation guide.

– The system on which you are working may not be conÕgured properly. You

or your system administrator must properly conÕgure the UNIX kernel with

the proper drivers and/or interface cards.

HP VEE locks up while trying to

communicate with an instrument.

(UNIX Only) If you are running HP VEE as a foreground process, position the

cursor in the window in which you typed veetest and press

ÄCTRLÅ-ÄCÅ (or the key indicated by the intr setting when you run the

UNIX stty command). If you have problems with this, ask your system

administrator for help.

If your are running HP VEE as a background process, use the UNIX command

kill -2 vee pid, where vee pid is the process identiÕcation number for

HP VEE.

(MS Windows Only) Position the cursor in the HP VEE for Windows window

and press ÄCTRLÅ-ÄCÅ. If the program does not halt and return control to

you press ÄCTRLÅ-ÄALTÅ-ÄDELÅ. Windows will display a menu allowing

you to continue, abort the program or reboot your computer.

3-89

Using Instruments

Troubleshooting

Instrument Control Troubleshooting (continued)

Problem Remedy/Cause

Cannot determine the instrument

address.

For GPIO and serial interfaces, the instrument address is the same as the

interface select code. HP-IB instrument addresses are set by hardware switches

or front panel commands. Older instruments use small switches located on the

rear panel near the HP-IB connector. Newer instruments set and query the

address via front panel buttons. Consult your instrument's programming manual

for details. Refer to the section \Device ConÕguration Dialog Box" earlier in this

chapter for examples of specifying addresses. VXI devices have logical

addresses set by switches on the outside of the cards (usually the cards must

be removed from the card cage to access the switches).

Cannot determine the interface

select code.

In some cases, the select code is printed on the rear panel of the interface

itself. Contact your system administrator for details about your hardware

conÕguration. Refer to the section \Device ConÕguration Dialog Box" earlier in

this chapter for examples of specifying addresses.

These are the factory default select codes for commonly used interfaces:

– HP-IB : 7

– Serial: 9, 17

– GPIO : 12

– VXI : 16

3-90

Related Reading

This section lists publications that contain more detailed information about

instrument control topics discussed in this chapter.

– Tutorial Description of the Hewlett-Packard Interface Bus (Hewlett-Packard

Company, 1987), part number 5021-1927.

This document provides a condensed description of the important concepts

contained in IEEE 488.1 and IEEE 488.2. If you are unfamiliar with the

IEEE 488.1 interface, this is the best place to start.

– IEEE Standard 488.1-1987, IEEE Standard Digital Interface for

Programmable Instrumentation (The Institute of Electrical and Electronics

Engineers, 1987).

This standard deÕnes the technical details required to design and build

an HP-IB (IEEE 488.1) interface. This standard contains electrical

speciÕcations and information on protocol that is beyond the needs of most

programmers. However, it can be useful to clarify formal deÕnitions of

certain terms used in related documents.

– IEEE Standard 488.2-1987, IEEE Standard Codes, Formats, Protocols,

and Common Commands For Use with ANSI/IEEE Std 488.1-1987 (The

Institute of Electrical and Electronics Engineers, 1987).

This document describes the underlying message formats and data

types used by instruments that implement the Standard Commands for

Programmable Instruments (SCPI). It is intended more for instrument

Õrmware engineers than for instrument users and programmers. However,

you may Õnd it useful if you need to know the precise deÕnition of certain

message formats, data types, or common commands.

– IEEE Standard 728-1982, IEEE Recommended Practice For Code and

Format Conventions For Use with ANSI/IEEE Std 488-1978, etc. (The

Institute of Electrical and Electronics Engineers, 1983).

– VMEbus Extensions for Instrumentation, including: \VXI-0, Rev. 1.0:

Overview of VXIbus SpeciÕcations" and \VXI-1, Rev. 1.4: System

SpeciÕcation," VXIbus Consortium, Inc., 1992.

3-91

Using Instruments

Related Reading

4

Using Records and

DataSets

Using Records and DataSets

This chapter introduces two concepts: the Record data type and the

DataSet, which is a collection of Record containers saved into a Õle for later

retrieval. There are several HP VEE objects that allow you to create and

manipulate records, including: Record Constant, Build Record, UnBuild

Record, Merge Record, SubRecord, Set Field, and Get Field. The

To DataSet and From DataSet objects allow you to store and retrieve

records to and from DataSets. This chapter gives an overview of how to use

the Record data type, and how to use DataSets to store Record containers.

However, for speciÕc information on an individual object, refer to the

corresponding reference section in the HP VEE Reference.

Let's begin by looking at the Record data type.

4-2

Record Containers

A container of the Record data type has named Õelds which represent data.

You can have as many named Õelds as you like in a record. Each Õeld can

contain another record, a scalar, or an array. Let's look at a simple record,

created with the Record Constant object.

The Record Constant object allows you to create records \by hand." Just

conÕgure the Record Constant as a scalar (array elements = 0) or as an

array (array elements = non-zero) with Edit Properties in the object

menu. The Record Constant in the following example is conÕgured as a

record array with four array elements. The record consists of Õve Õelds: the

Text Õelds Name, Address, and City, and the Int32 Õelds EmplNo and Zip.

The Record Constant allows you to step through the record, from one array

element to the next, with the First, Prev, Next, and Last buttons. You can

edit each Õeld as you go.

4-3

Using Records and DataSets

Record Containers

Figure 4-1. A Simple Record Container

When the program is run, the entire record is output on the Record output

pin. The AlphaNumeric display shows the entire record, with four array

elements (0 through 3), each consisting of Õve record Õelds enclosed in braces

(\{}").

4-4

Accessing Records

In the previous example we have seen how to output a record from a Record

Constant and display the entire record in an AlphaNumeric display. This

isn't very useful unless you can access the record and extract individual

Õelds. Let's look at some ways to do this, using the same Record Constant

example.

First, you can use the Get Field object to extract an individual Õeld from

the record. In the following example Get Field objects are used to extract

the Name and EmplNo Õelds:

Figure 4-2. Retrieving Record Fields with Get Field

The \dot" syntax, for example: Rec.Name and Rec.EmplNo, is described

in detail in \Using Records in Expressions" in Chapter 3 of the HP VEE

Reference. Basically, Rec.Name means \get the Name Õeld from the record on

the Rec input pin." This syntax can be used in an expression in a Formula

object, or in any other expression that is evaluated at run time. For example,

you could use this syntax in a transaction in the To String object, but more

about that later.

In the previous example, the entire Name and EmplNo Õelds were obtained,

that is, the entire array for each Õeld. But suppose you want the Name and

EmplNo Õelds from a single array element. You can use the array syntax

4-5

Using Records and DataSets

Accessing Records

Rec[1].Name and Rec[1].EmplNo to obtain just the second element

(\element 1") of each Õeld:

Figure 4-3. Using Array Syntax in Get Field

4-6

Using Records and DataSets

Accessing Records

Another, often more eœcient, way to retrieve several or all Õelds from a

record is to use the UnBuild Record object, as shown in the next example:

Figure 4-4. Retrieving Record Fields with UnBuild Record

The UnBuild Record object not only allows you to add outputs for every

Õeld in the record, but provides Name List and Type List outputs. These

outputs list the name and type of each Õeld in the record. To save space and

make the program easier to read, UnBuild Record is shown in its icon view.

However, just load the program and switch to the open view if you desire.

The program is saved in the Õle manual38.vee in your examples directory.

4-7

Building Records

Although the Record Constant object is useful to create and edit simple

records, it would be cumbersome to create a large record that way. You may

already have the data that you need in a Õle or in an array, and you may

want to \build" a record from that data. In such cases, you can use Build

Record to build a record just as you can use UnBuild Record to retrieve

Õelds from a record.

N O T E

The Record data type has the highest precedence of all HP VEE data types. However, data cannot be

converted to and from the Record data type through the automatic promotion/demotion of data types

described in How to Use HP VEE. For example, you cannot send Record data into an input terminal

constrained to be Real. Instead, you must perform these conversions by using Build Record and

Unbuild Record, or with the Rec.A \dot" syntax described earlier.

When you build a record from individual data components with Build

Record, you must deÕne the data shape of the output Record container.

The Build Record object gives you two Output Shape choices: Scalar

and Array 1D. In most cases you will Õnd that Scalar, the default, is the

appropriate choice for Output Shape.

The following example shows the diÃerence between Scalar and Array 1D

in the output record built from two input arrays:

4-8

Using Records and DataSets

Building Records

Figure 4-5. The EÃect of Output Shape in Build Record

As you can see in the Õgure, when Scalar is selected, the output record is

a scalar record consisting of two Õelds, each being one of the input arrays.

On the other hand, when Array 1D is selected for the same input data, the

output record is a record array with the same number of elements as the two

input arrays. The data is matched, element for element, in the output record.

If two input arrays have diÃerent numbers of elements, only Scalar is

allowed as the Output Shape. To create an Array 1D output record, all

input arrays must have the same number of elements or an error will occur.

However, you can mix scalar and array input data, as shown in the next

example:

4-9

Using Records and DataSets

Building Records

Figure 4-6. Mixing Scalar and Array Input Data

In this case, the scalar Real value 1 is repeated Õve times in the output record

array if Array 1D is selected.

For further details, refer to the Build Record section in the HP VEE

Reference.

Editing Record Fields

You can use the Set Field object to modify a Õeld in a record. The Set

Field object is an assignment statement consisting of a left-hand expression

set equal to a right-hand expression. The left-hand expression speciÕes the

Õeld that you want to modify, so it is restricted to the \dot" syntax (for

example, Rec.A or Rec[1].A). The right-hand expression can be any

HP VEE expression. The right-hand expression is evaluated and the record

Õeld speciÕed by the left-hand expression is assigned that value. Let's look at

an example:

4-10

Using Records and DataSets

Building Records

Figure 4-7. Using Set Field to Edit a Record

In this example, a Õve element record array is built with Build Record. The

Set Field object speciÕes that the Õeld Rec[1].A (the A Õeld of record

element 1) is to be assigned the value A*10. There is potentially a confusing

point here. In the left-hand expression, the A in Rec[1].A refers to the A

Õeld of the record. However, in the right-hand expression, the A in A*10

refers to the value at the A input of the Set Field object. Otherwise, the

statement :

Rec[1].A = A*10

is very similar to a BASIC assignment statement such as:

A=B*10

At any rate, the variable A has the value 33, so A*10 is evaluated as 330,

which is assigned to Rec[1].A, as shown in the Õgure. Note that none of the

other values of the record have changed.

For more information about the Set Field object, refer to the corresponding

reference section in the HP VEE Reference.

4-11

Using Records and DataSets

Building Records

Building Records Containing Waveforms

So far, we have only considered simple records containing scalar and array

data. However, you'll Õnd that the Record data type is very useful to contain

waveform data. Let's look at an example:

Figure 4-8. Building a Record from Waveform Data

In this example the cosine wave output by a Function Generator object

and the current time from the now() function are built into a record. The

4-12

Using Records and DataSets

Building Records

sine wave is the B Õeld of the record, so Rec.B in the Get Field object

retrieves the waveform, which is output to an XY Trace object. But here's a

useful \trick" | the time when the waveform was generated is displayed in

the title Õeld of the XY Trace object. Here is how this works. First, the \dot"

syntax Rec.A in the transaction in the To String object retrieves the time

from Õeld A in the record. Further, the transaction is conÕgured to output the

resulting time in the format DATE:WDMY TIME:HMS:H24. Thus, the date and

time in that format is output to the Title control input on the XY Trace

object. The title becomes: Tue 29/Sep/1992 15:19:17.

This program is saved in the Õle manual39.vee in your examples directory.

4-13

Using Global Records

In chapter Chapter 2 we brieŒy looked at global variables, and the Set

Global and Get Global objects. We also looked at using global variables in

UserObjects. In many cases you may have several related global variables

of diÃerent data types and shapes. It is often useful to group these global

variables together into one global variable, which is a record. Let's look at

how to create and use global variables of the Record data type. The process is

really quite simple. Just build the record with Build Record and output it to

the Set Global object, as shown in the following example:

Figure 4-9. Using a Global Record

In the example, the output of the Function Generator and Noise

Generator are built into a record, which is output to the Set Global object.

4-14

Using Records and DataSets

Using Global Records

Set Global creates the global variable named globRec (a record), which can

be called with a Get Global or from an expression.

In the example, expressions in the Get Field and Formula objects, inside

the UserObject, retrieve the waveform data from the global record. Note that

a global record, like any global, is valid in any context, including a UserObject

or UserFunction.

The expression globRec.A in the Get Field object retrieves Õeld A of

the record (the sine wave) and outputs it to the top XY Trace object. The

expression globRec.A+globRec.B retrieves and adds both Õelds of the

record, outputting the combined waveform (a noisy sine wave) to the bottom

XY Trace object.

4-15

Using DataSets

As we have seen, HP VEE data (including waveforms) can be built into

records and later retrieved. But what really makes this useful is the ability to

store records using DataSets.

A DataSet is a collection of Record containers saved into a Õle for later

retrieval. The To DataSet object collects Record data on its input and writes

that data to a named Õle (the DataSet). Let's look at an example of how this

is done.

Figure 4-10. Using To DataSet to Save a Record

Two waveforms, a sine wave and a noise waveform, are output to the Build

Record object, which builds a record. The record is then output to the To

DataSet object, which writes the data to the Õle myData. Note that Clear

File at PreRun is checked so that any \old" data already stored in myData

will be cleared.

4-16

Using Records and DataSets

Using DataSets

Once the data has been saved as a DataSet, you can use From DataSet to

retrieve the record, which can then be unbuilt. The following program shows

this.

Figure 4-11. Using From DataSet to Retrieve a Record

The From DataSet object retrieves the record data from myData, and outputs

the data to Unbuild Record, which separates out the sine wave and noise

data Õelds. In this example, the sine wave, the noise waveform, and the sum

of the two waveforms are each displayed in a separate XY Trace object.

The pair of programs of this last example are saved in the Õles

manual40.vee and manual41.vee in your examples directory.

4-17

Using Records and DataSets

Using DataSets

For further information, refer to the To DataSet and From DataSet

reference sections in the HP VEE Reference.

4-18

5

Creating User-DeÕned

Functions

Creating User-DeÕned Functions

HP VEE supports three kinds of user-deÕned functions, the UserFunction,

Compiled Function, and Remote Function. The method for creating each

type of user-deÕned function, and for incorporating it into the HP VEE

process, is diÃerent. However, all of these functions can be called using the

Call Function object, or from certain expressions. Let's begin by looking at

the easiest to use, the UserFunction.

5-2

UserFunctions

A UserFunction is a user-deÕned function created from a UserObject by

executing Make UserFunction from the object menu. The UserFunction

exists within the HP VEE process. Though the objects composing a

UserFunction are not visible as in a UserObject, it provides the same

functionality as the original UserObject, except that the UserFunction does

not time slice. You can call a UserFunction with the Call Function object,

or from certain expressions. The major advantage of creating a UserFunction

is that you can call the same UserFunction several times in your program.

Thus, there is only one UserFunction to edit and maintain, rather than

several instances of a UserObject. A UserFunction can be created and

called locally within an HP VEE program, or it can be saved in a library and

imported into a program with Import Library.

Let's begin with an example of creating, editing, and calling a UserFunction

locally within a program.

Creating a UserFunction

The Õrst step in creating any UserFunction is to create a UserObject (refer to

UserObjects in How to Use HP VEE). The following program contains a

UserObject that adds a noise component to the waveform on its Y input, and

then outputs the modiÕed waveform on its Y+Noise output terminal. Note

that the amplitude of the noise component is controlled by the Real Slider

connected to the Amplitude input of the UserObject.

5-3

Creating User-DeÕned Functions

UserFunctions

Figure 5-1. Program with UserObject

In our example, the UserObject adds a noise component to the 100 Hz sine

wave output by the Function Generator. You may want to load this

program and follow along with our example. The example is saved in the Õle

manual42.vee in your examples directory.

Note that the UserObject is named noiseUF in the example program.

When you convert the UserObject into a UserFunction, the name in the

title Õeld will become the name of the UserFunction. You can then call the

UserFunction by including this function name in a Call Function object, or

in certain expressions.

5-4

Creating User-DeÕned Functions

UserFunctions

N O T E

It is important that you enter the desired name for your User Function as the title of the original

UserObject. If you leave the title Õeld as UserObject, the UserFunction will end up with that

name. If the name in the title Õeld conŒicts with any existing UserFunction, you will be prompted for

a diÃerent name when you select Make UserFunction.

To convert the UserObject into a UserFunction, select Make UserFunction

from the UserObject's object menu. The UserObject will disappear, being

replaced by a Call Function object with the same input and output

terminals, as shown in the following example.

Figure 5-2. UserObject Replaced by Call Function

5-5

Creating User-DeÕned Functions

UserFunctions

Actually, what happens is that the UserObject is converted into a

UserFunction, named noiseUF, which exists in the \background" of the

HP VEE process, but which contains the same functionality as the original

UserObject. The Call Function object is automatically conÕgured to call

this UserFunction, and its pinout is automatically conÕgured for that function.

Thus, the connections in the original program are preserved.

When you run the program containing the UserFunction (called with Call

Function), the result is the same as for the original program with the

UserObject.

Editing a UserFunction

Now let's continue with the program of the previous section and edit

the UserFunction. Just select Edit UserFunction (either from the

Call Function object menu or from the Edit menu), and the Edit

UserFunction dialog box appears, listing the available UserFunctions that

you can edit. If you select noiseUF (the only choice in this case), the Edit

UserFunction dialog box displays the following work area:

5-6

Creating User-DeÕned Functions

UserFunctions

Figure 5-3. Editing a UserFunction

N O T E

At this point, if you want to reconvert the UserFunction back into a UserObject, just select Make

UserObject from the object menu of the dialog box. If you do, the Call Function object

will remain, but the UserFunction will be converted back into a UserObject. You must provide another

UserFunction of the same name before the Call Function can execute. This technique is

useful when you want to test your program with a substitute UserFunction before importing the \real"

UserFunction from a library.

You can edit the UserFunction in the work area just as you would the original

UserObject. You can move and resize the work area, you can remove and add

5-7

Creating User-DeÕned Functions

UserFunctions

input and output terminals, and you can add and delete objects in the work

area. In fact, you can do about anything that you can do in a UserObject

work area, except you can't connect to any objects outside the UserFunction.

For example, suppose you want to use a global variable for the amplitude

of the noise waveform. Just delete the Amplitude input pin from the

UserFunction, add a Get Global object (with ampl in the Name Õeld), and

connect it to the Amplitude input pin of the Noise Generator, as shown in

the following Õgure.

Figure 5-4. The Edited UserFunction

Click on Close when you have Õnished editing. To complete the program,

add a Set Global object, and connect it as shown in the following Õgure. (To

save space, we've iconized the Function Generator and we've selected

Graph Only on the XY Trace so that we can reduce its size.)

5-8

Creating User-DeÕned Functions

UserFunctions

Figure 5-5. Program Using Edited UserFunction

This program performs the same task as the program of Figure 5-2, but uses

a global variable to set the amplitude of the noise component. Note that the

sequence output pin of the Set Global is connected to the sequence input

pin of the Call Function object. This ensures that the global variable ampl

will be set before it is called by the Get Global within the UserFunction.

You can call the same UserFunction several times by including multiple Call

Function objects in your program. Let's add another Call Function object

to our example program.

If you add a Call Function object by selecting Device ¡¡)Function ¡¡)

Call, you'll get the default Call Function object with no input or output

terminals, and with myFunction as the called function. Just type in the

UserFunction name noiseUF, or execute Select Function from the object

menu and select noiseUF from the dialog box. In either case, the input and

output terminals of the Call Function object is automatically conÕgured for

the selected function, provided that function is recognized by HP VEE. (Once

your function is recognized, you can reconÕgure the Call Function pinout

at any time by selecting Configure pinout from the object menu.)

5-9

Creating User-DeÕned Functions

UserFunctions

N O T E

As a \short cut," you could just clone the existing Call Function object in this case, since it is

already conÕgured for noiseUF.

In the following example we've used the second Call Function object

to apply the UserFunction noiseUF to a diÃerent sine wave. (The Õrst

Function Generator outputs a 100 Hz sine wave, as before. The second

Function Generator outputs a 50 Hz sine wave.)

Figure 5-6. Using Multiple Call Function Objects

5-10

Creating User-DeÕned Functions

UserFunctions

Calling a UserFunction from an Expression

You don't need to use the Call Function object to call a UserFunction. In

fact you can call a UserFunction from an expression in a Formula object, or

from any expression evaluated at run time. The following program extends

the example of Figure 5-5 by adding two Formula objects.

Figure 5-7. Calling a UserFunction from Expressions

In the program, the Call Function object calls the UserFunction noiseUF

and returns a sine wave with an added noise component, as before. The

expression abs(noiseUF(Y)) in the Õrst Formula object returns the

absolute value of the waveform returned by the UserFunction noiseUF.

Thus, the displayed noisy sine wave is \rectiÕed" in the positive direction.

5-11

Creating User-DeÕned Functions

UserFunctions

The expression abs(noiseUF(Y))-1.5 in the second Formula object does

the same, but also adds a negative \dc oÃset" to the waveform. Note that,

as in the previous example, the sequence pins are used to ensure correct

propagation with the global variable.

This program is saved in the Õle manual43.vee in your examples directory.

The ability to call a UserFunction from an expression is very useful |

especially when you include such an expression in a transaction in the

Sequencer object. Refer to Chapter 7 for more information about this topic.

Creating a UserFunction Library

So far we have only looked at local UserFunctions, which are created and

used within the same program. However, you can create a library of

UserFunctions, save it in a Õle, and later import the library into a program.

To create a library of UserFunctions, you just create the individual

UserFunctions in the HP VEE work area, and then save to a Õle. For

example, suppose you want to create two UserFunctions, myRand1 (which

adds a random number, range 0 to 1, to an input value) and myRand2 (which

adds a random number, range 0 to 100, to an input value). You could start by

creating the following UserObjects in a blank work area.

5-12

Creating User-DeÕned Functions

UserFunctions

Figure 5-8. Creating UserObjects for a UserFunction Library

To create a UserFunction library, just execute Make UserFunction from

the object menu for each UserObject, and then save to a Õle (for example,

user_func_lib).

To import the UserFunction library into your program, use the Import

Library object. For example, the following program imports the library from

the Õle user_func_lib and calls the User Functions myRand1 and myRand2.

5-13

Creating User-DeÕned Functions

UserFunctions

Figure 5-9. Importing a UserFunction Library

The Import Library object allows you to specify the type of library:

UserFunction, Compiled Function, or Remote Function. For a

UserFunction library, you can also specify a Library Name and File

Name. The File Name Õeld speciÕes the Õle from which to import the library,

user_func_lib in this case. But what about the Library Name Õeld?

The Library Name just speciÕes a local name by which the library can be

identiÕed within the program. In this case, Import Library attaches the

name myLibrary to the library imported from the Õle user_func_lib. This

makes it possible for the Delete Library object to delete the library from

the program.

Let's look at another example. In the following program, Import Library

imports the UserFunction library from the Õle user_func_lib and attaches

the name myLibrary to it. The UserFunctions myRand1 and myRand2 are

called and their output values are set as global variables. At this point, the

Delete Library object deletes myLibrary (both myRand1 and myRand2)

from the program, and then the Formula object evaluates an expression

involving the global variables.

5-14

Creating User-DeÕned Functions

UserFunctions

Figure 5-10. Importing and Deleting a UserFunction Library

Note that the sequence input and output pins are used to ensure correct

propagation.

This program is simple, so it isn't really necessary to delete the UserFunction

library. However, in a large program with multiple calls to large libraries, the

ability to import a library, and then delete it when you no longer need it,

signiÕcantly reduces the memory requirement.

5-15

Creating User-DeÕned Functions

UserFunctions

N O T E

You cannot edit the UserFunctions imported with Device ¡¡) Function ¡¡) Import

Library, but you can view their contents, and call them in programs. To view imported

UserFunctions, use Edit ¡¡) Edit UserFunction.

You can merge a library of UserFunctions using File ¡¡) Merge Library. Once the library

is merged into your program, you can edit the individual UserFunctions with Edit ¡¡) Edit

UserFunction.

5-16

Compiled Functions

The second type of user-deÕned function is the Compiled Function, which is

created by dynamically linking a program, written in C, C++, FORTRAN, or

Pascal, into the HP VEE process. To use a Compiled Function, you must write

the external program, create a shared library and deÕnition Õle, then import

the library and call the function from HP VEE. A shared library on UNIX is

known as a dynamically linked library (DLL) on Microsoft Windows.

N O T E

Pascal shared libraries are supported only for HP 9000 Series 700 computers.

Basically, the methods for importing a Compiled Function library and for

calling the function are very similar to what we've already discussed for

UserFunctions. The Import Library object attaches the shared library to

the HP VEE process and parses the deÕnition Õle declarations. The deÕnition

Õle deÕnes the type of data that is passed between the external program and

HP VEE. We'll discuss this Õle later. The Compiled Function can then be

called with the Call Function object, or from certain expressions. On the

other hand, you'll Õnd that creating a Compiled Function is considerably

more diœcult than creating a UserFunction. Obviously, you cannot create

a Compiled Function locally within an HP VEE program. Once you have

written a program in C or another language, you'll need to create the shared

library and deÕnition Õle for the program to be linked.

Before we look at the process of creating and using Compiled Functions, let's

look at some design considerations.

5-17

Creating User-DeÕned Functions

Compiled Functions

Design Considerations for Compiled Functions

There are several reasons for using Compiled Functions in your HP VEE

program. You can develop your own data Õlters in another language and

integrate them directly into your HP VEE program by using Compiled

Functions. Also, you can use Compiled Functions as a means of providing

security for proprietary routines. Although you can extend the capabilities

of your HP VEE program by using Compiled Functions, it is at the expense

of adding complexity to the HP VEE process. The key design goal should be

to keep the purpose of the external routine highly focused on a speciÕc task,

and to use Compiled Functions only when the capability or performance that

you need is not available using an HP VEE UserFunction, or an Execute

Program escape to the operating system.

You can use any facilities available to the operating system in the program

to be linked. These include math routines, instrument I/O, and so forth.

However, you cannot access any of the HP VEE internals from within the

external program to be linked.

Although the use of Compiled Functions provides enhanced HP VEE

capabilities, there are some pitfalls. Here are a few key ones:

– HP VEE can't trap errors originating in the external routine. Because your

external routine becomes part of the HP VEE process, any errors in that

routine will propagate back to HP VEE, and a failure in the external routine

may cause HP VEE to \hang" or otherwise fail. Thus, you need to be sure

of what you want the external routine to do, and provide for error checking

in the routine. Also, if your external routine exits, so will HP VEE.

– Your routine must manage all memory that it needs. Be sure to deallocate

any memory that you may have allocated when the routine was running.

– Your external routine cannot convert data types the way HP VEE does.

Thus, you should conÕgure the data input terminals of the Call Function

object to accept only the type and shape of data that is compatible with the

external routine.

– If your external routine accepts arrays, it must have a valid pointer for the

type of data it will examine. Also, the routine must check the size of the

array on which it is working. The best way to do this is to pass the size of

the array from HP VEE as an input to the routine, separate from the array

itself. If your routine overwrites values of an array passed to it, use the

5-18

Creating User-DeÕned Functions

Compiled Functions

return value of the function to indicate how many of the array elements

are valid.

– System I/O resources may become locked. Your external routine is

responsible for timeout provisions, and so forth.

Importing and Calling a Compiled Function

Once you have created a dynamically linked library, you can import the

library into your HP VEE program with the Import Library object and then

call the Compiled Function with the Call Function object. The process is

very much like that of importing a library of UserFunctions and then calling

the functions, as described at the beginning of this chapter.

We've already discussed the Import Library object in the \UserFunctions"

section at the beginning of this chapter. To import a Compiled Function

library, just select Compiled Function in the Library Type Õeld. Just

as for a UserFunction, the Library Name Õeld attaches a name to identify

the library within the program, and the File Name Õeld speciÕes the Õle

from which to import the library. In addition, there is a fourth Õeld, which

speciÕes the name of the Definition File:

Figure 5-11. Using Import Library for Compiled Functions

The deÕnition Õle deÕnes the type of data that is passed between the external

routine and HP VEE. We'll discuss this Õle later.

5-19

Creating User-DeÕned Functions

Compiled Functions

Once you have imported the library with Import Library, you can call the

Compiled Function by specifying the function name in the Call Function

object. For example, the Call Function object below calls the Compiled

Function named myFunction.

Figure 5-12. Using Call Function for Compiled Functions

You can select a Compiled Function just as you would select a UserFunction,

as described earlier in this chapter. You can either select the desired function

using Select Function from the Call Function object menu, or you

can type in the name. In either case, provided HP VEE recognizes the

function, the input and output terminals of the Call Function object will

be conÕgured automatically for the function. (The necessary information is

supplied by the deÕnition Õle.) Or, you can reconÕgure the Call Function

input and output terminals by selecting Configure pinout in the object

menu. Whichever method you use, the HP VEE will conÕgure the Call

Function object with the input terminals required by the function, and with

a Ret Value output terminal for the return value of the function. In addition,

there will be an output terminal corresponding to each input that is passed by

reference.

You can also call the Compiled Function by name from an expression in

a Formula object, or from other expressions evaluated at run time. For

example, you could call a Compiled Function by including its name in an

expression in a Sequencer transaction. Note, however, that only the

Compiled Function's return value (Ret Value in the Call Function object)

can be obtained from within an expression. If you want to obtain other

parameters from the function, you will have to use the Call Function

object.

5-20

Creating User-DeÕned Functions

Compiled Functions

Creating a Compiled Function (UNIX)

There are several steps to the process of creating a Compiled Function. First

you must write a program in C, C++, FORTRAN, or Pascal (HP 9000 Series

700 only), and write a deÕnition Õle for the function. Then you must create a

shared library containing the Compiled Function, and bind the shared library

into the HP VEE process. We'll look at each step in turn. But Õrst, let's look

at the structure of the deÕnition Õle.

The DeÕnition File The Call Function object determines the type of data it should pass to

your function based on the contents of the deÕnition Õle you provide. The

deÕnition Õle deÕnes the type of data the function returns, the function name,

and the arguments the function accepts. The function deÕnition is of the

following general form:

<return type> <function name> (<type> <paramname>, <type>

<paramname>, ...) ;

Where:

– <return type> can be: int, short, long, double, char*, or void.

– <function name> can be a string consisting of an alpha character followed

by alphanumeric characters, up to a total of 512 characters.

– <type> can be: int, short, long, double, int*, char*, short*,

long*, double*, char**, or void.

– <paramname> can be a string consisting of an alpha character followed by

alphanumeric characters, up to a total of 512 characters. The parameter

names are optional, but it is recommended to include them. If a parameter

is to be passed by reference, the parameter name must be preceded by the

indirection symbol (*).

The valid return types are character strings (char*, corresponding to the

HP VEE Text data type), integers (long, int, short, corresponding to the

HP VEE Int32 data type), and double precision Œoating point real numbers

(double, corresponding to the HP VEE Real data type).

If you specify \pass by reference" for a parameter by preceding the

parameter name with *, HP VEE will pass the address of the information

to your function. If you specify \pass by value" for a parameter by leaving

out the *, HP VEE will copy the value (rather than the address of the value)

5-21

Creating User-DeÕned Functions

Compiled Functions

to your function. You'll want to pass the data by reference if your external

routine changes that data for propagation back to HP VEE. Also, all arrays

must be passed by reference.

Any parameter passed to a Compiled Function by reference will be available

as an output terminal on the Call Function object. That is, the output

terminals will be Ret Value for the function's return value, plus an output

for each input parameter that was passed by reference.

HP VEE can only push 120 bytes on the stack. This means that it can allow

up to 30 parameters to be passed by reference to a Compiled Function. This

would also imply that up to 30 long integer parameters, or up to 15 double

precision Œoating point parameters, may be passed by value.

N O T E

For HP-UX, you must have the ANSI C compiler in order to generate the position independent code

needed to build a shared library for a Compiled Function.

You may include comments in your deÕnition Õle. HP VEE allows both

\enclosed" comments and \to-end-of-line" comments. \Enclosed" comments

use the delimiter sequence /*comments*/, where /* and */ mark the

beginning and end of the comment, respectively.

\To-end-of-line" comments use the delimiting characters // to indicate the

beginning of a comment that runs to the end of the current line.

Building a C Function Now let's look at an example of building an external routine. We'll use the C

language in this example.

5-22

Creating User-DeÕned Functions

Compiled Functions

The following C function accepts a real array and adds 1 to each element in

the array. The modiÕed array is returned to HP VEE on the Array terminal,

while the size of the array is returned on the Ret Value terminal. This

function, once linked into HP VEE, becomes the Compiled Function called in

the HP VEE program shown in Figure 5-13.

/*

C code from manual49.c file

*/

#include <stdlib.h>

long myFunc(long arraySize, double *array)

{

long i;

for(i=0; i<arraySize; i++, array++){

*array += 1.0;

} /* for */

return(arraySize);

} /* end myFunc() */

The deÕnition Õle for this function is as follows:

/*

definition file for manual49.c

*/

long myFunc(long arraySize, double *array);

(This deÕnition is exactly the same as the ANSI C prototype deÕnition in the

C Õle.)

Although this example is simple, it illustrates some important points.

First, you must include any header Õles on which the routine depends.

In this case, the stdlib.h Õle isn't really necessary | it is there just to

illustrate the point.

The example program uses the ANSI C function prototype. This isn't

necessary, but it makes things a little easier to understand. The function

prototype declares the data types that HP VEE should pass into the function.

The array has been declared as a pointer variable. HP VEE will put the

addresses of the information appearing on the Call Function data in

5-23

Creating User-DeÕned Functions

Compiled Functions

terminals into this variable. The array size has been declared as a long

integer. HP VEE will put the value (not the address) of the size of the array

into this variable. The positions of both the data input terminals and the

variable declarations are important. The addresses of the data items (or their

values) supplied to the data input pins (from top to bottom) are placed in the

variables in the function prototype from left to right.

Note that one variable in the C function (and correspondingly, one data input

terminal in the Call Function object) is used to indicate the size of the

array. The arraySize variable is used to prevent data from being written

beyond the end of the array. If you overwrite the bounds of an array, the

result depends on the language you are using. In Pascal, which performs

bounds checking, a run-time error will result, stopping HP VEE. In languages

like C, where there is no bounds checking, the result will be unpredictable,

but intermittent data corruption is probable.

Our example has passed a pointer to the array, so it is necessary to

de-reference the data before the information can be used.

The arraySize variable has been passed by value, so it won't show up as a

data output terminal. However, here we've used the function's return value

to return the size of the output array to HP VEE. This technique is useful

when you need to return an array that has fewer elements than the input

array.

5-24

Creating User-DeÕned Functions

Compiled Functions

The following HP VEE program calls the Compiled Function created from our

example C program:

Figure 5-13. Program Calling a Compiled Function

However, before you can run the program, you must create a shared library

to be linked to the HP VEE process.

The example in Figure 5-13 is saved in the Õle manual49.vee in your

examples directory. The C Õle is saved as manual49.c, the deÕnition Õle as

manual49.h, and the shared library as manual49.sl. (On the SPARCstation,

the shared library is saved as manual49.so.)

5-25

Creating User-DeÕned Functions

Compiled Functions

Creating a Shared Library To create a shared library, your function must be compiled as position-

independent code. This means that, instead of having entry points to your

routines exist as absolute addresses, your routine's symbol table will hold a

symbolic reference to your function's name. The symbol table is updated

to reŒect the absolute address of your named function when the function is

bound into the HP VEE environment. It must then be linked with a special

option to create a shared library.

Let's suppose that our example C routine is in the Õle named dLink.c. To

compile the Õle to be position independent, you can use the +z compiler

option. You also need to prevent the compiler from performing the link phase

by using the -c option. Thus, the compile command would look like this:

cc -Aa -c +z dLink.c

This produces an output Õle named dLink.o, which you can then link as a

shared library with the following command:

ld -b dLink.o

The -b option tells the linker to generate a shared library from

position-independent code. This produces a shared library named a.out.

Alternatively, you could use the command:

ld -b -o dLink.sl dLink.o

to obtain an output Õle (through the use of the -o option) called dLink.sl.

N O T E

For the SunOS 4.1.2 and 4.1.3 the above commands would be

cc -pic -c dLink.c

ld -o dLink.so -assert pure-text dLink.o

5-26

Creating User-DeÕned Functions

Compiled Functions

Binding the Shared Library HP VEE binds the shared library into the HP VEE process. All you need to do

is include an Import Library object in your program, specifying the library

to import, and then call the function by name (i.e., with a Call Function

object). When Import Library executes, HP VEE binds the shared library

and makes the appropriate input and output terminals available to the Call

Function object (Configure Pinout will now work). The shared library

remains bound to the HP VEE process until HP VEE terminates, or until the

library is expressly deleted.

You can delete the shared library from HP VEE either by selecting Delete

Lib from the Import Library object menu, or by including the Delete

Library object in your program. Note, however, that you may have more

than one library name pointing to the same shared library Õle. In this case,

you can use the Delete Library object to delete each library, but the shared

library will remain bound until the last library pointing to it is deleted.

However, the Delete Lib selection in the Import Library object menu will

unbind the shared library with no regard to how may other Import Library

objects have been executed.

When HP VEE binds a shared library, it deÕnes the input and output

terminals needed for each Compiled Function. When you select a Compiled

Function for a Call Function object, or when you execute a Configure

Pinout, HP VEE automatically conÕgures Call Function with the

appropriate terminals. The algorithm is as follows:

– The appropriate input terminals are created for each input parameter to be

passed to the function (by reference or by value).

– An output terminal labeled Ret Value is conÕgured to output the return

value of the Compiled Function. This is always the top-most output pin.

– An output terminal is created for every input that is passed by reference.

The names of the input and output terminals (except for Ret Value) are

determined by the parameter names in the deÕnition Õle. However, the

values output on the output terminals are a function of position, not name.

Thus, the Õrst (top-most) output pin is always the return value. The second

output pin returns the value of the Õrst parameter passed by reference, and

so forth. This is normally not a problem unless you add terminals after the

automatic pin conÕguration.

5-27

Creating User-DeÕned Functions

Compiled Functions

Creating a Dynamic Linked Library (MS-Windows)

HP VEE for Windows provides access to Dynamic Linked Libraries (DLL)

through the Call object and through formula objects. Only DLL's speciÕcally

written for HP VEE will work with these objects because HP VEE does not

support 8-bit characters, 16-bit integers or 32-bit reals.

N O T E

Writing DLL's requires considerable experience with Microsoft Windows C programming. This is not a

task for the novice programmer. Contact your system administrator or Microsoft for further help with

writing DLL's.

This section tells you how to call a DLL, not how to write a DLL.

Creating the DLL Create your DLL before writing your HP VEE program. Create your DLL as

you would any other DLL except that only a subset of C types are allowed.

(See \Creating the DeÕnition File" below.)

Declaring DLL Functions. To work with HP VEE, DLL functions must be

declared as _far _cdecl or _far _pascal in the source code and with an

underscore in the Windows deÕnitions (.DEF) Õle. For example, a generic

function could be created as follows:

long _far _cdecl genericFunc(long a)

{

return(a * 2);

}

The .DEF Õle would then contain:

EXPORTS _genericFunc

5-28

Creating User-DeÕned Functions

Compiled Functions

Creating the DeÕnition File. The deÕnition Õle contains a list of

prototypes of the imported functions. HP VEE uses this Õle to conÕgure the

Call objects and to determine how to pass parameters to the DLL function.

The format for these prototypes is:

<return type> <modifier> <function name> (<type> <paramname>, <type>

<paramname>, ...) ;

Where:

– <return type> can be: int, short, long, double, char*, or void.

– <function name> can be a string consisting of an alpha character followed

by alphanumeric characters, up to a total of 512 characters.

– <modifier> can be _cdecl or _pascal.

– <type> can be: int, short, long, double, int*, char*, short*,

long*, double*, char**, or void.

– <paramname> can be a string consisting of an alpha character followed by

alphanumeric characters, up to a total of 512 characters. The parameter

names are optional, but it is recommended to include them. If a parameter

is to be passed by reference, the parameter name must be preceded by the

indirection symbol (*).

Examples.

long aFunc(double *,long param2,

long *param3, char *);

Pass in four parameters, return a long

double aFunc(); No input parameters, return a double

long aFunc(char *aString); Pass in a string, return a long

long aFunc(char **aString); Pass in an array of strings, return a long

Parameter Limitations A DLL function call can only push 120 bytes on the stack. This limits the

number of parameters used by the function. Any combination of parameters

may be used as long as the 120-byte limit is not exceeded. A long uses four

bytes, a double uses eight bytes and a pointer uses four bytes. For example, a

function could have 30 longs, 15 doubles, or 20 pointers and 5 doubles.

The IMPORT LIBRARY

Object

Before you can use a Call object or Formula box to execute a DLL function

you must import the function into the HP VEE environment via the Import

Library object. On the Import Library object select Compiled Function

under Library Type. Enter the correct deÕnition Õle name using the

Definition File button. Finally, select the correct Õle using the File Name

5-29

Creating User-DeÕned Functions

Compiled Functions

button. The Library Name button assigns a logical name to a set of functions

and does not need to be changed.

The CALL FUNCTION

Object

Before using a DLL function with the Call Function object you must

conÕgure the Call Function object. The easiest way to do this is to select

Load Lib on the Import Library object menu to load the DLL Õle into

the HP VEE environment. Then select Select Function on the Call

Function object menu. HP VEE will bring up a dialog box with a list of

all the functions listed in the deÕnitions Õle. When you select a function,

HP VEE automatically conÕgures the Call Function object with the correct

input and output terminals and function name.

You can also conÕgure the Call Function object manually by modifying the

function name and adding the appropriate input and output terminals. First,

conÕgure the input terminals, with the same number of input terminals as

there are parameters passed to the function. The top input terminal is the

Õrst parameter passed to the function. The next terminal down from the top

is the second parameter, and so on. Next, conÕgure the output terminals

so that the parameters passed by reference appear as output terminals on

the Call Function object. Note that parameters passed by value cannot be

assigned as output terminals. The top output terminal is the value returned

by the function. The next terminal down is the Õrst parameter passed by

reference, etc. Finally, enter the correct DLL function name in the Function

Name Õeld. For example, for a DLL function deÕned as

long foo(double *x, double y, long *z);

you need three input terminals for x, y, and z and three output terminals,

one for the return value and two for x and z. The Function Name Õeld

would contain foo. If the number of input and output terminals do not

exactly match the number of parameters in the function HP VEE generates an

error.

If the DLL library has already been loaded and you enter the function

name in the Function Name Õeld you can also use the Configure Pinout

selection on the Call Function object menu to conÕgure the terminals.

The DELETE LIBRARY

Object

If you have very large programs you may want to delete libraries after you

use them. The Delete Library object deletes libraries from memory just as

the Delete Lib selection on the Import Library object menu does.

5-30

Creating User-DeÕned Functions

Compiled Functions

Using DLL Functions in Formula Objects

You can also use DLL functions in formula objects. With formula objects only

the return value is used in the formula, the parameters passed by reference

cannot be accessed. For example, the DLL function deÕned above in a

formula:

4.5 + foo(a, b, c) * 10

where a is the top input terminal on the formula object, b is next and c is

last. The call to foo must have the correct number of parameters or HP VEE

generates an error.

5-31

Remote Functions (UNIX)

N O T E

Remote Functions are not supported by HP VEE for Windows.

The third type of user-deÕned function is the Remote Function. A Remote

Function is actually a UserFunction that runs in another HP VEE process on a

remote host computer. The Remote Function is called from the local HP VEE

process over the LAN (Local Area Network). Just as for UserFunctions and

Compiled Functions, you can import a library of Remote Functions with the

Import Library object.

Once one or more Remote Functions have been imported, they can be

called by either using the Call Function object, or by including function

names in expressions. A library of Remote Functions can be deleted with

the Delete Library object, again just as for UserFunctions or Compiled

Functions. Thus, you can include Remote Function calls in your program just

as you would UserFunctions. However, there are some diÃerences, and some

networking technicalities, which are described in this section.

You can create a library of Remote Functions just as you would a library of

UserFunctions (as described earlier in this chapter). However, instead of

saving the library Õle on your local computer, you'll need to save it on the

intended remote host computer. When you import the library of Remote

Functions, it is actually imported not in the local HP VEE process, but rather

in a special invocation of HP VEE, called a \service", which runs on the

remote host. The local HP VEE process is then called the \client."

The client HP VEE process imports the Remote Function library using

the Import Library object. When you select Remote Function for the

Library Type Õeld, some new Õelds appear as shown in the next Õgure:

5-32

Creating User-DeÕned Functions

Remote Functions (UNIX)

Figure 5-14. Import Library for Remote Functions

The Library Type and Library Name Õelds function exactly as for

UserFunctions and Compiled Functions. However, we need to look at the

other three Õelds:

– Host Name - This is the name of the host on which the \service" HP VEE

process is to run (the \remote host"). This name can be the common or

symbolic name of the host (for example mike). On the other hand, you can

enter the IP address of the host in this Õeld (for example 14.13.29.99).

– Remote File Name - This is just the name of the Remote Function library

Õle. The Remote File Name is analogous to the File Name Õeld for a

UserFunction library. However, you must specify the absolute path to the

Õle. Hence the path and Õle name can be rather long. You may want to

have all users place remote function library Õles in a common place, for

example: /users/remfunc/.

– Remote Timeout - This Õeld speciÕes a timeout period in seconds for

communication with the HP VEE service. If the HP VEE service has not

returned the expected results of a Remote Function within this time period,

an error occurs.

When the Import Library object is executed (either by selecting Load

Lib from the object menu, or during normal program execution), a service

HP VEE process is started on the remote host speciÕed in the Host Name

Õeld. The client process and the service process are connected over the

network, and are able to communicate. When a Call Function object in

the client HP VEE calls a Remote Function, the arguments (the data input

pins on the Call Function object) are sent over the network to the remote

service, the Remote Function is executed, and the results are sent back to the

Call Function object and output on its data output pins. If your program

5-33

Creating User-DeÕned Functions

Remote Functions (UNIX)

deletes the library of Remote Functions with the Delete Library object,

the Remote Functions associated with the library are removed. You can

load multiple libraries in a service HP VEE process, then delete each one as

needed without canceling the service connection. The HP VEE service exists

while the HP VEE client process continues to run.

The service HP VEE process can exist on the same computer or \host" as the

client, or on another host as long as there is a network connection between

them. The most common connection is between two hosts on a LAN.

However, if a network path exists, the two hosts could be a continent apart.

N O T E

The remote HP VEE service invoked by the client is dependent on the Host Name speciÕed in the

Import Library object. Thus, if you have two Import Library objects using the same

Host Name only one service process will be invoked. If two diÃerent Library Names and

Remote File Names are used, each will communicate with the same service. On the other

hand, if each Import Library uses a diÃerent Host Name, two separate services will be

invoked.

The HP VEE service process has some attributes that are diÃerent than a

normal HP VEE process:

1. The HP VEE service process will execute only Remote Functions that are

contained in the Remote Function library named by Import Library.

Any other objects, threads, and so forth in that Õle will be ignored.

2. The HP VEE service process has no views. This means that there is no

HP VEE icon or work area appearing on the screen of the host where the

HP VEE service is running. In fact, X Windows does not even need to

be present on that host. What runs is just the pure functionality of the

Remote Functions | there is no user interaction. This means that Remote

Functions will run faster remotely than they will locally since there are no

user events (keystrokes or mouse clicks) to detect.

5-34

Creating User-DeÕned Functions

Remote Functions (UNIX)

UNIX Security, UIDs, and Names.

When you log onto an UNIX system you must enter your user name and

password, and the system must have the user name and password in

its /etc/passwd Õle. Also, you must have an assigned directory on the

system. These requirements provide system security. There are also security

requirements that must be met when one system attempts to run a process

on another system. Thus, when your client HP VEE process attempts to run a

service HP VEE process on a remote host, some security requirements must

be satisÕed.

The basic requirement is that, in order to invoke the service HP VEE

process, you must have a user name on the remote host which is the same

as your user name on the computer running the client HP VEE process.

(However, the passwords need not be the same.) Also, you must have a

directory in the /users directory. In addition, in order to establish network

communication between the two hosts, either the remote host must have

an /etc/hosts.equiv Õle with an entry for the client host, or the user

must have an .rhosts Õle in the $HOME directory on the remote host, which

contains an entry for the client host.

Let's look at an example. Suppose the client host can be identiÕed as follows:

Client host: myhost

User: mike

Password: twoheads

and the service host can be identiÕed as follows:

Service host: remhost

User: mike

Passwd: arebetter

Directory: /users/mike

In this case, you must have one of the following on the service host:

– An /etc/hosts.equiv Õle with the entry: myhost

or

– A /users/mike/.rhosts Õle with the entry: myhost mike

5-35

Creating User-DeÕned Functions

Remote Functions (UNIX)

The /etc/hosts.equiv Õle can be modiÕed only by a super-user (usually

the system administrator), while the .rhosts Õle can be modiÕed by the

user. It is a common practice to use the same /etc/hosts.equiv Õle on all

computers in a particular subnet, listing all of those computers as entries.

The /etc/hosts.equiv Õle is checked Õrst for the proper entry for the

client host. If no entry for the client host is found there, the .rhosts Õle is

checked.

N O T E

In calling a service HP VEE process, the password is not required or called for. You must have the

correct entry for the client in either the hosts.equiv Õle or the .rhosts Õle on the remote

host.

Another factor in UNIX security is the user id and group id, called the UID

and GID, respectively. The UID is a unique integer supplied to each user on a

host by the /etc/passwd Õle. The GID is a unique integer supplied to groups

of users. All UNIX processes have a UID and GID associated with them. The

UID and GID determines which Õles or directories a user can read, write, and

execute.

The HP VEE service on the service host will have the GID and UID of the

user who invoked the process from the client host. This means that the Õle

permissions are the same as if the user was running a normal interactive

HP VEE session.

5-36

Creating User-DeÕned Functions

Remote Functions (UNIX)

The .veeio and .veerc Õles

The .veeio and .veerc Õles used by the HP VEE service process are the .veeio

and .veerc Õles of the user who invokes the process on host remhost. Thus,

for the user mike in our previous example, the HP VEE service process will

read the following Õles on host remhost:

/users/mike/.veeio

/users/mike/.veerc

(Only HP VEE for HP-UX and HP VEE for SunOS will read the .veeio Õle. The

.veerc Õle is used for trig preferences only.)

Timeouts

The Remote Timeout Õeld in the Import Library object speciÕes a

maximum time (in seconds) to wait for the return of results from a Remote

Function call. This time is also used by the Import Library object for the

protocol used to obtain information about what functions are in the remote

Õle loaded into the HP VEE service. If a timeout occurs, it is a fatal error as

described in the next section. The HP VEE client will do everything possible

to terminate the service. You will need to re-import the Remote Function

library with a longer timeout period. (The default is 60 seconds.)

Errors

There are two classes of errors that can occur in a remote HP VEE service:

– Fatal Errors - These are errors, like the timeout violation discussed

previously, that mean that the service is most likely in a unusable state.

When a fatal error occurs in an HP VEE service, an error message is

5-37

Creating User-DeÕned Functions

Remote Functions (UNIX)

displayed, advising the user that the error was fatal. If this occurs, you'll

need to re-import the Remote Function library. The HP VEE client will

attempt to terminate the remote service.

In most cases, a fatal error will only occur if something has gone wrong

with the network, or in calling the remote service. Normally, a fatal error

won't be caused by a problem in the Remote Function itself.

– Non-Fatal Errors - These are almost exclusively errors that occur within

the Remote Function itself (for example a divide-by-zero error). Such

errors would normally occur regardless of whether the function were local

or remote. The normal error message display occurs, and gives the name of

the Remote Function in which the error occurred.

N O T E

It is possible to write a Remote Function that will hang, such as an inÕnite loop. In this case, the

Remote Function will time out with a fatal error message. The HP VEE client will attempt to remove

the service, but will fail since the service will never respond. In this case, the user must log onto the

remote host and terminate the process with ps and kill.

5-38

6

Using Transaction I/O

Using Transaction I/O

HP VEE for UNIX includes objects for communicating with Õles, printers,

named pipes, and other processes, plus the ability to communicate with

HP BASIC, and various hardware interfaces and the instruments connected to

them.

HP VEE for Windows includes the capabilities of communicating with

Õles, printers, other programs, and various hardware interfaces and the

instruments connected to them.

All of these types of communication are controlled by I/O objects using

transactions. This chapter explains the general concepts common to all

objects using transactions and the details of how to use each type of object.

6-2

Using Transactions

All I/O objects discussed in this chapter contain transactions. A transaction

is simply a speciÕcation for a low-level input or output operation, such as

how to read or write data. Each transaction appears as a line of text listed

in the open view of an I/O object. To view a typical transaction, click on

I/O ¡¡) To ¡¡) String to create a To String object.

Figure 6-1. Default Transaction in To String

The default transaction in To String is:

WRITE TEXT a EOL

Before exploring too many details, consider a simple program using the

To String object to illustrate how transactions operate. The program in

Figure 6-2 uses two transactions, one to write a string literal and one to write

a number in Õxed decimal format.

6-3

Using Transaction I/O

Using Transactions

Figure 6-2. A Simple Program Using To String

To accomplish something useful with a transaction-based I/O object, you

generally need to do at least two things:

1. Modify the default transaction or add additional transactions as required.

2. Add input terminals, output terminals, or both.

The following sections explain how to edit transactions and add terminals.

6-4

Using Transaction I/O

Using Transactions

Creating and Editing Transactions

Table 6-1. Editing Transactions With A Mouse

To Do This . . . Click On This . . .

Add another transaction to the end of the list. Add Trans in the object menu. Or, double-click in

the list area immediately below the last transaction.

Move the highlight bar to highlight a diÃerent

transaction.

Any non-highlighted transaction.

Insert a transaction above the highlighted transaction. Insert Trans in the object menu.

Cut (delete) the highlighted transaction, saving it in the

transaction \cut-and-paste" buÃer.

Cut Trans in the object menu.

Copy the highlighted transaction to the transaction

\cut-and-paste" buÃer.

Copy Trans in the object menu.

Paste the transaction currently in the buÃer above the

highlighted transaction.

Paste Trans in the object menu.

Edit the highlighted transaction. Double-click the highlighted transaction.

6-5

Using Transaction I/O

Using Transactions

Table 6-2. Editing Transactions With the Keyboard

To Do This . . . Press This Key . . .

Move the highlight bar to highlight the next transaction. ÄCTRLÅ+ÄNÅ

Move the highlight bar to highlight the previous

transaction.

ÄCTRLÅ+ÄPÅ

Move the highlight bar to highlight a diÃerent

transaction.

ÄÈÅ, ÄÉÅ, ÄËÅ

Insert a transaction above the highlighted transaction. ÄInsert lineÅ or ÄCTRLÅ-ÄOÅ.

Cut (delete) the highlighted transaction to the

cut-and-paste buÃer.

ÄDelete lineÅ or ÄCTRLÅ-ÄKÅ.

Paste a transaction from the cut-and-paste

buÃer above the highlighted transaction.

ÄCTRLÅ+ÄYÅ

Step to the next transaction (Sequencer only). ÄCTRLÅ+ÄXÅ

To edit the Õelds within a transaction, double-click on the transaction to

expand it to an I/O Transaction dialog box.

Figure 6-3. Editing the Default Transaction in To String

The Õelds shown in the I/O Transaction dialog box will be diÃerent for the

diÃerent types of I/O operations. To edit any Õeld, click on the Õeld and type

6-6

Using Transaction I/O

Using Transactions

in information or complete the resulting dialog box. Detailed information

about these Õelds is provided later in this chapter and in Appendix E.

Notice that the Õelds in the I/O Transaction dialog box map directly to the

mnemonics that appear in the transaction listed in the open view.

The NOP button is unique to the I/O Transaction dialog box. Clicking

on NOP saves the latest settings shown in the dialog box, but it also makes

that transaction a \no operation" or a \no op." Its eÃect is the same as

commenting out a line of code in a text-based computer program.

Editing the Data Field Most of the I/O speciÕcations in a transaction are easy to edit because a dialog

box helps you select the proper choice. However, the data Õeld does not use

a dialog box; you can type in many diÃerent combinations of variables and

expressions.

Figure 6-4. READ Transaction Using a Variable in the Data Field

Figure 6-5. WRITE Transaction Using an Expression in the Data Field

6-7

Using Transaction I/O

Using Transactions

You must type in the proper list of what you wish to read or write. Table 6-3

lists typical entries for the data Õeld. Note that WRITE transactions allow you

to specify an expression list (variables, constants, and operators), but READ

allows only a variable list.

Table 6-3. Typical Data Field Entries

Data Field Entry Meaning

X (READ) Read data into the variable X.

A (WRITE) Write the value of the variable A.

X,Y (READ) Read data into the variable X and then read data into the variable Y.

A,B (WRITE) Write the value of the variable A and then write the value of the

variable B.

null (READ only) Read the speciÕed value and throw it away. null is a special

variable deÕned by HP VEE.

A,A*1.1 (WRITE only) Write the value of A and then write the value of A multiplied by

1.1.

"hello\n" (WRITE) Write the Text literal hello followed by a newline character.

"FR ",Fr," MHZ" (WRITE) Write a combination of Text literals and a numeric value. If the

transaction is WRITE TEXT REAL and Fr has the Real value 1.234,

then HP VEE writes FR 1.234 MHZ.

The expressions allowed in a WRITE data Õeld are the same as those allowed

in Formula objects. Note that you may include the escape characters shown

in Table 6-4 in any Õeld that accepts Text input in the form of a string

delimited by double quotes.

N O T E

READ transactions allow a special variable named null in the data Õeld. Reading data into the null

variable simply throws the data away; this is useful when you need to strip away unneeded data in a

controlled fashion.

6-8

Using Transaction I/O

Using Transactions

Table 6-4. Escape Characters

Escape Character ASCII Code

(decimal)

Meaning

\n 10 Newline

\t 9 Horizontal Tab

\v 11 Vertical Tab

\b 8 Backspace

\r 13 Carriage Return

\f 12 Form Feed

\" 34 Double Quote

\' 39 Single Quote

\\ 92 Backslash

\ddd The ASCII character corresponding to the three-digit octal

value ddd.

Adding Terminals

Most often, you will want to add input or output terminals to a

transaction-based I/O object. To add terminals, click on the corresponding

features in the object menu, or use the keyboard short cuts. (Use ÄCTRLÅ-ÄAÅ

to add a terminal or ÄCTRLÅ-ÄDÅ to delete a terminal.)

For WRITE transactions, you will generally add a data input terminal. In

a WRITE transaction, data is transferred from HP VEE to the destination

associated with the object.

For READ transactions, you will generally add a data output terminal. In a

READ transaction, data is transferred from the source associated with the

object to HP VEE.

6-9

Using Transaction I/O

Using Transactions

The variable names that appear on the terminal must match the variable

names in the transaction speciÕcation to achieve useful results. This is easy

to overlook, because HP VEE automatically assigns variable names such as

X,Y, or Z when you add a terminal.

Figure 6-6. Terminals Correspond to Variables

To edit the variable name of a terminal:

1. Double click on the terminal to expand it into a Terminal Information

dialog box.

2. Edit the Name Õeld in the dialog box.

Recall that variable names in HP VEE are not case-sensitive. Thus, s is the

same as S and Signal is the same as signal.

Reading Data

In order to read data into a variable, HP VEE must know either the number of

data elements to read, or what speciÕc terminating condition, such as EOF

(end-of-Õle), is to be satisÕed. Let's begin by looking at how to conÕgure a

transaction to read a speciÕed number of data elements.

6-10

Using Transaction I/O

Using Transactions

Transactions that Read a

SpeciÕed Number of Data

Elements

When you are editing a transaction, the last Õeld in the transaction dialog

box has the default value SCALAR. This speciÕes that the READ transaction is

to read only one element. To change this, just click on the SCALAR Õeld to

reveal a list of available choices.

Figure 6-7. Select Read Dimension from List

The choices in the list indicate the number of dimensions for the READ

transaction. For example, SCALAR indicates a dimension of 0, ARRAY 1D

indicates a one-dimensional array, ARRAY 2D indicates a two-dimensional

array, and so forth.

6-11

Using Transaction I/O

Using Transactions

When you click on a dimension in the list, the transaction dialog box

will reconÕgure itself with a Õll-in Õeld for each of the dimensions

speciÕed. Figure 6-8 shows the transaction dialog box conÕgured to read a

three-dimensional array of binary integers into the variable named matrix.

Each of the three Õelds after SIZE: contains the number of integers for the

corresponding dimension. (In this case, each dimension has two elements.)

Figure 6-8. Transaction Dialog Box for Multi-Dimensional Read

Note that when more than one dimension is speciÕed, the rightmost or

\innermost" dimension is Õlled Õrst. Thus, in this example, the elements are

read in this order:

matrix[0,0,0] read Õrst

matrix[0,0,1]

matrix[0,1,0]

matrix[0,1,1]

matrix[1,0,0]

matrix[1,0,1]

matrix[1,1,0]

matrix[1,1,1] read last

6-12

Using Transaction I/O

Using Transactions

When you click on the OK button in the transaction dialog box, the resulting

transaction appears with the ARRAY: keyword followed by the dimension

sizes, for example:

READ BINARY matrix INT32 ARRAY:2,2,2

If the transaction is conÕgured to read a scalar value, the transaction appears

as follows:

READ BINARY x INT32

You can use variable names in the SIZE: Õelds to specify array dimensions

programmatically. For example, the following transaction would read a

three-dimensional matrix:

READ BINARY matrix INT32 ARRAY:xsize,ysize,zsize

In this case, xsize, ysize, and zsize could be either the names of input

terminals, or the names of output terminals set by previous transactions in

the same object.

Read-To-End Transactions Certain HP VEE objects support READ transactions that will read to the

end-of-Õle (EOF). Thus, it is possible to read the contents of a Õle with a single

transaction. Such transactions are called read-to-end transactions. Note that

EOF, besides indicating end-of-Õle for a standard disk Õle, can also indicate

closure of a named-pipe or pipe.

The following HP VEE objects support read-to-end transactions:

– From File

– From String

– From Stdin

– To/From Named Pipe (UNIX only)

– To/From HP BASIC/UX

– Execute Program (UNIX)

– To/From DDE (PC only)

6-13

Using Transaction I/O

Using Transactions

Figure 6-9 shows the transaction dialog box of a From File object, reading a

three dimensional array of binary integers, but conÕgured for read-to-end:

Figure 6-9. Transaction Dialog Box for Multi-Dimensional Read-To-End

Note that read-to-end transactions are not supported for scalars. The

transaction must be conÕgured for at least a one-dimensional array in order

to be conÕgured as read-to-end. If an HP VEE object supports read-to-end,

the SIZE: Õeld will appear as a button in the transaction dialog box. Clicking

on the SIZE: Õeld will enable read-to-end | the Õeld will now appear as TO

END:.

The trivial case of reading a one-dimensional array to end simply means that

the number of elements in the array is equal to the number of elements read

until EOF is found. The unknown size of the array is denoted by an asterisk

(*) in the transaction.

On the other hand, reading a multi-dimensional array to end is somewhat

more complicated. In this case the number of elements must be supplied

for each dimension, except the left-most or \outer" dimension. Figure 6-9

shows that this dimension has an (*) in place of a size in the transaction.

This dimension size is unknown until the read-to-end is transaction complete.

To better understand this concept, consider that a three-dimensional array is

nothing more than a number of two-dimensional arrays grouped together.

A two-dimensional array has the dimensions of \rows" and \columns".

Stacking two-dimensional arrays, like cards, adds the third dimension,

6-14

Using Transaction I/O

Using Transactions

\depth". In a read-to-end transaction of a three-dimensional array, the

number of \rows" and \columns" is speciÕed, but the \depth" is unknown

until EOF is encountered. The same is true for all multi-dimensional

read-to-end transactions. If the array has n dimensions, the size of n-1 of

those dimensions must be speciÕed. Only one (the left-most) dimension can

be of unknown size.

A further restriction on read-to-end transactions of dimensions greater than

an ARRAY 1D is that the number of total elements read has to be evenly

divisible by the product of the known dimensions. For example, let's assume

that our read-to-end example of a three-dimensional array is from a Õle with

16 total elements. This means that the transaction will read four two-by-two

arrays since the transaction speciÕes the number of \rows" and \columns" is

equal to 2. Hence, the unknown dimension size, \depth", is 4 when the read

is complete.

If the Õle actually contained 18 elements, one of the two-by-two arrays would

be incomplete | it would contain only two elements. A read-to-end of this

Õle would result in an error, and no data would be read, if you speciÕed a

size of 2 for the \row" and \column" dimensions. On the other hand, you

could read this Õle if the number of \rows" is equal to 1 and the number

of \columns" is equal to 3. A read-to-end of this Õle would then result in a

\depth" of 6.

N O T E

If you don't know the absolute number of data elements in a Õle, you can always use a read-to-end

using ARRAY 1D.

The read-to-end transaction is useful with the Execute Program object for a program that is a

shell command that will return an unknown number of elements.

6-15

Using Transaction I/O

Using Transactions

Non-Blocking Reads A READ transaction Õnishes when the read is complete. Until the read is

done, the transaction is said to block. When reading disk Õles the blocking

action is not apparent since data is always available from the disk. However,

for named-pipes, and for pipes where data is being made available from

another process, a READ transaction could block, thereby eÃectively halting

execution of an HP VEE program. In some cases, the READ transaction could

block indeÕnitely.

The READ IOSTATUS DATAREADY transaction provides a means to peek at

a named-pipe or pipe in order to see if there is data available for a READ

transaction. The READ IOSTATUS DATAREADY transaction is available in the

following HP VEE objects:

– To/From Named Pipe (UNIX only)

– To/From Socket

– To/From HP BASIC/UX

– From StdIn

N O T E

A READ IOSTATUS DATAREADY transaction, when executed, will block until the named pipe

has been opened on the other end by the writing process. The transaction will then return the status

of the pipe.

If the pipe has been closed by the writing process, eÃectively writing an EOF into the pipe, the READ

IOSTATUS DATAREADY transaction will return a 1, indicating that an EOF is in the pipe. A

subsequent READ transaction will generate an EOF error. Use an error pin on the object reading the

data to trap the EOF error.

Figure 6-10 shows a program where READ IOSTATUS DATAREADY is used to

detect data on the StdIn pipe.

6-16

Using Transaction I/O

Using Transactions

Figure 6-10. Using READ IOSTATUS DATAREADY for a Non-Blocking Read

This program is saved in the Õle manual47.vee in your examples directory.

The program in Figure 6-10 shows the use of a READ IOSTATUS DATAREADY

transaction in From StdIn. The transaction returns a zero (0) if

no data is present on the stdin pipe. If data is present, a one (1) is

returned. The If/Then/Else is used to test the returned value of the

READ IOSTATUS DATAREADY transaction. If the result is 1, then the second

From StdIn is allowed to execute, reading the data typed into the HP VEE

start-up terminal window. If no data has been typed into the start-up

terminal window (or a Return has not been typed), execution continues

again at the start of the thread. Note the use of Until Break to iterate the

thread so the From StdIn with the READ IOSTATUS DATAREADY transaction is

continually tested.

To view complete programs that illustrate how to read arrays from Õles, open

and run the programs manual27.vee and manual28.vee in your examples

directory.

6-17

Using Transaction I/O

Using Transactions

Suggestions for Experimentation

Many times the best way to develop the transactions you need is by using

trial and error. A large portion of the data handled by I/O transactions is text

(as opposed to some type of binary data). Data written as TEXT is very useful

for experimenting because it is human-readable. While using TEXT is not the

most compact or fastest approach, you can use it to do just about anything.

You can use the To String object to accurately simulate the output behavior

of other I/O objects writing text. The following program shows how you

might do this.

Figure 6-11. Experimenting with To String

6-18

Details About Transaction-Based Objects

Execution Rules

Transaction I/O objects obey all of the general propagation rules for HP VEE

programs. In addition, there are a few simple rules for the transactions

themselves:

1. Transactions execute beginning with the topmost transaction and proceed

sequentially downward.

2. Each transaction in the list executes completely before the next one

begins. Transactions within a given object do not execute in an overlapped

fashion. Similarly, only one transaction object has access to a particular

source or destination at a time.

3. Transaction-based I/O objects accessing the same source or destination

may exist in separate threads within the same program.

Note that for Õle-related objects, there is only one read pointer and

one write pointer per Õle. The same pointers are shared by all objects

accessing a particular Õle.

Object ConÕguration

In the most general case, the result of any transaction is actually determined

by two things:

– The speciÕcations in the transaction

– The settings accessed via Edit Properties in the object menu

In most cases you do not need to be concerned about the Properties

settings; the default values are generally suitable.

6-19

Using Transaction I/O

Details About Transaction-Based Objects

All transaction-based I/O objects that write data (except Direct I/O) include

an additional tab in the Properties dialog box that lets you edit the data

format. The resulting dialog box allows you to view and edit various settings.

Direct I/O objects behave diÃerently. Direct I/O objects include a

Show Config feature in their object menu that allows you to view (but not

edit) conÕguration settings. To edit the conÕguration of a Direct I/O object,

you must use I/O ¡¡) Instrument. Please refer to \Details of ConÕgure I/O

Dialog Boxes" in Chapter 3 for details.

Clicking on Edit Properties in the object menu of a transaction I/O object

yields a Properties dialog box like the one in Figure 6-12.

Figure 6-12. The Properties Dialog Box

The Properties dialog box has a Data Format tab containing settings

that aÃect the way certain data is written by WRITE transactions. The

End Of Line (EOL) aÃects any WRITE in which EOL ON is set. The remaining

Data Format Õelds aÃect only WRITE TEXT transactions.

6-20

Using Transaction I/O

Details About Transaction-Based Objects

The sections that follow explain the Õelds in the Data Format dialog box in

detail.

End Of Line (EOL) The End Of Line (EOL) Õeld speciÕes the characters that are sent at the end

of WRITE transactions that use EOL ON. The entry in this Õeld must be zero or

more characters surrounded by double quotes. \Double quote" means ASCII

34 decimal. HP VEE recognizes any ASCII characters within End Of Line

(EOL) including the escape characters shown previously in Table 6-4.

Array Separator The Array Separator Õeld speciÕes the character string used to separate

elements of an array written by WRITE TEXT transactions. The entry in this

Õeld must be surrounded by double quotes. \Double quote" means ASCII 34

decimal. HP VEE recognizes any ASCII character as an Array Separator as

well as the escape characters shown previously in Table 6-4.

WRITE TEXT STR transactions in Direct I/O objects that write arrays are a

special case. In this case, the value in the Array Separator Õeld is ignored

and the linefeed character (ASCII 10 decimal) is used to separate the elements

of an array. This behavior is consistent with the needs of most instruments.

Multi-Field Format The Multi-Field Format section speciÕes the formatting style for multi-Õeld

data types for WRITE TEXT transactions. The multi-Õeld data types in HP VEE

are Coord, Complex, PComplex, and Spectrum. Other data types and other

formats are unaÃected by this setting.

Specifying a multi-Õeld format of (. . .) Syntax surrounds each multi-Õeld

item with parentheses. Specifying Data Only omits the parentheses, but

retains the separating comma. For example, the complex number 2+2j

could be written as (2,2) using (. . .) Syntax or as 2,2 using Data Only

syntax.

Note that HP VEE allows arrays of multi-Õeld data types; for example, you

can create an array of Complex data. In such a case, if Multi-Field Format

is set to (. . .) Syntax, the array will be written as:

(1,1)array sep(2,2)array sep ...

where array sep is the character speciÕed in the Array Separator Õeld.

6-21

Using Transaction I/O

Details About Transaction-Based Objects

Array Format The Array Format determines the manner in which multidimensional arrays

are written. For example, mathematicians write a matrix like this:

1 2 3

4 5 6

7 8 9

HP VEE writes the same matrix in one of two ways, depending on the setting

of Array Format. In the two examples that follow, End Of Line (EOL) is set

to "\n" (newline) and Array Separator is set to " " (space).

1 2 3 Block Array Format

4 5 6

7 8 9

1 2 3 4 5 6 7 8 9 Linear Array Format

Either array format separates each element of the array with the Array

Separator character. Block Array Format takes the additional step of

separating each row in the array using the End Of Line (EOL) character.

In the more general case (arrays greater than two dimensions), Block Array

Format outputs an End Of Line (EOL) character each time a subscript other

than the right-most subscript changes.

For example, if you write the three-dimensional array A[x,y,z] using Block

array format with this transaction:

WRITE TEXT A

an End Of Line (EOL) character will be output each time x or y changes

value.

If the size of each dimension in A is two, the elements will be written in this

order:

A[0,0,0] A[0,0,1]<EOL Character>

A[0,1,0] A[0,1,1]<EOL Character>

<EOL Character>

A[1,0,0] A[1,0,1]<EOL Character>

A[1,1,0] A[1,1,1]<EOL Character>

Notice that after A[0,1,1] is written, x and y change simultaneously and

consequently two <EOL Character>s are written.

6-22

Using Transaction I/O

Details About Transaction-Based Objects

READ and WRITE Compatibility

In general, you must know how data was written in order to read it properly.

This is particularly true when the data in question is in some type of binary

format that cannot be examined directly to determine its format. You must

read data in the same format it was written.

6-23

Choosing the Correct Transaction

This section summarizes the various I/O objects and the transactions they

support. It also suggests a procedure for determining the correct object and

transaction for a particular purpose. For details on transaction encodings and

formats, please refer to Appendix E.

The two tables that follow summarize the transaction-based objects available

in HP VEE and the actions they support. Use these tables together with

the following section, \Selecting the Correct Object and Transaction", to

determine the proper object and transaction for your needs.

6-24

Using Transaction I/O

Choosing the Correct Transaction

Table 6-5. Summary of Transaction-Based Objects

Object Description

To File Writes data to a Õle.

From File Reads data from a Õle.

To String Writes text to an HP VEE container.

From String Reads text from an HP VEE container.

Execute Program

(UNIX)

Spawns an executable Õle; writes to standard input and reads from standard output

of the spawned process. Note that Execute Program (PC) is not

transaction based.

To Printer Writes text to the HP VEE text printer.

To StdOut Writes data to HP VEE standard output. (A Õle in MS Windows)

To StdError Writes data to HP VEE standard error. (A Õle in MS Windows)

From StdIn Reads data from HP VEE standard input. (A Õle in MS Windows)

Direct I/O Communicates directly with HP-IB, VXI, serial, or GPIO instruments.

Interface

Operations

Transmits low-level bus commands and data bytes on an HP-IB, VXI, or serial

interface.

To/From Named

Pipe

Transmits data to and from named pipes to support interprocess communications.

(UNIX only)

To/From Socket Transmits data between networked computers to support interprocess communications.

To/From HP

BASIC/UX

Transmits data to and from an HP BASIC/UX process via HP-UX named pipes.

To/From DDE (PC

only)

Dynamically exchanges data between programs running under MS Windows 3.1.

6-25

Using Transaction I/O

Choosing the Correct Transaction

Table 6-6. Summary of Transaction Types

Action Description

EXECUTE Executes low-level commands to control the Õle, device, or interface associated with the

transaction-based object. This action is used to adjust Õle pointers, clear buÃers, close Õles

and pipes, and provide low-level control of hardware interfaces.

WAIT Waits for a speciÕed period of time before executing the next transaction.

In the case of Direct I/O to HP-IB, message-based and I-SCPI-supported

register-based VXI devices, WAIT can also wait for a speciÕc serial poll response.

READ Reads data from the associated object.

WRITE Writes data to the associated object.

SEND Sends IEEE 488-deÕned bus messages (commands and data) to an HP-IB interface.

Selecting the Correct Object and Transaction

1. Determine the source or destination of your I/O operation and the form in

which data is to be transmitted.

2. Determine the type of object that supports the source or destination using

Table 6-5.

3. Determine the correct type of transaction using Table 6-6.

4. To determine the remaining speciÕcations for the transaction, such as

encodings and formats, consult Appendix E.

6-26

Using Transaction I/O

Choosing the Correct Transaction

Example of Selecting an

Object and Transaction

Assume you need to read a Õle containing two columns of text data. Each

row contains a time stamp and a real number separated by a white space.

Each line ends with a newline character. Here is a partial listing of the

contents of the Õle.

14:18:00 1.001

14:18:30 -2.002

14:19:00 1.0E-03

.

.

.

Based on the previous procedure for selecting objects and transactions, here

are the steps to solve this problem:

1. The source is a text Õle. The data consists of a time stamp in 24-hour

hours-minutes-seconds notation and signed real numbers in scientiÕc and

decimal notation.

2. Consulting Table 6-5, note that the object used to read a Õle is From File.

3. Consulting Table 6-6, note that the type of transaction used to read data

from a Õle is READ.

4. The desired transactions are:

READ TEXT x TIME

READ TEXT y REAL

6-27

Using To String and From String

Use To String to create formatted Text by using transactions. The Text is

written to an HP VEE container.

Use From String to read formatted Text from an HP VEE container.

If only one string is generated by all the transactions in a To String object,

the output container is a Text scalar. If more than one string is generated by

the transactions in a To String, the output is a one-dimensional array of

Text.

WRITE transactions using EOL ON always terminate the current output string.

This causes the next transaction to begin writing to the next array element in

the output container.

WRITE transactions ending with EOL OFF will not terminate the output string,

causing the characters output by the next WRITE transaction to append to

the end of the current string. The last transaction in a To String always

terminates the current string, regardless of that transaction's EOL setting.

For most situations, the proper type of transaction for use with To String

is WRITE TEXT. For details about encodings other than TEXT, please refer to

Appendix E.

From String can read a Text scalar or an array depending on the

conÕguration of the READ TEXT transaction. READ TEXT will either terminate

a read upon encountering a EOL or will consume the EOL and continue with

the read. This is dependent on the format. For details about formats, please

refer to Appendix E.

6-28

Communicating with Files

Source or Destination Object

Data Files To File, From File

Standard Input From StdIn

Standard Output To StdOut

Standard Error To StdErr

Details About File Pointers

HP VEE maintains one read pointer and one write pointer per Õle regardless

of how many objects are accessing the Õle. A read pointer indicates the

position of the next data item to be read. Similarly, a write pointer indicates

the position where the next item should be written. The position of of these

pointers can be aÃected by:

– A READ, WRITE, or EXECUTE action

– The Clear File at PreRun & Open setting in the open view of To File

All objects accessing the same Õle share the same read and write pointers,

even if the objects are in diÃerent threads or diÃerent contexts.

A Õle is opened for reading and writing when either of these conditions is

met:

– The Õrst object to access a particular Õle operates for the Õrst time after

PreRun. This is the most common case.

– New data arrives at the optional control input terminal that speciÕes the

Õle name. This case occurs less frequently.

6-29

Using Transaction I/O

Communicating with Files

Read Pointers At the time From File opens a Õle, the read pointer is at the beginning of

the Õle. Subsequent READ transactions advance the Õle pointer as required to

satisfy the READ. You can force the read pointer to the beginning of the Õle at

any time using an EXECUTE REWIND transaction in a From File object; data

in the Õle is not aÃected by this action.

Write Pointers The initial position of a write pointer depends on the

Clear File at PreRun & Open setting in the open view of

To File. If you enable Clear File at PreRun & Open, the Õle contents are

erased and the write pointer is positioned at the beginning of the Õle when

the Õle is opened. Otherwise, the write pointer is positioned at the end of the

Õle and data is appended. You can force the write pointer to the beginning of

the Õle at any time using an EXECUTE REWIND or EXECUTE CLEAR transaction.

REWIND preserves any data already in the Õle. However, new data will

overwrite old data starting at the new position. CLEAR erases data already in

the Õle.

N O T E

The To DataSet and From DataSet objects also share one read and one write pointer

per Õle with the To File and From File objects. However, mixing To DataSet and

From DataSet operations with To File and From File operations on the same Õle is

not recommended.

Closing Files HP VEE guarantees that any data written by To File is written to the

operating system when the last transaction completes execution and all

output terminals have been activated.

The UNIX operating system physically writes data buÃered by the operating

system to disk periodically, typically every 15-30 seconds. This buÃered

operation is part of the operating system; it is not unique to HP VEE.

HP VEE automatically closes all Õles at PostRun. PostRun occurs when all

active threads Õnish executing.

6-30

Using Transaction I/O

Communicating with Files

Files may be closed programmatically by using the EXECUTE CLOSE

transaction in both To File and From File. This provides a means to

continually read or write a Õle that may have been created by another

process.

Files may also be deleted programmatically by using the EXECUTE DELETE

transaction. This is useful for deleting temporary Õles.

Figure 6-13 shows an example of how to use EXECUTE CLOSE.

Figure 6-13. Using the EXECUTE CLOSE Transaction

This program is saved in the Õle manual48.vee in your examples directory.

In Figure 6-13 Execute Program executes a shell command (date) that

creates and writes the date and time to a Õle (/tmp/dateFile). Within

the same thread, a From File reads the date from that Õle using a

READ TEXT x STR transaction. The EXECUTE CLOSE transaction is necessary

because the subthread is executed multiple times by For Count. Succeeding

executions of Execute Program will overwrite the Õle. However, since

From File only opens the Õle once, upon the second execution of From File

6-31

Using Transaction I/O

Communicating with Files

the read pointer will be stale | it will no longer point to the Õle since

Execute Program has re-created the Õle. An error will occur.

From File must close the Õle after reading the data by using an

EXECUTE CLOSE transaction. The EXECUTE CLOSE transaction forces

From File to re-open the Õle on every execution.

In the example of Figure 6-13, the error can be shown by using a NOP to

\comment out" the EXECUTE CLOSE transaction. The error will state End of

file or no data found. Removing the NOP will allow the program to run

normally.

The EOF Data Output

From File supports a unique data output terminal named EOF (end-of-Õle).

This terminal is activated whenever you attempt to read beyond the end of

a Õle. The EOF terminal is useful when you wish to read a Õle of unknown

length.

The read-to-end feature, discussed in \Reading Data", also provides a means

of reading a Õle of unknown length. However, the contents of the Õle will be

in a single HP VEE container. If the Õle is to be read an-element-at-a-time,

with each element residing in its own container, use the EOF terminal.

6-32

Using Transaction I/O

Communicating with Files

Figure 6-14 illustrates a typical use of EOF. The Õle being read contains a list

of X-Y data of unknown length. Here are typical contents of the Õle:

1.0

5.5

2.1

8

.

.

.

Figure 6-14. Typical Use of EOF to Read a File

6-33

Using Transaction I/O

Communicating with Files

Common Tasks for Importing Data

Because HP VEE provides a convenient environment for analyzing and

displaying data, you may wish to import data into HP VEE from other

programs. This is the general procedure to use for importing data from

another software application:

1. Save the data in a text Õle (ASCII Õle).

2. Examine the data Õle with a text editor to determine the format of the

data.

3. Use a From File object with a READ TEXT transaction to read the data Õle.

Importing X-Y Values One very common problem is reading a text Õle containing an unknown

number of X and Y values and plotting them. The program shown in

Figure 6-15 solves this problem.

6-34

Using Transaction I/O

Communicating with Files

Figure 6-15. Importing XY Values

The program shown in Figure 6-15 is saved in the Õle manual29.vee in your

examples directory.

Note that the READ TEXT REAL transaction easily handles all the diÃerent

notations used for Y values including signs, decimals, and exponents. Here is

a portion of the data Õle:

.

.

.

8 8.555555

9 9e0

10 1.05e+01

11 +11.

12 12.5

13 1.3E1

6-35

Using Transaction I/O

Communicating with Files

Importing Waveforms There are many diÃerent conventions used by other software applications

for saving waveforms as text Õles. In general, the Õle consists of a number

of individual values that describe attributes of the waveform and a

one-dimensional array of Y values. This section illustrates how to import

waveforms saved using one of these conventions:

– Fixed-format Õle header. Waveform attributes are listed in Õxed positions at

the beginning of the Õle followed by a one-dimensional array of Y data.

– Variable-format Õle header. A variable number of attributes are listed at the

beginning of the Õle followed by a one-dimensional array of Y data. Their

positions are marked by special text tokens.

Fixed-Format Header. Here is a portion of the data Õle read by the

program in Figure 6-16:

NAME Noise1

START_TIME 0.0

STOP_TIME 1.0E-03

SAMPLES 32

DATA

.243545

.2345776

.

.

.

Since this is a Õxed-format header, labels such as NAME and SAMPLES are

irrelevant. The waveform attributes always appear and are in the same

position. Figure 6-16 shows a program that reads the waveform data Õle.

6-36

Using Transaction I/O

Communicating with Files

Figure 6-16. Importing a Waveform File

The program shown in Figure 6-16 is saved in the Õle manual30.vee in your

examples directory.

6-37

Using Transaction I/O

Communicating with Files

The transactions in From File do most of the work here. Here is how each

transaction works:

1. The Õrst transaction strips away the NAME label. This must be done before

attempting to read the string that names the waveform, or else NAME and

Noise1 would be read together as a single string.

2. The second transaction reads the string name of the waveform.

3. The third through Õfth transactions read the speciÕed numeric quantity.

Note that HP VEE simply reads and ignores any preceding \extra"

characters in the Õle not needed to build a number.

4. The sixth transaction reads the one-dimensional array of Y data using the

ARRAY SIZE determined by the previous transaction. Note that Samples

must appear as an output terminal to be used in this transaction.

Variable-Format Header. Here is a portion of the data Õle read by the

program in Figure 6-17:

First Line Of File

<MARKER1> 1 2 3

<MARKER2> A B C

<DATA>

1 1.1

2 2.2

3 2.9

.

.

.

In this case, the exact contents and position of data in the Õle is not known.

The only fact known about this Õle is that a list of XY values follows the

special text marker <DATA>.

To simplify this example, the program in Figure 6-17 Õnds only the data

associated with <DATA>. In your own applications, you might need to search

for several markers.

6-38

Using Transaction I/O

Communicating with Files

Figure 6-17. Importing a Waveform File

The program shown in Figure 6-17 is saved in the Õle manual31.vee in your

examples directory.

From File #1 reads tokens (words delimited by white space) one at a time,

searching for <DATA>. Once <DATA> is found, From File reads XY pairs until

the end of the Õle is reached.

6-39

Communicating with Programs (UNIX)

Program Object(s)

Shell command Execute Program (UNIX)

C program Execute Program (UNIX)

To/From Named Pipe (UNIX)

To/From Socket

HP BASIC/UX Init HP BASIC/UX (UNIX)

To/From HP BASIC/UX (UNIX)

Execute Program (UNIX)

At times you may wish to use an HP VEE program to perform a task

that you would normally do from the Operating System command line.

The Execute Program (UNIX) object allows you to do this. You use

Execute Program (UNIX) to run any executable Õle including:

– Compiled C programs

– Shell scripts

– UNIX system commands, such as ls and grep

6-40

Using Transaction I/O

Communicating with Programs (UNIX)

Figure 6-18. The Execute Program (UNIX) Object

Execute Program (UNIX)

Fields

The following sections explain the Õelds visible in the open view of

Execute Program (UNIX).

Shell. Shell speciÕes the name of an UNIX shell, such as sh, csh, or ksh.

If the Shell Õeld is set to none, the Õrst token in the Prog with params

Õeld is assumed to be the name of an executable Õle, and each token

thereafter is assumed to be a command-line parameter. The executable is

spawned directly as a child process of HP VEE. All other things being equal,

Execute Program (UNIX) executes fastest when Shell is set to none.

If the Shell Õeld speciÕes a shell, HP VEE spawns a process corresponding

to the speciÕed shell. The string contained in the Prog with params Õeld is

passed to the speciÕed shell for interpretation. Generally, the shell will spawn

additional processes.

Wait for Prog Exit. Wait for prog exit determines when HP VEE

completes operation of the Execute Program object and activates any data

outputs. If Wait for prog exit is set to Yes, HP VEE will:

1. Check to see if a child process corresponding to the

Execute Program (UNIX) object is active. If one is not already

active, HP VEE will spawn one.

2. Execute all transactions speciÕed in the Execute Program object.

3. Close all pipes to the child process, thus sending an end-of-Õle (EOF) to

the child.

4. Wait until the child process terminates before activating any output pins

of the Execute Program (UNIX) object. If the Shell Õeld is not set to

none, it is the shell that must terminate to satisfy this condition.

6-41

Using Transaction I/O

Communicating with Programs (UNIX)

If Wait for prog exit is set to No, HP VEE will:

1. Check to see if a child process corresponding to the

Execute Program (UNIX) object is active. If one is not already

active, HP VEE will spawn one.

2. Execute all transactions speciÕed in the Execute Program object.

3. Activate any data output pins on the Execute Program object. The child

process remains active and the corresponding pipes still exist.

All other things being equal, Execute Program (UNIX) executes fastest

when Wait for prog exit is set to No.

Prog With Params. Prog with params speciÕes either:

1. The name of an executable Õle and command line parameters

(Shell set to none).

2. A command that will be sent to a shell for interpretation

(Shell not set to none).

Here are examples of what you typically type into the Prog with params

Õeld:

To run a shell command (Shell set to ksh):

ls -t *.dat | more

To run a compiled C program (Shell set to none):

MyProg -optionA -optionB

If you use shell-dependent features in the Prog with params Õeld, you

must specify a shell to achieve the desired result. Common shell-dependent

features are:

– Standard input/output redirection (< and >)

– File name expansion using wildcards (*, ?, and [a-z])

– Pipes (|)

Running a Shell Command Execute Program (UNIX) can be used to run shell commands such as ls,

mkdir, and rm. Figure 6-19 shows one method for obtaining a list of Õles in a

directory using an HP VEE program.

6-42

Using Transaction I/O

Communicating with Programs (UNIX)

Figure 6-19. Execute Program (UNIX) Running a Shell Command

The program shown in Figure 6-19 is saved in the Õle manual32.vee in your

examples directory.

In Figure 6-19, the Execute Program (UNIX) determines the number of Õle

names in the /tmp directory by listing the names in a single column (ls -1)

and piping this list to a line counting program (wc -l). Because the pipe is

used, the command contained in the Prog with params Õeld must be sent to

a shell for interpretation. Thus, the Shell Õeld is set to sh. The number of

lines is read by the READ TEXT transaction and passed to the output terminal

named Lines.

The second transaction reads the list of Õles in the /tmp directory. Note that

it reads exactly the number of lines detected in the Õrst transaction. The

shell command is separated by a semicolon to tell the shell that it is executing

two commands.

In the Execute Program (UNIX), Wait for prog exit is set to Yes. In

this case, this setting is not very important because these shell commands

are only executed once. The No setting is useful when you want the process

spawned by the Execute Program (UNIX) to remain active while your

HP VEE program continues to execute.

6-43

Using Transaction I/O

Communicating with Programs (UNIX)

Figure 6-20 shows another method for obtaining a list of Õles in a directory

using an HP VEE program.

Figure 6-20. Execute Program (UNIX) Running a Shell Command using Read-To-End

This program is saved in the Õle manual50.vee in your examples directory.

In Figure 6-20 the HP VEE program displays the contents of the /tmp

directory in a simpler fashion than in Figure 6-19.

In Figure 6-20, Execute Program (UNIX) has in the Prog with params

Õeld the single shell command ls /tmp. There is no need to Õrst obtain the

number of Õles in the directory, as was done in the program in Figure 6-19,

because the transaction READ TEXT x STR ARRAY:* uses the read-to-end

feature discussed in \Reading Data". The shell command, when it is done

executing, will close the pipe that Execute Program (UNIX) is using to

read the list of Õles. This sends an end-of-Õle (EOF) which terminates the

transaction.

6-44

Using Transaction I/O

Communicating with Programs (UNIX)

Running a C Program The program shown in Figure 6-21 illustrates one way to share data with a

C program using stdin and stdout of the C program. In this case, the C

program simply reads a real number from HP VEE, adds one to the number,

and returns the incremented value.

Figure 6-21. Execute Program Running a C Program

The program shown in Figure 6-21 is saved in the Õle manual33.vee in your

examples directory.

6-45

Using Transaction I/O

Communicating with Programs (UNIX)

Figure 6-22 contains a listing of the C program called by the HP VEE program

in Figure 6-21.

The program listing in Figure 6-22 uses both setbuf and fflush to force

data through stdout of the C program; in practice, either setbuf or fflush

is suœcient. Using setbuf(Õle,NULL) turns oÃ buÃering for all output to

Õle. Using fflush(Õle) Œushes any already buÃered data to Õle.

#include <stdio.h>

main ()

{

int c;

double val;

setbuf(stdout,NULL); /* turn stdout buffering off */

while (((c=scanf("%lf",&val)) != EOF) && c > 0){

fprintf(stdout,"%g\n",val+1);

fflush(stdout); /* force output back to VEE*/

}

exit(0);

}

Figure 6-22. C Program Listing

To/From Named Pipe (UNIX)

To/From Named Pipe is a tool for advanced users who wish to implement

interprocess communication. Using named pipes in UNIX is not a task for

casual users; named pipes have some complex behaviors. If you wish to learn

more about named pipes and interprocess communication, refer to the section

\Related Reading" at the end of this chapter.

All To/From Named Pipe objects contain the same default names for read and

write pipes. Be certain that you correctly specify the names of the pipes you

want to read or write. This can be a problem if you run HP VEE on a diskless

6-46

Using Transaction I/O

Communicating with Programs (UNIX)

workstation. You must be sure that the named pipes in your program are not

being accessed by another user.

HP VEE creates pipes for you as they are needed; you do not need to create

them outside the HP VEE environment.

Hints for Using Named

Pipes

– Be certain that HP VEE and the process on the other end of the pipe

expect to share the same type of data. In particular, be certain that the

amount of data sent is suœcient to satisfy the receiver and that unclaimed

data is not left in the pipe.

– Use unbuÃered output to send data to HP VEE or Œush output buÃers to

force data through to HP VEE. This can be achieved by using non-buÃered

I/O (write), turning oÃ buÃering (setbuf), or Œushing buÃers explicitly

(fflush).

Here are examples of the C function calls used to control buÃered output to

HP VEE:

setbuf(out pipe1,NULL) Turns oÃ output buÃering.

or

fflush(out pipe1) Flushes data to HP VEE.

or

write(out pipe2,data,n) Writes unbuÃered data.

where out pipe1 is a Õle pointer and out pipe2 is a Õle descriptor for the

Read Pipe speciÕed in To/From Named Pipe.

Note that HP VEE automatically performs similar Œushing operations when

writing data to a pipe. HP VEE does the equivalent of an fflush when either

of these conditions is met:

– The last transaction in the object executes.

– A WRITE transaction is followed by a non-WRITE transaction.

To/From Named Pipe supports read-to-end transactions as

described in \Reading Data". To/From Named Pipe also supports

EXECUTE CLOSE READ PIPE and EXECUTE CLOSE WRITE PIPE transactions.

These transactions can be used for inter-process communications where the

amount of data to read and write between HP VEE and the other process is

not explicitly known.

6-47

Using Transaction I/O

Communicating with Programs (UNIX)

For example, suppose that HP VEE is using named-pipes to communicate

with another process. If HP VEE is writing data out on a named pipe and the

amount of data is less than that expected by the reading process, that reading

process will hang until such time as there is enough data on the named-pipe.

By using an EXECUTE CLOSE WRITE PIPE transaction, the named-pipe is

closed when an EOF (end-of-Õle) is sent. Thus, an EOF will terminate most

read function calls (read, fread, fgets, etc . . .), thereby allowing the

reading process to unblock and still obtain the data written by HP VEE into

the pipe.

Conversely, if HP VEE is the reading process, a READ transaction using the

read-to-end feature will allow HP VEE to read an unknown amount of data

from the named-pipe if the writing process performs a close() on the pipe,

sending an EOF. Another way to avoid a read that will block indeÕnitely is to

use the READ IOSTATUS transaction. See Appendix E for more information

about using READ IOSTATUS transactions.

To/From Socket

The To/From Socket object is for advanced users who wish to implement

interprocess communication for systems integration. Using sockets is not a

task for casual users; sockets have some complex behaviors.

Sockets let you implement interprocess communication (IPC) to allow

programs to treat the LAN as a Õle descriptor. IPC implies that there are two

sockets involved between two or more processes on two diÃerent computers.

Instead of a simple open()/close() interface as used in the To/From Named

Pipe object, sockets use an exported address and an initial caller/receiver

strategy, referred to as a connection-oriented protocol.

6-48

Using Transaction I/O

Communicating with Programs (UNIX)

In a connection-oriented protocol, also known as a client/server arrangement,

the server must obtain a socket, then bind an address known as the port

number to the socket. After binding a port number, the server waits in a

blocked state to accept a connection request. To call for a connection, the

client must obtain a socket, then use two elements of the server's identity.

The elements include the particular port number the server bound to its

socket, and the server's host name or IP address. If the server's host name

cannot be resolved into an IP address, the client must use the IP address

speciÕcally. After the server accepts the client's connection request, the

connection is established and normal I/O activities can begin.

Figure 6-23. The To/From Socket Object

To/From Socket Fields The To/From Socket object contains Õelds that let you do the following:

– Connect to a bound socket on a remote computer.

– Bind a socket on the computer on which HP VEE is running and wait for a

connection to occur.

Of the four available Õelds, values of the following three Õelds can be input as

control pins to the object:

– Connect/Bind Port Mode

– Host name

– Timeout

The following sections explain the Õelds visible in the To/From Socket open

view.

Connect/Bind Port Mode. Connect/Bind Port Mode comprises two Õelds,

the mode button and the text Õeld. The mode button toggles between Bind

Port and Connect Port. The text Õeld lets you enter the port number.

Allowed port numbers are integers from 1024 through 65535. Numbers from

6-49

Using Transaction I/O

Communicating with Programs (UNIX)

0 through 1023 are reserved and will cause a run-time error if you use them.

Port numbers above 5000 are commonly called transient, and are the range of

numbers you should use.

Table 6-7. Range of Integers Allowed for Socket Port Numbers

Number Range Reserved for . . .

0|1023 operating system

1024|5000 commercial or global application
1

5001|65535 internal or closed distributed applications

1 Usually involves a registration process.

Host Name. If the mode is set to Bind Port, this Õeld displays the name of

host computer on which HP VEE is running. You cannot change this Õeld to

the host name of a remote computer, because it is not possible to bind a port

number to a socket on a remote computer.

If the mode is set to Connect Port, you are allowed to edit this Õeld. Enter

the host name or IP address of the remote computer to which you want to

connect. You must know the host name and it must be resolvable to the IP

address. If a host name table is not available on the network to translate the

host name to an IP address, you must enter the speciÕc address, such as

15.11.29.103.

Timeout. Timeout lets you enter an integer value that represents the

timeout period in seconds for all READ and WRITE transactions. This timeout

period is also in eÃect for the initial connection when the To/From Socket

object is set either in the Bind Port mode waiting for a connection to occur,

or in the Connect Port mode waiting for a connection to be accepted.

Transactions. The To/From Socket object uses the same normal I/O

transactions used by the To/From Named Pipe object. READ and WRITE

transactions support all data types. See Appendix E for detailed information

about transactions.

Data Organization All binary data is placed on the LAN in network-byte order. This corresponds

to Most SigniÕcant Byte (MSB) or Big Endian ordering. Binary transactions

will swap bytes on READs and WRITEs, if necessary. This implies that any

other process that HP VEE is connected to will need to conform to this

standard. In the previous example, the server process could have been

6-50

Using Transaction I/O

Communicating with Programs (UNIX)

little endian ordered while the client could be big endian ordered. The byte

swapping done by HP VEE is invisible.

Object Execution A To/From Socket object set to bind a socket at a port number will use the

timeout period waiting for a connection to occur. All concurrent threads in

HP VEE will not execute during this period. The timeout value can be set

to zero which disables timeouts, potentially making the period waiting for a

connection inÕnitely long. Any timeout violation causes an error, and halts

HP VEE execution.

Once a connection has been established the devices perform the transactions

contained in the transaction list. All READ operations will block for the

timeout period waiting for the amount and type of data speciÕed in the

transaction. To avoid potential blocked threads, use the READ IOSTATUS

transaction to detect when data is available on the socket.

To speciÕcally terminate a connection, use the EXECUTE CLOSE transaction.

All socket connections established in a HP VEE program are broken when

a program stops executing. Whichever way connections are broken, the

server and client objects must repeat the bind-accept and connect-to protocols

to re-establish connections. EXECUTE CLOSE should be used as a mutually

agreed-upon termination method, and not merely an expedient way to Œush

data from a socket.

Multiple To/From Socket objects will share sockets. All objects that are

binding an identical port number will share the same socket. All objects

that are conÕgured with identical port numbers and host names to attempt

connection to the same bound socket will share the same socket. The

overhead of establishing the connection is incurred in the Õrst execution of

one of the commonly conÕgured objects.

Example The following Õgure shows a HP VEE program which uses the To/From

Socket object to provide a separate server process for data acquisition using

the HPE 1413B. This simple server can honor client requests to initialize

instruments, acquire and write data to disk, and shutdown and quit. During

the acquisition phase data is read from the Current Value Table in the A/D

and sent to the client.

The Õrst To/From Socket object to execute, connected to the Until Break

object, will bind a socket to port number 5001 on the host computer named

hpjtmxzz and wait 180 seconds for another process to connect to that socket.

Note the use of an error pin to avoid a halt due to a timeout. In this case

6-51

Using Transaction I/O

Communicating with Programs (UNIX)

that object is just executed again and will wait another 180 seconds for a

connection. After the connection has been made, the object will then block

on the READ transaction waiting for the client to send a command. Again, if a

timeout occurs on the READ, the object will execute again and block on the

READ transaction.

Figure 6-24. To/From Socket Binding Port for Server Process

The following Õgure shows the client side of the service described previously.

The Õrst To/From Socket object to execute will wait, sleeping, for the

attempted connection to occur. Note that unlike the server, any timeout error

will cause the program to error and halt. The Õrst object sends over the

commands Init and Acquire then executes the loop to read the CVT.

6-52

Using Transaction I/O

Communicating with Programs (UNIX)

Figure 6-25. To/From Socket Connecting Port for Client Process

HP BASIC/UX Objects (HP VEE for HP-UX only)

The Init HP BASIC/UX and To/From HP BASIC/UX objects are available

in all versions of HP VEE, and work only in programs that run on HP 9000

Series 300/400 and 700 systems.

The HP BASIC/UX objects are tools for advanced users who wish to

communicate with HP BASIC processes. Refer to the section \To/From Named

Pipe (UNIX)" earlier in this chapter for general information about using pipes

with HP VEE.

6-53

Using Transaction I/O

Communicating with Programs (UNIX)

Init HP BASIC/UX Init HP BASIC/UX spawns an HP BASIC/UX process and runs a speciÕed

HP BASIC program.

Enter the complete path and Õle name of the HP BASIC program you wish

to execute in the Program Õeld. The program may be in either STOREd or

SAVEd format.

Init HP BASIC/UX does not provide any data path to or from the HP BASIC

process; use To/From HP BASIC/UX for that purpose.

You can use more than one Init HP BASIC/UX object in a program, and you

can use more than one in a single thread.

Note that there is no direct way to terminate an HP BASIC/UX process from

an HP VEE program. In particular, PostRun does not attempt to terminate

any HP BASIC/UX processes. PostRun occurs when all threads complete

execution or when you press Stop. Thus, you must provide a way to

terminate the HP BASIC/UX process. Possible ways to do this are:

– Your HP BASIC program executes a QUIT statement when it receives a

certain data value from HP VEE.

– An Execute Program object kills the HP BASIC/UX process using a shell

command, such as rmbkill.

If you Cut an Init HP BASIC/UX while the associated HP BASIC process is

active, HP VEE automatically terminates the HP BASIC process. When you

Exit HP VEE, all HP BASIC processes started by HP VEE are terminated.

To/From HP BASIC/UX The To/From HP BASIC/UX object supports communications between an

HP BASIC program and HP VEE using named pipes.

Type in the names of the pipes you wish to use in the Read Pipe and

Write Pipe Õelds. Be certain that they match the names of the pipes used

by your HP BASIC/UX program and that the read and write names are not

inadvertently swapped relative to their use in the HP BASIC program. Use

diÃerent pipes for the To/From HP BASIC/UX objects in diÃerent threads.

6-54

Using Transaction I/O

Communicating with Programs (UNIX)

Examples Using To/From

HP BASIC/UX
Sharing Scalar Data. Consider a simple case where you wish to:

1. Start HP BASIC.

2. Run a speciÕc HP BASIC program.

3. Send a single number to HP BASIC for analysis.

4. Retrieve the analyzed data.

5. Terminate HP BASIC.

Here are typical To/From HP BASIC/UX settings and the corresponding

HP BASIC/UX program:

Figure 6-26. To/From HP BASIC/UX Settings

Here is the HP BASIC/UX program:

100 ASSIGN @From_vee TO "/tmp/to_rmb"

110 ASSIGN @To_vee TO "/tmp/from_rmb"

120 ! Your analysis code here

130 ENTER @From_vee;Vee_data

140 OUTPUT @To_vee;Rmb_data

150 END

To view an example program that solves this problem, open this program:

/usr/lib/veetest/examples/manual/manual34.vee

Sharing Array Data. To share array data between HP VEE and HP BASIC

using TEXT encoding, you must modify the default Array Separator in

To/From HP BASIC/UX. To do this, click on Edit Properties in the

To/From HP BASIC/UX object menu and click on the Data Format tab in the

6-55

Using Transaction I/O

Communicating with Programs (UNIX)

Properties dialog box. Set the Array Separator Õeld to ", " (a comma

followed by a blank).

Be sure that HP VEE and HP BASIC use the same size arrays.

Note that the order in which HP VEE and HP BASIC read and write array

elements is compatible. If HP VEE and HP BASIC share an array using READ

and WRITE transactions in To/From HP BASIC/UX, each element will have

the same value in HP VEE as in HP BASIC.

To view an example program that shares arrays between HP VEE and

HP BASIC, open this program:

/usr/lib/veetest/examples/manual/manual35.vee

Sharing Binary Data. It is possible to share numeric data between HP VEE

and HP BASIC without converting the numbers to text. To do this, you must

select BINARY encoding in the To/From HP BASIC/UX transactions and

FORMAT OFF for the ASSIGN statements that reference the named pipes in

HP BASIC.

There are only two cases where it is possible to share numeric data in binary

form:

– HP VEE BINARY REAL is equivalent to HP BASIC REAL

– HP VEE BINARY INT16 is equivalent to HP BASIC INTEGER

6-56

Communicating with Programs (PC)

Program Object(s)

MS-DOS command Execute Program (PC)

Windows Application Execute Program (PC)

To/From DDE (PC)

C program Execute Program (PC)

Import Library

Call Function

Formula

Execute Program (PC)

At times you may wish to use an HP VEE program to perform a task

that you would normally do from the Operating System command line.

The Execute Program (PC) object allows you to do this. You use

Execute Program (PC) to run any executable Õle including:

– Compiled C programs

– Any MS-DOS program (*.EXE or *.COM Õles)

– .BAT Õles

– MS-DOS system commands, such as dir

6-57

Using Transaction I/O

Communicating with Programs (PC)

Figure 6-27. The Execute Program (PC) Object

Execute Program (PC)

Fields

The following sections explain the Õelds visible in the open view of

Execute Program (PC).

Run Style. If the program you want to execute runs in a window, Run

Style speciÕes the window style:

– Normal runs the program in a standard window.

– Minimized runs the program in a window minimized to an icon.

– Maximized runs the program in a window enlarged to its maximum size.

Wait for Prog Exit. Wait for prog exit determines when HP VEE

completes operation of the Execute Program (PC) object and activates any

data outputs. If Wait for prog exit is set to Yes, HP VEE will:

1. Execute the command speciÕed in the Execute Program (PC) object.

2. Wait until the process terminates before activating any output pins of the

Execute Program (PC) object.

If Wait for prog exit is set to No, HP VEE will:

1. Execute the command speciÕed in the Execute Program (PC) object.

2. Activate any data output pins on the Execute Program (PC) object.

All other things being equal, Execute Program (PC) executes fastest when

Wait for prog exit is set to No.

Prog With Params. Prog with params speciÕes either:

1. The name of an executable Õle and command line parameters.

2. A command that will be sent to MS-DOS for interpretation.

6-58

Using Transaction I/O

Communicating with Programs (PC)

If you have included the appropriate path in the PATH variable in

your AUTOEXEC.BAT Õle, you don't need to include the path in the

Prog with params Õeld. Here are examples of what you typically type into

the Prog with params Õeld:

To execute a MS-DOS command:

COMMAND.COM /C DIR *.DAT

To run a compiled C program:

MyProg -optionA -optionB

Working Directory. Working directory points to a directory where the

program you want to execute can Õnd Õles it needs. So, if you want to run

the program nmake using the makeÕle in the directory c:\progs\cprog1:

In Prog with params:, enter nmake.

In Working directory:, enter c:\progs\cprog1.

Using Dynamic Data Exchange (DDE)

Dynamic Data Exchange (DDE) deÕnes a message-based protocol for

communication between Windows applications. This communication takes

place between a DDE client and a DDE server. The DDE client requests

the conversation with the DDE server. The client then requests data and

services from the server application. The server responds by sending data or

executing procedures.

A Windows application that supports DDE may act as either a client, a server

or both. HP VEE for Windows provides only client capabilities. It implements

DDE capabilities with the To/From DDE object.

The HP VEE for Windows To/From DDE object uses four types of

transactions:

READ(REQUEST) Reads Data from a DDE transfer.

WRITE(POKE) Writes (pokes) Data to a DDE transfer.

6-59

Using Transaction I/O

Communicating with Programs (PC)

EXECUTE Sends a command to the DDE server that HP VEE for

Windows is communicating with. The server then executes

the command.

WAIT Waits for the speciÕed amount of time (in seconds).

Note that the To/From DDE object initiates and terminates DDE operations

as part of its function. You do not need to explicitly perform the initiate and

terminate functions.

Key DeÕnitions

– Application - The DDE name for the application.

– Topic - An application-speciÕc identiÕer of the kind of data. For example, a word processor's topic

would be the document name.

– Item - An application-speciÕc identiÕer for each piece of data. For example, a spreadsheet data

item might be a cell location; a word processor data item might be a bookmark name.

To/From DDE Object

Figure 6-28. The To/From DDE Object

6-60

Using Transaction I/O

Communicating with Programs (PC)

The To/From DDE object has three main Õelds. In the Application Õeld

enter the application name for the Windows application that you want to

communicate with. Generally, this is the .EXE Õle name. See the manual for

each speciÕc application to determine its DDE application name.

The Topic Õeld contains the Topic name for the application.

The Timeout Õeld lets you specify the timeout period for HP VEE to wait if

the application does not respond. The default value is Õve seconds.

The last Õeld contains transactions to communicate with the other

application. For READ(REQUEST) and WRITE(POKE) transactions, you must

also Õll in an Item name in the transaction.

For example, the following To/From DDE object, communicating with the MS

Windows Program Manager, creates a program group, adds an item to the

group, displays it for 5 seconds and then deletes the program group.

Figure 6-29. The To/From DDE Example

Note that if the server DDE application is not currently running, HP VEE

will attempt to start that application. This will only be successful if the

application's executable Õle name is the same as the name in the application

Õeld. The executable Õle's directory must also be deÕned in your PATH.

HP VEE will try to start the application for the amount of time entered in

the Timeout Õeld. Otherwise, use an Execute Program (PC) object before

the To/From DDE object to run the application program, as illustrated in the

following example.

6-61

Using Transaction I/O

Communicating with Programs (PC)

Figure 6-30. Execute PC before To/From DDE

The following example shows the use of input and output terminals with a

To/From DDE object.

Figure 6-31. I/O Terminals and To/From DDE

6-62

Using Transaction I/O

Communicating with Programs (PC)

DDE Examples

The following Õgures are examples of how to communicate with various

popular Windows software. Read the Note Pad in each example for

important information regarding each example.

Figure 6-32. Lotus 123 DDE Example

6-63

Using Transaction I/O

Communicating with Programs (PC)

Figure 6-33. HP ITG DDE Example

6-64

Using Transaction I/O

Communicating with Programs (PC)

Figure 6-34. Instrument BASIC for Windows DDE Example

6-65

Using Transaction I/O

Communicating with Programs (PC)

Figure 6-35. Excel DDE Example

Figure 6-36. ReŒections DDE Example

6-66

Using Transaction I/O

Communicating with Programs (PC)

Figure 6-37. Word for Windows DDE Example

Figure 6-38. WordPerfect DDE Example

6-67

Using Transaction I/O

Communicating with Programs (PC)

Dynamic Linked Libraries (DLL)

For information on using DLLs see \Creating a Compiled Function (MS

Windows)" in Chapter 5.

6-68

Communicating with Instruments

Task Object

Transmit data via HP-IB, VXI, serial, and GPIO interfaces.
1

Direct I/O

Send low-level HP-IB or VXI messages, commands, and data.
1

Interface

Operations

1 Register-based VXI devices can be used as message-based if supported by I-SCPI drivers.

N O T E

You must properly conÕgure HP VEE to communicate with instruments before you can use

Direct I/O objects. Please read \ConÕguring Instruments" in Chapter 3 for details.

N O T E

HP VEE for Windows does not support GPIO.

6-69

Using Transaction I/O

Communicating with Instruments

Direct I/O

Direct I/O allows you control an instrument directly using the instrument's

built-in commands. You do not need an HP VEE driver Õle to use Direct I/O

to control an instrument.

Sending Commands The most important WRITE transactions for Direct I/O use with HP-IB,

message-based VXI and register-based VXI supported by I-SCPI, and serial

instruments are:

– WRITE TEXT

– WRITE BINBLOCK

– WRITE STATE

Direct I/O to GPIO instruments uses only WRITE BINARY and

WRITE IOCONTROL.

Direct I/O to register-based and some message-based VXI instruments use

WRITE REGISTER and WRITE MEMORY transactions. These transactions are

the only method of communicating with register-based VXI instruments not

supported by I-SCPI drivers. Refer to Appendix E for further information

about these transactions.

WRITE TEXT Transactions. Most HP-IB, message-based VXI, and serial

instruments use human-readable strings for programming commands. Such

commands are easily sent to instruments using WRITE TEXT transactions. For

example, all instruments conforming to IEEE 488.2 recognize *RST as a reset

command. Here is the transaction used to reset such an instrument:

WRITE TEXT "*RST" EOL

Note that instruments often deÕne very precise \punctuation" in their syntax.

They may demand that you send speciÕc characters after each command or at

the end of a group of commands. In addition, HP-IB instruments vary in their

use of the signal line End-Or-Identify (EOI). If you suspect that you are having

problems in this area, examine the END (EOI) on EOL and EOL Sequence

Õelds in the Direct I/O Configuration dialog box for the object in

question. If you do not know how to access the Direct I/O Configuration

dialog box, refer to \ConÕguring Instruments" in Chapter 3.

6-70

Using Transaction I/O

Communicating with Instruments

Please consult your instrument programming manual to determine the proper

command syntax for your instrument.

WRITE TEXT transactions are all that is needed to set up instruments for the

majority of all situations where Direct I/O is required. Direct I/O allows

you to use WRITE encodings other than TEXT when it is required by the

instrument. The encodings other than TEXT that are most often useful are

BINBLOCK and STATE.

WRITE BINBLOCK Transactions. BINBLOCK encoding writes data to

instruments using IEEE-deÕned block formats. These block formats are

typically used to transfer large amounts of related data, such as trace data

from oscilloscopes and spectrum analyzers. The block formats supported by

HP VEE are discussed in greater detail in Appendix E. Instruments usually

require a signiÕcant number of commands before accepting BINBLOCK data;

consult your instrument's programming manual for details.

To use BINBLOCK transactions, you must properly conÕgure the

Conformance Õeld (and possibly Binblock) in the instrument's

Direct I/O Configuration. Please refer to \Direct I/O ConÕguration" in

Chapter 3 for more detailed information.

WRITE STATE Transactions. Some HP-IB and message-based VXI

instruments support a learn string capability, which allows you to upload

all of the instrument settings. Later, you can recall the measurement state

of the instrument by downloading the learn string using a WRITE STATE

transaction. Learn strings are particularly useful when you wish to download

measurement states but an instrument driver is unavailable.

Note that WRITE STATE transactions are available for HP-IB and

message-based VXI instruments only.

Here is the typical procedure for using learn strings:

1. ConÕgure the instrument to the desired measurement state; typically this

is done using the instrument front panel.

2. Click on Upload State in the object menu of a Direct I/O object

conÕgured for the instrument. The instrument state is now associated with

this particular instance of the Direct I/O object.

3. Add a WRITE STATE transaction to the Direct I/O object.

When it is used, WRITE STATE is generally the Õrst transaction in a

Direct I/O object. WRITE STATE writes the Uploaded learn string to the

instrument, thus setting all instrument functions simultaneously. Subsequent

6-71

Using Transaction I/O

Communicating with Instruments

WRITE transactions can modify the instrument setup in an incremental

fashion.

The behavior of Upload and WRITE STATE for HP-IB and message-based

VXI instruments is aÃected by the Direct I/O Configuration settings for

Conformance and State (Learn String). If Conformance is IEEE 488.2,

HP VEE will automatically handle learn strings using the IEEE 488.2

*LRN? deÕnition. If Conformance is IEEE 488, Upload String speciÕes

the command used to query the state, and the Download String speciÕes

the command that precedes the string when it is downloaded. Note that

message-based VXI instruments, and register-based VXI instruments

supported by I-SCPI are IEEE 488.2 compliant.

Clicking on Upload State in the Direct I/O object menu has these results:

– The learn string is uploaded immediately.

– The learn string remains with that particular Direct I/O object as long

as it exists, until the next Upload. The learn string is saved with the

program.

– If you clone a Direct I/O object, its associated learn string is included in

the clone.

Learn String Example. Assume you wish to program the HP 54100A

digitizing oscilloscope using learn strings. The oscilloscope's programming

manual contains these important facts:

– The oscilloscope conforms to IEEE 488; it does not conform to IEEE 488.2.

– The command used to query the oscilloscope's learn string is SETUP?.

– The command that must precede a learn string that is downloaded to the

instrument is SETUP . Note that a space must come between the P in

SETUP and the Õrst character in the downloaded learn string.

6-72

Using Transaction I/O

Communicating with Instruments

You must use I/O ¡¡) Instruments . . . to specify the proper direct I/O

conÕguration for the oscilloscope. The settings important to learn strings are

shown in Figure 6-39.

Figure 6-39. ConÕguring For Learn Strings

To upload a learn string from the oscilloscope, click on Upload in the object

menu of a Direct I/O object that controls the oscilloscope. To download the

learn string, use this transaction:

WRITE STATE

Reading Data Instruments return data in a variety of formats. In general, you must know

what kind of data and how much data you want HP VEE to read from an

instrument. The kind of data determines the encoding and format you must

specify in the transaction. The amount of data being read determines the

conÕguration you must use for the SCALAR or ARRAY Õelds in the transaction

dialog box. Direct I/O does not implement read-to-end reads as discussed

in \Reading Data". (Note that the size conÕguration for arrays appears as

ARRAY when the settings in the I/O Transaction dialog box are copied to

the transaction list.)

6-73

Using Transaction I/O

Communicating with Instruments

The most important READ transactions for Direct I/O use with HP-IB,

message-based VXI, and serial instruments are:

– READ TEXT

– READ BINBLOCK

Direct I/O to GPIO instruments uses only READ BINARY and

READ IOSTATUS.

Direct I/O to register-based and some message-based VXI instruments

use READ REGISTER and READ MEMORY transactions. These transactions are

the only method of communicating with register-based VXI instruments not

supported by I-SCPI. Refer to Appendix E for further information about these

transactions.

If you have diœculty reading data from instruments, try using the

Bus I/O Monitor to examine that data to determine its format. You may

wish to consult Appendix E to determine HP VEE's rules for interpreting

incoming data.

READ TEXT Transactions. Frequently, the data you read from an

instrument as the result of a query is a single numeric value that is formatted

as text. For example, a particular voltmeter returns each reading as a

single number in exponential notation, such as -1.234E+00. Here is the

transaction to read a value from the voltmeter:

READ TEXT a REAL

Some instruments respond to a query with alphabetic information combined

with the numeric measurement data. In general, this not a problem;

READ TEXT REAL transactions throw away preceding alphabetic characters

and extracts the numeric value.

6-74

Using Transaction I/O

Communicating with Instruments

Interface Operations

Interface Operations allows you to control HP-IB, VXI, and

serial interfaces, and instruments using low-level commands.

Interface Operations supports two actions that provide this low-level

control:

– EXECUTE

– SEND

EXECUTE commands are of the form:

EXECUTE Command

where Command is one of the bus commands summarized in Table 6-8.

While the commands listed in Table 6-8 have the same names as the EXECUTE

commands in Direct I/O, there is an important diÃerence.

– Direct I/O EXECUTE commands address an instrument to receive the

command.

– Interface Operations EXECUTE commands may aÃect multiple

instruments. For HP-IB, these instruments must be addressed to listen.

Please refer to Appendix E for details about the exact bus actions

corresponding to each EXECUTE command.

6-75

Using Transaction I/O

Communicating with Instruments

Table 6-8.

Summary of EXECUTE Commands (Interface Operations)

Command Description

CLEAR Clears all HP-IB devices by sending DCL (Device Clear). For VXI, resets the interface and

runs the Resource Manager.

TRIGGER For HP-IB, triggers all devices addressed to listen by sending GET (Group Execute Trigger).

For VXI, triggers TTL, ECL, or external triggers.

LOCAL For HP-IB, releases the REN (Remote Enable) line. There is no counterpart for VXI.

REMOTE For HP-IB, asserts the REN (Remote Enable) line. There is no counterpart for VXI.

LOCAL

LOCKOUT

For HP-IB, sends the LLO (Local Lockout) message. Any device in remote mode at the time

LLO is sent will lock out front panel operation. There is no counterpart for VXI.

ABORT Clears the HP-IB interface by asserting the IFC (Interface Clear) line. To clear and reset the

VXI interface use CLEAR.

LOCK

INTERFACE

In a multiprocess system with shared resources, lets one process lock the resources for its

own use during a critical section to prevent another process from trying to use them.

UNLOCK

INTERFACE

In a multiprocess system where a process has locked shared resources for its own use,

unlocks the resources to allow other processes access to them.

SEND transactions are of this form:

SEND BusCmd

BusCmd is one of the bus commands listed in Table 6-9. These messages are

deÕned in detail in IEEE 488.1. BusCmd is HP-IB speciÕc only. There are no

counterparts for VXI.

6-76

Using Transaction I/O

Communicating with Instruments

Table 6-9. SEND Bus Commands

Command Description

COMMAND Sets ATN true and transmits the speciÕed data bytes. ATN true indicates that the

data represents a bus command.

DATA Sets ATN false and transmits the speciÕed data bytes. ATN false indicates that the

data represents device dependent information.

TALK Addresses a device at the speciÕed primary bus address (0-31) to talk.

LISTEN Addresses a device at the speciÕed primary bus address (0-31) to listen.

SECONDARY SpeciÕes a secondary bus address following a TALK or LISTEN command. Secondary

addresses are typically used by cardcage instruments where the cardcage is at a

primary address and each plug-in module is at a secondary address.

UNLISTEN Forces all devices to stop listening; sends UNL.

UNTALK Forces all devices to stop talking; sends UNT.

MY LISTEN ADDR Addresses the computer running HP VEE to listen; sends MLA.

MY TALK ADDR Addresses the computer running HP VEE to talk; sends MTA.

MESSAGE Sends a multi-line bus message. Consult IEEE 488.1 for details. The multi-line

messages supported by HP VEE are:

DCL Device Clear

SDC Selected Device Clear

GET Group Execute Trigger

GTL Go To Local

LLO Local Lockout

SPE Serial Poll Enable

SPD Serial Poll Disable

TCT Take Control

6-77

Related Reading

1. Haviland, Keith and Salama, Ben, UNIX System Programming.

(Addison-Wesley Publishing Company, Menlo Park, California, 1987).

This book contains information of general interest to programmers

using UNIX. In particular, it contains explanations of interprocess

communications and pipes that are applicable to with To/From Named Pipe,

To/From Socket, To/From HP BASIC/UX, and Execute Program.

6-78

7

Using the Sequencer

Object

Using the Sequencer Object

The Sequencer object is provided by HP VEE for HP-UX, HP VEE for

Windows and by HP VEE for SunOS.

You'll need to understand several topics covered in this and other manuals

in order to use the Sequencer object eÃectively. These topics include

instrument I/O operations (Chapter 3), UserObjects (See How to Use HP VEE),

Records and DataSets (Chapter 4), and UserFunctions (Chapter 5). Also, for

information on how to use a transaction, refer to \Using Transactions" in

Chapter 6.

You can use the Sequencer object, found under the Device menu, to control

the order of calling of a series of tests. The Sequencer object executes a

series of sequence transactions. Each of these transactions evaluates an

HP VEE expression, which may contain calls to UserFunctions, Compiled

Functions, Remote Functions, or other HP VEE functions. After evaluating

the HP VEE expression, the transaction compares the value returned by that

expression against a test speciÕcation. Depending on whether the test passes

or fails, the transaction then evaluates diÃerent expressions and selects the

next transaction to be executed. Transactions may optionally log their results

to the Log output pin, or to a UserFunction, Compiled Function, or Remote

Function. Logging actions are speciÕed in the Sequencer Properties dialog

box on the Logging tab.

7-2

Sequence Transactions

The Sequencer object, in its open view, shows a list of sequence

transactions. Each transaction is similar to the other types of transactions

shown in Chapter 6. To see how the Sequencer uses transactions to execute

expressions and call functions, let's look at a simple example.

In the following program there are two UserFunctions in the background:

myRand1, which adds a random number from 0 to 1 to the value of its

input, and myRand2, which adds a random number from 0 to 100 to its

input. (Refer to Chapter 5 for further information on creating and using

UserFunctions.)

Figure 7-1. A Simple Sequencer Program

7-3

Using the Sequencer Object

Sequence Transactions

When you click on a transaction with the mouse, a dialog box \expands" the

transaction so you can view and edit it. The following dialog box shows the

Õrst transaction, test1:

A sequence transaction can either be a TEST transaction or an EXEC

transaction. In this transaction, the type is TEST:, the name Õeld is test1,

the nominal speciÕcation is 1.25, a RANGE: speciÕcation is used, and the

range is 1 <= . . . <= 1.5. Thus, only values from 1 to 1.5 will pass the test.

The expression myRand1(A) calls the user function using the value on the A

input terminal of the Sequencer as its input parameter. The transaction

has logging enabled, so a local variable named Test1 will be automatically

created, which contains the log record of the results of this test. This log

record will also be available as part of the Log output terminal. The IF PASS

and IF FAIL conditions are both THEN CONTINUE. This means that, pass or

fail, once test1 is done, the next transaction, test2, will be executed.

The DESCRIPTION Õeld is simply a comment area for this test.

N O T E

For RANGE or LIMIT tests, the SPEC NOMINAL value is not used, except for \documentation"

purposes. However, if you use tests based on TOLERANCE or %TOLERANCE values, the

tolerance will be calculated relative to the SPEC NOMINAL value.

7-4

Using the Sequencer Object

Sequence Transactions

The second transaction, test2, is also a TEST transaction:

This second test is similar to the Õrst. The UserFunction myRand2 is called

with the expression myRand2(A) and the resulting value is tested to see if it

is in the range 1 through 51, with a nominal speciÕcation of 26. Again, pass

or fail, the Sequencer continues to the next transaction.

The third transaction is an EXEC transaction:

An EXEC transaction, unlike a TEST transaction, performs no comparison of

the function result to a speciÕcation or range. EXEC transactions are used

7-5

Using the Sequencer Object

Sequence Transactions

to perform an action that does not require a pass/fail test. For example, an

EXEC transaction could call a routine that sets up an external conÕguration

before a TEST transaction is performed, or it could execute a power down

procedure after a series of tests. (An EXEC transaction is a short cut for

specifying an \always pass" test condition.)

In our example, the transaction named finish returns the value of B to the

Return output terminal of the Sequencer object. Since no test is performed,

logging does not occur for an EXEC transaction.

Note that you can use the DESCRIPTION Õeld to brieŒy describe any

transaction.

When you run the program, the three transactions are executed in sequence:

Figure 7-2. Running the Program

The logged test results are output on the Log output terminal and displayed.

Note that the results are logged as the Record data type, in fact a record of

records. In this case, test1 has passed with a value of 1.396 and test2 has

failed with a value of 85.05. The third transaction returns the value on the B

input, which is the string Done!.

Let's look more closely at how logging works. Each transaction that has

logging enabled creates a log record and attaches it to the transaction name.

In our example, logging is enabled for the Õrst two tests, so local variables

named Test1 and Test2 contain the log records for those transactions. The

Õelds contained in the log records are deÕned on the Properties dialog

box. To access the logging conÕguration, click on Edit Properties in the

7-6

Using the Sequencer Object

Sequence Transactions

Sequencer object menu, then on the Logging tab. By default, log records

contain Name, Result, and Pass Õelds.

The Test1 and Test2 local variable names can be used in any expression

within the Sequencer to access the results of the current or a previously

executed transaction. For example, Test3 could have called a function

with Test1.Result as a parameter to pass the result of the Õrst test. Or

Test2.Pass could be used as an expression, which would evaluate to 1 if

Test2 passed, or 0 if Test2 failed.

There is one more local variable, thisTest, available to access the logging

records. The value of thisTest is always the same as the logging record for

the currently executing transaction. This allows you to write transaction

expressions that can be used in many transactions without having to include

the name of each transaction.

7-7

Using the Sequencer Object

Sequence Transactions

Now let's examine the data structure produced by the Log output terminal on

the Sequencer, which is a record of records:

Figure 7-3. A Logged Record of Records

The record produced by the Log output pin contains a Õeld for each

transaction that has logging enabled | Test1 and Test2 in our example.

Each of these Õelds is simply the log record for the speciÕed transaction,

containing the Õelds Name, Result, and Pass. This record of records is

available on the Log output pin and can be used by other objects by using

the record \dot" syntax. For example, the expression Log.Test1.Result

would, in this case, return the value 1.396 (see Figure 7-2). Likewise,

Log.Test1.Name would return test1 and Log.Test1.Pass would return 1.

Note that the data logged on the Log output pin is always the data from the

last execution of each transaction. If you wish to log the results of every

execution of each transaction, set Logging Mode to Log Each Transaction

To: on the Logging tab of the Sequencer Properties dialog box. This

option will call the speciÕed function (or expression) at the completion of

every transaction. This option can also be useful if you wish to log test

results to a Õle or printer as they happen, rather than waiting until the

Sequencer has completed. The local variable thisTest can be used as a

parameter to the logging function to pass the log record of the transaction

that has just completed.

7-8

Logging Test Results

Now let's look at a more practical example of logging test results, where an

iterator causes the Sequencer to repeat the tests over and over, and to log

the results:

Figure 7-4. A Simple Logging Example

In this example, the For Count object causes the Sequencer to execute

its series of tests (test1 and test2 of the previous example) four times.

For example, if four \widgets" are being tested on an assembly line, each

execution of the Sequencer tests one widget. The resulting series of records

from the Log output terminal is collected by the Collector and displayed as

an array of records. Note, also, that you can use the To File object to output

this array to a Õle using a WRITE CONTAINER I/O transaction.

7-9

Using the Sequencer Object

Logging Test Results

Conceptually, the output of the Collector in this example can be viewed as

an array of records of records, as shown below:

Figure 7-5. A Logged Array of Records of Records

Each array element (Log[0], Log[1], etc.) represents a single iteration

of the sequencer, and is a record of records as shown in Figure 7-3. As

mentioned before, the logged output is available for analysis in expressions.

In this case, Log.Test1.Result is a \core sample" from the array. In fact,

Log.Test1.Result would return an array of values (1.396, 1.353, 1.319,

and 1.016 for the example results shown in Figure 7-4).

N O T E

The logged array is not a three-dimensional array, but is rather an array that consists of records of

records. This is important because the individual Õelds of a record can be of diÃering data types. For

example, while the Name Õeld is Text, the Result Õeld could be a Waveform, and so forth. Also,

the Test2.Result Õeld could be a Waveform, while the Test1.Result Õeld is a Real

value.

However, each individual Õeld must be of a consistent data type throughout the array. For example,

the Õeld Test1.Result can't be a Real value for Log[0] and a Waveform for Log[1].

7-10

Using the Sequencer Object

Logging Test Results

Let's extend our example to 10 iterations of the Sequencer, and add

some analysis of the logged data. In the following example, the expression

log.test1.result in the Formula object returns a 10 element Real Array,

which contains the results of test1. This array is then statistically analyzed

by means of the min(x), max(x), mean(x), and sdev(x) objects.

Figure 7-6. Analyzing the Logged Test Results

This example is saved in the Õle manual44.vee in your examples directory.

7-11

Using the Sequencer Object

Logging Test Results

Logging to a DataSet

You can use a DataSet to store your logged test results. In the following

program, the Sequencer object Log output terminal is connected to the To

DataSet object.

Figure 7-7. Logging to a DataSet

Once the For Count object is Õnished, it causes the From DataSet object

to retrieve the stored DataSet (myDataSet). From DataSet is conÕgured

to retrieve ALL records from myDataSet, but to test each record against

the condition Rec.test1.pass AND Rec.test2.pass. In other words, a

particular record is retrieved only if both test1 and test2 passed for that

record.

7-12

Using the Sequencer Object

Logging Test Results

Of the retrieved records, if any, the expression Rec.test1.result returns

all of the test1.result record Õelds, which are then statistically analyzed.

(Note that this program will error if none of the records satisfy the expression

Rec.test1.pass AND Rec.test2.pass.)

This example is saved in the Õle manual45.vee in your examples directory.

Some Restrictions in Logging Test Results

There are some situations where you must be careful in collecting Sequencer

log records into an array of records. As explained in Chapter 4, to build an

array of records, all of the array elements of a given Õeld must be of the same

type, shape, and size. For a record of records, as is generated by the Log

output terminal of the Sequencer, the type, shape, and size of each Õeld

must match for sub-records as well.

For example, suppose you are collecting the logged results of several

executions of a Sequencer, either by using the Collector to build an array

(see Figure 7-6) or by sending the results to a DataSet (see Figure 7-7). In

either case, if any of the logged values of a given transaction were to change

type, shape, or size between executions of the Sequencer, an error will

occur. The error will be generated by the Collector or To DataSet object

because the array of records cannot be built.

This situation could easily occur if a transaction is not executed on every

execution of the Sequencer; for example, if an ENABLED IF condition

is speciÕed. If the transaction is not executed, a log record will still be

generated, but the NAME and DESCRIPTION Õelds will be empty strings

and all the other Õelds will contain a Real scalar value of zero. If the same

transaction, on a subsequent execution of the Sequencer, is executed and

logs a result that is not a Real scalar, an error will occur. You might want

to consider, in this situation, just writing each logged record out to a Õle in

container format with To File, instead of using To DataSet.

An error could also occur if your tests return arrays of diÃerent sizes; for

example, if the test returns an array of the failed data points. In this case,

you might want to design the test so that it pads the array so as to always

return the same size array.

7-13

A Practical Test Example

So far, we've just looked at how the Sequencer works, and how you might

store, retrieve, and analyze the logged data. But normally, you'll want to use

the Sequencer to control a series of \real world" tests. So let's look at a

simple practical example.

In the old days, carbon resistors were manufactured by a rather imprecise

process, and then tested, sorted, and marked. The trick was that the

standard resistance values (for example, 220, 270, and 330 ohms) were

chosen to overlap at the 10 percent tolerance. Thus, you didn't need to throw

any resistors away. If a resistor was more than 10 percent greater than 220

ohms, it could be labeled as a 270 ohm resistor, and so forth.

So our problem is to construct a program in which the Sequencer calls a

UserFunction, which returns a resistance value. The Sequencer will then

run a series of tests to determine which nominal resistance value and percent

tolerance the resistor satisÕes. This is a \bin sort" problem. That is, the

sequencer returns a result that identiÕes the bin in which to put the resistor.

One of the big advantages of using the Sequencer to call a User Function is

that diÃerent UserFunctions can be substituted. For our problem, we'll just

use a UserFunction (simResist) that returns a random resistance value in

the expected range during development. You can easily substitute another

UserFunction that executes instrument I/O and returns real resistance values

once you've tested your solution.

7-14

Using the Sequencer Object

A Practical Test Example

The simplest solution to our problem is to use an extended series of sequence

transactions, each testing the resistance value against a nominal value and

tolerance.

Figure 7-8. Simple Bin Sort Example

In this example, the Õrst sequence transaction (test1) calls the UserFunction

simResist with the expression simResist(). (This UserFunction requires

no inputs.)

7-15

Using the Sequencer Object

A Practical Test Example

Note that test1 tests to see if the resistance value returned by simResist

is within «2 percent of the nominal value 330. If it is, the two-element

Real array [330 2] is returned on the Return output terminal, and the To

String object converts this value to the string 330 Ohm, 2%. If the test fails,

the Sequencer goes on to the next test.

The second transaction, test2, works just like the Õrst except that instead

of calling simResist again, the FUNCTION Õeld contains the expression

test1.result:

Key Idea

Any transaction with logging enabled creates a \local" Record variable with the same name as the test.

This record contains the Õelds speciÕed for the logging record. Thus, for the transaction test1, the

expression test1.result returns the value returned by the function called in test1.

There are two reasons for using the expression test1.result in our

example. First, by using test1.result in transactions test2 through

test9 we can ensure that each transaction uses the same function result,

even if we later change test1 to call a diÃerent function. More importantly

7-16

Using the Sequencer Object

A Practical Test Example

in this example, each time you call the UserFunction, a new resistance

value will be returned. Instead, we want to continue testing the original

resistance value against successive nominal values and tolerances. So the

transactions test2 through test9 all include the expression test1.result

in the FUNCTION Õeld. These transactions work like the Õrst, returning the

appropriate array ([330 5], [330 10], [270 2], and so forth) if passed.

The Õrst eight tests simply continue to the next test if failed. However, an

indication is needed if all of the tests are failed. Thus, test9 is conÕgured IF

FAIL THEN ERROR. The Error output terminal causes the AlphaNumeric

display entitled Error Condition to execute, displaying the text Out of

Range.

Although this approach is simple, it is not very eœcient. You would need to

create quite a large number of sequence transactions to test several resistance

values, with three tolerances in each case. Let's look at an improved version

of our \bin sort" example.

7-17

Using the Sequencer Object

A Practical Test Example

Figure 7-9. Improved Bin Sort Example

This example is saved in the Õle manual46.vee in your examples directory.

You may want to load this program and explore how it works. Here are some

key points:

– This program uses two Sequencer objects. The Õrst one (labeled Test

Bounds) \re-uses" the tests in the second one (labeled Test Value &

Tolerance).

– The Real array in the upper left corner of the program contains Õve

elements, each representing a standard resistance value. However, the list

of values is extensible in this example. Regardless of the number of array

elements, the TotSize(x) function returns that number so that the For

Count object will iterate the correct number of times. The expression R[i]

in the Formula object takes care of the indexing.

7-18

Using the Sequencer Object

A Practical Test Example

– In the Sequencer named Test Bounds, the Õrst transaction (test1) calls

the UserFunction simResist with the expression simResist():

A simulated resistance test value is returned and tested to see if it is at

least 90 percent of the lowest value (150 Ohms) in the array. (Note that

any value Õeld in a sequence transaction can contain an expression such as

min(a)*.9.)

7-19

Using the Sequencer Object

A Practical Test Example

The second transaction (test2) tests to see if the value (test1.result)

is less than or equal to 110 percent of the highest value (330 Ohms) in the

array.

If either test fails, an error occurs.

– If an error does occur, the UserObject named Error Condition uses a

Triadic expression to ascertain whether to display Out of Range: LOW

or Out of Range: HIGH. The UserObject is conÕgured as Show Panel

on Exec, so if either error condition occurs, a display \pops up" to show

the error. You'll Õnd that this happens once every few times you run the

program because the UserFunction simResist returns random values in

the range 100{400. (To continue, just press OK in the pop-up box.)

– The transaction test1 in the Õrst Sequencer is the only transaction

that calls the UserFunction simResist. (Instead, test2 includes the

expression test1.result.) This is necessary in this case because we want

to run multiple tests on just one resistance value. Otherwise, a new value

would be returned every time the UserFunction was called. However,

there is another reason. Since the UserFunction simResist is only called

once, you can easily replace it with a call to a diÃerent UserFunction.

The example (manual46.vee) contains a second UserFunction named

measResist, which uses an HP Instrument Driver to call an HP 3478A

Digital Voltmeter conÕgured for resistance measurements. If you have an

HP 3478A meter, just connect it to your HP-IB, change the FORMULA Õeld in

test1 to the expression measResist(), and run the program.

7-20

Using the Sequencer Object

A Practical Test Example

– Regardless of whether simulated or measured resistance values are taken,

the Test Bounds return value is displayed, and is set as a global variable

(globalOhms). The three transactions in the Sequencer labeled Test

Value & Tolerance each call this global variable using the expression

globalOhms, for example:

If a test passes, the appropriate real array (e.g., [220 2]) is output. The

To String object converts the data to a string (e.g., 220 Ohm, 2%). The

Sequencer will be executed as many times as necessary until a Bin Sort

result is found.

– Note that we are not using the Log output terminal in either Sequencer,

so we've deleted it to speed up execution.

– If you want to see the Œow of this program, try running it a few times with

Show Exec Flow and Show Data Flow turned on.

For further information about transaction options, using control pins, and so

forth, refer to the Sequencer section in the HP VEE Reference.

For some further examples using the Sequencer, look in your examples

directory.

7-21

Using the Sequencer Object

A Practical Test Example

8

Troubleshooting Problems

Troubleshooting Problems

This chapter explains common situations and recovery actions.

Table 8-1. Problems, Causes, and Solutions

Problem Cause Solution

Your UserObject doesn't

operate when you think it should.

You might be crossing the context

boundaries with asynchronous data

(such as connecting to an XEQ pin

on an object inside the

UserObject).

Possible Solution 1: Move any

asynchronous dependencies to

outside the UserObject.

Possible Solution 2: Enable

Animate to view the order of

operation in your program.

You want to change the functionality

of an object.

Use the object menu which includes

features that let you add a control

input terminal and edit properties.

8-2

Troubleshooting Problems

A Practical Test Example

Table 8-1. Problems, Causes, and Solutions (continued)

Problem Cause Solution

You only get one value output from

an iterator within a

UserObject.

A UserObject only activates

its outputs once.

Take the iterator out of the

UserObject.

An iterator only operates once. Your iteration subthread is connected

to the sequence output pin, not the

data output pin.

Start the iteration subthread from

the data output pin.

For Count doesn't operate. The value of For Count is 0

or negative.

Change the value; if you need a

negative value, negate the output or

use For Range.

For Range or For Log

Range doesn't operate.

The sign of the step size is wrong.

If From is less than Thru,

Step must be positive. If Thru

is less than From, Step must be

negative.

Change Step.

You move objects when you try to

connect them.

You're clicking too close to the pin.

To connect to a pin, the pointer

must not be touching the object.

Click just outside the object, near

the pin.

8-3

Troubleshooting Problems

A Practical Test Example

Table 8-1. Problems, Causes, and Solutions (continued)

Problem Cause Solution

You get the UNIX message

sh:name - not found.

You mistyped the name of the

executable.

Check your spelling and type it

again.

You get the UNIX message

Error: cannot open

display

Your DISPLAY environment variable is

not set or is set to display on a

machine for which permissions are

not set up correctly.

Set (and export) your environment

variable DISPLAY. Generally, this is

set to hostname:0.0. To display on a

remote machine, set up permissions

with rhost.

HP VEE appears to hang|the pointer

is an hourglass.

Possible Cause 1:HP VEE is rerouting

lines because you have Auto

Line Routing set on and you

moved an object.

Possible Cause 2: HP VEE is printing

the screen or the program.

Possible Cause 3: You just Cut a

large object or a large number of

objects. HP VEE is saving the

objects to the Paste buÃer.

Wait. If the pointer doesn't change

back to the crosshairs within a few

minutes, type ÄCTRLÅ-ÄCÅ (or

whatever your intr setting is in

the terminal window from which you

started HP VEE), close the HP VEE

window, or kill the HP VEE process.

8-4

Troubleshooting Problems

A Practical Test Example

Table 8-1. Problems, Causes, and Solutions (continued)

Problem Cause Solution

You can't Open a program, Cut

objects, or delete a line (the feature

is grayed).

The program is still running. Press Stop twice to stop the

program, then try the action again.

You can't Paste (the feature is

grayed).

The Paste buÃer is empty. Cut, Copy, or Clone the

object(s) again.

You can't Cut, Create

UserObject, or Add to

Panel (the feature is greyed).

No objects are selected. Select the objects using Edit

¡¡) Select Objects and

try the action again.

A UserObject only outputs the

last data element generated.

UserObjects do not

accumulate data in the output

terminal buÃer. It only holds the last

data element received.

Use a Collector to gather all

of the data generated into an array.

Send this data to the output

terminal.

You can't get out of line drawing

mode.

Double-click to end line drawing

mode.

8-5

Troubleshooting Problems

A Practical Test Example

Table 8-1. Problems, Causes, and Solutions (continued)

Problem Cause Solution

You get a Parse Error object

when you Open a program.

You Saved a program that

contained an object with invalid data,

such as an If/Then/Else

object with an invalid expression.

Replace the Parse Error

object with a new object.

Your characters are not appearing

correctly.

You have a non-USASCII keyboard. Refer to Appendix A for recovery

information.

Your colors outside of HP VEE are

changing (although when you're in

HP VEE, the HP VEE colors look

normal).

Your color map planes are all used. Refer to Appendix A for recovery

information.

8-6

A

ConÕguring HP VEE

ConÕguring HP VEE

This appendix explains how to conÕgure and customize HP VEE for your

environment by changing HP VEE options, and X11 options (in the UNIX

environment) or Windows options (in the MS Windows environment). This

appendix discusses the following topics:

– Color and font settings

– Changing X11 attributes (such as window size and placement)

– Changing MS Windows attributes (such as window size, and starting

HP VEE maximized or iconiÕed)

– Customizing your icon bitmaps

– Selecting a bitmap for a panel view

– Recovering from X11 color plane limitations

– Using non-USASCII keyboards and two-byte character sets

– Using HP-GL Plotters

A-2

Color and Font Settings

The HP VEE application contains default values for all color and font settings.

You can change color and font settings (and many other properties) in the

HP VEE Default Preferences dialog box (use File ¡¡) Edit Default

Preferences). These properties are saved in the defaults Õle|.veerc in

your UNIX $HOME directory, or VEE.RC in the C:\VEE directory for MS

Windows. For colors and fonts, only the settings you change are saved in

this defaults Õle. See Getting Started with HP VEE and How to Use HP VEE

manuals for more information about changing colors and fonts in HP VEE.

A-3

Changing X11 Attributes (UNIX)

HP VEE provides an app-defaults Õle named Vee that you can

use to customize several attributes of HP VEE. This Õle is in

/usr/lib/veetest/config/. In the same directory is the app-defaults

Õle named Helpview which lets you customize the appearance of your Help

windows. To use these Õles, you must install them into your X11 resources

database.

N O T E

The color and font settings that you change in HP VEE using File ¡¡) Edit Default

Preferences are saved in the defaults Õle $HOME/.veerc.

If you are using xrdb, install the Õles by typing xrdb -merge Õlename (for

each Õle) before starting HP VEE.

If you are not using xrdb, merge the Õles into your X11 resources Õle. Your

X11 resources Õle is usually .Xdefaults in your $HOME directory, but may

be in a Õle identiÕed with the environment variable $XENVIRONMENT.

To change other X11 resources, you can change or add to your X11 resources

Õle. For example, to change the default geometry of the HP VEE window

so that it always started in the lower right corner of your screen and the

window was sized to 640 by 480 pixels, you would add the following

line to your X11 resources Õle (probably .Xdefaults): Vee*geometry:

=640x480-0-0.

For more information about customizing an X11 environment, refer to

Beginner's Guide to the X Window System.

A-4

ConÕguring HP VEE for Windows

HP VEE for Windows uses the V.INI Õle to control its environment. V.INI

contains information about window size, starting HP VEE up maximized, etc.

V.INI is located in your HP VEE installation directory (default C:\VEE). If

you installed HP VEE for Windows in another directory the following entry

was put into WIN.INI that speciÕes the install directory. For example:

[Vee30]

InstallDir=D:\VEE

N O T E

The color and font settings that you change in HP VEE using File ¡¡) Edit Default

Preferences are saved in the defaults Õle VEE.RC in your HP VEE installation directory.

A-5

ConÕguring HP VEE

ConÕguring HP VEE for Windows

General HP VEE Settings

The Maximized variable controls whether HP VEE for Windows starts up

as a maximized window or not. The value 0 is for not maximized, 1 is for

maximized.

The Geometry variable controls the initial size of the HP VEE for Windows

window. For example:

Geometry=630x470

You can also override the default Instrument Driver directory (C:\HPIDS)

and Instrument Help directory (C:\HPIDS\HELP) by deÕning the variables

InstrumentDriverDir and InstrumentHelpDir in the [Vee] section of

V.INI. For example:

[Vee]

InstrumentDriverDir=C:\HPITG2\DRIVERS

InstrumentHelpDir=C:\HPITG2\HELP

A-6

Customizing Icon Bitmaps

You can change the icon displayed on any iconized object to a bitmap or

pixmap of your choice. HP VEE provides many Õles, or you can create your

own. On UNIX platforms, HP VEE supports .bmp bitmap Õles, .gif, .icn

icon Õles, and .xwd X11 bitmap Õles. HP VEE for Windows supports .BMP

bitmap Õles, .GIF, and .ICN icon Õles. To pick an object's icon, click on

the object menu's Edit Properties feature, then use the Icon tab on the

Properties dialog box.

To create your own bitmaps for object icons you can use any editor that

output graphics formats that HP VEE supports. Examples of such editors

include the IconEditor program on HP-UX, and the Paintbrush program

on MS Windows. You should specify 48x48 as the size for an icon. Larger

icons use more space in the HP VEE program area, smaller icons are diœcult

to see. You can also use screen capture utilities such as X11 Window Dump

(xwd) on UNIX, and Print Screen with Paintbrush on MS Windows.

A-7

Selecting a Bitmap for a Panel View

You can select a bitmap to use as the background icon for a panel view. This

applies to UserObjects and to HP VEE programs displayed in their panel

views. Panel view icons must use the same formats HP VEE supports; .bmp

bitmap Õles, .gif, and .icn icon Õles on all platforms; plus .xwd X11 bitmap

Õles on UNIX. You can also use icons you create as described in the previous

section.

To select a bitmap as the icon for a UserObject's panel view, Õrst enable the

UserObject's panel view so the Panel and Detail buttons appear in the

title bar. Whether the UserObject is in Detail or Panel view, click on the

UserObject's object menu, then click on Edit Properties. Use the Panel

tab on the UserObject Properties dialog box to choose an icon.

To select a bitmap as the icon for a HP VEE program's panel view, Õrst

enable the panel view mode so the Panel and Detail buttons appear in the

HP VEE tool bar. Whether the program is in Detail or Panel view, click on

File on the HP VEE menu bar, then on Edit Properties. Use the Panel

tab on the Work Area Properties dialog box to choose an icon.

A-8

If You See Colors Changing On Your Screen

(UNIX)

Your workstation is equipped with a certain number of color planes (usually

1, 4, 6, or 8). X11 uses the information in these color planes to color your

application's window. If you have more than one application running (each

in its own window), and you notice the screen colors changing as you move

from one application's window to another, then one of two things may be

happening. Either all the applications, together, use more colors than your

display has available, or one or more of the applications allocates its own

private color map (for example, HP BASIC/UX).

HP VEE uses at least 39 colors (this varies depending on how you deÕne the

colors and which colors HP VEE actually uses while running), so you may

experience this behavior when HP VEE is one of your applications. The

symptoms are: when you are in the HP VEE window, the HP VEE colors will

be correct for HP VEE, but may be wrong in other application's windows.

When you move to another application's window, the colors will be correct

for that application, but may be wrong for HP VEE. This is typical X11

behavior|it is not a problem with HP VEE.

This behavior does not aÃect the performance of HP VEE or any other

application. However, if it bothers you, there are some things you can do to

help, depending on the cause.

There are two causes of this behavior:

– You have requested more colors than your workstation can simultaneously

display.

– One of the applications you are running controls a local color map.

Too Many Colors

Your workstation can display some number of colors at one time, based on the

number of color planes for your display. This number is:

2
numberofcolorplanes

A-9

ConÕguring HP VEE

If You See Colors Changing On Your Screen (UNIX)

For example, if you have 4 color planes, you can use as many as 16 colors at

a time on your display.

2
4
= 16

If you exceed this number, you may see the screen Œashing as you change

from one window to another.

If you exceed your total available colors, the Õrst step in eliminating the

\Œashing" is to reduce your colors to be within the limits of your workstation.

Some tips on reducing colors are:

– Remove any extra colors. If two applications can use the same color

scheme, then customize them to do this.

– Use reduced-color color schemes in applications. For example, HP VEE

allows customization of colors. Click on File ¡¡) Edit Default

Preferences. In the Default Preferences dialog box, change your

default colors to use only a few colors.

– Stop, or do not even start, any applications that you do not currently

need. Often, each application uses its own color scheme. This can quickly

increase your requested colors to exceed your color map limit. Once you

have stopped other applications, you probably need to stop, then re-start,

HP VEE before the behavior goes away.

– Reduce the number of colors allocated by the xinitcolormap command.

Because these colors remain permanently in the color map, there is room

for fewer temporary colors.

Some X11 window managers have a colormap focus directive (for example,

*colormapFocusPolicy). The value to which this is set may also contribute

to how colors are used on the screen. In particular, if you exceed the total

number of colors you can simultaneously display, do not set this to be

explicit or you may not see correct colors in your application's window.

A-10

ConÕguring HP VEE

If You See Colors Changing On Your Screen (UNIX)

Applications that Use a Local Color Map (UNIX)

Some applications use a local color map. This means that when you run this

application, it saves the current color map and switches over to its own, local

color map. When this happens you may see the \Œashing" between windows.

One way to circumvent this is to pre-allocate the HP VEE colors using the

xinitcolormap command. To do this, you create an ASCII Õle listing the

colors you wish to pre-allocate. This Õle is described in the man page for

xinitcolormap. Basically, though, the Õle cannot contain blank lines, must

start with the colors Black and White, and the color format can be either

pre-deÕned word colors or the actual RGB hex values, preceded by the

symbol|#. For example, the following two examples contain black, white,

and a shade of light gray:

Black

White

LightGray

Figure A-1. Color Map File Using Words

#000000

#ffffff

#a8a8a8

Figure A-2. Color Map File Using Hex Numbers

HP BASIC/UX is one application that uses a local color map

and recommends that you pre-allocate the HP BASIC/UX colors

at startup using the xinitcolormap command (refer to the

/usr/lib/rmb/newconfig/rgb.README Õle).

Because of this, if you will use HP VEE with HP BASIC/UX (or other

applications that allocate colors in the same way HP BASIC/UX does), you

need to also pre-allocate HP VEE colors at startup. If you do not, you may see

the colors Œash on the screen as you move from one window to another.

A-11

ConÕguring HP VEE

If You See Colors Changing On Your Screen (UNIX)

To do this:

1. Create a \colormap" Õle that contains all the diÃerent HP VEE colors you

will use.

2. Change to your $HOME directory:

cd $HOME

3. Concatenate the HP BASIC/UX and the HP VEE colormap Õles:

cat /usr/lib/rmb/newconfig/xrmbcolormap vee-colormapÕle > .xveecolormap

Note that the HP BASIC/UX colors must go Õrst, because HP BASIC/UX

assumes that they are the Õrst 16 entries in the colormap. You can mix the

word colors and the hex number colors in one Õle.

4. You must use the xinitcolormap command before you allocate any

colors for other applications. This means that it should be placed near the

beginning of your .x11start Õle.

For example, if you use the .x11start Õle, your colors are in

$HOME/.xveecolormap, and you have 55 colors listed in the Õle (16 from

HP BASIC/UX + 39 from HP VEE), you would add the following line to

.x11start:

/usr/bin/X11/xinitcolormap -c 55 -f $HOME/.xveecolormap

5. Restart X11. To do this, stop the window manager by pressing the

following three keys at the same time: ÄShiftÅ-ÄCTRLÅ-ÄBreakÅ, or selecting

Reset from your root menu (if it is conÕgured for this choice), then type:

x11start

A-12

Using Non-USASCII Keyboards (UNIX)

If you are using a non-USASCII keyboard, you need to use a special HP VEE

palette so that characters with numerical values above ASCII 128, such as

characters with umlauts, appear correctly in HP VEE. You need to modify

the $LANG variable in your X11 environment to use the Iso or Katakana

palette. As an example, to use a German keyboard, use the command export

LANG=german.iso88591 in the Korn Shell. Install the palette using the

instructions in \Changing X11 Attributes (UNIX)". Once the LANG variable is

set, use File ¡¡) Edit Default Preferences to change fonts.

Use the Iso palette if you have one of the following keyboards:

– Belgian

– Canadian English

– Canadian French

– Danish

– Dutch

– European Spanish

– Finnish

– French

– German

– Italian

– Latin Spanish

– Norwegian

– Swedish

– Swiss French

– Swiss German

– UK English

Use the Katakana or Kanji palette if you have one of the following

keyboards:

– Katakana

– Kanji

A-13

ConÕguring HP VEE

Using Non-USASCII Keyboards (UNIX)

N O T E

If you are accessing data that was created with the Roman8 character set, you must translate any

special characters (above ASCII 127) used.

Your terminal window may use Roman8; therefore TEXT written to stdout, Õle names (such as

speciÕed by To File and From File), and programs names must use ASCII characters 0-127 to

match with those speciÕed with HP VEE.

A-14

Using Two-Byte Character Sets (HP-UX Only)

Two-byte characters (such as Kanji for Japanese) can be entered into any Õeld

in HP VEE where you can enter text. This includes all titles, text (string)

constants, input/output pin names, and note pads. To use two-byte characters

you must have the UNIX NLIO subsystem installed and initialized, and set the

$LANG shell variable to your local language.

For Japanese, two character sets are available|japanese and

japanese.euc. They are entered on the keyboard and encoded diÃerently,

and are diÃerent widths on the monitor screen. You may want to try each

one, then pick the one you prefer. You can set the $LANG shell variable

using the command export LANG=japanese. You can view the set of fonts

available for HP VEE in

/usr/lib/veetest/config/Kanji

When HP VEE starts running, if the $LANG shell variable is set correctly,

HP VEE will initialize its fonts to two-byte fonts. The two-byte fonts can be

replaced later by the default fonts saved in your .veerc Õle.

Refer to \Changing X11 Attributes" at the beginning of this appendix for

further information.

N O T E

The Kanji app-defaults Õle speciÕes a two-byte \stroke" font. A stroke font consists of characters

drawn as strokes, rather than as a raster image. The stroke font is required for output to most

plotters, since most plotters do not directly support Kanji.

The following are some limitations to two-byte character support:

– When using the Plot command to send a graphical two-dimensional

display (e.g., XY Trace) to a plotter or Õle, you must Õrst specify that labels

are to be output using the two-byte \stroke" font. To do this, go to the

Plotter Configuration dialog box:

A-15

ConÕguring HP VEE

Using Two-Byte Character Sets (HP-UX Only)

File ¡¡) Edit Default Preferences . . . , then select Plotter

Setup . . . on the Printing tab.

The Label Using Õeld gives you two choices: Stroke Fonts and Plotter

ROM. You must select Stroke Fonts in order to output a display with

two-byte characters. Otherwise, all two-byte characters in Õeld labels will

be encoded into HP-GL label commands as two-byte characters in the HP15

character set, which is not supported by most plotters.

For further information, refer to the Plotter Config section in the

HP VEE Reference.

– When reading text that includes two-byte characters from a Direct I/O

object, the two-byte character rules are not used when looking for the EOL

string. Thus, an EOL character may be incorrectly found in the second

byte of a two-byte character. (This is only a problem if an EOL character

has an ASCII value greater than 32 decimal.)

– Date/Time parsing and formatting have not been globalized, and continue

to only execute in English. To obtain a localized date string, use an

Execute Program object with a program of \date" and a transaction of

READ TEXT x STR.

A-16

Using HP-GL Plotters (UNIX Only)

HP VEE supports graphics output to plotters and Õles using HP-GL. Before

you can send plots to a plotter (either local or networked) your system

administrator must add the plotter as a spooled device on your system.

In addition to standard HP-GL plotters such as the HP 7475, the HP ColorPro

(HP 7440), or the HP 7550, some printers can be used as plotters, such

as the PaintJet XL, and the LaserJet III. The HP ColorPro plotter requires

the Graphics Enhancement Cartridge in order to plot polar or Smith Chart

graticules, or an Area-Fill line type. The PaintJet XL requires the HP-GL/2

Cartridge in order to make any plots. In order to make plots on the LaserJet

III, at least two megabytes of optional memory expansion is required, and

the Page Protection conÕguration option should be enabled. Plots of many

vectors, especially with Polar or Smith chart graticules, may require even

more optional memory in the LaserJet III. Any plot intended for a printer

requires the plotter type to be set to HP-GL/2, which causes the proper

HP-GL/2 setup sequence to be included with the plot information.

Any of the following graphical two-dimensional displays can be plotted to an

HP-GL or HP-GL/2 plotter, or to a Õle:

XY Trace, Strip Chart, Complex Plane,

X vs Y Plot, Polar Plot, Waveform,

Magnitude Spectrum, Phase Spectrum,

Magnitude vs Phase.

You can specify the appropriate default plotter conÕguration by selecting:

File ¡¡) Edit Default Preferences. Then use the Printing tab in the

Default Preferences dialog box; click on the Plotter Setup button to

edit the Plotter Configuration dialog box.

To generate a plot directly from a display object, just select Plot on the

display's object menu, specify the required parameters in the Plotter

Configuration dialog box, and then press OK. You can also add Plot as

a control input to generate plots programmatically. The entire view of the

display object will be plotted, and scaled to Õll the deÕned plotting area,

while retaining the aspect ratio of the original display object. By re-sizing

the display object, you can control the aspect ratio of the plotted image. By

making the display object larger, you can reduce the relative size of the text

and numeric labels around the plot.

A-17

ConÕguring HP VEE

Using HP-GL Plotters (UNIX Only)

For an explanation of the plotter conÕguration parameters in the Plotter

Configuration dialog box, refer to the Edit Default Preferences

section in the HP VEE Reference. Also, refer to the reference sections for the

appropriate two-dimensional display devices.

A-18

B

Example Programs and

Library Objects

Example Programs and Library Objects

HP VEE for HP-UX and HP VEE for Windows include several examples of

HP VEE programs that you can use. A library of objects that you can Merge

into your programs is also included. The example programs and library

objects are installed as part of the normal HP VEE installation process.

B-2

Using the Examples

The examples from the manuals are included in the examples/manual

directory (with Õle names like manual01.vee, etc). Other examples, not

referenced in any of the manuals, are available to illustrate speciÕc HP VEE

concepts, or to illustrate solutions to engineering problems using HP VEE. To

help you Õnd the example you want, the examples directory is divided into

several subdirectories.

For HP VEE for HP-UX and HP VEE for SunOS the examples are installed in

subdirectories under:

/usr/lib/veetest/examples/

For HP VEE for Windows the examples are installed in subdirectories under:

C:\VEE\EXAMPLES\

Under examples you will Õnd several subdirectories, each containing a class

of example programs. (The exact selection of subdirectories depends on

which version of HP VEE you have.)

Once you have selected an example program of interest, just load it with

File ¡¡) Open as with any other program. If you want to modify an example

program and save it, you'll want to save it in a diÃerent directory. (You can't

write to the examples subdirectories unless you are logged on as \root.")

You can also open examples by choosing Help ¡¡) Open Example . . . in

the HP VEE menu bar. This presents a File dialog box that is set to the

examples directory. Just click on the subdirectory you prefer, then on the

example Õle you want to open.

B-3

Using Library Objects

The object library provides several objects that you can merge into your own

program. Just select Merge from the File menu and a list box will appear

for the appropriate library directory:

/usr/lib/veetest/lib/

- or -

C:\VEE\LIB\

To merge an object, just double click on its name and insert the object in your

program.

Most of the library objects are actually UserObjects that encapsulate

individual objects. You can create your own UserObjects for the library, but

you'll need to save them in the contrib subdirectory (Unix only):

/usr/lib/veetest/lib/contrib/

(You can't write to the lib directory unless you are logged on as \root" on

Unix platforms.)

The contrib subdirectory is empty at installation | it provides a place for

your own library of \contributed" objects.

There is another subdirectory under lib, named conversions:

/usr/lib/veetest/lib/conversions/

- or -

C:\VEE\LIB\CONVERT\

This subdirectory contains several formula objects that you can Merge into

your program. Each of these objects performs a useful conversion function

such as degrees to radians.

B-4

C

ASCII Table

ASCII Table

This appendix contains reference tables of ASCII 7-bit codes.

C-2

ASCII Table

Using Library Objects

ASCII 7-bit Codes

Binary Oct Hex Dec HP-IB Msg

NUL 0000000 000 00 0

SOH 0000001 001 01 1 GTL

STX 0000010 002 02 2

ETX 0000011 003 03 3

EOT 0000100 004 04 4 SDC

ENQ 0000101 005 05 5 PPC

ACK 0000110 006 06 6

BEL 0000111 007 07 7

BS 0001000 010 08 8 GET

HT 0001001 011 09 9 TCT

LF 0001010 012 0A 10

VT 0001011 013 0B 11

FF 0001100 014 0C 12

CR 0001101 015 0D 13

SO 0001110 016 0E 14

SI 0001111 017 0F 15

DLE 0010000 020 10 16

DC1 0010001 021 11 17 LLO

DC2 0010010 022 12 18

DC3 0010011 023 13 19

DC4 0010100 024 14 20 DCL

NAK 0010101 025 15 21 PPU

SYN 0010110 026 16 22

ETB 0010111 027 17 23

C-3

ASCII Table

Using Library Objects

ASCII 7-bit Codes (continued)

Binary Oct Hex Dec HP-IB Msg

CAN 0011000 030 18 24 SPE

EM 0011001 031 19 25 SPD

SUB 0011010 032 1A 26

ESC 0011011 033 1B 27

FS 0011100 034 1C 28

GS 0011101 035 1D 29

RS 0011110 036 1E 30

US 0011111 037 1F 31

space 0100000 040 20 32 listen addr 0

! 0100001 041 21 33 listen addr 1

" 0100010 042 22 34 listen addr 2

0100011 043 23 35 listen addr 3

$ 0100100 044 24 36 listen addr 4

% 0100101 045 25 37 listen addr 5

& 0100110 046 26 38 listen addr 6

' 0100111 047 27 39 listen addr 7

(0101000 050 28 40 listen addr 8

) 0101001 051 29 41 listen addr 9

* 0101010 052 2A 42 listen addr 10

+ 0101011 053 2B 43 listen addr 11

, 0101100 054 2C 44 listen addr 12

- 0101101 055 2D 45 listen addr 13

. 0101110 056 2E 46 listen addr 14

/ 0101111 057 2F 47 listen addr 15

C-4

ASCII Table

Using Library Objects

ASCII 7-bit Codes (continued)

Binary Oct Hex Dec HP-IB Msg

0 0110000 060 30 48 listen addr 16

1 0110001 061 31 49 listen addr 17

2 0110010 062 32 50 listen addr 18

3 0110011 063 33 51 listen addr 19

4 0110100 064 34 52 listen addr 20

5 0110101 065 35 53 listen addr 21

6 0110110 066 36 54 listen addr 22

7 0110111 067 37 55 listen addr 23

8 0111000 070 38 56 listen addr 24

9 0111001 071 39 57 listen addr 25

: 0111010 072 3A 58 listen addr 26

; 0111011 073 3B 59 listen addr 27

< 0111100 074 3C 60 listen addr 28

= 0111101 075 3D 61 listen addr 29

> 0111110 076 3E 62 listen addr 30

? 0111111 077 3F 63 UNL

@ 1000000 100 40 64 talk addr 0

A 1000001 101 41 65 talk addr 1

B 1000010 102 42 66 talk addr 2

C 1000011 103 43 67 talk addr 3

D 1000100 104 44 68 talk addr 4

E 1000101 105 45 69 talk addr 5

F 1000110 106 46 70 talk addr 6

G 1000111 107 47 71 talk addr 7

C-5

ASCII Table

Using Library Objects

ASCII 7-bit Codes (continued)

Binary Oct Hex Dec HP-IB Msg

H 1001000 110 48 72 talk addr 8

I 1001001 111 49 73 talk addr 9

J 1001010 112 4A 74 talk addr 10

K 1001011 113 4B 75 talk addr 11

L 1001100 114 4C 76 talk addr 12

M 1001101 115 4D 77 talk addr 13

N 1001110 116 4E 78 talk addr 14

O 1001111 117 4F 79 talk addr 15

P 1010000 120 50 80 talk addr 16

Q 1010001 121 51 81 talk addr 17

R 1010010 122 52 82 talk addr 18

S 1010011 123 53 83 talk addr 19

T 1010100 124 54 84 talk addr 20

U 1010101 125 55 85 talk addr 21

V 1010110 126 56 86 talk addr 22

W 1010111 127 57 87 talk addr 23

X 1011000 130 58 88 talk addr 24

Y 1011001 131 59 89 talk addr 25

Z 1011010 132 5A 90 talk addr 26

[1011011 133 5B 91 talk addr 27

\ 1011100 134 5C 92 talk addr 28

] 1011101 135 5D 93 talk addr 29

^ 1011110 136 5E 94 talk addr 30

_ 1011111 137 5F 95 UNT

C-6

ASCII Table

Using Library Objects

ASCII 7-bit Codes (continued)

Binary Oct Hex Dec HP-IB Msg

` 1100000 140 60 96 secondary addr 0

a 1100001 141 61 97 secondary addr 1

b 1100010 142 62 98 secondary addr 2

c 1100011 143 63 99 secondary addr 3

d 1100100 144 64 100 secondary addr 4

e 1100101 145 65 101 secondary addr 5

f 1100110 146 66 102 secondary addr 6

g 1100111 147 67 103 secondary addr 7

h 1101000 150 68 104 secondary addr 8

i 1101001 151 69 105 secondary addr 9

j 1101010 152 6A 106 secondary addr 10

k 1101011 153 6B 107 secondary addr 11

l 1101100 154 6C 108 secondary addr 12

m 1101101 155 6D 109 secondary addr 13

n 1101110 156 6E 110 secondary addr 14

o 1101111 157 6F 111 secondary addr 15

p 1110000 160 70 112 secondary addr 16

q 1110001 161 71 113 secondary addr 17

r 1110010 162 72 114 secondary addr 18

s 1110011 163 73 115 secondary addr 19

t 1110100 164 74 116 secondary addr 20

u 1110101 165 75 117 secondary addr 21

v 1110110 166 76 118 secondary addr 22

w 1110111 167 77 119 secondary addr 23

C-7

ASCII Table

Using Library Objects

ASCII 7-bit Codes (continued)

Binary Oct Hex Dec HP-IB Msg

x 1111000 170 78 120 secondary addr 24

y 1111001 171 79 121 secondary addr 25

z 1111010 172 7A 122 secondary addr 26

{ 1111011 173 7B 123 secondary addr 27

| 1111100 174 7C 124 secondary addr 28

} 1111101 175 7D 125 secondary addr 29

~ 1111110 176 7E 126 secondary addr 30

[del] 1111111 177 7F 127

C-8

D

HP VEE Utilities

HP VEE Utilities

HP VEE provides some utility programs. You can access these programs from

a UNIX command line in any X11 window or from the HP VEE for Windows

program group in MS-Windows.

D-2

The veedoc Utility for Documenting Programs

HP VEE includes a utility program veedoc, accessible from a UNIX or

MS-DOS command line, which extracts information from a program created

with HP VEE. The veedoc utility prints a line for every object or local

UserFunction in your program. Each line contains an identiÕcation number

and the name of the object or UserFunction. This identiÕcation number

denotes the relative \nesting" position of the object in the program and is

unique to a particular object. The identiÕcation number, once assigned, will

not change and will not be reused. The veedoc utility also extracts the Show

Description information for the root context level (accessible through the

File ¡¡) Show Description menu), all objects, and all local UserFunctions.

If a Note Pad object is present, its content is also extracted.

To use this utility, go to a UNIX or MS-DOS command line and execute:

/usr/lib/veetest/veedoc Õlename [...]

- or -

C:\VEE\VEEDOC Õlename [...]

where Õlename is the name of your program, including path. For example, to

run veedoc on the example program mfgtest.vee, execute:

veedoc examples/new/mfgtest.vee (UNIX)

- or -

VEEDOC \VEE\EXAMPLES\NEW\MFGTEST.VEE (MS-DOS)

To print this same information, execute:

veedoc examples/new/mfgtest.vee | lp (UNIX)

- or -

VEEDOC \VEE\EXAMPLES\NEW\MFGTEST.VEE > PRN

Additional information can be found by looking at the UNIX manual page for

veedoc, which was added when you installed HP VEE. This man page is

included below for your convenience.

D-3

HP VEE Utilities

The veedoc Utility for Documenting Programs

N O T E

The veedoc utility is compatible with programs created with HP VEE Release A.00.01 and later

versions. If you want to use veedoc with programs created with Release A.00.00, you must Õrst

load the program into the current version of HP VEE and then re-save it.

VEEDOC(1) VEEDOC(1)

NAME

veedoc - veedoc is a utility to extract information about a program

created with HP's visual engineering environment (HP VEE).

SYNOPSIS

veedoc [filename]

REMARKS

This command requires installation of optional HP VEE

software (not included with the standard HP-UX operating

system) before it can be used.

HP-UX COMPATIBILITY

Versions: HP-UX 9.x

DESCRIPTION

HP VEE is a visual engineering environment that runs under the X

Window System (X11). veedoc is a utility that extracts the

identification numbers, names and the Show Description information from

objects and UserFunctions within an HP VEE program. Note Pad contents

are also extracted.

Two current features of HP VEE are the ability to "comment" each

object (using Edit Description) for another developer, and the ability

to create custom HP VEE objects (UserObjects) or functions

(UserFunctions). When an HP VEE program is saved to disk, it creates

a file that contains all information about the program. veedoc accesses

this file and provides documentation of the objects and UserFunctions in

the program, along with their "comments".

First veedoc lists the program file name, the HP VEE version used to

create the file and the date of the last revision. Then the title of

the program is printed, followed by the top-level Show Description

information if it exists. The UserFunctions are documented next,

followed by the objects. Each object or UserFunction is documented

by one line containing its identification number and its name as shown

in the title bar. If the object or UserFunction has information

entered under Show Description, it is printed next. If the object is

a Note Pad, its contents follow.

Identification numbers are assigned to the object when the object is

D-4

HP VEE Utilities

The veedoc Utility for Documenting Programs

created, and are saved in the program file. The identification number

never changes nor is reused. Moving an object from one context to

another is effectively a delete followed by an add. Thus the object

receives a new identification number. The identification numbers

reflect the nesting of the UserObjects. UserFunction identification

numbers begin with the character 'F'.

This utility works with programs created using HP VEE.

RETURN VALUE

veedoc returns 0 (zero) if successful, or non-zero if an error was

encountered.

FILES

/usr/lib/veetest/veedoc executable veedoc file

AUTHOR

veedoc was developed by the Hewlett-Packard Company.

SEE ALSO

How to Use HP VEE,

HP VEE Reference, and

X(1).

D-5

The HP Driver Writer Tool

The HP Driver Writer Tool (HP DWT) is a utility program that allows you to

create your own HP Instrument Driver (or ID). HP DWT is installed as part of

the normal HP VEE for HP-UX, HP VEE for SunOS, and HP VEE for Windows

installations.

To start the HP DWT on a UNIX platform, execute the following command

from the UNIX command line in an X11 window.

/usr/lib/veetest/dwt

To start the HP DWT on an MS-Windows platform, click on the Driver Writer

Tool icon in the HP VEE application window.

A menu driven window, similar to the HP VEE window, will appear. The

pull-down menus File, Edit, Create, Other, and Help allow you to

navigate within the HP DWT and develop an ID based on your interactions.

All instructions for the HP DWT about how to create, edit, save, compile, and

use an ID, are documented only in the online Help for the HP DWT.

The HP DWT can create simple IDs. The ID developer who wants to create

IDs with more functionality than the HP DWT supports, will need to edit ID

code directly in a text editor, and should be an advanced programmer. The ID

syntax is described in the HP Instrument Driver Language Reference. This

reference documents only the ID language, not the HP DWT utility. Ordering

information for the reference is given in the HP DWT online Help.

The HP DWT is suœcient to write component drivers to control instruments.

If you need to write full state drivers or complete instrument panel drivers,

you will need to obtain the HP Instrument Driver Language Reference (p/n

E2001-90004) and become more familiar with the driver writing process.

D-6

The HP Instrument Driver Compiler

After writing an Instrument Driver you must also compile the driver. This is

normally done as part of the driver writing process. In fact, the Driver Writer

Tool asks you if you want to compile the driver when you save the driver Õle.

Unless you learn how to write a driver using a text editor, you do not need to

use the ID Compiler. The ID Compiler is included only in the MS-Windows

application window for your convenience. For more help on its operation see

the on-line help in the Driver Writers Tool.

D-7

The Instrument Finder (MS-Windows Only)

The Instrument Finder locates all interfaces and instruments connected

to your computer. Click on the Instrument Finder icon in the HP VEE

application window. It will display the connected devices. For more

information on each device, click on the listing for the device and then press

the ÄMore InfoÅ button in the Instrument Finder Window. The Ä Print...Å

button will print the information displayed in this window to your printer.

D-8

Install Drivers (PC)

The HP VEE for Windows Driver Installation tool helps you install additional

HP Instrument Drivers on your system. You can start this application from

the HP VEE application group window or as part of the installation process.

For more information about installing instrument drivers, see the Installing

HP VEE for Windows manual.

D-9

ConÕgure I/O Utility

The Hewlett Packard Configure I/O Utility for Windows allows you to

conÕgure the sicl.ini Õle for the SICL (Standard Instrument Control

Library) Windows drivers. This utility can conÕgure the following interface

cards:

– HP 82335 HP-IB Card

– HP 82340 HP-IB Card

– HP 82341 HP-IB Card

Also, the Configure I/O utility will conÕgure the serial COM ports.

This utility maps each HP-IB card to a select code (logical unit number) and

a symbolic name. This mapping is determined by the I/O table deÕned for

HP VEE for Windows. See Appendix G for more information about PC select

codes.

You cannot change the select code or the symbolic name of the interface card.

However, you can change other interface attributes such as interrupt line or

for the serial port, reception queue size and baud rate.

D-10

E

I/O Transaction Reference

I/O Transaction Reference

This appendix contains details about the behavior of all I/O transaction

actions, encodings, and formats. This appendix is organized by the

transaction actions summarized in Table E-1. For example, if you need

detailed information about TEXT encoding, do this:

– Look in the WRITE section for details about WRITE TEXT transactions.

– Look in the READ section for details about READ TEXT transactions.

Table E-1. Summary of Transaction Types

Action Description

WRITE Writes data to the destination speciÕed in the object.

READ Reads data from the source speciÕed in the object.

EXECUTE Executes low-level commands to control the Õle, device, or interface associated with

the object. EXECUTE is used to adjust Õle pointers, to close pipes and Õles, and

to provide low-level control of devices and hardware interfaces.

WAIT Waits for the speciÕed number of seconds before executing the next transaction.

For Direct I/O objects, WAIT can also wait for a speciÕc serial poll response,

or for speciÕc values in accessible VXI device registers.

SEND Sends IEEE 488-deÕned bus messages (bus commands and data) to an HP-IB interface.

READ(REQUEST)
1

Reads DDE data from another application.

WRITE(POKE)
1

Writes DDE data to another application.

1 HP VEE for Windows only.

E-2

I/O Transaction Reference

ConÕgure I/O Utility

Table E-2. Summary of I/O Transaction Objects

Objects Supported Transactions

EXECUTE WAIT READ WRITE SEND

To File X X X

From File X X X

To Printer X X

To String X X

From String X X

To StdOut X X

From StdIn X X

To StdErr X X

Execute Program

(UNIX)
1

X X X X

To/From Named Pipe X X X X

To/From Socket X X X X

Direct I/O X X X X

MultiDevice Direct

I/O

X X X X

Interface

Operations

X X

To/From HP

BASIC/UX
2

X X X X

To/From DDE
3

X X X X

1 Execute Program (PC) is not transaction based.

2 HP VEE for HP-UX only.

3 HP VEE for Windows only.

E-3

WRITE Transactions

This section is organized by the WRITE encodings summarized in Table E-3.

Topics that apply to all WRITE encodings are summarized at the beginning of

this section.

Path-SpeciÕc Behaviors

Some WRITE transactions behave diÃerently depending on the I/O path of the

destination. For example, WRITE TEXT HEX transactions format hexadecimal

numbers diÃerently depending on whether the destination is a UNIX Õle or

an instrument. To distinguish these behaviors, this section uses the following

terms:

Term Meaning

UNIX paths Any destination other than an instrument, such as a UNIX

Õle, a string, the printer, or a UNIX pipe.

MS-DOS paths Any destination other than an instrument, such as an

MS-DOS Õle, a string, or the printer.

direct I/O paths Any instrument accessed using Direct I/O.

The behaviors described in the following sections apply to all paths, except as

speciÕcally noted.

E-4

I/O Transaction Reference

WRITE Transactions

Table E-3. WRITE Encodings and Formats

Encodings Formats

TEXT DEFAULT

STRING

QUOTED STRING

INTEGER

OCTAL

HEX

REAL

COMPLEX

PCOMPLEX

COORD

TIME STAMP

BYTE Not Applicable

CASE Not Applicable

BINARY STRING

BYTE

INT16

INT32

REAL32

REAL64

COMPLEX

PCOMPLEX

COORD

BINBLOCK BYTE

INT16

COMPLEX

INT32

PCOMPLEX

REAL32

REAL64

COORD

E-5

I/O Transaction Reference

WRITE Transactions

Table E-3. WRITE Encodings and Formats (continued)

Encodings Formats

CONTAINER Not Applicable

STATE
1

Not Applicable

REGISTER
2

BYTE

WORD16

WORD32

REAL32

MEMORY
2

BYTE

WORD16

WORD32

REAL32

IOCONTROL
3

Not Applicable

1 Direct I/O to HP-IB only.

2 Direct I/O to VXI only.

3 Direct I/O to GPIO only.

TEXT Encoding

WRITE TEXT transactions are of this form:

WRITE TEXT ExpressionList [Format]

ExpressionList is a single expression or a comma-separated list of

expressions.

Format is an optional setting that speciÕes one of the formats listed in

Table E-4.

E-6

I/O Transaction Reference

WRITE Transactions

Table E-4. Formats for WRITE TEXT Transactions

Format Description

DEFAULT HP VEE automatically determines an appropriate text representation based on the data type

of the item being written.

STRING Writes Text data without any conversion. Writes numeric data types as Text with maximum

numeric precision.

QUOTED

STRING

Writes data in the the same format as STRING, except the data is surrounded by double

quotes (ASCII 34 decimal).

INTEGER Writes data as a 32-bit two's complement integer in decimal form.

OCTAL Writes data as a 32-bit two's complement integer in octal form.

HEX Writes data as a 32-bit two's complement integer in hexadecimal form.

REAL Writes data as a 64-bit Œoating point number in a variety of notations including Õxed decimal

and scientiÕc notation.

COMPLEX Writes a comma-separated pair of 64-bit Œoating point numbers that represent a complex

number. The Õrst number represents the real part and the second number represents the

imaginary part.

PCOMPLEX Writes a comma-separated pair of 64-bit Œoating point numbers that represent a complex

number. The Õrst number represents the magnitude and the second number represents the

phase angle in the phase units speciÕed in the transaction.

COORD Writes a comma-separated series of 64-bit Œoating point numbers that represent a rectangular

coordinate.

TIME STAMP Converts a real number (for example, the output of the now() function) to a meaningful

form and writes it in a variety of combinations of year, month, day, and time.

DEFAULT Format WRITE TEXT (default) transactions are of this form:

WRITE TEXT ExpressionList

ExpressionList is a single expression or a comma-separated list of

expressions.

E-7

I/O Transaction Reference

WRITE Transactions

The transaction converts each item in ExpressionList to a meaningful string

and writes it. Consider the simple case of writing the scalar variable X:

WRITE TEXT X

Figure E-1. A WRITE TEXT Transaction

If X in Figure E-1 contains text, such as:

bird cat dog

then no conversion is performed and the transaction writes exactly 12

characters.

If X in Figure E-1 contains a scalar Integer, such as:

8923 the value of X (decimal notation)

then the numeric value is converted to text and HP VEE writes exactly four

characters.

If X in Figure E-2 contains a scalar real value, such as:

1.2345678901234567

Figure E-2. Numeric Data

then each signiÕcant digit up to 16 signiÕcant digits is written. (The least

signiÕcant digit is approximate because of the conversion between HP VEE's

internal binary form and decimal notation).

For example, if you write the data in Figure E-2 using this transaction:

WRITE TEXT a EOL

then HP VEE writes this:

1.234567890123457

If the absolute value of the number is suœciently large or small, exponential

notation is used. The Reals that form the sub-elements of Coord, Complex,

and PComplex behave the same way.

E-8

I/O Transaction Reference

WRITE Transactions

If EOL ON is speciÕed for any WRITE TEXT DEFAULT transaction, the character

speciÕed in the EOL Sequence Õeld for that object is written following the

last character in ExpressionList.

STRING Format WRITE TEXT STRING transactions are of this form:

WRITE TEXT ExpressionList STR

ExpressionList is a single expression or a comma-separated list of

expressions.

WRITE TEXT STRING transactions behave basically the same as WRITE TEXT

(default) transactions (one exception will be discussed). The signiÕcant

diÃerence is that STRING allows you to specify additional details about output

formatting including Õeld width, justiÕcation, and number of characters.

Field Width and JustiÕcation. If a transaction speciÕes DEFAULT FIELD

WIDTH, only those characters resulting from the conversion of items within

ExpressionList to Text are written.

If a transaction speciÕes FIELD WIDTH: F, then the converted Text is written

right- or left-justiÕed within a space F characters wide.

The transactions in Figure E-3 specify that all characters are to be written

within a Õeld of twenty characters with left justiÕcation.

WRITE TEXT X STR FW:20 LJ EOL

WRITE TEXT Y STR FW:20 LJ EOL

Figure E-3. Two WRITE TEXT STRING Transactions

E-9

I/O Transaction Reference

WRITE Transactions

If X and Y in Figure E-3 have these values:

bird cat dog the Text value of X

12345678901234567 the Real value of Y

then HP VEE writes this:

bird cat dog

12345678901234567

^ ^

The caret characters (^) are not actually written by HP VEE; they are shown

to help you visualize the Õeld width. The characters to the right of dog and

to the right of the second 7 are spaces (ASCII 32 decimal).

If justiÕcation is changed to RIGHT JUSTIFY, then the transactions appear as

shown in Figure E-4.

WRITE TEXT X STR FW:20 RJ EOL

WRITE TEXT Y STR FW:20 RJ EOL

Figure E-4. Two WRITE TEXT STRING Transactions

If X and Y in Figure E-4 have these values:

bird cat dog the Text value of X

12345678901234567 the Real value of Y

then HP VEE writes this:

bird cat dog

12345678901234567

^ ^

The caret characters (^) are not actually written by HP VEE; they are shown

to help you visualize the Õeld width. The characters to the left of bird and

to the left of the Õrst 1 are spaces (ASCII 32 decimal).

E-10

I/O Transaction Reference

WRITE Transactions

If the length of a string exceeds the speciÕed Õeld width, the entire string is

written. The Õeld width speciÕcation never truncates; only MAX NUM CHARS

can truncate characters.

The transaction in Figure E-5 speciÕes that all characters are to be written in

a Õeld width of four characters with left justiÕcation.

WRITE TEXT X STR FW:4 LJ

Figure E-5. A WRITE TEXT STRING Transaction

If X in Figure E-5 has this value:

bird cat dog the Text value of X, 12 characters

then HP VEE writes this:

bird cat dog all 12 characters

Even though the speciÕed Õeld width is four characters, the transaction writes

all twelve characters of the string.

Number of Characters. If you specify ALL CHARS, then all of the

characters generated by the conversion of each item in ExpressionList are

written. If you specify MAX NUM CHARS: M, then only the Õrst M characters of

each item in ExpressionList are written.

The transactions in Figure E-6 specify that a maximum of seven characters

are written in each Õeld, the Õeld width is twenty characters, and Õeld entries

are left justiÕed.

WRITE TEXT X STR:7 FW:20 LJ EOL

WRITE TEXT Y STR:7 FW:20 LJ EOL

Figure E-6. Two WRITE TEXT STRING Transactions

E-11

I/O Transaction Reference

WRITE Transactions

If X and Y in Figure E-3 have these values:

bird cat dog the Text value of X

12345678901234567 the Real value of Y

then HP VEE writes this:

bird ca

1234567

^ ^

Notice that the numeric value of Y is Õrst converted to Text and characters

are truncated. Numeric values are not rounded by MAX NUM CHARS.

The caret characters (^) are not actually written by HP VEE; they are shown

to help you visualize the Õeld width. The characters to the right of bird and

to the right of the Õrst 1 are spaces (ASCII 32 decimal).

Writing Arrays with Direct I/O. WRITE TEXT STR transactions that write

arrays to direct I/O paths ignore the Array Separator setting for the

Direct I/O object. These transactions always use linefeed (ASCII decimal

10) to separate each element of an array (which is a string) as it is written.

This behavior is consistent with the needs of most instruments.

N O T E

This special behavior for arrays does not apply to any other types of transactions.

E-12

I/O Transaction Reference

WRITE Transactions

QUOTED STRING Format WRITE TEXT QUOTED STRING transactions are of this form:

WRITE TEXT ExpressionList QSTR

ExpressionList is a single expression or a comma-separated list of

expressions.

In general, the behaviors previously discussed for the STRING

format apply to QUOTED STRING format. There are two diÃerences between

STRING and QUOTED STRING:

– For QUOTED STRING, a double quote (ASCII 34 decimal) is added to the

beginning and the end of the string. Note that the double quotes are

applied before any padding spaces are added to justify the string within the

speciÕed Õeld width.

– Control characters (ASCII 0-31 decimal), escape characters (Table E-5), and

the characters ' (ASCII 39 decimal) and " (ASCII 34 decimal) embedded

inside a double-quoted string receive special treatment.

Field Width and JustiÕcation. If you specify DEFAULT FIELD WIDTH, only

those characters resulting from the conversion of items within ExpressionList

to Text and the surrounding double quotes are written.

If you specify FIELD WIDTH: F, then the converted Text and the surrounding

quotes are written right or left justiÕed within a space F characters wide.

The transactions in Figure E-7 specify that all characters are to be written as

quoted strings in a Õeld 20 characters wide with left justiÕcation.

WRITE TEXT X QSTR FW:20 LJ EOL

WRITE TEXT Y QSTR FW:20 LJ EOL

Figure E-7. Two WRITE TEXT QUOTED STRING Transactions

E-13

I/O Transaction Reference

WRITE Transactions

If X and Y in Figure E-7 have these values:

bird cat dog the Text value of X

12345678901234567 the Real value of Y

then HP VEE writes this:

"bird cat dog"

"12345678901234567"

^ ^

The caret characters (^) are not actually written by HP VEE; they are shown

to help you visualize the Õeld width. The characters to the right of dog" and

to the right of 7" are spaces (ASCII 32 decimal).

If justiÕcation is changed to RIGHT JUSTIFY, then the transactions appear as

shown in Figure E-8.

WRITE TEXT X QSTR FW:20 RJ EOL

WRITE TEXT Y QSTR FW:20 RJ EOL

Figure E-8. Two WRITE TEXT QUOTED STRING Transactions

If X and Y in Figure E-8 have these values:

bird cat dog the Text value of X

12345678901234567 the Real value of Y

then HP VEE writes this:

"bird cat dog"

"12345678901234567"

^ ^

The caret characters (^) are not actually written by HP VEE; they are shown

to help you visualize the Õeld width. The characters to the left of "bird and

to the left of "1 are spaces (ASCII 32 decimal).

E-14

I/O Transaction Reference

WRITE Transactions

If the length of a string exceeds the speciÕed Õeld width, the entire string is

output. The Õeld width speciÕcation never truncates strings that are written;

only MAX NUM CHARS can truncate characters.

The transactions in Figure E-9 that speciÕes that all characters are to be

written within a Õeld of four characters with left justiÕcation.

WRITE TEXT X QSTR FW:4 LJ

Figure E-9. A WRITE TEXT QUOTED STRING Transaction

If X in Figure E-9 has this value:

bird cat dog the Text value of X, 12 characters

then HP VEE writes this:

"bird cat dog" all 12 characters

Number of Characters. If you specify ALL CHARS, then all of the

characters generated by the conversion of each item in ExpressionList

as well as the surrounding double quotes are written. If you specify

MAX NUM CHARS: M, then only the Õrst M characters of each item in

ExpressionList plus the surrounding double quotes are written. In other

words, a total of M+2 characters are written for each item in ExpressionList.

The transaction in Figure E-10 that speciÕes MAX NUM CHARS:7 (Õeld width

20, left justiÕed).

WRITE TEXT X QSTR:7 FW:20 LJ EOL

WRITE TEXT Y QSTR:7 FW:20 LJ EOL

Figure E-10. Two WRITE TEXT QUOTED STRING Transactions

E-15

I/O Transaction Reference

WRITE Transactions

If X and Y in Figure E-10 have these values:

bird cat dog the Text value of X

12345678901234567 the Real value of Y

then HP VEE writes this:

"bird ca"

"1234567"

^ ^

The caret characters (^) are not actually written by HP VEE; they are shown

to help you visualize the Õeld width. The characters to the right of ca" and

to the right of 7" are spaces (ASCII 32 decimal).

Embedded Control and Escape Characters. In this discussion, the

terms control character and escape character have speciÕc meaning. A

control character is a single byte of data corresponding to one of the ASCII

characters 0-31 decimal. For example, linefeed is ASCII 10 decimal and the

symbol <LF> denotes linefeed character in this discussion. The string \n is

a human-readable escape character representing linefeed that is recognized

by HP VEE. HP VEE uses escape characters to represent control characters

within quoted strings.

E-16

I/O Transaction Reference

WRITE Transactions

Table E-5. Escape Characters

Escape Character ASCII Code

(decimal)

Meaning

\n 10 Newline

\t 9 Horizontal Tab

\v 11 Vertical Tab

\b 8 Backspace

\r 13 Carriage Return

\f 12 Form Feed

\" 34 Double Quote

\' 39 Single Quote

\\ 92 Backslash

\ddd The ASCII character corresponding to the three-digit

octal value ddd.

Consider the eÃects of various embedded escape characters on the transaction

in Figure E-11.

WRITE TEXT X QSTR EOL

Figure E-11. A WRITE TEXT QUOTED STRING Transaction

If X in Figure E-11 has this value:

bird\ncat dog

then HP VEE writes this to UNIX paths:

"bird\ncat dog"

For the same transaction and data, HP VEE writes this to direct I/O paths:

"bird<LF>cat dog"

Note that <LF> means the single character, linefeed (ASCII 10 decimal).

E-17

I/O Transaction Reference

WRITE Transactions

If X in Figure E-11 has this value:

bird \"cat\" dog

then HP VEE writes this to UNIX paths and Direct I/O paths for serial

interfaces:

"bird \"cat\" dog"

For the same transaction and data, HP VEE writes this to direct I/O paths for

HP-IB interfaces:

"bird ""cat"" dog"

This unique behavior for HP-IB interfaces is provided to support the

requirements of IEEE 488.2.

INTEGER Format WRITE TEXT INTEGER transactions are of this form:

WRITE TEXT ExpressionList INT

ExpressionList is a single expression or a comma-separated list of

expressions.

The type of integer generated by this transaction is a 32-bit two's

complement integer. The range of these integers is 2 147 483 647 to

-2 147 483 648. The only characters written to represent these numbers are

+-0123456789.

HP VEE attempts to convert each item in ExpressionList to the Int32 data

type before converting it to Text for Õnal formatting. HP VEE follows the

usual conversion rules; refer to the Data Type Conversions appendix in the

HP VEE Reference for more details.

If a Real is written using INTEGER format:

– Real values outside the valid range of Int32 generate an error.

– Real values within the valid range of Int32 are converted by truncating the

fractional portion of the Real.

Number of Digits. If you specify DEFAULT NUM DIGITS, the transaction

writes only the digits required to express the value of the integer; leading

zeros are not used.

If you specify MIN NUM DIGITS: M, the transaction pads the output with

leading zeros as required to give a total of exactly M digits.

E-18

I/O Transaction Reference

WRITE Transactions

Consider the two transactions in Figure E-12 which diÃer only in their

speciÕcation for the number of output digits.

WRITE TEXT X INT EOL default number of digits

WRITE TEXT X INT:6 EOL six digits

Figure E-12. Two WRITE TEXT INTEGER Transactions

If X in Figure E-12 has this value:

4567

then HP VEE writes this:

4567

004567

MIN NUM DIGITS never causes truncation of the output string. The

transaction in Figure E-13 speciÕes the minimum number of digits to be 1.

WRITE TEXT X INT:1 EOL

Figure E-13. A WRITE TEXT INTEGER Transaction

If X in Figure E-13 has a value of:

12345678

then HP VEE writes this:

12345678 all eight digits

E-19

I/O Transaction Reference

WRITE Transactions

Sign PreÕxes. You may optionally specify one of the sign preÕxes listed in

Table E-6 as part of a WRITE TEXT INT transaction.

Table E-6. Sign PreÕxes

PreÕx Description

/- Positive numbers are written with no preÕx, neither a + nor a space. All negative numbers

are written with a - preÕx.

+/- All positive numbers are written with a + preÕx. All negative numbers are written with a

- preÕx.

" "/- All positive numbers are written with a space (ASCII 32 decimal) preÕx. All negative

numbers are written with a - preÕx.

Any preÕxed signs do not count towards MIN NUM DIGITS. The transaction

shown in Figure E-14 speciÕes explicit leading signs for positive and negative

numbers.

WRITE TEXT X INT:6 SIGN:"+/-" EOL

WRITE TEXT Y INT:6 SIGN:"+/-" EOL

Figure E-14. Two WRITE TEXT INTEGER Transactions

If X and Y in Figure E-14 have values of:

123 the Integer value of X

-123 the Integer value of Y

then HP VEE writes this:

+000123 six digits plus sign

-000123

E-20

I/O Transaction Reference

WRITE Transactions

OCTAL Format WRITE TEXT OCTAL transactions are of this form:

WRITE TEXT ExpressionList OCT

ExpressionList is a single expression or a comma-separated list of

expressions.

The type of integer written by this transaction is a 32-bit two's complement

integer. The range of these integers is 2 147 483 647 to -2 147 483 648.

The only characters written to represent these octal numbers are 01234567.

An optional preÕx may be speciÕed which may include other characters.

HP VEE attempts to convert any data written using OCTAL format to the Int32

data type before converting it to Text for Õnal formatting. The usual HP VEE

conversion rules are followed.

If a Real is written using OCTAL format:

– Real values outside the valid range of Int32 generate an error.

– Real values within the valid range of Int32 are converted by truncating the

fractional portion of the Real.

Number of Digits. The behavior of DEFAULT NUM DIGITS and

MIN NUM DIGITS is the same as described previously in the \Number of

Digits" section for WRITE TEXT INTEGER transactions.

Octal PreÕxes. You may specify one of the preÕxes listed in Table E-7 as

part of a WRITE TEXT OCTAL transaction.

Table E-7. Octal PreÕxes

PreÕx Description

NO PREFIX HP VEE writes each octal number without any preÕx; only the digits 01234567

appear in the output.

DEFAULT PREFIX For direct I/O paths, HP VEE preÕxes each octal number with #Q. This supports the

octal Non-Decimal Numeric data format deÕned by IEEE 488.2.

For UNIX paths, HP VEE preÕxes each octal number with a 0 (zero). If leading zeros

are added to achieve the speciÕed MIN NUM DIGITS, DEFAULT PREFIX

will not add additional leading zeros.

PREFIX:string HP VEE preÕxes each octal number with the characters speciÕed in string.

E-21

I/O Transaction Reference

WRITE Transactions

The transaction in Figure E-15 speciÕes the default preÕx and six digits:

WRITE TEXT X OCT:6 PREFIX EOL

Figure E-15. A WRITE TEXT OCTAL Transaction

If X in Figure E-15 has this value:

15 the value 15 decimal

then HP VEE writes this to direct I/O paths:

#Q000017 exactly six digits plus preÕx

Using the same transaction and data, HP VEE writes this to UNIX paths:

000017 exactly six digits

The transaction in Figure E-16 speciÕes a custom preÕx and ten digits:

WRITE TEXT X OCT:10 PREFIX:"oct>" EOL

Figure E-16. A WRITE TEXT OCTAL Transaction

If X in Figure E-16 has this value:

15 the Integer value 15 decimal

then HP VEE writes this to UNIX paths and direct I/O paths:

oct>000017

Note that the preÕx written by DEFAULT PREFIX depends on the destination,

but the preÕx written by PREFIX: string is independent of the destination.

E-22

I/O Transaction Reference

WRITE Transactions

HEX Format WRITE TEXT HEX transactions are of this form:

WRITE TEXT ExpressionList HEX

The type of integer written by this transaction is a 32-bit two's complement

integer. The range of these integers is 2 147 483 647 to -2 147 483 648.

The only characters written to represent these hexadecimal numbers are

0123456789abcdef. An optional preÕx may be speciÕed that may include

other characters.

The behavior of WRITE TEXT HEX is nearly identical to that of

WRITE TEXT OCTAL. The only diÃerence is the set of preÕxes available and

the behavior of DEFAULT PREFIX.

Hexadecimal PreÕxes. You may specify one of the preÕxes listed in

Table E-8 as part of a WRITE TEXT HEX transaction.

Table E-8. Hexadecimal PreÕxes

PreÕx Description

NO PREFIX HP VEE writes each hexadecimal number without any preÕx; only the digits

0123456789abcdef appear in the output.

DEFAULT PREFIX For direct I/O paths, HP VEE preÕxes each hexadecimal number with #H. This

supports the hexadecimal Non-Decimal Numeric data format deÕned by IEEE 488.2.

For UNIX paths, HP VEE preÕxes each hexadecimal number with 0x.

PREFIX:string HP VEE preÕxes each hexadecimal number with the characters speciÕed in string.

E-23

I/O Transaction Reference

WRITE Transactions

The transaction in Figure E-17 speciÕes the default preÕx and six digits:

WRITE TEXT X HEX:6 PREFIX EOL

Figure E-17. A WRITE TEXT HEX Transaction

If X in Figure E-15 has this value:

15 the Integer value 15 decimal

then HP VEE writes this to direct I/O paths:

#H00000f exactly six digits plus preÕx

Using the same transaction and data, HP VEE this to UNIX paths:

0x00000f exactly six digits plus preÕx

The transaction in Figure E-18 speciÕes a custom preÕx and three digits:

WRITE TEXT X HEX:3 PREFIX:"hex>" EOL

Figure E-18. A WRITE TEXT HEX Transaction

If X in Figure E-18 has this value:

15 the Integer value 15 decimal

then HP VEE writes this to UNIX paths and direct I/O paths:

hex>00f exactly three digits plus preÕx

Note that the preÕx written by DEFAULT PREFIX depends on the destination,

but the preÕx written by PREFIX: string is independent of the destination.

E-24

I/O Transaction Reference

WRITE Transactions

REAL Format WRITE TEXT REAL transactions are of this form:

WRITE TEXT ExpressionList REAL

The type of Real number generated by this transaction is a 64-bit IEEE 754

Œoating-point number. The range of these numbers is:

-1.797 693 134 862 315E+308

-2.225 073 858 507 202E-307

0

2.225 073 858 507 202E-307

1.797 693 134 862 315E+308

The only characters written to represent these numbers are

+-.0123456789E.

Notations and Digits. You may optionally specify one of the notations in

Table E-9 as part of a WRITE TEXT REAL transaction.

Table E-9. REAL Notations

Notation Description

STANDARD HP VEE automatically determines whether each Real value should be written in

Õxed-point notation (decimal points as required, no exponents) or in exponential notation.

Non-signiÕcant zeros are never written.

FIXED HP VEE writes each Real value as a Õxed-point number. Numbers with fractional digits

are automatically rounded to Õt the number of fractional digits speciÕed by

NUM FRACT DIGITS. Trailing zero digits are added as required to give the

speciÕed number of fractional digits.

SCIENTIFIC HP VEE writes each Real value using exponential notation. Each exponent includes an

explicit sign (+ or -) and the upper-case E is always used. Numbers with fractional

digits are automatically rounded to Õt the number of fractional digits speciÕed by

NUM FRACT DIGITS. Trailing zero digits are added as required to give the

speciÕed number of fractional digits.

E-25

I/O Transaction Reference

WRITE Transactions

The transactions in Figure E-19 specify STANDARD notation and four

signiÕcant digits.

WRITE TEXT X REAL STD:4 EOL

WRITE TEXT Y REAL STD:4 EOL

WRITE TEXT Z REAL STD:4 EOL

Figure E-19. Three WRITE TEXT REAL Transactions

If X, Y, and Z in Figure E-19 have these values:

1.23456E2 the Real value of X

1.23456E09 the Real value of Y

1.23 the Real value of Z

then HP VEE writes this:

123.5 mantissa rounded as required

1.235E+09 large numbers in exponential notation

1.23 never any trailing zeros

The transactions in Figure E-20 specify FIXED notation and four fractional

digits.

WRITE TEXT X REAL FIX:4 EOL

WRITE TEXT Y REAL FIX:4 EOL

WRITE TEXT Z REAL FIX:4 EOL

Figure E-20. Three WRITE TEXT REAL Transactions

If X, Y, and Z in Figure E-20 have these values:

1.2345678E2 the Real value of X

1.2345678E-09 the Real value of Y

1.23 the Real value of Z

then HP VEE writes this:

123.4568 mantissa rounded as required

0.0000 small numbers round to zero

1.2300 trailing zeros added as required

E-26

I/O Transaction Reference

WRITE Transactions

The transactions in Figure E-21 specify SCIENTIFIC notation and four

fractional digits.

WRITE TEXT X REAL SCI:4 EOL

WRITE TEXT Y REAL SCI:4 EOL

WRITE TEXT Z REAL SCI:4 EOL

Figure E-21. Three WRITE TEXT REAL Transactions

If X, Y, and Z in Figure E-21 have these values:

1.2345678E2 the Real value of X

-1.2345678E-09 the Real value of Y

0 the Real value of Z

then HP VEE writes this:

1.2346E+02 exponent is E plus two signed digits

-1.2346E-09 last digit rounded as required

0.0000E+00 trailing zeros padded as required

COMPLEX, PCOMPLEX,

and COORD Formats

COMPLEX, PCOMPLEX, and COORD correspond to the HP VEE multi-Õeld data

types with the same names. The behavior of all three formats is very similar.

The behaviors described in this section apply to all three formats except as

noted.

Just as the HP VEE data types Complex, PComplex, and Coord are composed

of multiple Real numbers, the COMPLEX, PCOMPLEX, and COORD formats are

essentially compound forms of the REAL format. Each constituent Real value

of the multi-Õeld data types is written with the same output rules that apply

to an individual REAL formatted value.

E-27

I/O Transaction Reference

WRITE Transactions

The Õnal output of transactions involving multi-Õeld formats is aÃected

by the Multi-Field Format setting for the object in question.

Multi-Field Format is accessed via I/O ¡¡) Instruments . . . for

Direct I/O objects and via Config in the object menu for all other objects.

The two possible settings for Multi-Field Format are:

– Data Only. This writes multi-Õeld data formats as a list of

comma-separated numbers without parentheses.

– (. . .) Syntax. This writes multi-Õeld data formats as a list of

comma-separated numbers grouped by parentheses.

Subsequent examples will illustrate these behaviors.

COMPLEX Format. WRITE TEXT COMPLEX transactions are of this form:

WRITE TEXT ExpressionList CPX

The transaction in Figure E-22 speciÕes a Õxed-decimal notation, explicit

leading signs, a Õeld width of 10 characters, and right justiÕcation.

WRITE TEXT X CPX FIX:3 SIGN:"+/-" FW:10 RJ EOL

Figure E-22. A WRITE TEXT COMPLEX Transaction

If the Multi-Field Format is set to (. . .) Syntax, and X in Figure E-22

has this value:

(-1.23456 , 9.8) the Complex value of X

then HP VEE writes this:

(-1.235 , +9.800)

^ ^ ^ ^

If the Multi-Field Format is set to Data Only and X in Figure E-22 has the

same value, then HP VEE writes this:

-1.235, +9.800

^ ^ ^ ^

E-28

I/O Transaction Reference

WRITE Transactions

The caret characters (^) are not actually written by HP VEE; they are shown

to help you visualize the Õeld width. The characters to the left of + are

spaces (ASCII 32 decimal).

Note that with (. . .) Syntax, a space-comma-space sequence separates

the ten-character wide Õelds that contain the real and imaginary parts

of the Complex number. With either Multi-Field Format there is a

separate ten-character Õeld for both the real and the imaginary part. Neither

parentheses nor the separating comma and spaces are included in the Õeld.

PCOMPLEX Format. WRITE TEXT PCOMPLEX transactions are of this form:

WRITE TEXT ExpressionList PCX

PCOMPLEX format allows you to specify the phase units for the polar complex

number it writes. Note that phase units are independent of the units set by

File ¡¡) Preferences ¡¡) Trig Mode.

Table E-10. PCOMPLEX Phase Units

Unit Description

DEG Degrees

RAD Radians

GRAD Gradians

The Õrst transaction in Figure E-23 speciÕes phase measurement in degrees,

and the second transaction speciÕes phase measurement in radians.

WRITE TEXT X PCX:DEG STD EOL

WRITE TEXT X PCX:RAD STD EOL

Figure E-23. Two WRITE TEXT PCOMPLEX Transactions

E-29

I/O Transaction Reference

WRITE Transactions

If the Multi-Field Format is set to Data Only, and X in Figure E-23 has

this value:

(-1.23456 , @90) the PComplex value of X, phase in degrees

then HP VEE writes this:

1.23456,-90

1.23456,-1.570796326794897

The transaction in Figure E-24 speciÕes phase measurement in radians,

Õxed-decimal notation, three fractional digits, explicit leading signs, a Õeld

width of ten characters, and right justiÕcation.

WRITE TEXT X PCX:RAD FIX:3 SIGN:"+/-" FW:10 RJ EOL

Figure E-24. A WRITE TEXT PCOMPLEX Transaction

If the Multi-Field Format is set to (. . .) Syntax, and X in Figure E-24

has this value:

(-1.23456 , @9.8) the PComplex value of X, angle in radians

then HP VEE writes this:

(+1.235 , @ +0.375)

^ ^ ^ ^

Note that HP VEE normalizes all PComplex numbers to yield a positive

magnitude and a phase between +⁄ and -⁄.

If the Multi-Field Format is set to Data Only, and X in Figure E-24 has

the same value, then HP VEE writes this:

+1.235, +0.375

^ ^ ^ ^

The caret characters (^) are not actually written by HP VEE; they are shown

to help you visualize the Õeld width. The characters to the left of - and to

the left of + are spaces (ASCII 32 decimal).

COORD Format. WRITE TEXT COORD transactions are of this form:

WRITE TEXT ExpressionList COORD

E-30

I/O Transaction Reference

WRITE Transactions

COORD format has all the same behaviors of COMPLEX format. The only

diÃerence is that COORD may contain an arbitrary number of Õelds while

COMPLEX has exactly two Õelds.

TIME STAMP Format WRITE TEXT TIME STAMP transactions are of this form:

WRITE TEXT DATE: TIME:

ExpressionList is a single expression or a comma-separated list of

expressions.

DateSpec is one of the following pre-deÕned date and time combinations:

– Date

– Time

– Date&Time

– Time&Date

– Delta Time

If you specify a transaction that includes Date, you may also specify a

DateSpec of Weekday DD/Month/YYYY or DD/Month/YYYY.

If you specify a transaction that includes Time, you may also specify a

TimeSpec. TimeSpec is a combination of the following pre-deÕned time

formats:

– HH:MM (hours and minutes)

– HH:MM:SS (hours, minutes, and seconds)

– 12 HOUR

– 24 HOUR

Each item in ExpressionList is converted to a Real and interpreted as a date

and time. This Real number represents the number of seconds that have

elapsed since midnight, January 1, AD 1 UTC. The most common source

for this Real number is the output of a Time Stamp object. You use the

TIME STAMP format to convert this Real number to a meaningful string that

contains a human-readable date and/or time.

E-31

I/O Transaction Reference

WRITE Transactions

TIME STAMP supports a variety of notations for writing dates and times. If a

Real variable contains this value:

62806574669.31164

then TIME STAMP can write it using any of these Time and Date notations:

Notation Result

Date with Weekday DD/Month/YYYY Thu 04/Apr/1991

Time with HH:MM:SS and 24 HOUR 15:44:29

Date&Time with Weekday

DD/Month/YYYY, HH:MM:SS, and 24

HOUR

Thu 04/Apr/1991 15:44:29

Time&Date with HH:MM:SS, 24 HOUR,

and Weekday DD/Month/YYYY

15:44:29 Thu 04/Apr/1991

Delta Time with HH:MM:SS 17446270:44:29

Date with Weekday DD/Month/YYYY Thu 04/Apr/1991

Date with DD/Month/YYYY 04/Apr/1991

Time with HH:MM:SS and 24 HOUR 15:44:29

TIME with HH:MM and 24 HOUR 15:44

TIME with HH:MM:SS and 24 Hour 15:44:29

TIME with HH:MM:SS and 12 Hour 3:44:29 PM

E-32

I/O Transaction Reference

WRITE Transactions

BYTE Encoding

BYTE transactions are of this form:

WRITE BYTE ExpressionList

ExpressionList is a single expression or a comma-separated list of

expressions.

HP VEE converts each item in ExpressionList to an Int16 (16-bit two's

complement integer) and writes the least-signiÕcant 8-bits. This is a

transaction for writing single characters to a device. Each expression in

ExpressionList must be a scalar.

The transactions in Figure E-25 produce the output shown in Figure E-26.

WRITE BYTE 65,66,67

WRITE BYTE 65+1024,65+2048

Figure E-25. Two WRITE BYTE Transactions

ABCAA

Figure E-26. Character Data

E-33

I/O Transaction Reference

WRITE Transactions

CASE Encoding

WRITE CASE transactions are of this form:

WRITE CASE ExpressionList1 OF ExpressionList2

ExpressionList is a single expression or a comma-separated list of

expressions.

HP VEE converts each item in ExpressionList1 to an integer and uses it as

an index into ExpressionList2. The indexed item(s) in ExpressionList2 are

written in a string format that is the same as WRITE TEXT (default).

Note that the indexing of items in ExpressionList2 is zero-based.

The transactions in Figure E-27 illustrate the behavior of CASE format.

WRITE CASE 2,1 OF "Str0","Str1","Str2"

WRITE CASE X OF 1,1+A,3+A

Figure E-27. Two WRITE CASE Transactions

If the variables in Figure E-27 have these values:

2 the Real value of X

0.1 the Real value of A

then HP VEE writes this:

Str2Str1

3.1

E-34

I/O Transaction Reference

WRITE Transactions

BINARY Encoding

WRITE BINARY transactions are of this form:

WRITE BINARY ExpressionList DataType

ExpressionList is a single expression or a comma-separated list of

expressions.

DataTypes is one of the following pre-deÕned HP VEE data types:

– BYTE - 8-bit byte

– INT16 - 16-bit two's complement integer

– INT32 - 32-bit two's complement integer

– REAL32 - 32-bit IEEE 754 Œoating-point number

– REAL64 - 64-bit IEEE 754 Œoating-point number

– STRING - null terminated string

– COMPLEX - equivalent to two REALs

– PCOMPLEX -equivalent to two REALs

– COORD - equivalent to two or more REALs

E-35

I/O Transaction Reference

WRITE Transactions

N O T E

HP VEE stores and manipulates all integer values as the INT32 data type, and all real numbers as

the Real data type, also known as REAL64. Thus, the INT16 and REAL32 data types are

provided for I/O only. HP VEE performs the following data-type conversions for instrument I/O:

– On an output transaction INT32 values are individually converted to INT16 values, which are

output to the instrument. However, since the INT16 data type has a range of -32768 to 32767,

values outside this range will be truncated to 16 bits.

– On an output transaction REAL64 values are individually converted to REAL32 values, which

are output to the instrument. However, since the REAL32 data type has a smaller range than

REAL64 data type, values outside this range cannot be converted to REAL32 and will result in

an error.

BINARY encoded transactions convert each of the values speciÕed in

ExpressionList to the HP VEE data type speciÕed by DataType. Each

converted item is then written in the speciÕed binary format. However, since

the binary data written is a copy of the representation in computer memory,

it is not easily shared by diÃerent computer architectures or hardware.

BINARY encoded data has the advantage of being very compact. READ

BINARY transactions can read any corresponding WRITE BINARY data.

Note that BINARY encoding writes only the numeric portion of each data

type. For example, the parentheses and comma that can be included when

writing Complex and Coord data with TEXT encoding are never written with

BINARY encoding. Similarly, when writing arrays, BINARY encoding does

not write any Array Separators. WRITE BINARY transactions do allow

you to specify EOL ON. There is rarely a need to write EOL with BINARY

transactions because numeric data types are of Õxed length and strings are

null-terminated.

E-36

I/O Transaction Reference

WRITE Transactions

BINBLOCK Encoding

WRITE BINBLOCK transactions are of this form:

WRITE BINBLOCK ExpressionList DataType

ExpressionList is a single expression or a comma-separated list of

expressions.

DataType is one of these pre-deÕned HP VEE data types:

– BYTE - 8-bit byte

– INT16 - 16-bit two's complement integer

– INT32 - 32-bit two's complement integer

– REAL32 - 32-bit IEEE 754 Œoating-point number

– REAL64 - 64-bit IEEE 754 Œoating-point number

– COMPLEX - equivalent to two REALs

– PCOMPLEX -equivalent to two REALs

– COORD - equivalent to two or more REALs

BINBLOCK writes each item in ExpressionList as a separate data block. The

block header used depends on the type of object performing the WRITE and

the object's conÕguration.

Non-HP-IB BINBLOCK If the object is not Direct I/O to HP-IB, a WRITE BINBLOCK always writes an

IEEE 488.2 DeÕnite Length Arbitrary Block Response Data block. This data

format is primarily used for communicating with HP-IB instruments using

Direct I/O, although it is supported by other objects.

E-37

I/O Transaction Reference

WRITE Transactions

Each DeÕnite Length Arbitrary Block is of the form:

#<Num_digits><Num_bytes><Data>

where:

is literally the # character as shown.

<Num_digits> is an ASCII character that is a single digit (decimal

notation) indicating the number of digits in <Num_bytes>.

<Num_bytes> is a list of ASCII characters that are digits (decimal notation)

indicating the number of bytes that follow in <Data>.

<Data> is a sequence of arbitrary 8-bit data bytes.

HP-IB BINBLOCK If the object is Direct I/O to HP-IB, the behavior of WRITE BINBLOCK

transactions depends upon the Direct I/O Configuration settings

for Conformance and Binblock; these settings are accessed via the

I/O ¡¡) Instruments . . . menu selection.

If Conformance is set to IEEE 488.2, then WRITE BINBLOCK always writes

an IEEE 488.2 DeÕnite Length Arbitrary Block Response Data block.

If Conformance is set to IEEE 488, then the type of header used depends on

Binblock. Binblock may specify IEEE 728 #A, #T, or #I block headers. If

Binblock is None, WRITE BINBLOCK writes an IEEE 488.2 DeÕnite Length

Arbitrary Block Response Data block.

IEEE 728 block headers are of the following forms:

#A<Byte_Count><Data>

#T<Byte_Count><Data>

#I<Data><END>

where:

is the character as shown.

A,T, I are the characters as shown.

<Byte_Count> consists of two bytes which together form a 16-bit

unsigned integer that speciÕes the number of bytes that follow in <Data>.

(HP VEE calculates this automatically.)

<Data> is a stream of arbitrary bytes.

<END> indicates that EOI is asserted with the last data byte transmitted.

E-38

I/O Transaction Reference

WRITE Transactions

CONTAINER Encoding

WRITE CONTAINER transactions are of this form:

WRITE CONTAINER ExpressionList

ExpressionList is a single expression or a comma-separated list of

expressions.

A WRITE CONTAINER transaction writes each item in ExpressionList using a

special HP VEE text representation.

This representation retains all the HP VEE attributes associated with the data

type written, such as shape, size, and name. Any WRITE CONTAINER data can

be retrieved without any loss of information using READ CONTAINER.

For example, this transaction:

WRITE CONTAINER 1.2345

writes this:

(Real

(data 1.2345)

)

STATE Encoding

WRITE STATE transactions are of the form:

WRITE STATE [DownloadString]

DownloadString is an optional string that allows you to specify a download

string if you have not previously speciÕed one in the direct I/O conÕguration

for the corresponding instrument. This explained in greater detail in the

sections that follow.

WRITE STATE transactions are used by Direct I/O objects to download a

learn string to an instrument. There is exactly one learn string associated

with each instance of a Direct I/O object. This learn string is uploaded by

E-39

I/O Transaction Reference

WRITE Transactions

clicking on Upload in the Direct I/O object menu. The learn string contains

the null string before Upload is selected for the Õrst time.

The behavior of WRITE STATE is aÃected by the Direct I/O Configuration

settings for Conformance and Download String. These settings are

accessed via the I/O ¡¡) Instruments . . . menu selection. If Conformance

is IEEE 488, the WRITE STATE transaction writes the Download String

followed by the learn string. If Conformance is IEEE 488.2, the learn string

is downloaded without any preÕx as deÕned by IEEE 488.2. Please refer to

\WRITE STATE Transactions" in Chapter 6 for a detailed example using learn

strings.

REGISTER Encoding

WRITE REGISTER is used to write values into a VXI device's A16 memory.

WRITE REGISTER transactions are of this form:

WRITE REG: SymbolicName ExpressionList INCR

-or-

WRITE REG: SymbolicName ExpressionList

where:

SymbolicName is a name deÕned during conÕguration of a VXI device. The

name refers to a speciÕc address within a device's register space. SpeciÕc

data types for WRITE REGISTER transactions are:

– BYTE - 8 bit byte

– WORD16 - 16-bit two's complement integer

– WORD32 - 32-bit two's complement integer

– REAL32 - 32-bit IEEE 754 Œoating point number

These data types are also speciÕed during conÕguration of a VXI device and

do not appear in the transaction.

ExpressionList is a single expression or a comma-separated list of

expressions.

E-40

I/O Transaction Reference

WRITE Transactions

INCR speciÕes that array data is to be written incrementally starting at the

register address speciÕed by SymbolicName. The Õrst element of the array is

written at the starting address, the second at that address plus an oÃset equal

to the length in bytes of the data type, and so forth until all array elements

have been written. If INCR is not speciÕed in the transaction, the entire array

is written to the single location speciÕed by SymbolicName.

MEMORY Encoding

WRITE MEMORY is used to write values into a VXI device's A24 or A32

memory.

WRITE MEMORY transactions are of this form:

WRITE MEM: SymbolicName ExpressionList INCR

-or-

WRITE MEM: SymbolicName ExpressionList

where:

SymbolicName is a name deÕned during conÕguration of a VXI device. The

name refers to a speciÕc address within a device's extended memory. SpeciÕc

data types for WRITE MEMORY transactions are:

– BYTE - 8 bit byte

– WORD16 - 16-bit two's complement integer

– WORD32 - 32-bit two's complement integer

– REAL32 - 32-bit IEEE 754 Œoating point number

These data types are also speciÕed during conÕguration of a VXI device and

do not appear in the transaction.

ExpressionList is a single expression or a comma-separated list of

expressions.

INCR speciÕes that array data is to be written incrementally starting at the

memory location speciÕed by SymbolicName. The Õrst element of the array

is written at that location, the second at that location plus an oÃset equal to

the length in bytes of the data type, and so forth until all array elements have

E-41

I/O Transaction Reference

WRITE Transactions

been written. If INCR is not speciÕed in the transaction, the entire array is

written to the single memory location speciÕed by SymbolicName.

IOCONTROL Encoding

WRITE IOCONTROL transactions are of this form:

WRITE IOCONTROL CTL ExpressionList

-or-

WRITE IOCONTROL PCTL ExpressionList

ExpressionList is a single expression or a comma-separated list of

expressions.

IOCONTROL encoding is used only for Direct I/O to GPIO interfaces.

This transaction sets the control lines of a GPIO interface:

WRITE IOCONTROL CTL a

HP VEE converts the value of a to an Integer. The least X signiÕcant bits of

the Integer value are mapped to the control lines of the interface, where X is

the number of control lines.

For example, the HP 98622A GPIO interface uses two control lines, CTL0 and

CTL1.

Value Written CTL1 CTL0

0 0 0

1 0 1

2 1 0

3 1 1

In the preceding table, 1 indicates that a control line is asserted, a 0 indicates

that it is cleared.

E-42

I/O Transaction Reference

WRITE Transactions

This transaction controls the computer-driven handshake line of a GPIO

interface:

WRITE IOCONTROL PCTL a

If the value of a is non-zero, the PCTL line is set. If the value is zero, no

action is taken. PCTL is cleared automatically by the interface when the

peripheral meets the handshake requirements.

E-43

READ Transactions

Table E-11. READ Encodings and Formats

Encodings Formats

TEXT CHAR

TOKEN

STRING

QUOTED STRING

INTEGER

OCTAL

HEX

REAL

COMPLEX

PCOMPLEX

COORD

TIME STAMP

BINARY STR

BYTE

INT16

INT32

REAL32

REAL64

COMPLEX

PCOMPLEX

COORD

E-44

I/O Transaction Reference

READ Transactions

Table E-11. READ Encodings and Formats (continued)

Encodings Formats

BINBLOCK BYTE

INT16

INT32

REAL32

REAL64

COMPLEX

PCOMPLEX

COORD

CONTAINER Not Applicable

IOSTATUS Not Applicable

REGISTER
1

BYTE

WORD16

WORD32

REAL32

MEMORY
1

BYTE

WORD16

WORD32

REAL32

1 Direct I/O to VXI only.

E-45

I/O Transaction Reference

READ Transactions

TEXT Encoding

READ TEXT transactions are generally very easy to use. This is because they

are able to read and discard what is irrelevant and selectively read what

is important. This works well most of the time, but occasionally you must

analyze very carefully what HP VEE considers to be irrelevant and what it

considers to be important. This will rarely (if ever) be a problem if you are

reading text Õles written by HP VEE, as long as you read them using the

same format used to write them. Problems are most likely to occur when you

are trying to import a Õle from another software application.

Table E-12 describes READ TEXT behavior in a general way only; be sure to

read all the sections that follow to understand all the possible variations.

Table E-12. Formats for READ TEXT Transactions

Format Description

CHAR Reads any 8-bit character.

TOKEN Reads a contiguous list of characters as a unit; this unit is called a token. Tokens are

separated by speciÕed delimiter characters (you specify the delimiters). For example, in

normal written English, words are tokens and spaces are delimiters.

STRING Reads a list of 8-bit characters as a unit. Most control characters are read and discarded.

The end of the string is reached when the speciÕed number of characters has been read,

or when a newline character is encountered.

QSTRING Reads a list of 8-bit characters that conform to the IEEE 488.2 arbitrary length string

deÕned by a starting and ending double quote character (ASCII 34). Control characters are

not discarded. Escaped characters are expanded to a corresponding control character. The

end of the string is reached when the double quote character (ASCII 34) has been read.

INTEGER Reads a list of characters and interprets them as a decimal or non-decimal representation

of an integer. The only characters considered to be part of a decimal INTEGER are

0123456789-+. HP VEE recognizes the preÕx 0x (hex) and all the Non-Decimal

Numeric formats speciÕed by IEEE 488.2: #H (hex), #Q (octal), #B (binary).

OCTAL Reads a list of characters and interprets them as the octal representation of an integer.

The characters considered to be part of an OCTAL are 01234567. HP VEE also

recognizes the IEEE 488.2 Non-Decimal Numeric preÕx #Q for octal numbers.

E-46

I/O Transaction Reference

READ Transactions

Table E-12. Formats for READ TEXT Transactions (continued)

Format Description

HEX Reads a list of characters and interprets them as the hexadecimal representation of an

integer. The only characters considered to be part of a HEX are

0123456789abcdefABCDEF. The character combination 0x is the default preÕx;

it is not part of the number and is read and ignored. HP VEE also recognizes 0x and the

IEEE 488.2 Non-Decimal Numeric preÕx #H for hexadecimal numbers.

REAL Reads a list of characters and interprets them as the decimal representation of a Real

(Œoating-point) number. All common notations are recognized including leading signs, signed

exponents, and decimal points. The characters recognized to be part of a REAL are

0123456789-+.Ee.

HP VEE also recognizes certain characters as suœx multipliers for Real numbers (refer to

Table E-13).

COMPLEX Reads the equivalent of two REALs and interprets them as a complex number. The Õrst

number read is the real part and the second number read is the imaginary part.

PCOMPLEX Reads the equivalent of two REALs and interprets them as a complex number in polar

form. Some engineering disciplines refer to this as \phasor notation". The Õrst number

read is considered to be the magnitude and the second is the angle. You may specify units

of measure for phase in the transaction.

COORD Reads the equivalent of two or more REALs and interprets them as rectangular

coordinates.

TIME STAMP Reads one of the speciÕed HP VEE time stamp formats which represent the calendar date

and/or time of day.

General Notes for READ
TEXT

Read to End. The READ TEXT formats support a choice between reading

a speciÕed number of elements or reading until EOF is encountered. In a

transaction, NumElements is a single expression or a comma-separated list of

expressions that speciÕes the dimensions of each variable in VarList. If the

Õrst expression is an asterisk (*), the transaction will read data until an EOF

is encountered. Read to end is supported only for From File, From String,

From StdIn, Execute Program, To/From Named Pipe, To/From Socket,

and To/From HP BASIC/UX transactions.

Only the Õrst dimension can have an asterisk rather than a number.

For example, the following transaction, reading from a Õle:

READ TEXT a REAL ARRAY:*,10

E-47

I/O Transaction Reference

READ Transactions

will read until EOF is encountered resulting in a two dimensional array with

ten columns. The number of rows is dependent on the amount of data in the

Õle. The total number of data elements read must be evenly divisible by the

product of the known dimension sizes, in this example: 10. If this criteria is

not met, an error will occur.

Number of Characters Per READ. These READ TEXT formats support a

choice between DEFAULT NUM CHARS and MAX NUM CHARS:

STRING

INTEGER

OCTAL

HEX

REAL

This section discusses the eÃects of DEFAULT NUM CHARS and MAX NUM CHARS

on these formats.

The basic diÃerence between DEFAULT NUM CHARS and MAX NUM CHARS is this:

– DEFAULT NUM CHARS causes HP VEE to read and ignore most characters

that do not appear to be part of the number or string it expects.

– MAX NUM CHARS allows you to read up to the speciÕed number of 8-bit

characters in an attempt to build the type of number or string speciÕed.

HP VEE stops reading characters as soon as the READ is satisÕed. All

characters are read and HP VEE attempts to convert them to the data type

speciÕed in the transaction.

If you specify DEFAULT NUM CHARS, the transaction reads as many characters

as it requires to Õll each variable. Characters that are not meaningful to the

speciÕed data type are read and ignored.

If you specify MAX NUM CHARS, HP VEE makes no attempt to sort

out characters that are not meaningful to the data type speciÕed. If

non-meaningful characters are encountered, they are read and may later

generate an error.

In either case, newline and end-of-Õle are recognized as terminators for

strings or numbers. For numeric formats, white space encountered before any

signiÕcant characters (digits) is read and ignored; after reading signiÕcant

characters, white space or other non-numeric characters terminate the

current READ. These are the general behaviors; read the examples that follow

for additional detail.

E-48

I/O Transaction Reference

READ Transactions

Consider this example that distinguishes between the behaviors of

DEFAULT NUM CHARS and MAX NUM CHARS using INTEGER format. Assume that

you are trying to read a Õle containing this data:

bird dog cat 12345 horse

It is impossible to extract the integer 12345 from this data with a

READ TEXT INTEGER transaction using MAX NUM CHARS no matter how many

characters are read. This is because the characters bird dog cat are always

read before the digits, they cannot be converted to an Integer, and this

generates an error.

DEFAULT NUM CHARS will extract the integer 12345 by reading and ignoring

bird dog cat and treating the white space following 5 as a delimiter.

EÃects of Quoted Strings. The presence of quoted strings aÃects the

behavior of READ TEXT QSTR and READ TEXT TOKEN for all I/O paths and

READ TEXT STRING for instrument or interface I/O. In this discussion, a

quoted string means a set of characters beginning and ending with a double

quote character and no embedded (non-escaped) double quote characters.

The double quote character is ASCII 34 decimal. The presence of double

quotes aÃects the way that these READ transactions group characters into

strings and tokens, and how embedded control and escape characters are

handled.

In this discussion, the terms control character and escape character have

speciÕc meaning. A control character is a single byte of data corresponding to

one of the ASCII characters 0-31 decimal. For example, linefeed is ASCII 10

decimal and the symbol <LF> denotes linefeed character in this discussion.

The string \n is a human-readable escape character representing linefeed that

is recognized by HP VEE.

The behavior of certain transactions when dealing with quoted strings is

dependent on the particular I/O path. For all I/O paths except instrument

I/O, READ TEXT QSTR treats quoted strings specially. For all I/O paths except

instrument I/O, READ TEXT STRING does not recognize quoted strings. For

instrument I/O there is no READ TEXT QSTR transaction. Instead, READ

TEXT STRING recognizes quoted stings and deals with them accordingly.

This is done since quoted strings have special meaning in the IEEE 488.2

speciÕcation. For all I/O paths including instruments, READ TEXT TOKEN treats

quoted strings specially. In the following discussions, we will assume the I/O

path to be Õle I/O.

E-49

I/O Transaction Reference

READ Transactions

When a string does not begin and end with double quotes, control

characters other than linefeed are read and discarded by READ TEXT STRING

transactions and by READ TEXT TOKEN transactions that specify SPACE DELIM.

In both STRING and TOKEN transactions, linefeed terminates the READ.

Escape character sequences, such as \n (newline) are simply read as the two

characters \ and n.

Within double quoted strings, READ TEXT QSTR and READ TEXT TOKEN

will read all enclosed characters (including control characters) store them

in the input variable. Embedded linefeeds are read and treated like any

other character; they do not terminate the current READ. Escape character

sequences are read and translated to their single-character counterpart.

Grouping eÃects are best explained by using an example. For the discussion

in the rest of this section, the data being read is a Õle with the contents

shown in Figure E-28.

"This is in quotes." This is not.

Figure E-28. Quoted and Non-Quoted Data

Assume that you read the Õle shown in Figure E-28 using From File with

these transactions:

READ TEXT x QSTR

READ TEXT y QSTR

After reading the Õle, the results are:

x = This is in quotes.

y = This is not.

Note that the double quotes are interpreted as delimiters and do not appear

in the input variable.

E-50

I/O Transaction Reference

READ Transactions

Now assume that you read the Õle shown in Figure E-28 using From File

with these transactions:

READ TEXT x QSTR MAXFW:4

READ TEXT y QSTR

After reading the Õle, the results are:

x = This

y = This is not.

Here the double quotes are still acting a delimiters; the Õrst transaction reads

from double quote to double quote and assigns the Õrst four characters to x.

This leaves the Õle's read pointer positioned before the second occurrence of

This. The second transaction reads the same string as before.

Next, assume that you read the Õle shown in Figure E-28 using From File

with these transactions:

READ TEXT x TOKEN

READ TEXT y QSTR

Now after reading the Õle, the results are:

x = This is in quotes.

y = This is not.

Here the double quotes eÃectively make the entire Õrst sentence into a single

token. Even though default TOKEN delimiter is white space, the entire quoted

string is treated as a single token. In addition, TOKEN reads and discards the

double quote characters.

CHAR Format READ TEXT CHAR transactions are of this form:

READ TEXT VarList CHAR:NumChar ARRAY:NumStr

VarList is a single Text variable or a comma-separated list of Text variables.

NumChar speciÕes the number of 8-bit characters that must read to Õll each

element of each variable in VarList.

NumStr is a single expression or a comma-separated list of expressions

that speciÕes the dimensions of each variable in VarList. If the transaction

is conÕgured to read a scalar, the ARRAY keyword does not appear in the

transaction. Note that ARRAY:1 is a one-dimensional array with one element.

HP VEE makes a distinction between scalars and one-dimensional arrays

containing only one element.

E-51

I/O Transaction Reference

READ Transactions

CHAR format is useful when you wish to simply read one character at a time,

or when you need to read every character without ignoring any incoming

data.

This transaction reads two two-dimensional Text arrays; each element in each

array contains two characters.

READ TEXT X,Y CHAR:2 ARRAY:2,2

If a Õle read by the previous transaction contains these characters:

<space>ABCDEFG"AB"<LF>'CD

then the variables X and Y contain these values after the READ:

X [0 0] = <space>A

X [0 1] = BC

X [1 0] = DE

X [1 1] = FG

Y [0 0] = "A

Y [0 1] = B"

Y [1 0] = <LF>'

Y [1 1] = CD

The symbol <space> means the single character, space (ASCII 32 decimal).

The symbol <LF> means the single character, linefeed (ASCII 10 decimal).

Note that space, linefeed, and double quotes are read without any special

consideration or interpretation.

TOKEN Format READ TEXT TOKEN transactions are of this form:

READ TEXT VarList TOKEN Delimiter

ARRAY:NumElements

VarList is a single Text variable or a comma-separated list of Text variables.

Delimiter speciÕes the combinations of characters that terminate (delimit)

each token.

NumElements is a single expression or a comma-separated list of expressions

that speciÕes the dimensions of each variable in VarList. If the transaction

is conÕgured to read a scalar, the ARRAY keyword does not appear in the

transaction. Note that ARRAY:1 is a one-dimensional array with one element.

HP VEE makes a distinction between scalars and one-dimensional arrays

containing only one element.

E-52

I/O Transaction Reference

READ Transactions

TOKEN format allows you to deÕne the delimiter (boundary) for tokens using

one of these choices for Delimiter:

– SPACE DELIM

– INCLUDE CHARS

– EXCLUDE CHARS

The following discussion of delimiters explains how the choice of delimiters

aÃects reading a Õle with these contents:

A phrase.

"A phrase."

Tab follows .

XOXXOOXXXOOOXXXX

XAXXBCXXXDEF

Figure E-29. Data for READ TOKEN

The Õle contains only the letter O, not the digit zero.

Note that there is an invisible linefeed character at the end of each of the

Õrst four lines of the Õle in Figure E-29. The Õgure shows the Õle as it would

appear in a text editor like vi.

SPACE DELIM. If you use SPACE DELIM, tokens are terminated by any

white space. White space includes spaces, tabs, newline, and end-of-Õle. This

corresponds roughly to words in written English. Using SPACE DELIM, you

could read a Õle containing a paragraph of prose and separate out individual

words.

Note that double quoted strings receive special treatment. Double quoted

strings are read as a single token and the double quotes are stripped

away. Control characters (ASCII 0-31 decimal) embedded in double-quoted

strings are returned in the output variable. Escape characters (such as \n)

embedded in double-quoted strings are converted into their equivalent control

characters. This special treatment of double-quoted strings applies only to

SPACE DELIM transactions; INCLUDE CHARS and EXCLUDE CHARS treat double

quotes, escapes, and control characters the same as any other character.

E-53

I/O Transaction Reference

READ Transactions

If you read the data shown in Figure E-29 using SPACE DELIM with this

transaction:

READ TEXT a TOKEN ARRAY:8

then the variable a contains these values:

a[0] = A

a[1] = phrase.

a[2] = A phrase.

a[3] = Tab

a[4] = follows

a[5] = .

a[6] = XOXXOOXXXOOOXXXX

a[7] = XAXXBCXXXDEF

INCLUDE CHARS. If you use INCLUDE CHARS, you can specify a list of

characters to be \included" in tokens returned by the READ. These speciÕed

characters will be the only characters returned in any token. Any character

other than the speciÕed INCLUDE characters terminates the current token.

The terminating characters are not included in the token and are stripped

away.

E-54

I/O Transaction Reference

READ Transactions

If HP VEE reads the data shown in Figure E-29 using INCLUDE CHARS with

this transaction:

READ TEXT a TOKEN INCLUDE:"X" ARRAY:7

then the variable a contains these values:

a[0] = X

a[1] = XX

a[2] = XXX

a[3] = XXXX

a[4] = X

a[5] = XX

a[6] = XXX

If HP VEE reads the data shown in Figure E-29 using INCLUDE CHARS with

this transaction:

READ TEXT a TOKEN INCLUDE:"OXZ" ARRAY:4

then the variable a contains these values:

a[0] = XOXXOOXXXOOOXXXX

a[1] = X

a[2] = XX

a[3] = XXX

Note that the Õrst character in the INCLUDE list is the letter O, not the digit

zero.

Assume that you are trying to read a Õle containing the data in Figure E-30.

111 222 333 444 555

Figure E-30. Data for READ TOKEN

If you try to read the Õle in Figure E-30 using this transaction:

READ TEXT x,y,z TOKEN INCLUDE:"1234567890"

then the Text variables x, y, and z will contain these values:

x = 111

y = 222

z = 333

E-55

I/O Transaction Reference

READ Transactions

Another way to do this is to specify an ARRAY greater than one and read data

into an array. For example, if you read the data in Figure E-30 using this

transaction:

READ TEXT x TOKEN INCLUDE:"1234567890" ARRAY:3

then the Text variable x contains these values:

x[0] = 111

x[1] = 222

x[2] = 333

EXCLUDE CHARS. If you use EXCLUDE CHARS, you can specify a list

of characters, any one of which will terminate the current token. The

terminating characters are not included in the token. They are read and

discarded.

If you read the data shown in Figure E-29 using EXCLUDE with this

transaction:

READ TEXT a TOKEN EXCLUDE:"X" ARRAY:8

then the variable a contains these values:

a[0] = A phrase.<LF>"A phrase."<LF>Tab follows .<LF>

a[1] = O

a[2] = OO

a[3] = OOO

a[4] = <LF>

a[5] = A

a[6] = BC

a[7] = DEF

E-56

I/O Transaction Reference

READ Transactions

Assume the data shown in Figure E-31 is sent to HP VEE from an instrument.

++1.23++4.98++0.45++2.34++0.01++23.45++12.2++

Figure E-31. Data for READ TOKEN

If HP VEE reads the data in Figure E-31 with this transaction:

READ TEXT x TOKEN EXCLUDE:"+" ARRAY:7

then the variable x will contain these values:

x[0] = null string (empty)

x[1] = 1.23

x[2] = 4.98

x[3] = 0.45

x[4] = 2.34

x[5] = 0.01

x[6] = 23.45

Note that even though seven \numbers" were available, only six were read.

At the end of this transaction, HP VEE has read seven tokens terminated by

the +, including the Õrst character which was terminated before it was Õlled

with any data.

STRING Format READ TEXT STRING transactions are of this form:

READ TEXT VarList STR ARRAY:NumElements

-or-

READ TEXT VarList STR MAXFW:NumChars ARRAY:NumElements

VarList is a single Text variable or a comma-separated list of Text variables.

NumChars speciÕes the maximum number of 8-bit characters that can be

read in an attempt to build a string.

NumElements is a single expression or a comma-separated list of expressions

that speciÕes the dimensions of each variable in VarList. If the transaction

is conÕgured to read a scalar, the ARRAY keyword does not appear in the

transaction. Note that ARRAY:1 is a one-dimensional array with one element.

HP VEE makes a distinction between scalars and one-dimensional arrays

containing only one element.

E-57

I/O Transaction Reference

READ Transactions

This transaction reads all incoming characters and returns strings. Leading

spaces are deleted. The following discussion pertains to instrument I/O paths

only, such as HP-IB or VXI. All other I/O paths, such as Õles or named-pipes,

will not treat Quoted Strings specially. Please refer to the section \EÃects of

Quoted Strings" earlier in this chapter for details about the eÃects of double

quoted strings on READ TEXT STRING.

EÃects of Control and Escape Characters. In this discussion, the

terms control character and escape character have speciÕc meaning. A

control character is a single byte of data corresponding to one of the ASCII

characters 0-31 decimal. For example, linefeed is ASCII 10 decimal and the

symbol <LF> denotes linefeed character in this discussion. The string \n is

a human-readable escape character representing linefeed that is recognized

by HP VEE. HP VEE uses escape characters to represent control characters

within quoted strings.

Control characters and escape characters are handled diÃerently depending

on whether or not they appear within double quoted strings.

Outside double quoted strings, control characters other than linefeed are read

and discarded. Linefeed terminates the current string. Escape characters,

such as \n, are simply read as two individual characters (\ and n).

Within double quoted strings, control characters and escape characters are

read and included in the string returned by the READ. A linefeed within

a double quoted string does not terminate the current string. Escape

characters, such as \n, are interpreted as their single character equivalent

(<LF>) and are included in the returned string as a control character.

Assume you wish to read the data in Figure E-32 using READ TEXT STRING

transactions.

Simple string.

Random \n % $ * `A'

"In quotes."

"In quotes

with control."

"In quotes\nwith escape."

Figure E-32. String Data

E-58

I/O Transaction Reference

READ Transactions

If you read the data in Figure E-32 using this transaction:

READ TEXT x STR ARRAY:5

then the variable x contains these values:

a[0] = Simple string.

a[1] = Random \n % $ * `A'

a[2] = In quotes.

a[3] = In quotes<LF>with control.

a[4] = In quotes<LF>with escape.

If you read the same data in Figure E-32 using this transaction:

READ TEXT x STR MAXFW:16 ARRAY:5

then the variable x contains these values:

a[0] = Simple string.

a[1] = Random \n % $ *

a[2] = `A'

a[3] = In quotes.

a[4] = In quotes<LF>with c

Note that the transaction terminates the current READ whenever 16

characters have been read (a[1]) or when a non-quoted <LF> (a[2]) is read.

Double quoted strings are read from double quote to double quote and the

Õrst 16 delimited characters are returned (a[4]).

QUOTED STRING Format READ TEXT QUOTED STRING transactions are of this form:

READ TEXT VarList QSTR ARRAY:NumElements

-or-

READ TEXT VarList QSTR MAXFW:NumChars ARRAY:NumElements

VarList is a single Text variable or a comma-separated list of Text variables.

NumChars speciÕes the maximum number of 8-bit characters that can be

read in an attempt to build a string.

NumElements is a single expression or a comma-separated list of expressions

that speciÕes the dimensions of each variable in VarList. If the transaction

is conÕgured to read a scalar, the ARRAY keyword does not appear in the

transaction. Note that ARRAY:1 is a one-dimensional array with one element.

HP VEE makes a distinction between scalars and one-dimensional arrays

containing only one element.

E-59

I/O Transaction Reference

READ Transactions

This transaction reads all incoming characters and returns strings. The

following discussion pertains to all non-instrument I/O paths. Instrument I/O

paths do not implement the READ TEXT QSTR transaction. Please refer to the

section \EÃects of Quoted Strings" earlier in this chapter for details about the

eÃects of double quoted strings on READ TEXT STRING.

EÃects of Control and Escape Characters. In this discussion, the

terms control character and escape character have speciÕc meaning. A

control character is a single byte of data corresponding to one of the ASCII

characters 0-31 decimal. For example, linefeed is ASCII 10 decimal and the

symbol <LF> denotes linefeed character in this discussion. The string \n is

a human-readable escape character representing linefeed that is recognized

by HP VEE. HP VEE uses escape characters to represent control characters

within quoted strings.

Control characters and escape characters are handled diÃerently depending

on whether or not they appear within double quoted strings.

Outside double quoted strings, control characters other than linefeed are read

and discarded. Linefeed terminates the current string. Escape characters,

such as \n, are simply read as two individual characters (\ and n).

Within double quoted strings, control characters and escape characters are

read and included in the string returned by the READ. A linefeed within

a double quoted string does not terminate the current string. Escape

characters, such as \n, are interpreted as their single character equivalent

(<LF>) and are included in the returned string as a control character.

Assume you wish to read the data in Figure E-33 using

READ TEXT QUOTED STRING transactions.

Simple string.

Random \n % $ * `A'

"In quotes."

"In quotes

with control."

"In quotes\nwith escape."

Figure E-33. String Data

E-60

I/O Transaction Reference

READ Transactions

If you read the data in Figure E-33 using this transaction:

READ TEXT x QSTR ARRAY:5

then the variable x contains these values:

a[0] = Simple string.

a[1] = Random \n % $ * `A'

a[2] = In quotes.

a[3] = In quotes<LF>with control.

a[4] = In quotes<LF>with escape.

If you read the same data in Figure E-33 using this transaction:

READ TEXT x QSTR MAXFW:16 ARRAY:5

then the variable x contains these values:

a[0] = Simple string.

a[1] = Random \n % $ *

a[2] = `A'

a[3] = In quotes.

a[4] = In quotes<LF>with c

Note that the transaction terminates the current READ whenever 16

characters have been read (a[1]) or when a non-quoted <LF> (a[2]) is read.

Double quoted strings are read from double quote to double quote and the

Õrst 16 delimited characters are returned (a[4]).

E-61

I/O Transaction Reference

READ Transactions

INTEGER Format READ TEXT INTEGER transactions are of this form:

READ TEXT VarList INT ARRAY:NumElements

-or-

READ TEXT VarList INT MAXFW:NumChars

ARRAY:NumElements

VarList is a single Integer variable or a comma-separated list of Integer

variables.

NumChars speciÕes the maximum number of 8-bit characters that can be

read in an attempt to build a number.

NumStr is a single expression or a comma-separated list of expressions

that speciÕes the dimensions of each variable in VarList. If the transaction

is conÕgured to read a scalar, the ARRAY keyword does not appear in the

transaction. Note that ARRAY:1 is a one-dimensional array with one element.

HP VEE makes a distinction between scalars and one-dimensional arrays

containing only one element.

E-62

I/O Transaction Reference

READ Transactions

READ TEXT INTEGER transactions interpret incoming characters as

32-bit, two's complement integers. The valid range for these integers is

2 147 483 647 to -2 147 483 648. Any numbers outside this range wrap

around so there is never an overŒow condition. For example, 2 147 483 648

is interpreted as -2 147 483 648. As it starts to build a number, HP VEE

discards any leading characters that are not recognized as part of a number.

Once HP VEE starts building a number, any character that is not recognized

as part of a number terminates the READ for that number. These are the only

combinations of characters that are recognized as part of an INTEGER:

Notation Characters Recognized

Decimal Valid characters are +-0123456789. Leading zeros are

not interpreted as an octal preÕx as they are in HP VEE

data entry Õelds.

HP VEE

hexadecimal

HP VEE interprets 0x as a preÕx for a hexadecimal

number. Valid characters following the preÕx are

0123456789aAbBcCdDeEfF.

IEEE 488.2 binary HP VEE interprets #b or #B as a preÕx for a binary

number. Valid characters following the preÕx are 0 and

1.

IEEE 488.2 octal HP VEE interprets #q or #Q as a preÕx for an octal

number. Valid characters following the preÕx are

01234567.

IEEE 488.2

hexadecimal

HP VEE interprets #h or #H as a preÕx for a

hexadecimal number. Valid characters following the

preÕx are 0123456789aAbBcCdDeEfF.

All of the following notations are interpreted as the Integer value 15 decimal:

15

+15

015

0xF

0xf

#b1111

#Q17

#hF

E-63

I/O Transaction Reference

READ Transactions

OCTAL Format READ TEXT OCTAL transactions are of this form:

READ TEXT VarList OCT ARRAY:NumElements

-or-

READ TEXT VarList OCT MAXFW:NumChars

ARRAY:NumElements

VarList is a single Integer variable or a comma-separated list of Integer

variables.

NumChars speciÕes the number of 8-bit characters that can be read in an

attempt to build a number.

NumElements is a single expression or a comma-separated list of expressions

that speciÕes the dimensions of each variable in VarList. If the transaction

is conÕgured to read a scalar, the ARRAY keyword does not appear in the

transaction. Note that ARRAY:1 is a one-dimensional array with one element.

HP VEE makes a distinction between scalars and one-dimensional arrays

containing only one element.

READ TEXT OCTAL transactions interpret incoming characters as octal digits

representing 32-bit, two's complement integers. The valid range for these

integers is 2 147 483 647 decimal to -2 147 483 648 decimal.

If the transaction speciÕes a MAX NUM CHARS (MAXFW), the octal number read

may contain more than 32 bits of data. For example, assume HP VEE reads

the data in Figure E-34 using this transaction:

READ TEXT x OCT MAXFW:21

377237456214567243777

Figure E-34. Octal Data

HP VEE reads all the digits in Figure E-34, but uses only the last 11 digits

(14567243777) to build a number for the value of x. This is because each

digit corresponds to 3 bits and the octal number must be stored in an HP VEE

Integer, which contains 32 bits. Eleven octal digits yield 33 bits; the most

signiÕcant bit is dropped to Õt the value in an HP VEE Integer. There is no

possibility of overŒow.

E-64

I/O Transaction Reference

READ Transactions

If the transaction speciÕes DEFAULT NUM CHARS, it will continue to read

characters until it builds enough numbers to Õll each variable in VarList.

Linefeed characters will not terminate number building early. For example,

this transaction:

READ TEXT x OCT ARRAY:4

interprets each line of data in Figure E-35 as the same set of four octal

numbers.

0345 067 003<LF>0377<LF>

345 67 3 377<EOF>

345,67,3,377,45,67<EOF>

Figure E-35. Octal Data

The symbol <LF> represents the single character linefeed (ASCII 10 decimal).

The symbol <EOF> represents the end-of-Õle condition.

HEX Format READ TEXT HEX transactions are of this form:

READ TEXT VarList HEX ARRAY:NumElements

-or-

READ TEXT VarList HEX MAXFW:NumChars

ARRAY:NumElements

VarList is a single Integer variable or a comma-separated list of Integer

variables.

NumChars speciÕes the number of 8-bit characters that can be read in an

attempt to build a number.

NumElements is a single expression or a comma-separated list of expressions

that speciÕes the dimensions of each variable in VarList. If the transaction

is conÕgured to read a scalar, the ARRAY keyword does not appear in the

transaction. Note that ARRAY:1 is a one-dimensional array with one element.

HP VEE makes a distinction between scalars and one-dimensional arrays

containing only one element.

E-65

I/O Transaction Reference

READ Transactions

READ TEXT HEX transactions interpret incoming characters as hexadecimal

digits representing 32-bit, two's complement integers. The valid range for

these integers is 2 147 483 647 decimal to -2 147 483 648 decimal.

If the transaction speciÕes a MAX NUM CHARS (MAXFW), the hexadecimal

number read may contain more than 32 bits of data. For example, assume

HP VEE reads the data in Figure E-36 using this transaction:

READ TEXT x HEX MAXFW:21

ad2469Ff725BCdef37964

Figure E-36. Hexadecimal Data

HP VEE reads all the digits in Figure E-36, but uses only the last 8 digits

(def37964) to build a number for the value of x. This is because each digit

corresponds to 4 bits and the hexadecimal number must be stored in an

HP VEE Integer, which contains 32 bits. Eight hexadecimal digits yields

exactly 32 bits. There is no possibility of overŒow.

Assume HP VEE reads the same data in Figure E-36, but with a diÃerent

MAX NUM CHARS, as in this transaction:

READ TEXT x HEX MAXFW:3 ARRAY:7

In this case, the transaction reads the same data and interprets it as seven

Integers, each comprised of three hexadecimal digits.

If the transaction speciÕes DEFAULT NUM CHARS, it will continue to read

characters until it builds enough numbers to Õll each variable in VarList.

Each number will read exactly 8 hexadecimal digits. Linefeed characters will

not terminate number building early.

Assume HP VEE reads the same data in Figure E-36, but with

DEFAULT NUM CHARS, as in this transaction:

READ TEXT x HEX ARRAY:2

In this case, the transaction reads the same data and interprets it as two

Integers, each comprised of eight hexadecimal digits. The last Õve digits

(37946) are not read.

E-66

I/O Transaction Reference

READ Transactions

REAL Format READ TEXT REAL transactions are of this form:

READ TEXT VarList REAL ARRAY:NumElements

-or-

READ TEXT VarList REAL MAXFW:NumChars

ARRAY:NumElements

VarList is a single Real variable or a comma-separated list of Real variables.

NumChars speciÕes the maximum number of 8-bit characters that can be

read in an attempt to build a number.

NumElements is a single expression or a comma-separated list of expressions

that speciÕes the dimensions of each variable in VarList. If the transaction

is conÕgured to read a scalar, the ARRAY keyword does not appear in the

transaction. Note that ARRAY:1 is a one-dimensional array with one element.

HP VEE makes a distinction between scalars and one-dimensional arrays

containing only one element.

The decimal number read by this transaction is interpreted as an HP VEE

Real which is a 64-bit IEEE 754 Œoating-point number. The range of these

numbers is:

-1.797 693 134 862 315E+308

-2.225 073 858 507 202E-307

0

2.225 073 858 507 202E-307

1.797 693 134 862 315E+308

If the transaction speciÕes a MAX NUM CHARS (MAXFW), the Real number read

may contain more than 17 digits of data. For example, assume HP VEE reads

the data in Figure E-37 using this transaction:

READ TEXT x REAL MAXFW:19

1.234567890123456789

Figure E-37. Real Data

HP VEE reads all the digits in Figure E-37, but uses only the 17

most-signiÕcant digits of the mantissa to build a number for the value of x.

This is because each Real contains a 54-bit mantissa, which is equivalent to

more than 16 but less than 17 decimal digits. As a result, x has the value

E-67

I/O Transaction Reference

READ Transactions

1.2345678901234567. Text to Real conversions are not guaranteed to

yield the same value to the least-signiÕcant digit. Comparisons of the two

least-signiÕcant bits is unadvisable.

Assume HP VEE reads the same data in Figure E-37, but with a diÃerent

MAX NUM CHARS, as in this transaction:

READ TEXT x REAL MAXFW:6 ARRAY:3

In this case, the transaction reads the same data and interprets it as 3 Real

numbers, each comprised of six decimal characters. The last two characters

are not read.

If the transaction speciÕes DEFAULT NUM CHARS, it will continue to read

characters until it builds enough numbers to Õll each variable in VarList.

Each number will read at most 17 decimal digits. Linefeed characters, white

space and other non-numeric characters will terminate number building

before 17 digits have been read.

READ TEXT REAL transactions recognize most commonly used decimal

notations for Real numbers including leading signs, decimal points, and signed

exponents. The characters +-.0123456789Ee are recognized as valid parts

of a Real number by all READ TEXT REAL transactions. If the transaction

speciÕes DEFAULT NUM CHARS, the suœx characters shown in Table E-13 are

also recognized. The suœx character must immediately follow the last digit of

the number with no intervening white space.

E-68

I/O Transaction Reference

READ Transactions

Table E-13. Suœxes for REAL Numbers

Suœx Multiplier

P 10
15

T 10
12

G 10
9

M 10
6

k or K 10
3

m 10
-3

u 10
-6

n 10
-9

p 10
-12

f 10
-15

The Text data in Figure E-38 represents six real numbers.

1001

+1001.

1001.0

1.001E3

+1.001E+03

1.001K

Figure E-38. Example of Real Notations

E-69

I/O Transaction Reference

READ Transactions

If HP VEE reads the data in Figure E-38 with this transaction:

READ TEXT x REAL ARRAY:6

then each element of the Real variable x contains the value 1001.

If HP VEE reads the data in Figure E-38 with this transaction:

READ TEXT x REAL MAXFW:20 ARRAY:6

then the Õrst Õve elements of the Real variable x contain the value 1001 and

the sixth element contains the value 1.001.

COMPLEX, PCOMPLEX,

and COORD Formats

COMPLEX, PCOMPLEX, and COORD correspond to the HP VEE multi-Õeld data

types with the same names. The behavior of all three READ formats is very

similar. The behaviors described in this section apply to all three formats

except as noted.

Just as the HP VEE data types Complex, PComplex, and Coord are composed

of multiple Real numbers, the COMPLEX, PCOMPLEX, and COORD formats are

compound forms of the REAL format. Each constituent Real value of the

mult-Õeld data types is read using the same rules that apply to an individual

REAL formatted value.

COMPLEX Format. READ TEXT COMPLEX transactions are of this form:

READ TEXT VarList CPX ARRAY:NumElements

Each READ TEXT COMPLEX transaction reads the equivalent of two REAL

formatted numbers. The Õrst number read is interpreted as the real part and

the second number read is interpreted as the imaginary part.

PCOMPLEX Format. READ TEXT PCOMPLEX transactions are of this form:

READ TEXT VarList PCX:PUnit ARRAY:NumElements

PUnit speciÕes the units of angular measure in which the phase of the

PComplex is measured.

Each READ TEXT PCOMPLEX transaction reads the equivalent of two REAL

formatted numbers. The Õrst number read is interpreted as the magnitude

and the second number read is interpreted as the phase.

E-70

I/O Transaction Reference

READ Transactions

If any transaction reading COMPLEX, PCOMPLEX, or COORD formats encounters

an opening parenthesis, it expects to Õnd a closing parenthesis.

Assume you wish to read a Õle containing the data shown in Figure E-39.

(1.23 , 3.45 (6.78 , 9.01) (1.23 , 4.56)

Figure E-39. Data Containing Parentheses

If HP VEE reads the data in Figure E-39 with this transaction:

READ TEXT x,y CPX

then the variables x and y contain these Complex values:

x = (1.23 , 3.45)

y = (1.23 , 4.56)

Note that the transaction read past 6.78 and 9.01 to Õnd the closing

parenthesis. If parentheses had been omitted from the data entirely, y would

have the value (6.78 , 9.01).

COORD Format. READ TEXT COORD transactions are of this form:

READ TEXT VarList COORD:NumFields ARRAY:NumElements

VarList is a single Coord variable or a comma-separated list of Coord

variables.

NumFields is a single variable or expression that speciÕes the number of

rectangular dimensions in each Coord value. This value must be 2 or more

for the READ to execute without error.

NumElements is a single expression or a comma-separated list of expressions

that speciÕes the dimensions of each variable in VarList. If the transaction

is conÕgured to read a scalar, the ARRAY keyword does not appear in the

transaction. Note that ARRAY:1 is a one-dimensional array with one element.

HP VEE makes a distinction between scalars and one-dimensional arrays

containing only one element.

E-71

I/O Transaction Reference

READ Transactions

BINARY Encoding

READ BINARY transactions are of this form:

READ BINARY VarList DataType ARRAY:NumElements

VarList is a single variable or a comma-separated list of variables.

DataType is one of the following pre-deÕned formats corresponding to the

HP VEE data type with the same name:

– BYTE - 8-bit byte

– INT16 - 16-bit two's complement integer

– INT32 - 32-bit two's complement integer

– REAL32 - 32-bit IEEE 754 Œoating-point number

– REAL64 - 64-bit IEEE 754 Œoating-point number

– STRING - null terminated string

– COMPLEX - equivalent to two REALs

– PCOMPLEX -equivalent to two REALs

– COORD - equivalent to two or more REALs

E-72

I/O Transaction Reference

READ Transactions

N O T E

HP VEE stores and manipulates all integer values as the INT32 data type, and all real numbers as

the Real data type, also known as REAL64. Thus, the INT16 and REAL32 data types are

provided for I/O only. HP VEE performs the following data-type conversions for instrument I/O:

– On an input transaction INT16 values from an instrument are individually converted to INT32

values by HP VEE. This conversion assumes that the INT16 data was signed data. If you need

the resulting INT32 data in unsigned form, simply pass the data through a formula object with

the formula

BITAND(a, 0xFFFF)

– On an input transaction REAL32 values from an instrument are individually converted to

REAL64 values by HP VEE.

NumElements is a single expression or a comma-separated list of expressions

that speciÕes the dimensions of each variable in VarList. If the Õrst

expression is an asterisk (*), the transaction will read data until an EOF is

encountered. Read to end is supported only for From File, From String,

From StdIn, Execute Program, To/From Named Pipe, and To/From HP

BASIC/UX transactions.

Only the Õrst dimension can have an asterisk rather than a number. If the

transaction is conÕgured to read a scalar, the ARRAY keyword does not appear

in the transaction. Note that ARRAY:1 is a one-dimensional array with one

element. HP VEE makes a distinction between scalars and one-dimensional

arrays containing only one element.

For example, the following transaction, reading from a Õle:

READ BINARY a REAL64 ARRAY:*,10

will read until EOF is encountered, resulting in a two dimensional array with

10 columns. The number of rows is dependent on the amount of data in the

Õle. The total number of data elements read must be evenly divisible by the

product of the known dimension sizes, in this example: 10.

E-73

I/O Transaction Reference

READ Transactions

READ BINARY transactions expect that incoming data is in exactly the same

format that would be produced by an equivalent WRITE BINARY transaction.

BINARY encoded data has the advantage of being very compact, but it is not

easily shared with non-HP VEE applications.

BINBLOCK Encoding

READ BINBLOCK transactions are of this form:

READ BINBLOCK VarList DataType ARRAY:NumElements

VarList is a single variable or a comma-separated list of variables.

DataType is one of these pre-deÕned HP VEE data types:

– BYTE - 8-bit byte

– INT16 - 16-bit two's complement integer

– INT32 - 32-bit two's complement integer

– REAL32 - 32-bit IEEE 754 Œoating-point number

– REAL64 - 64-bit IEEE 754 Œoating-point number

– COMPLEX - equivalent to two REALs

– PCOMPLEX -equivalent to two REALs

– COORD - equivalent to two or more REALs

E-74

I/O Transaction Reference

READ Transactions

NumElements is a single expression or a comma-separated list of expressions

that speciÕes the dimensions of each variable in VarList. The number of

columns is equal to the number of channels contained by the binblock. The

number of rows is equal to the number of readings per channel. Only the

Õrst dimension can have an asterisk rather than a number.

If the Õrst expression is an asterisk (*), the transaction will read data until an

EOF is encountered. Read to end is supported only for From File, From

String, From StdIn, Execute Program, To/From Named Pipe, To/From

Socket, and To/From HP BASIC/UX transactions.

If the transaction is conÕgured to read a one-dimension array, for a single

channel, the single dimension represents rows and can have an asterisk.

For example, the following transaction, reading from a Õle:

READ BINBLOCK a REAL64 ARRAY:*,10

will read until EOF is encountered, resulting in a two dimensional array with

10 columns. Each column represents an instrument channel. The number of

rows is dependent on the amount of data in each channel. The total number

of data elements contained by the binblock must be evenly divisible by the

number of columns, in this example: 10.

You do not need to specify any additional information about the format

of incoming data; the block header contains suœcient information.

READ BINBLOCK can read any of the block formats described previously with

WRITE BINBLOCK transactions.

The following transaction reads two traces from an oscilloscope that formats

its traces as IEEE 488.2 DeÕnite Length Arbitrary Block Response Data:

READ BINBLOCK a,b REAL

E-75

I/O Transaction Reference

READ Transactions

CONTAINER Encoding

READ CONTAINER transactions are of the form:

READ CONTAINER VarList

VarList is a single variable or a comma-separated list of variables.

READ CONTAINER transactions reads data stored in the special special text

representation written by WRITE CONTAINER transactions. No additional

speciÕcations, such as format, need to be speciÕed with READ CONTAINER

since that information is part of the container.

REGISTER Encoding

READ REGISTER is used to read values from a VXI device's A16 memory.

READ REGISTER transactions are of this form:

READ REG: SymbolicName ExpressionList INCR

ARRAY:NumElements

-or-

READ REG: SymbolicName ExpressionList

ARRAY:NumElements

where:

SymbolicName is a name deÕned during conÕguration of a VXI device. The

name refers to a speciÕc address within a device's register space. SpeciÕc

data types for READ REGISTER transactions are:

– BYTE - 8 bit byte

– WORD16 - 16-bit two's complement integer

– WORD32 - 32-bit two's complement integer

– REAL32 - 32-bit IEEE 754 Œoating point number

E-76

I/O Transaction Reference

READ Transactions

These data types are also speciÕed during conÕguration of a VXI device and

do not appear in the transaction.

ExpressionList is a single expression or a comma-separated list of

expressions.

INCR speciÕes that array data is to be read from the register incrementally

starting at the address speciÕed by SymbolicName. The Õrst element of the

array is read from the starting address, the second from that address plus

an oÃset equal to the length in bytes of the data type, and so forth until all

array elements have been read. If INCR is not speciÕed in the transaction,

the entire array is read from the single location speciÕed by SymbolicName.

NumElements is a single expression or a comma-separated list of expressions

that speciÕes the dimensions of each variable in VarList. If the transaction

is conÕgured to read a scalar, the ARRAY keyword does not appear in the

transaction. Note that ARRAY:1 is a one-dimensional array with one element.

HP VEE makes a distinction between scalars and one-dimensional arrays

containing only one element.

E-77

I/O Transaction Reference

READ Transactions

MEMORY Encoding

READ MEMORY is used to read values from a VXI device's A24 or A32 memory.

READ MEMORY transactions are of this form:

READ MEM: SymbolicName ExpressionList INCR

ARRAY:NumElements

-or-

READ MEM: SymbolicName ExpressionList

ARRAY:NumElements

where:

SymbolicName is a name deÕned during conÕguration of a VXI device. The

name refers to a speciÕc address within a device's extended memory. SpeciÕc

data types for READ MEMORY transactions are:

– BYTE - 8 bit byte

– WORD16 - 16-bit two's complement integer

– WORD32 - 32-bit two's complement integer

– REAL32 - 32-bit IEEE 754 Œoating point number

These data types are also speciÕed during conÕguration of a VXI device and

do not appear in the transaction.

ExpressionList is a single expression or a comma-separated list of

expressions.

INCR speciÕes that array data is to be read from the memory location

incrementally starting at the location speciÕed by SymbolicName. The Õrst

element of the array is read from the starting location, the second from that

location plus an oÃset equal to the length in bytes of the data type, and so

forth until all array elements have been read. If INCR is not speciÕed in the

transaction, the entire array is read from the single memory location speciÕed

by SymbolicName.

NumElements is a single expression or a comma-separated list of expressions

that speciÕes the dimensions of each variable in VarList. If the transaction

is conÕgured to read a scalar, the ARRAY keyword does not appear in the

transaction. Note that ARRAY:1 is a one-dimensional array with one element.

E-78

I/O Transaction Reference

READ Transactions

HP VEE makes a distinction between scalars and one-dimensional arrays

containing only one element.

IOSTATUS Encoding

READ IOSTATUS transactions are of this form:

READ IOSTATUS STS Bits VarList

-or-

READ IOSTATUS DATA READY VarList

VarList is a single Integer variable or a comma-separated list of Integer

variables.

READ IOSTATUS transactions are used by Direct I/O for GPIO

interfaces, From StdIn, To/From Named Pipe, To/From Socket, and

To/From HP BASIC/UX.

READ IOSTATUS transactions for GPIO reads the peripheral status bits

available on the interface. The number of bits read is dependent on the

model number of the interface. A single integer value is returned that is the

weighted sum of all the status bits.

E-79

I/O Transaction Reference

READ Transactions

For example, the HP 98622A GPIO interface supports two peripheral status

lines, STI0 and STI1. Table E-14 illustrates how to interpret the value of x in

this transaction:

READ IOSTATUS STS Bits a

Table E-14. IOSTATUS Values

Value Read STI1 STI0

0 0 0

1 0 1

2 1 0

3 1 1

READ IOSTATUS transactions read the instantaneous values of the status lines;

the status line are not latched or buÃered in any way.

READ IOSTATUS transactions for To/From Named Pipe, To/From Socket,

To/From HP BASIC/UX and From StdIn returns a Boolean YES (1) if there

is data ready to read. If no data is present, a Boolean NO (0) is returned.

The READ IOSTATUS transaction can be used to avoid a READ that will block

program execution until data is available.

E-80

EXECUTE Transactions

EXECUTE transactions send low-level commands to control the Õle,

instrument, or interface associated with a particular object. EXECUTE is used

to adjust Õle pointers, clear buÃers, and provide low-level control of hardware

interfaces. The various EXECUTE commands available are summarized in

Table E-15.

Table E-15. Summary of EXECUTE Commands

Commands Description

To File, From File

REWIND Sets the read pointer (From File) or write pointer (To File) to the beginning of the Õle

without changing the data in the Õle.

CLEAR (To File only). Erases existing data in the Õle and sets the write pointer to the

beginning of the Õle.

CLOSE Explicitly closes the Õle. Useful when multiple processes are reading and writing the same

Õle.

DELETE Explicitly deletes the Õle. Useful for deleting temporary Õles.

E-81

I/O Transaction Reference

EXECUTE Transactions

Table E-15. Summary of EXECUTE Commands (continued)

Commands Description

Interface Operations

CLEAR For HP-IB clears all devices by sending DCL (Device Clear). For VXI, resets the

interface and runs the resource manager

TRIGGER For HP-IB triggers all devices addressed to listen by sending GET (Group Execute

Trigger). For VXI triggers speciÕed backplane trigger lines or external triggers on an

embedded controller.

LOCAL For HP-IB releases the REN (Remote Enable) line, and puts instrument into local mode.

REMOTE For HP-IB asserts the REN (Remote Enable) line.

LOCAL

LOCKOUT

For HP-IB sends the LLO (Local Lockout) message. Any device in remote at the time LLO

is sent will lock out front panel operation.

ABORT Clears the HP-IB interface by asserting the IFC (Interface Clear) line.

LOCK

INTERFACE

In a multiprocess system with shared resources, lets one process lock the resources for its

own use during a critical section to prevent another process from trying to use them.

UNLOCK

INTERFACE

In a multiprocess system where a process has locked shared resources for its own use,

unlocks the resources to allow other processes access to them.

Direct I/O to HP-IB

CLEAR Clears device at the address of a Direct I/O object by sending the SDC (Selected

Device Clear).

TRIGGER Triggers the device at the address of a Direct I/O object by addressing it to listen

and sending GET (Group Execute Trigger).

LOCAL Places the device at the address of the Direct I/O object in the local state.

REMOTE Places the device at the address of the Direct I/O object in the remote state.

E-82

I/O Transaction Reference
EXECUTE Transactions

Table E-15. Summary of EXECUTE Commands (continued)

Commands Description

Direct I/O to GPIO (HP VEE for UNIX only)

RESET Resets the GPIO interface associated with the Direct I/O object by pulsing the

PRESET line (Peripheral Reset).

Direct I/O to message-based VXI

CLEAR Clears the VXI device associated with the Direct I/O object by sending the

word-serial command Clear (0xÃÃ).

TRIGGER Triggers the VXI device associated with the Direct I/O object by sending the

word-serial command Trigger (0xedÃ).

LOCAL Places the VXI device associated with the Direct I/O object into local state by

sending the word-serial command Clear Lock (0xeÃf).

REMOTE Places the VXI device associated with the Direct I/O object into local state by

sending the word-serial command Set Lock (0xeeÃ). in the remote state.

Direct I/O to Serial Interfaces

RESET Resets the serial interface associated with the Direct I/O object.

BREAK Transmits a signal on the Data Out line of the serial interface

associated with the Direct I/O object as follows:

1. A logical High for 400 milliseconds

2. A logical Low for 60 milliseconds

E-83

I/O Transaction Reference
EXECUTE Transactions

Table E-15. Summary of EXECUTE Commands (continued)

Commands Description

Execute Program, To/From Named Pipe, To/From HP BASIC/UX

CLOSE READ

PIPE

Closes the read named pipe associated with the (To/From) object or the stdin pipe

associated with the (Execute Program).

CLOSE WRITE

PIPE

Closes the write named pipe associated with the (To/From) object or the stdout pipe

associated with the (Execute Program).

To/From Socket

CLOSE Closes the connection between client and server sockets. To re-establish the connection,

the client and server must repeat the bind-accept and connect-to protocols.

Direct I/O, MultiDevice Direct I/O, Interface Operations to HP-IB, GPIB, VXI, Serial, GPIO

LOCK In a multiprocess system with shared resources, lets one process lock the resources for its

own use during a critical section to prevent another process from trying to use them.

UNLOCK In a multiprocess system where a process has locked shared resources for its own use,

unlocks the resources to allow other processes access to them.

E-84

I/O Transaction Reference
EXECUTE Transactions

Details About HP-IB

The EXECUTE commands used by Direct I/O to HP-IB devices and

Interface Operations are similar but diÃerent.

– Direct I/O EXECUTE commands address an instrument to receive the

command.

– Interface Operations EXECUTE commands may aÃect multiple

instruments already addressed to listen.

The following series of tables indicate the exact bus actions conducted by

Direct I/O and Interface Operations EXECUTE transactions.

Table E-16. EXECUTE ABORT HP-IB Actions

Direct I/O Interface Operations

Not applicable. IFC (÷ 100 sec)

REN

ATN

Table E-17. EXECUTE CLEAR HP-IB Actions

Direct I/O Interface Operations

ATN ATN

MTA DCL

UNL

LAG

SDC

Table E-18. EXECUTE TRIGGER HP-IB Actions

Direct I/O Interface Operations

ATN ATN

MTA GET

UNL

LAG

GET

E-85

I/O Transaction Reference
EXECUTE Transactions

Table E-19. EXECUTE LOCAL HP-IB Actions

Direct I/O Interface Operations

ATN REN

MTA ATN

UNL

LAG

GTL

Table E-20. EXECUTE REMOTE HP-IB Actions

Direct I/O Interface Operations

REN REN

ATN ATN

MTA

UNL

LAG

Table E-21. EXECUTE LOCAL LOCKOUT HP-IB Actions

Direct I/O Interface Operations

Not applicable. ATN

LLO

E-86

I/O Transaction Reference
EXECUTE Transactions

Details About VXI

The EXECUTE commands used by Direct I/O to VXI devices and

Interface Operations are similar, but diÃerent. References to

message-based VXI devices apply to register-based devices that are supported

by I-SCPI.

– Direct I/O EXECUTE commands address a message based VXI device to

receive a word-serial command.

– Interface Operations EXECUTE commands aÃect the VXI interface

directly and may aÃect VXI devices within the interfaces servant area.

EXECUTE TRIGGER transactions for the Interface Operations object are of

the form:

EXECUTE TRIGGER TriggerType Expression TriggerMode

TriggerType speciÕes which trigger group will be used by the

EXECUTE TRIGGER transaction. The groups are:

– TTL - SpeciÕes the eight TTL trigger lines on the VXI backplane.

– ECL - SpeciÕes the four ECL trigger lines on the VXI backplane.

– EXT - SpeciÕes the external triggers on a embedded VXI controller.

Expression evaluates to a single Integer variable that represents a bit pattern

indicating which trigger lines for a particular TriggerType are to be triggered.

A value of 5, represented in binary as 101, indicates that TTL lines 0 and 2

are to be triggered. A value of 255 triggers all eight TTL lines.

TriggerMode indicates the way the trigger lines are to be asserted:

– PULSE - Lines are to be pulsed for a discreet time limit (TriggerType

dependent).

– ON - Asserts the trigger lines and leaves them asserted.

– OFF - Removes the assertion from trigger lines that were asserted by a

previous ON transaction.

E-87

I/O Transaction Reference
EXECUTE Transactions

The following series of tables indicate the exact bus actions conducted by

Direct I/O and Interface Operations EXECUTE transactions.

Table E-22. EXECUTE CLEAR VXI Actions

Direct I/O Interface Operations

Word-serial command Clear(0xÃÃ) Pulse SYSRESET line, rerun Resource Manager

Table E-23. EXECUTE TRIGGER VXI Actions

Direct I/O Interface Operations

Word-serial command Trigger(0xedÃ) Triggers either the TTL or ECL trigger lines in the

backplane, or the external trigger(s) on the embedded

VXI controller. You can specify which lines are to be

triggered for each trigger type.

Table E-24. EXECUTE LOCAL VXI Actions

Direct I/O Interface Operations

Word-serial command Set Lock(0xeeÃ) Not applicable.

Table E-25. EXECUTE REMOTE VXI Actions

Direct I/O Interface Operations

Word-serial command Clear Lock(0xeÃf) Not applicable.

E-88

WAIT Transactions

There are four types of WAIT transactions:

– WAIT INTERVAL

– WAIT SPOLL (Direct I/O to HP-IB and message based VXI devices only)

– WAIT REGISTER (Direct I/O to VXI devices only)

– WAIT MEMORY (Direct I/O to VXI devices only)

WAIT INTERVAL transactions simply wait for the speciÕed number of seconds

before executing the next transaction listed in the open view of the object.

For example, this transaction waits for 10 seconds:

WAIT INTERVAL:10

WAIT SPOLL transactions are of the form:

WAIT SPOLL Expression Sense

Expression is an expression that evaluates to an integer. The integer will be

used as as a bit mask.

Sense is a Õeld with two possible values.

– ANY SET

– ALL CLEAR

WAIT SPOLL transactions wait until the serial poll response byte of the

associated instrument meets a speciÕc condition. The serial poll response is

tested by bitwise ANDing it with the speciÕed mask and ORing the resulting

bits into a single test bit. The transaction following WAIT SPOLL executes

when one of the following conditions is met:

– The transaction speciÕes ANY (ANY SET) and the test bit is true (1).

– The transaction speciÕes CLEAR (ALL CLEAR) and the test bit is false (0).

The following transactions show how to use WAIT SPOLL:

WAIT SPOLL:256 ANY Wait until any bit is set.

WAIT SPOLL:256 CLEAR Wait until all are clear.

WAIT SPOLL:0x40 ANY Wait until bit 6 is set.

WAIT SPOLL:0x40 CLEAR Wait until bit 6 is clear.

E-89

I/O Transaction Reference
WAIT Transactions

WAIT REGISTER and WAIT MEMORY transactions are of the form:

WAIT REG:SymbolicName MASK:Expression Sense

[Expression]

-or-

WAIT MEM:SymbolicName MASK:Expression Sense

[Expression]

where:

SymbolicName is a name deÕned during conÕguration of a VXI device. The

name refers to a speciÕc address within a device's A16 or extended memory.

MASK:Expression is an expression that evaluates to an integer. The integer

will be used as as a bit mask. The size in bytes of this mask value depends on

the data type for which SymbolicName has been conÕgured.

Sense is a Õeld with three possible values.

– ANY SET

– ALL CLEAR

– EQUAL

[Expression] is an optional compare value that evaluates to an integer. The

integer is used only when Sense is EQUAL.

WAIT REGISTER or MEMORY transactions wait until the value read from the

register or memory location speciÕed by SymbolicNames in the associated

VXI device meets a certain condition. The value read is logically ANDed with

the bit mask speciÕed in MASK:Expression, resulting in a test value. The size

of the test value is dependent on the data type conÕgured for the speciÕed

register or memory location. The transaction following WAIT SPOLL executes

when one of the following conditions is met:

– The transaction speciÕes ANY (ANY SET) and the test value has at least one

bit true (1).

– The transaction speciÕes CLEAR (ALL CLEAR) and the test value has all bits

false (0).

– The transaction speciÕes EQUAL and the test value is equal bit-for-bit with

the compare value speciÕed in [Expression].

E-90

SEND Transactions

SEND transactions are of this form:

SEND BusCmd

BusCmd is one of the bus commands listed in Table E-26.

SEND transactions are used within Interface Operations objects to

transmit low-level bus messages via an HP-IB interface. These messages are

deÕned in detail in IEEE 488.1.

Table E-26. SEND Bus Commands

Command Description

COMMAND Sets ATN true and transmits the speciÕed data bytes. ATN true indicates that the

data represents a bus command.

DATA Sets ATN false and transmits the speciÕed data bytes. ATN false indicates that the

data represents device-dependent information.

TALK Addresses a device at the speciÕed primary bus address (0-31) to talk.

LISTEN Addresses a device at the speciÕed primary bus address (0-31) to listen.

SECONDARY SpeciÕes a secondary bus address following a TALK or LISTEN command. Secondary

addresses are typically used by cardcage instruments where the cardcage is at a

primary address and each plug-in module is at a secondary address.

UNLISTEN Forces all devices to stop listening; sends UNL.

E-91

I/O Transaction Reference
SEND Transactions

Table E-26. SEND Bus Commands (continued)

Command Description

UNTALK Forces all devices to stop talking; sends UNT.

MY LISTEN ADDR Addresses the computer running HP VEE to listen; sends MLA.

MY TALK ADDR Addresses the computer running HP VEE to talk; sends MTA.

MESSAGE Sends a multi-line bus message. Consult IEEE 488.1 for details. The multi-line

messages are:

DCL Device Clear

SDC Selected Device Clear

GET Group Execute Trigger

GTL Go To Local

LLO Local Lockout

SPE Serial Poll Enable

SPD Serial Poll Disable

TCT Take Control

E-92

WRITE(POKE) Transactions

The WRITE(POKE) transaction is very similar to the WRITE transaction,

except that it applies only to the To/From DDE object. The main diÃerence of

WRITE(POKE) is that you must specify an item name. For example:

WRITE ITEM:"r2c3" TEXT a EOL

WRITE(POKE) transactions are supported by HP VEE for Windows only.

The following encodings are allowed:

– TEXT

– BYTE

– CASE

– CONTAINER

For more speciÕc information about these formats see the WRITE transaction.

E-93

READ(REQUEST) Transactions

The READ(REQUEST) transaction is very similar to the READ transaction,

except that it applies only to the To/From DDE object. The main diÃerence of

READ(REQUEST) is that you must specify an item name. For example:

READ ITEM:"r2c3" TEXT a EOL

READ(REQUEST) transactions are supported by HP VEE for Windows only.

The following encodings are allowed:

– TEXT

– CONTAINER

For more speciÕc information about these formats see the READ transaction.

E-94

F

HP VEE for UNIX and

HP VEE for Windows

DiÃeren�es

�� ��� ��� UNIX �	

�� ��� ��� W�	
�w�
�Ã���	���

�� g�����l, p��g��m� w��tt�� ��� �� ��� w�ll w��k �� ��y �upp��t��
pl�t���m. ��Î�ult��� ����� wh�� y�u u�� p��g��m� th�t ������ ���tu���
�p���Ì� t� th� u����ly��g pl�t���m, �u�h �� �LL'� �� �C'� �� ��m�� p�p��
�� !�X. "h�� �pp����x ���t���� �����m�t��� �� th� ��Ë������� b�tw���
�� ��� �� !�X ��� �C pl�t���m�.

F-2

#/O

S���� �� ��� ��� W����w� ���� ��t �upp��t $��%, p��g��m� w��tt�� ��� th��
��t������ w�ll ��t w��k. Y�u w�ul� ���� t� m����y y�u� p��g��m t� ������
th�� ��Ë����t ��t������.

�� y�u l��� � p��g��m th�t �������� � ���-�upp��t�� ��t������, �� ��� w�ll
p��mpt y�u t� ��� th� ��t������. Y�u w�ll th�� ���� t� ���Ìgu�� � �upp��t��
��t������ w�th p��p�� p���m�t���. Y�u w�ll p��b�bly �l�� ���� t� m����y th�
p��g��m �pp��p���t�ly.

F-3

&()*+0) 1456478

"h��� �� �� 9:;<=>; ?@BJ@KM �bj��t ��� b�th th� !�X ��� �C pl�t���m�.
!�t� th�t y�u ��� ��t��m��� wh��h pl�t���m y�u ��� �x��ut��g �� by u���g
th� QZ[<Z?\K>]B@M^_ �� QZ[<Z`q^_ �bj��t� u���g vK>K ÀÀz q{|>;M
}~]B �� �� �u��t���� �� � �B@M=\K �bj��t. Y�u ��� th�� p��g��mm�t���lly
��t��m��� wh��h 9:;<=>; ?@BJ@KM �bj��t t� u��.

F-�

��� �)4�+� ��74)� ���474�

"h��� ��� ������l ��Ë������� th�t mu�t b� ��t�� wh�� ����t��g �LL'� ���
Sh���� L�b������ ��� C�mp�l�� Fu��t����.

��% F��m � Sh���� L�b���y �� ��% th��ugh S�CL, ��L �� �9��}`.
F�� �LL'� u�� S�CL. "� ����� �y�t�m�� ����u��� ���Í��t�, b�
�u�� y�u� ��u��� ���� u��� l�b���y ��mm���� th�t �upp��t
th� pl�t���m ��� ��t������ �y�t�m th� ��mp�l�� �u��t��� w�ll
�u� ��. S�� th� ��ll�w��g t�bl�.

��� ���r�r���

������� � ¡3¢¢ £382 ¡7¢¢ ¤¥

¦§¨©ª «©¬ «©¬ ­©®¬ ­©®¬

¯­¨°±° ²³´µ¶· ²³´µ¶· ­©®¬ ­©®¬

¸§©¹ «©¬ º»¼ ­©®¬ º»¼

½¾© º»¼ ­©®¬ ­©®¬ ­©®¬

$��ph��� Sh���� L�b������ u�� X¿¿ g��ph��� wh�l� �LL'� u�� Á�������t
W����w� $�� ��ll�. L��k Sh���� L�b������ �g����t th� X
W����w� Â�l���� Ã �� th� l�b���y. Wh�l� � ��mp�l�� �u��t���
�u�� �� �� X W����w, �� ��� �����t ������� �t� hum��
��t������.

F�l� ��% "h�� �� ��m�l�� b�tw��� Sh���� L�b������ ��� �LL'� w�th th�
�x��pt��� ��t�� �b��� ��g�����g �t������ ��, �ut ��� �����.

F-Ã

�707 Ä�Å)�

!� b����y Ìl�� w�ll w��k ������ pl�t���m� ����� byt� �������g �� ��������
b�tw��� !�X ��� �C pl�t���m�. ��w����, ÆSC�� ��t� Ìl�� w��tt�� u���g �B
�[\; �bj��t� �h�ul� b� �����bl� by �@BM �[\; �bj��t� �� �th�� pl�t���m�.
Æl��, �� ��� p��g��m Ìl�� �h�ul� b� ��mp�t�bl� ����� th�y ��� �t���� ��
ÆSC��. !�t� th�t y�u mu�t b� �����ul ���� wh�� m����g ÆSC�� Ìl�� ���m
��� pl�t���m t� ���th�� �� ���-b����y ���m�t�. F�� �x�mpl�, !�X Ìl�� u��
th� l������� �h����t�� t� t��m���t� l���� wh�l� ÁS-�%S u��� th� ������g�
��tu���l������� ��Çu���� t� t��m���t� l����.

F-È

É)854� Ê�76)

�u� t� th� l�m�t�t���� �� Á�������t W����w� m�m��y ��p�b�l�t���, ��m� l��g��
p��g��m� m�y ��t b� �bl� t� �x��ut� �� th� �C pl�t���m. Ïy �l�m���t��g
��tw��k��g �� �th�� m�m��y �������t ���tw��� y�u m�y b� �bl� t� ���� up
���ugh ÂÆÁ ��� l��g� �� ��� p��g��m� t� �x��ut�.

F-Ð

ÑÒ ÓÔÔ ÕÖ× ØÙÚÛ ÜÝÞ
ÑÒ ÓÔÔ ÕÖ× ßàÝÞÖáâ ãàäå×åÝæåâ

ç

HP VEE for Windows

ènsérêëené èìí

îeïe�é ðodes

�� ��� ��� W�	
�w� I	�ñ�òó�	ñ Iôõ

ö�÷��ñ ø�
��

ùúû üýþýÿt

Codý Map

�� ��� ��� W����w� u��� th� ��ll�w��g ��l��t ����� t� ��mmu����t� w�th
�����u� ��t������� �� y�u� �C.

T��l� G-1. HP VEE f�r W�n��w� ��� S�l�c� �����

¡�l� � ¥o�� D�s �i��io�
� ¦§ 8°±40, ¦§ 8°±4�, �r ¦§ 8°±±5 ¦§¨©ª �¼r	
° ¦§ 8°±40, ¦§ 8°±4�, �r ¦§ 8°±±5 ¦§¨©ª �¼r	
± ¦§ 8°±40, ¦§ 8°±4�, �r ¦§ 8°±±5 ¦§¨©ª �¼r	
4 ¦§ 8°±40, ¦§ 8°±4�, �r ¦§ 8°±±5 ¦§¨©ª �¼r	
5 ¦§ 8°±40, ¦§ 8°±4�, �r ¦§ 8°±±5 ¦§¨©ª �¼r	
6 ¦§ 8°±40, ¦§ 8°±4�, �r ¦§ 8°±±5 ¦§¨©ª �¼r	
7 (e
¼u��) ¦§ 8°±40, ¦§ 8°±4�, �r ¦§ 8°±±5 ¦§¨©ª �¼r	
8 ¦§ 8°±40, ¦§ 8°±4�, �r ¦§ 8°±±5 ¦§¨©ª �¼r	
9 (e
¼u��) ®¹
� �er�¼� ��r�
�0 ®¹
° �er�¼� ��r�
�� ®¹
± �er�¼� ��r�
�° ®¹
4 �er�¼� ��r�
�± uºu�e	
�4 ¸§©ª0
�r N¼���º¼� ¸§©ª �¼r	�
�5 ¸§©ª�
�r N¼���º¼� ¸§©ª �¼r	�
�6 ½¾© (�§®¨7 ½¾© ��º�r���er �º�y)
�7 ¸§©ª°
�r N¼���º¼� ¸§©ª �¼r	�
�8 ¸§©ª±
�r N¼���º¼� ¸§©ª �¼r	�

$-2

çïossar�

�÷������

"h�� $l�����y ��Ì��� ������l t��m� u��� t� ��m� �� ������b� �� ���
���tu���.

A���v���
¿. "� ���� � ���t����� t� � t��m���l. S�� �l�� \C��t�����" ���
\"��m���l."

2. "h� ��t��� th�t ����t� th� ���t�xt �� � U|;@`bj;<> b����� �t �p���t��
���h t�m�. S�� �l�� \C��t�xt" ��� \���Âu�."

A�������
"� ���t��l�z� �� �� ��� ����y. Æll���t��� ��t� th� �umb�� �� ��m�������,
th� �umb�� �� �l�m��t� �� ���h ��m������, ��� Ìll� th� ����y w�th ���t��l
��t�. F�� �x�mpl�, � tw�-��m�������l ��t�g�� ����y �� Ìll�� w�th � ��lu��
by ����ult.

A����
Æ� �� ��� ��t� �h�p� ������p�����g t� � m�th�m�t���l ����y, wh��h
���t���� � g��up��g �� ��t� �t�m� ��ll �� th� ��m� ��t� typ� �� ��� ��
m��� ��m�������. "h� ��t� �t�m� ��� �������� by m���� �� ����y ����x��.
S�� �l�� \��t� Sh�p�."

A!�#�h��#�$!
�� ��y��h����u� �p���t���, � ������ �p���t�� w�th�ut � ��mm�� ��g��l
t� �y��h����z� ����t�|th� ����t� ���u� �t u��p���Ì�� t�m��. �� ���
���t��l p��� ���� �x�mpl�, th� %\;K@ p�� �� � ���pl�y �bj��t ���
��y��h����u�.

A$�� &x��$��
Æ� �pt��� �� th� �bj��t m��u� �� th� ��t� ����t��t �bj��t�. �� '=>B
9:;<=>; �� ��t, ��� �� th� p��g��m �� ��t �l����y �u����g, th� �bj��t
�p���t�� wh�� �t� ��lu� �� ���t��. '=>B 9:;<=>; �� �g����� wh�l� th�
p��g��m �� �u����g.

B��m�*
Æ b�t p�tt��� �� p��tu��. �� �� ��� y�u ��� ���pl�y � b�tm�p w�th �
?[<>=@; �bj��t �� �� ��y ����. Y�u ��� �l�� ���pl�y � b�tm�p �� th�
b��kg��u�� �� � m��� p��g��m p���l ���w, � U|;@`bj;<> p���l ���w, ��
� ���Fu��t��� p���l ���w.

$l�����y-2

B���k*��#�
Æ t��l ��� ��bugg��g �� �� ��� p��g��m. �� y�u ��t � b���kp���t ��� ��
�bj��t, th� p��g��m w�ll p�u�� +/23 :;<=>; th�t �bj��t �x��ut��.

B$Ë��
Æ� ���� �� m�m��y wh��� �����m�t��� �� �t���� t�mp�����ly.

B$���#
Æ g��ph���l �bj��t �� �� ��� th�t ��mul�t�� � m�m��t��y �w�t�h ��
��l��t��� butt��, ��� wh��h �pp���� t� p�p �ut ���m y�u� ������. Wh��
y�u \p����" � butt�� �� �� ���, by �l��k��g �� �t w�th th� m�u��, ��
��t��� ���u��. �Á�y �l�� ����� t� th� l��t �� ��ght m�u�� butt��.

?�!��@�#g M�#$
Æ �ub-m��u �� � pull-��w� �� p�p-up m��u th�t p������� ����t����l
��l��t����.

?h��kF�x
Æ �������� �Çu��� b�x �� �� ��� m��u� ��� ���l�g b�x�� th�t �ll�w�
y�u t� ��l��t � ��tt��g. "� ��l��t � ��tt��g, �l��k �� th� b�x ��� �� \x"
�pp���� �� th� b�x t� ������t� � ��l��t��� h�� b��� m���. "� �����l th�
��tt��g, ��mply �l��k �� th� b�x �g���.

?���k
"� p���� ��� ��l���� � m�u�� butt��. Cl��k��g u�u�lly ��l��t� � m��u
���tu�� �� �bj��t �� th� �� ��� w����w. S�� �l�� \��ubl�-Cl��k" ���
\���g."

?�m*���@ I$#����#
Æ u���-��Ì��� �u��t��� ����t�� by �y��m���lly l��k��g � p��g��m, w��tt��
�� � p��g��mm��g l��gu�g� �u�h �� C, ��t� th� �� ��� p������. F��
 !�X �y�t�m�, th� u��� mu�t ����t� � �h���� l�b���y Ìl� ��� � ��Ì��t���
Ìl� ��� th� p��g��m t� b� l��k��. F�� W����w�, th� u��� mu�t ����t� �
�LL ��y��m���lly L��k�� L�b���y Ìl� ��� � ��Ì��t��� Ìl�. "h� }MJB@>
L[b@K@{ �bj��t �tt��h�� th� �h���� l�b���y �� �LL t� th� �� ��� p������
��� p����� th� ��Ì��t��� Ìl� ���l���t����. "h� C�mp�l�� Fu��t���
��� th�� b� ��ll�� w�th th� %K\\ �=~<>[B~ �bj��t, �� ���m ���t���
�xp��������. S�� �l�� \ ���Fu��t���" ��� \Â�m�t� Fu��t���."

?�m*�#�#�
Æ ���gl� ���t�um��t �u��t��� �� m���u��m��t ��lu� �� �� �� ���
���t�um��t p���l �� ��mp����t ������. F�� �x�mpl�, � ��ltm�t�� ������
���t���� ��mp����t� th�t ������ th� ���g�, t��gg�� ��u���, ��� l�t��t

$l�����y-3

������g. S�� �l�� \C�mp����t ������," \������ F�l��," \St�t�," ���
\���t�um��t ����l."

?�m*�#�#� K��v��
Æ� ���t�um��t ���t��l �bj��t th�t ����� ��� w��t�� ��lu�� t� ��mp����t�
y�u �p���Ì��lly ��l��t. �� ��mp����t ������� t� ���t��l �� ���t�um��t
u���g � ������ by ��tt��g th� ��lu�� �� ��ly � ��w ��mp����t� �t � t�m�.
�C�mp����t ������� �� ��t �upp��t ��upl��g.

?�m*�!��� K��� O�*�
Æ ��t� typ� th�t h�� �� �������t�� �h�p�. S�� �l�� \��t� Sh�p�" ���
\��t� "yp�."

?�#���#��
S�� \��t� C��t�����."

?�#��x�
Æ l���l �� th� w��k ���� th�t ��� ���t��� �th�� l���l� �� w��k ����� ��u�h
�� ���t�� U|;@`bj;<>| , but �� ����p�����t �� th�m.

?�#���� Q�#
Æ� ��y��h����u� ��put p�� th�t t����m�t� ��t� t� th� �bj��t w�th�ut
w��t��g ��� th� �bj��t'� �th�� ��put p��� t� ���t��� ��t�. F�� �x�mpl�,
���t��l p��� �� �� ��� ��� ��mm��ly u��� t� �l��� �� �ut����l� � ���pl�y.

?�$*��#g
"h� ��t��-��l�t����h�p �� ���t��� �u��t���� �� �� ���t�um��t. ��, �� ��
���t�um��t p���l, �u��t���� Æ ��� Ï ��� ��upl��, �h��g��g th� ��lu� �� Æ
m�y �ut�m�t���lly �h��g� th� ��lu� �� Ï, ���� th�ugh y�u �� ��t �h��g�
Ï �xpl���tly.

?$�!��
Æ p���t�� �����t �� �� ��t�y Ì�l� th�t �h�w� wh��� �lph��um���� ��t�
w�ll �pp��� wh�� y�u typ� �����m�t��� ���m th� k�yb����.

?$� B$Ë��
"h� buË�� th�t h�l�� �bj��t� th�t y�u �ut �� ��py. Y�u ��� th�� p��t� th�
�bj��t b��k ��t� th� w��k ���� w�th 9R[> ÀÀz ?K|>;

K��� ?�#���#��
"h� ��t� p��k�g� th�t �� t����m�tt�� ���� l���� ��� �� p�������� by
�bj��t�. ���h ��t� ���t����� ���t���� ��t� ��� th� ��t� typ�, ��t� �h�p�,
��� m�pp��g� ��� ��y .

$l�����y-�

K��� I���@
"h� Ì�l� w�th�� � t������t��� �p���Ì��t��� �� wh��h y�u �p����y ��th�� th�
�xp������� t� b� w��tt�� �WÂ�"� t������t���� , �� th� �����bl� t� �������
��t� th�t �� ���� �Â�Æ� t������t���� . S�� �l�� \"������t����."

K��� I��X
"h� Í�w �� ��t� th��ugh ��� b�tw��� �� ��� �bj��t�. ��t� Í�w� ���m
l��t t� ��ght th��ugh �bj��t�, but �� �bj��t ���� ��t �x��ut� u�t�l �t h��
��t� �� �ll �� �t� ��t� ��put p���. ��t� �� p��p�g�t�� ���m th� ��t� �utput
p�� �� ��� �bj��t t� th� ��t� ��put p�� �� th� ��xt �bj��t. ��t� Í�w �� th�
�h��� ���t�� th�t ��t��m���� th� �x��ut��� �� �� �� ��� p��g��m.

K��� Y#*$� Q�#
Æ ������t��� p���t �� th� l��t ���� �� �� �bj��t th�t p��m�t� ��t� t� Í�w
��t� th� �bj��t.

K��� Z$�*$� Q�#
Æ ������t��� p���t �� th� ��ght ���� �� �� �bj��t th�t p��p�g�t�� ��t� Í�w
t� th� ��xt �bj��t ��� p����� th� ���ult� �� th� Ì��t �bj��t'� �p���t��� ��
t� th� ��xt �bj��t.

K���[��
Æ ��ll��t��� �� \Â�����" ���t������ ����� ��t� � Ìl� ��� l�t�� ��t�����l.
"h� �B vK>Kq;> �bj��t ��ll��t� Â����� ��t� �� �t� ��put ��� w��t�� th�t
��t� t� � ��m�� Ìl� �th� ��t�S�t . "h� �@BM vK>Kq;> �bj��t ��t������
Â����� ��t� ���m th� ��m�� Ìl� �th� ��t�S�t ��� �utput� th�t ��t� ��
Â����� ���t������ �� �t� �;< �utput p��. S�� �l�� \Â�����."

K��� [h�*�
���h ��t� ���t����� h�� b�th � �h�p� ��� typ�. "h� ��t� �h�p� ��� b�
��th�� � ���l�� �� �� ����y �Æ���y ¿�, Æ���y 2�, ��� �� ���th .

K��� O�*�
���h ��t� ���t����� h�� b�th � typ� ��� �h�p�. �� ��� �upp��t� ������l
��t� typ�� ���lu���g "�xt, Â��l, ��� ��t�g��.

KK& (K�#�m�� K��� &x�h�#g�)
Æ ��mmu����t��� m��h����m th�t �ll�w� �� ��� ��� W����w� t�
��mmu����t� w�th �th�� W����w� �ppl���t���� th�t �upp��t ���. �� ���
��� ���� ��t� t�, ��� ������� ��t� ���m, �u�h �ppl���t����. Æl��, �� ���
��� �x��ut� ��mm���� �� ���th�� �ppl���t���. �x�mpl�� �� W����w�
�ppl���t���� th�t �upp��t ��� ��� Á�������t �x��l ��� Á�������t W��� ���
W����w�.

$l�����y-Ã

K�]�$��
Æ ��lu� �� ��t��� th�t �� ��� �ut�m�t���lly ��l��t�. F�� �x�mpl�,
�� ��� u��� ���t��� ����ult ��l��� ��� ���t�, wh��h y�u ��� �h��g� u���g
th� v;]K=\> ?@;];@;~<;| ���l�g b�x.

K�]�$�� B$���#
"h� butt�� �� � ���l�g b�x th�t �� ��t���t�� by ����ult �� Ä̂ _`kqÅ �� Ävk`{q_Å
�� p������, �� th� ��l��t��� �� ��ubl�-�l��k��. "h� l�b�l �� th� ����ult
butt�� �� �� b�l� t�xt.

K�m���
"� ������t ���m � ��t� typ� th�t ���t���� m��� �����m�t��� t� ��� th�t
���t���� l��� �����m�t���. S�� �l�� \��t� "yp�" ��� \���m�t�."

K����� }��X
"h� ���w �� �� �� ��� p��g��m th�t �h�w� �ll th� �bj��t� ��� th� l����
b�tw��� th�m.

K�v���
Æ� ���t�um��t �tt��h�� t� �� plugg�� ��t� �� ��-�Ï, ÂS-232, $��%, �� �X�
��t������. Sp���Ì� �� ��� �bj��t� �u�h �� th� v[@;<> }~` �bj��t ����
��� ������� �����m�t��� t� � ������.

K�v��� K��v��
S�� \��t������ ������."

K����g B�x
Æ ��������y w����w ���pl�y�� wh�� �� ��� ��Çu���� �����m�t��� ���m
y�u b����� �t ��� ���t��u�. F�� �x�mpl�, � ���l�g b�x m�y ���t��� � l��t ��
Ìl�� ���m wh��h y�u m�y �h����.

K����� Y�Z ZF����
Æ� ���t�um��t ���t��l �bj��t th�t �ll�w� �� ��� t� �����tly ���t��l ��
���t�um��t w�th�ut u���g �� ���t�um��t ������.

K�� (K�#�m������ ��#k�@ ��F����)
Æ ��ll��t��� �� �u��t���� w��tt�� �� C th�t ��� b� ��ll�� ���m �� ��� ���
W����w�. �LL� ��� b� ����t�� by �xp�������� C p��g��mm��� u���g t��l�
����l�bl� ���m Á�������t ��� Ï��l���. �LL� �� th� W����w� �������m��t
��� ��m�l�� t� �h���� l�b������ �� th� !�X �������m��t.

$l�����y-È

K�$F���?���k
"� p���� ��� ��l���� � m�u�� butt�� tw��� �� ��p�� �u��������.
��ubl�-�l��k��g �� u�u�lly � �h��t-�ut t� ��l��t��g ��� p�����m��g ��
��t���. F�� �x�mpl�, ��ubl�-�l��k��g �� � Ìl� ��m� ���m �[\; ÀÀz `J;~
w�ll ��l��t th� Ìl� ��� �p�� �t.

K��g
"� p���� ��� �=�3��/; 3= �=�� �=�� � m�u�� butt�� wh�l� m����g th�
m�u��. ���gg��g m���� ��m�th��g ���� �x�mpl�, �� �bj��t �� ����ll b�� .

K��v��
S��tw��� th�t �ll�w� � ��mput�� t� ��mmu����t� w�th �th�� ���tw���
�� h���w���. S�� �l�� \C�mp����t ������," \������ F�l��," \��t������
������," ��� \���t�um��t ����l."

K��v�� I���!
Æ ��t �� Ìl�� ���lu��� w�th �� ��� th�t ���t���� th� �����m�t��� ������
t� ����t� ���t�um��t p���l ��� ��mp����t ������ �bj��t� ��� ���t�um��t
���t��l.

K��*�K�X# ��!�
Æ l��t �� ��l��t���� �bt����� by �l��k��g �� th� ����w t� th� ��ght �� �
��l��t��� Ì�l�.

&#��� I���@
Æ Ì�l� th�t �� typ���lly p��t �� � ���l�g b�x �� �� ���t�bl� �bj��t,
��� wh��h �� u��� ��� ��t� ��t�y. Æ� ��t�y Ì�l� �� ���t�bl� wh�� �t�
b��kg��u�� �� wh�t�.

&���� M�!!�g�
�����m�t��� th�t �pp���� �� �� ����� ���l�g b�x, �xpl�����g th�t � p��bl�m
h�� ���u����.

&���� Q�#
Æ p�� th�t t��p� ��y ������ th�t ���u� �� �� �bj��t. ���t��� �� g�tt��g ��
����� m����g�, th� ����� �umb�� �� �utput �� th� ����� p��. Wh�� ��
����� �� g�����t��, th� ��t� �utput p��� ��� ��t ��t���t��.

&x��$��
"h� ��t��� �� � p��g��m, �� p��t� �� � p��g��m, �u����g.

$l�����y-Ð

&x��$���# I��X
"h� ����� �� wh��h �bj��t� �p���t�. S�� �l�� \��t� Fl�w."

&x*��!!��#
Æ� �Çu�t��� �� �� ��t�y Ì�l� th�t m�y ���t��� ��put t��m���l ��m��,
gl�b�l �����bl� ��m��, �K>Z ��� 'R��K>Z �u��t����, ��� u���-��Ì���
�u��t����. Æ� �xp������� �� ���lu�t�� �t �u�-t�m�. �xp�������� ���
�ll�w�� �� �B@M=\K, }]~�Z;~~9\|;, �;> �K\=;|, �;> �[;\R, q;>
�[;\R, q;�=;~<;@, ��� v[K\BJ �B: �bj��t�, ��� �� ��% t������t���
�bj��t�.

I��@F��k
Æ ���t��u�u� th���� p�th �� ��Çu���� ������ ��t� l���� th�t u��� ��lu��
���m th� p�����u� �x��ut��� t� �h��g� ��lu�� �� th� �u����t �x��ut���.

I��X
S�� \��t� Fl�w" ��� \�x��ut��� Fl�w."

I�#�
�� ��� �ll�w� y�u t� �h��g� th� \���t"|th� ��z� ��� �tyl� �� typ�|u���
t� ���pl�y t�xt ��� �����u� �� ��� �bj��t�, t�tl��, ��� �� ���th.

I$#����#
"h� ��m� ��� ��t��� �� �bj��t� wh��� th� �utput �� � �u��t��� �� th�
��put. "h��� �bj��t� ��� l���t�� u���� �K>Z �� 'R��K>Z m��u� ��� m�y
b� u��� �� th� �B@M=\K �bj��t. F�� �x�mpl� |�@>^:_ �� � �u��t���� � ��
��t.

���F�� }����F��
Æ ��m�� �����bl� th�t �� ��t gl�b�lly, ��� wh��h ��� b� u��� by ��m� ��
��y ���t�xt �� �� �� ��� p��g��m. F�� �x�mpl�, � gl�b�l �����bl� ���
b� ��t w�th q;> �\BbK\ �� th� ���t ���t�xt �� th� p��g��m, ��� ��� b�
�������� by ��m� w�th �;> �\BbK\ �� ���m ���t��� �xp�������� w�th��
th� ���t�xt �� � U|;@`bj;<>. ��w����, � l���l �����bl� w�th th� ��m�
��m� �� th� gl�b�l �����bl� t�k�� p��������� �� �� �xp�������.

�����@ I���$��
Æ m��u ���tu�� th�t �� ���pl�y�� �� g��y ��th�� th�� bl��k, ������t��g
th�t th� ���tu�� �� ��t ��t��� �� ��t ����l�bl�. ���l�g b�x �t�m� �u�h ��
butt���, �h��kb�x��, �� ����� butt��� m�y �l�� b� g��y��.

$l�����y-�

���$* ��#@�X
Æ g��up w����w �� Á�������t W����w� �� � w����w th�t ���t���� ����� ���
� g��up �� �ppl���t����. ���h ���� �t��t� �� �ppl���t��� �� th� g��up.

��gh��gh�
¿. "h� ��l���� b��� �� �h���w ���u�� �� �bj��t th�t p������� � ���u�l
�u� t� th� �t�tu� �� th� �bj��t.

2. "h� �h��g� �� ��l�� �� � m��u ���tu�� th�t ������t�� y�u ��� p���t��g
t� th�t ���tu��.

��!�
"� b�g�� � th���� �� �ubth����. F�� �x�mpl�, th� �ubth���� th�t �� h��t��
by �B@ %B=~> �� th� �ubth���� th�t �t���t��.

�Q���
��wl�tt-���k��� C�mp��y'� ��h����� ������� �� th� !�X �p���t��g
�y�t�m.

��*����x�
Æ �y�t�m �� l��k��g t�p��� �� th�t y�u ��� jump t� � ��l�t�� t�p�� wh��
y�u w��t m��� �����m�t���. �� ��l��� h�lp �y�t�m�, typ���lly hyp��t�xt
l��k� ��� ����g��t�� w�th u����l���� t�xt. Wh�� y�u �l��k �� �u�h t�xt,
��l�t�� �����m�t��� �� p�����t��.

Y��#
¿. Æ �m�ll, g��ph���l ��p�����t�t��� �� �� �� ��� �bj��t, �u�h �� th�
��p�����t�t��� �� �� ���t�um��t, � ���t��l, �� � ���pl�y.

2. Æ �m�ll, g��ph���l ��p�����t�t��� �� � Á�������t W����w� �ppl���t���
w�th�� � g��up w����w. S�� \$��up W����w."

Y#!��$m�#� K��v��
S�� \������ F�l��," \C�mp����t ������," ��� \���t�um��t ����l."

Y#!��$m�#� Q�#��
Æ� ���t�um��t ���t��l �bj��t th�t ������ �ll th� �u��t��� ��tt��g� �� th�
������p�����g phy����l ���t�um��t t� m�t�h th� ��tt��g� �� th� ���t��l
p���l ���pl�y�� �� th� �p�� ���w �� th� �bj��t.

Y#���]���
��-�Ï, ÂS-232, $��%, ��� �X� ��� �������� t� �� ��t������� u��� ��� ��%.
Sp���Ì� �� ��� �bj��t�, �u�h �� th� }~>;@]K<; 9�;~> �bj��t ��� ��ly
���� ��mm���� t� �� ��t������.

$l�����y-�

Y#���]��� K��v��
S��tw��� th�t �ll�w� � ��mput�� t� ��mmu����t� w�th � h���w���
��t������, �u�h �� ��-�Ï �� ÂS-232. Æl�� ��ll�� �;���; �>��;> �� th� !�X
�p���t��g �y�t�m, ��t������ ������� ��� ���Ìgu��� ��t� th� k����l �� th�
�p���t��g �y�t�m.

Y������
"� ��p��t �l��p p��t �� �� �� ��� p��g��m u���g ��� �� th� �;J;K>
�bj��t� ���� �x�mpl�, �B@ %B=~> .

��F����
Æ ��ll��t��� �� ��t��-u��� �bj��t� �� p��g��m� g��up�� t�g�th�� ��� ���y
������.

��#�
Æ l��k b�tw��� tw� �bj��t� �� �� ��� th�t t����m�t� ��t� ���t������ t�
b� p��������. S�� �l�� \Subth����" ��� \"h����."

���*
"� ��p��t p��t �� �� �� ��� p��g��m u���g ��� �� th� �;J;K> �bj��t� ����
�x�mpl�, �B@ %B=~> .

M��# M�#$
"h� m��u� l���t�� �� th� �� ��� m��u b��. "� �p�� � m��� m��u,
�l��k �� th� �pp��p���t� m��u t�tl� �� th� m��u b��. Y�u ��� �l�� u��
����l���t���. F�� �x�mpl�, �� th� �C u�� Ä��`Å�ÄFÅ t� �p�� th� �[\;
m��u. %� �� �� S����� 3���Ð�� w��k�t�t���, u�� Ä̂ x`k_d �� qÅ�ÄFÅ t� ��
th� ��m� th��g.

M��# ���k A���
"h� ���� wh��� y�u ����t� � p��g��m. "h� m��� w��k ���� �� th� p����t
���t�xt �� �ll �th�� ���t�xt�.

M�**�#g
Æ ��t �� ���t��u�u� �� ������t� ��lu�� th�t �xp���� th� ����p�����t
�����bl�� ��� �� ����y ���� �x�mpl�, th� t�m� �p�� �� � w������m .

M�x�m�z�
"� ��l��g� � U|;@`bj;<> �� � w����w t� Ìll th� ����l�bl� �p��� u���g �
m�x�m�z� butt��. F�� � U|;@`bj;<>, th�� ����z�� th� U|;@`bj;<> t�
���upy �ll �� th� �� ��� w��k ����.

$l�����y-¿�

M�x�m�z� B$���#
Æ butt�� �� � U|;@`bj;<>, �� th� �� ��� w����w, th�t m�k�� th�
U|;@`bj;<>, �� th� �� ��� w����w, ���upy �ll �� th� ����l�bl� ������
�p���.

M�#$
Æ ��ll��t��� �� ���tu��� th�t ��� p�����t�� �� � l��t. S�� �l�� \C�������g
Á��u," \Á��� Á��u," \%bj��t Á��u," \��p- p Á��u," ��� \�ull-��w�
Á��u."

M�#$ B��
"h� b�� �t th� t�p �� th� �� ��� w����w th�t ���pl�y� th� t�tl�� �� th�
pull-��w�, m��� m��u�, ���m wh��h y�u ��l��t ���tu���.

M�#$ O����
"h� ��m� �� � m��u w�th�� th� �� ��� m��u b��. F�� �x�mpl�, �[\; ��
9R[>.

M�#�m�z�
¿. "� ���u�� �� �p�� ���w �� �� �bj��t t� �t� �m�ll��t ��z�|�� ����.

2. "� ���u�� � w����w t� �t� �m�ll��t ��z�|�� ����.

M�#�m�z� B$���#
Æ butt�� �� �� �bj��t, �� th� �� ��� w����w, th�t �����Ì�� th� �bj��t, ��
th� �� ��� w����w.

M�$!�
Æ p���t��g ������ th�t y�u m��� ������ � �u����� t� m��� � p���t��
w�th�� th� �� ��� w����w.

M�$!� B$���#
%�� �� th� butt��� �� � m�u�� th�t y�u ��� �l��k �� ��ubl�-�l��k t�
p�����m � p��t��ul�� ��t��� w�th th� ������p�����g p���t�� �� th� �� ���
w����w.

¡��X��k
Æ g��up �� ��mput��� ��� p���ph���l� l��k�� t�g�th�� t� �ll�w th� �h����g
�� ��t� ��� w��k l����.

ZF����
Æ g��ph���l ��p�����t�t��� �� �� �l�m��t �� � p��g��m, �u�h �� ��
���t�um��t, ���t��l, ���pl�y, �� m�th�m�t���l �p���t��. Æ� �bj��t ��

$l�����y-¿¿

pl���� �� th� w��k ���� ��� ������t�� t� �th�� �bj��t� t� ����t� �
p��g��m.

ZF���� M�#$
"h� m��u �������t�� w�th �� �bj��t th�t ���t���� ���tu��� th�t �p���t�
�� th� �bj��t ���� �x�mpl�, m����g, ��z��g, ��py��g, ��� ��l�t��g th�
�bj��t . "� �bt��� th� �bj��t m��u, �l��k �� th� �bj��t m��u butt�� �t th�
upp��-l��t ������ �� th� �bj��t, �� �l��k th� ��ght m�u�� butt�� w�th th�
p���t�� ���� th� �bj��t.

ZF���� M�#$ B$���#
"h� butt�� �t th� upp��-l��t ������ �� �� �p�� ���w �bj��t, wh��h
���pl�y� th� �bj��t m��u wh�� y�u �l��k �� �t.

Z*�#
"� �t��t �� ��t��� �� b�g�� w��k��g w�th � t�xt, ��t�, �� g��ph��� Ìl�.
Wh�� y�u ��l��t `J;~ ���m �� ���, � p��g��m �� l����� ��t� th� w��k
����.

Z*�# }��X
"h� ��p�����t�t��� �� �� �� ��� �bj��t th�t �� m��� ��t��l�� th�� ��
����. Á��t �bj��t �p�� ���w� h��� Ì�l�� th�t �ll�w y�u t� m����y th�
�p���t��� �� th� �bj��t.

Z*�����
"h� ��t��� �� �� �bj��t p��������g ��t� ��� �utputt��g � ���ult. Æ� �bj��t
�p���t�� wh�� �t� ��t� ��� ��Çu���� ��put p��� h��� b��� ��t���t��. S��
\Æ�t���t�."

Z*������ Y#���]���
"h� ��t������ th�t th� �� ��� p��g��mm�� ����t�� t� �ll�w th� �p���t��
����-u��� t� ���t��l th� p��g��m. Æ typ���l �p���t�� ��t������ ����l���
p���l ���w� ��� ���l�g b�x��.

Z$���#� B�x
Æ b�x th�t ��p�����t� th� �ut�� ��g�� �� �� �bj��t �� ��t �� �bj��t� ���
������t�� wh��� th� �bj��t�� w�ll b� pl���� �� th� w��k ����.

Q������
"h� ��t �� p����bl� ��l��� ����l�bl� �� �� ���.

$l�����y-¿2

Q�#�� }��X
"h� ���w �� �� �� ��� p��g��m, �� �� � U|;@`bj;<>, th�t �h�w� ��ly
th��� �bj��t� ������ ��� th� u��� t� �u� th� p��g��m ��� ���w th�
���ult��g ��t�. Y�u ��� u�� p���l ���w� t� ����t� �� �p���t�� ��t������ ���
y�u� p��g��m.

Q�#
Æ� �xt����l ������t��� p���t �� �� �bj��t t� wh��h y�u ��� �tt��h � l���.

Q��#���
"h� g��ph���l �m�g� th�t m�p� t� th� m���m��t �� th� m�u��. "h�
p���t�� �ll�w� y�u t� m�k� ��l��t���� ��� p������� y�u ����b��k �� �
p��t��ul�� p������ u����w�y. �� ��� h�� p���t��� �� ��Ë����t �h�p�� th�t
������p��� t� p������ m����, �u�h �� �� ����w, �����h����, ��� h�u�gl���.

Q�*��* M�#$
Æ m��u th�t �� ������ by �l��k��g th� ��ght m�u�� butt��. F�� �x�mpl�,
y�u ��� ����� th� 9R[> m��u by �l��k��g th� ��ght m�u�� butt�� �� ��
�mpty ���� w�th�� th� w��k ����. %� y�u ��� ����� th� �bj��t m��u by
�l��k��g th� ��ght m�u�� butt�� �� �� ����t��� ���� �� �� �bj��t.

Q�!�¢$#
"h� ��t �� ��t���� th�t ��� p�����m�� wh�� th� p��g��m �� �t�pp��.

Q��]���#��!
����������� ��� �tt��but�� �� th� �� ��� �������m��t th�t y�u ���
�h��g� u���g �[\; ÀÀz 9R[> v;]K=\> ?@;];@;~<;|. F�� �x�mpl�, y�u
��� �h��g� th� ����ult ��l���, ���t�, ��� �umb�� ���m�t.

Q��¢$#
"h� ��t �� ��t���� th�t ����t� th� p��g��m ��� �h��k� ��� ������ b����� th�
p��g��m �t��t� t� �u�.

Q��g��m
�� �� ���, � g��ph���l p��g��m th�t ������t� �� � ��t �� �bj��t� ������t��
w�th l����. "h� p��g��m typ���lly ��p�����t� � ��lut��� t� �� ��g�������g
p��bl�m.

Q��m���
"� ������t ���m � ��t� typ� th�t ���t���� l��� �����m�t��� t� ��� th�t
���t���� m��� �����m�t���. S�� �l�� \��t� "yp�" ��� \��m�t�."

$l�����y-¿3

Q��*�g����#
"h� �ul�� th�t �bj��t� ��� p��g��m� ��ll�w wh�� th�y �p���t� �� �u�. S��
�l�� \��t� Fl�w."

Q��*�����!
%bj��t p��p��t��� ��� �tt��but�� �� �� ��� �bj��t� th�t y�u ��� �h��g�
u���g =:+;�3 £;�/ ÀÀz 9R[> ?@BJ;@>[;|. W��k ���� p��p��t��� ���
�tt��but�� �� th� �� ��� w��k ���� th�t y�u ��� �h��g� u���g �[\; ÀÀz
9R[> ?@BJ;@>[;|. ���p��t��� ���lu�� ��l���, ���t�, ��� t�tl��.

Q����@�����
Æ�y �� �����u� �xt���t Íy��g ��pt�l�� �� th� ����� �t�����u��� �� th�
¤u������ ��� C��t����u� p������. �t������tyl ��� �h����t���z�� by w��g�
������t��g �� � Í�p �� �k�� �upp��t�� by th� ���y l��g ��u�th ��g�t �� ���h
����t l�g.

Q$���K�X# M�#$
Æ m��u th�t �� pull�� ��w� ���m th� m��u b�� wh�� y�u p���t��� th�
p���t�� ���� � m��u t�tl� ��� �l��k th� l��t m�u�� butt��.

¢�@�� B$���#
Æ ���m���-�h�p�� butt�� �� �� ��� ���l�g b�x�� th�t �ll�w� y�u t�
��l��t � ��tt��g th�t �� mutu�lly �x�lu���� w�th �th�� ����� butt��� �� th�t
���l�g b�x. "� ��l��t � ��tt��g, �l��k �� th� ����� butt��. "� ��m��� th�
��tt��g, �l��k �� ���th�� ����� butt�� �� th� ��m� ���l�g b�x.

¢����@
Æ� �� ��� ��t� typ� th�t h�� ��m�� ��t� Ì�l�� wh��h ��� ���t���
mult�pl� ��lu��. Â������ ��� typ���lly u��� t� g��up ��l�t�� ��t��l�� ��
�����m�t���. ��w����, ���h ������ Ì�l� ��� ���t��� � ��Ë����t ��t� typ�.
���h Ì�l� ��� ���t��� ���th�� Â����� ���t�����, � S��l��, �� �� Æ���y.
"h� Â����� ��t� typ� h�� th� h�gh��t p��������� �� �ll �� ��� ��t�
typ��. ��w����, ��t� �����t b� ������t�� t� ��� ���m th� Â����� ��t�
typ� th��ugh th� �ut�m�t�� p��m�t������m�t��� p������. Â������ mu�t b�
bu�lt�u�bu�lt u���g th� �=[\R �;<B@R ��� U~�=[\R �;<B@R �bj��t�.

¢�m��� I$#����#
Æ ���Fu��t��� �u����g �� � ��m�t� h��t ��mput��, wh��h �� ��ll�bl�
���m th� l���l h��t. �Â�m�t� �u��t���� ��� �upp��t�� ��ly �� !�X
�y�t�m�. "h� }MJB@> L[b@K@{ �bj��t �t��t� th� p������ �� th� ��m�t�
h��t ��� l���� th� Â�m�t� F�l� ��t� th� �� ��� p������ �� th� l���l h��t.
Y�u ��� th�� ��ll th� Â�m�t� Fu��t��� w�th th� %K\\ �=~<>[B~ �bj��t,

$l�����y-¿�

�� ���m ���t��� �xp��������. S�� �l�� \ ���Fu��t���" ��� \C�mp�l��
Fu��t���."

¢�!����
"� ��tu�� � m���m�z�� w����w �� �� ���� t� �t� �ull ��z� �� � w����w ��
�p�� ���w by ��ubl�-�l��k��g �� �t.

¢$#
"� �t��t th� �bj��t� �� � p��g��m �� th���� �p���t��g.

[�v�
"� w��t� � Ìl� t� � �t���g� ������, �u�h �� � h��� ���k.

[�����
Æ ��t� �h�p� th�t ���t���� � ���gl� ��lu�. S�� �l�� \��t� Sh�p�."

[�h�m�
"h� �t�u�tu�� �� ���m�w��k u��� t� ��Ì�� � ��t� ������. "h�� ���lu���
���h Ì�l�'� ��m�, typ�, �h�p� ���� ��m������ ��z�� , ��� m�pp��g.

[����# K$m*
Æ g��ph���l p���t�ut �� � w����w �� p��t �� � w����w.

[�����
"h� ��t �� u���g � ����ll b�� ��th�� t� m��� th��ugh � l��t �� ��t� Ìl�� ��
�th�� �h����� �� � ���l�g b�x, �� t� p�� th� w��k ����.

[����� A���X
Æ� ����w th�t, wh�� �l��k�� ��, ����ll� th��ugh � l��t �� ��t� Ìl�� �� �th��
�h����� �� � ���l�g b�x, �� m���� th� w��k ����.

[����� B��
Æ ���t��gul�� b�� th�t, wh�� ���gg��, ����ll� th��ugh � l��t �� ��t� Ìl�� ��
�th�� �h����� �� � ���l�g b�x, �� m���� th� w��k ����.

[�����
"� �h���� �� �bj��t, �� ��t��� t� b� p�����m��, �� � m��u �t�m. �u�lly
y�u ��l��t by �l��k��g w�th y�u� m�u��.

[����� ?�@�
Æ �umb�� u��� t� ����t��y th� l�g���l ������� �� � h���w��� ��t������. F��
�x�mpl�, th� ���t��y ����ult ��l��t ���� ��� m��t ��-�Ï ��t������� �� Ð.

$l�����y-¿Ã

[�������#
¿. Æ m��u ��l��t��� ����tu�� .

2. Æ� �bj��t �� ��t��� y�u h��� ��l��t�� �� th� �� ��� w����w.

[�������# I���@
Æ Ì�l� �� �� �bj��t �� ���l�g b�x th�t �ll�w� y�u t� ��l��t �h����� ���m �
���p-��w� l��t.

[�¥$�#�� Y#*$� Q�#
"h� 3=¦ p�� �� �� �bj��t. Wh�� ������t��, �x��ut��� �� th� �bj��t �� h�l�
�Ë u�t�l th� p�� �������� � ���t����� ��� \p��g��" .

[�¥$�#�� Z$�*$� Q�#
"h� :=33=£ p�� �� �� �bj��t. Wh�� ������t��, th�� �utput p�� �� ��t���t��
wh�� th� �bj��t ��� �ll ��t� p��p�g�t��� ���m th�t �bj��t Ì���h��
�x��ut��g.

[�¥$�#���
Æ� �bj��t th�t ���t��l� �x��ut��� Í�w th��ugh � ������ �� ��Çu����
t������t����, ���h �� wh��h m�y ��ll � \ ���Fu��t���," \C�mp�l��
Fu��t���," �� \Â�m�t� Fu��t���." "h� ��Çu����� �� ���m�lly u��� t�
p�����m � ������ �� t��t� by �p����y��g � ������ �� ��Çu���� t������t����.

[h���@ ��F����
Æ ��ll��t��� �� �u��t����, w��tt�� �� � p��g��mm��g l��gu�g� �u�h ��
C, th�t ��� b� ��ll�� ���m �� ��� �u����g �� � !�X �y�t�m. Sh����
l�b������ ��� b� ����t�� by �xp�������� p��g��mm���. Sh���� l�b������ ��
th� !�X �������m��t ��� ��m�l�� t� �LL� �� th� W����w� �������m��t.

[h���
�� � !�X �y�t�m, th� p��g��m th�t ��t������� b�tw��� th� u��� ��� th�
�p���t��g �y�t�m.

[h��� Q��m*�
�� � !�X �y�t�m, th� �h����t�� �� �h����t��� th�t ����t� th� pl���
wh��� y�u typ� ��mm���� wh�l� �t th� �p���t��g �y�t�m �h�ll l���l. "h�
p��mpt y�u ��� ���pl�y�� ���� �x�mpl�, § ��p���� up�� th� typ� �� �h�ll
y�u ��� �u����g.

[���*
Æ� �bj��t �l��p� �u���g �x��ut��� wh�� �t �� w��t��g ��� �� �p���t��� ��
t�m� ��t����l t� ��mpl�t�, �� ��� �� ����t t� ���u�. Æ �l��p��g �bj��t w�ll

$l�����y-¿È

�ll�w �th�� p���ll�l th����� t� �u� ����u����tly. %��� th� ����t, t�m�
��t����l, �� �p���t��� ���u��, th� �bj��t w�ll �x��ut�, �ll�w��g �x��ut���
t� ���t��u�.

[����$* K��������
"h� �����t��y ���m wh��h y�u �t��t �� ��� �� � !�X �y�t�m. "h��
�����t��y ��t��m���� th� ����ult p�th� ��� m��t Ìl� ��t���� ���lu���g qK�;
��� `J;~. �� �� ��� ��� W����w�, th�� �� �������� t� �� th� \w��k��g
�����t��y."

[����
Æ p��t��ul�� ��t �� ��lu�� ��� �ll �� th� ��mp����t� ��l�t�� t� ��
�� ��� ���t�um��t p���l, wh��h ��p�����t� th� m���u��m��t �t�t�
�� �� ���t�um��t. F�� �x�mpl�, � ��g�t�l mult�m�t�� u��� ��� �t�t� ���
h�gh-�p��� ��lt�g� ������g� ��� � ��Ë����t �t�t� ��� h�gh-p��������
�����t���� m���u��m��t�. S�� �l�� \���t�um��t ����l."

[���$! I���@
Æ Ì�l� ���pl�y��g �����m�t��� th�t �����t b� ���t��. Æ �t�tu� Ì�l� l��k�
l�k� �� ��t�y Ì�l�, but h�� � g��y b��kg��u��.

[��*
"h� ��t��� �� �p���t��g �� �� ��� p��g��m ��� �bj��t �t � t�m� �t� ��bug
th� p��g��m . "h� �bj��t th�t w�ll �p���t� ��xt �� ������t�� by � g����
h�ghl�ght.

O��m�#��
"h� ��t����l ��p�����t�t��� �� � p�� th�t ���pl�y� �����m�t��� �b�ut th�
p�� ��� th� ��t� ���t����� h�l� by th� p��. ��ubl�-�l��k �� � t��m���l t�
���w th� ���t����� �����m�t���.

O��m�#�� A���
"h� ����� �� th� l��t ��� ��ght ����� �� �� �bj��t wh��� t��m���l� ���
���pl�y�� wh�� qZBQ �;@M[~K\| �� ��t��� ��� th�t �bj��t. "h� ��put
t��m���l ���� �� �� th� l��t, ��� th� �utput t��m���l ���� �� �� th� ��ght
���� �� �� �bj��t.

Oh���@
Æ ��t �� �bj��t� ������t�� by ��l�� l���� �� �� �� ��� p��g��m. Æ
p��g��m w�th mult�pl� th����� ��� �u� �ll th����� ��mult����u�ly.

$l�����y-¿Ð

O���� B��
"h� ���t��gul�� b�� �t th� t�p �� th� �p�� ���w �� �� �bj��t �� w����w,
wh��h �h�w� th� t�tl� �� th� �bj��t �� w����w. Y�u ��� tu�� �Ë �� �bj��t
t�tl� b�� u���g =:+;�3 £;�/ ÀÀz 9R[> ?@BJ;@>[;|.

O��� B��
"h� ���t��gul�� b�� �t th� t�p �� th� �� ��� w����w wh��h p������� th�
�=~, q>BJ, %B~>, ��� q>;J butt��� t� ���t��l �� ��� p��g��m�. "h�
t��l b�� �l�� ���pl�y� th� t�tl� �� � p��g��m, ��� th� ?K~;\ ��� v;>K[\
butt��� �� p�����t.

O��#!�����#
"h� �p���Ì��t���� ��� ��put ��� �utput ���% u��� by ���t��� �bj��t� ��
�� ���. "h��� ���lu�� th� �B �[\;, �@BM �[\;, v[@;<> }~`, ���
q;�=;~<;@ �bj��t�. "������t���� �pp��� �� ph����� l��t�� �� th� �p��
���w �� th��� �bj��t�.

O��g M�@�
"h� �@[J �BR; �� �� �tt��but� th�t ��t��m���� wh�th�� t��g���m�t���
��lu�� ��� ���pl�y�� �� ��g����, �������, �� g�������. !�t� th�t �� ���
�ut�m�t���lly ������t� t��g���m�t��� ��lu�� t� ������� ��� ��l�ul�t���
pu�p����.

�!���K�Ì#�@ I$#����#
Æ �u��t��� th�t y�u ��� ����t�, ��� th�� ��ll �� �� �� ��� p��g��m.
Y�u ��� ����t� th��� typ�� �� u���-��Ì��� �u��t���� th�t ��� b� ��ll��
u���g th� %K\\ �=~<>[B~ �bj��t, �� ���m ���t��� �xp��������. S�� �l��
\ ���Fu��t���," \C�mp�l�� Fu��t���," ��� \Â�m�t� Fu��t���."

�!��I$#����#
Æ u���-��Ì��� �u��t��� ����t�� ���m � \ ���%bj��t" by �x��ut��g �K¨;
U|;@�=~<>[B~. "h� ���Fu��t��� �x��t� �� th� b��kg��u�� �� th�
�� ��� p������, but p������� th� ��m� �u��t����l�ty �� th� ���g���l
 ���%bj��t. Y�u ��� ��ll � ���Fu��t��� w�th th� %K\\ �=~<>[B~ �bj��t,
�� ���m ���t��� �xp��������. Æ ���Fu��t��� ��� b� ����t�� ��� ��ll��
l���lly, �� �t ��� b� ����� �� � l�b���y ��� �mp��t�� ��t� �� �� ���
p��g��m w�th }MJB@> L[b@K@{. S�� �l�� \C�mp�l�� Fu��t���," \Â�m�t�
Fu��t���," ��� \ ���%bj��t."

�!��ZF����
Æ� �bj��t th�t ��� ����p�ul�t� � g��up �� �bj��t� t� p�����m � p��t��ul��
pu�p��� w�th�� � p��g��m. Æ ���%bj��t �ll�w� y�u t� u�� t�p-��w�

$l�����y-¿�

����g� t��h��Çu�� wh�� bu�l���g � p��g��m, ��� t� bu�l� u���-��Ì���
�bj��t� th�t ��� b� ����� �� � l�b���y ��� ��u���.

}��X
S�� \��t��l ���w," \����," \%p�� ���w," ��� \����l ���w."

����
S�� Sl��p.

��#@�X
Æ ���t��gul�� ���� �� th� ������ th�t ���t���� � p��t��ul�� �ppl���t���
p��g��m, �u�h �� �� ���.

���k A���
"h� ���� w�th�� th� �� ��� w����w �� th� �p�� ���w �� � U|;@`bj;<>
wh��� y�u g��up �bj��t� t�g�th��. Wh�� y�u `J;~ � p��g��m, �t �� l�����
��t� th� m��� w��k ����.

���k�#g K��������
"h� �����t��y �� wh��h �� ��� ��� W����w� �u�� �%©ª�99 �� th� ����ult .
%� !�X �y�t�m� th�� ������p���� t� th� \�t��tup �����t��y."

� ��#@�X [�!��m (�««)
Æ� ���u�t�y-�t������ w����w��g �y�t�m u��� �� !�X ��mput�� �y�t�m�.

�«« ¢�!�$���!
Æ Ìl� �� ��t �� Ìl�� th�t ��Ì�� y�u� X¿¿ �������m��t �� � !�X �y�t�m.

�&Q Q�#
Æ p�� th�t ������ th� �p���t��� �� th� �bj��t, ���� �� th� ��t� �� ��Çu����
��put p��� h��� ��t b��� ��t���t��. S�� �l�� \C��t��l ���," \��t� ��put
���," ��� \S�Çu���� ��put ���."

$l�����y-¿�

ènde¬

I	
�­

����x-2

����x-3

����x-�

����x-Ã

����x-È

����x-Ð

����x-�

����x-�

����x-¿�

����x-¿¿

����x-¿2

����x-¿3

����x-¿�

����x-¿Ã

����x-¿È

����x-¿Ð

����x-¿�

����x-¿�

����x-2�

����x-2¿

����x-22

����x-23

����x-2�

����x-2Ã

����x-2È

����x-2Ð

����x-2�

