
HP VEE-Engine and

HP VEE-Test Reference

ABCDE

HP Part No. E2100-90013

Printed in USA November 1992

Edition 2

Notice

The information contained in this document is subject to change without

notice.

Hewlett-Packard Company (HP) shall not be liable for any errors contained

in this document. HP MAKES NO WARRANTIES OF ANY KIND WITH

REGARD TO THIS DOCUMENT, WHETHER EXPRESS OR IMPLIED.

HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

HP shall not be liable for any direct, indirect, special, incidental, or

consequential damages, whether based on contract, tort, or any other legal

theory, in connection with the furnishing of this document or the use of the

information in this document.

Warranty Information

A copy of the speciÕc warranty terms applicable to your Hewlett-Packard

product and replacement parts can be obtained from your local Sales and

Service Oœce.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to restrictions

as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and

Computer Software clause at DFARS 252.227-7013 for DoD agencies, Computer

Software Restricted Rights clause at FAR 52.227-19 for other agencies.

Use of this manual and magnetic media supplied for this product are restricted.

Additional copies of the software can be made for security and backup purposes

only. Resale of the software in its present form or with alterations is expressly

prohibited.

Printing History

Edition 1 - April 1991

Edition 2 - November 1992

cŒ Copyright 1991, 1992 Hewlett-Packard Company. All rights reserved.

This document contains information which is protected by copyright. All rights

are reserved. Reproduction, adaptation, or translation without prior written

permission is prohibited, except as allowed under the copyright laws.

Preface

This manual is written for engineers and scientists who have minimal

programming experience. It assumes some knowledge of UNIXTM, (UNIX is a

registered trademark of UNIX System Laboratories Inc. in the U.S.A. and in

other countries), as well as an entry-level knowledge of how to use HP VEE to

build models.

About This Manual. This manual contains detailed reference information

regarding all the features included in HP VEE. It contains information for

both the HP VEE-Engine and the HP VEE-Test products. Any diÃerences

between the use of the products are noted in the text.

This manual is structured as follows:

Content of this Manual

Chapter or

Appendix

Summary

1:\Menu Overview" An overview of all the menus in HP VEE.

2:\General Reference" A reference of the features in all the HP VEE

menus, except for those features contained in

the Math and AdvMath menus.

3:\Formula (Math and AdvMath)

Reference"

A reference of the features in the Math and

AdvMath menus.

A:\Data Type Conversions" Reference information about the data type

conversions which occur on input terminals in

HP VEE.

B:\ASCII Table" Reference tables of ASCII 7-bit codes.

Glossary

Index

For more information on interacting with and using HP VEE, including

techniques you can use to build and modify HP VEE models, please see

Getting Started with HP VEE-Engine and HP VEE-Test and Using HP

VEE-Engine and HP VEE-Test .

iv

Conventions Used in this Manual

This manual uses the following typographical conventions:

Example Represents

Installing HP VEE Italicized words are used for book titles and for

emphasis.

File Computer font represents text you will see on the screen,

including menu names, features, or text you have to

enter.

cat Õlename In this context, the word in computer font represents

text you type exactly as shown, and the italicized word

represents an argument that you must replace with an

actual value.

File =) Open Features separated with the arrow indicate the order of

selection from a menu.

Zoom Out | In 2x | In

5x

Choices in computer font, separated with a bar (|),

indicates that you should choose one of the options.

ÄReturnÅ The keycap font graphically represents a key on the

workstation's keyboard.

Press ÄCTRL-OÅ Dash-separated keys represent a combination of keys on

the workstation's keyboard that you should press at the

same time.

v

Contents

1. Menu Overview

File Menu . 1-2

Edit Menu . 1-3

Flow Menu . 1-4

Device Menu . 1-5

I/O Menu . 1-6

Data Menu . 1-7

Math Menu . 1-8

AdvMath Menu . 1-9

Display Menu . 1-10

Help Menu . 1-11

2. General Reference

Access Array . 2-2

Access Record . 2-3

Accumulator . 2-4

Activate Breakpoints 2-5

Add Control Input (Object Menu) 2-6

Add Data Input (Object Menu) 2-7

Add Data Output (Object Menu) 2-9

Add Error Output (Object Menu) 2-10

Add To Panel . 2-11

Add XEQ Input (Object Menu) 2-12

Advanced HP-IB . 2-13

Advanced I/O . 2-14

Allocate Array . 2-15

Alloc Complex . 2-16

Alloc Coord . 2-17

Alloc Integer . 2-18

Alloc PComplex . 2-20

Contents-1

Alloc Real . 2-21

Alloc Text . 2-23

AlphaNumeric . 2-24

Auto Line Routing . 2-25

Beep . 2-26

Break . 2-27

Breakpoint (Object Menu) 2-28

Breakpoints . 2-29

Build Arb Waveform 2-30

Build Complex . 2-31

Build Coord . 2-32

Build Data . 2-33

Build PComplex . 2-34

Build Record . 2-35

Build Spectrum . 2-37

Build Waveform . 2-39

Bus I/O Monitor . 2-40

Bus Operations . 2-43

Call Function . 2-44

Clean Up Lines . 2-47

Clear All Breakpoints 2-48

Clear Breakpoints . 2-49

Clone . 2-50

Clone (Object Menu) 2-51

Collector . 2-52

Comparator . 2-55

Component Driver . 2-57

Complex . 2-59

Complex Plane . 2-61

Concatenator . 2-66

Conditional . 2-68

ConÕgure I/O . 2-70

ConÕrm (OK) . 2-72

Constant . 2-73

Cont . 2-75

Coord . 2-76

Copy . 2-78

Counter . 2-79

Contents-2

Create UserObject . 2-80

Cut . 2-83

Cut (Object Menu) . 2-84

Date/Time . 2-85

Delay . 2-88

Delete (Object Menu) 2-90

Delete Bitmap (Object Menu) 2-91

Delete Input (Object Menu) 2-92

Delete Library . 2-93

Delete Line . 2-95

Delete Output (Object Menu) 2-96

DeMultiplexer . 2-97

Detail . 2-98

Device Event . 2-99

Direct I/O . 2-102

Do . 2-105

Edit UserFunction . 2-106

Enum . 2-107

Escape . 2-109

Execute Program . 2-110

Exit . 2-114

Exit Thread . 2-115

Exit UserObject . 2-116

For Count . 2-117

For Log Range . 2-119

Formula . 2-121

For Range . 2-123

From . 2-125

From DataSet . 2-126

From File . 2-129

From StdIn . 2-132

From String . 2-135

Function Generator . 2-137

Gate . 2-139

Get Field . 2-140

Get Global . 2-142

Get Mappings . 2-144

Get Values . 2-146

Contents-3

Globals . 2-148

Glossary . 2-149

Help (Object Menu) . 2-150

How To . 2-151

HP BASIC/UX . 2-152

HP-UX Escape . 2-153

If A == B . 2-154

If A >= B . 2-155

If A > B . 2-156

If A <= B . 2-157

If A < B . 2-158

If A != B . 2-159

If/Then/Else . 2-160

Import Library . 2-162

Init HP BASIC/UX . 2-165

Instrument . 2-166

Integer . 2-168

Integer Slider . 2-170

Interface Event . 2-172

Interface Operations . 2-177

JCT . 2-179

Layout (Object Menu) 2-180

Line Probe . 2-181

Logging AlphaNumeric 2-183

Magnitude Spectrum 2-184

Magnitude vs Phase . 2-189

Merge . 2-195

Merge Library . 2-196

Merge Record . 2-198

Meter . 2-199

Move Objects . 2-200

Move (Object Menu) 2-201

New . 2-202

Next . 2-203

Noise Generator . 2-204

Note Pad . 2-205

Number Formats . 2-206

Object Menu . 2-207

Contents-4

OK . 2-209

On Cycle . 2-210

On Features . 2-212

On Help . 2-213

On Instruments . 2-214

On Version . 2-215

Open . 2-216

Panel . 2-217

Paste . 2-218

PComplex . 2-219

Phase Spectrum . 2-221

Plotter ConÕg . 2-226

Polar Plot . 2-229

Preferences . 2-235

Print All . 2-236

Print Objects . 2-239

Print Screen . 2-241

Print Screen (Object) 2-243

Printer ConÕg . 2-244

Pulse Generator . 2-246

Raise Error . 2-248

Random Number . 2-249

Random Seed . 2-250

Real . 2-251

Real Slider . 2-253

Record Constant . 2-255

Repeat . 2-258

Run . 2-260

Sample & Hold . 2-261

Save . 2-263

Save As . 2-264

Save Objects . 2-265

Save Preferences . 2-266

Secure . 2-267

Select Bitmap (Object Menu) 2-268

Select Objects . 2-269

Sequencer . 2-270

Set Breakpoints . 2-278

Contents-5

Set Field . 2-279

Set Global . 2-282

Set Mappings . 2-284

Set Values . 2-286

Shift Register . 2-288

Short Cuts . 2-289

Show ConÕg (Object Menu) 2-290

Show Data Flow . 2-291

Show Description . 2-292

Show Exec Flow . 2-293

Show Label (Object Menu) 2-294

Show Terminals (Object Menu) 2-295

Show Title (Object Menu) 2-296

Size (Object Menu) . 2-297

Sliding Collector . 2-298

Spectrum (Freq) . 2-300

SPOLL . 2-301

Start . 2-302

State Driver . 2-303

Step . 2-305

Stop . 2-306

Stop (Object) . 2-307

Strip Chart . 2-308

SubRecord . 2-313

Terminals . 2-315

Text . 2-316

Timer . 2-318

To . 2-319

To DataSet . 2-320

To File . 2-322

To/From HP BASIC/UX 2-325

To/From Named Pipe 2-328

To Printer . 2-331

To StdErr . 2-334

To StdOut . 2-337

To String . 2-340

Toggle . 2-343

Trig Mode . 2-345

Contents-6

UnBuild Complex . 2-346

UnBuild Coord . 2-347

UnBuild Data . 2-348

UnBuild PComplex . 2-349

UnBuild Record . 2-350

UnBuild Spectrum . 2-352

UnBuild Waveform . 2-353

Until Break . 2-354

User Function . 2-356

UserObject . 2-358

View Globals . 2-361

Virtual Source . 2-362

VU Meter . 2-363

Wait for SRQ . 2-364

Waveform (Time) . 2-365

Waveform Defaults . 2-370

X vs Y Plot . 2-371

XY Trace . 2-376

3. Formula (Math and AdvMath) Reference

Mathematically Processing Data 3-2

General Concepts . 3-3

Using Strings in Expressions 3-4

Using Arrays in Expressions 3-4

Examples . 3-5

Building Arrays in Expressions 3-6

Examples . 3-6

Using Global Variables in Expressions 3-7

Using Records in Expressions 3-8

Using Dyadic Operators 3-9

Precedence of Dyadic Operators 3-10

Data Type Conversion 3-10

Record Considerations 3-11

Coord Considerations 3-12

Spectrum Considerations 3-13

Data Shape Considerations 3-13

Math Output Types 3-14

Legend for the Math Output Types Table 3-17

Contents-7

Input Mappings Key for the Math Output Types Table . . 3-17

Output Mappings Key for the Math Output Types Table . 3-17

Notes Referenced in the Math Output Types Table 3-17

AdvMath Output Types 3-17

Legend for the AdvMath Output Types Table 3-21

Input Mappings Key for the AdvMath Output Types Table 3-21

Output Mappings Key for the AdvMath Output Types Table 3-21

Notes Referenced in the AdvMath Output Types Table . . 3-21

abs(x) . 3-22

acos(x) . 3-23

acosh(x) . 3-24

acot(x) . 3-25

acoth(x) . 3-26

+ (add) . 3-27

+ - * / . 3-29

Ai(x) . 3-31

~= (almost equal to) 3-32

AND . 3-35

Array . 3-37

asin(x) . 3-38

asinh(x) . 3-39

atan(x) . 3-40

atan2(y,x) . 3-41

atanh(x) . 3-42

bartlet(x) . 3-43

Bessel . 3-45

beta(x,y) . 3-46

Bi(x) . 3-47

binomial(a,b) . 3-48

bit(x,n) . 3-50

bitAnd(x,y) . 3-51

bitCmpl(x) . 3-52

bitOr(x,y) . 3-53

bits(str) . 3-54

bitShift(x,y) . 3-55

Bitwise . 3-56

bitXor(x,y) . 3-57

blackman(x) . 3-58

Contents-8

Calculus . 3-60

ceil(x) . 3-62

clearBit(x,n) . 3-63

clipLower(x,a) 3-64

clipUpper(x,a) 3-66

cofactor(x,row,col) 3-68

comb(n,r) . 3-69

Complex Parts 3-71

concat(x,y) . 3-72

conj(x) . 3-74

convolve(a,b) . 3-75

cos(x) . 3-76

cosh(x) . 3-77

cot(x) . 3-78

coth(x) . 3-79

cubert(x) . 3-80

Data Filtering 3-81

defIntegral(x,a,b) 3-82

deriv(x,order) 3-84

derivAt(x,order,pt) 3-86

det(x) . 3-88

div (truncated division) 3-89

/ (divide) . 3-91

dmyToDate(d,m,y) 3-93

== (equal to) 3-94

erf(x) . 3-96

erfc(x) . 3-97

exp(x) . 3-98

exp10(x) . 3-99

^ (exponent) . 3-100

exponential regression 3-102

factorial(n) . 3-104

Ãt(x) . 3-105

Œoor(x) . 3-107

fracPart(x) . 3-108

Freq Distribution 3-109

gamma(x) . 3-110

Generate . 3-111

Contents-9

> (greater than) 3-112

>= (greater than or equal to) 3-114

hamming(x) . 3-116

hanning(x) . 3-118

hmsToHour(h,m,s) 3-120

hmsToSec(h,m,s) 3-121

Hyper Bessel . 3-122

Hyper Trig . 3-123

i0(x) . 3-124

i1(x) . 3-125

identity(x) . 3-126

iÃt(x) . 3-127

im(x) . 3-129

init(x,val) . 3-130

integral(x) . 3-132

intPart(x) . 3-134

inverse(x) . 3-135

j(x) . 3-136

j0(x) . 3-137

j1(x) . 3-138

jn(x,n) . 3-139

k0(x) . 3-140

k1(x) . 3-141

< (less than) . 3-142

<= (less than or equal to) 3-144

linear regression 3-146

log(x) . 3-148

log10(x) . 3-149

logarithmic regression 3-150

Logical . 3-152

logMagDist(x, from,thru,logStep) 3-153

logRamp (numElem,from, thru) 3-155

mag(x) . 3-156

magDist(x,from, thru,step) 3-157

matDivide(numer, denom) 3-159

matMultiply(A,B) 3-161

Matrix . 3-162

max(x) . 3-163

Contents-10

maxIndex(x) . 3-164

maxX(x) . 3-165

mday(aDate) . 3-166

mean(x) . 3-167

meanSmooth(x, numPts) 3-168

median(x) . 3-170

min(x) . 3-171

minIndex(x) . 3-172

minor(x,row,col) 3-173

minX(x) . 3-174

mod (modulo) 3-175

mode(x) . 3-177

month(aDate) 3-178

movingAvg(x, numPts) 3-179

* (multiply) . 3-181

NOT . 3-183

!= (not equal to) 3-185

now() . 3-187

OR . 3-188

ordinal(x) . 3-190

perm(n,r) . 3-191

phase(x) . 3-193

poly(x,vec) . 3-194

Polynomial . 3-195

polynomial regression 3-196

polySmooth(x) 3-198

Power . 3-200

power curve regression 3-201

Probability . 3-203

prod(x) . 3-204

ramp(numElem, from,thru) 3-205

random(low,high) 3-206

randomize(x, low,high) 3-208

randomSeed(seed) 3-211

re(x) . 3-212

Real Parts . 3-213

recip(x) . 3-214

rect(x) . 3-215

Contents-11

Regression . 3-217

Relational . 3-219

rms(x) . 3-221

rotate(x,numElem) 3-222

round(x) . 3-224

sdev(x) . 3-225

setBit(x,n) . 3-226

Signal Processing 3-227

signof(x) . 3-228

sin(x) . 3-229

sinh(x) . 3-230

sort(x,direction,Õeld) 3-231

sq(x) . 3-233

sqrt(x) . 3-234

Statistics . 3-235

strDown(str) . 3-236

strFromLen(str,from,len) 3-237

strFromThru(str,from,thru) 3-238

String . 3-239

strLen(str) . 3-240

strPosChar(str,char) 3-241

strPosStr(str1,str2) 3-243

strRev(str) . 3-244

strTrim(str,trimlist) 3-245

strUp(str) . 3-246

- (subtract) . 3-247

sum(x) . 3-249

tan(x) . 3-251

tanh(x) . 3-252

Time & Date . 3-253

totSize(x) . 3-255

transpose(x) . 3-256

Triadic Operator 3-257

Trig . 3-258

vari(x) . 3-259

wday(aDate) . 3-260

xcorrelate(a,b) 3-261

xlogRamp (numElem,from, thru) 3-263

Contents-12

XOR . 3-264

xramp(numElem, from,thru) 3-266

y0(x) . 3-268

y1(x) . 3-269

year(aDate) . 3-270

yn(x,n) . 3-271

A. Data Type Conversions

B. ASCII Table

Glossary

Index

Contents-13

Figures

1-1. The File Menu . 1-2

1-2. The Edit Menu . 1-3

1-3. The Flow Menu . 1-4

1-4. The Device Menu . 1-5

1-5. The I/O Menu . 1-6

1-6. The Data Menu . 1-7

1-7. The Math Menu . 1-8

1-8. The AdvMath Menu 1-9

1-9. The Display Menu 1-10

1-10. The Help Menu . 1-11

Tables

3-1. Math Output Types 3-14

3-2. AdvMath Output Types 3-18

A-1. Promotion and
NNNNNNNNNNNNNNNNNNNNNNNNNN

Demotion of Types In Input Terminals . . . A-2

Contents-14

1

Menu Overview

This chapter provides a summary of all the menus in HP VEE.

HP VEE has ten menus that provide you with quick access to its many

features. Selecting a feature will result in either some action (such as opening

a Õle) or some object (a control, display, or function). The following sections

summarize the HP VEE menus in the order that they appear, from left to

right, on the menu bar in the HP VEE window.

Menu Overview 1-1

File Menu

The File menu features allow you to perform actions that aÃect the entire

model.

Figure 1-1. The File Menu

1-2 Menu Overview

Edit Menu

The Edit menu features allow you to perform actions that aÃect multiple

objects and lines, as well as debug the model.

Figure 1-2. The Edit Menu

Menu Overview 1-3

Flow Menu

The Flow menu features are objects that aÃect the way the model runs.

Figure 1-3. The Flow Menu

1-4 Menu Overview

Device Menu

The Device menu features are objects that allow you to generate and process

data.

Figure 1-4. The Device Menu

Menu Overview 1-5

I/O Menu

The I/O (Input/Output) menu features are objects that allow you to get data

from Õles, programs, and instruments (HP VEE-Test only).

Figure 1-5. The I/O Menu

1-6 Menu Overview

Data Menu

The Data menu features are objects that allow you to specify data of speciÕc

types and shapes.

Figure 1-6. The Data Menu

Menu Overview 1-7

Math Menu

The Math menu features are objects that specify common mathematical

functions.

Figure 1-7. The Math Menu

1-8 Menu Overview

AdvMath Menu

The AdvMath (Advanced Math) menu features are objects that specify more

specialized mathematical functions for engineering.

Figure 1-8. The AdvMath Menu

Menu Overview 1-9

Display Menu

The Display menu features are objects that allow you to view data in

alphanumeric or graphical forms.

Figure 1-9. The Display Menu

1-10 Menu Overview

Help Menu

The Help menu features allow you to Õnd information about HP VEE.

Figure 1-10. The Help Menu

Menu Overview 1-11

2

General Reference

This chapter contains detailed reference information about the features in

all the HP VEE menus, except for those features contained in the Math and

AdvMath menus. (For information about features in Math and AdvMath, please

refer to chapter 3.) This chapter is ordered alphabetically by feature name to

help you Õnd information about each feature quickly and easily.

General Reference 2-1

Access Array

A menu item.

Use

Use Access Array to access the following array modiÕcation objects:

Set Values

Get Values

Set Mappings

Get Mappings

Location

Data =) Access Array =)

Notes

These objects are usually used after the Allocate Array objects to modify the

elements or add mappings to a newly created array.

See Also

Allocate Array, Get Mappings, Set Mappings, Get Values, and Set Values.

2-2 General Reference

Access Record

Access Record

A menu item.

Use

Use Access Record to access the following record modiÕcation objects:

Merge Record

SubRecord

Set Field

Get Field

Location

Data =) Access Record =)

Notes

These objects are usually used after the Build Record object to modify the

elements, merge records or access portions of the record.

See Also

Build Record, Merge Record, SubRecord, Set Field, and Get Field.

General Reference 2-3

Accumulator

An object that displays and outputs a running sum of its input values.

Use

Use Accumulator to keep a running total.

Location

Device =) Accumulator

Object Menu

Clear - Clears the contents of the Accumulator.

Clear at PreRun - Clears the contents of the Accumulator at PreRun.

Default is on (checked).

Clear at Activate - Clears the contents of the Accumulator at Activate.

Default is on (checked).

Note

The type of the accumulated output data is the same as the Õrst data input

value since the last clear. Thus, if the Accumulator is input a Real and an

Int32, it outputs a Real.

If the Accumulator data input is activated with a Real then later is activated

by a Complex, the current accumulated data is Real; the object returns an

error because it cannot convert the Complex data to Real.

See Also

Counter.

2-4 General Reference

Activate Breakpoints

Activate Breakpoints

When checked, enables all set breakpoints. When not checked, allows the

model to run normally.

Use

Use Activate Breakpoints to toggle between debugging and normal model

running. When Activate Breakpoints is on, the menu selection is checked.

When a breakpoint is encountered, the models stops running.

Location

Edit =) Breakpoints =) Activate Breakpoints

Notes

The black border surrounding the objects with set breakpoints is still present,

even when Activate Breakpoints is oÃ. The object menu shows Set

Breakpoint as being checked regardless of the state of Activate Breakpoints.

When a breakpoint is set on an object in a UserObject (that is displayed as an

icon and Show Panel on Exec is oÃ), Step ignores the breakpoint.

See Also

Breakpoint (Object Menu), Clear All Breakpoints, Clear Breakpoint, and

Set Breakpoint.

General Reference 2-5

Add Control Input (Object Menu)

Adds an asynchronous control input terminal to the object.

Use

Use Add Control Input to add asynchronous inputs, such as Reset or Clear,

to objects.

After selecting Add Control Input, choose the control to add from a dialog

box. The terminal for a control input is a diÃerent color than for a data input.

Location

On each object menu =) Terminals =) Add Control Input

Notes

Control inputs are not available on all objects.

Activation of a control input pin does not cause the object to operate, it only

forces that particular action to happen (for example, Clear).

Often the actions performed by a control input may also be done from a

selection on the object menu or by a button on the open view.

See Also

Add Data Output, Add XEQ Input, Delete Input, Object Menu, and Terminals.

2-6 General Reference

Add Data Input (Object Menu)

Add Data Input (Object Menu)

Adds a data input terminal to the object.

Use

Use Add Data Input to increase the number of data input lines the object

processes. On some objects additional data inputs are automatically named A,

B, C, and so on. You can change the names of most terminals to names that

are more meaningful to you.

Although you cannot change the data type or shape of most input terminals,

you can change these constraints on some objects, such as If/Then, Formula,

Shift Register, and objects under the I/O menu.

Generally, you should not change the data type or shape of an input terminal;

if a constraint is changed from Any, the input data must be converted to the

terminal constraint before the object processes the data. If the conversion can't

take place, the object returns an error.

Location

On each object menu =) Terminals =) Add Data Input

Notes

Add Data Input is only available from objects that permit additional data

inputs. Add Data Input is not available from preconÕgured objects such as

most Math and AdvMath objects and all Conditional objects.

Short Cuts

You can quickly add a data input terminal by placing the cursor over the input

terminal display area and then pressing ÄCTRLÅÄ AÅ. Each press of ÄCTRLÅÄAÅ adds

an additional data input terminal.

General Reference 2-7

Add Data Input (Object Menu)

See Also

Add Data Output, Add Control Input, Add XEQ Input, Conditional,

Delete Input, Math, Output Terminals, Object Menu, Show Terminals, and

Terminals.

2-8 General Reference

Add Data Output (Object Menu)

Add Data Output (Object Menu)

Adds a data output terminal to the object.

Use

Use Add Data Output to increase the number of data output lines. On some

objects, additional data inputs are automatically named X, Y, Z, W, V and

so on; you can change these data output names to names that are more

meaningful to you.

The output terminal container information (data type and shape) is not

displayed in the terminal information dialog box until after the model is run.

Location

On each object menu =) Terminals =) Add Data Output

Notes

Add Data Output is only available from objects that permit additional data

outputs. Add Data Output is not available from preconÕgured objects such as

most Math and AdvMath objects and all Conditional objects.

Short Cuts

You can quickly add a data output terminal by placing the cursor over the

output terminal display area and then pressing ÄCTRLÅÄ AÅ. Each press of

ÄCTRLÅÄAÅ adds an additional data output terminal.

See Also

Add Data Input, Add Error Output, Delete Output, Instrument, Object

Menu, and Terminals.

\Formula Reference" chapter.

General Reference 2-9

Add Error Output (Object Menu)

Adds an error output terminal to the object.

Use

Use Add Error Output to allow your model to trap and process HP VEE

errors. If an Error pin is on an object and the object encounters an error, no

error dialog box is displayed, the error number is output to the Error pin.

If an error is trapped, the error output pin and the sequence output pin are

activated; no data is output on the data output pins.

The error output pin outputs a Scalar Int32 container with the value of the

error number that was generated.

Location

On the object menu =) Terminals =) Add Error Output

Notes

Add Error Output is available from almost all objects. Some objects, such as

Bus Monitor and Note Pad, never return an error, therefore, they do not allow

the addition of an error output pin.

An error output terminal outputs the error number of the HP VEE error. It

does not output the meaning of the number or any recovery information. Error

information is available under the Error Code topic under Help =) How To

An Escape object in a UserObject can provide the error number that is output

by the Error pin.

The error pin on a UserObject traps any errors for any object in the

UserObject.

See Also

Escape, Object Menu, Terminals, and UserObject.

2-10 General Reference

Add To Panel

Add To Panel

Puts a copy of selected objects on the panel view of the model or a

UserObject.

Use

Use Add To Panel to place a set of selected objects on the panel view to create

a user interface to your model. For example, the panel view could contain only

the input and display objects for a model; the internal processes of the model

are not displayed.

When a panel view exists and the model is not secured, there are two buttons

on the left side of the HP VEE or UserObject's title bar: Detail and Panel.

Press these buttons to see the desired view.

If you select Add To Panel and a panel view does not exist, it is created.

Location

Edit =) Add To Panel or

UserObject object menu Edit =) Add To Panel

Notes

The Add To Panel feature is not available if no objects are selected.

The panel view of a UserObject may be added to the main panel view or the

panel view of a UserObject that is a surrounding context.

See Also

Create UserObject, Secure, and Select Objects.

General Reference 2-11

Add XEQ Input (Object Menu)

Adds an XEQ input pin to the object.

Use

Use Add XEQ Input to add an XEQ pin to the object. When this pin is

activated, the object operates using the data that is currently on its inputs

(even if some inputs are nil or contain old data).

The terminal for XEQ is a diÃerent color than that of a data input.

Location

On each object menu =) Terminals =) Add XEQ Input.

Notes

Add XEQ Input is only available from Confirm (OK) and UserObject only.

Set Values and Collector already have XEQ inputs.

See Also

Add Control Input, Add Data Input, Add Data Output, Collector, Delete

Input, Object Menu, OK, Set Values, Terminals and UserObject.

2-12 General Reference

Advanced HP-IB

Advanced HP-IB

This menu item has been replaced with Advanced I/O.

General Reference 2-13

Advanced I/O

A menu item. This feature is available in HP VEE-Test only.

Use

Use Advanced I/O to access the following objects for low-level control of

the HP-IB and VXI interfaces (such as bus commands, polling, and service

requests):

Interface Operations

Device Event

Interface Event

Location

I/O =) Advanced I/O =)

See Also

Bus I/O Monitor, Device Event, Interface Event, and Interface

Operations.

2-14 General Reference

Allocate Array

Allocate Array

A menu item.

Use

Use Allocate Array to access the following array building and initialization

objects:

Alloc Text

Alloc Integer

Alloc Real

Alloc Coord

Alloc Complex

Alloc PComplex

Location

Data =) Allocate Array =)

Notes

Use Set Values to modify arrays already built.

See Also

Alloc Coord, Alloc Complex, Alloc Integer, Alloc PComplex, Alloc Text,

Alloc Real, Get Values, Set Mappings, and Set Values.

General Reference 2-15

Alloc Complex

An object that creates a Complex array.

Use

Use Alloc Complex to create an array of Complex elements.

Location

Data =) Allocate Array =) Complex

Open View Parameters

Num Dims - The number of dimensions in the output array. Num Dimensions

must be an integer. Minimum is 1. Maximum is 10. Default is 1.

Init Value - The value to place in each array element. Default is (0, 0).

Size - The number of elements in the dimension. There is one Õeld per

dimension. Default is 10.

Init Value and Size may be set on the object or from data input pins.

Notes

To change the values of individual elements, use Set Values.

If the Num Dims value is changed, the view automatically creates or deletes

Õelds on the open view so that the number of dimension size Õelds matches the

value of the Num Dims value.

The output array is not mapped. Use Set Mappings to map the dimensions of

the array.

See Also

Complex Constant, Get Values, Set Mappings, and Set Values.

2-16 General Reference

Alloc Coord

Alloc Coord

An object that creates a Coord array.

Use

Use Alloc Coord to create an array of Coord elements.

Location

Data =) Allocate Array =) Coord

Open View Parameters

Num Dims - The number of dimensions in the output array. Num Dimensions

can only be 1 since Coord arrays of greater than 1 dimension are not allowed

in HP VEE.

Num Coord Dims - The number of values in each Coord.

Init Value - The value to place in each array element. Default is (0, 0),

(0,0,0), or (0,0,0,0).

Size - The number of elements in the dimension. Default is 10.

Init Value and Size may be set on the object or from data input pins.

Notes

To change the values of individual elements, use Set Values.

See Also

Coord, Get Values, and Set Values.

General Reference 2-17

Alloc Integer

An object that creates an integer array.

Use

Use Alloc Integer to create an array of Integer elements.

Location

Data =) Allocate Array =) Integer

Open View Parameters

Num Dims - The number of dimensions in the output array. Num Dimensions

must be an integer number. Minimum is 1. Maximum is 10. Default is 1.

Init Value j Lin Ramp j Log Ramp

Init Value - The values to place in each array element. This value is

interpreted as an integer. Default is 0.

Lin Ramp - A linear ramp of integer values that are as equally spaced as

possible between the ramp initial value (inclusive) and the ramp ending

value (inclusive). This option is only available if Num Dims = 1.

Log Ramp - A ramp of integer values that are logarithmically spaced as

possible between the ramp initial value (inclusive) and the ramp ending

value (inclusive). This option is only available if Num Dims = 1.

Size - The number of elements in the dimension. There is one Õeld per

dimension. Default is 10.

Init Value and Size may be set on the object or from data input pins.

Notes

To change the values of individual elements, use Set Values.

If the Num Dims value is changed, the view automatically creates or deletes

Õelds on the open view so that the number of dimension size Õelds matches the

value of the Num Dims value.

2-18 General Reference

Alloc Integer

The output array is not mapped. Use Set Mappings to map the dimensions of

the array.

See Also

Integer, Get Values, Set Mappings, and Set Values.

General Reference 2-19

Alloc PComplex

An object that creates a PComplex array.

Use

Use Alloc PComplex to create an array of PComplex elements.

Location

Data =) Allocate Array =) PComplex

Open View Parameters

Num Dims - The number of dimensions in the output array. Num Dimensions

must be an integer number. Minimum is 1. Maximum is 10. Default is 1.

Init Value - The value to place in each array element. The initial value's

phase is normalized to fall between pi and -pi radians; the number's

magnitude is converted to a positive if it was negative and the phase angle

was shifted 180 degrees. Default is (0, @0).

Size - The number of elements in the dimension. There is one Õeld per

dimension. Default is 10.

Init Value and Size may be set on the object or from data input pins.

Notes

Set Values changes the values of individual elements.

If the Num Dims value is changed, the view automatically creates or deletes

Õelds on the open view so that the number of dimension-sized Õelds matches

the Num Dims value.

The output array is not mapped. Use Set Mappings to map the dimensions of

the array.

See Also

Get Values, PComplex, Set Mappings, and Set Values.

2-20 General Reference

Alloc Real

Alloc Real

An object that creates a real array.

Use

Use Alloc Real to create an array of Real elements.

Location

Data =) Allocate Array =) Real

Open View Parameters

Num Dims - The number of dimensions in the output array. Num Dimensions

must be an integer number. Minimum is 1. Maximum is 10. Default is 1.

Init Value j Lin Ramp j Log Ramp

Init Value - The value to place in each array element. Default is 0.

Lin Ramp - A linear ramp of real values that are as equally spaced as

possible between the ramp initial value (inclusive) and the ramp ending

value (inclusive). This option is only available if Num Dims = 1.

Log Ramp - A ramp of real values that are logarithmically spaced between

the ramp initial value (inclusive) and the ramp ending value (inclusive).

This option is only available if Num Dims = 1.

Size - The number of elements in the dimension. There is one Õeld per

dimension. Default is 10.

Init Value and Size may be set on the object or from data input pins.

Notes

To change the values of individual elements, use Set Values.

If the Num Dims value is changed, the view automatically creates or deletes

Õelds on the open view so that the number of dimension-sized Õelds matches

the Num Dims value.

General Reference 2-21

Alloc Real

The output array is not mapped. Use Set Mappings to map the dimensions of

the array.

See Also

Get Values, Real, Set Mappings, and Set Values.

2-22 General Reference

Alloc Text

Alloc Text

An object that creates a Text array.

Use

Use Alloc Text to create an array of Text elements.

Location

Data =) Allocate Array =) Text

Open View Parameters

Num Dims - The number of dimensions in the output array. Num Dimensions

must be an integer number. Minimum is 1. Maximum is 10. Default is 1.

Init Value - The value to place in each array element. This value is

interpreted as a string. Default is null (an empty string).

Size - The number of elements in the dimension. Default is 10.

Init Value and Size may be set on the object or from data input pins.

Notes

To change the values of individual elements, use Set Values.

If the Num Dims value is changed, the view automatically creates or deletes

Õelds on the open view so that the number of dimension-sized Õelds matches

the Num Dims value.

The output array is not mapped. Use Set Mappings to map the dimensions of

the array.

See Also

Get Values, Set Mappings, Set Values, and Text.

General Reference 2-23

AlphaNumeric

An object that displays alphanumeric data.

Use

Use AlphaNumeric to display any of the data types as a single value, an Array

1D, or a Array 2D. To view an array, scroll the display with the scroll bars.

Location

Display =) AlphaNumeric

Object Menu

Clear At PreRun - Clear the display at PreRun. Default is on (checked).

Clear At Activate - Clear the display at UserObject Activation. Default is

on.

Number Formats - SpeciÕes a diÃerent display format for numbers.

Notes

A row of asterisks ***" is displayed if the current width of the AlphaNumeric

object is too small to display the default precision of the numeric type. Resize

the object to display the data.

If there is a 2D Array, you will see a scroll bar.

Arrays that are three-dimensional and larger are displayed as the string 3D

Array and so forth.

ASCII 0-30 are dependent on font and may not even be readable.

See Also

Logging AlphaNumeric and Number Formats.

2-24 General Reference

Auto Line Routing

Auto Line Routing

Enables/disables automatic line routing preference.

Use

Set Auto Line Routing to have HP VEE draw only horizontal and vertical

lines with lines routed around other objects. When Auto Line Routing is set, a

checkmark appears next to it in the menu.

Location

File =) Preferences =) Line Routing

Notes

When Auto Line Routing is set, the lines connected to an object are rerouted

when that object is moved or sized. It may take several moments to redraw the

lines for a complicated model.

If Auto Line Routing is oÃ, connecting lines are straight from pin to pin

(unless tacked). Choose Clean Up Lines to reroute lines around objects.

When a particular routing seems complex, move some of the objects apart to

give the Auto Line Routing feature more room to Õnd a shorter path.

After using Clean up Lines, sometimes it is diœcult to determine whether

two lines cross each other or if one line is connected to three places. Use Line

Probe to display the endpoints of the lines.

To set the default mode for Auto Line Routing, choose Save Preferences.

See Also

Clean Up Lines, Preferences, and Save Preferences.

General Reference 2-25

Beep

An object that generates an audible tone.

Use

Use Beep to generate a tone of a speciÕed frequency, duration, and volume.

Location

Display =) Beep

Open View Parameters

Frequency (Hz) - The frequency of the tone in Hertz. Default is 1000 Hz.

Duration (sec) - The time in seconds for the tone to last. Default is 0.1 sec.

Volume (0-100) - The relative volume of the tone, where 0 is silent and 100

is the loudest. Default is 80.

All of the three open view parameters can be added as data input terminals.

Notes

A Frequency or Volume value less than or equal to zero will pause for the

speciÕed duration.

The Beep object may complete execution (activate its sequence output pin)

before a long duration tone has completed. Execution of subsequent Beep

objects, however will pause model execution until the previous tone has

completed.

The functionality of the Beep object is hardware dependent. In some cases,

one or more of the open-view parameters may not aÃect the actual tone

generated. Also, some computers do not have internal speakers and may

require an external speaker module. Refer to your computer owner's manual

for information about its audio output capabilities.

2-26 General Reference

Break

Break

An object that terminates the current iteration loop.

Use

Use Break to stop the loop and continue execution through the sequence

output pin of the iterator.

Location

Flow =) Repeat =) Break

Note

Break is usually used with Until Break objects. It may also be used with

other iteration objects and is often used with an If/Then/Else object to

conditionally stop iteration.

See Also

For Count, For Range, For Log Range, Next, On Cycle, and Until Break.

General Reference 2-27

Breakpoint (Object Menu)

Enables the breakpoint on the object when checked; disables the breakpoint on

the object when not checked.

Use

Use Breakpoint as a debugging tool to stop the execution of the model before

this object operates. An arrow points to the object that operates next. To

continue execution, press the Cont or Step button in the upper right corner of

the HP VEE window on the title bar.

When a breakpoint is set by the object menu or selected from the Edit menu,

the Breakpoint selection is checked and the object is highlighted with a black

(default) border.

When a breakpoint is set on an object in a UserObject (that is displayed as an

icon and Show Panel on Exec is oÃ), Step ignores the breakpoint.

Location

On each object menu =) Breakpoint

Notes

To set breakpoints on multiple objects at the same time, use the Set

Breakpoints feature from the Edit menu.

Breakpoints are saved with the model or UserObject.

See Also

Activate Breakpoints, Clear All Breakpoints, Clear Breakpoints, Cont,

Object Menu, Set Breakpoints, and Step.

2-28 General Reference

Breakpoints

Breakpoints

A menu item.

Use

Use Breakpoints to access the following debugging options.

Set Breakpoints

Clear Breakpoints

Clear All Breakpoints

Activate Breakpoints

Location

Edit =) Breakpoints =)

Notes

When a breakpoint is set on an object in a UserObject (that is displayed as an

icon and Show Panel on Exec is oÃ), Step ignores the breakpoint.

See Also

Breakpoint (Object Menu), Line Probe, Show Data Flow, Show Exec Flow,

and Step.

General Reference 2-29

Build Arb Waveform

An object that creates a waveform from a set of coordinate data.

Use

Use Build Arb Waveform to create a uniformly sampled waveform from an

Array 1D of Coord values.

Location

Data =) Build Data =) Arb Waveform

Open View Parameters

Num Points - The number of points in the output waveform. Default is 256

and is set in Waveform Defaults.

Num Points may be set from the icon or added as a data input.

Notes

Build Arb Waveform uses the following formula:

dx = (Xmax-Xmin)/Num Points

Xvalue = Xmin + (point * dx)

Therefore, the last data point is not the last independent value of Coord.

The independent values (x) of each Coord must be greater than, or equal to,

the independent value of the previous Coord in the array.

The Input Coord array must be (x,y) pairs, not (x,y,z).

See Also

Build Waveform, Comparator, Coord, Function Generator, Noise Generator,

Pulse Generator, and Waveform Defaults.

2-30 General Reference

Build Complex

Build Complex

An object that creates a Complex number.

Use

Use Build Complex to create a Complex number from real and imaginary

components.

Location

Data =) Build Data =) Complex

Notes

If one of the inputs is an array, the other input must be either a Scalar or an

array of the same size and shape. Both inputs are converted to type Real. The

output is the same size and shape as the inputs. The input values' mappings

are ignored and the output Complex value is not mapped.

See Also

Build Data and UnBuild Complex.

General Reference 2-31

Build Coord

An object that creates a Coord from Real numbers.

Use

Use Build Coord to build a Coord from Real components.

Location

Data =) Build Data =) Coord

Notes

The number of data inputs determines the number of coordinate Õelds. The

default (and minimum) is 2 (x,y). The maximum number of coordinate Õelds is

10.

If one of the inputs is an array, the other input(s) must be either a Scalar or

an array of the same size and shape. All inputs are converted to type Real.

The output is of the same shape as the inputs. The input values' mappings are

ignored.

The data input shape must be a Scalar or Array 1D.

Note For Coordinate data type, the Õeld names will always be

x,y, z,w, v,u, t,s, r,q even though you may change the input

terminal names.

See Also

Build Data, Coord, UnBuild Coord, and UnBuild Data.

2-32 General Reference

Build Data

Build Data

A menu item.

Use

Use Build Data to access the following objects that create containers of

particular data types from separate components:

Coord

Complex

PComplex

Waveform

Arb Waveform

Spectrum

Record

Location

Data =) Build Data =)

See Also

Allocate Array, Build Arb Waveform, Build Complex, Build Coord, Build

PComplex, Build Record, Build Spectrum, Build Waveform, Set Mappings,

and Set Values.

General Reference 2-33

Build PComplex

An object that creates a PComplex (polar complex) number from separate

components.

Use

Use Build PComplex to create a PComplex number from the magnitude and

phase components. Units of the phase component are determined by the Trig

Mode setting under Preferences.

Location

Data =) Build Data =) PComplex

Notes

If one of the inputs is an array, the other input must be either a Scalar or an

array of the same size and shape. Both inputs are converted to type Real. The

output is of the same shape as the inputs. The input values' mappings are

ignored and the output PComplex value is not mapped.

The phase of the initial value is normalized to fall between pi and -pi radians;

the magnitude of the number is converted positive if it was negative and the

phase angle was shifted 180 degrees.

See Also

Alloc PComplex, Build, Build Complex, PComplex, Trig Mode, and UnBuild

PComplex.

2-34 General Reference

Build Record

Build Record

An object that creates a record from separate components

Use

Use Build Record to create a record from scalar or array components. The

input data components become Õelds in the output record. The output record

can be either a scalar or a one-dimensional array.

Location

Data =) Build Data =) Record

Open View Parameters

Output Shape|You can set the shape of the output record to either Scalar

or Array 1D.

Notes

The Õelds in the record are named from the names of the corresponding input

terminals. The Õeld names are not case sensitive (lowercase and uppercase

letters are equivalent). Field names may not be duplicated within a single

record. Additional data inputs may be added to create a record with any

number of Õelds. Records of records are allowed (where a Õeld in a record

is itself a record). There is no limit on recursion (except for the available

memory).

If all inputs are scalar quantities, the record on the Record output pin will be a

scalar record consisting of one Õeld for each input, regardless of the speciÕed

Output Shape.

If one or more of the inputs are array, the shape of the resulting record

depends on the speciÕed Output Shape:

If Scalar is speciÕed as the Output Shape, the output record will be a scalar

that consists of one Õeld for each input. Each Õeld will be either a scalar or

an array, the same shape as the corresponding input.

General Reference 2-35

Build Record

If Array 1D is speciÕed as the Output Shape, the output record will be a

one-dimensional array of records with Õelds for each input. If an input is a

scalar or one-dimensional array, the corresponding Õeld in the record will be

a scalar. If an input is an n-dimensional array, the corresponding Õeld will be

an array of n-1 dimensions. If more than one of the inputs are arrays, they

must all have the same size and shape. Let's look at some examples:

If input A is a one-dimensional array 10 elements long and input B is a

scalar, the output will be a one-dimensional record array of 10 elements

with two Õelds, A and B. The individual elements of the A input array will

appear in the individual array elements of Õeld A in the output record.

Input B will be duplicated 10 times in the B Õeld of the output record.

If an input is an array of two or more dimensions, the output record will

still be an Array 1D. For example, if an input Õeld is a two-dimensional

array, 10-by-3 in size, the output record is a one-dimensional array with

a length of 10, but with a Õeld which is a one-dimensional array of 3

elements.

See Also

From DataSet, Get Field, Merge Record, Record Constant, Set Field,

SubRecord, To DataSet, and UnBuild Record.

2-36 General Reference

Build Spectrum

Build Spectrum

An object that creates a Spectrum from separate components.

Use

Use Build Spectrum to build spectrum values from an array of PComplex

numbers and the frequency interval information.

Location

Data =) Build Data =) Spectrum

Example

If you have an Array 1D of [5], PComplex (0,@1), (0,@2), and so forth, and

frequency start equals 11 and stop equals 16, then frequency sample equal 11,

12, 13, 14, 15.

Open View Parameters

Start/Stop Freq jCenter/Span Freq - Determines whether the two type-in

values represent Start/Stop or Center/Span. Either Start/Stop or

Center/Span values can be added as inputs.

Freq Sampling - SpeciÕes whether the frequency sampling values are

sampled linearly or logarithmically. Default is Linear.

Notes

The input PComplex values' mappings are ignored.

HP VEE does not track dB-scaled data. When you perform operations on

dB-scaled data, you must ensure that they are done correctly.

Refer to Using HP VEE , for more information on the dB scaling of Spectrums.

To convert between db- and linearly-scaled data, use the library

models provided with HP VEE in the /usr/lib/veeengine/lib/ or

/usr/lib/veetest/lib/ directory.

General Reference 2-37

Build Spectrum

There are the same number of points as sampling intervals. Each point is at

the beginning of the sampling interval.

See Also

Build Data, Build Waveform, and UnBuild Spectrum.

fft(x) in the \Formula Reference" chapter.

2-38 General Reference

Build Waveform

Build Waveform

An object that creates a Waveform from separate components.

Use

Use Build Waveform to create a Waveform from a Real array of amplitude

values and time span information.

Location

Data =) Build Data =) Waveform

Example

If you have an Array 1D of [5], Complex (0,1), (0,2), and so forth, and

frequency start equals 11 and stop equals 16, then frequency sample equal 11,

12, 13, 14, 15.

Open View Parameters

Time Span - The length of time in seconds over which the y data was sampled.

Time Span may be added as a data input. Default is 20m seconds set in

Waveform Defaults.

Notes

The input values' mappings are ignored. Build Waveform assumes the y data

was sampled linearly at a constant rate over the given interval.

There are the same number of points as sampling intervals. Each point is at

the beginning of the sampling interval.

See Also

Build Arb Waveform, Build Data, Build Spectrum, and UnBuild Waveform.

ifft(x) in the \Formula Reference" chapter.

General Reference 2-39

Bus I/O Monitor

An object that logs the messages sent over an I/O interface path (HP-IB,

GPIO, VXI, or RS-232). This feature is available in HP VEE-Test only.

Use

Use Bus I/O Monitor to record each byte (command or data) transferred

between HP VEE and any instruments it is controlling by way of a State

Drivers, Component Drivers, Direct I/O, and the Advanced I/O devices. The

information that is recorded can optionally be sent to a log Õle.

The display area of Bus I/O Monitor contains Õve columns. For HP-IB, GPIO

and RS-232 the columns indicate:

Column 1 - Line number.

Column 2 - HP-IB command (*), data output (>), or data input (<).

Column 3 - Hexadecimal value of the byte transmitted.

Column 4 - 7-bit ASCII character corresponding to the byte transmitted.

Column 5 - Bus command mnemonic (HP-IB bus commands only).

Only columns 1 through 3 are used when monitoring GPIO communications.

Only columns 1 through 4 are used when monitoring RS-232 communications.

For VXI the columns indicate:

Column 1 - Line number.

Column 2 - VXI command (*), data output (>), or data input (<).

Column 3 - Memory space (A16, A24, or A32), symbolic name for register or

location, oÃset from named location.

Column 4 - Hexadecimal value of the byte transmitted.

Column 5 - Logical address of the VXI instrument.

2-40 General Reference

Bus I/O Monitor

Location

I/O =) Bus I/O Monitor

Object Menu

Config - Determines the maximum number of lines retained in the monitor.

Once the monitor is full, lines at the beginning of monitor are discarded to

make room for newly-logged lines.

Clear - Clears the contents of the Bus I/O Monitor. Clear may be added as

a control input pin.

Clear at PreRun - Clears the contents of the Bus I/O Monitor at PreRun.

Note that if the Bus Monitor is not connected to a thread and Start is used

(not Run), PreRun does not happen on the object. This is because only the

objects on the Start thread are PreRun.

Clear at Activate - Clears the contents of the Bus I/O Monitor at activate.

Logging Enabled - Records activity in the list area of the Bus I/O Monitor.

Log Enable and Log Disable control input pins may be added.

Log To File - Sends data to the speciÕed Õle as it is recorded by the

Bus I/O Monitor. Logging Enabled must also be selected before any

monitor data will be saved to the Õle. Monitor data is always appended to

the end of the speciÕed Õle. The Log File Name parameter can be added as a

control input.

Clear Log File - Deletes the contents of the speciÕed log Õle. This

parameter can be added as a control input.

Notes

The Bus I/O Monitor allows execution to proceed much faster when displayed

as an icon rather than an open view.

Each Bus I/O Monitor object is capable of monitoring one physical bus. For

example, to monitor HP VEE's activity on one HP-IB card and one RS-232

card, the user would need two Bus I/O Monitors.

Bus I/O Monitor is not a general purpose hardware bus monitor since it only

shows the bytes input and output by HP VEE. Any other programs that

General Reference 2-41

Bus I/O Monitor

input/output to the bus, for example, HP BASIC/UX or shell escape programs

that perform I/O, do not log their I/O to the HP VEE monitor.

See Also

Advanced I/O, Configure I/O, and Instrument.

2-42 General Reference

Bus Operations

Bus Operations

This menu item has been replaced with Interface Operations.

General Reference 2-43

Call Function

An object that executes a previously deÕned User Function, Compiled

Function, or Remote Function.

Use

Use Call Function to execute (call) a previously deÕned User Function,

Compiled Function, or Remote Function. Each input and output on the Call

Function object corresponds to the respective input/output on the called

function. (For a User Function, the inputs and outputs correspond directly to

the inputs and outputs on the original UserObject that was made into the User

Function.) Call Function inputs are passed to the called function by position,

not by name. For example, the Call Function object may have as its inputs, A

and B. But the called function may have as its inputs x and y. No matter, the

Õrst input (A) on Call Function is passed as the Õrst input (x) of the called

function. Only position is signiÕcant.

You may also call a User Function, Compiled Function, or Remote Function by

including its name in any expression whose evaluation is delayed until run time.

These include expressions in Formula, If/Then/Else, Set Field, Get Field,

Get Values, or From DataSet devices, or expressions in Sequencer or I/O

transactions. For example, you can call the function someUsrFunc by including

the expression 2+someUsrFunc(a) in a Formula object.

You can select a function to call in two ways. You can execute Select

Function in the object menu and select a name from a list of available

functions, or you can type in the name directly in the Function Name Õeld. In

either case, Call Function will automatically conÕgure its input and output

pins for the called function, if that function is recognized by HP VEE.

Since Call Function can call User Functions (either locally created or

imported from a library), Compiled Functions, or Remote Functions, it is

possible to have two functions with the same name. Naming conŒicts are

resolved according to the following rule:

The libraries are searched in the following order: 1) local User Functions,

2) imported (\external") User Functions, 3) Compiled Functions, and 4)

Remote Functions.

2-44 General Reference

Call Function

This rule also applies to all objects capable of calling such functions from an

expression. In all cases, the Õrst (top-most) output pin of the deÕned function

is the returned value for the expression.

If a function is deÕned with the same name as a built-in HP VEE function,

such as COS, the user-deÕned function will override the built-in function.

Location

Device =) Function =) Call Function

Open View Parameters

Function name - The name of the User Function, Compiled Function, or

Remote Function to be called.

Object Menu

Select Function - Lists the functions currently known to HP VEE. Locally

created User Functions are listed Õrst, followed by an alphabetically arranged

list of the imported library functions (User Functions, Compiled Functions,

and Remote Functions). When you select a function, the input and output

pins on this object are automatically conÕgured as deÕned by the called

function. (This selection will be grayed out if no functions are known to the

HP VEE model.)

Configure Pinout - Automatically conÕgures the input and output pins on

this object as deÕned by the called function. (This selection will be grayed

out if the named function is not recognized.)

Notes

The Call Function object acts much like a math function call. Any inputs act

like the formal arguments of an internal HP VEE function, while any outputs

act like return values from that function.

The actual execution of Call Function is synchronous|a call to a User

Function, Compiled Function, or Remote Function will suspend the execution

of parallel threads until the function is complete.

General Reference 2-45

Call Function

See Also

Delete Library, Import Library, Edit UserFunction, User Function, and

UserObject.

2-46 General Reference

Clean Up Lines

Clean Up Lines

Redraws all lines in the model or UserObject to route around objects using

only horizontal and vertical line segments.

Use

If you disable Automatic Line Routing, connecting lines are straight from pin

to pin (unless tacked). Select Clean Up Lines from time to time to tidy up the

lines in your model.

Location

Edit =) Clean Up Lines

or

UserObject (Object Menu) =) Edit =) Clean Up Lines

Notes

Clean Up Lines is context sensitive; when it is selected from the UserObject

Edit menu, only the lines within the UserObject are aÃected. When selected

from the menu bar Edit, only the lines in the root context (not in any

UserObjects) are aÃected.

It may take several moments to completely re-route the lines in a complex

model.

When a particular routing seems complex, move some of the objects apart to

give the Auto Line Routing feature more room to Õnd a shorter path.

After using Clean Up Lines, sometimes it is diœcult to determine if two lines

cross each other or if one line is connected to three places. Use Line Probe to

display the endpoints of the lines.

See Also

Auto Line Routing, Line Probe, Save Preferences, and UserObject.

General Reference 2-47

Clear All Breakpoints

Clears execution breakpoints.

Use

Use Clear All Breakpoints to delete all breakpoints when you are Õnished

debugging.

Location

Edit =) Breakpoints =) Clear All Breakpoints

See Also

Activate Breakpoints, Breakpoint (Object Menu), Clear Breakpoints, and

Set Breakpoints.

2-48 General Reference

Clear Breakpoints

Clear Breakpoints

Clears the breakpoints from the selected objects.

Use

Use Clear Breakpoints to clear breakpoints from selected objects when

debugging them is no longer necessary. The black border surrounding the

objects is removed.

Location

Edit =) Breakpoints =) Clear Breakpoints

Notes

To clear the breakpoint of a single object, you can also clear the Breakpoint

selection from the object menu.

If no objects are selected, Clear Breakpoints is not available.

See Also

Activate Breakpoints, Breakpoint (Object Menu). Clear All Breakpoints,

Set Breakpoint, and Select Objects.

General Reference 2-49

Clone

Duplicates selected objects and their interconnections, and places a copy of

them in the Paste buÃer.

Use

Use Clone when you want an immediate copy of a set of selected objects.

Clone copies all the attributes of the cloned object including pins, parameters,

and size.

Location

Edit =) Clone

Notes

Clone is only available after objects are selected.

To Clone a single object, use the Clone selection from its object menu.

Each Clone overwrites the previous content of the Paste buÃer.

Each Clone of a State Driver reŒects a diÃerent state of the same instrument

(HP VEE-Test only).

Each Clone of a UserObject is an independent copy of all objects in it.

Changing one copy does not aÃect others.

See Also

Cut, Clone (Object Menu), Copy, Object Menu, Paste, and Select Objects.

2-50 General Reference

Clone (Object Menu)

Clone (Object Menu)

Duplicates this object and places a copy of the object in the Paste buÃer.

Use

Use Clone to create a copy of the object. Clone makes a duplicate object

immediately available and puts a copy of the object in the Paste buÃer. Clone

copies all the attributes of the cloned object including terminals, parameters,

and size.

Location

On each object menu =) Clone

Notes

To copy multiple objects, use the Clone selection from the Edit menu.

Each Clone overwrites the previous content of the Paste buÃer.

Each Clone of a UserObject is an independent copy of all objects in it.

Changing one copy does not aÃect any others.

Each Clone of a State Driver reŒects a diÃerent state of the same instrument

(HP VEE-Test only).

See Also

Object Menu, Cut (Object Menu), Copy, Clone, and Paste.

General Reference 2-51

Collector

An object that collects data and outputs an array.

Use

Use Collector to create a one-dimensional array from scalar input data, or to

create an output array from collected input arrays. If the input arrays have

\n" dimensions, the collector can either output an array of n+1 dimensions, or

it can output a one-dimensional array (with the input data \Œattened"). When

all data has been collected, activate the XEQ pin to output the resulting array.

Location

Data =) Collector

Open View Parameters

Output Shape - Choose one of two selections:

n+1 Dim Array - The input signals (arrays of n dimensions) are collected

and output as an array of n+1 dimensions.

1 Dim Array - The input signals, regardless of shape, are \Œattened" by the

collector and output as an Array 1D.

(For scalar input data, the output shape will be \Array 1D" regardless of the

selection.)

Object Menu

Clear - Clears the contents of the Collector.

Clear at PreRun - Clears the contents of the Collector at PreRun. Default

is on (checked).

Clear at Activate - Clears the contents of the Collector at activate.

Default is on (checked).

2-52 General Reference

Collector

Notes

Because XEQ is required on the Collector you cannot add another trigger pin

or delete it.

The Collector continues to collect the input data until the XEQ pin is

triggered.

The Collector has two inputs; one for the data coming in (any shape and

type); the other tells the device when to execute. The device accepts multiple

input data hits on the Õrst data input pin, and collects the data until the XEQ

pin is hit. Then the device copies the full set of data to its output pin and

propagates its output. The output data pin is never propagated until the XEQ

pin is hit. Once the data propagates, the Collector clears its internal buÃer

and again starts collecting data. The type of the output signal is determined

by the type of the Õrst data container coming in after each XEQ or Clear. All

subsequent containers are coerced to the type of the Õrst one. If coercion fails,

an error is reported.

The shape of the output signal depends on the Output Shape selection:

n+1 Dim Array operation - If you select n+1 Dim Array for the Output Shape,

the Collector will collect the data coming into its Data pin, and will output

an array of one dimension higher than the number of dimensions of the input

data. Each input signal must be the same size and shape as the Õrst input

signal, until the XEQ pin is triggered. No mapping information is copied|the

output signal is not mapped.

For example, if the Õrst input data is a Real 1D array, 10 long, each

subsequent input signal must be a 1D array, 10 long, of a type that can be

coerced into Real, until the XEQ pin is triggered. The output signal will be a

Real 2D array with 10 columns and n rows, where \n" is the number of times

data was sent to the Data input pin before XEQ was triggered.

1 Dim Array operation - If you select 1 Dim Array for the Output Shape, the

Collector collects the data coming into its Data pin and outputs an Array

1D, regardless of the shape of the input data. Scalar or Array 1D data is

appended to the end; multi-dimensional arrays are Œattened into an Array

1D and then appended.

For example, if the data in is a scalar Real value 1.2, then a scalar Int32

value 34, then XEQ is hit, it will output a Real Array 1D, two long, with the

General Reference 2-53

Collector

values [1.2 34.0]. Then, if it is hit with several Complex data containers, it

will output a Complex Array 1D.

Note that for scalar inputs of any type, the Collector will generate the same

output signal regardless of the Output Shape selection.

Since Waveform and Spectrum signals do not support more than one dimension,

they are not allowed as inputs when the Collector is operating in the n+1 Dim

Array mode. To collect Waveform or Spectrum data into a 2D array, unbuild

the data Õrst and then collect it into a 2D array. Note that the mapping

information will be lost.

Since Record and Coord containers only support up to 1D arrays, only scalar

Record or Coord containers are allowed as inputs when the Collector is

operating in the n+1 Dim Array mode.

Enum inputs are converted to type Text before being placed into an array.

For Record inputs, the Õeld names, types and sizes must match.

The Collector begins with its internal buÃer cleared. It clears its internal

buÃer of collected data each time the XEQ pin is hit. It also optionally clears

the buÃer at PreRun and Activate. You also may force this buÃer to be cleared

at other times. Choose the Clear option from the object menu, or add a

control input for Clear and programmatically clear the Collector data before

XEQ is hit. Subsequent hits on the data input would start the collecting over

again. The output is not propagated until XEQ is hit.

If XEQ is hit, and the data input has not been hit with non-nil data since the

last clear, the Collector will output a nil signal.

See Also

Alloc Array, Concatenator, Get Values, Set Values, and Sliding

Collector.

2-54 General Reference

Comparator

Comparator

An object that compares two values then outputs the coordinates where the

comparison fails.

Use

Use the Comparator to compare a numeric test value, such as a Waveform

or Coord, with a reference value. If one or more of the values in Test Value

fails the comparison, a Coord Array 1D is output on the Failures output pin

and the Failed output pin activates. If all values pass the comparison, an

empty Coord is output on the Failures output pin and the Passed output pin

activates.

The independent Õeld (x) in the Failures output Coord Array 1D contains the

index or mapping of each failure point. The dependent Õeld (y) contains the

Test Value that failed.

Location

Device =) Comparator

Open View Parameters

Test Value == Ref Value - Change the comparison operator by clicking on it

and selecting the function from the list that is displayed. Default is ==.

Notes

The Comparator compares only numeric values, not text strings.

The shape of the Ref Value is treated as the same shape as the Test Value.

For example, a Scalar Ref Value of 3 is treated as an Array 1D (with all

elements equal to 3) when the Test Value is an Array 1D. If arrays are

compared, their size and number of dimensions must match.

If Test Value is a scalar, Ref Value must be a scalar.

If Test Value is an unmapped array, any mappings on Ref Value are ignored.

General Reference 2-55

Comparator

If Test Value is a mapped array, the independent variable of the Failures

output Coord (x) is the mapping of the element that failed.

If Test Value is a Coord, only the dependent variable of the Coord is used in

the comparison. The Failures output Coord contains the Coord value that

failed.

All tests use an \almost equal" algorithm that checks equality or inequality

to at least six signiÕcant digits. If the Ref Value is an array with more than

one element, a value for \virtual zero" is derived from the reference data's

magnitude. Any data points with a value of \0" must be matched with this

\virtual zero" value.

See Also

Alloc Array, Build Arb Waveform, Coord, If/Then, and Set Values

2-56 General Reference

Component Driver

Component Driver

Selects an I/O object to control an instrument using an Instrument Driver

where all the panels are unavailable.

Use

Click on I/O =) Instrument and examine the list of conÕgured instruments in

the Select an I/O Device dialog box.

If the instrument you want is in the list and is properly conÕgured:

1. Click once on the desired instrument to highlight it.

If the instrument is not conÕgured with an ID Filename, the State Driver and

Component Driver buttons are Œat (grayed).

2. Click the button at the bottom of the dialog box labeled Component Driver.

If the instrument you want is not in the list or is not properly conÕgured, use

Configure I/O to add or change an existing one, then:

1. Click on Add to add a new instrument.

2. Complete the resulting dialog boxes. Refer to the Configure I/O entry for

details about how to complete these dialog boxes.

Location

I/O =) Instrument =) Component Driver

Notes

All instruments must be conÕgured before they can be accessed through the

Instruments menu selection. The best way to conÕgure instruments is to use

the Configure I/O menu selection.

Note that Component Drivers may be operated with or without live

instruments connected to the computer. If you wish to control a live

instrument, you must set a correct, non-zero address and enable Live

Mode. The address and Live Mode setting are controlled by way of the

I/O =) Configure I/O menu selection. If the address is zero or if Live Mode

General Reference 2-57

Component Driver

is oÃ, the instrument object operates but does not attempt to communicate

with a physical instrument.

Your system administrator must properly conÕgure your computer before it

is possible to communicate between HP VEE and any hardware interface. If

you believe that you have properly followed all HP VEE procedures properly

and you still cannot achieve any level of communication with an instrument,

the problem may be with your computer conÕguration. Ask your system

administrator to read this explanation and verify proper conÕguration of

your system's interface drivers. (These interface drivers are diÃerent from the

instrument driver Õles included with HP VEE).

To be useful, at least one input or one output must be added. More than one

input or output can be added and both inputs and outputs may appear on the

same object. An input performs the set actions for the component. An output

performs the get actions.

See Also

Instrument, State Driver, and Terminals.

Using HP VEE , chapter 5.

2-58 General Reference

Complex

Complex

An object that outputs constant Complex scalars or an Array 1D.

Use

Use Complex to set a Complex Constant or to get user input. To input an

array, press tab to enter the next value.

Location

Data =) Constant =) Complex

Example

To use Complex as a prompt on a panel, change the name of the Complex

object to a prompt such as Enter the AC voltage:. The user Õlls in the

requested information in the entry Õeld.

Type in (2,10/27) to have the Complex constant evaluate the formula and

display the answer.

Object Menu

Auto Execute - If set, the object operates whenever the values in the Õeld

are edited.

Config - Sets the initial number of values to be output with this object. A

value of 0 sets the container to a scalar, otherwise the container is an array

of the length given.

Initialize - Used to set this object to a particular value at PreRun and/or

Activate time.

Initial Value - A dialog box that speciÕes the value to be set. Default

value is the zero value of that container type.

Initialize At PreRun - Whether to set the Initial Value at PreRun

time. Default is oÃ.

Initialize At Activate - Whether to set the Initial Value at Activate

time. Default is oÃ.

General Reference 2-59

Complex

Number Formats - SpeciÕes a diÃerent display format.

Notes

Initialize is most often used for initializing values inside a UserObject.

The other method for setting initial values is the Default Value control pin.

The Default Value pin allows you to programmatically change the current

value.

Note that the Initial Value Õeld is always a scalar, even if Complex is

conÕgured to be an array. The Default Value input pin, however, requires its

input container to match the shape of the Complex.

You can enter just the Real and Imaginary values, separate them with a

comma, and HP VEE formats for you.

See Also

Alloc Complex, Build Complex, Number Formats, Constant, Coord,

Date/Time, Enum, Integer, PComplex, Real, Text, and Toggle.

2-60 General Reference

Complex Plane

Complex Plane

An object that displays continuously-generated complex data as a Cartesian

plot.

Use

Use Complex Plane to display Complex, PComplex, or Coord data values on a

Real versus Imaginary axis.

Location

Display =) Complex Plane

Open View Parameters

Auto Scale - Automatically scales the display to show the entire trace.

Imag - The name of the Y (Imaginary) axis.

Trace1 - The name of the Õrst trace.

Real - The name of the X (Real) axis.

Object Menu

Auto Scale =) - Automatically scales the display to show the entire trace.

Auto Scale - Automatically scales both axes.

Auto Scale X - Automatically scales the X axis.

Auto Scale Y - Automatically scales the Y axis.

These parameters may be added as control inputs.

Clear Control =) - Parameters that specify when to clear the display.

Clear - Clears the displayed trace(s). This parameter may be added as a

control input.

Clear At PreRun - Clears the displayed trace(s) when the model or thread

is PreRun.

General Reference 2-61

Complex Plane

Clear At Activate - Clears the displayed trace(s) when the User Object is

activated.

Next Curve - Resets the pen to display the next curve in a family of

curves (data from the next time the display operates) without clearing the

previous curve. Next Curve must be selected (or activated) before each

new curve in the family. This parameter may be added as a control input.

Zoom =) - Scales the display.

In - MagniÕes the display to contain only the rectangular region that you

selected with the pointer. You select the region after selecting this feature

by dragging on the graph area. This action outlines the information with a

\rubber band" box.

Out 2|5|10|20|50|100 x - Expands the scales of the display by a factor in

both the X and Y directions about the center.

Markers =) - Allows you to Õnd the exact value of a data point on the

displayed curve. If the data is plotted on a log scale, the values shown on the

marker are the linear data points.

To move markers to a diÃerent trace, click on the button to the left of the

marker values near the bottom of the display. The button cycles through the

diÃerent line types and colors of the diÃerent traces.

Off - No markers are shown.

One On - One marker is available.

Two On - Two markers are available.

Delta On - Two markers are available and the x and y diÃerences between

them are displayed.

Interpolate - When checked, you can place markers between the

displayed data points. The marker values displayed are calculated by linear

interpolation. Default is oÃ.

Center - If markers are available, brings them to the center of the visible

part of the trace. This is useful if you've scrolled the display and markers

are not visible.

2-62 General Reference

Complex Plane

Grid Type =) - Sets the type of grid marks. The value of the major x

division is shown below the maximum x value (to the right of the x scale

name). The value of the major y division is shown below the y scale name.

No Grid - No grid lines are shown.

Tic Marks - Shows tic marks at the major and minor divisions on all four

sides of the graph.

Axis - Shows tic marks at the major and minor divisions on the X and Y

axes of the graph. If the actual axes are scrolled oÃ the graph area, axis

lines are drawn on the edge closest to the axes.

Lines - Shows lines at the major divisions and tic marks at the minor

divisions. The X and Y axes are shown as thick lines.

Panel Layout =) - Sets the appearance of the open view.

Graph Only - The open view shows only the graph area and the marker

information (if it exists). No buttons, scales, scale names, or traces names

are shown. This layout redraws quickest and provides the largest display

area.

Scales - The open view shows the graph area, the scales, the scale names,

and trace names. These Õelds are not recessed and may not be edited.

This layout is useful when recessed Õelds might be distracting, such as

printing graphs, or when the Õelds should be protected from editing on a

User Panel.

Scales & Sliders - The open view shows all information about the graph.

It includes the most information and allows you to modify the most

elements interactively. It is the default.

Traces & Scales - A control panel that allows you to specify values such

as the names, colors, line and point characteristics, minimum values, and

maximum values for the traces and/or scales.

Traces:

Name: - The name of the trace that is displayed to the left of the graph

area and the name of the corresponding input terminal.

Scale: - If you have multiple Y scales, selects which Y scale is to be used

for this trace.

General Reference 2-63

Complex Plane

Color: - The color of the trace. Each added trace has a diÃerent color

than the existing traces. Default is Pen 4 (yellow).

Lines: - The format of the line connecting data points. Default is a

continuous line.

Points: - The symbol that marks each data point. To show unconnected

data points, select the single dot Lines format and the desired Points

symbol. Default is a dot.

You can add a Traces control input pin to control the trace parameters

listed above. The control input data must be a record with the following

Õelds: 1) A TraceNum Õeld with an Integer value (1 is the top trace), and

2) one or more of the following Õelds: Name, Pen, LineType, PointType.

(The Pen, LineType, and PointType values are integers from 0 to n, where

0 draws nothing.) Refer to \Records and DataSets" in Using HP VEE for

further information.

Scales:

Show Scale: - If you have multiple Y scales, a selection (using a check

box) to specify if the end points and an axis of each additional right scale

is displayed to the right of the graph area.

Scale Name: - The names of the scales. They may be set here or on the

Scales & Sliders layout.

Maximum: - The maximum values of the scales. They may be set here or

on the Scales & Sliders layout.

Minimum: - The minimum values of the scales. They may be set here or on

the Scales & Sliders layout.

Mapping: - The way the x and y data is mapped to the display. The

mapping may be linear or log. To make a log-log plot, change both X and

Y axes to Log. Default is Linear.

Log Cycles: - The maximum number of decades shown (counting down

from the maximum x and y values) when AutoScale is activated. Log

Cycles is only used when the Mapping is Log. Log Cycles is useful when a

trace contains a large dynamic range in the data. Default is 4.

Scale Colors - The color of any background grid or tic marks. Default is

Gray.

2-64 General Reference

Complex Plane

You can add a Scales control input pin to control the scales parameters

listed above. The control input data must be a record with the following

Õelds: 1) A Text Õeld Scale with a value X, Y (or Y1), Y2, or Y3, and 2) one

or more of the following Õelds: Name, Min, Max, and Mapping. (The Mapping

text value may be Linear or Log). Refer to \Records and DataSets" in

Using HP VEE for further information.

Add Right Scale - Adds up to two additional scales to permit traces to have

diÃerent scale ranges. After adding a right scale, use Traces & Scales to

assign a trace to the scale.

Plot - Presents the Plotter Configuration control panel. When OK is

pressed, a copy of the device's entire display is plotted on the selected

plotter. This parameter may be added as a control input. If the current

Plotter Configuration is in Plot to File mode, you may specify the

destination Õle or directory name as string data on the Plot control input.

If no control input value is given, the Õle or directory name speciÕed in

Plotter Configuration will be used. See Plotter Config for more

information.

Notes

Inputs must be Scalar or Array 1D of type Complex, PComplex, or Coord.

Add traces with the Terminals =) Add Data Input object menu selection. Up

to twelve traces are allowed.

Input data of type Coord is plotted by simply using its x and y values without

Õrst being converted to type Complex.

A Title control input may be added, which sets the title bar name to the

speciÕed text value. This allows programmatic control over the title shown

when the display is printed or plotted.

See Also

Magnitude Spectrum, Polar Plot, Strip Chart, Waveform (Time), X vs Y

Plot, XY Trace, and Plotter Config.

General Reference 2-65

Concatenator

An object that outputs the concatenation of all its input data into an Array

1D.

Use

Use Concatenator to combine two or more data elements into the elements

of an Array 1D. The size of the resultant array is the sum of the sizes of the

inputs. Data inputs can be added to allow three or more containers to be

concatenated.

Enum inputs are converted to type Text before concatenation occurs.

Location

Data =) Concatenator

Notes

The output data type is the highest type of all the input data types. If any

input is an array of more than one dimension, the array is Œattened (row

major) into an Array 1D for the concatenation.

To concatenate multiple lines of Text into one line, use Accumulator.

Nil inputs are ignored. This is diÃerent than the concat(x,y) function

which operates within the formula box. In the formula box, all nil inputs are

automatically converted to Real scalars with value 0. Thus, concat(a,b),

where a is nil and b is an Int32 scalar value 5, results in the Array 1D, two

long of Real with values [0 5]. The Concatenator object with two inputs with

nil and an Int32 scalar value 5 outputs an Int32 array one long with value [5].

If the Õrst value (Õrst data input) is mapped, the other input values may be

either mapped with the same point spacing, or unmapped. The result will

be mapped from the Xmin to Xmin + dx * N where \Xmin" is the minimum

value of the mapping of the Õrst array value, \dx" is the distance between two

consecutive points in the Õrst value, and \N" is the size of the result array.

2-66 General Reference

Concatenator

See Also

Accumulator, Alloc Array, Collector, Set Values, and Sliding Collector.

concat(x,y) in the \Formula Reference" chapter.

General Reference 2-67

Conditional

A menu item.

Use

Use Conditional to access the following conditional branches:

If A == B

If A != B

If A < B

If A > B

If A <= B

If A >= B

Use Conditional objects to decide which subthread to run.

Location

Flow =) Conditional =)

Notes

Conditional objects are preconÕgured If/Then/Else objects. You cannot

modify the condition or change the number of, type, or shape of data inputs or

outputs.

Note the diÃerence between menu items under Relational and under

Conditional. Relationals are formulas with output 0 or 1; Conditionals

are If/Then/Else and have two outputs of which one Õres.

Note that the return value of AND, OR, XOR, and NOT is of type Int32 and is the

same shape as the operands. This is diÃerent than the conditionals such as ==

that always return a scalar.

The logical operators are deÕned for type text only in the sense of whether

the string is null or not. That is, "0" and "1" are logically true since they are

non-null strings, while "" is false. Therefore, "zoo" AND "" (null string) is

logically false since the second string is null. Remember that when comparing

a Text type to a non-string type, the latter is promoted to a Text type. This

means that "zoo" AND "0" is true since the Real 0 is promoted to the string

2-68 General Reference

Conditional

"0" and, since both strings are non-null, the AND expression is true, returning

1.

See Also

If A == B, If A != B, If A < B, If A > B, If A <= B,

If A >= B, and If/Then/Else.

Relational in the \Formula Reference" chapter.

General Reference 2-69

Configure I/O

Allows you to create and edit conÕgurations for instruments and selected

hardware interfaces. This feature is available in HP VEE-Test only.

Use

Use Configure I/O to add or delete an instrument, or edit an existing

conÕguration. This section contains a very brief overview on using

Configure I/O. If you have not already done so, you should read the following

information:

In Configure I/O, you must decide whether you wish to conÕgure an

instrument for use with or without a driver. If you are not sure whether a

driver is available, follow the conÕguration procedure up to the point where a

driver Õle is speciÕed.

If an instrument is conÕgured without a driver, it can only be used to create

Direct I/O objects. If an instrument is conÕgured with a driver, it can be used

to create State Drivers, Component Drivers, and Direct I/O objects.

The conÕguration is Read/Saved to .veeio Õle in $HOME directory, so Config

information is saved across executions of HP VEE.

See also \ConÕguring Instruments" and \Details of ConÕgure I/O Dialog

Boxes" in Using HP VEE , chapter 5.

ConÕguring an Instrument With A Driver

1. Click on I/O =) Configure I/O. The ConÕgure I/O Devices dialog box

appears.

2. Click on Add or Edit in the ConÕgure I/O Devices dialog box to add a new

instrument conÕguration or edit an existing one. The Device ConÕguration

dialog box appears.

3. Click on the Instrument Driver Config button. The

Instrument Driver ConÕguration dialog box appears.

4. Click on the ID Filename Õeld. A list of driver Õles appears.

5. Scroll through the list of driver Õles and double-click on the one that

matches your instrument.

2-70 General Reference

Configure I/O

6. Complete the remaining Õelds in the Instrument Driver ConÕguration dialog

box, then click on OK.

7. Complete the Õelds in the Device ConÕguration dialog box, then click on OK.

(Note that the Interface Õeld defaults to HP-IB. Click on the Õeld to display

a list of available interfaces.)

8. Click on Save in the ConÕgure I/O Devices dialog box to add the newly

conÕgured instrument to the Configure I/O Devices list.

ConÕguring an Instrument Without A Driver

1. Click on I/O =) Configure I/O. The ConÕgure I/O Devices dialog box

appears.

2. Click on Add or Edit in the ConÕgure I/O Devices dialog box to add a new

instrument conÕguration or edit an existing one. The Device ConÕguration

dialog box appears.

3. Click on the Direct I/O Config button. The Direct I/O ConÕguration

dialog box appears.

4. Complete the Õelds in the Direct I/O ConÕguration dialog box, then click on

OK.

5. Complete the Õelds in the Device ConÕguration dialog box, then click on OK.

(Note that the Interface Õeld defaults to HP-IB. Click on the Õeld to display

a list of available interfaces.)

6. Click on Save in the ConÕgure I/O Devices dialog box to save the newly

conÕgured instrument.

Location

I/O =) Configure I/O

See Also

Advanced I/O, Bus I/O Monitor, and Instrument.

Using HP VEE , chapter 5.

General Reference 2-71

Confirm (OK)

See OK.

2-72 General Reference

Constant

Constant

A menu item.

Use

Use Constant to access the following input constants:

Text

Integer

Real

Coord

Complex

PComplex

Date/Time

Record

Location

Data =) Constant

Notes

All Constant objects, except Text, support the use of arbitrary formulas in

the input box. (However, Global variables are not allowed.) The formula is

immediately parsed and evaluated and the resulting Scalar number is used as

the value for the Constant. Constants do not support input variables like the

Formula object does, therefore you cannot use input variable names in the

formulas. The typed in formula must evaluate to a Scalar value of the proper

type or of a type that can be converted to the Constant you are using.

The syntax supported is the same as in the Formula box, but with some

exceptions. You cannot use array building syntax ([,]) operators to

construct an array, since they would return a non-Scalar and the return value

must be Scalar. Also, you cannot use input name variables in Constant

objects.

In general, the use of any of the dyadic operators, parentheses for nesting,

function calls, and the predeÕned numeric constant PI (3.1416 . . .) is

allowed.

General Reference 2-73

Constant

Examples

When you type (2, @PI/2) into a PComplex object, it is evaluated and returns

(2, @90) (if Trig Mode is set to Degrees).

When you type 14 + exp10(3) into a Real object, it is evaluated and returns

1014.

When you type (1, 2) into a Real object, an error is returned because HP

VEE does not allow the conversion from Complex to Real.

See Also

Complex, Coord, Date/Time, Enum, Integer, PComplex, Real, Record, Text,

and Toggle.

2-74 General Reference

Cont

Cont

A button that causes all suspended threads to continue running after the model

has been paused.

Use

Use Cont to resume the model execution after the model has been stopped.

The model pauses if the Stop button is pressed once, if a breakpoint is reached,

or if Step is used.

Cont is primarily used to continue execution between breakpoints and is

usually used in conjunction with the other debugging tools.

Location

On the right side of the title bar.

Example

Type in 2, 5 + exp10(2) to generate the Coord constant (2,105).

Notes

Cont is not available if Stop was pressed twice.

If you edit a model that is paused (by pressing Stop once) or if you pressed

Stop twice, you must press Run or Start to restart the model's execution.

See Also

Breakpoints, Run, Start, Step, and Stop.

General Reference 2-75

Coord

An object that outputs a constant Coord Scalar or Array 1D.

Use

Use Coord to set a Coord constant or to get user input. To input an array,

press tab to enter the next value.

Location

Data =) Constant =) Coord

Object Menu

Auto Execute - If set, the object operates whenever the values in the Õeld

are edited.

Config - Sets the initial number of values to be output with this object. A

value of 0 sets the container to a scalar, otherwise the container is an array

of the length given.

Initialize - Used to set this object to a particular value at PreRun and/or

Activate time.

Initial Value - A dialog box that speciÕes the value to be set. Default

value is the zero value of that container type.

Initialize At PreRun - Whether to set the Initial Value at PreRun

time. Default is oÃ.

Initialize At Activate - Whether to set the Initial Value at Activate

time. Default is oÃ.

Number Formats - SpeciÕes a diÃerent display format.

2-76 General Reference

Coord

Notes

Initialize is most often used for initializing values inside a UserObject.

The other method for setting initial values is the Default Value control pin.

The Default Value pin allows you to programmatically change the current

value.

Note that the Initial Value Õeld is always a scalar, even if Coord is

conÕgured to be an array. The Default Value input pin, however, requires its

input container to match the shape of the Coord.

Coords can contain more than two Õelds. For example, a Coord with three

Õelds is (x, y, z).

The mathematic operations on Coords operate on the dependent variable only,

that is, they operate on the y value of the (x, y) pair.

Example

The Coord Array 1D can be used to deÕne bounding envelopes on waveforms

and as input to Comparators for waveforms. Use an Array 1D of Coords to

deÕne the limiting points on the bounding waveform. The limiting points are

the endpoints of line segments that deÕne the limiting waveform shape. Then

send this array through the Build Arb Waveform box to create a limiting

waveform. The new bounding waveform can be used in the Comparator box

as one of the inputs to generate the points that fall outside the bounding

waveform.

You can use the bounding waveform in the clipUpper or clipLower function

to clip the waveform to the bounding limits.

See Also

Complex, Constant, Date/Time, Enum, Integer, PComplex, Real, Text, and

Toggle.

General Reference 2-77

Copy

Places a copy of the selected objects in the Paste buÃer.

Use

Use Copy and then Paste to make multiple copies of a set of selected objects.

Location

Edit =) Copy

Notes

Copy is only available after objects are selected.

If you want to copy a single object, use the Clone selection from its object

menu.

Each Copy overwrites the previous content of the Paste buÃer.

Copy is diÃerent from Clone in that Clone gives you a duplicate set of objects

immediately and Copy only places the objects in the Paste buÃer for later use.

See Also

Clone, Cut, Object Menu, Paste, and Select Objects.

2-78 General Reference

Counter

Counter

An object that displays and outputs the number of times its data input pin has

been activated.

Use

Use Counter to keep a running count. Counter keeps a running count of the

number of times an input has been activated by a previous object's output.

The Counter output is a Real scalar.

Location

Device =) Counter

Object Menu

Clear - Clears the contents of the Counter.

Clear at PreRun - Clears the contents of the Counter at PreRun. Default is

on (checked).

Clear at Activate - Clears the contents of the Counter at Activate. Default

is on (checked).

Notes

The data input for Counter does not require any particular type data and even

counts an input with a nil value. It can also be cleared by activating the input

Clear control pin.

The value of the Counter, a Real scalar, is available at the Counter output.

See Also

Accumulator.

General Reference 2-79

Create UserObject

Puts selected objects into a UserObject.

Use

Use Create UserObject to group objects together logically and physically.

Select the objects to be included and then select Create UserObject. The

UserObject created contains the selected objects.

A UserObject operates just like any other object; no objects operate inside a

UserObject until all data inputs to the UserObject are activated unless the

optional XEQ pin is activated. All operations inside the UserObject must be

complete before the data output is activated.

The right-most button on the title bar of the open view is a maximize button

that increases the size of the UserObject to the size of the HP VEE work area.

If the objects in the UserObject were connected to other objects before

they were in the UserObject, terminals are automatically created on the

UserObject to maintain the connections. When objects inside the UserObject

are connected to objects outside the UserObject, input and output pins are

also automatically created.

Location

Edit =) Create UserObject

Object Menu

You can select the object menu of the UserObject from the object menu

button, but you cannot select it from within the work area of the UserObject

open view. From within the work area, the right mouse button provides a

pop-up Edit menu, just like the one available in the main work area. When

the pointer is over an object within the UserObject, the right mouse button

gives the object menu for that object. You can get UserObject object menu by

placing the pointer over the borders of the UserObject and clicking the right

mouse button.

2-80 General Reference

Create UserObject

Make UserFunction - Converts the UserObject into a User Function. The

UserObject will disappear from the screen and will be replaced with a Call

Function object containing a call to the new User Function. Before you

do this operation, enter a unique name into the title Õeld. This name will

become the User Function name, which will be the name by which Call

Function or certain expressions can call the User Function. Should the

name conŒict with the name of an existing User Function, an error will

be displayed. You will then need to enter a diÃerent name and repeat the

operation.

Unpack - Deletes the UserObject, but not the objects contained in it.

Secure - Prevents the UserObject from being modiÕed.

Show Panel on Exec - When set, shows the panel view associated with the

UserObject when the UserObject operates. This is only available after the

UserObject panel view has been created (by way of Add To Panel).

Trig Mode =) - SpeciÕes the trig mode used in the UserObject context

(degrees, radians, or gradians).

Edit =) - A parent menu that leads to the UserObject context Edit menu.

This menu contains the same choices as the main menu Edit menu. You

can get the pop-up Edit menu by clicking the right mouse button on the

UserObject work area.

The following choices are context sensitive to the UserObject:

Clean Up Lines - Routes the lines in the UserObject around objects.

Move Objects - Moves several objects at once.

Create UserObject - Creates a UserObject of the currently selected

objects.

Add To Panel - Creates a panel view (for the UserObject) containing the

selected objects.

The following choices are available when editing a User Function:

Make UserObject - The opposite operation from Make UserFunction.

Turns the User Function back into a UserObject

Delete - Deletes the User Function from the HP VEE model.

General Reference 2-81

Create UserObject

Notes

If no objects are selected, Create UserObject is not available. To create an

empty UserObject, select UserObject from the Device menu. You can place

objects inside the UserObject after it has been created by moving them inside

the UserObject boundaries.

It is convenient to save UserObjects of common functions (using Save Object)

to create a library of functions to be used again.

When you Step through a UserObject the entire context runs when

UserObject is an icon, has Show on Exec checked, or the UserObject panel

view is displayed.

See Also

Add to Panel, Secure, Select Objects, Step, Trig Mode, UserFunction and

UserObject.

2-82 General Reference

Cut

Cut

Deletes the selected objects and places them in the Paste buÃer.

Use

Use Cut to delete a set of selected objects or to remove the objects from one

place on the work area and put multiple copies of them in another place on the

work area (using Paste).

Location

Edit =) Cut

Notes

Cut is only available after objects are selected.

Cut is not available when a model is running.

To delete a single object, use the Cut feature from its object menu.

Each Cut overwrites the previous content of the Paste buÃer.

If you accidentally Cut objects, they can be recovered by using Paste.

To make multiple copies without deleting objects, use Clone or Copy.

See Also

Clone, Cut (Object Menu), Copy, Paste, and Select Objects.

General Reference 2-83

Cut (Object Menu)

Deletes the object and places it in the Paste buÃer.

Use

Use Cut to remove this object from your work area.

Location

On the object menu =) Cut

Notes

Cut is available from all objects.

Each Cut overwrites the previous content of the Paste buÃer.

Cut (Object Menu) is not available when a model is running.

If you accidentally Cut an object, it can be recovered by using Paste.

If you want to delete multiple objects, use the Cut selection from the Edit

menu.

Short Cuts

To delete the object under a pointer, press ÄCTRLÅÄDÅ.

See Also

Clone, Clone (Object Menu), Copy, Cut, Paste, and Select Objects.

2-84 General Reference

Date/Time

Date/Time

An object that outputs a constant date and time value. Date/Time takes an

input date and time and converts it to the number of seconds between the

input and the beginning of the Epoch (deÕned as beginning at 0000 hours UTC

January 1, 0001 AD).

Use

Use Date/Time to display the time and date at the moment an object or data

is created. To input an array, press tab to enter the next value.

Date/Time can be used to calculate elapsed time between a past and current

event by comparing the two mathematically.

To change a value such as the day, date, or time, type the value. For example,

typing Fri changes Thu 28/Mar/1991 15:43:33 to Fri 29/Mar/1991 15:43:33.

If you don't specify a value, the current day, date, or time is displayed. If you

change just one of these the other time elements will stay the same.

Location

Data =) Constant =) Date/Time

Example

You can use Date/Time to determine the length of time that has passed

between the moment a speciÕc piece of experimental data was produced and

another moment in time, either past or present. Use a Date/Time box to

enter the new, arbitrary date then take the diÃerence between the original,

experimental data and the new arbitrary date.

To determine the length of time it takes for all or part of your model to

execute, use Timer or Time Stamp.

General Reference 2-85

Date/Time

Object Menu

Auto Execute - If set, the object operates whenever the values in the Õeld

are edited.

Config - Sets the initial number of values to be output with this object.

Initialize - Used to set this object to a particular value at PreRun and/or

Activate time.

Initial Value - A dialog box that speciÕes the value to be set. Default

value is the zero value of that container type.

Initialize At PreRun - Whether to set the Initial Value at PreRun

time. Default is oÃ.

Initialize At Activate - Whether to set the Initial Value at Activate

time. Default is oÃ.

Notes

Initialize is most often used for initializing values inside a UserObject.

The other method for setting initial values is the Default Value control pin.

The Default Value pin allows you to programmatically change the current

value.

Note that the Initial Value Õeld is always a scalar, even if Date/Time is

conÕgured to be an array. The Default Value input pin, however, requires its

input container to match the shape of the Date/Time.

Notes

The default value control input should be a valid Date/Time string as given by

the parse rules for date/time constants. These are the same rules as those for

Direct I/O.

The Date/Time constant is diÃerent from the Time Stamp which gives the

number of seconds between the beginning of the Epoch and the current date

only.

You can display Date/Time output in AlphaNumeric or Logging AlphaNumeric

by using the Real number format: Time Stamp.

2-86 General Reference

Date/Time

See Also

Time Stamp and Timer.

General Reference 2-87

Delay

An object that waits a speciÕed period of time before activating its Done data

output terminal.

Use

Use Delay to delay execution of a thread segment for a speciÕed number of

seconds.

Location

Flow =) Delay

Example

Use Delay as a time out in a dialog box created in a UserObject.

Open View Parameters

Enter the number of seconds delay in the edit Õeld. If you add a data input

pin, the value supplied to that pin determines the delay period in seconds.

Notes

The delay value is speciÕed in seconds and has a resolution dependent on the

system clock and the nature of the model in which the Delay is operating. You

can set the value for the Delay through a data input.

The delay interval is measured from the time when the sequence input pin

is activated. After the speciÕed interval, the Done data output terminal is

activated. Note that Delay is \asleep" while it is waiting, thereby allowing

other objects the opportunity to operate.

In most cases, either the Done data output terminal or the sequence out pin

may be used to continue propagation after the Delay time expires. However,

when the Delay object is part of a thread containing other objects in executing

in parallel, the sequence out pin may not Õre until a much longer time has

elapsed. This is because sequence out pins are Õred only when there are no

other objects which may execute. To ensure that the delayed thread will

2-88 General Reference

Delay

continue at the end of the Delay period, use the Done data output terminal,

which always Õres at the end of the Delay time period.

See Also

OK, On Cycle, Device Event, and Interface Event.

General Reference 2-89

Delete (Object Menu)

Removes this object from the panel view.

Use

Use Delete to remove the object from the panel view. Note that the object

remains on the detail view.

Location

On the object menu =) Delete

Notes

Delete is only available from objects on the panel view.

Short Cuts

You can quickly delete a panel object by placing the cursor over the object and

then pressing ÄCTRLÅÄDÅ.

See Also

Cut, Object Menu, and Show Title.

2-90 General Reference

Delete Bitmap (Object Menu)

Delete Bitmap (Object Menu)

Deletes the bitmap displayed on this icon.

Use

Use Delete Bitmap to remove the bitmap displayed on this icon. If Show Label

is checked, the icon only displays its name. If Show Label is not checked, the

icon appears as a blank object.

Location

On the object menu =) Layout =) Delete Bitmap

Notes

Delete Bitmap is only available from the icon of an object.

See Also

Layout, Object Menu, Select Bitmap, and Show Label.

General Reference 2-91

Delete Input (Object Menu)

Deletes an input pin from the object.

Use

Use Delete Input to delete any input pin (data, control, or XEQ) that was

added to the object.

After selecting Delete Input, select the pin to be deleted from the dialog box

displayed. The pin and any connections to it are deleted. If two pins have

identical names HP VEE deletes the pin based on the order that the pins

appear in the list.

Location

On the object menu =) Terminals =) Delete Input

Notes

Delete Input is available only if you have pins that may be deleted. Some pins

cannot be deleted.

Short Cuts

You can quickly delete a data input terminal by placing the cursor over the

input terminal display area and then pressing ÄCTRLÅÄDÅ.

See Also

Add Control Input, Add Data Input, Add Data Output, Add XEQ Input, Delete

Output, Object Menu, Select Data Output, and Terminals.

2-92 General Reference

Delete Library

Delete Library

An object that deletes (unloads) a library of User Functions, Compiled

Function deÕnitions, or Remote Function deÕnitions from a running model.

Use

Use Delete Library to delete a library from your HP VEE model. The action

taken depends on the type of library:

User Function - Delete Library deletes all of the library User Functions

from the HP VEE model. Those User Functions can then no longer be

executed.

Compiled Function - Delete Library detaches a shared library from the

HP VEE process. However, the Õle containing the shared library is actually

detached only when the last library pointing to that Õle is deleted. That is,

if you have several diÃerent libraries pointing to the same shared library Õle

(with either the same or a diÃerent deÕnition Õle), the shared library Õle is

detached from the HP VEE process only when there are no more libraries

using the attached code. The operating system will not allow you to move or

delete a shared library Õle once it is attached to a process. You must use the

Delete Lib option in the Import Library object to detach the code if you

want to create a new shared library Õle.

Remote Function - Delete Library shuts down the remote HP VEE process

and removes the Remote Function deÕnitions from the local HP VEE

process. Delete Library actually shuts down the remote process when the

last library that references the remote process is deleted on the local host.

Location

Device =) Function =) Delete Library

General Reference 2-93

Delete Library

Open View Parameters

Library Name - Enter the name of the library that you want to delete.

Notes

Delete Library is generally used for advanced operations where you want to

dynamically load, and then delete, library objects from a running HP VEE

process.

See Also

Call Function, Edit UserFunction, Import Library, User Function, and

UserObject.

2-94 General Reference

Delete Line

Delete Line

Removes the line between two pins.

Use

Use Delete Line to eliminate wrong connections or to modify connections in

your program. Select Delete Line, then click on or near the line to be deleted.

To exit this mode without deleting a line, click on an empty space on the work

area, away from any lines.

Location

Edit =) Delete Line

Notes

To view the endpoints of a line (without deleting it), select Delete Line and

hold down the mouse button when the pointer is over the line. Move the

pointer away from the line before releasing the button.

Delete Line is not available when the model is running.

Short Cuts

While holding down ÄCTRLÅÄShiftÅ place the pointer over line(s) and click the left

mouse button to delete lines.

You can delete a series of lines this way, one at a time.

See Also

Cut and Line Probe.

General Reference 2-95

Delete Output (Object Menu)

Deletes the output pin from the object.

Use

Use Delete Output to delete a data or error output pin that was added to the

object.

After selecting Delete Output, select the pin to be deleted from the dialog

box displayed. The pin and any connections to it are deleted. If two pins have

identical names HP VEE deletes the pin based on the order that the pins

appear in the list.

Location

On each object menu =) Terminals =) Delete Output

Notes

Delete Output is available only if the object has pins that may be deleted.

Some pins cannot be deleted.

Short Cuts

You can quickly delete an output terminal by placing the cursor over the

output terminal view and then pressing ÄCTRLÅÄDÅ.

See Also

Delete Input, Object Menu, and Terminals.

2-96 General Reference

DeMultiplexer

DeMultiplexer

An object that directs the input value to a selected output pin.

Use

Use DeMultiplexer to direct the input data to a particular output pin. The

output that is activated depends on the value of the address input.

Location

Device =) DeMultiplexer

Notes

DeMultiplexer has two inputs, one for data output and one for the address

value (which determines the output to be propagated). Only one output is

propagated each time the object operates. If the value of the address input

is not within the range of the number of outputs [0=)(N-1)], an error is

returned. Additional outputs can be added to the object. Outputs can be

deleted, but then the following outputs (if any) are renumbered in order.

See Also

If/Then/Else and JCT.

General Reference 2-97

Detail

A button that toggles the view displayed from the panel view to the detail

view.

Use

When pressed, Detail shows the detail view of the model or UserObject you

created. Detail is also available on UserObjects.

Location

The upper left side of the title bar.

Notes

Detail is only visible after you've created a panel view.

After you've secured a panel view, the Detail button is not visible.

See Also

Add to Panel, Panel, and Secure.

2-98 General Reference

Device Event

Device Event

An object that captures events generated by HP-IB or VXI devices. This

feature is available in HP VEE-Test Only.

Use

The Device Event object can be conÕgured to detect various device events.

Depending upon conÕguration, the object may wait for the event, giving up

execution to other parallel threads, or it may simply return a boolean (0 or 1)

or other indicator of the state of the device.

If the Device Event object has been conÕgured to wait for the event, then

upon the event the object will execute. Any thread hosted by this object will

have priority over any other parallel threads, and will execute to completion. If

the Device Event object has been conÕgured to simply return an indicator of

device state, the thread containing it will have normal priority, and will execute

in parallel with any other threads.

Location

I/0 =) Advanced I/O =) Device Event

Open View Parameters

Device - The currently selected device is displayed in the Device Õeld. Click

on this Õeld to display a list of the currently conÕgured HP-IB and VXI

devices.

Event - Allows selection of speciÕc events. Click on this Õeld to display the

choices:

Spoll - Returns the status byte of HP-IB devices and message-based VXI

devices. If an HP-IB device has been selected, the only possible selection is

Spoll. The returned status byte is used with the Mask value.

SRQ - For VXI, an SRQ is generated from a message-based device when

the device sends either a VME interrupt or a signal register write that is

a request-true event. When this asynchronous event occurs, the device's

status byte is returned, thus causing the device to generate a request-false

event. The returned status byte is used with the Mask value.

General Reference 2-99

Device Event

Signal Interrupt - This asynchronous event is generated from either

message-based or register-based VXI devices. The event occurs when the

device sends either a VME interrupt or a signal register write that is a

device-deÕned event or an undeÕned event. The returned 32-bit value is

the value placed in the signal write register, or the value placed on the

VXI Bus when the device does an interrupt acknowledge (IACK). This

value is used with the Mask value.

Mask - You can enter a value to be used as a bit mask (default = 0). The

Mask value is used in a logical AND operation with the value returned by the

device when the speciÕed event occurs.

Action - Determines the execution behavior of the Device Event object

upon detection of the speciÕed event, in conjunction with the speciÕed bit

mask.

No Wait - Execute immediately, outputting the current state of the

conÕgured event, as speciÕed by a 32-bit integer, to the status pin. This

value is either the boolean value FALSE (0) or a device-dependent bit

pattern. If the event choice is Spoll, the low byte of the returned integer

is the status byte of the device. For the two asynchronous VXI events,

a FALSE (0) is returned if the event has not occurred. If the event has

occurred, the device-dependent bit pattern is returned.

Any Set - Wait for the event to occur and use the returned value in a

logical AND operation with the Mask value. If any bit is set in the resulting

bit pattern, then execute by placing the original, unmasked value on the

status output pin.

All Clear - Wait for the event to occur and use the returned value in a

logical AND operation with the Mask value. If no bit is set, then execute by

placing the original, unmasked value on the status output pin.

Notes

The execution behavior of the Device Event object can either be asynchronous

or synchronous as determined by the choice of the Action parameter. No Wait

speciÕes a synchronous, polling behavior. The object executes immediately and

any attached thread will have the same priority as all other threads currently

executing. Choosing Any Set or All Clear causes the Device Event object to

wait until both the event has occurred, and the logical AND of the Mask value

2-100 General Reference

Device Event

and the value returned by the device satisÕes the \any bit set" or \no bit

set" criteria. When both of these conditions have been satisÕed, the object

executes. Any thread attached will have a higher priority, and will execute to

completion, blocking all other concurrently executing threads.

Strictly speaking, the Spoll event is not a true asynchronous event as are the

VXI SRQ and Signal Interrupt. By using a Mask value and the appropriate

action, Any Set or All Clear, the status byte can be evaluated continuously

with the Mask value until the correct bits are modiÕed by the device. The

object will wait until this occurs, allowing concurrent threads to continue

execution. For the Spoll event, choosing the No Wait Action is identical to

specifying the All Clear Action with a mask value of zero|the Device Event

object executes immediately.

For the true asynchronous events SRQ and Signal Interrupt, the device waits

until the event occurs, allowing concurrent threads to continue executing. Once

the interrupt occurs, the resulting status byte, signal write register contents, or

IACK value will be logically ANDed with the mask value. The object executes

only if the resulting bit pattern satisÕes the Any Set or All Clear criteria. If

the All Clear action is speciÕed with a mask value of zero, the Device Event

object will execute when the interrupt occurs.

See Also

Interface Event, Interface Operations.

General Reference 2-101

Direct I/O

An object that writes data to and reads data from an instrument using

transaction statements.

Use

Use Direct I/O to output and input a variety of encodings and formats to

instruments.

Location

I/O =) Instrument =) Direct I/O

Object Menu

Show Config - Displays the instrument conÕguration and allows you to

change the instrument parameters.

Add Trans - Adds a transaction to the end (bottom) of the list.

Insert Trans - Inserts a transaction before (above) the currently highlighted

transaction.

Cut Trans - Cuts (deletes) the currently highlighted transaction, but saves it

in the transaction \cut-and-paste" buÃer.

Copy Trans - Copies the currently highlighted transaction to the transaction

\cut-and-paste" buÃer.

Paste Trans - Pastes a transaction, previously \cut" or \copied" to the

\cut-and-paste" buÃer, in the position before the currently highlighted

transaction.

Open View Parameters

Direct I/O Action:

READ: Reads data from an instrument using the speciÕed encoding and

format.

WRITE: Writes data to an instrument using the speciÕed encoding and

format.

2-102 General Reference

Direct I/O

EXECUTE: For an HP-IB instrument, sends either a \Selected Device

Clear", \Go To Local," \Remote," or \Group Execute Trigger" command.

For a serial instrument, sends \Break" or \Reset." For a GPIO instrument,

sends \Reset." For a VXI message-based instrument, sends either a \Selected

Device Clear", \Go To Local," \Remote," or \Trigger" command.

WAIT: Waits the speciÕc number of seconds before executing the next

transaction. For an HP-IB instrument or a VXI message-based instrument,

wait until the bitwise AND of the serial poll response with the mask is either

zero (ALL CLEAR) or non-zero (ANY SET).

For GPIO instruments only, the READ action allows IOSTATUS and the

WRITE action allows IOCTL.

For VXI instruments only, the READ and WRITE action allows REGISTER:

and MEMORY:. The WAIT action also supports the ability to wait until the

value in a memory or register oÃset AND a mask value satisfy the ANYSET,

ALL CLEAR, or EQUAL.

Short Cuts

You can quickly add a data terminal by placing the cursor over the input

or output terminal display area and then pressing ÄCTRLÅÄAÅ. Each press of

ÄCTRLÅÄAÅ adds an additional data terminal.

You can quickly delete a data terminal by placing the cursor over the terminal

view area and then pressing ÄCTRLÅÄDÅ.

To quickly insert a transaction, place the cursor on a transaction. Press

ÄCTRLÅÄOÅ to insert a transaction over the transaction where you placed the

cursor.

To quickly delete (\kill") a transaction, place the cursor on that transaction

and press ÄCTRLÅÄKÅ.

To paste a transaction from the \kill" buÃer press ÄCTRLÅÄYÅ.

To quickly move to the next or previous transaction, press ÄCTRLÅÄNÅ or

ÄCTRLÅÄPÅ respectively.

General Reference 2-103

Direct I/O

See Also

Advanced I/O, Component Driver, Instrument, and State Driver.

Using HP VEE , chapter 5.

2-104 General Reference

Do

Do

An object that creates a branch point to control the Œow of execution of a

thread.

Use

Use Do to create a branch point; the object connected to the data output pin is

activated before the object connected to the sequence output pin. Note that

this forces the order in which objects operate.

Location

Flow =) Do

See Also

Break and Start.

General Reference 2-105

Edit UserFunction

A menu selection that allows you to edit a locally-created User Function within

a model.

Use

Use Edit UserFunction to edit a User Function created locally within a model

by executing Make UserFunction from the object menu of a UserObject. If

you have saved a series of User Functions in a library Õle, you will have to open

the library Õle to edit those User Functions.

Location

Edit =) Edit UserFunction

Notes

When you select Edit UserFunction, a dialog box appears listing the available

local User Functions to edit. Once you select a User Function, a dialog box

displays a workspace showing the functionality of the original UserObject from

which the User Function was created. You can edit this workspace just as you

would edit any UserObject. When you have Õnished, press Done to Õnish the

edit session. When you save the Õle, the edited User Function will be saved

with it.

See Also

Call Function, Delete Library, Import Library, User Function, and

UserObject.

2-106 General Reference

Enum

Enum

An object that outputs an enumerated value from a user-deÕned list.

Use

Use Enum to set an enumerated constant or to get user input that is chosen

from a list of acceptable choices. To input an array, press tab to enter the next

value. The Õrst item in the list is assigned ordinal position 0; the nth item in

the list is assigned ordinal position n-1.

Location

Data =) Enum

Object Menu

Auto Execute - If set, the object operates whenever the values in the Õeld

are edited.

Edit Enum Values - Allows you to add valid selections to the enumerated list

of choices or edit existing choices.

Format =)- SpeciÕes the appearance of the Enum object and the method of

selecting a choice. Default is List.

List - The enumerated choices are presented in a list box when the button

Õeld is pressed. The selection is made when the choice is clicked on.

Cyclic - The enumerated choices cycle as the the button Õeld is clicked

on. This choice is best used if there are two choices such as On/OÃ or

Stop/Go or in a dialog box where the choice is conÕrmed by another

button.

Buttons - The enumerated choices are all displayed. The selection is made

when the radio button next to the choice is pressed.

Initialize - Used to set this object to a particular value at PreRun and/or

Activate time.

Initial Value - A dialog box that speciÕes the value to be set. Default

value is the zero value of that container type.

General Reference 2-107

Enum

Initialize At PreRun - Whether to set the Initial Value at PreRun

time. Default is oÃ.

Initialize At Activate - Whether to set the Initial Value at Activate

time. Default is oÃ.

Notes

Initialize is most often used for initializing values inside UserObject.

The other method for setting an initial value is the Default Value control pin.

The Default Value pin allows you to programmatically change the current

value.

Enum containers are automatically converted into Text for many objects,

including Collector, Concatenator, Sliding Collector, and most Math

objects.

You must add values to each enumerated Õeld to create a list of valid choices.

Example

To use Enum as a prompt on a user panel, change the name of the Enum object

to a prompt such as \Choose the type of test:". The user selects an input that

depends on the format of the Enum object.

See Also

Complex, Constant, Coord, Date/Time, Integer, Number Formats, PComplex,

Real, Text, and Toggle.

2-108 General Reference

Escape

Escape

This object has been renamed to Raise Error.

General Reference 2-109

Execute Program

An object that spawns a child process, either directly or through a command

shell.

Use

Use Execute Program to communicate with programs external to HP VEE.

Communication to the external program is handled through the operating

system mechanism of stdin and stdout.

Use Execute Program to run any executable user written program or operating

system commands.

In general, you need to add or modify transactions to accomplish useful

results. To add a transaction, select Add Trans in the object menu. To edit a

transaction, double-click on the transaction and complete the resulting dialog

box.

Location

I/O =) Execute Program

Object Menu

Config - Allows you to view and edit the formatting conÕguration for data

transmitted to and from the spawned process.

Add Trans - Adds a transaction to the end of the list.

Insert Trans - Inserts a transaction before the currently highlighted

transaction.

Cut Trans - Cuts (deletes) the currently highlighted transaction, but saves it

in the transaction \cut-and-paste" buÃer.

Copy Trans - Copies the currently highlighted transaction to the transaction

\cut-and-paste" buÃer.

Paste Trans - Pastes a transaction, previously \cut" or \copied" to the

buÃer, in the position before the currently highlighted transaction.

2-110 General Reference

Execute Program

Open View Parameters

Shell - The operating system shell to communicate with. If the Shell Õeld

is set to none, the Õrst token in the Pgm with params Õeld is assumed to be

the name of an executable Õle. Each token after the Õrst is assumed to be

a command-line parameter. The executable is spawned directly as a child

process of HP VEE. All other things being equal, Execute Program operates

fastest when Shell is set to none.

If the Shell Õeld speciÕes a shell, HP VEE spawns a process corresponding

to the speciÕed shell. The string contained in the Pgm with params Õeld is

passed to the speciÕed shell for interpretation. Generally, the shell spawns

additional processes.

Wait for child exit - If Wait for child exit is set to Yes, HP VEE

performs the following tasks:

1. Spawns a child process.

2. Executes all transactions speciÕed in the Execute Program object.

3. Closes all pipes to the child process (thus sending an EOF to the child).

4. Waits until the child process terminates before activating the sequence

output pin of the Execute Program object.

If Wait for child exit is set to No, HP VEE performs the following tasks:

1. Checks to see if a child process corresponding to the Execute Program

object is active. If one is not already active, HP VEE spawns one.

2. Executes all transactions speciÕed in the Execute Program object.

3. Activates the sequence output pin of the Execute Program object. The

child process remains active and the corresponding pipes still exist.

All other things being equal, Execute Program operates fastest when

Wait for child exit is set to No.

Pgm with params - The program you want to run.

Here are examples of what you typically type into the Pgm with params Õeld:

To run a custom C program (Shell field set to none):

MyProg -optiona -optionb

General Reference 2-111

Execute Program

To run a shell command (Shell set to ksh):

ls -t *.dat

To run a program using one of the shell dependent features, you could set

Shell to sh and enter the command into the Shell command: line:

MyProg *.dat

This forces the shell to pass as command line parameters all the Õles that end

in \.dat".

A maximum of 256 parameters may be passed.

Notes

If you use shell-dependent features in the Pgm with params Õeld, you

must set a shell in the Shell Õeld to achieve the desired result. Common

shell-dependent features are:

Standard input/output redirection (< and >).

File name expansion using wildcards (*, ?, and [a-z]).

Pipes (|).

When sending input to a shell command such as sort or wc, you must include

an EXECUTE CLOSE WRITE PIPE transaction after the data has been written to

the command. Closing the write pipe will let the command know that it has

received all of the data to process.

When reading an arbitrary amount of data back from a shell command such as

ls or grep, use a READ . . . ARRAY 1D TO END: (*) transaction. It will continue

to read data until the pipe reading data from the shell is closed.

Example

Here is a simple C program to read a number from stdin, add one to it,

and send it back to HP VEE by way of stdout. The stdout buÃering must

be turned oÃ. This is done in one of two ways. The Õrst way is with the

\setbuf(stdout,NULL)" statement, which turns buÃering oÃ. The second

technique is to leave the stdout buÃering on, then use the \–ush(stdout)",

command to Œush the output buÃer back to HP VEE.

2-112 General Reference

Execute Program

#include <stdio.h>

main ()

{

int c;

double val;

setbuf(stdout,NULL); /* turn stdout buffering off */

while (((c=scanf("%lf",&val)) !=EOF) & c > 0) { /* read a value */

fprintf(stdout,"%g\n",val+1; /* add one to the input value */

fflush(stdout); /* force output back to main pgm */

}

exit(0);

}

Short Cuts

You can quickly add a data terminal by placing the cursor over the input

or output terminal display area and then pressing ÄCTRLÅÄAÅ. Each press of

ÄCTRLÅÄAÅ adds an additional data terminal.

You can quickly delete a data terminal by placing the cursor over the terminal

view area and then pressing ÄCTRLÅÄDÅ.

To quickly insert a transaction, place the cursor on a transaction. Press

ÄCTRLÅÄOÅ to insert a transaction over the transaction where you placed the

cursor.

To quickly delete (\kill") a transaction, place the cursor on that transaction

and press ÄCTRLÅÄKÅ.

To paste a transaction from the \kill" buÃer press ÄCTRLÅÄYÅ.

To quickly move to the next or previous transaction, press ÄCTRLÅÄNÅ or

ÄCTRLÅÄPÅ respectively.

See Also

HP BASIC/UX, From StdIn, To/From Named Pipes, and To StdOut.

\Using Transaction I/O" in Using HP VEE , chapter 12.

General Reference 2-113

Exit

Leaves HP VEE.

Use

Use Exit to end this work session with HP VEE.

Location

File =) Exit

Notes

If your model changes have not been saved when you select Exit, you are

prompted to save them.

You are not allowed to Exit when a model is running. Use the Stop object to

exit a running model.

Short Cuts

Press ÄCTRLÅÄEÅ to exit.

See Also

Raise Error, Exit Thread, Exit UserObject, New, Open, and Stop.

2-114 General Reference

Exit Thread

Exit Thread

An object that stops the execution of a thread.

Use

Use Exit Thread to terminate the execution of an independent thread. Exit

Thread only stops the execution of the thread on which it resides.

Location

Flow =) Exit Thread

See Also

Break, Raise Error, Exit UserObject, Start, and Stop.

General Reference 2-115

Exit UserObject

An object that stops the execution of a UserObject.

Use

Use Exit UserObject to stop the execution of all threads in the UserObject

and start execution in the next object after the UserObject in the model. Any

data sent to the UserObjects output terminals before the Exit UserObject

was encountered, is passed to the appropriate succeeding object(s) by

activating these outputs.

Use Exit UserObject to make an early exit from a UserObject.

Location

Flow =) Exit UserObject

See Also

Create UserObject, Raise Error, Exit Thread, Start, Stop, and

UserObject.

2-116 General Reference

For Count

For Count

An object that activates its data output pin a speciÕed number of times.

Use

Use For Count to execute a subthread a speciÕed number of iterations. The

output of a For Count can be used as a value for succeeding objects in the

subthread.

Location

Flow =) Repeat =) For Count

Open View Parameters

Enter the number of iterations in the entry Õeld or as an input. The value

must be an Real.

Notes

The For Count output value is a Real scalar ranging from 0 to n-1 where n is

the speciÕed count value. All access to unmapped array objects is zero-based,

therefore For Count is ideally suited for traversing the dimensions of such

objects when required. The For Count value is the dimension size.

If the speciÕed For Count value is zero or negative, the output is not activated,

but the sequence output pin is.

Execution of the subthread hosted by the For Count output continues until one

of the following occurs:

All objects that can, have operated. The subthread is deactivated, the

iteration counter is incremented, and, if the count value is less than the

speciÕed count, the subthread is reactivated by reÕring the For Count output

with the new iteration value.

A Break object operated. The subthread is deactivated and the sequence

output pin is activated. Note that the value that remains on the For Count

output is the same value present when the Break was encountered.

General Reference 2-117

For Count

A Next object operated. The subthread is deactivated and the iteration

counter is incremented. If the count value is less than the speciÕed Count,

the subthread is reactivated by reÕring the Count output with the new

iteration value, and execution of the subthread proceeds as usual. If the

iteration counter has reached the Count value, the sequence output pin is

activated.

When the subthread hosted by the For Count object Õnishes an iteration, all

data containers sent during the previous iteration are invalidated before the

next iteration. This prevents \old" data from a previous iteration from being

reused in the current iteration. However, if Œow branching is present within the

iterative subthread, some objects may not execute on every iteration. Thus,

data containers sent by those objects may be invalidated before other objects

can execute on the data. To obtain the desired propagation in this case, use

the Sample & Hold object. Refer to \Iteration with Flow Branching" in chapter

4 of Using HP VEE for more information.

See Also

Break, For Log Range,For Range, Get Values, Next, On Cycle, Sample & Hold,

Set Values, and Until Break.

2-118 General Reference

For Log Range

For Log Range

An object that activates its data output pin a speciÕed number of times.

Use

Use For Log Range to execute a subthread for a speciÕed number of iterations.

Use For Log Range to specify a beginning, end, and increment, and generate

output values that are evenly distributed along the log 10 scale.

Location

Flow =) Repeat =) For Log Range

Open View Parameters

From - The beginning value of the iteration loop.

Thru - The ending value of the iteration loop. When the value of the iterator

is greater or equal to the Thru value, the loop is completed.

/Dec - Determines the spacing of values from the iterator. The 0th value is

From. The nth value is From*exp10(n/(/Dec)).

From, Thru, and /Dec may be added as inputs.

Notes

The For Log Range output value is a Real scalar ranging from From to Thru.

Execution of the subthread hosted by the For Log Range output continues until

one of the following occurs:

All objects that can, have operated. The subthread is deactivated, the

iteration counter is incremented by the /Dec value, and, if the count value is

less than the Thru value, the subthread reactivates the For Log Range output

with the new iteration value.

A Break object operated. The subthread is deactivated and the sequence

output pin is activated. Note that the value that remains on the For Log

Range output is the same value present when the Break was encountered.

General Reference 2-119

For Log Range

A Next object operated. The subthread is deactivated and the iteration

counter is incremented by the /Dec value.. If the count value is less than the

Thru value, the subthread reactivated the Data output with the new iteration

value, and execution of the subthread proceeds as usual. If the iteration

counter has reached or exceeded the Thru value, the sequence output pin

is activated. If the counter is exceeded, then the value that remains on the

DATA output is an out-of-range value.

When you add any of the optional data inputs, they do not necessarily line up

with the names of the Õelds to which they supply a value. Make sure you know

which values you are inputting and the pins associated with them. (Use Show

Terminals if necessary.)

If the Thru value is less than From value, /Dec must be negative or the loop

does not execute.

If /Dec = 0 the loop iterates inÕnitely or until a Break object is encountered in

the subthread.

If From equals Thru, the loop executes once.

When the subthread hosted by the For Log Range object Õnishes an iteration,

all data containers sent during the previous iteration are invalidated before the

next iteration. This prevents \old" data from a previous iteration from being

reused in the current iteration. However, if Œow branching is present within the

iterative subthread, some objects may not execute on every iteration. Thus,

data containers sent by those objects may be invalidated before other objects

can execute on the data. To obtain the desired propagation in this case, use

the Sample & Hold object. Refer to \Iteration with Flow Branching" in chapter

4 of Using HP VEE for more information.

See Also

Break, For Count, For Range, Next, On Cycle, Sample & Hold, Show

Terminals, and Until Break.

2-120 General Reference

Formula

Formula

An object that performs a user-deÕned mathematical operation speciÕed by a

mathematical formula.

Use

Use Formula to execute any desired mathematical formula using the syntax

deÕned in chapter 3. The default Formula object has one input (A) and an

example formula (2*A+3). However, the example can be replaced with any

desired formula, and any number of inputs can be added as required by the

user-deÕned formula. (If the formula requires no inputs, you may delete all

inputs.)

The input(s) can be of any data type. For a relational formula (e.g. A <= B),

the resulting output is a scalar Int32 with the value 0 (\false") or 1 (\true").

For other mathematical formulas, the resulting output is of a data type

consistent with the inputs and with the formula itself. Refer to the section

\Mathematically Processing Data" in chapter 3 for a discussion of the rules

that determine the data type and shape of the result of a formula.

Location

Math =) Formula

Open View Parameters

Formula Õeld (unlabeled) - Default is 2*A+3. You can enter any

mathematical formula consisting of the operators and functions described in

chapter 3. When you enter a formula, its syntax is automatically checked

and any errors are reported. The Formula Õeld can be added as a control

input.

General Reference 2-121

Formula

Notes

All of the supported dyadic operators and functions are described in chapter

3. Any of these operators and functions, including calls to User Functions,

compiled functions, and remote functions can be used in a Formula object to

construct a mathematical formula using the described syntax.

The other Math and AdvMath objects are really just simple examples

of Formula objects, but only the Formula object allows you to edit the

mathematical relationship in the open view.

Although you could perform a mathematical calculation using several

individual Math and AdvMath objects, a single Formula object can perform the

same calculation with higher performance. This is because a Õxed amount of

overhead is associated with each graphical object in the model, so a model with

fewer objects will run faster.

See Also

Chapter 3, \Formula (Math and AdvMath) Reference", User Function

2-122 General Reference

For Range

For Range

An object that activates the data output a speciÕed number of times.

Use

Use For Range to execute a subthread a speciÕed number of iterations speciÕed

by a beginning value, ending value, and increment. Use For Range to generate

values that are evenly distributed between the From and Thru values.

Location

Flow =) Repeat =) For Range

Open View Parameters

From - The beginning value of the iteration loop.

Thru - The ending value of the iteration loop. When the value of the iterator

is greater than or equal to the Thru value, the loop is completed.

Step - The increment value between the current value of the iterator and its

next value.

All open view parameters are available from data inputs.

Notes

The For Range output value is a Real scalar ranging from the From to the

Thru value.

Execution of the subthread hosted by the For Range output continues until one

of the following occurs:

All objects that can, have operated. The subthread is deactivated, the

iteration counter is incremented by the step value, and, if the count value is

less than the Thru value, the subthread is reactivated by reÕring the For

Range output with the new iteration value.

A Break object operated. The subthread is deactivated and the sequence

output pin is activated. Note that the value that remains on the For Range

output is the same value present when the Break was encountered.

General Reference 2-123

For Range

A Next object operated. The subthread is deactivated and the iteration

counter is incremented by the Step value. If the count value is less than the

speciÕed Thru, the subthread is reactivated by reÕring the Data output with

the new iteration value, and execution of the subthread proceeds as usual. If

the iteration counter has reached the Thru value, the sequence output pin is

activated.

When you add any of the optional data inputs, they do not necessarily line up

with the names of the Õelds to which they supply a value. Make sure you know

which values you are inputting and the pins associated with them. (Use Show

Terminals if necessary.)

If the Thru value is less than the From value, Step must be negative, otherwise

the output is never activated.

If Step = 0, the loop iterates inÕnitely or until a Break object is encountered

on the subthread.

If From equals Thru, the loop executes once.

When the subthread hosted by the For Range object Õnishes an iteration, all

data containers sent during the previous iteration are invalidated before the

next iteration. This prevents \old" data from a previous iteration from being

reused in the current iteration. However, if Œow branching is present within the

iterative subthread, some objects may not execute on every iteration. Thus,

data containers sent by those objects may be invalidated before other objects

can execute on the data. To obtain the desired propagation in this case, use

the Sample & Hold object. Refer to \Iteration with Flow Branching" in chapter

4 of Using HP VEE-Engine and HP VEE-Test for more information.

See Also

Break, For Count, For Log Range, Next, On Cycle, Sample & Hold, Show

Terminals, and Until Break.

2-124 General Reference

From

From

A menu item.

Use

Use From to access the following objects which are sources for I/O operations:

File

DataSet

String

StdIn

Location

I/O =) From =)

See Also

To.

General Reference 2-125

From DataSet

An object that allows the user to conditionally retrieve records from a data set.

Use

Use From DataSet to Õnd and retrieve from a data set either one record or all

records that meet the constraints of a logical expression formula. If the record

retrieved meets the constraints of the query expression, the record is output on

the Rec output pin.

The default expression in the Formula Õeld is 1, (true). Thus, either the Õrst

record found (One), or all records in the data set (All) will be output.

If you want to test values in record Õelds, you must use the form Rec.A for Õeld

A, Rec.B for Õeld B, and so forth. For example, the expression:

Rec.A<10

tests each record to see if Õeld A is less than ten. If Get records: One is

speciÕed, the Õrst record in the dataset with Õeld A less than 10 will be output

on Rec. If Get records: All is speciÕed, all records with Õeld A less than 10

will be output. Note that the entire record will be output.

The following control pins may be added:

File Name - This control pin allows the user to change the name of the Õle

from which the records will be read.

Rewind - This control pin \rewinds" the From DataSet Õle so that it can be

re-read from the beginning of the Õle.

Formula - This control pin allows the user to change the formula which is

used to determine which records read from the Õle will be output by the

device.

Location

I/O =) From DataSet

2-126 General Reference

From DataSet

Open View Parameters

From DataSet - Click on the name Õeld to display a dialog box, then select

the name of the Õle that contains the DataSet.

Get Records - Select One or All:

If One is selected, the Õrst record found in the data set that meets the

constraints of the selection formula will be output, and From DataSet will

stop executing. When One is selected, the output shape is always a scalar.

If All is selected, all records found in the data set that meet the

constraints of the selection formula will be output. The output shape will

always be an array. From DataSet will stop executing when it reaches the

end of the Õle.

Formula - Enter a mathematical expression to test the records in the data

set. Either the Õrst One, or All records that satisfy the expression will be

output, depending on the Get Records selection. The default expression is 1

(true).

Notes

You may use any valid mathematical expression in the conditional formula.

You may add additional inputs for use in the expression, just as for a Formula

object. If you want to test values in record Õelds, express them as Rec.A,

Rec.B, and so forth. The expression can be fairly complex, for example:

Rec.A > Rec.B AND Rec.C < 2.3

You must observe the normal stipulations for determining True or False for

conditional expressions:

For any relational test (for example, equality between two operands), if one

operand is an array, the other must be either a scalar or an array of the same

size and shape. If the Õrst operand is equal to the second, the result is True;

otherwise it is False.

If both operands are of type Coord, they must have all of their independent

variables and dependent variables match exactly for the result to be True.

If independent variables do not match, an error is returned. Complex,

General Reference 2-127

From DataSet

PComplex, and Spectrum operands must have both parts match for the

operation to return True. Enums are converted to Text for comparison.

Arrays must have all the respective values of both operands equal for the

operation to return True.

You may wish to bring in a DataSet (an array of records) from a Õle, edit

it, and then save it back to the Õle. This can be accomplished with a From

DataSet, a Record Constant using the Default Value input pin, and a To

DataSet. See Record Constant for more information.

You may add an EOF output pin to this object. When the object executes

and there are no records meeting the query expression constraints, or you are

already at the end of the DataSet, this pin will Õre. Otherwise, an End of file

with no Data Found error will result when this condition occurs.

If you have multiple From DataSet objects reading from the same Õle, they will

share the Õle pointer. That is, all of the objects read sequentially through the

Õle, no matter how many objects there are reading the Õle. See From File for

more detail.

See Also

Build Record, Record Constant, To DataSet, and UnBuild Record.

2-128 General Reference

From File

From File

An object that reads data from a Õle using I/O transactions.

Use

Use From File object to read a wide variety of Õle encodings and formats.

From File is especially useful for importing data Õles generated by other

software packages.

When several From File objects refer to the same disc Õle, a single read

pointer is maintained for all such objects even if they are in diÃerent threads

or diÃerent contexts. This means that data read by one From File object is

not reread by another From File object using the same Õle unless a REWIND

operation has been done on the Õle. The Õle is opened and the Õle pointer is

reset to the beginning of the Õle (implied REWIND) when the Õrst From File

object for that Õle operates after PreRun. All Õles are closed when the model

stops.

From File Actions:

READ - Reads data from a Õle using the speciÕed encoding and format.

EXECUTE - REWIND repositions the Õle's read pointer to the beginning of the

Õle without erasing the contents of the Õle. CLOSE closes an open Õle.

WAIT - Waits the speciÕed number of seconds before executing the next

transaction.

From File Encodings:

TEXT - Reads text ASCII Õles written by HP VEE or other software

packages.

BINARY - Reads all data types from a machine-speciÕc binary format.

BINBLOCK - Reads all HP VEE data types from binary Õles with IEEE 488.2

deÕnite length block headers.

CONTAINER - Reads all data types from a machine-speciÕc text format.

General Reference 2-129

From File

Location

I/O =) From =) File

Open View Parameters

Open View provides a Õeld for the data Õle name, followed by a list of available

transactions. The data Õle name can be added as a control input.

Open View shows the list of Õle transactions to be executed.

Object Menu

Add Trans - Adds a transaction to the end (bottom) of the list.

Insert Trans - Inserts a transaction before (above) the currently highlighted

transaction.

Cut Trans - Cuts (deletes) the currently highlighted transaction, but saves it

in the transaction \cut-and-paste" buÃer.

Copy Trans - Copies the currently highlighted transaction to the transaction

\cut-and-paste" buÃer.

Paste Trans - Pastes a transaction, previously \cut" or \copied" to the

\cut-and-paste" buÃer, in the position before the currently highlighted

transaction.

Notes

An EOF (End of File) output terminal can be added with Add Data Output.

EOF is a special output terminal that propagates with a nil container when a

transaction attempts to read data past the End of File. When an End of File

condition is detected and the EOF output is activated, none of the other data

outputs are activated, even if they contain newly read data.

If EOF is detected and there is no EOF output pin, an error is returned.

To read all of the data in the Õle, use a READ . . . ARRAY TO END: transaction.

2-130 General Reference

From File

Short Cuts

To quickly insert a transaction, place the cursor on a transaction. Press

ÄCTRLÅÄOÅ to insert a transaction over the transaction where you placed the

cursor.

To quickly delete (\kill") a transaction, place the cursor on that transaction

and press ÄCTRLÅÄKÅ.

To paste a transaction from the \kill" buÃer press ÄCTRLÅÄYÅ.

To quickly move to the next or previous transaction, press ÄCTRLÅÄNÅ or

ÄCTRLÅÄPÅ respectively.

See Also

To File and To/From Named Pipe.

\Using Transaction I/O" in Using HP VEE , chapter 12.

General Reference 2-131

From StdIn

An object that reads data from the operating system standard input using

transactions.

Use

Use StdIn object to read a wide variety of Õle encodings and formats from the

standard input of HP VEE.

All From StdIn objects use the same read pointer, even if they are in diÃerent

threads or diÃerent contexts. This means that data read by one From StdIn

object is not re-read by another From StdIn object.

To place data in HP VEE's standard in pipe, you can either type lines in the

shell window where the HP VEE process was started or start the HP VEE

process using a pipe command to redirect standard input. For example,

cat someFileName | veetest

sends the contents of Õle someFileName into HP VEE's standard input.

To read all of the data from standard input until standard input is closed use a

READ . . . ARRAY TO END: transaction.

From StdIn Actions:

READ - Reads data using the speciÕed encoding and format.

WAIT - Waits the speciÕed number of seconds before executing the next

transaction.

From StdIn Encodings:

TEXT - Reads all data types from an ASCII-data stream.

BINARY - Reads all data types from an machine-speciÕc binary format.

BINBLOCK - Reads all HP VEE data types from binary data Õles with IEEE

488.2 deÕnite length block headers.

CONTAINER - Reads all data types from an HP VEE speciÕc text format.

To help prevent a READ transaction from hanging until data is available on

stdin, use a READ IOSTATUS DATA READY transaction in a separate From StdIn

2-132 General Reference

From StdIn

object. This transaction returns a 1 if there is at least one byte to read, and a

0 if there are no bytes to read.

Location

I/O =) From =) StdIn

Open View Parameters

The open view shows the list of transactions to be executed.

Object Menu

Add Trans - Adds a transaction to the end of the list.

Insert Trans - Inserts a transaction before the currently highlighted

transaction.

Cut Trans - Cuts (deletes) the currently highlighted transaction, but saves it

in the transaction \cut-and-paste" buÃer.

Copy Trans - Copies the currently highlighted transaction to the transaction

\cut-and-paste" buÃer.

Paste Trans - Pastes a transaction, previously \cut" or \copied" to the

buÃer, in the position before the currently highlighted transaction.

Short Cuts

To quickly insert a transaction, place the cursor on a transaction. Press

ÄCTRLÅÄOÅ to insert a transaction over the transaction where you placed the

cursor.

To quickly delete (\kill") a transaction, place the cursor on that transaction

and press ÄCTRLÅÄKÅ.

To paste a transaction from the \kill" buÃer press ÄCTRLÅÄYÅ.

To quickly move to the next or previous transaction, press ÄCTRLÅÄNÅ or

ÄCTRLÅÄPÅ respectively.

General Reference 2-133

From StdIn

See Also

From File, To StdOut, and To/From Named Pipe.

\Using Transaction I/O" in Using HP VEE , chapter 12.

2-134 General Reference

From String

From String

An object that reads data from a string by using transactions.

Use

Use From String to read a wide variety of encodings and formats from textual

data in a string.

If a one-dimension array of Text is passed to the AString input, the

From String transactions will act in the same way as if those lines of text were

being read from a Õle with the From File object. That is, an array of Text will

be treated as a single stream of text with new-line characters between each

string element.

From String Actions:

READ - Reads data using the speciÕed encoding and format.

WAIT - Waits the speciÕed number of seconds before executing the next

transaction.

From String Encodings:

TEXT - Reads all data types from the AString input.

Location

I/O =) From =) String

Open View Parameters

The open view shows the list of transactions to be executed.

Object Menu

Add Trans - Adds a transaction to the end of the list.

Insert Trans - Inserts a transaction before the currently highlighted

transaction.

Cut Trans - Cuts (deletes) the currently highlighted transaction, but saves it

in the transaction \cut-and-paste" buÃer.

General Reference 2-135

From String

Copy Trans - Copies the currently highlighted transaction to the transaction

\cut-and-paste" buÃer.

Paste Trans - Pastes a transaction, previously \cut" or \copied" to the

buÃer, in the position before the currently highlighted transaction.

Notes

From String is a useful debug tool to explore how READ TEXT transactions

operate. Connect a Text Constant object to the From String input terminal

labeled AString, and connect a Logging AlphaNumeric display to the From

String output terminal to immediately view the results.

Short Cuts

To quickly insert a transaction, place the cursor on a transaction. Press

ÄCTRLÅÄOÅ to insert a transaction over the transaction where you placed the

cursor.

To quickly delete (\kill") a transaction, place the cursor on that transaction

and press ÄCTRLÅÄKÅ.

To paste a transaction from the \kill" buÃer press ÄCTRLÅÄYÅ.

To quickly move to the next or previous transaction, press ÄCTRLÅÄNÅ or

ÄCTRLÅÄPÅ respectively.

See Also

From, From File, From StdIn, To/From Named Pipe, and To String.

\Using Transaction I/O" in Using HP VEE , chapter 12.

2-136 General Reference

Function Generator

Function Generator

An object that outputs a Waveform.

Use

Use Function Generator to generate a Waveform of your own speciÕcations.

Location

Device =) Virtual Source =) Function Generator

Object Menu

Error on Aliasing - Evaluates whether Num Points divided by Time Span

(same frequency) is less than twice the speciÕed frequency. If it is, an error is

returned. The purpose of this evaluation is to determine whether the points

being generated provide an accurate representation of the function being

generated. An unchecked checkbox generates a literal presentation of points.

Default is on (checked).

Open View Parameters

All of these parameters may be set from the open view or added as data

inputs.

Function - The shape of the waveform (Sine, Square, Triangle, and so

forth). Default is Cosine.

Frequency - The frequency of the waveform in Hertz. This parameter is

ignored if the Function is set to DcOnly. Default is 1000 Hertz.

Amplitude - The absolute value of the maximum and minimum values in

linear units before any dcOffset is added. Default is 1.

dcOffset - The oÃset of the waveform (the amount it is shifted up or down).

Default is 0.

Phase Units - Degrees (Deg), radians (Rad), or gradians (Grad). Phase

Units overrides the current Trig Mode for the phase value. Default is Deg.

General Reference 2-137

Function Generator

Phase - The shift of the waveform by a portion of a period. The waveform is

shifted toward negative time for positive values of phase. Phase is ignored

when Function is set to DcOnly. Default is 0.

Time Span - The duration of the waveform (in seconds). Default is 20m

seconds and is set in Waveform Defaults.

Num Points - The number of points in the waveform. The time between

points in the waveform is Time Span/Num Points. Num Points must be

positive. Default is 256 and is set in Waveform Defaults.

Notes

There are the same number of points as sampling intervals. Each point is at

the beginning of the sampling interval.

See Also

Build Arb Waveform, Comparator, Noise Generator, Pulse Generator, and

Waveform Defaults.

2-138 General Reference

Gate

Gate

An object that passes the input data to the data output pin when the sequence

in pin is activated.

Use

Use Gate to hold the container until another action occurs (and activates the

sequence input pin).

Location

Flow =) Gate

Notes

If the sequence input pin is not connected, there is no \holdoÃ" eÃect.

Therefore, Gate passes the data from data input pin to data output pin

whenever the data input pin is activated.

The data that Œows into Gate is not stored; the container on the data input pin

is the container output when the sequence input pin is activated.

See Also

DeMultiplexer and JCT.

General Reference 2-139

Get Field

An object that allows the user to unbuild a record and recover one of its Õelds

or sub-Õelds.

Use

Use Get Field to extract a Õeld or sub-Õeld of a record. The Get Field object

is simply a Formula object that is initialized with an input terminal Rec and

the expression Rec.A. Use the \dot" syntax to specify the Õeld that you want

to extract from the record input. For example, Rec.A extracts the A Õeld from

the Rec record input.

Location

Data =) Access Record =) Get Field

Open View Parameters

Formula Õeld (unlabeled) - The default is Rec.A. You can enter any

mathematical formula allowed in the Formula object, but normally you

would want to use the A.B dot syntax to extract a Õeld from a record. You

can add a Formula control input.

Notes

The Get Field object is actually just a Formula object that has been

initialized with a Rec input and the expression Rec.A. You can use any

expression in Get Field that you can use in a Formula object, but to extract a

Õeld you will need to use the \dot" syntax like Rec.A or A.B.C.

The A.B dot syntax in Get Field is fully supported in all Formula objects.

These include Formula, If/Then/Else, Get Values, and all transaction devices

(To File, To String, etc.) See \Using Records in Expressions" in chapter 3 of

this manual for further information about this syntax.

Note the distinction between the Get Field, UnBuild Record, and SubRecord

objects.

2-140 General Reference

Get Field

The Get Field object works like a Formula object, in that it uses dot syntax

(A.B) to unbuild a record. Note that Get Field allows you to unbuild a

record of records in one step by using an expression such as A.B.C. This

process would require two UnBuild Record objects.

The UnBuild Record object has outputs for the Name List and Type List

of the input record Õelds. The other (optional) outputs A, B, etc. of the

UnBuild Record object return the same results as would multiple Get Field

objects.

The SubRecord object diÃers from UnBuild Record and Get Field in that

its output is always a record. The SubRecord device allows you to either

include or exclude a list of Õelds from a record to form a subrecord.

See Also

Build Record, Formula, Record Constant, Set Field, SubRecord, and

UnBuild Record.

General Reference 2-141

Get Global

An object that gets the value of a global variable that has already been created

in the execution of the current model.

Use

Use the Get Global object to get a global variable (by name), for use as data

in an HP VEE model. The global variable must have previously been created

by a Set Global object within the model.

Global variables created (with Set Global) in one context of a model can be

used as data in another context of that model. For example, a Set Global in

the root context of a model could create a global variable, which could then be

used as data by including a Get Global in a UserObject. This is especially

useful when the model contains several nested layers of UserObjects.

Global variables that are set with Set Global may also be used by name in the

expression Õelds of the following objects: Formula, If/Then/Else, Get Values,

Get Field, and all objects using expressions in transactions, including To File,

From File, Direct I/O, From Stdin, To/From Named Pipes, and Sequencer.

Refer to \Using Global Variables in Expressions" in chapter 3 for further

information.

Location

Data =) Globals =) Get Global

Open View Parameters

The open view displays a Õeld for the name of the global variable. The name is

not case sensitive (either lower-case or upper-case letters may be used). Thus

globalA is the same variable as GLOBALa. The name Õeld may be added as a

control input.

2-142 General Reference

Get Global

Notes

To avoid unexpected results, your model must ensure that a global variable is

set with Set Global before a Get Global object (or an object that includes

the global variable name in an expression) executes. Generally, the best way

to ensure this is to connect the sequence output pin of the Set Global object

to the sequence input pin of the Get Global object, or other object that uses

the global variable. However, there are cases when the sequence input pin need

not be connected. For further information about this, refer to \Using Global

Variables" in chapter 3 of Using HP VEE .

All global variables are deleted at the beginning of every Run, Start, or

auto-execution. Global variables are always deleted by either File =) New or

File =) Open. Global variable values are not saved with the model.

Global variables are truly global since they are not deÕned at a UserObject

level. A global variable that is deÕned in one context of a model can be used

in any other context within the model. For example, you can deÕne a global

variable with a Set Global object in the root context of the model, and then

include a Get Global to get that global variable in a UserObject. However,

you will need to avoid name conŒicts throughout the model:

If two or more Set Global objects attempt to set the same global variable

(with the same name), the current value will be overwritten as each Set

Global executes. This may result in unexpected behavior.

If a there is a local input variable with the same name as a global variable,

the local variable will take precedence.

For further information, refer to \Using Global Variables in UserObjects" in

chapter 6 of Using HP VEE , and to \Using Global Variables in Expressions" in

chapter 3 of this manual.

See Also

Set Global, and View Globals.

General Reference 2-143

Get Mappings

An object that outputs mapping information about a container.

Use

Use Get Mappings to get information about mapped arrays. Get Mappings

outputs the type of mapping (log or linear) and the beginning and ending

values of each mapping for each dimension.

Location

Data =) Access Array =) Get Mappings

Open View Parameters

NumDims - The number of dimensions in the input array. An Int32 value with a

minimum value of 1 and a maximum value of 10.

Notes

If the input array is not mapped, Get Mapping outputs Linear (0,n-1), where

"n" is the number of points in that dimension of the input array.

Get Mapping does not allow a Coord as input, because the Coord data type has

explicit mappings.

Num Dims must be greater than or equal to 1 and match the number of

dimensions in the input array.

If the Num Dims value is changed, the view automatically creates or deletes

output terminals so that the number of outputs, three for each dimension,

matches the value of the Num Dims value. For each dimension, Get Mappings

has three data output terminals.

2-144 General Reference

Get Mappings

Short Cuts

To view the mappings of a mapped array, use Line Probe on a line or open the

terminal to view the container data.

See Also

Line Probe, Set Mappings, Show Terminals, UnBuild, and UnBuild Data.

General Reference 2-145

Get Values

An object that extracts elements from an array.

Use

Use Get Values to access particular elements of an array. You can extract

single or multiple elements, columns, or rows from one or more arrays.

Use Get Values to get information about a set of data such as: the data type,

the number of dimensions, the dimension sizes, and the total size of all the

array elements of the input array.

Location

Data =) Access Array =) Get Values

Open View Parameters

Formula Box - SpeciÕes the elements of the array that you are extracting. The

speciÕc symbols associated with arrays are:

Comma (,) - Separates element dimensions.

Colon (:) - Indicates a set of elements inclusively.

Asterisk (*) - A wild card to indicate the entire column or row.

Example

To extract the 2nd column from a two dimensional array [3,3] elements,

keeping in mind that array indices are zero-based:

- - - -

|1 2 3 | | 2 |

|4 5 6 | Array [*,1] outputs: | 5 |

|7 8 9 | | 8 |

- - - -

2-146 General Reference

Get Values

Notes

Get Values accepts expressions in the entry box.

All arrays are zero-based.

There must be exactly one speciÕcation for each array dimension.

For more information on the array syntax, see the Formula Reference chapter.

See Also

Data, Set Values, and UnBuild Data.

Array in the \Formula Reference" chapter.

General Reference 2-147

Globals

A menu item.

Use

Use Globals to access the following objects which set and get the values of

global variables.

Set Global

Get Global

Location

Data =) Globals =)

Notes

A global variable that is deÕned in one context of a model can be used in any

other context within the model. For example, you can deÕne a global variable

with a Set Global object in the root context of the model, and then include

a Get Global to get that global variable in a UserObject. You need to avoid

name conŒicts throughout the model:

If two or more Set Global objects attempt to set the same global variable

(with the same name), the current value will be overwritten as each Set

Global executes. This may result in unexpected behavior.

If a there is a local input variable with the same name as a global variable,

the local variable will take precedence.

For further information, refer to \Using Global Variables in UserObjects" in

chapter 6 of Using HP VEE , and to \Using Global Variables in Expressions" in

chapter 3 of this manual.

See Also

Get Global, Set Global, and View Globals.

2-148 General Reference

Glossary

Glossary

Displays deÕnitions of common HP VEE terms.

Use

Use Glossary to clarify HP VEE terminology.

Location

Help =) Glossary

Notes

Glossary presents the information from the glossary in the HP VEE Reference

Manual .

See Also

Help.

General Reference 2-149

Help (Object Menu)

Gives help on this object.

Use

Use Help to view the reference page for this object. To exit help, press the

Done button.

Location

On each object menu =) Help

Notes

To get help on multiple objects, terminology, or procedural information, use the

features under the Help menu.

Help for Math and AdvMath objects give the entire list of functions to choose

from. Help for State Driver or Component Driver contains help about the

driver itself.

See Also

Glossary, How To, Object Menu, and On Features.

2-150 General Reference

How To

How To

Displays information summaries to help you build models.

Use

Use How To to get summary information to help you build, debug, and

document models.

Location

Help =) How To

Notes

How To presents information on model building summaries.

See Also

Glossary, Help, On Features, On Help, On Instruments, and Short Cuts.

General Reference 2-151

HP BASIC/UX

A menu item available in HP VEE-Test running on the HP 9000 Series 300 and

400 only.

Use

Use HP BASIC/UX to access the following objects that control HP BASIC/UX

programs:

Init HP BASIC/UX

To/From HP BASIC/UX

Location

I/O =) HP BASIC/UX =)

See Also

Init HP BASIC/UX and To/From HP BASIC/UX.

2-152 General Reference

HP-UX Escape

HP-UX Escape

This object has been renamed to Execute Program.

General Reference 2-153

If A == B

An object that branches output if the data input values are equal.

Use

Use If A == B to test for equality and branch based on that test.

Location

Flow =) Conditional =) If A == B

Notes

If A == B is a preconÕgured If/Then/Else object that tests the equality of the

inputs. You cannot modify the condition or change the data inputs. You can

use If/Then/Else to change the condition or data inputs.

If the inputs are equal, the Then output is propagated with an Int32 scalar 1,

else the Else output is propagated with an Int32 scalar 0.

See Also

Conditional, If/Then/Else, If A != B, If A < B, If A > B, If A <= B, and If

A >= B.

Relational in the \Formula Reference" chapter.

2-154 General Reference

If A >= B

If A >= B

An object that branches output if one input is greater than or equal to the

other.

Use

Use If A >= B to test for one input being greater than or equal to the other,

and branch based on that test.

Location

Flow =) Conditional =) If A >= B

Notes

If A >= B is a preconÕgured If/Then/Else object. You cannot modify the

condition or change the data inputs. You can use If/Then/Else to change the

condition or data inputs.

If the value of A is greater than or equal to the value of B, the Then output is

propagated with an Int32 scalar 1, else the Else output is propagated with an

Int32 scalar 0.

See Also

Conditionals, If/Then/Else, If A == B, If A != B, If A < B, If A > B, and If

A <= B.

Relational in the \Formula Reference" chapter.

General Reference 2-155

If A > B

An object that branches output if one input is greater than the other.

Use

Use If A > B to test for one input being greater than the other and branch

based on that test.

Location

Flow =) Conditional =) If A > B

Notes

If A > B is a preconÕgured If/Then/Else object. You cannot change the

condition or modify the data inputs. You can use If/Then/Else to change the

condition or data inputs.

If the value of A is greater than the value of B, the Then output is propagated

with an Int32 scalar 1, else the Else output is propagated with an Int32 scalar

0.

See Also

Conditional, If/Then/Else, If A == B, If A != B, If A < B, If A <= B, and If

A >= B.

Relational in the \Formula Reference" chapter.

2-156 General Reference

If A <= B

If A <= B

An object that branches output if one input is less than or equal to the other.

Use

Use If A <= B to test for one input being less than or equal to the other, and

branch based on that test.

Location

Flow =) Conditional =) If A <= B

Notes

If A <= B is a preconÕgured If/Then/Else object which tests for the inequality

of the inputs. You cannot modify the condition or change the data inputs. You

can use If/Then/Else to change the condition or data inputs.

If the value of A is less than or equal to the value of B, the Then output is

propagated with an Int32 scalar 1, else the Else output is propagated with an

Int32 scalar 0.

See Also

Conditionals, If/Then/Else, If A == B, If A != B, If A < B, If A > B, and If

A >= B.

Relational in the \Formula Reference" chapter.

General Reference 2-157

If A < B

An object that branches output if one input is less than the other.

Use

Use If A < B to test for one input being less than the other, and branch based

on that test.

Location

Flow =) Conditional =) If A < B

Notes

If A < B is a preconÕgured If/Then/Else object. You cannot modify the

condition or change the data inputs. You can use If/Then/Else to change the

condition or data inputs.

If the value of A is less than the value of B, the Then output is propagated with

an Int32 scalar 1, else the Else output is propagated with an Int32 scalar 0.

See Also

Conditional, If/Then/Else, If A == B, If A != B, If A > B, If A <= B, and If

A >= B.

Relational in the \Formula Reference" chapter.

2-158 General Reference

If A != B

If A != B

An object that branches output if the inputs are not equal.

Use

Use If A != B to test for inequality and branch based on that test.

Location

Flow =) Conditional =) If A != B

Notes

If A != B is a preconÕgured If/Then/Else object which tests for the inequality

of the inputs. You cannot change the condition or modify the data inputs. You

can use If/Then/Else to change the condition or data inputs.

If the value of A is not equal to the value of B, the Then output is propagated

with an Int32 scalar 1, else the Else output is propagated with an Int32 scalar

0.

See Also

Conditional, If/Then/Else, If A == B, If A < B, If A > B, If A <= B, and If

A >= B.

Relational in the \Formula Reference" chapter.

General Reference 2-159

If/Then/Else

An object that branches execution Œow based on the values of its input(s).

Formerly called If/Then.

Use

Use If/Then/Else to make decisions about which subthread branch to execute.

You may enter any legal math expression in the formula boxes on the open

view.

Only the output pin associated with a true condition is activated. The

container output is the value of the expression.

If/Then/Else evaluates the expressions in the If/Else If clauses (top to

bottom) until one evaluates to a non-zero value. This non-zero container

is copied to that expression's corresponding output and that one output is

propagated. Only one output is propagated. If none of the expressions evaluate

to a non-zero value, then the Else output is propagated with the zero value of

the last evaluated expression.

If any of the expressions evaluate to a value that is an array, the array values

are checked to see if they are either all zero or all non-zero. If the values are

mixed, an error is returned since it cannot be determined whether the array

is true or false. To produce a scalar, use expr == 0 or expr!=0 since the

equality relationals always return a scalar.

Location

Flow =) If/Then/Else

Open View Parameters

Enter an expression in the edit Õeld.

2-160 General Reference

If/Then/Else

Object Menu

Add Else/If - Adds a condition that is tested if the previous condition is not

met and an output pin that is activated if the condition is true.

Delete Else/If - Deletes a condition. After selecting Delete Else/If,

select a condition to delete from a dialog box that is displayed.

Delete Else/If is not available when only one condition is displayed. This

feature is only available if you have at least two Else/If conditions.

Notes

You may use any legal mathematical statements in the conditional statement.

You may add additional inputs for use in the expressions, just as in the

Formula box.

The objects under Conditional are preconÕgured If/Then/Else objects that

test for a speciÕc condition.

To get a TRUEjFALSE (1j0) output, use the Relational objects. They are

available under the Math menu.

Also note the diÃerence between menu items under Relational and under

Conditional. Relationals are formulas with output 0 or 1. Conditionals

are If/Then/Else and have two outputs, of which one activates.

See Also

Conditional, and Triadic Operator.

Relational in the \Formula Reference" chapter.

General Reference 2-161

Import Library

An object that loads a library of User Functions, Compiled Function

deÕnitions, or Remote Function deÕnitions into a running HP VEE model.

Use

Use Import Library to load a library of one of the following kinds of functions

into your HP VEE model at run time:

User Function - Import Library loads all of the User Functions from

a speciÕed Õle. (User Functions are created by selecting the Make User

Function selection on the object menu of a UserObject. You create a

library by creating several User Functions and saving them to a Õle.)

Compiled Function - Import Library attaches an shared library to the HP

VEE process, and parses the Definition File declarations. (Compiled

Functions are programs written in a programming language such as C, which

are dynamically linked to the HP VEE process. Refer to Using HP VEE for

further information.)

Remote Function - Import Library starts an HP VEE process on a remote

host and loads the Remote File into the HP VEE process. (Remote

Functions are actually User Functions loaded by the remote HP VEE

process, but callable on the local host. Refer to Using HP VEE for further

information.)

Once the library of User Functions, Compiled Functions, or Remote Functions

is loaded, the functions are executed (called) by name using the Call Function

object.

Location

Device =) Function =) Import Library

2-162 General Reference

Import Library

Open View Parameters

Library Type - A dialog box allows you to choose User Function, Compiled

Function, or Remote Function.

Library Name - Enter the name of the library that you want to import.

File Name - (User Function or Compiled Function only.) Select the Õle that

contains the library to import.

Definition File - (Compiled Function only.) Select the deÕnition Õle for

the Compiled Function.

Host Name - (Remote Function only.) Enter the name of the remote host

where the Remote Function will operate.

Remote File Name - (Remote Function only.) Enter the Õle name (complete

path) of the library (e.g. /users/MyUserName/MyDir/MyFile).

Remote Timeout - (Remote Function only.) Set the timeout in seconds for

the Remote Function.

Object Menu

Load Lib - Immediately loads the speciÕed library into HP VEE. If a library

with the same name was previously loaded, that library is deleted and

overwritten with the new library.

Delete Lib - Immediately deletes the speciÕed library from HP VEE. (This

provides the same functionality as the Delete Library object.)

Notes

The Import Library object is generally used for advanced operations where

you have developed sets of User Functions, Compiled Functions, or Remote

Functions into libraries. Import Library allows you to load such libraries

dynamically at run time. For User Functions you can save considerable space

by creating a library and loading it with Import Library|you don't have

to save copies of the User Functions in each individual model. Also, when

you develop a library of standard User Functions, you can keep the source

code for those functions in a single place. Refer to Using HP VEE for a

General Reference 2-163

Import Library

detailed discussion of using User Functions, Compiled Functions, and Remote

Functions.

User Functions loaded at run time by Import Library operate exactly like

any locally-created User Function within the model. You can execute any

User Function with the Call Function object. However, only locally created

User Functions can be edited within the model. If you want to edit any of the

external User Functions, you must open the library Õle that contains the User

Functions and use the Edit User Functions selection on the Edit menu. Once

you have edited the User Function, save the Õle back to the disk.

See Also

Call Function, Delete Library, Edit UserFunction, User Function, and

UserObject.

2-164 General Reference

Init HP BASIC/UX

Init HP BASIC/UX

An object that spawns an HP BASIC/UX process and runs a speciÕed

program. Init HP BASIC/UX is available in HP VEE-Test on HP 9000 Series

300 and 400 only.

Use

Use Init HP BASIC/UX to begin communications with HP BASIC programs.

Enter the complete path and Õle name and any options for the HP BASIC

program you wish to run in the Program Õeld. The program may be in either

STOREd or SAVEd format. You can use relative paths; these paths are

relative from the present working directory where HP VEE started.

Init HP BASIC/UX does not provide any data path to or from the HP BASIC

process; use To/From HP BASIC/UX for that purpose.

Location

I/O =) HP BASIC/UX =) Init HP BASIC/UX

Notes

You can use more than one Init HP BASIC/UX object in a model and you can

use more than one in a single thread.

There is no direct way to terminate an HP BASIC/UX process from an

HP VEE model other than deleting the Init object. There are two possible

ways to terminate the HP BASIC/UX processes:

Your HP BASIC program runs a QUIT statement when it receives a certain

data value from HP VEE.

An Execute Program object kills the HP BASIC/UX process using a shell

command, such as rmbkill.

When you exit HP VEE, any HP BASIC/UX processes still attached are killed.

See Also

To/From HP BASIC/UX, To/From Named Pipe, and Execute Program.

General Reference 2-165

Instrument

Selects an I/O object to control any conÕgured instrument or adds a new

instrument to the list of conÕgured instruments. This feature is available in

HP VEE-Test only.

Use

Click on I/O =) Instrument and examine the list of conÕgured instruments in

the Select an I/O Device dialog box.

If the instrument you want is not properly conÕgured, go to Configure I/O

and conÕgure it. If the instrument you want is in the list and is properly

conÕgured, follow these instructions:

1. Click once on the desired instrument to highlight it.

2. Click one of the buttons at the bottom of the dialog box to select the type

of object you wish to use to control the instrument. If you are not sure which

type of object to use to control the selected instrument, try State Driver.

If the instrument you want is not in the list or is not properly conÕgured:

1. Click on Add to add a new instrument.

2. Complete the resulting dialog boxes. Refer to the Configure I/O entry for

details about how to complete these dialog boxes.

Location

I/O =) Instrument

Notes

All instruments should be conÕgured before they can be opened by way of the

Instruments menu selection. The best way to conÕgure instruments is to use

the Configure I/O menu selection.

Note that an I/O object may be operated with or without actual instruments

connected to the computer. If you wish to control a live instrument, you must

set a correct, non-zero address and enable Live Mode. The address and Live

Mode setting are controlled by way of the I/O =) Configure I/O menu

2-166 General Reference

Instrument

selection. If the address is zero or if Live Mode is oÃ, the instrument object

operates but does not attempt to communicate with a physical instrument.

State drivers can be used interactively or within a model. To set the value

of an individual component, click on the Õeld containing the value of the

component and complete the resulting dialog box. To make a measurement and

display the result, click on the corresponding numeric readout or XY display

inside the State Driver open view.

It is possible to have more than one object controlling a single instrument. It

is also possible to have multiple copies of the same driver, each controlling a

diÃerent physical instrument. In either case, it is the conÕgured name that

determines which object controls which instrument.

Your system administrator must properly conÕgure your computer before it

is possible to communicate between HP VEE and any hardware interface. If

you believe that you have properly followed all HP VEE procedures properly

and you still cannot achieve any level of communication with an instrument,

the problem may be with your computer conÕguration. Ask your system

administrator to read this explanation and verify proper conÕguration of

your system's interface drivers. (These interface drivers are diÃerent from the

instrument driver Õles included with HP VEE).

See Also

Advanced I/O, Bus I/O Monitor, and Configure I/O.

Using HP VEE , chapter 5.

General Reference 2-167

Integer

An object that outputs a constant integer Scalar or Array 1D. To input an

array, press tab to enter the next value.

Use

Use Integer to set an integer constant or to get user input.

Location

Data =) Constant =) Integer

Example

To use Integer as a prompt on a panel view, change the name of the Integer

object to a prompt such as Enter the number of seconds to delay:. The user

Õlls in the requested information in the entry Õeld.

Type in the formula 1024*1024 into the Integer and it will calculate the

result.

Object Menu

Auto Execute - If set, the object operates whenever the values in the Õeld

are edited.

Config - Sets the initial number of values to be output with this object. A

value of 0 sets the container to a scalar, otherwise the container is an array

of the length given.

Initialize - Used to set this object to a particular value at PreRun and/or

Activate time.

Initial Value - A dialog box that speciÕes the value to be set. Default

value is zero.

Initialize At PreRun - Whether to set the Initial Value at PreRun

time. Default is oÃ.

Initialize At Activate - Whether to set the Initial Value at Activate

time. Default is oÃ.

2-168 General Reference

Integer

Number Formats - SpeciÕes a diÃerent display format.

Notes

Initialize is most often used for initializing values inside a UserObject.

The other method for setting initial values is the Default Value control pin

available on most data constants. The Default Value pin allows you to

programmatically change the current value.

Note that the Initial Value Õeld is always a scalar, even if Integer is

conÕgured to be an array. The Default Value input pin, however, requires its

input container to exactly match the size and shape of Integer.

See Also

Alloc Integer, Complex, Constant, Coord, Date/Time, Enum, Integer, Number

Formats, PComplex, Real, Text, and Toggle.

General Reference 2-169

Integer Slider

An object that outputs the Integer value of the slider.

Use

Use Integer Slider to input Int32 values. Integer Slider is particularly

useful on a panel view.

Location

Data =) Integer Slider

Open View Parameters

The open view displays Õelds for slider value, min, max, and slider control.

Object Menu

Auto Execute - If set, the object operates whenever the values in the Õeld

are edited.

Detents - Sets the distance between values. Any Real Detents are truncated

to Int32.

Initialize - Used to set this object to a particular value at PreRun and/or

Activate time.

Initial Value - A dialog box that speciÕes the value to be set. Default

value is the zero value of that container type.

Initialize At PreRun - Whether to set the Initial Value at PreRun

time. Default is oÃ.

Initialize At Activate - Whether to set the Initial Value at Activate

time. Default is oÃ.

Number Formats - SpeciÕes a diÃerent display format.

Layout - SpeciÕes either horizontal or vertical slider format.

2-170 General Reference

Integer Slider

Notes

Initialize is most often used for initializing values inside a UserObject.

The other method for setting initial values is the Default Value control pin.

The Default Value pin allows you to programmatically change the current

value.

See Also

Complex, Enum, Integer, PComplex, Real, Real Slider, Text, and Toggle.

General Reference 2-171

Interface Event

An object that captures asynchronous interface events for VXI and HP-IB.

This feature is available in HP VEE-Test only.

Use

The Interface Event object can be conÕgured to detect various interface

events. Depending on the conÕguration, the object may wait for the event,

giving up execution to other parallel threads, or it may simply return a boolean

(0 or 1) or other indicator of the state of the interface.

If the Interface Event object has been conÕgured to wait for the event, then

upon the event the object will execute. Any thread hosted by this object will

have priority over any other parallel threads, and will execute to completion. If

the Interface Event object has been conÕgured to simply return an indicator

of interface state, the thread containing it will have normal priority, and will

execute in parallel with any other threads.

Location

I/O =) Advanced I/O =) Interface Event

Open View Parameters

Interface - The currently selected interface is displayed in this Õeld. Click

on this Õeld to display a list of the currently conÕgured interfaces. For an

interface to appear in this list, at least one device for that interface must

be conÕgured using Config I/O. Multiple interfaces of the same type are

distinguished by the select code (e.g.: \hpib7" and \hpib8").

Action - Determines the execution behavior of the Interface Event object

upon detection of the event.

Wait - Wait for the event to occur. The object will execute when the event

occurs. Any thread hosted by this object will have priority over any other

parallel threads, and will execute to completion when the event occurs,

but is \blocked" until the event occurs. When the event occurs, a boolean

TRUE (1) or an interface-event-speciÕc bit pattern is output.

2-172 General Reference

Interface Event

No Wait - Execute immediately, placing the current state of the conÕgured

event, as speciÕed by a 32-bit integer, on the event output pin. This

value is the boolean value FALSE (0) if the event has not occurred. If

the event has occurred, a TRUE (1) or an interface-event-dependent bit

pattern is returned. In the No Wait conÕguration, any thread hosted by

the Interface Event object will have normal execution priority, and will

execute in parallel with any other threads.

Event - Allows selection of speciÕc interface events. Click on this Õeld

to display the choices. For each choice below, both the Wait and the No

Wait actions are described. Note that in each case, the thread propagation

priorities for Wait and No Wait are as described above.

SRQ - This is the only choice for the HP-IB interface:

|If the Action choice is Wait, when an HP-IB device \pulls" on the

service request line the Interface Event object will execute, placing a

boolean value TRUE (1) on the event output pin.

|If the Action choice is No Wait, a boolean value FALSE (0) is output if

the event has not occurred. If the event has occurred, a boolean TRUE (1)

will be output on the event pin.

Sys Reset - The Interface Event object will execute when a system reset

occurs on the VXI interface:

|If the Action choice is Wait, a boolean TRUE (1) will be output on the

event pin when the system reset occurs.

|If the Action choice is No Wait, a FALSE (0) is output if the system

reset has not occurred.

Sys Active - When the VXI Resource Manager has Õnished its VXI

initialization and management, it sends a Begin Normal Operation

(BNO) command to the VXI interface. If Sys Active is conÕgured, the

Interface Event object will execute when this occurs:

|If the Action choice is Wait, a boolean TRUE (1) will be output on the

event pin when the BNO command occurs.

|If the Action choice is No Wait, a FALSE (0) is output if the event has

not occurred.

General Reference 2-173

Interface Event

Sys Deactive - When normal VXI operation is aborted an Abort Normal

Operation (ANO) or End Normal Operation (ENO) command is sent to

the interface. If Sys Deactive is conÕgured, the Interface Event object

will execute when this occurs:

|If the Action choice is Wait, a boolean TRUE (1) will be output on the

event pin when the ANO or ENO command occurs.

|If the Action choice is No Wait, FALSE (0) is output if the event has

not occurred.

TTL Trig - When TTL Trig is conÕgured, the Interface Event object

\monitors" the VXI TTL trigger lines:

|If the Action choice is Wait, the Interface Event object executes when

a VXI device \pulls" on one or more of the eight TTL trigger lines in the

VXI backplane, placing a 32-bit integer on the event output pin. Only the

low byte of this integer is signiÕcant. It is a bit pattern showing which of

the eight TTL trigger lines are active (bit 0 corresponds to trigger line 0,

bit 7, to trigger line 7). Each bit set (1) indicates that the corresponding

line has been triggered. For example, 00010001 indicates that TTL lines 0

and 4 have been triggered.

|If the Action choice is No Wait, the boolean FALSE (0) is output if no

triggers have occurred.

ECL Trig - When ECL Trig is conÕgured, the Interface Event object

\monitors" the VXI ECL trigger lines:

|If the Action choice is Wait, the Interface Event object executes when

a VXI device \pulls" on one or more of the four ECL trigger lines in the

VXI backplane, placing a 32-bit integer on the event output pin. The low

byte of this integer is a bit pattern showing which of the four ECL trigger

lines are active. (Bit 0 corresponds to trigger line 0, bit 3, to trigger

line 3.) Each bit set (1) indicates that the corresponding line has been

triggered. For example, 00001001 indicates that ECL lines 0 and 3 have

been triggered.

|If the Action choice is No Wait, the boolean FALSE (0) is output if no

triggers have occurred. Note that some VXI card cages may choose to

implement only two ECL trigger lines.

2-174 General Reference

Interface Event

EXT Trig - When EXT Trig is conÕgured, the Interface Event object

\monitors" the VXI EXT trigger lines:

|If the Action choice is Wait, the Interface Event object will execute

when an external device \Õres" on an embedded controller's \Trig In"

input. Up to four external trigger inputs can occur. A 32-bit integer is

output on the event pin when the Interface Event object executes. The

low byte of this integer is a bit pattern showing which of the four EXT

trigger lines are active. (Bit 0 corresponds to external trigger 0, bit 3,

to external trigger 3.) Each bit set (1) indicates that the corresponding

trigger has occurred. For example, 00001001 indicates that EXT trigger

lines 0 and 3 have been triggered.

|If the Action choice is No Wait, the boolean FALSE (0) is output if no

triggers have occurred. Some controller implementations may have no

external trigger inputs. The HP 75000 Series C Model V382 embedded

controller has one trigger input, which corresponds to the least signiÕcant

bit of the returned 32-bit integer.

Unknown Interrupt - If Unknown Interrupt is conÕgured, the Interface

Event object checks for any VME interrupts from a VME or VXI device

not in the VXI controller's servant area:

|If the Action choice is Wait, such an interrupt will cause the Interface

Event object to execute. The 32-bit value returned is the value placed on

the VXI Bus when the device does an interrupt acknowledge (IACK).

|If the Action choice is No Wait, the boolean FALSE (0) is output if no

interrupt has occurred.

Unknown Signal - If Unknown Signal is conÕgured, the Interface Event

object checks for any signal register write from a VXI device not in the

VXI controller's servant area:

|If the Action choice is Wait, such a signal will cause the Interface

Event object to execute. The 32-bit value returned is the contents of the

signal write register.

|If the Action choice is No Wait, the boolean FALSE (0) is output if no

signal has occurred.

General Reference 2-175

Interface Event

Notes

The execution behavior of the Interface Event object can either be

asynchronous or synchronous, as determined by the choice of the Action

parameter. NO WAIT speciÕes a synchronous, polling behavior. The object

executes immediately, and any attached thread will have the same priority as

all other threads currently executing. Choosing WAIT causes the Interface

Event object to wait until the event has occurred. Any thread hosted by the

object will have a higher priority, and will execute to completion, blocking all

other concurrently executing threads.

See Also

Device Event, and Interface Operations.

2-176 General Reference

Interface Operations

Interface Operations

An object that uses transactions to send low-level interface commands and data

by way of HP-IB and VXI. This feature is available in HP VEE-Test only.

Interface Operations should be used for interface-speciÕc tasks, or for special

cases where communication with devices via Direct I/O or an Instrument

Driver does not aÃord the necessary level of control.

Use

Use Interface Operations for low-level operations such as:

Sending non-standard HP-IB addressing sequences.

Sending an HP-IB group trigger message, or pulling on VXI trigger lines.

Sending arbitrary bytes via HP-IB, with or without ATN true.

Sending clear and reset commands to either the VXI or HP-IB interfaces.

Sending IEEE 488.1 deÕned multi-line messages.

To use Interface Operations you must add one or more transactions. To do

this, click on Add Trans in the object menu. Transactions are listed as lines of

text in the open view of the object. To edit a transaction, double click on the

transaction and complete the resulting dialog box.

Location

I/O =) Advanced I/O =) Interface Operations

Object Menu

Config - Displays the bus conÕguration and allows you to change to another

interface or to specify a timeout. Multiple interfaces of the same type are

distinguished by their select codes (e.g., \hpib7" and \hpib8").

Add Trans - Adds a transaction to the end (bottom) of the list.

Insert Trans - Inserts a transaction before (above) the currently highlighted

transaction.

General Reference 2-177

Interface Operations

Cut Trans - Cuts (deletes) the currently highlighted transaction, but saves it

in the transaction \cut-and-paste" buÃer.

Copy Trans - Copies the currently highlighted transaction to the transaction

\cut-and-paste" buÃer.

Paste Trans - Pastes a transaction, previously \cut" or \copied" to the

buÃer, in the position before the currently highlighted transaction.

Short Cuts

To quickly insert a transaction, place the cursor on a transaction. Press

ÄCTRLÅÄOÅ to insert a transaction over the transaction where you placed the

cursor.

To quickly delete (\kill") a transaction, place the cursor on that transaction

and press ÄCTRLÅÄKÅ.

To paste a transaction from the \kill" buÃer press ÄCTRLÅÄYÅ.

To quickly move to the next or previous transaction, press ÄCTRLÅÄNÅ or

ÄCTRLÅÄPÅ respectively.

See Also

Advanced I/O, Bus I/O Monitor, and Configure I/O.

Chapter 12, \Using Transaction I/O," in Using HP VEE .

2-178 General Reference

JCT

JCT

An object that outputs the value from the most recent data input (one of

multiple inputs) that is activated.

Use

Use JCT like a wired OR to connect the data output pins of two or more

objects to one data input pin of another object. JCT is often used in feedback

loops for data initialization. JCT passively transmits data.

Location

Flow =) Junction

Notes

JCT is useful for setting up initial conditions.

Inputs to JCT are asynchronous data inputs. This means that JCT operates any

time any of its data inputs is activated. When more than one pin on the JCT

is activated before the JCT can operate, the incoming data is queued up in the

order in which it was received. The JCT then activates its output repeatedly

much like an iterator until the data queue is empty. If the input data pin is

activated by a feedback loop, multiple activations are ignored.

One of the common uses of JCT is in a feedback loop where an initial value is

Õrst supplied through one of the inputs, and feedback values are then supplied

through one or more of the other data inputs.

See Also

DeMultiplexer.

General Reference 2-179

Layout (Object Menu)

A menu item.

Use

Use Layout to access the following features which aÃect the appearance of the

icon:

Show Label - Toggles the display of the object name on the icon.

Select Bitmap - Selects the bitmap displayed on the icon.

Delete Bitmap - Deletes the bitmap displayed on the icon.

Location

On each object menu =) Layout =)

Notes

Layout is only available from the icon view of an object. However, it is not

available for the OK, Start, and Toggle icons.

See Also

Delete Bitmap, Object Menu. Select Bitmap, Show Label, and Show Title.

2-180 General Reference

Line Probe

Line Probe

Displays the container information that is transmitted on a line between two

objects.

Use

Use Line Probe as a debugging tool to examine the container transmitted on a

line. When you select Line Probe, the cursor changes to crosshairs. Click on

the line you wish to examine. A dialog box displays the current container on

the line.

If the container on the line is not nil, the dialog box displays the current type,

shape, and size of the containers. Data values of up to Array 2D are shown. If

any of the dimensions of the container are mapped, the mapping values are

shown for each dimension.

Control inputs often have no data on them. Sequence output pins never have

data on them. If an object has not yet operated, the lines connected to its

outputs may show nil or old data.

Location

Edit =) Line Probe

Notes

Check the endpoints of a line by selecting Line Probe and dragging the pointer

to the line. When you release the mouse button over the highlighted line,

current attributes of the line are displayed.

Also, to view the endpoints of a line without showing its data, select Line

Probe and hold down the mouse button when the pointer is over the line. Move

the pointer away from the line before releasing the button.

You can check the data inside terminals of an object by double-clicking on the

terminals in the open view.

General Reference 2-181

Line Probe

Short Cuts

Press ÄShiftÅ. Place pointer over line and click left mouse button. You can look

at the data on series of lines this way, one at a time.

See Also

Show Data Flow, Show Exec Flow, and Show Terminals.

2-182 General Reference

Logging AlphaNumeric

Logging AlphaNumeric

An object that displays a Scalar or Array 1D of alphanumeric data. Logging

AlphaNumeric allows data to be displayed without overwriting the display.

Use

Use Logging AlphaNumeric to display consecutive input (either Scalar or

Array 1D) as a history of previous values.

Location

Display =) Logging AlphaNumeric

Object Menu

Config - SpeciÕes the number of lines that the display buÃer holds. If more

than that number of lines is input to Logging AlphaNumeric the last values

are kept and the previous are overwritten. Default is 256.

Clear - Clears all the data that was displayed on Logging AlphaNumeric.

Clear may be added as a control input.

Clear at PreRun - Clears the contents of the Logging AlphaNumeric at

PreRun. Default is on (checked).

Clear at Activate - Clears the contents of the Logging AlphaNumeric at

Activate. Default is on (checked).

Number Formats - SpeciÕes a display format diÃerent than the global format.

Notes

A row of asterisks ***" is displayed if the current width of the Logging

AlphaNumeric object is too small to display the default precision of the

numeric type. Resize the object and rerun the model to display the data.

See Also

AlphaNumeric and Number Format.

General Reference 2-183

Magnitude Spectrum

An object that graphically displays the magnitude of a frequency-domain

spectrum.

Use

Use Magnitude Spectrum to display Spectrums or Waveforms in the frequency

domain. Waveforms are automatically converted to spectrums by way of a Fast

Fourier Transform. The X axis is in the sampling units of the input Spectrum

(typically Hertz).

Location

Display =) Spectrum (Frequency) =) Magnitude Spectrum

Open View Parameters

Auto Scale - Automatically scales the display to show the entire trace.

Mag - The name of the Y axis.

Trace1 - The name of the Õrst trace.

Freq - The name of the X axis.

Object Menu

Auto Scale =) - Automatically scales the display to show the entire trace.

Auto Scale - Automatically scales both axes.

Auto Scale X - Automatically scales the X axis.

Auto Scale Y - Automatically scales the Y axis.

These parameters may be added as control inputs.

Clear Control =) - Parameters that specify when to clear the display.

Clear - Clears the displayed trace(s). This parameter may be added as a

control input.

2-184 General Reference

Magnitude Spectrum

Clear At PreRun - Clears the displayed trace(s) when the model or thread

is PreRun.

Clear At Activate - Clears the displayed trace(s) when the User Object is

activated.

Next Curve - Resets the pen to display the next curve in a family of

curves (data from the next time the display operates) without clearing the

previous curve. Next Curve must be selected (or activated) before each

new curve in the family. This parameter may be added as a control input.

Zoom =) - Scales the display.

In - MagniÕes the display to contain only the rectangular region that you

selected with the pointer. You select the region after selecting this feature

by dragging on the graph area. This action outlines the information with a

\rubber band" box.

Out 2|5|10|20|50|100 x - Expands the scales of the display by a factor in

both the X and Y directions about the center.

Markers =) - Allows you to Õnd the exact value of a data point on the

displayed curve. If the data is plotted on a log scale, the values shown on the

marker are the linear data points.

To move markers to a diÃerent trace, click on the button to the left of the

marker values near the bottom of the display. The button cycles through the

diÃerent line types and colors of the diÃerent traces.

Off - No markers are shown.

One On - One marker is available.

Two On - Two markers are available.

Delta On - Two markers are available and the x and y diÃerences between

them are displayed.

Interpolate - When checked, you can place markers in between the

displayed data points. The marker values displayed are calculated by linear

interpolation. Default is oÃ.

Center - If markers are available, brings them to the center of the visible

part of the trace. This is useful if you've scrolled the display and markers

are not visible.

General Reference 2-185

Magnitude Spectrum

Grid Type =) - Sets the type of grid marks. The value of the major x

division is shown below the maximum x value (to the right of the x scale

name). The value of the major y division is shown below the y scale name.

No Grid - No grid lines are shown.

Tic Marks - Shows tic marks at the major and minor divisions on all four

sides of the graph.

Axis - Shows tic marks at the major and minor divisions on the X and Y

axes of the graph. If the actual axes are scrolled oÃ the graph area, axis

lines are drawn on the edge closest to the axes.

Lines - Shows lines at the major divisions and tic marks at the minor

divisions. The X and Y axes are shown as thick lines.

Panel Layout =) - Sets the appearance of the open view.

Graph Only - The open view shows only the graph area and the marker

information (if it exists). No buttons, scales, scale names, or traces names

are shown. This layout redraws quickest and provides the largest display

area.

Scales - The open view shows the graph area, the scales, the scale names,

and trace names. These Õelds are not recessed and may not be edited.

This layout is useful when recessed Õelds might be distracting, such as

printing graphs, or when the Õelds should be protected from editing on a

User Panel.

Scales & Sliders - The open view shows all information about the graph.

It includes the most information and allows you to modify the most

elements interactively. It is the default.

Traces & Scales - A control panel that allows you to specify values such

as the names, colors, line and point characteristics, minimum values, and

maximum values for the traces and/or scales.

Traces:

Name: - The name of the trace that is displayed to the left of the graph

area and the name of the corresponding input terminal.

Scale: - If you have multiple Y scales, selects which Y scale is to be used

for this trace.

2-186 General Reference

Magnitude Spectrum

Color: - The color of the trace. Each added trace has a diÃerent color

than the existing traces. Default is Pen 4 (yellow).

Lines: - The format of the line connecting data points. Default is a

continuous line.

Points: - The symbol that marks each data point. To show unconnected

data points, select the single dot Lines format and the desired Points

symbol. Default is a dot.

You can add a Traces control input pin. The control input data must be

a record with the following Õelds: 1) A TraceNum Õeld with an Integer

value (1 is the top trace), and 2) one or more of the following Õelds: Name,

Pen, LineType, PointType. (The Pen, LineType, and PointType values

are integers from 0 to n, where 0 draws nothing.) Refer to \Records and

DataSets" in Using HP VEE for further information.

Scales:

Show Scale: - If you have multiple Y scales, a selection (using a check

box) to specify if the end points and an axis of each additional right scale

are displayed to the right of the graph area.

Scale Name: - The names of the scales. They may be set here or on the

Scales & Sliders layout.

Maximum: - The maximum values of the scales. They may be set here or

on the Scales & Sliders layout.

Minimum: - The minimum values of the scales. They may be set here or on

the Scales & Sliders layout.

Mapping: - The way the x and y data is mapped to the display. The

mapping may be linear or log. To make a log-log plot, change both X and

Y axes to Log. Default is Linear.

Log Cycles: - The maximum number of decades shown (counting down

from the maximum x and y values) when AutoScale is activated. Log

Cycles is only used when the Mapping is Log. Log Cycles is useful when a

trace contains a large dynamic range. Default is 4.

Scale Colors - The color of any background grid or tic marks. Default is

Gray.

General Reference 2-187

Magnitude Spectrum

You can add a Scales control input pin. The control input data must be a

record with the following Õelds: 1) A Text Õeld Scale with a value X, Y (or

Y1), Y2, or Y3, and 2) one or more of the following Õelds: Name, Min, Max,

and Mapping. (The Mapping text value may be Linear or Log). Refer to

\Records and DataSets" in Using HP VEE for further information.

Add Right Scale - Adds up to two additional scales to permit traces to have

diÃerent scale ranges. After adding a right scale, use Traces & Scales to

assign a trace to the scale.

Plot - Presents the Plotter Configuration control panel. When OK is

pressed, a copy of the device's entire display is plotted on the selected

plotter. This parameter may be added as a control input. If the current

Plotter Configuration is in Plot to File mode, you may specify the

destination Õle or directory name as string data on the Plot control input.

If no control input value is given, the Õle or directory name speciÕed in

Plotter Configuration will be used. See Plotter Config for more

information.

Notes

Inputs must be of type Spectrum, Waveform, or Coord (Scalar or Array 1D).

Add traces with the Terminals =) Add Data Input object menu selection. Up

to twelve traces are allowed.

Input data of type Coord is plotted by simply using its x and y values without

Õrst being converted to type Spectrum.

A Title control input may be added, which sets the title bar name to the

speciÕed text value. This allows programmatic control over the title shown

when the display is printed or plotted.

See Also

Magnitude vs Phase, Phase Spectrum, Plotter Config, Spectrum (Freq),

and Waveform (Time).

2-188 General Reference

Magnitude vs Phase

Magnitude vs Phase

An object that displays a polar plot of Magnitude against Phase of a complex

Spectrum.

Use

Use Magnitude vs Phase to display Spectrums or Waveforms Waveforms are

automatically converted to spectrums by way of a Fast Fourier Transform (Ãt).

The Radius of each data point is the spectrum's magnitude; the Angle is the

Spectrum's phase in the current trig units.

You can change the display between Polar and Smith modes by way of Grid

Type on the Object Menu.

Marker values are displayed in polar format (r:radius, a:angle) for the Polar

\grid type" and complex impedance or admittance format for Smith and

Inverse Smith \Grid Type".

Location

Display =) Spectrum (Frequency) =) Magnitude vs Phase (Polar)

Display =) Spectrum (Frequency) =) Magnitude vs Phase (Smith)

Open View Parameters

Auto Scale - Automatically scales the display to show the entire trace. Auto

Scale resets the polar reference location to Center.

Mag - The name of the radius scale.

Trace1 - The name of the Õrst trace.

Polar Reference Location - SpeciÕes the part of the polar plot displayed.

This is quicker than scrolling to the area. Changing the reference point in

the entry Õeld scrolls the part of the graph speciÕed (such as Center) to the

location speciÕed (such as (0, @0)).

Span: - The vertical dimension of the display. When the origin is centered

on the display, the Span is twice the radius. This parameter controls the

scaling of the display. Default is 2.

General Reference 2-189

Magnitude vs Phase

Ref Radius: - The radius value of the bold graticule circle.

Object Menu

Auto Scale =) - Automatically scales the display to show the entire trace.

Auto Scale - Automatically scales both axes and resets the polar reference

location to Center: (0,@0).

Auto Scale Y - Automatically scales the Y axis.

This parameter may be added as a control input.

Clear Control =) - Parameters that specify when to clear the display.

Clear - Clears the displayed trace(s). This parameter may be added as a

control input.

Clear At PreRun - Clears the displayed trace(s) when the model or thread

is PreRun.

Clear At Activate - Clears the displayed trace(s) when the User Object is

activated.

Next Curve - Resets the pen to display the next curve in a family of

curves (data from the next time the display operates) without clearing the

previous curve. Next Curve must be selected (or activated) before each

new curve in the family. This parameter may be added as a control input.

Zoom =) - Scales the display.

In - MagniÕes the display to contain only the rectangular region that you

selected with the pointer. You select the region after selecting this feature

by dragging on the graph area. This action outlines the information with a

\rubber band" box.

Out 2|5|10|20|50|100 x - Expands the scales of the display by a factor in

both the X and Y directions about the center.

Markers =) - Allows you to Õnd the exact value of a data point on the

displayed curve. If the data is plotted on a log scale, the values shown on the

marker is the linear data points.

2-190 General Reference

Magnitude vs Phase

To move markers to a diÃerent trace, click on the button to the left of the

marker values near the bottom of the display. The button cycles through the

diÃerent line types and colors of the diÃerent traces.

Off - No markers are shown.

One On - One marker is available.

Two On - Two markers are available.

Delta On - Two markers are available and the x and y diÃerences between

them are displayed.

Interpolate - When checked, you can place markers in between the

displayed data points. The marker values displayed are calculated by linear

interpolation. Default is oÃ.

Center - If markers are available, brings them to the center of the visible

part of the trace. This is useful if you've scrolled the display and markers

are not visible.

Grid Type =) - Sets the type of grid marks. The value of the major x

division is shown below the maximum x value (to the right of the x scale

name). The value of the major y division is shown below the y scale name.

No Grid - No grid lines are shown.

Tic Marks - Shows tic marks at the major and minor divisions on all four

sides of the graph.

Axis - Shows tic marks at the major and minor divisions on the X and Y

axes of the graph. If the actual axes are scrolled oÃ the graph area, axis

lines are drawn on the edge closest to the axes.

Lines - Shows circles at the major divisions and tic marks at the minor

divisions. The bold (thick) circle is the \Reference Radius"; its radius is

shown in the right corner of the display.

Smith Chart - Displays data in a Smith Chart (also called an \impedance

chart"). Marker values are given as real and imaginary impedances.

The bold circle is the \reference radius" and its linear radius value is

shown in the lower right corner of the display. The Smith Chart Grid

and markers only represent properly scaled values if the input data has

been normalized. To normalize the data, divide all magnitudes by the

characteristic impedance.

General Reference 2-191

Magnitude vs Phase

Inv Smith Chart - Displays data in an Inverse Smith Chart (also called an

\admittance chart"). An Inverse Smith Chart is used in the same way as a

Smith chart except grid and marker values are admittance values rather

than impedance values.

Panel Layout =) - Sets the appearance of the open view.

Graph Only - The open view shows only the graph area and the marker

information (if it exists). No buttons, scales, scale names, or traces names

are shown. This layout redraws quickest and provides the largest display

area.

Scales - The open view shows the graph area, the scales, the scale names,

and trace names. These Õelds are not recessed and may not be edited.

This layout is useful when recessed Õelds might be distracting, such as

printing graphs, or when the Õelds should be protected from editing on a

User Panel.

Scales & Sliders - The open view shows all information about the graph.

It includes the most information and allows you to modify the most

elements interactively. It is the default.

Traces & Scales - A control panel that allows you to specify values such

as the names, colors, line and point characteristics, minimum values, and

maximum values for the traces and/or scales.

Traces:

Name: - The name of the trace that is displayed to the left of the graph

area and the name of the corresponding input terminal.

Scale: - If you have multiple Y scales, selects which Y scale is to be used

for this trace.

Color: - The color of the trace. Each added trace has a diÃerent color

than the existing traces. Default is Pen 4 (yellow).

Lines: - The format of the line connecting data points. Default is a

continuous line.

Points: - The symbol that marks each data point. To show unconnected

data points, select the single dot Lines format and the desired Points

symbol. Default is a dot.

2-192 General Reference

Magnitude vs Phase

You can add a Traces control input pin. The control input data must be

a record with the following Õelds: 1) A TraceNum Õeld with an Integer

value (1 is the top trace), and 2) one or more of the following Õelds: Name,

Pen, LineType, PointType. (The Pen, LineType, and PointType values

are integers from 0 to n, where 0 draws nothing.) Refer to \Records and

DataSets" in Using HP VEE for further information.

Scales:

Show Scale: - If you have multiple Y scales, a selection (using a check

box) to specify if the end points and an axis of each additional right scale

are displayed to the right of the graph area.

Scale Name: - The names of the scales. They may be set here or on the

Scales & Sliders layout.

Vert Span - The vertical dimension of the display area for each scale. This

parameter may be set here or on the Scales & Sliders layout.

Scale Colors - The color of any background grid or tic marks. Default is

Gray.

Polar Reference Location - The location of the given reference point for

the R MAIN scale. This parameter may be set here or on the Scales or

Scales & Sliders layout.

You can add a Scales control input pin. The control input data must be

a record with one or more of the following Õelds: Name, Span (or Name1,

Span1), Name2, Span2, Name3, Span3, and RefPt (the value of RefPt must be

PComplex). Refer to \Records and DataSets" in Using HP VEE for further

information.

Add Right Scale - Adds up to two additional scales to permit traces to have

diÃerent scale ranges. After adding a right scale, use Traces & Scales to

assign a trace to the scale.

Plot - Presents the Plotter Configuration control panel. When OK is

pressed, a copy of the device's entire display is plotted on the selected

plotter. This parameter may be added as a control input. If the current

Plotter Configuration is in Plot to File mode, you may specify the

destination Õle or directory name as string data on the Plot control input.

If no control input value is given, the Õle or directory name speciÕed in

General Reference 2-193

Magnitude vs Phase

Plotter Configuration will be used. See Plotter Config for more

information.

Notes

Inputs must be of the type Spectrum, Waveform, or Coord (Scalar or Array

1D).

Add traces with the Terminals =) Add Data Input. Up to twelve traces are

allowed.

Input data of type Coord is plotted by simply using its x and y values as

rectangular coordinates without Õrst being converted to type Spectrum.

A Title control input may be added, which sets the title bar name to the

speciÕed text value. This allows programmatic control over the title shown

when the display is printed or plotted.

See Also

Magnitude Spectrum, Phase Spectrum, Spectrum (Freq), and Plotter

Config.

2-194 General Reference

Merge

Merge

Adds the contents of a model or set of saved objects into the work area while

keeping the existing contents of the work area.

Use

Use Merge to combine a previously saved model or set of objects into an

existing model in the HP VEE work area. Merge is useful for bringing in

previously created models or sets of objects from a library of functions that are

used often.

Location

File =) Merge

Notes

Any Preferences (for example, the Trig Mode) that are saved with a model

will not be loaded or used when you Merge that model into the HP VEE

workspace. The currently active Preferences for the workspace will remain

unchanged.

Merge presents a dialog box that allows you to select the name of the Õle you

wish to open. After you select the Õle, the pointer changes to a pair of glasses

while HP VEE is reading in the Õle.

You can use Merge to load a Õle that was saved with Save or Save As.

If the model saved has a panel view, the panel is not imported into the model.

The panel views of UserObject are input.

When you open Merge for the Õrst time, it points to

/usr/lib/veeengine/lib/ (or /usr/lib/veetest/lib if you have

HP VEE-Test). You can choose to point somewhere else and then choose Save

Preferences. The new default directory is saved so next time you open Merge,

it opens in the new default directory.

See Also

Open, Save, Save Objects, and Save Preferences.

General Reference 2-195

Merge Library

Loads a library of User Functions into the work area.

Use

Use Merge Library to merge User Functions previously saved in a library Õle

of functions, into the current work area.

Merge Library loads all of the User Functions from a speciÕed Õle. (User

Functions are created by selecting the Make User Function selection on the

object menu of a UserObject. You create a library by creating several User

Functions and saving them to a Õle.)

Once the library of User Functions is loaded, the functions are executed

(called) by name using the Call Function object.

Location

File =) Merge Library

Notes

Merge Library is used for advanced operations where you have developed sets

of User Functions into libraries. When you develop a library of standard User

Functions, you can keep the source code for those functions in a single place.

Refer to Using HP VEE for a detailed discussion of using User Functions.

User Functions loaded by Merge Library operate exactly like any

locally-created User Function within the model. You can execute any User

Function with the Call Function object. You can edit any of the external

User Functions, loaded by Merge Library, as they are now merged into the HP

VEE work area.

Any Preferences (for example, the Trig Mode) that are saved with a

function will not be loaded or used. The currently active Preferences for the

workspace will remain unchanged.

Merge Library presents a dialog box that allows you to select the name of the

Õle you wish to open. After you select the Õle, the pointer changes to a pair of

glasses while HP VEE is reading in the Õle.

2-196 General Reference

Merge Library

When you open Merge Library for the Õrst time, it points to

/usr/lib/veeengine/lib/ (or /usr/lib/veetest/lib if you have HP

VEE-Test). You can choose to point somewhere else and then choose Save

Preferences. The new default directory is saved so next time you open Merge

Library, it opens in the new default directory.

See Also

Call Function, Delete Library, Edit UserFunction, Import Library, Open,

Save, Save Objects, Save Preferences, User Function, and UserObject.

General Reference 2-197

Merge Record

An object that allows the user to merge two or more records of the same shape

into a single record.

Use

Use Merge Record to merge two or more records of the same shape into a

single record. Any number of records can be merged together as long as they

are the same shape|either all scalars or all arrays with the same number of

elements.

Location

Data =) Access Record =) Merge Record

Notes

Any number of input pins (A, B, and so forth) may be added, but each must be

of the Record data type. The merged record is output on the Record output

pin.

The records to be merged must not have any duplicate Õeld names. The Õeld

names are taken from the input records (the input terminal names are ignored).

See Also

Build Record, From DataSet, Record Constant, Set Field, To DataSet, and

UnBuild Record.

2-198 General Reference

Meter

Meter

An object that graphically displays a Scalar numeric value.

Use

Use Meter to display a value on an analog scale and digital numeric Õeld.

Location

Display =) Meter

The value of the input is displayed at the bottom of the meter.

Object Menu

Clear At PreRun - Clears the displayed value when the model or thread is

PreRun.

Clear At Activate - Clears the displayed value when the UserObject is

activated.

Sub-Range Config - Sets diÃerent colors (green, yellow, and red) for diÃerent

ranges of the display. The color ranges overlay each other with red on the

bottom and green on top. This allows red sub-ranges at each end of the

scale.

Number Formats - SpeciÕes a diÃerent display format than the global format.

Notes

The upper and lower limits of the meter are set by clicking on the present value

and typing in a new value.

These values may also be added as control inputs.

The input data must be Scalar and able to be converted to Real (Complex,

PComplex, Spectrum, and Coord must be Õrst \unbuilt".)

See Also

AlphaNumeric, Logging AlphaNumeric, and Number Format.

General Reference 2-199

Move Objects

Moves selected objects.

Use

Use Move Objects to change the arrangement of a set of selected objects in

your model.

Location

Edit =) Move Objects

Notes

Move Objects retains all connections between objects. If Automatic Line

Routing is set, lines between selected objects and unselected objects will be

re-routed.

If you want to move a single object, use the Move feature on its object menu.

See Also

Move (Object Menu) and Select Objects.

2-200 General Reference

Move (Object Menu)

Move (Object Menu)

Moves this object.

Use

Use Move to reposition the object on the work area by dragging it.

Location

On each object menu =) Move

Notes

Move retains the connections with other objects. If Automatic Line Routing is

set, it may take a few moments to redraw lines.

To move multiple objects, use the Move Objects selection from the Edit menu.

Short Cuts

Instead of selecting Move, you can move an object by positioning the pointer

over the object and dragging it (using the left mouse button). The pointer

must not be over a action area of the object (like a button or a entry Õeld).

See Also

Move Objects, and Object Menu.

General Reference 2-201

New

Clears the work area.

Use

Use New to give yourself a new work area, empty of objects.

Location

File =) New

Notes

If your model has not been saved, New prompts you to save your changes.

New does not clear the Paste buÃer. New reads in the default .veerc Õle for

default Preferences settings.

New maintains the directory paths used for Save and Open instruments.

Short Cuts

Press ÄClear displayÅ to erase the model.

See Also

Preferences.

2-202 General Reference

Next

Next

An object that causes a Repeat =) object to immediately start the next

iteration.

Use

Use Next to skip to the next iteration of the current loop without executing the

remaining objects on the iteration subthread.

If Next is not on an iteration subthread, it stops all execution on the

subthread.

Location

Flow =) Repeat =) Next

Notes

Next is often used with an If/Then object to conditionally control iteration.

See Also

Break, For Count, For Log Range, For Range, If/Then, On Cycle, and Until

Break.

General Reference 2-203

Noise Generator

An object that generates a waveform of noise data.

Use

Use Noise Generator to generate a waveform of simulated white noise.

Location

Device =) Virtual Source =) Noise Generator

Open View Parameters

Amplitude - The absolute value of the maximum and minimum values.

Default is 1. No value is greater than Amplitude. No value is less than

-Amplitude.

Time Span: - The duration of the waveform (in seconds) Default is 20m

seconds and is set in Waveform Defaults.

Num Points: - The number of points in the waveform. The time between

points in the waveform is Time Span/N. Num Points must be positive.

Default is 256 and is set in Waveform Defaults.

All of these parameters may be set from the open view or added as inputs.

Notes

The random noise generated is distributed evenly across the frequency

spectrum.

See Also

Build Arb Waveform, Build Waveform, Comparator, Function Generator, and

Pulse Generator.

2-204 General Reference

Note Pad

Note Pad

An object that displays a block of text.

Use

Use Note Pad to document your model, label the panel view, or write notes.

Location

Display =) Note Pad

Object Menu

Enable Editing - When checked, allows you to edit the text in the panel.

When not checked, no editing is allowed; this is useful when a Note Pad in on a

panel view and you don't want other users to modify your note.

Open View Parameters

To enter information in the Note Pad, click on the panel, then type the note.

Notes

Each Note Pad is a stand-alone object and is not connected to any other

objects.

After editing or resizing, scroll bars are added or removed from the Note Pad as

required.

To edit the text area, all the usual HP VEE edit functions work including the

following keys: ÄClear lineÅ, ÄInsert lineÅ, ÄDelete lineÅ, ÄInsert charÅ, ÄDelete charÅ, ÄPrevÅ,

ÄNextÅ, and the cursor keys.

See Also

Show Description.

General Reference 2-205

Number Formats

SpeciÕes the default display format for numbers.

Use

Use Number Format to globally set the numeric format for real and integer

numbers. Real number formats are Fixed, Scientific, Engineering and

Standard. You can specify the precision of the real format. The Integer

number formats are Decimal, Octal, Hexadecimal, and Binary. Numbers

displayed in the last three formats are denoted by leading #Q, #H, and #B.

The current values of Number Formats is saved with each model. The defaults

are read in from .veerc when HP VEE is started or New is selected.

Save Preferences will save the current Number Format to the .veerc Õle as the

future default.

Location

File =) Preferences =) Number Formats

Notes

Real Slider, Integer Slider, Alphanumeric, Logging Alphanumeric, VU

Meter, Integer, Real, Coord, Complex, and PComplex may be set to numeric

display formats diÃerent from the global by using the Number Formats feature

on the object menu. AlphaNumeric and Logging AlphaNumeric additionally

allow a Time Stamp format that displays time and data information in several

combinations.

See Also

Alphanumeric, Complex, Coord, Integer, Integer Slider, Logging

Alphanumeric, PComplex, Real, Real Slider, Save Preferences, and VU

Meter.

2-206 General Reference

Object Menu

Object Menu

The menu associated with every object that contains selections that aÃect that

object.

Use

Use the object to set status, edit, set controls, or change the terminals of an

object.

Use Object Menu to access the following object actions:

Move

Size

Clone

Help

Show Description

Breakpoint

Show Title (only available from the open view)

Terminals =)

Show Terminals (only available from the open view)

Add Data Input

Add Control Input

Add XEQ Input

Delete Input

Add Data Output

Add Error Output

Delete Output

Layout =) (only available from the icon)

Show Label

Select Bitmap

Delete Bitmap

Cut

Use Object Menu to access the following object actions on the panel view:

Move

Size

Show Title

Delete

General Reference 2-207

Object Menu

Location

To access an object's Object Menu, position the pointer over the object and

click the right mouse button. Note that to access the object menu of the open

view of a UserObject you must position the pointer over the title bar or

terminals, otherwise, the Edit Menu is presented.

You can also access the Object Menu from the open view by positioning the

pointer over the object menu button (the square with a bar in the middle to

the left of the title bar) and pressing the left mouse button.

Notes

Most object menus have additional menu features speciÕc to that object. Refer

to information on the object for details about those object menu choices.

The Layout menu is not available for the Start, Toggle, and OK objects.

2-208 General Reference

OK

OK

An object that pauses the execution Œow of a subthread until it is pressed.

Use

Use OK to wait for a user response.

OK allows the addition of XEQ input. If the XEQ input is activated, OK operates

even if the button has not been pressed by the user.

Location

Flow =) Confirm (OK)

Notes

OK often is used when creating a dialog box or with the Enum constant.

The button part of the OK doesn't pop out until the object operates.

Since the icon of this object represents its greatest utility, the object menu

accessed from the icon is larger and more useful than the object menu accessed

from its open view.

You can use either the Go data output pin or the sequence output pin to

continue the thread.

The name of the button (default = OK) can be changed by changing the text in

the open view.

See Also

Gate, JCT, Start and Stop.

General Reference 2-209

On Cycle

An object that begins execution of a subthread at a speciÕed interval.

Use

Use On Cycle to execute a subthread that must be repeated periodically. The

output of On Cycle is the current date and time. This date and time can be

displayed on any object that supports a Time Stamp number format.

In HP VEE-Test, use On Cycle to trigger instruments at speciÕc intervals.

Location

Flow =) Repeat =) On Cycle

Open View Parameters

Enter the number of seconds per iteration period in the entry Õeld or as an

input. If this value is 0 or -1, On Cycle operates continuously (the same as

Until Break).

Notes

Execution of the subthread hosted by the On Cycle output continues until one

of the following occurs:

All objects that can, have operated. The subthread is deactivated, the

iteration timer is reset, and the subthread is reactivated after the number of

seconds have elapsed.

A Break object operates. The subthread is deactivated and the sequence

output pin is activated. Note that the value that remains on the On Cycle

output is the same value present when the Break was encountered.

A Next object operates. The subthread is deactivated and the iteration timer

is reset.

On Cycle starts operation at the speciÕed time period. If the thread takes

longer to complete than the period of the On Cycle object, then the next

iteration starts at the next period synchronization point. For example, if the

2-210 General Reference

On Cycle

period in the On Cycle is 1 second and the thread it hosts takes 1.5 seconds to

complete, the next iteration starts .5 seconds after the thread completes.

While waiting for the next time period to begin, On Cycle \sleeps" allowing

other objects on this or other threads to operate.

When the subthread hosted by the On Cycle object Õnishes an iteration, all

data containers sent during the previous iteration are invalidated before the

next iteration. This prevents \old" data from a previous iteration from being

reused in the current iteration. However, if Œow branching is present within the

iterative subthread, some objects may not execute on every iteration. Thus,

data containers sent by those objects may be invalidated before other objects

can execute on the data. To obtain the desired propagation in this case, use

the Sample & Hold object. Refer to \Iteration with Flow Branching" in chapter

4 of Using HP VEE for more information.

See Also

AlphaNumeric, Break, For Count, For Log Range, For Range, Next, Sample &

Hold, and Until Break.

General Reference 2-211

On Features

Displays help on all menu choices (objects, actions, settings, cascading menus,

and title bar buttons).

Use

Use On Features to get Reference help on the use, location, and parameters of

each menu item. On Features also presents examples, notes, and related topics

(See Also) for menu items.

Location

Help =) On Features

Notes

Items in cascading menus are listed by the name on the object (which is

usually the name of the menu feature).

See Also

Help (Object Menu).

2-212 General Reference

On Help

On Help

Displays information about the use of the Help menu items.

Use

Use On Help to become familiar with the types of information under the Help

menu and navigation around the help screens.

Location

Help =) On Help

See Also

Glossary, How To, On Features, On Instruments, On Version, and Short

Cuts.

General Reference 2-213

On Instruments

Displays information about instrument drivers. On Instruments is available in

HP VEE-Test only.

Use

Use On Instruments to get help on the use and parameters of the instrument

drivers supplied with HP VEE.

Location

Help =) On Instruments

Notes

The instrument help Õles are designed to be used with several Hewlett-Packard

software products and may refer to products other than HP VEE.

For information about those products, contact your Hewlett-Packard

representative.

See Also

Help and Help (Object Menu).

2-214 General Reference

On Version

On Version

Displays the HP VEE version number.

Use

Use On Version to verify the version of HP VEE that you're running. You may

want to do this to check your installation or when you're communicating with

Hewlett-Packard Company.

On Version also displays the Õle name for the model you Opened.

Location

Help =) On Version

See Also

Help.

General Reference 2-215

Open

Loads a model Õle into the work area, replacing the existing model.

Use

Use Open to bring a previously saved model into HP VEE for running or

editing. Move to the directory where the Õle is located, click on the Õle name,

and press ÄOKÅ. The mode is displayed on your screen.

Location

File =) Open

Notes

Open presents a dialog box that allows you to select the name of the model

Õle you wish to open. When HP VEE is loading in the Õle, the pointer icon

changes to a pair of glasses.

You can Open a Õle that was saved with Save Objects, Save or Save As.

Short Cuts

ÄCTRLÅÄOÅ opens Õles.

Spacebar completes Õlenames.

See Also

Merge, Save, and Save Objects.

2-216 General Reference

Panel

Panel

A button that toggles the view displayed from the detail view to the panel

view.

Use

When pressed, Panel shows the panel view you created as an interface to your

model on either the main HP VEE window or a UserObject.

Location

The upper left side of the title bar on the main HP VEE window and on User

Objects when the associated panel is present.

Notes

Panel is only visible when you've created a panel view.

After you've secured a panel view, the Panel button is not visible.

See Also

Add to Panel, Detail, and Secure.

General Reference 2-217

Paste

Places a copy of the Paste buÃer on the work area.

Use

After using Cut, Copy, or Clone, use Paste to retrieve a copy of a set of

objects.

Paste allows you to recover objects that have been accidentally Cut.

Location

Edit =) Paste

Notes

The Paste buÃer only holds one set of objects. The Paste buÃer is replaced

each time you Clone, Cut or Copy.

The Paste buÃer is not cleared when you use Open, Merge, or New.

See Also

Clone, Clone (Object Menu), Copy, Cut, and Cut (Object Menu).

2-218 General Reference

PComplex

PComplex

An object that outputs a constant PComplex number. To input an array, press

tab to enter the next value.

Use

Use PComplex to set a PComplex constant or to get user input.

Location

Data =) Constant =) PComplex

Example

To use PComplex as a prompt on a panel view, change the name of the

PComplex object to a prompt such as Enter the AC voltage:. The user Õlls in

the requested information in the entry Õeld.

Type in (2,@PI/2) and it will calculate the PComplex Constant formula.

Object Menu

Auto Execute - If set, the object operates whenever the values in the Õeld

are edited.

Config - Sets the initial number of values to be output with this object.

with this object. A value of 0 sets the container to a scalar, otherwise the

container is an array of the length given.

Initialize - Used to set this object to a particular value at PreRun and/or

Activate time.

Initial Value - A dialog box that speciÕes the value to be set. Default

value is (0,@0) (value of that container type).

Initialize At PreRun - Whether to set the Initial Value at PreRun

time. Default is oÃ.

Initialize At Activate - Whether to set the Initial Value at Activate

time. Default is oÃ.

General Reference 2-219

PComplex

Number Formats - Sets the numeric format for Real and Integers.

Notes

Initialize is most often used for initializing values inside a UserObject.

The other method for setting initial values is the Default Value control pin.

The Default Value pin allows you to programmatically change the current

value.

Note that the Initial Value Õeld is always a scalar, even if the PComplex is

conÕgured to be an array. The Default Value input pin, however, requires its

input container to match the shape of the PComplex. Trig Mode speciÕes phase

value units.

You can enter Magnitude and Phase values (separated by commas) and HP

VEE formats automatically.

See Also

Alloc PComplex, Complex, Constant, Coord, Date/Time, Enum, Integer,

Number Formats, Real, Text, Trig Mode, and Toggle.

2-220 General Reference

Phase Spectrum

Phase Spectrum

An object that graphically displays the phase of a frequency-domain spectrum.

Use

Use Phase Spectrum to display phase against frequency of Spectrums or

Waveforms (in the frequency domain). Waveforms are automatically converted

to spectrums by way of a Fast Fourier Transform (Ãt). The X axis is in the

sampling units of the input spectrum (typically Hertz). The Y axis units are

the current Trig Mode setting.

Location

Display =) Spectrum (Frequency) =) Phase Spectrum

Open View Parameters

Auto Scale - Automatically scales the display to show the entire trace.

Phase - The name of the Y axis.

Trace1 - The name of the Õrst trace.

Freq - The name of the X axis.

Object Menu

Auto Scale =) - Automatically scales the display to show the entire trace.

Auto Scale - Automatically scales both axes.

Auto Scale X - Automatically scales the X axis.

Auto Scale Y - Automatically scales the Y axis.

These parameters may be added as control inputs.

Clear Control =) - Parameters that specify when to clear the display.

Clear - Clears the displayed trace(s). This parameter may be added as a

control input.

General Reference 2-221

Phase Spectrum

Clear At PreRun - Clears the displayed trace(s) when the model or thread

is PreRun.

Clear At Activate - Clears the displayed trace(s) when the User Object is

activated.

Next Curve - Resets the pen to display the next curve in a family of

curves (data from the next time the display operates) without clearing the

previous curve. Next Curve must be selected (or activated) before each

new curve in the family. This parameter may be added as a control input.

Zoom =) - Scales the display.

In - MagniÕes the display to contain only the rectangular region that you

selected with the pointer. You select the region after selecting this feature

by dragging on the graph area. This action outlines the information with a

\rubber band" box.

Out 2|5|10|20|50|100 x - Expands the scales of the display by a factor in

both the X and Y directions about the center.

Markers =) - Allows you to Õnd the exact value of a data point on the

displayed curve. If the data is plotted on a log scale, the values shown on the

marker are the linear data points.

To move markers to a diÃerent trace, click on the button to the left of the

marker values near the bottom of the display. The button cycles through the

diÃerent line types and colors of the diÃerent traces.

Off - No markers are shown.

One On - One marker is available.

Two On - Two markers are available.

Delta On - Two markers are available and the x and y diÃerences between

them are displayed.

Interpolate - When checked, you can place markers in between the

displayed data points. The marker values displayed are calculated by linear

interpolation. Default is oÃ.

Center - If markers are available, brings them to the center of the visible

part of the trace. This is useful if you've scrolled the display and markers

are not visible.

2-222 General Reference

Phase Spectrum

Grid Type =) - Sets the type of grid marks. The value of the major x

division is shown below the maximum x value (to the right of the x scale

name). The value of the major y division is shown below the y scale name.

No Grid - No grid lines are shown.

Tic Marks - Shows tic marks at the major and minor divisions on all four

sides of the graph.

Axis - Shows tic marks at the major and minor divisions on the X and Y

axes of the graph. If the actual axes are scrolled oÃ the graph area, axis

lines are drawn on the edge closest to the axes.

Lines - Shows lines at the major divisions and tic marks at the minor

divisions. The X and Y axes are shown as thick lines.

Panel Layout =) - Sets the appearance of the open view.

Graph Only - The open view shows only the graph area and the marker

information (if it exists). No buttons, scales, scale names, or traces names

are shown. This layout redraws quickest and provides the largest display

area.

Scales - The open view shows the graph area, the scales, the scale names,

and trace names. These Õelds are not recessed and may not be edited.

This layout is useful when recessed Õelds might be distracting, such as

printing graphs, or when the Õelds should be protected from editing on a

User Panel.

Scales & Sliders - The open view shows all information about the graph.

It includes the most information and allows you to modify the most

elements interactively. It is the default.

Traces & Scales - A control panel that allows you to specify values such

as the names, colors, line and point characteristics, minimum values, and

maximum values for the traces and/or scales.

Traces:

Name: - The name of the trace that is displayed to the left of the graph

area and the name of the corresponding input terminal.

Scale: - If you have multiple Y scales, selects which Y scale is to be used

for this trace.

General Reference 2-223

Phase Spectrum

Color: - The color of the trace. Each added trace has a diÃerent color

than the existing traces. Default is Pen 4 (yellow).

Lines: - The format of the line connecting data points. Default is a

continuous line.

Points: - The symbol that marks each data point. To show unconnected

data points, select the single dot Lines format and the desired Points

symbol. Default is a dot.

You can add a Traces control input pin. The control input data must be

a record with the following Õelds: 1) A TraceNum Õeld with an Integer

value (1 is the top trace), and 2) one or more of the following Õelds: Name,

Pen, LineType, PointType. (The Pen, LineType, and PointType values

are integers from 0 to n, where 0 draws nothing.) Refer to \Records and

DataSets" in Using HP VEE for further information.

Scales:

Show Scale: - If you have multiple Y scales, a selection (using a check

box) to specify if the end points and an axis of each additional right scale

is displayed to the right of the graph area.

Scale Name: - The names of the scales. They may be set here or on the

Scales & Sliders layout.

Maximum: - The maximum values of the scales. They may be set here or

on the Scales & Sliders layout.

Minimum: - The minimum values of the scales. They may be set here or on

the Scales & Sliders layout.

Mapping: - The way the x and y data is mapped to the display. The

mapping may be linear or log. To make a log-log plot, change both X and

Y axes to Log. Default is Linear.

Log Cycles: - The maximum number of decades shown (counting down

from the maximum x and y values) when AutoScale is activated. Log

Cycles is only used when the Mapping is Log. Log Cycles is useful when a

trace contains a large dynamic range. Default is 4.

Scale Colors - The color of any background grid or tic marks. Default is

Gray.

2-224 General Reference

Phase Spectrum

You can add a Scales control input pin. The control input data must be a

record with the following Õelds: 1) A Text Õeld Scale with a value X, Y (or

Y1), Y2, or Y3, and 2) one or more of the following Õelds: Name, Min, Max,

and Mapping. (The Mapping text value may be Linear or Log). Refer to

\Records and DataSets" in Using HP VEE for further information.

Add Right Scale - Adds up to two additional scales to permit traces to have

diÃerent scale ranges. After adding a right scale, use Traces & Scales to

assign a trace to the scale.

Plot - Presents the Plotter Configuration control panel. When OK is

pressed, a copy of the device's entire display is plotted on the selected

plotter. This parameter may be added as a control input. If the current

Plotter Configuration is in Plot to File mode, you may specify the

destination Õle or directory name as string data on the Plot control input.

If no control input value is given, the Õle or directory name speciÕed in

Plotter Configuration will be used. See Plotter Config for more

information.

Notes

Inputs must be of the type Spectrum, Waveform, or Coord (Scalar or Array

1D).

Add traces with the Terminals =) Add Data Input. Up to twelve traces are

allowed.

Input data of type Coord is plotted by simply using its x and y values without

Õrst being converted to type Spectrum.

A Title control input may be added, which sets the title bar name to the

speciÕed text value. This allows programmatic control over the title shown

when the display is printed or plotted.

See Also

Magnitude Spectrum, Magnitude vs Phase, Spectrum (Freq), and Plotter

Config.

General Reference 2-225

Plotter Config

Changes the plotter conÕguration choices.

Use

Use Plotter Config to change how or where HP VEE plots two-dimensional

graphical displays.

Location

File =) Preferences =) Plotter Config

Dialog Information

Plotter Device - Allows you to select from the set of plotters/printers

conÕgured on your system. You may also use the default printer.

Plot to File - Allows you to specify the Õle or directory on the Õle system

where the plot will be written, rather than being sent directly to a plotter.

If you specify a Õle, each plot will erase the old contents of the Õle (if any)

and write the plotter HPGL commands to the Õle. If you specify an existing

directory, the Õrst plot made during any session of HP VEE will generate a

Õle named \plot1" in that directory. Additional plots to a directory during

the same HP VEE session will be named \plot2", \plot3", etc. Any of the

resulting plot Õles can be sent to the plotter using a standard lp command

such as:

lp -d <plotter> /tmp/veeplot/plot3

Plotter Type - IdentiÕes the plotter to be used as compatible with either the

HP-GL or the HP-GL/2 command set. Use HP-GL/2 for plotters that can

also be used as printers, such as the LaserJet III or the PaintJet XL with the

HP-GL/2 Cartridge.

Number of Pens - IdentiÕes the number of physical pens in the plotter. If

6 pens are speciÕed, such as for an HP 7475 plotter, and a display trace

attempts to use pen 9, the pen numbers will \wrap" and pen 3 will be used.

Label Using - This option is only available when one or more stroke fonts

(e.g., Kanji for Japanese) have been speciÕed in app-defaults. Refer to

2-226 General Reference

Plotter Config

\Using Two-Byte Character Sets" in appendix A of Using HP VEE for

further information. When present, this option gives you two choices:

Stroke Fonts - With this selection, text and numeric labels are plotted

using the speciÕed stroke font. Since most plotters do not directly support

Kanji, use this option for Kanji support.

Plotter ROM - With this selection, text and numeric labels are output as

HPGL and are to be converted to strokes by the plotter. This won't work

for fonts not directly supported by the plotter. However, this option may

be desirable if the HPGL commands are to be used by another software

package.

Paper Size - Allows you to select the size of the paper in the plotter.

Choosing the size Special will allow you to edit the P1 and P2 Õelds to use

a non-standard paper size, or to plot on only a portion of the page. The

plotted image will always be scaled to the maximum size that can Õt within

the area deÕned by P1 and P2. However, the aspect ratio of the original

display object is maintained, so the plotted image may Õll the deÕned area in

only one direction.

P1 (left, bottom) - SpeciÕes the oÃset from the left side and bottom of

the plotter's hard clip limits to the bottom left corner of the plotting area

to be used.

P2 (right, top) - SpeciÕes the oÃset from the right side and top of the

plotter's hard clip limits to the top right corner of the plotting area to be

used.

Size Units - Allows you to select whether the P1 and P2 units will be

displayed and entered in either Inches or Millimeters.

Notes

HP VEE holds only one conÕguration for plotting. It can be set with the

Plotter Config menu item or the Plot menu item on a graphical display

object. Use the Preferences =) Save Preferences menu pick to save the

current plotter conÕguration.

To send plots to a local or networked plotter, your system administrator must

Õrst add the plotter as a spooled device on your system.

General Reference 2-227

Plotter Config

In addition to standard HP-GL plotters such as the HP 7475, the HP ColorPro

(HP 7440), or the HP 7550, some printers can be used as plotters, such as

the PaintJet XL, and the LaserJet III. The HP ColorPro plotter requires the

Graphics Enhancement Cartridge to plot Polar or Smith Chart graticules. The

PaintJet XL requires the HP-GL/2 Cartridge to make any plots. In order to

make plots on the LaserJet III, at least two megabytes of optional memory

expansion is required, and the Page Protection conÕguration option should be

enabled. Plots of many vectors, especially with Polar or Smith chart graticules,

may require even more optional memory in the LaserJet III. If a plot is to be

output to a printer, the Plotter Type must be set to HP-GL/2, which causes

the proper HP-GL/2 setup sequence to be included with the plot information.

To generate a plot, either interactively choose the Plot menu entry from the

display's object menu, or programmatically use the optional Plot input control

pin on the display. If the current Plotter Configuration is in the Plot to

File mode, you may specify the destination Õle or directory name as string

data on the Plot control input. If no control input value is given, the Õle or

directory name speciÕed in Plotter Configuration will be used.

The entire view of the display object will be plotted, and scaled to Õll the

deÕned plotting area, while retaining the aspect ratio of the original display

object. By re-sizing the display object, you can control the aspect ratio of the

plotted image. By making the display object larger, you can reduce the relative

size of the text and numeric labels around the plot.

See Also

XY Trace, Complex Plane, Magnitude Spectrum, Polar Plot, Strip Chart,

Waveform (Time), X vs Y Plot, and Save Preferences.

2-228 General Reference

Polar Plot

Polar Plot

An object that displays a graphical plot in polar coordinates.

Use

Use Polar Plot to display a value on a polar scale when separate polar

information is available for radius and angle data.

When more than one trace is to be plotted, each execution of the Polar Plot

object uses the single angle input data with each trace's Radius input data,

therefore, all traces share the single angle input.

Location

Display =) Polar Plot

Open View Parameters

Auto Scale - Automatically scales the display to show the entire trace. Auto

Scale resets the polar reference location to Center.

R name - The name of the radius scale.

RData1 - The name of the Õrst trace.

Polar Reference Location - SpeciÕes the part of the polar plot displayed.

This is quicker than scrolling to the area. Changing the reference point in

the entry Õeld scrolls the point of the display speciÕed (such as Center) to

the coordinate speciÕed (such as (0, @0)).

Span: - The vertical dimension of the display. When the origin is centered

on the display, the Span is twice the radius. This parameter controls the

scaling of the display. Default is 2.

Ref Radius: - The radius value of the bold graticule circle.

General Reference 2-229

Polar Plot

Object Menu

Auto Scale =) - Automatically scales the display to show the entire trace.

Auto Scale - Automatically scales both axes and resets the polar reference

location to \Center: (0,@0)".

This parameter may be added as a control input.

Clear Control =) - Parameters that specify when to clear the display.

Clear - Clears the displayed trace(s). This parameter may be added as a

control input.

Clear At PreRun - Clears the displayed trace(s) when the model or thread

is PreRun.

Clear At Activate - Clears the displayed trace(s) when the User Object is

activated.

Next Curve - Resets the pen to display the next curve in a family of

curves (data from the next time the display operates) without clearing the

previous curve. Next Curve must be selected (or activated) before each

new curve in the family. This parameter may be added as a control input.

Zoom =) - Scales the display.

In - MagniÕes the display to contain only the rectangular region that you

selected with the pointer. You select the region after selecting this feature

by dragging on the graph area. This action outlines the information with a

\rubber band" box.

Out 2|5|10|20|50|100 x - Expands the scales of the display by a factor in

both the X and Y directions about the center.

Markers =) - Allows you to Õnd the exact value of a data point on the

displayed curve. If the data is plotted on a log scale, the values shown on the

marker are the linear data points.

To move markers to a diÃerent trace, click on the button to the left of the

marker values near the bottom of the display. The button cycles through the

diÃerent line types and colors of the diÃerent traces.

Off - No markers are shown.

One On - One marker is available.

2-230 General Reference

Polar Plot

Two On - Two markers are available.

Delta On - Two markers are available and the x and y diÃerences between

them are displayed.

Interpolate - When checked, you can place markers in between the

displayed data points. The marker values displayed are calculated by linear

interpolation. Default is oÃ.

Center - If markers are available, brings them to the center of the visible

part of the trace. This is useful if you've scrolled the display and markers

are not visible.

Grid Type =) - Sets the type of grid marks. The value of the major x

division is shown below the maximum x value (to the right of the x scale

name). The value of the major y division is shown below the y scale name.

No Grid - No grid lines are shown.

Tic Marks - Shows tic marks at the major and minor divisions on all four

sides of the graph.

Axis - Shows tic marks at the major and minor divisions on the X and Y

axes of the graph. If the actual axes are scrolled oÃ the graph area, axis

lines are drawn on the edge closest to the axes.

Lines - Shows circles at the major divisions and tic marks at the minor

divisions. The bold (thick) circle is the \Reference Radius"; its radius is

shown in the lower right corner of the display.

Smith Chart - Displays data in a Smith Chart (also called an \impedance

chart"). Marker values are given as real and imaginary impedances.

The bold circle is the \reference radius" and its linear radius value is

shown in the lower right corner of the display. The Smith Chart grid

and markers only represent properly scaled values if the input data has

been normalized. To normalize the data, divide all magnitudes by the

characteristic impedance.

Inv Smith Chart - Displays data in an Inverse Smith Chart (also called an

\admittance chart"). An Inverse Smith Chart is used in the same way as a

Smith Chart except grid and marker values are admittance values rather

than impedance values.

Panel Layout =) - Sets the appearance of the open view.

General Reference 2-231

Polar Plot

Graph Only - The open view shows only the graph area and the marker

information (if it exists). No buttons, scales, scale names, or traces names

are shown. This layout redraws quickest and provides the largest display

area.

Scales - The open view shows the graph area, the scales, the scale names,

and trace names. These Õelds are not recessed and may not be edited.

This layout is useful when recessed Õelds might be distracting, such as

printing graphs, or when the Õelds should be protected from editing on a

User Panel.

Scales & Sliders - The open view shows all information about the graph.

It includes the most information and allows you to modify the most

elements interactively. It is the default.

Traces & Scales - A control panel that allows you to specify values such

as the names, colors, line and point characteristics, minimum values, and

maximum values for the traces and/or scales.

Traces:

Name: - The name of the trace that is displayed to the left of the graph

area and the name of the corresponding input terminal.

Scale: - If you have multiple Y scales, selects which Y scale is to be used

for this trace.

Color: - The color of the trace. Each added trace has a diÃerent color

than the existing traces. Default is Pen 4 (yellow).

Lines: - The format of the line connecting data points. Default is a

continuous line.

Points: - The symbol that marks each data point. To show unconnected

data points, select the single dot Lines format and the desired Points

symbol. Default is a dot.

You can add a Traces control input pin. The control input data must be

a record with the following Õelds: 1) A TraceNum Õeld with an Integer

value (1 is the top trace), and 2) one or more of the following Õelds: Name,

Pen, LineType, PointType. (The Pen, LineType, and PointType values

are integers from 0 to n, where 0 draws nothing.) Refer to \Records and

DataSets" in Using HP VEE for further information.

2-232 General Reference

Polar Plot

Scales:

Show Scale: - If you have multiple Radius scales, a selection (using a

check box) to specify if the span and an axis of each additional right scale

will be displayed to the right of the graph area.

Scale Name: - The names of the scales. They may be set here or on the

Scales & Sliders layout.

Vert Span - The vertical dimension of the display area for each scale. This

parameter may be set here or on the Scales & Sliders layout.

Scale Colors - The color of any background grid or tic marks. Default is

Gray.

Polar Reference Location The location of the given reference point for

the R MAIN scale. This parameter may be set here or on the Scales or

Scales & Sliders layout.

You can add a Scales control input pin. The control input data must be

a record with one or more of the following Õelds: Name, Span (or Name1,

Span1), Name2, Span2, Name3, Span3, and RefPt (the value of RefPt must be

PComplex). Refer to \Records and DataSets" in Using HP VEE for further

information.

Add Right Scale - Adds up to two additional scales to permit traces to have

diÃerent scale ranges. After adding a right scale, use Traces & Scales to

assign a trace to the scale.

Plot - Presents the Plotter Configuration control panel. When OK is

pressed, a copy of the device's entire display is plotted on the selected

plotter. This parameter may be added as a control input. If the current

Plotter Configuration is in Plot to File mode, you may specify the

destination Õle or directory name as string data on the Plot control input.

If no control input value is given, the Õle or directory name speciÕed in

Plotter Configuration will be used. See Plotter Config for more

information.

General Reference 2-233

Polar Plot

Notes

Inputs must be Scalar or Array 1Ds that can be converted to the type Real.

You can add traces as data inputs. Up to twelve traces are allowed. Angle

units are in the current Trig Mode.

All inputs must be the same size and shape. Mapping information on the

inputs data is ignored.

A Title control input may be added, which sets the title bar name to the

speciÕed text value. This allows programmatic control over the title shown

when the display is printed or plotted.

See Also

Complex Plane, Magnitude Spectrum, Polar Plot, Strip Chart, Trig Mode,

Waveform (Time), and Plotter Config.

2-234 General Reference

Preferences

Preferences

A menu item.

Use

Use Preferences to access the following work area options.

Trig Mode

Degrees

Radians

Gradians

Number Formats

Waveform Defaults

Auto Line Routing

Printer Config

Plotter Config

Save Preferences

Location

File =) Preferences =)

Notes

Default Preferences are stored in .veerc in your $HOME directory. If they

are changed within HP VEE, the changes are valid only for the current work

session unless you have selected Save Preferences.

See Also

Auto Line Routing, Number Formats, Printer Config, Plotter Config, Save

Preferences, Trig Mode, and Waveform Defaults.

General Reference 2-235

Print All

Outputs the entire detail view of the model to a printer or a print Õle.

Use

Use Print All to get hardcopy of your entire model to document it. Print All

displays a dialog box that allows you to specify what to output, followed by the

printer conÕguration dialog box.

Print All produces pages that can be assembled to show models. The output

includes a total view of the top-level model, and a page for each object in the

model, which shows all views of the object and its Description data. Each

page of the output contains information describing the image's place in the

model. (If you are using a Postscript printer, the entire view of the model will

be scaled, if necessary, to Õt on one page.)

All aspects of the printing process may be controlled independently.

Location

File =) Print All

Dialog Information

The Print All dialog box displays four Õelds:

Print Complete Network - If checked (the default), HP VEE prints the

detail view of the entire model (even if the entire detail view is not visible).

If the printout will not Õt on one page, multiple pages are generated. If

Include All UserObjects is also checked, complete detail views for each

UserObject in the model are also printed. If Include All UserFunctions is

also checked, complete detail views for each local UserFunction in the model

are also printed. (If you are using a Postscript printer, the entire view of the

model will be scaled, if necessary, to Õt on one page.)

Print All Objects - If checked, HP VEE prints a page containing the

icon and open view and a description of each object. If the object is

a UserObject or a UserFunction, it's panel view will also be printed.

Multiple objects will be placed on a page if they will Õt. If Include All

UserFunctions is also checked, the detail view for each local UserFunction

2-236 General Reference

Print All

in the model is also printed. This option may cause a large number of pages

to be output (especially if Include All UserObjects is also checked). The

default is not checked.

Include All UserObjects - If checked (the default), the objects within each

UserObject are printed. If not checked, UserObjects are treated just like

other objects in the model.

Include All User Functions - If checked (the default), the entire detail

view and the object information of each User Function (its background

functionality) will be included in the printout.

When you press OK, the printer conÕguration dialog box appears:

Graphics Printer - Allows you to select from the set of printers conÕgured

on your system for graphics. You may also use the default printer. Click

the mouse on Default for a selection of available printers. If you click on

Graphics Printer, the Õeld toggles to Graphics Directory (below).

Graphics Directory - Allows you to specify a destination directory for the

Õles that output is printed to. The output Õles are named \page1", \page2",

and so forth.

Printer Type - IdentiÕes the particular type of printer being used for

graphics printing. When Graphics Directory is selected, this Õeld becomes

File Type (below).

File Type - Selects the type of output Õle that is to be written.

Magnification - Allows you to select enlargement or reduction of the

graphic being printed. A value of 1 generates the same physical size print on

paper as is viewed on the screen, if the printer allows it. A .5 reduces the

graphic to half the screen size. If you are printing to a Postscript printer,

a Magnification of 1 automatically scales the picture to Õt on the page.

(The picture is scaled Õrst to the page size, then the Magnification factor is

applied.)

Darkness - Allows you to select the intensity of print you want, either light,

medium, or dark.

Landscape - Allows you to select the landscape (horizontal) presentation of

graphics.

General Reference 2-237

Print All

Notes

Print All takes a few moments to capture the image of your model. While

the image is being captured, the pointer changes to an hourglass. You can't

use HP VEE until the capture is completed (the pointer changes back to a

crosshair).

If you print to a Õle in xwd format, HP VEE prints to multiple Õles. To print

the Õles, Õrst convert them to PCL using pctrans. Then use the HP-UX

command

lp -oraw filename

to print the PCL Õles to an HP LaserJet printer (or other PCL printer).

If you print to a Õle in Postscript format, HP VEE prints to a single Õle. To

print the Õle, use the HP-UX \lp" command

lp -d<PostscriptPrinter> filename

to print to a Postscript printer.

HP VEE only saves one conÕguration for printing. It can be set with Printer

Config, Print All, Print Objects, or Print Screen.

See Also

Print Screen, Print Objects, and Printer Config.

2-238 General Reference

Print Objects

Print Objects

Outputs a page for each of the selected objects, containing all views and

Description data, to a printer or a print Õle.

Use

Use Print Objects to get hardcopy of selected objects. Print Objects

displays a dialog box that speciÕes information about the printer conÕguration.

Print Objects will print all views (icon, open, detail, or panel), along with

Description data, for each object.

If no objects are currently selected, the Print Objects menu item will be

grayed out.

Location

File =) Print Objects

Dialog Information

Print Objects displays the Printer Config dialog box. The following Õelds

are displayed:

Graphics Printer - Allows you to select from the set of printers conÕgured

on your system for graphics. You may also use the default printer. Click

the mouse on Default for a selection of available printers. If you click on

Graphics Printer, the Õeld toggles to Graphics Directory (below).

Graphics Directory - Allows you to specify a destination directory for the

Õles that output is printed to. The output Õles are named \page1", \page2",

and so forth.

Printer Type - IdentiÕes the particular type of printer being used for

graphics printing. When Graphics Directory is selected, this Õeld becomes

File Type (below).

File Type - Selects the type of output Õle that is to be written.

Magnification - Allows you to select enlargement or reduction of the

graphic being printed. A value of 1 generates the same physical size print on

General Reference 2-239

Print Objects

paper as is viewed on the screen, if the printer allows it. A .5 reduces the

graphic to half the screen size. If you are printing to a Postscript printer,

a Magnification of 1 automatically scales the picture to Õt on the page.

(The picture is scaled Õrst to the page size, then the Magnification factor is

applied.)

Darkness - Allows you to select the intensity of print you want, either light,

medium, or dark.

Landscape - Allows you to select the landscape (horizontal) presentation of

graphics.

Notes

Print Objects may take a few moments to capture the image of the objects,

particularly if you select a large number of objects. While the image is being

captured, the pointer changes to an hourglass. You can't use HP VEE until the

capture is completed (the pointer changes back to a crosshair).

HP VEE only saves one conÕguration for printing. It can be set with Printer

Config, Print All, Print Objects, or Print Screen.

If HP VEE prints to a Õle in xwd format, you can print the Õle by Õrst

converting it to PCL using pctrans. Then use the HP-UX command

lp -oraw filename

to print the PCL Õle to an HP LaserJet printer (or other PCL printer).

If HP VEE prints to a Õle in Postscript format, you can print it to a Postscript

printer using the HP-UX command

lp -d<PostscriptPrinter> filename

where <PostscriptPrinter> is the device name for your Postscript printer.

See Also

Print All, Print Screen, and Printer Config.

2-240 General Reference

Print Screen

Print Screen

Outputs the contents of the HP VEE window to a printer or a print Õle.

Use

Use Print Screen to get hardcopy of the portion of your model that is visible

on your screen. Print Screen displays a dialog box that speciÕes information

about the printer conÕguration.

Location

File =) Print Screen

Dialog Information

Print Screen displays the Printer Config dialog box. The following Õelds are

displayed:

Graphics Printer - Allows you to select from the set of printers conÕgured

on your system for graphics. You may also use the default printer. Click

the mouse on Default for a selection of available printers. If you click on

Graphics Printer, the Õeld toggles to Graphics Directory (below).

Graphics Directory - Allows you to specify a destination directory for the

Õles that output is printed to. The output Õles are named \page1", \page2",

and so forth.

Printer Type - IdentiÕes the particular type of printer being used for

graphics printing. When Graphics Directory is selected, this Õeld becomes

File Type (below).

File Type - Selects the type of output Õle that is to be written.

Magnification - Allows you to select enlargement or reduction of the

graphic being printed. A value of 1 generates the same physical size print on

paper as is viewed on the screen, if the printer allows it. A .5 reduces the

graphic to half the screen size. If you are printing to a Postscript printer,

a Magnification of 1 automatically scales the picture to Õt on the page.

(The picture is scaled Õrst to the page size, then the Magnification factor is

applied.)

General Reference 2-241

Print Screen

Darkness - Allows you to select the intensity of print you want, either light,

medium, or dark.

Landscape - Allows you to select the landscape (horizontal) presentation of

graphics.

Notes

Print Screen takes a few moments to capture the image in the window. While

the image is being captured, the pointer changes to an hourglass. You can't

use HP VEE until the capture is completed (the pointer changes back to a

crosshair).

The size of the HP VEE display window determines the size of the print area.

To get a large output, maximize the HP VEE window (but too large an image

gets clipped). Larger images take longer to scan and print.

HP VEE only saves one conÕguration for printing. It can be set with Printer

Config, Print All, Print Objects, or Print Screen.

If HP VEE prints to a Õle in xwd format, you can print the Õle by Õrst

converting it to PCL using pctrans. Then use the HP-UX command

lp -oraw filename

to print the PCL Õle to an HP LaserJet printer (or other PCL printer).

If HP VEE prints to a Õle in Postscript format, you can print it to a Postscript

printer using the HP-UX command

lp -d<PostscriptPrinter> filename

where <PostscriptPrinter> is the device name for your Postscript printer.

Short Cuts

Just press ÄShiftÅ-ÄPrintÅ to cause an immediate Print Screen. The current

options speciÕed in Printer Config will be used. This is useful for printing

open dialog boxes.

See Also

Print All, Print Objects, and Printer Config.

2-242 General Reference

Print Screen (Object)

Print Screen (Object)

An object that prints a copy of the visible portion of the HP VEE window on

the system printer.

Use

Use Print Screen to print a copy of the visible work area while the model is

running.

Location

I/O =) Print Screen

Notes

The printer used by Print Screen (the HP VEE system printer) is conÕgured by

File =) Preferences =) Printer Config. Print Screen directs output to

the conÕgured graphics printer or directory.

A running model is paused when Print Screen operates. It resumes when

Print Screen is Õnished.

See Also

Print All, Print Screen, Print Objects and Printer Config.

General Reference 2-243

Printer Config

Changes the printer conÕguration choices.

Use

Use Printer Config to change how or where you get your HP VEE printouts.

Location

File =) Preferences =) Printer Config

Dialog Information

Graphics Printer - Allows you to select from the set of printers conÕgured

on your system for graphics. You may also use the default printer. Click

the mouse on Default for a selection of available printers. If you click on

Graphics Printer, the Õeld toggles to Graphics Directory (below).

Graphics Directory - Allows you to specify a destination directory for the

Õles that output is printed to. The output Õles are named \page1", \page2",

and so forth.

Printer Type - IdentiÕes the particular type of printer being used for

graphics printing. When Graphics Directory is selected, this Õeld becomes

File Type (below).

File Type - Selects the type of output Õle that is to be written.

Magnification - Allows you to select enlargement or reduction of the

graphic being printed. A value of 1 generates the same physical size print on

paper as is viewed on the screen, if the printer allows it. A .5 reduces the

graphic to half the screen size. If you are printing to a Postscript printer,

a Magnification of 1 automatically scales the picture to Õt on the page.

(The picture is scaled Õrst to the page size, then the Magnification factor is

applied.)

Darkness - Allows you to select the intensity of print you want, either light,

medium, or dark.

2-244 General Reference

Printer Config

Landscape - Allows you to select the landscape (horizontal) presentation of

graphics.

The following are used only for text printing using the To Printer object.

Text Printer - Allows you to select from the set of printers conÕgured on

your system for text (To Printer objects). You may also use the default

printer.

Wrap Column - The number of characters that can be entered on a single line

before the column wraps to the next line. Default is 80 characters.

Header Title - Enter your header title here. You can also select No Header

by clicking on the Header Title bar. If a header is speciÕed, it is printed at

the top of each page with the date and page number.

Notes

HP VEE only saves one conÕguration for printing. It can be set with Printer

Config, Print All, Print Objects, or Print Screen.

To save the printer conÕguration for the next work session, be sure to execute

File =) Preferences =) Save Preferences before you exit HP VEE.

See Also

Print All, Print Screen, Print Objects, and To Printer.

General Reference 2-245

Pulse Generator

An object that generates and outputs a pulse waveform.

Use

Use Pulse Generator to generate a pulse waveform using your own

speciÕcations.

Location

Device =) Virtual Source =) Pulse Generator

Object Menu

Error on Aliasing - Evaluates whether the period of any high or low pulse

state is less than twice the sampling period (Time Span/Num Points). If

it is, an error is returned. The purpose of this evaluation is to determine

whether the points being generated provide an accurate representation

of the pulse being generated. An unchecked checkbox generates a literal

presentation of points. Default is on (checked).

Open View Parameters

Frequency - The rate in Hertz at which pulses are generated.

Pulse Width - The width, in time, of the pulses. The time is measured

from the mid-point of the low-to-high transition to the mid-point of the

high-to-low transition. Pulse width must be a positive Real number. Default

is 5m seconds.

Pulse Delay - The time from the start of the waveform to the beginning of

the Õrst transition. Pulse Delay must be a positive Real number. Default is

0.

Thresholds - Determine the thresholds used by Rise Time and Fall Time.

Low Threshold = (Õrst percentage) * (high - low)

High Threshold = (second percentage) * (high - low)

0%-100%

10%-90%

2-246 General Reference

Pulse Generator

20%-80%

Rise Time - The time, in seconds, to make the transition from the low

threshold to the high threshold. Rise Time must be a positive Real number.

Fall Time - The time, in seconds, to make the transition from the high

threshold to the low threshold. Fall Time must be a positive Real number.

High - The value of the waveform when the pulse is active. High must be a

Real number. Default is 1.

Low - The value of the waveform when the pulse is not active. Low must be a

Real number. If the value of Low is greater then the value of High the pulse

generated is inverted. Default is 0.

Burst Mode - Enables or disables multiple pulses being generated at the

Frequency. When Burst Rate is OFF, only one pulse is generated at the

Frequency. When Burst Mode is On, a Burst Count number of pulses is

generated at the Frequency. Default is OFF.

Burst Count - The number of pulses generated at the Rep Rate. Burst

Count must be a positive integer. Default is 2.

Burst Rep Rate - The rate at which the Burst Count pulses are generated.

Burst Rep Rate must be a Real number greater than 1/pulse width.

Time Span: - The duration of the waveform (in seconds). Default is 20m

seconds set in Waveform Defaults.

Num Points: - The number of points in the waveform. The time between

points in the waveform is Time Span/numPoints. Num Points must be

positive. Default is 256 set in Waveform Defaults.

All of these parameters may be set from the open view or added as control

inputs.

See Also

Build Arb WF, Build Waveform, Comparator, Function Generator, Noise

Generator, and Waveform Defaults.

General Reference 2-247

Raise Error

Generates a user-deÕned error condition with associated error number (escape

code) and text message. (This object was formerly called Escape.)

Use

Use Raise Error to stop execution of the current UserObject and generate an

error that may be trapped by the error pin of an enclosing UserObject or the

main work area. If the error is not trapped (by an error pin on a UserObject)

and the escape code is non-zero, Raise Error stops the model and generates an

error dialog box.

Location

Flow =) Raise Error

Open View Parameters

Code - An error number; it must be an Int32. HP VEE uses error numbers

between 300 and 1,000; it is best to use error numbers exclusive of this range.

You can enter the Code in the entry box or add it as a data input.

Message - The text message to output. You can enter the Message in the entry

box or add it as a data input.

Notes

If HP VEE is invoked with the -r command line option, an untrapped error

generated by Raise Error causes HP VEE to terminate. The Code and

Message are written to stderr and 255 is returned to the operating system as

the exit code.

To generate a speciÕc exit code, use the Stop object.

See Also

Add Error Output, Create UserObject, Exit UserObject, Exit Thread,

Start, and Stop.

2-248 General Reference

Random Number

Random Number

An object that outputs a random number.

Use

Use Random Number to get a uniform random distribution.

Location

Device =) Random Number

Open View Parameters

Range from - The lower limit of the random number distribution (inclusive).

Range From may be added as an input. Default is 0.

Range to - The upper limit of the random number distribution (exclusive).

Range To may be added as an input. Default is 1.

See Also

Random Seed.

randomize(x) and random(l,h) in the \Formula Reference" chapter.

General Reference 2-249

Random Seed

An object that accepts a new seed for the random number generator.

Use

Use Random Seed to get a set of repeatable random numbers from Random

Number.

Location

Device =) Random Seed

Notes

If you have more than one Random Seed operating in your model, the Random

Seed resets the seed value for the random number generator each time the

Random Seed object operates.

The same Random Seed value is used for the Random Number object and the

random(l,h) and randomize(x) functions in the Formula Reference chapter.

See Also

Random Number.

randomize(x) and random(l,h) in the \Formula Reference" chapter.

2-250 General Reference

Real

Real

An object that outputs a constant Real number. To input an array, press tab

to enter the next value.

Use

Use Real to set a real constant or to get user input.

Location

Data =) Constant =) Real

Example

To use Real as a prompt on a panel view, change the name of the Real object

to a prompt such as Enter the offset:. The user Õlls in the requested

information in the entry Õeld.

Type in 100M*PI to have the Real Constant evaluate this formula and display

the Real number answer.

Object Menu

Auto Execute - If set, the object operates whenever the values in the Õeld

are edited.

Config - Sets the initial number of values to be output with this object. A

value of 0 sets the container to a scalar, otherwise the container is an array

of the length given.

Initialize - Used to set this object to a particular value at PreRun and/or

Activate time.

Initial Value - A dialog box that speciÕes the value to be set. Default

value is the zero value of that container type.

Initialize At PreRun - Whether to set the Initial Value at PreRun

time. Default is oÃ.

Initialize At Activate - Whether to set the Initial Value at Activate

time. Default is oÃ.

General Reference 2-251

Real

Number Formats - Sets the numeric format.

Notes

Initialize is most often used for initializing values inside a UserObject.

The other method for setting initial values is the Default Value control pin.

The Default Value pin allows you to programmatically change the current

value.

Note that the Initial Value Õeld is always a scalar, even if Real is conÕgured

to be an array. The Default Value input pin, however, requires its input

container to match the shape of Real.

See Also

Alloc Real, Complex, Constant, Coord, Date/Time, Enum, Integer, PComplex,

Text, and Toggle.

2-252 General Reference

Real Slider

Real Slider

An object that outputs the Real value of the slider.

Use

Use Real Slider to input values. Real Slider is particularly useful on a

panel.

Location

Data =) Real Slider

Open View Parameters

The open view displays a Õeld for min, max, slider value, and slider control.

Object Menu

Auto Execute - If set, the object operates whenever the values in the Õeld

are edited.

Detents - Sets the distance between values.

Initialize - Used to set this object to a particular value at PreRun and/or

Activate time.

Initial Value - A dialog box that speciÕes the value to be set. Default

value is the zero value of that container type.

Initialize At PreRun - Whether to set the Initial Value at PreRun

time. Default is oÃ.

Initialize At Activate - Whether to set the Initial Value at Activate

time. Default is oÃ.

Number Formats - Sets the numeric format.

Layout - SpeciÕes either horizontal or vertical slider format.

General Reference 2-253

Real Slider

Notes

Initialize is most often used for initializing values inside a UserObject.

The other method for setting initial values is the Default Value control pin.

The Default Value pin allows you to programmatically change the current

value.

See Also

Complex, Enum, Integer, Integer Slider, PComplex, Real, Text, and Toggle.

2-254 General Reference

Record Constant

Record Constant

An object that outputs a constant of the Record data type.

Use

Use the Record Constant object to deÕne and build a Record constant, or to

interactively edit an existing record or array of records.

The following control input pins may be added:

Default Value|This control pin allows you to set the entire record to an

initial \value," which is actually an entire record. That is, all Õelds in the

record are set to the values from the record connected as the \default value."

Reset|This control pin \zeros" out all the data in the record.

Location

Data =) Constant =) Record

Open View Parameters

In the open view there is a Field name button and a Value button (or type-in

Õeld) for every Õeld in the record. (By default, the Field name buttons A and

B correspond to the Value Õelds \Text field" and \1.25", respectively.)

If the record is an Array 1D (that is, Array Elements is non-zero), there is

an additional Õeld in the open view for the index into the array (0, 1, etc.)

To step through the array values, First, Prev, Next, and Last buttons are

provided.

Field name|A button that, when pressed, pops up a dialog box that allows

the user to re-name the record Õeld, and change its type and shape. An error

will occur if you attempt to rename a Õeld to an existing Õeld name. Field

names are not case sensitive (lowercase and uppercase letters are equivalent).

When changing the data type, HP VEE will attempt to coerce the data into

the new data type, subject to the existing rules about data type coercion.

Refer to the section \Converting Data Types on Input Terminals" in chapter

3 of Using HP VEE .

General Reference 2-255

Record Constant

Value|Allows you to edit the values in the Õeld. If the Õeld is a scalar

container of a data type other than Enum, Value is a type-in Õeld. That

is, you can click on the Õeld and type in the desired value. If the Õeld is an

Enum or Array 1D container, the Value Õeld is a button, which brings up a

dialog box to allow you to select the values. If the Õeld is an array of two or

more dimensions, the values may not be edited.

Object Menu

Config|Sets the record size through a dialog box. A value of 0 for Array

Elements sets the container to a scalar. Otherwise the container is an array

of the length given. You can Õx the size of the record (so the user can't

change it) by checking Size fixed?, and you can Õx the format (\schema")

of the record by checking Schema fixed?. Note that only Scalar and Array

1D records are allowed.

Number Formats|Sets the number format of a numeric Õeld. A diÃerent

number format can be applied to each numeric record Õeld. A dialog box

prompts you to select a numeric Õeld, and a second dialog box allows you to

set the number format for that Õeld.

Add Record|Adds a record at the end of the record array. The new record is

a copy of the last record in the array. (This menu selection is not active for

record scalars.)

Insert Record|Inserts a record at the position in the record array that you

are currently viewing. The new record is a copy of the record that you were

viewing. (This menu selection is not active for record scalars.)

Delete Record|Deletes the record that you are currently viewing from the

array. (This menu selection is not active for record scalars. Also, for record

arrays, the selection is active only if there is more than one record in the

array.)

Add Field|Adds a new Õeld to the record at the end of the Õeld list. A

dialog box will allow you to deÕne the name, type, and shape of the new

Õeld.

Insert Field|Inserts a new Õeld to the record at the position above the

current edit position in the array. A dialog box will allow you to deÕne the

name, type, and shape of the new Õeld.

2-256 General Reference

Record Constant

Delete Field|Allows you to delete record Õelds. A dialog box will list the

available Õelds to delete. This selection is available only if the record has

more than one Õeld.

Notes

Two control pins may be added to the Record Constant object: Reset and

Default Value.

The Reset pin \zeros out" all Õelds in the record. Numeric Õelds become zero

and Text Õelds become null strings.

The Default Value pin is useful for editing large record arrays (for example,

a record array \pulled in" with the From DataSet object). Just send the

record array into the Default Value pin to set the initial value for the Record

Constant. You can then view and interactively edit the entire record. The

data values may be changed, and also the type, shape, and mappings of the

Õelds may be changed (unless the Õeld is itself a record). Once you have edited

the record, it can be output to a new dataset or Õle (using To DataSet or To

File). The Record Constant object does not allow you to edit a Õeld that is

itself a record|it will only allow you to view the Õeld and its data.

Note that the Record Constant object does not allow you to create a record of

records. That is, the Record Constant does not allow you to add a Õeld that

is a record. However, all other HP VEE record devices (such as Build Record

and Set Field) do allow this. Recursion is allowed up to the limit of available

user memory. That is, a record may have a Õeld that is a record, which has a

record Õeld within it, and so forth. The shape of a record container may only

be either a scalar or a one-dimensional array.

See Also

Build Record, From DataSet, Merge Record, Set Field, To DataSet, and

UnBuild Record.

General Reference 2-257

Repeat

A menu item.

Use

Use Repeat to access the following iterators and iteration-control objects:

For Count

For Range

For Log Range

Until Break

On Cycle

Next

Break

Location

Flow =) Repeat =)

Notes

You can nest iterators.

Execution of the subthread hosted by the iterator continues until one of the

following occurs:

All objects that can, have operated. The subthread iterations have been

completed.

A Break object operated. The subthread is deactivated and the sequence

output pin is activated.

A Next object operated. The subthread is deactivated and the iteration

counter is incremented.

When the iteration subthread has completed, the sequence output pin is

activated.

2-258 General Reference

Repeat

See Also

Break, For Count, For Range, For Log Range, Next, On Cycle, and Until

Break.

General Reference 2-259

Run

A button that causes all threads to run.

Use

Use Run to begin the model execution. If Start objects are used on threads in

the main work area, execution begins with those objects.

When you press Run, HP VEE PreRuns all threads to clear data and check for

feedback.

Location

On the right side of the title bar.

Notes

If you have several threads in your model and want to run only one of them,

connect a Start object to that thread. Press the Start object on the thread

you want to run.

See Also

Cont, Start, Step, and Stop.

2-260 General Reference

Sample & Hold

Sample & Hold

An object that stores the most recently received data container. Activating the

XEQ pin outputs the stored container.

Use

Use Sample & Hold to capture the last data present on the input pin when XEQ

is activated.

Location

Flow =) Sample & Hold

Example

Use Sample & Hold to preserve data generated by objects in subsequent thread

segments of either If/Then/Else or Conditional Œow objects that are also in

an iteration sub-thread.

For an example and further information, refer to \Iteration with Flow

Branching" in chapter 4 of Using HP VEE-Engine and HP VEE-Test.

Notes

The Sample & Hold is generally not needed unless both iteration and Œow

branching are present in a thread. Objects will normally retain the most

recently received data container on their input pin(s) by default.

Only the most recent data container arriving at the InData input will be saved

by the Sample & Hold. As new data arrives, it over-writes the existing data.

If the Sequence In pin is connected, both the InData input and the Sequence

In pin must be activated before a data container will be accepted to replace

the existing stored data.

The Sample & Hold operates when the XEQ pin is activated. Propagation will

proceed as far as possible before the Sequence Out pin is activated.

The contents of the Sample & Hold are cleared by Prerun and Activate. If XEQ

is activated with no stored data, a nil (empty) container is generated.

General Reference 2-261

Sample & Hold

Because XEQ is required on the Sample & Hold, you cannot delete it or add

another XEQ pin.

Multiple XEQ activations each re-send the most recent stored data if no new

data has arrived.

See Also

Repeat, If/Then/Else, Conditionals, User Objects.

2-262 General Reference

Save

Save

Copies the model in the work area to a previously speciÕed Õlename.

Use

Use Save periodically to write your model to a Õle.

Location

File =) Save

Notes

Save writes your model to the Õle name speciÕed in Save As or Open. If a

model was created from a New work area and no Save As was done, Save

prompts you for a Õle name. As the model is being written, the pointer

changes to a pencil.

Save does not ask for conÕrmation when overwriting a Õle.

Short Cuts

Press ÄCTRLÅÄSÅ to save a model.

See Also

Merge, Open, Save As, and Save Objects.

General Reference 2-263

Save As

Copies the model in the work area to a speciÕc Õle.

Use

Use Save As to specify a Õle name for your model and write the model to that

Õle.

Location

File =) Save As

Notes

If you attempt to overwrite an existing Õle, you are asked to conÕrm that

action. As the model is being written, the pointer changes to a pencil.

The Õle name speciÕed in Save As becomes the name used in subsequent Save

operations.

The current Õle is saved as Õlename.bak; the new saved version is just

Õlename. Note that if the Õlename already includes an extension (such as

.vee) that extension is replaced with .bak.

Short Cuts

Press ÄCTRLÅÄWÅ to Save As.

See Also

Merge, Open, Save, and Save Objects.

2-264 General Reference

Save Objects

Save Objects

Copies the selected objects to a speciÕc Õle.

Use

Use Save Objects to specify a Õle name for a set of objects and write the

objects to that Õle. Save Objects is generally used to save a group of objects

into a library of common functions that is included in other models.

Location

File =) Save Objects

Notes

Use Save Objects to copy a set of objects from your model that you use in

other models. Save Objects allows you to build up a library of your own

functions. As the objects are being written, the pointer changes to a pencil.

If you attempt to overwrite an existing Õle, you are asked to conÕrm that

action.

See Also

Merge, Open, Save, and Select Objects.

General Reference 2-265

Save Preferences

Saves default preferences.

Use

Use Save Preference to save all the default preferences under the

Preferences menu, plus the last directory referenced by a Merge or Save

Objects command in a Õle called .veerc in your $HOME directory.

Starting up HP VEE or clearing the work area by selecting New causes .veerc

to be read, thus setting all preferences and the Merge/Save Objects default

directory to the values stored with the last Save Preferences command.

Location

File =) Preferences =) Save Preferences

Notes

In addition to the defaults in .veerc, the current values for Trig Mode, Number

Formats, and Waveform Defaults are saved with each model and restored

when the saved model is Opened.

See Also

Preferences.

2-266 General Reference

Secure

Secure

Locks the panel view of a model.

Use

Use Secure to lock the main panel view or a UserObject after it is completed

and before users have access to it. Access to the detail view is no longer

available.

When you use Secure, you are prompted to save the unsecured model. After

the unsecured model is saved, save the secured model under another name.

There is no UnSecure, so be sure to save your model or UserObject before

securing it.

Location

UserObject (Object Menu) =) Secure

UserObject =) Secure

Notes

A secured model loads and runs faster than an unsecured model.

You can Secure an individual UserObject panel view, too.

See Also

UserObject.

General Reference 2-267

Select Bitmap (Object Menu)

Selects a bitmap to be displayed on the icon.

Use

Use Select Bitmap to choose a bitmap from your Õle system to be displayed

on this icon.

Location

On the object menu =) Layout =) Select Bitmap

Notes

Select Bitmap is only available from the icon of an object.

HP VEE will examine the Õle to determine the Õle format. The currently

supported formats include X11 Bitmap, X11 Window Dump (xwd), and GIF.

If you have HP VEE-Test, the bitmaps supplied with HP VEE are stored

in the /usr/lib/veetest/bitmaps directory; if you have HP VEE-Engine,

bitmaps are stored in /usr/lib/veeengine/bitmaps.

Start, Toggle, and OK do not have this menu feature.

See Also

Delete Bitmap, Layout, Object Menu, and Show Label.

2-268 General Reference

Select Objects

Select Objects

Selects a set of objects to be acted on.

Use

Before you use the object features in the Edit menu, you must select a set of

objects to be acted on. Choose Select Objects and then click on the objects

to put in the set. When an object is selected, it has a shadow highlight. Click

on an empty area of work area to end Select Objects mode. Then choose an

editing function such as Cut or Copy.

Location

Edit =) Select Objects

Notes

Select only selects objects, it does not deselect them. If you select an object

by mistake, end select mode by clicking on the work area, then deselect all

objects by clicking on the work area a second time.

Any objects previously selected are deselected when Select Object is used.

Short Cuts

Hold down the ÄCTRLÅ key while clicking on the left mouse button objects. This

shortcut allows you to toggle the selection of objects. This method does not

deselect any previously selected objects.

Clicking the left button on an object selects it, however, it also deselects

objects already selected.

See Also

Add To Panel, Clone, Copy, Create UserObject, Cut, Move Objects, and

Paste.

General Reference 2-269

Sequencer

An object that executes a series of sequence transactions, each of which may

call a UserFunction, Compiled Function, or Remote Function.

Use

Use the Sequencer to control the order of calling of a series of UserFunctions,

Compiled Functions, Remote Functions or any other HP VEE function by

specifying a series of sequence transactions. Typically, the Sequencer is used

to perform a series of tests.

The Sequencer contains a list of sequence transactions. Each of these

transactions evaluates an HP VEE expression, which may contain a call to

a UserFunction, Compiled Function, or Remote Function. After evaluating

the HP VEE expression, a transaction compares the value returned by that

expression against a test speciÕcation. Depending on whether the test passes or

fails, the transaction then evaluates diÃerent expressions and selects the next

transaction to be executed. Transactions may optionally log their results to the

Log output pin, or to a UserFunction, Compiled Function, or Remote Function

speciÕed in the Logging Config dialog box.

The Return output pin of the Sequencer can be used for returning a result

when the sequence has completed. By default the Return output pin has a

value of zero, but a transaction with a Next Operation of Then Return will set

the Return output pin to the speciÕed value.

The Log output pin of the sequencer contains a record that contains one

logging record for each transaction that has logging enabled. See \Logging

ConÕg" below for more information.

Location

Device =) Sequencer

2-270 General Reference

Sequencer

Open View Parameters

The open view shows the list of transactions to be executed.

Dialog Information

You can change the parameters for an individual transaction. Just double-click

on a transaction to display the Sequence Transaction dialog box for that

transaction. The available parameters are as follows:

Sequence Mode:

TEST - Executes the speciÕed expression and tests the result against

a speciÕcation. (If the expression calls a UserFunction, a compiled

function or Remote Function, the result on the top-most output pin of the

corresponding UserObject is used.)

EXEC - Executes the speciÕed expression without performing a pass/fail

test against a speciÕcation. Logging is never performed on EXEC

transactions.

Transaction Name - Unique name of this transaction. Must be a valid

HP VEE variable name (must begin with a letter, but may include letters

and numbers). This name can be referenced by expressions in this or

other transactions, and will contain the logging record for the most recent

execution of this transaction.

Enable Condition Type:

ENABLED - Sequencer unconditionally executes this transaction.

DISABLED - Sequencer never executes this transaction.

ENABLED IF: - Sequencer executes this transaction only if the given

expression is non-zero.

DISABLED IF: - Sequencer does not execute this transaction if the given

expression is non-zero.

SPEC NOMINAL: - Nominal (expected) value of the test result. This value

is not used in calculating RANGE or LIMIT speciÕcation tests, but may be

included in the logging record.

General Reference 2-271

Sequencer

Spec Type - All speciÕcation tests are done in the same manner as the

Comparator object. Thus, the test result may be a waveform, and the test

limit(s) may be another waveform or an array of type Coord. The spec

test will automatically perform the necessary interpolation to determine if

each data point is in or out of speciÕcation. Also, all tests use an \almost

equal" algorithm that checks equality or inequality to at least six signiÕcant

digits. See the Comparator object description for more information. Options

include:

RANGE: - SpeciÕes a lower and upper limit and the comparison operators

that apply.

LIMIT: - SpeciÕes a single limit and the comparison operator that applies.

May be used to test for an upper or lower limit, or for an exact match.

The limit value will be logged in the HighLimit record Õeld.

TOLERANCE: - SpeciÕes a plus and minus tolerance from the Nominal value.

A tolerance of zero is permitted. HighLimit and LowLimit logging record

Õelds contain the speciÕcation range after the tolerance has been applied

to the Nominal value.

%TOLERANCE: - SpeciÕes a plus and minus percent tolerance of and from

the Nominal value. A tolerance of zero is permitted. HighLimit and

LowLimit logging record Õelds contain the speciÕcation range after the

tolerance has been applied to the Nominal value.

FUNCTION - An HP VEE expression that speciÕes the test. The expression

may just be a call to a UserFunction, Compiled Function, or Remote

Function. Or it may be a larger expression of input pin names,

UserFunctions, Compiled Functions, Remote Functions, and test records

from previous transactions in this Sequencer. If this is a test transaction,

the single result from this Õeld will be tested against the speciÕcation.

The result of a UserFunction or Remote Function call is the value of the

top-most output pin of the corresponding UserObject, or nil if no output

pins are present.

Logging Mode:

LOGGING ENABLED - Add a Õeld for this transaction to the Log record

output pin (if present). If a \Log Each Transaction To:" procedure

has been speciÕed in Logging Config in the object menu, that logging

procedure will be called immediately after this transaction is completed.

2-272 General Reference

Sequencer

LOGGING DISABLED - A log record will not be generated for this

transaction, and the \Log Each Transaction To:" procedure will not be

called. (See \Logging Config" under \Object Menu" below for options

and more information.)

Pass Operation:

IF PASS - If the spec test passes (test value within limits), the speciÕed

\then" action will be performed.

IF PASS CALL: - If the spec test passes (test value within limits),

the speciÕed HP VEE expression|which may include a call to a

UserFunction, Compiled Function, or Remote Function|will be

evaluated and the speciÕed \then" action will be performed.

Fail Operation:

IF FAIL - If the spec test fails (test value outside of limits), the speciÕed

\then" action will be performed.

IF FAIL CALL: - If the spec test fails (test value outside of limits),

the speciÕed HP VEE expression|which may include a call to a

UserFunction, Compiled Function, or Remote Function|will be

evaluated and the speciÕed \then" action will be performed.

Next Operation: (Applies to EXEC transactions, or to either \Pass" or \Fail"

operations in TEST transactions.)

THEN CONTINUE - Goes to the next transaction in the Sequencer list. (This

is the default operation.)

THEN RETURN - Quits executing transactions in this Sequencer and places

the value of the speciÕed expression on the Return output pin of the

Sequencer. The Sequencer object will then Õre its output pins and

execution Œow within the model will continue normally.

THEN GOTO - Goes to the transaction in this Sequencer with the speciÕed

transaction name.

THEN REPEAT - Executes this transaction again, repeating up to the

speciÕed number of times. If the Pass/Fail condition still exists after the

maximum number of repeats, continues to the next transaction.

General Reference 2-273

Sequencer

THEN ERROR - Stops execution of the Sequencer by generating an error

condition with the given error number. An error can be trapped with an

Error output pin on this Sequencer, or on any enclosing UserObject.

THEN EVALUATE - Evaluates the given expression|which may call a

UserFunction, Compiled Function, or Remote Function|and uses the

string result to determine the next operation. Valid string results from the

expression are:

CONTINUE

RETURN <expr>

GOTO <name>

REPEAT <expr>

ERROR <expr>

Where <expr> is any valid HP VEE expression and <name> is the name

of a transaction in this Sequencer. This operation can be useful when a

UserFunction, possibly with user interaction, needs to determine what

action the Sequencer should perform next.

DESCRIPTION - \Comment" Õeld for this transaction. Text entered into this

Õeld will be shown at the end of the transaction's abbreviated text in the

Sequencer open view.

Object Menu

Step Trans - Causes the currently highlighted transaction to be executed,

using the last data sent to the input pins. The IF PASS or IF FAIL

expressions are executed as usual, and the next transaction speciÕed by these

rules will be highlighted. (Note that ÄCtrlÅÄXÅ is a shortcut for Step Trans

when the cursor is over the Sequencer.)

Logging Config - Selects which Õelds will be generated in the logging record

for each transaction. (The Log output pin contains a record of records | one

logging record for each transaction with logging enabled. In each transaction

logging record the selected Õelds, speciÕed below, may be present.) The

names (without spaces) are the Õeld names of the logging record. The

choices are:

Name - A unique string that identiÕes this transaction (not the procedure

name).

2-274 General Reference

Sequencer

Result - The value returned from the evaluation of the test procedure.

Nominal - The nominal test value.

High Limit - The upper limit used in the speciÕcation test. Actual limit

values, not oÃsets are given for Tolerance and %Tolerance speciÕcations.

Low Limit - Lower limit used in speciÕcation test. Actual limit values, not

oÃsets, are given for Tolerance and %Tolerance speciÕcations.

Pass - An Int32 with value \1" for \Pass", \0" for \Fail".

Time Stamp - A Real value containing day, date, and time of completion of

the test. (Refer to the Time Stamp object for more information.)

Description - A Text value containing the description \comment" Õeld in

the Transaction.

Under Logging Config you can also choose the type of logging:

Log to Output Pin Only - A logging record will be present in the record

on the Log output pin for each transaction that has Logging Enabled.

If a transaction is executed more than once during one execution of the

Sequencer, only the last logging record for that transaction will be

present in the record on the Log output pin. If a transaction has not been

executed during an execution of the Sequencer, the logging record for that

transaction will contain \0" (Real) values for each Õeld except the Name

and Description Õelds, which contain null strings.

Log Each Transaction To: - Specify a UserFunction, Compiled

Function, or Remote Function expression that will be called after each

transaction that has Logging Enabled. To pass the logging record for the

current transaction to the UserFunction, Compiled Function, or Remote

Function, use the reserved variable name \ThisTest". The Log output

pin will continue to operate in the same manner as for the \Log to Output

Pin Only" mode.

Add Trans - Adds a transaction to the end of the list.

Insert Trans - Inserts a transaction before the currently highlighted

transaction.

Cut Trans - Cuts (deletes) the currently highlighted transaction, but saves it

in the transaction \cut-and-paste" buÃer.

General Reference 2-275

Sequencer

Copy Trans - Copies the currently highlighted transaction to the transaction

\cut-and-paste" buÃer.

Paste Trans - Pastes a transaction, previously \cut" or \copied" to the

buÃer, in the position before the currently highlighted transaction.

Notes

You can add an Exec Trans control input pin. The Exec Trans control input

executes only the transaction(s) with the speciÕed name(s) in the order given

by a Text scalar or 1D array on the control input. The highlight bar will be

moved to the transaction currently being executed. The If Pass or If Fail

expressions will be evaluated as usual, but the result of the Then Õeld will have

no eÃect on the next transaction to be executed.

All Õeld expressions (such as ENABLED IF, FUNCTION, or spec limits) may

contain input pin names, UserFunction calls, Compiled Function calls, Remote

Function calls, HP VEE math functions, or record names of previously run

transactions. In test transactions with LOGGING ENABLED, the reserved variable,

thisTest will contain a record of the logging Õelds that have been calculated.

For example, to use the test value from transaction test4, which had logging

enabled, use the name test4.result in any expression. Or to use the

current test name in any expression, use thisTest.name. Or, an Enabled If

expression might be random()<0.25 to cause the test to be executed only 25

percent of the time.

Short Cuts

To quickly insert a transaction, place the cursor on a transaction. Press

ÄCTRLÅÄOÅ to insert a transaction over the transaction where you placed the

cursor.

To quickly delete (\kill") a transaction, place the cursor on that transaction

and press ÄCTRLÅÄKÅ.

To paste a transaction from the \kill" buÃer press ÄCTRLÅÄYÅ.

To quickly move to the next or previous transaction, press ÄCTRLÅÄNÅ or

ÄCTRLÅÄPÅ respectively.

ÄCtrlÅÄXÅ is a shortcut for Step Trans when the cursor is over the Sequencer.

2-276 General Reference

Sequencer

See Also

Call Function, Comparator, Raise Error, Record, Time Stamp, Unbuild

Record, and UserObject.

General Reference 2-277

Set Breakpoints

Creates execution breakpoints at the selected objects.

Use

Use Set Breakpoint as a debugging tool to stop the execution of the model

before each selected object. To continue execution, press the Cont button in

the upper right corner of the HP VEE window; to operate the object with the

breakpoint only, press Step.

After the breakpoint is set, the object is highlighted with an outline border

(black, by default).

Location

Edit =) Breakpoints =) Set Breakpoints

Notes

To set the breakpoint of a single object, use the Breakpoint selection on the

object menu.

When an object has a breakpoint set, it is checked on the object menu next to

the breakpoint menu feature.

If no objects are selected, Set Breakpoints is not available.

Breakpoints are saved with the model. If you do not want the Breakpoint to

reappear when the model is opened, use Clear Breakpoints before saving.

See Also

Activate Breakpoints, Breakpoint (Object Menu), Clear All Breakpoints,

Clear Breakpoint, Cont, Select Objects, and Step.

2-278 General Reference

Set Field

Set Field

An object that allows you to modify a Õeld of an existing record.

Use

Use Set Field to modify the value of a Õeld of an existing record. The Set

Field object is actually an assignment object that assigns the value speciÕed

by the right-hand expression to the Õeld speciÕed by the left-hand expression.

The value in the right hand expression can evaluate to a scalar, an array,

another record, or a Õeld in a record.

Set Field is a short-cut for un-building a record, changing one Õeld, and

re-building the data into a record. Note that the output terminal name

must match the name of the input record to be modiÕed. Also, the left and

right-hand expression results must match in type and shape. You cannot use

Set Field to change the \schema" (type and shape) of the input record.

Location

Data =) Access Record =) Set Field

Open View Parameters

Left-hand expression|The left-hand expression allows a subset of Formula

mathematical syntax, which allows you to specify a Õeld of a record. The A.B

dot syntax, as well as a subset of the A[2] sub-array syntax, is supported to

specify a particular Õeld of the record to be changed. See \Notes" below for

further details of the allowed syntax.

Right-hand expression|The right-hand expression allows any mathematical

expression that is allowed in a Formula object. This expression has access

to all input containers, global variables, and functions. The right-hand

expression is evaluated and the resulting value is stored in the Õeld of the

record speciÕed by the left-hand expression.

General Reference 2-279

Set Field

Notes

The name of the record output pin must match the name of the input record

to be modiÕed, and the left-hand expression must begin with that name. For

example, if the record pins are named Rec, the left-hand expression must be

something like Rec.A or Rec[1]. The left-hand expression must be a single

expression that speciÕes which Õeld of the input container is to be modiÕed.

There may be confusion over the names of inputs, outputs, and record Õelds.

For example, if the name of the record input pin and the record output pin is

Rec (they must match), the expression Rec.A speciÕes the A Õeld in the input

record. On the other hand, the expression A*2 refers to the A data input of the

Set Field object. Thus, Rec.B=A*2 sets the B Õeld of the output record equal

to twice the value of the A data input. On the other hand, Rec.B=Rec.A sets

the B Õeld of the output record equal to the value of the A Õeld of the input

record.

The complete input record container is output on the record output pin, but

the speciÕed Õeld is modiÕed. For example, suppose the input Rec is a record

with two Õelds x and y, where x is a Text scalar with value \hello" and y is a

Real scalar with the value 1.2. If the left-hand expression speciÕes Rec.y, and

the right-hand expression evaluates to 5.6, the output container will be a record

with two Õelds x and y, where x is a Text scalar with value \hello" and y is a

Real scalar with the value 5.6.

The Õeld speciÕed by the left-hand expression and the result of the right-hand

expression must match in type and shape (\schema"). That is, the operation of

the Set Field object cannot change the schema of the input record|only the

data in the speciÕed Õeld can be changed. For example, suppose input Rec is a

record with two Õelds x (a Text scalar) and y (a Real scalar). If the left-hand

expression speciÕes Rec.y, the right-hand expression must result in either a

Real scalar, or something that can promote to a Real scalar. Otherwise, an

error will result.

Record arrays require special attention. A record array is an array consisting

of individual record elements, each consisting of Õelds. You can use Set Field

to change one Õeld of one element in a record array. For example, if you create

a record 1D array and you want to change the f Õeld of the third record

element of the array, specify Rec[2].f (for a zero-based array) in the left-hand

expression. In this case, the result of the right-hand expression is placed in the

2-280 General Reference

Set Field

f Õeld of the third element of the record 1D array. None of the other Õelds of

Rec[2] are changed, nor are any Õelds of the other record elements of the array

(for example, Rec[0].f and Rec[1].f).

On the other hand, you can use Set Field to modify a particular Õeld in every

record element of a record array. For example, suppose you specify Rec.f in

the left-hand expression where Rec is a record 1D array with n elements. In

this case, the result of the right-hand expression is copied into every Rec[x].f

Õeld, where x is from 0 through n-1. In other words, the f Õeld is changed in

every record element of the array.

The left-hand expression must be a single expression specifying which part of

the input record is to be modiÕed. For example, Rec+2 and sine(Rec) are

not valid as left-hand expressions. Also global variables are not allowed in the

left-hand expression.

The syntax allowed for the left-hand expression is limited:

The A.B dot sub-record syntax may be used any number of times for record

of record containers (there is no limit on recursion). Suppose that record A

has a Õeld b, which is itself a record. The record Õeld b has a Õeld c, which

is a record containing Õeld d. To specify that lowest level Õeld d, you can use

A.b.c.d as the left-hand expression.

The A[x] sub-array syntax is more limited, and may be used only once,

before the last dot. For example, A.b.c[1].d is valid as a left-hand

expression, but A[2].b.c.d and A[2].b[2].c are not allowed. Also, A[1]

and A.b.c[1:2] are not allowed. However, the A[x] sub-array syntax,

supported before the last dot, does support the \colon and asterisk" syntax.

For example A[1:2].b and a.b.c[2:*].d are valid left-hand expressions.

Note the diÃerence between A[1].b and A.b[1]. The Õrst is a record 1D with

a Õeld b. The second is a scalar record containing a Õeld b, which is a 1D

array.

See Also

Build Record, Formula, Get Field, Record Constant, SubRecord, and

UnBuild Record.

General Reference 2-281

Set Global

An object that sets the data value of a global variable.

Use

Use the Set Global object to set the data container (type, shape, and values)

of a global variable (by name). This global variable can then be used by name

in other parts of the HP VEE model.

Global variables created (with Set Global) in one context of a model can be

used as data in another context of that model. For example, a Set Global in

the root context of a model could create a global variable, which could then be

used as data by including a Get Global in a UserObject. This is especially

useful when the model contains several nested layers of UserObjects.

Global variables that are set with Set Global may also be used by name in

the expression Õelds of the following devices: Formula, If/Then/Else, Get

Values, Get Field, Set Field, From DataSet and all devices using expressions

in transactions, including To File, From File, Direct I/O, From Stdin,

To/From Named Pipes, and Sequencer. Refer to \Using Global Variables in

Expressions" in chapter 3 for further information.

Location

Data =) Globals =) Set Global

Open View Parameters

The open view displays a Õeld for the name of the global variable. The name is

not case sensitive (either lower-case or upper-case letters may be used). Thus

globalA is the same variable as GLOBALa. The name Õeld may be added as a

control input.

2-282 General Reference

Set Global

Notes

To avoid unexpected results, your model must ensure that a global variable is

set with Set Global before a Get Global object (or an object that includes

the global variable name in an expression) executes. Generally, the best way

to ensure this is to connect the sequence output pin of the Set Global object

to the sequence input pin of the Get Global object, or other object that uses

the global variable. However, there are cases when the sequence input pin need

not be connected. For further information about this, refer to \Using Global

Variables" in chapter 3 of Using HP VEE .

All global variables are deleted at the beginning of every Run, Start, or

auto-execution. Global variables are always deleted by either File =) New or

File =) Open. Global variable values are not saved with the model.

Global variables are truly global since they are not deÕned at a UserObject

level. A global variable that is deÕned in one context of a model can be used

in any other context within the model. For example, you can deÕne a global

variable with a Set Global object in the root context of the model, and then

include a Get Global to get that global variable in a UserObject. However,

you will need to avoid name conŒicts throughout the model:

If two or more Set Global objects attempt to set the same global variable

(with the same name), the current value will be overwritten as each Set

Global executes. This may result in unexpected behavior.

If there is a local input variable with the same name as a global variable, the

local variable will take precedence.

For further information, refer to \Using Global Variables in UserObjects" in

chapter 6 of Using HP VEE , and to \Using Global Variables in Expressions" in

chapter 3 of this manual.

See Also

Get Global, and View Globals.

General Reference 2-283

Set Mappings

An object that assigns mapping to an array.

Use

Use Set Mappings to map one or more dimensions of an array linearly or

logarithmically over a range of real values.

Location

Data =) Access Array =) Set Mappings

Open View Parameters

Num Dimensions - The number of dimensions in the input array. Num

Dimensions must be an integer. Minimum is 1. Maximum is 10. Default is

1.

Changing the value of Num Dimensions aÃects Mapping, From, and To by

corresponding adding or deleting open view Õelds.

Mapping - Linear or Log for each dimension. Default is Linear.

From - The lower limit of the mapping range (inclusive) for each dimension.

To - The upper limit of the mapping range (inclusive) for each dimension.

From and To may be added as data inputs.

Notes

If a Waveform or Spectrum is input, its elements are remapped to your

speciÕcations. Log mapping is not allowed on a Waveform.

There are the same number of points as sampling intervals. Each point is at

the beginning of the sampling interval.

Set Mappings does not allow an array of Coord as input because the Coord

array is already explicitly mapped.

The mappings on arrays are used in the XY displays for Autoscale and various

math functions.

2-284 General Reference

Set Mappings

The From and To values must be diÃerent.

The value of the Num Dimensions Õeld must match the number of dimensions

of the input array.

See Also

Alloc Array, Collector, Get Mappings, Line Probe, and Sliding Collector.

Using HP VEE , chapter 3.

General Reference 2-285

Set Values

An object that allows you to change an element of an array container.

Use

Use Set Values to modify elements of an array of any type and size. The new

array is generated only when the XEQ pin is activated.

You can connect several containers to the inputs on the Set Values object: the

array to be changed, the scalar data to be added, and the indices into the array

where in the array to put the scalar data.

Input new values for the array and the index of the element you wish to

replace. When all changes are done, activate the XEQ pin.

Location

Data =) Access Array =) Set Values

Open View Parameters

Num Dimensions - The number of dimensions in the input array. Num

Dimensions must be an integer (not an expression). Minimum is 1. Maximum

is 10. Default is 1.

Notes

All arrays are zero-based; all indices for arrays are zero based.

To initially create an array use the Allocate Array =) objects.

The open view of the Set Values object has a Õeld on it for the number of

dimensions of the array coming in. This allows the object to add or delete

input pins to give you the correct number of inputs for the indices needed.

For example, if you change the number of dimensions Õeld to 2, the object

automatically adds an input for the second index into the array.

The Set Values object begins with its internal buÃer cleared. When the Õrst

three data pins are activated, it starts to operate. It copies the array container

on the Õrst input pin into its internal buÃer, making sure the number of

2-286 General Reference

Set Values

dimensions match the Õeld on the open view. It then takes the second data

input and makes sure it can be converted to the same type as the input array.

Then, HP VEE takes the value(s) on the index input(s) and makes sure they

are within range of the array sizes. Finally, HP VEE places the data value in

the array at the appropriate indices. When the XEQ pin is activated, the Set

Values box sends the modiÕed array out the output pin. The Set Values

object clears its internal buÃer.

The Set Values object always clears its internal buÃer at PreRun and at

Activate time.

See Also

Alloc Array, Build Data, Collector, Get Values, ramp(numElem, from,

thru), Set Mappings, and Sliding Collector.

General Reference 2-287

Shift Register

An object that outputs the previous values of the inputs.

Use

Use Shift Register to access the previous values of the input.

Location

Device =) Shift Register

Object Menu

Clear - Clears the contents of the Shift Register.

Clear at PreRun - Clears the contents of the Shift Register at PreRun.

Default is on (checked).

Clear at Activate - Clears the contents of the Shift Register at Activate.

Default is on (checked).

Notes

Add outputs to Shift Register to access previous values.

The Shift Register starts with all its outputs set to nil. Each time the

object is activated, the data from the input is copied to the \current" output

terminal. Data that was in the current output is moved to the 1 Prev output.

The data from previous executions is shifted down the output terminals to the

last output terminal.

Additional outputs may be added so the user may access the data from the \n"

previous executions of a thread or model. Turn Clear at PreRun and Clear

at Activate oÃ from the object menu to retain data over successive model

executions.

See Also

Logging AlphaNumeric and Sliding Collector.

2-288 General Reference

Short Cuts

Short Cuts

Displays information about keyboard accelerators.

Use

Use Short Cuts to get a list of easier, faster ways to accomplish common tasks.

Location

Help =) Short Cuts

See Also

Help.

General Reference 2-289

Show Config (Object Menu)

Displays a dialog box that shows the I/O conÕguration of an instrument driver

panel or a direct I/O object.

Use

From the object menu of an instrument driver panel or a direct I/O object,

select Show Config to view the conÕguration speciÕed with Configure I/O.

To change any conÕguration parameter use I/O =) Configure I/O. Note that

any change will aÃect all other objects using that instrument with Direct I/O.

To change the device in a Direct I/O object, edit the name Õeld to choose a

new device. Note that the transactions in the Direct I/O object may not be

compatible with the new device.

Location

On an instrument driver panel or a direct I/O object:

From the object menu =) Show Config

See Also

Configure I/O.

2-290 General Reference

Show Data Flow

Show Data Flow

Shows the route that data takes through the model.

Use

Use Show Data Flow as a debugging tool to show the Œow of data between

input and output pins. A small square marker is used to trace the Œow of data

propagation along the lines. Even nil data is shown this way

When Show Data Flow is set, the menu selection has a checkmark on its left.

Location

Edit =) Show Data Flow

Notes

Show Data Flow is often used with Show Exec Flow. These debugging tools

slow the execution of your model.

See Also

Breakpoints, Line Probe, Show Exec Flow, and Step.

General Reference 2-291

Show Description

Displays an editable dialog box that displays user-supplied information.

Accessible from the object menu for information about an object, or from the

File menu for information about the entire model.

Use

Use Show Description to document an object, and explain how or why it's

used. Or, from the Õle menu, use Show Description to document the entire

Õle.

To write a description, click in the text area and type the description. Click on

OK when you're Õnished.

Location

On each object menu =) Show Description

or

File =) Show Description

Notes

To edit the text area, all the usual HP VEE edit functions work including the

following keys: ÄClear lineÅ, ÄInsert lineÅ, ÄDelete lineÅ, ÄInsert charÅ, ÄDelete charÅ, ÄPrevÅ,

ÄNextÅ, and the cursor keys.

When printing using Print All with Print All Objects selected or printing

using Print Objects, the description for the object will also be printed.

See Also

Note Pad and Object Menu.

2-292 General Reference

Show Exec Flow

Show Exec Flow

Highlights the object that is currently executing.

Use

Use Show Exec Flow as a debugging tool to show the currently operating

object. A highlighted border (default color yellow) appears around

the object and remains until the operation is complete. The currently

executing transaction will also be highlighted in objects that include a list of

transactions, such as Direct I/O, Sequencer, To File, From File, etc. When

Show Execution Flow is on, the menu selection has a checkmark on its left.

Location

Edit =) Show Exec Flow

Notes

Show Exec Flow is often used with Show Data Flow. These debugging tools

slow the execution of your model.

See Also

Breakpoints, Line Probe, Show Data Flow, and Step.

General Reference 2-293

Show Label (Object Menu)

Toggles the display of the object name on the icon.

Use

When checked, Show Label displays the name of the object on the icon. When

Show Label is not checked, the object name is not displayed on the icon. This

feature is used if you only want a bitmap to be displayed on the icon.

Location

On the object menu =) Layout =) Show Label

Notes

Show Label is only available from the icon of an object.

See Also

Delete Bitmap, Layout, Object Menu, and Select Bitmap.

2-294 General Reference

Show Terminals (Object Menu)

Show Terminals (Object Menu)

Toggles the display of the input and output terminals on an open view.

Use

When checked, Show Terminals displays the input and output terminals on

the open view. The displayed terminals show the terminal name and type. To

access complete terminal information, double-click on the terminal. When Show

Terminals is not checked, the input and output terminals are not shown on the

open view.

Location

On the object menu =) Terminals =) Show Terminals

Notes

Show Terminals is only available from the open view of an object.

To get or change information about the terminal, double-click on the displayed

terminal. You can change any value that is in an entry Õeld or a button.

See Also

Line Probe, Object Menu and Terminals.

General Reference 2-295

Show Title (Object Menu)

Toggles the display of the title bar on the open view of the object.

Use

When checked, Show Title displays the object's title bar. When Show Title is

not checked, the title bar is not displayed. Remember that you can access the

Object Menu by placing the cursor over the object and then pressing the right

mouse button.

Location

On the object menu =) Show Title

See Also

Layout, and Show Label

2-296 General Reference

Size (Object Menu)

Size (Object Menu)

Changes the size of this object.

Use

Use Size to change the size of the icon or the open view. After you select Size

the pointer changes to a j (a lower right corner bracket). Drag the bracket to

the new size of the object; an outline rectangle shows you the size of the object.

Another way to resize is to position the bracket pointer to where you want the

lower right corner of the object and click.

Location

On the object menu =) Size

Notes

Size retains the connections with other objects. If Automatic Line Drawing is

set, it may take a few moments to redraw lines.

Short Cuts

You may resize an object before you place it on the work area by positioning

the outline rectangle at the desired location, pressing the left mouse button,

then dragging the bracket pointer to the position you want for the lower right

corner of the object. Release the mouse button and you have the size and

placement you need.

See Also

Object Menu.

General Reference 2-297

Sliding Collector

An object that outputs an Array 1D.

Use

Use Sliding Collector to create an Array 1D from scalar input data.

Location

Data =) Sliding Collector

Object Menu

Clear - Clears the contents of the Sliding Collector.

Clear at PreRun - Clears the contents of the Sliding Collector at PreRun.

Default is on (checked).

Clear at Activate - Clears the contents of the Sliding Collector at

Activate. Default is on (checked).

Open View Parameters

Array Size - The number of elements in the output array. Array Size can

be a data input. Default is 10.

Trigger Every - The number of times the input pin must be activated before

an array is output. Default is 10.

Both parameters may be set from the open view or from data input pins.

Parameters must be integers.

Enum inputs are converted to type Text before the data is placed into the array.

2-298 General Reference

Sliding Collector

Notes

Sliding Collector builds an Array 1D by automatically sequencing through

the array index. Generally, Array Size and Trigger Every are the same size.

The output array is always an Array 1D of length Array Size. The type of the

output array is determined by the Õrst input data after a Clear.

If Trigger Every is smaller than Array Size, Sliding Collector generates

intermediate outputs. For example, if Array Size is 4 and Trigger Every is

2, the Sliding Collector outputs an array four long after two data inputs.

The Õrst two elements of the output are the data elements input; the last two

elements of the output are 0.

If Trigger Every is larger than Array Size, some of the input elements are

discarded. For example, if Array Size is 2 and Trigger Every is 4, the output

is an array two long with the last two pieces of data in it. The Õrst two pieces

of data input are discarded.

See Also

Allocate Array, Collector, Concatenator, Get Values, and Set Values.

General Reference 2-299

Spectrum (Freq)

A menu item that contains frequency-domain displays.

Use

Use Spectrum (Freq) to access the following frequency-domain displays:

Magnitude Spectrum

Phase Spectrum

Magnitude vs Phase (Polar)

Magnitude vs Phase (Smith)

Location

Display =) Spectrum (Freq) =)

Notes

Inputs must be Waveform, Spectrum, or an array of Coords.

If a Waveform is input to a Spectrum display, it is automatically transformed

into a Spectrum by way of a Fast Fourier Transform (Ãt).

See Also

Magnitude Spectrum, Magnitude vs Phase, Phase Spectrum, and Waveform.

2-300 General Reference

SPOLL

SPOLL

This menu item has been replaced with a serial poll option under Device

Event.

General Reference 2-301

Start

An object that, when its button is pressed, starts the execution of a thread.

Use

The Start object is normally used to deÕne where to initiate execution in a

thread that includes feedback.

The Start object, when its button is pressed, begins the execution of the

thread to which it is connected, but has no eÃect on other threads. (Pressing

Run starts the execution of all threads in the model, regardless of whether they

have Start objects.)

Location

Flow =) Start

Notes

The Start object is not required, except for threads that include feedback. In

a feedback thread, the Start button is necessary to specify where execution is

to begin.

If a model includes more than one independent thread, you can use Start to

initiate a single thread without running the other threads.

When you press Run or Start, propagation begins with Start object(s). If

more than one Start object is on a thread, propagation begins at each Start

and proceeds in parallel as far as allowed by the propagation rules.

If you press Start inside a UserObject, the UserObject runs but its data

output pins do not activate; therefore, propagation does not continue.

See Also

Raise Error, Exit Thread, Exit UserObject, and Stop.

2-302 General Reference

State Driver

State Driver

Selects an I/O object to control an instrument using an instrument driver

where all the panels are available.

Use

Click on I/O =) Instrument and examine the list of conÕgured instruments in

the Select an I/O Device dialog box.

If the instrument you want is in the list and is properly conÕgured:

l. Click once on the desired instrument to highlight it. (If the instrument is not

conÕgured with an ID Filename, the State Driver and Component Driver

buttons are Œat (grayed)).

2. Click the button at the bottom of the dialog box labeled State Driver.

If the instrument you want is not in the list or is not properly conÕgured, use

Configure I/O to change the existing instrument, then:

1. Click on Add to add a new instrument.

2. Complete the resulting dialog boxes. Refer to the Configure I/O entry for

details about how to complete these dialog boxes.

All instruments must be conÕgured before they can be accessed by way of the

Instruments menu selection. The best way to conÕgure instruments is to use

the Configure I/O menu selection.

Instrument objects may be operated with or without live instruments

connected to the computer. If you wish to control a live instrument, you must

set a correct, non-zero address and enable Live Mode. The address and Live

Mode setting are controlled by the I/O =) Configure I/O menu selection. If

the address is zero or if Live Mode is oÃ, the instrument object operates but

does not attempt to communicate with a physical instrument.

State drivers can be used interactively or within a model. To set the value

of an individual component, click on the Õeld containing the value of the

component and complete the resulting dialog box. To make a measurement and

display the result, click on the corresponding numeric readout or XY display

inside the State Driver open view.

General Reference 2-303

State Driver

It is possible to have more than one object controlling a single instrument, that

is, two State Driver objects for \fgen" in the same model. These objects

performs state recalls when operated.

It is possible to add inputs and outputs for the components inside the

driver, similar to Component Drivers. Inputs perform the set actions of the

component, outputs perform the get actions of the component.

Your system administrator must properly conÕgure your computer before it

is possible to communicate between HP VEE and any hardware interface. If

you believe that you have properly followed all HP VEE procedures properly

and you still cannot achieve any level of communication with an instrument,

the problem may be with your computer conÕguration. Ask your system

administrator to read this explanation and verify proper conÕguration of

your system's interface drivers. (These interface drivers are diÃerent from the

instrument driver Õles included with HP VEE.)

Location

I/O =) Instrument =) State Driver

Object Menu

Add Terminals =) Select Input Component - Use to add Õelds visible on

the panel as inputs to a State Driver.

Add Terminals =) Select Output Component - Use to add Õelds visible on

the panel as outputs to a State Driver.

Show Config - Displays the conÕguration of the instrument. State Driver

can only be edited using Configure I/O.

See Also

Component Driver, Direct I/O, and Instrument.

Using HP VEE , chapter 5.

2-304 General Reference

Step

Step

A button that causes all threads to operate one primitive object at a time.

Use

Use Step to debug your model. Step operates one primitive object every time

the Step button is pressed. An arrow points to the object currently operating.

Location

On the right side of the title bar.

Notes

All objects except UserObjects are primitive objects. A UserObject is not

treated as a primitive object when it is displayed as a detail view and Show On

Exec is oÃ.

Step is not available from the panel view.

PreRun occurs the Õrst time you click on Step.

See Also

Cont, Run, Show Data Flow, Show Exec Flow, and Start, and Stop.

General Reference 2-305

Stop

A button that causes all threads to stop running.

Use

Use Stop to stop model execution. After Stop is pressed, you may press Cont

to continue execution.

Location

On the right side of the title bar.

Notes

Pressing Stop once puts the model in the \paused" state. Both Step and Cont

are active and can be used to proceed.

If Stop is pressed a second time, the model goes to the \stopped" state which

clears any highlighting and closes any open Õles and I/O channels.

Short Cuts

Press ÄCTRL-CÅ to pause a running model or cancel an edit.

See Also

Cont, Run, Show Exec, Step, and Stop (Object).

2-306 General Reference

Stop (Object)

Stop (Object)

An object that stops the execution of a model.

Use

Use Stop to pause the execution of all threads in the model and return an error

code. Stop is usually used after testing for a certain condition.

Location

Flow =) Stop

Open View Parameters

Exit Code - A number that indicates the status of the model. You can type

the Exit Code in the recessed rectangle or add it as a data input. The Exit

Code is an 8-bit integer that is output to the operating system; if the output is

greater than 255, it is output modulo 256 (256 is output as 0).

If you run HP VEE with the -r option, Stop exits HP VEE.

See Also

Exit Thread, Exit UserObject, Raise Error, Start, and Stop.

General Reference 2-307

Strip Chart

An object that displays continuously-generated data.

Use

Use Strip Chart to display the recent history of data that is continuously

generated. For each y input value, the x value is incremented by the speciÕed

Step size. When new data runs oÃ the right side of the display, the display

automatically scrolls to show you the latest data.

Strip Chart saves all data sent to it until it's cleared.

Unlike other graphical displays, array data will be appended to the end of the

Strip Chart trace, rather than Õrst clearing the trace.

Location

Display =) Strip Chart

Object Menu

Auto Scale =) - Automatically scales the display to show the entire trace.

Auto Scale - Automatically scales both axes.

Auto Scale X - Automatically scales the X axis.

Auto Scale Y - Automatically scales the Y axis.

These parameters may be added as control inputs.

Clear Control =) - Parameters that specify when to clear the display.

Clear - Clears the displayed trace(s). This parameter may be added as a

control input.

Clear At PreRun - Clears the displayed trace(s) when the model or thread

is PreRun.

Clear At Activate - Clears the displayed trace(s) when the User Object is

activated.

2-308 General Reference

Strip Chart

Next Curve - Resets the pen to display the next curve in a family of

curves (data from the next time the display operates) without clearing the

previous curve. Next Curve must be selected (or activated) before each

new curve in the family. This parameter may be added as a control input.

Zoom =) - Scales the display.

In - MagniÕes the display to contain only the rectangular region that you

selected with the pointer. You select the region after selecting this feature

by dragging on the graph area. This action outlines the information with a

\rubber band" box.

Out 2|5|10|20|50|100 x - Expands the scales of the display by a factor in

both the X and Y directions about the center.

Markers =) - Allows you to Õnd the exact value of a data point on the

displayed curve. If the data is plotted on a log scale, the values shown on the

marker are the linear data points.

To move markers to a diÃerent trace, click on the button to the left of the

marker values near the bottom of the display. The button cycles through the

diÃerent line types and colors of the diÃerent traces.

Off - No markers are shown.

One On - One marker is available.

Two On - Two markers are available.

Delta On - Two markers are available and the x and y diÃerences between

them are displayed.

Interpolate - When checked, you can place markers in between the

displayed data points. The marker values displayed are calculated by linear

interpolation. Default is oÃ.

Center - If markers are available, brings them to the center of the visible

part of the trace. This is useful if you've scrolled the display and markers

are not visible.

Grid Type =) - Sets the type of grid marks. The value of the major x

division is shown below the maximum x value (to the right of the x scale

name). The value of the major y division is shown below the y scale name.

No Grid - No grid lines are shown.

General Reference 2-309

Strip Chart

Tic Marks - Shows tic marks at the major and minor divisions on all four

sides of the graph.

Axis - Shows tic marks at the major and minor divisions on the X and Y

axes of the graph. If the actual axes are scrolled oÃ the graph area, axis

lines are drawn on the edge closest to the axes.

Lines - Shows lines at the major divisions and tic marks at the minor

divisions. The X and Y axes are shown as thick lines.

Panel Layout =) - Sets the open view's appearance.

Graph Only - The open view shows only the graph area and the marker

information (if it exists). No buttons, scales, scale names, or traces names

are shown. This layout redraws quickest and provides the largest display

area.

Scales - The open view shows the graph area, the scales, the scale names,

and trace names. These Õelds are not recessed and may not be edited.

This layout is useful when recessed Õelds might be distracting, such as

printing graphs, or when the Õelds should be protected from editing on a

User Panel.

Scales & Sliders - The open view shows all information about the graph.

It includes the most information and allows you to modify the most

elements interactively. It is the default.

Traces & Scales - A control panel that allows you to specify values such

as the names, colors, line and point characteristics, minimum values, and

maximum values for the traces and/or scales.

Traces:

Name: - The name of the trace that is displayed to the left of the graph

area and the name of the corresponding input terminal.

Scale: - If you have multiple Y scales, selects which Y scale is to be used

for this trace.

Color: - The color of the trace. Each added trace has a diÃerent color

than the existing traces. Default is Pen 4 (yellow).

Lines: - The format of the line connecting data points. Default is a

continuous line.

2-310 General Reference

Strip Chart

Points: - The symbol that marks each data point. To show unconnected

data points, select the single dot Lines format and the desired Points

symbol. Default is a dot.

You can add a Traces control input pin. The control input data must be

a record with the following Õelds: 1) A TraceNum Õeld with an Integer

value (1 is the top trace), and 2) one or more of the following Õelds: Name,

Pen, LineType, PointType. (The Pen, LineType, and PointType values

are integers from 0 to n, where 0 draws nothing.) Refer to \Records and

DataSets" in Using HP VEE for further information.

Scales:

Show Scale: - If you have multiple Y scales, a selection (using a check

box) to specify if the end points and an axis of each additional right scale

is displayed to the right of the graph area.

Scale Name: - The names of the scales. They may be set here or on the

Scales & Sliders layout.

Maximum: - The maximum values of the scales. They may be set here or

on the Scales & Sliders layout.

Minimum: - The minimum values of the scales. They may be set here or on

the Scales & Sliders layout.

Mapping: - The way the x and y data is mapped to the display. The

mapping may be linear or log, but the x mapping must be linear. Default

is Linear.

Log Cycles: - The maximum number of decades shown (counting down

from the maximum x and y values) when AutoScale is activated. Log

Cycles is only used when the Mapping is Log. Log Cycles is useful when a

trace contains a large dynamic range in the data. Default is 4.

Scale Colors - The color of any background grid or tic marks. Default is

Gray.

You can add a Scales control input pin. The control input data must be a

record with the following Õelds: 1) A Text Õeld Scale with a value X, Y (or

Y1), Y2, or Y3, and 2) one or more of the following Õelds: Name, Min, Max,

and Mapping. (The Mapping text value may be Linear or Log). Refer to

\Records and DataSets" in Using HP VEE for further information.

General Reference 2-311

Strip Chart

Add Right Scale - Adds up to two additional scales to permit traces to have

diÃerent scale ranges. After adding a right scale, use Traces & Scales to

assign a trace to the scale.

Plot - Presents the Plotter Configuration control panel. When OK is

pressed, a copy of the device's entire display is plotted on the selected

plotter. This parameter may be added as a control input. If the current

Plotter Configuration is in Plot to File mode, you may specify the

destination Õle or directory name as string data on the Plot control input.

If no control input value is given, the Õle or directory name speciÕed in

Plotter Configuration will be used. See Plotter Config for more

information.

Notes

Inputs must be Scalar or Array 1D that can be converted to type Real.

Complex, PComplex, and Spectrum values must be \unbuilt" to Real Values

before being input to a Strip Chart.

Since the Strip Chart retains all the input data until it is cleared, you may

need to occasionally clear the Strip Chart in a continuous loop to prevent the

model from running out of memory.

To get the best update speed on the Strip Chart, set the grid type to No Grid.

Use a Panel Layout of Graph Only or Scales and set the X scale maximum

value so display scrolling is infrequent.

Add traces with the Terminals =) Add Data Input object menu section. Up

to twelve traces are allowed.

A Title control input may be added, which sets the title bar name to the

speciÕed text value. This allows programmatic control over the title shown

when the display is printed or plotted.

See Also

Complex Plane, Magnitude Spectrum, Polar Plot, Waveform (Time), XY

Trace, X vs Y Plot, and Plotter Config.

2-312 General Reference

SubRecord

SubRecord

An object that allows the user to cut out a number of Õelds from a record.

Use

Use SubRecord to output a subset of the original record, with speciÕed

Õelds \cut" from the record, on the Record output pin. The record to be

edited is input on the Record input pin. The list of Õelds to be \included" or

\excluded" in the output record is input on the Fields input pin.

If Include fields is selected in the open view, the output record will consist

only of those Õelds in the Fields input.

If Exclude fields is selected in the open view, the output record will consist

of all Õelds in the original record excluding those listed in the Fields input.

Location

Data =) Access Record =) SubRecord

Open View Parameters

Include fields|(The default mode.) The output record is constructed

from the input record with only those Õelds in the list of Õeld names on the

Fields data input pin. This selection toggles with Exclude fields.

Exclude fields|The output record is constructed from the input record

with only those Õelds that are not in the list of Õeld names on the Fields

data input pin.

Notes

The Fields input pin can be a text scalar consisting of the names of the record

Õelds to include/exclude in the output record.

If you attempt to include/exclude a Õeld that is not in the input record, an

error will occur. If you exclude all the Õelds of the record, a nil output signal is

sent.

General Reference 2-313

SubRecord

Note the distinction between the UnBuild Record, SubRecord, and Get Field

objects.

The UnBuild Record object has outputs for the Name List and Type List

of the input record Õelds. The other (optional) outputs A, B, etc. of the

UnBuild Record object return the same results as would multiple Get Field

objects.

The Get Field object works like a Formula object, in that it uses dot syntax

(A.B) to unbuild a record. Note that Get Field allows you to unbuild a

record of records in one step by using an expression such as A.B.C. This

process would require two UnBuild Record objects.

The SubRecord object diÃers from UnBuild Record and Get Field in that

its output is always a record. The SubRecord device allows you to either

include or exclude a list of Õelds from a record to form a subrecord.

See Also

Build Record, From DataSet, Get Field, Record Constant, Set Field, To

DataSet, and UnBuild Record.

2-314 General Reference

Terminals

Terminals

A menu item.

Use

Use Terminals to access the following features which show, add, and delete

terminals:

Show Terminals (only available from the open view, except for Do, Start,

and Toggle)

Add Data Input

Add Control Input

Add XEQ Input

Delete Input

Add Data Output

Add Error Output

Delete Output

Location

On each object menu =) Terminals =)

Short Cuts

You can quickly add a data terminal by placing the cursor over the input

or output terminal display area and then pressing ÄCTRLÅÄAÅ. Each press of

ÄCTRLÅÄAÅ adds an additional data terminal.

You can quickly delete a data terminal by placing the cursor over the terminal

view area and then pressing ÄCTRLÅÄDÅ.

See Also

Show Terminals and Line Probe.

General Reference 2-315

Text

An object that outputs a constant string Scalar or Array 1D.

Use

Use Text to set a string constant or to request user input. To input an array,

press tab to enter the next value.

Location

Data =) Constant =) Text

Example

To use Text as a prompt on a panel view, change the name of the Text object

to a prompt such as What is your name? The user Õlls in the requested

information in the entry Õeld.

Object Menu

Auto Execute - If set, the object operates whenever the values in the Õeld

are edited.

Config - Sets the initial number of values to be output with this object.

Initialize - Used to set this object to a particular value at PreRun and/or

Activate time.

Initial Value - A dialog box that speciÕes the value to be set. Default

value is the zero value of that container type.

Initialize At PreRun - Whether to set the Initial Value at PreRun

time. Default is oÃ.

Initialize At Activate - Whether to set the Initial Value at Activate

time. Default is oÃ.

2-316 General Reference

Text

Notes

Initialize is most often used for initializing values inside a UserObject.

There is no interpretation of escaped characters in this constant. Your entry is

replicated exactly on the output pin. The other method for setting an initial

value is the Default Value control pin. The Default Value pin allows you to

programmatically change the current value.

Note that the Initial Value Õeld is always a scalar, even if Text is conÕgured

to be an array. The Default Value input pin, however, requires its input

container to exactly match the size and shape of Text.

See Also

Complex, Constant, Coord, Date/Time, Enum, Integer, PComplex, Real, and

Toggle.

General Reference 2-317

Timer

An object that outputs the diÃerence in seconds between the activation times

of the top and bottom data input pins.

Use

Use Timer to measure how much time passes between two events, such

as objects operating. This happens when the Õrst and second inputs are

activated. If the second input is activated before the Õrst, the container on the

second input is ignored and the Timer object does not execute.

Location

Device =) Timer

Notes

Time is displayed in seconds.

See Also

Date/Time, Do, and Time Stamp.

2-318 General Reference

To

To

A menu item.

Use

Use To for accessing the following objects which are destinations for I/O

operations:

To File

To DataSet

To Printer

To String

To StdOut

To StdErr

Location

I/O =) To =)

See Also

From.

General Reference 2-319

To DataSet

An object that allows the user to collect records into a Õle.

Use

Use To DataSet to collect records that have the same schema deÕnition into a

Õle for later retrieval. The following control pins can be added:

File Name|This control pin allows the user to change the name of the Õle

that the records will be written to.

Rewind|This control pin \rewinds" the Õle and makes it available for

rewriting with an entirely new record type. The eÃect is the same as sending

the Õrst record to the Õle with the Clear File At PreRun selection checked.

Location

I/O =) To =) DataSet

Open View Parameters

To DataSet:|Click on the name Õeld to display a dialog box, then select the

name of the Õle that contains the DataSet.

Clear File At PreRun|If this box is checked, the entire DataSet is cleared

and rewritten when To DataSet executes (when it receives the Õrst record).

Because the DataSet is completely erased, records with a new schema

deÕnition can be sent|the Õrst record establishes the new schema deÕnition.

Notes

The records going into the To DataSet Õle must have the same schema (data

shape and type). The Õrst record written to the Õle will deÕne the schema that

all subsequent records must have.

Every time the To DataSet object executes with its one input (only one input

is allowed), the new record is appended to the Õle. If the new record is an

array, every record element of it is appended. The schema (number of Õelds,

and each Õeld name, type, and shape) must match for every record, but the

shape of the record (scalar/array) does not matter. The To DataSet object will

2-320 General Reference

To DataSet

continue appending to the Õle until either a Rewind control input is activated,

or Clear File At PreRun is checked True and PreRun occurs. The next time

the To DataSet object executes, it begins writing to the Õle at its beginning,

again starting with the schema of the Õrst record. This schema may be

diÃerent than what was in the Õle.

See Also

Build Record, From DataSet, Record Constant, and UnBuild Record.

General Reference 2-321

To File

An object that writes data to a Õle using transaction statements.

Use

Use To File to output a wide variety of encodings and formats to allow Œexible

output to Õles. A single pointer is maintained for each Õle; therefore, data

output by diÃerent To File objects is written to the Õle in the order that the

objects operated.

To File Actions:

WRITE - Writes data to a Õle using the speciÕed encoding and format.

EXECUTE - Repositions the Õle's write pointer to the beginning of the Õle with

(CLEAR) or without (REWIND) erasing the contents of the Õle. EXECUTE

REWIND can only be used when Clear File at PreRun & Open is checked.

Note that the Õle is automatically closed when the HP VEE model stops.

However, you may use the EXECUTE CLOSE transaction to close the Õle during

model execution.

WAIT - Waits the speciÕed number of seconds before executing the next

transaction.

To File Encodings;

TEXT - Writes all data types to human-readable Õles that are easily

edited or ported to other software applications. HP VEE numeric data is

automatically converted to text as it is written.

BYTE - Converts numeric data to binary integer and writes the least

signiÕcant byte.

CASE - Maps an enumerated value or an integer to a string and writes the

string. For example, you could use CASE to accept error numbers and write

error messages.

BINARY - Writes all data types in an machine-speciÕc binary format.

BINBLOCK - Writes all HP VEE data types in binary Õles with IEEE 488.2

deÕnite length block headers.

CONTAINER - Writes all data types in an HP VEE speciÕc text format.

2-322 General Reference

To File

Location

I/O =) To =) File

Open View Parameters

Clear at PreRun & Open - Erases Õle contents and sets Õle pointer to the

beginning of the Õle. The REWIND transaction command can only be operated

when Clear File At PreRun & Open is checked. When Clear File At

PreRun & Open is not checked, data is appended to the end of the Õle.

The open view shows the list of transactions to be executed.

Object Menu

Config - Allows you to view and edit the conÕguration that determines the

end-of-line character and formatting for arrays.

Add Trans - Adds a transaction to the end of the list.

Insert Trans - Inserts a transaction before (above) the currently highlighted

transaction.

Cut Trans - Cuts (deletes) the currently highlighted transaction, but saves it

in the transaction \cut-and-paste" buÃer.

Copy Trans - Copies the currently highlighted transaction to the transaction

\cut-and-paste" buÃer.

Paste Trans - Pastes a transaction, previously \cut" or \copied" to the

buÃer, in the position before the currently highlighted transaction.

Short Cuts

To quickly insert a transaction, place the cursor on a transaction. Press

ÄCTRLÅÄOÅ to insert a transaction over the transaction where you placed the

cursor.

To quickly delete (\kill") a transaction, place the cursor on that transaction

and press ÄCTRLÅÄKÅ.

To paste a transaction from the \kill" buÃer press ÄCTRLÅÄYÅ.

General Reference 2-323

To File

To quickly move to the next or previous transaction, press ÄCTRLÅÄNÅ or

ÄCTRLÅÄPÅ respectively.

See Also

From File and To/From Named Pipe.

\Using Transaction I/O" in Using HP VEE , chapter 12.

2-324 General Reference

To/From HP BASIC/UX

To/From HP BASIC/UX

An object that communicates with an HP BASIC/UX process using

transactions by way of speciÕed named pipes. This object is available in HP

VEE-Test running on HP 9000 Series 300 or 400 only.

Use

Use To/From HP BASIC/UX to communicate with an HP BASIC/UX program.

Be certain that you understand how to use named pipes in the HP-UX

environment.

Type in the names of the pipes you wish to use in the Read Pipe and

Write Pipe Õelds. Be certain that they match the names of the pipes used

by your HP BASIC/UX program and that the read and write names are not

inadvertently swapped. Use diÃerent pipes for the To/From HP BASIC/UX

objects in diÃerent threads.

A To/From HP BASIC/UX object is generally preceded by an Init HP BASIC/UX

object.

Location

I/O =) HP BASIC/UX =) To/From HP BASIC/UX

Open View Parameters

The open view shows the list of transactions to be executed.

The Write Pipe and Read Pipe Õelds can be added as control inputs.

Object Menu

Config - Allows you to view and edit end-of-line sequences and formatting

for arrays.

Add Trans - Adds a transaction to the end (bottom) of the list.

Insert Trans - Inserts a transaction before (above) the currently highlighted

transaction.

General Reference 2-325

To/From HP BASIC/UX

Cut Trans - Cuts (deletes) the currently highlighted transaction, but saves it

in the transaction \cut-and-paste" buÃer.

Copy Trans - Copies the currently highlighted transaction to the transaction

\cut-and-paste" buÃer.

Paste Trans - Pastes a transaction, previously \cut" or \copied" to the

buÃer, in the position before the currently highlighted transaction.

Notes

Because of the behavior of named pipes, it is easiest to structure your

HP VEE transactions and corresponding HP BASIC/UX OUTPUTs and

ENTERs to transmit known or easily parsed data blocks. For example, if you

are transmitting strings, determine the maximum length block you wish to

transmit and pad shorter strings with blanks. This avoids the problems of

trying to read more data from a pipe than is available and of leaving unwanted

data in a pipe.

To help prevent a READ transaction from hanging until data is available, use

a READ IOSTATUS DATA READY transaction in separate To/From HP BASIC/UX

object. This transaction returns a 1 if there is at least one byte to read, and a

0 if there are no bytes to read.

To read all the data available on the read pipe until the read pipe is closed, use

a READ . . . ARRAY TO END transaction.

If you are running discless, be certain you Read and Write to uniquely named

pipes.

Example

Here are typical To/From HP BASIC/UX settings and the corresponding

HP BASIC/UX program:

To/From HP BASIC/UX Object

Write Pipe : /tmp/to_rmb

Read Pipe : /tmp/from_rmb

(These default pipes are created for you the Õrst time the object operates.)

HP BASIC/UX Program

2-326 General Reference

To/From HP BASIC/UX

100 ASSIGN @From_vee TO "/tmp/to_rmb"

110 ASSIGN @To_vee TO "/tmp/from_rmb"

120 ! Your code here

130 ENTER @From_vee;Vee_data

140 OUTPUT @To_vee;Rmb_data

150 END

Short Cuts

To quickly insert a transaction, place the cursor on a transaction. Press

ÄCTRLÅÄOÅ to insert a transaction over the transaction where you placed the

cursor.

To quickly delete (\kill") a transaction, place the cursor on that transaction

and press ÄCTRLÅÄKÅ.

To paste a transaction from the \kill" buÃer press ÄCTRLÅÄYÅ.

To quickly move to the next or previous transaction, press ÄCTRLÅÄNÅ or

ÄCTRLÅÄPÅ respectively.

See Also

Init HP BASIC/UX and To/From Named Pipe.

\Using Transaction I/O" in Using HP VEE , chapter 12.

General Reference 2-327

To/From Named Pipe

An object that creates and uses named pipes for I/O. To/From Named Pipe is

available only in HP VEE-Test.

Use

Named pipes are tools for programmers who wish to implement interprocess

communication.

You must add one or more transactions to To/From Named Pipe to read or

write data. To do this, click on Add Trans in the object menu.

Location

I/O =) To/From Named Pipe

Open View Parameters

The open view shows the list of transactions to be executed.

The Write Pipe and Read Pipe Õelds can be added as control inputs.

Object Menu

Config - Allows you to view and edit the conÕguration that determines the

end-of-line character and formatting for arrays.

Add Trans - Adds a transaction to the end of the list.

Insert Trans - Inserts a transaction before the currently highlighted

transaction.

Cut Trans - Cuts (deletes) the currently highlighted transaction, but saves it

in the transaction \cut-and-paste" buÃer.

Copy Trans - Copies the currently highlighted transaction to the transaction

\cut-and-paste" buÃer.

Paste Trans - Pastes a transaction, previously \cut" or \copied" to the

buÃer, in the position before the currently highlighted transaction.

2-328 General Reference

To/From Named Pipe

Notes

All To/From Named Pipe objects contain the same default names for read and

write pipes. Be certain that you know which pipe you really want to read or

write.

If the pipes do not exist before To/From Named Pipe operates, then they are

created. However, there are some overhead costs; if the pipes exist beforehand,

the model runs quicker. These pipes are created for you automatically if they

do not already exist:

/tmp/read_pipe

/tmp/write_pipe

To create additional pipes, use the operating system command mknod.

Named pipes are opened when the Õrst Read or Write transaction to that pipe

operates after PreRun. All named pipes are closed at PostRun. The EXECUTE

CLOSE READ PIPE and EXECUTE CLOSE WRITE PIPE transactions allow the named

pipes to be closed at any time.

Because of the behavior of named pipes, it is easiest to structure your

ToFrom Named Pipe transactions to transmit known or easily parsed data

blocks. For example, if you are transmitting strings, determine the maximum

length block you wish to transmit and pad shorter strings with blanks. This

avoids the problems of trying to read more data from a pipe than is available

and of leaving unwanted data in a pipe.

To help prevent a READ transaction from hanging until data is available, use

a READ IOSTATUS DATA READY transaction in separate To/From HP BASIC/UX

object. This transaction returns a 1 if there is at least one byte to read, and a

0 if there are no bytes to read.

To read all the data available on the read pipe until the read pipe is closed, use

a READ . . . ARRAY TO END transaction.

If you are running diskless, be certain you Read and Write to uniquely named

pipes. Otherwise several workstations on the same diskless cluster may attempt

to read/write to the same named pipe, which will cause contention problems.

General Reference 2-329

To/From Named Pipe

Short Cuts

To quickly insert a transaction, place the cursor on a transaction. Press

ÄCTRLÅÄOÅ to insert a transaction over the transaction where you placed the

cursor.

To quickly delete (\kill") a transaction, place the cursor on that transaction

and press ÄCTRLÅÄKÅ.

To paste a transaction from the \kill" buÃer press ÄCTRLÅÄYÅ.

To quickly move to the next or previous transaction, press ÄCTRLÅÄNÅ or

ÄCTRLÅÄPÅ respectively.

See Also

From, From File, FromStdIn, To File, ToStdIn, and To.

\Using Transaction I/O" in Using HP VEE , chapter 12.

2-330 General Reference

To Printer

To Printer

An object that sends data to a printer.

Use

Use To Printer to output data to a printer using a wide variety of encodings

and formats.

To Printer Actions:

WRITE - Prints data using the speciÕed encoding and format.

WAIT - Waits the speciÕed number of seconds before executing the next

transaction.

To Printer Encodings:

In almost all cases, you should use TEXT or CASE encoding to print data. Other

encodings should be used by advanced users only.

TEXT - Writes all data types in human-readable form. HP VEE numeric data

is automatically converted to text as it is written.

BYTE - Converts numeric data to binary integer and writes the least

signiÕcant byte.

CASE - Maps an enumerated value or an integer to a string and writes the

string. For example, you could use CASE to accept error numbers and write

error messages.

BINARY - Writes all data types in an machine-speciÕc binary format.

BINBLOCK - Writes all HP VEE data types in binary Õles with IEEE 488.2

deÕnite length block headers.

CONTAINER - Writes all data types in a machine-speciÕc text format.

General Reference 2-331

To Printer

Location

I/O =) To =) Printer

Open View Parameters

The open view shows the list of transactions to be executed.

Object Menu

Config - Allows you to view and edit, end-of-line sequences and array print

formatting.

Add Trans - Adds a transaction to the end of the list.

Insert Trans - Inserts a transaction before the currently highlighted

transaction.

Cut Trans - Cuts (deletes) the currently highlighted transaction, but saves it

in the transaction \cut-and-paste" buÃer.

Copy Trans - Copies the currently highlighted transaction to the transaction

\cut-and-paste" buÃer.

Paste Trans - Pastes a transaction, previously \cut" or \copied" to the

buÃer, in the position before the currently highlighted transaction.

Notes

The printer which receives To Printer data is conÕgured by way of

File =) Preferences =) Printer Config using the Text Printer portion of

the Printer Configuration dialog box.

When the Õrst To Printer object in a model operates, it starts a print job.

The print job is shared by all To Printer objects in the model, therefore their

output appears in sequence on the same printout.

The print job remains open until PostRun, or until an EXECUTE CLOSE

transaction is executed or the End Job control input on any To Printer is

activated. PostRun occurs when all the threads in a model complete execution

or when you press Stop twice. You access the End Job control input pin by

way of the Add Control Input selection in the object menu.

2-332 General Reference

To Printer

Short Cuts

To quickly insert a transaction, place the cursor on a transaction. Press

ÄCTRLÅÄOÅ to insert a transaction over the transaction where you placed the

cursor.

To quickly delete (\kill") a transaction, place the cursor on that transaction

and press ÄCTRLÅÄKÅ.

To paste a transaction from the \kill" buÃer press ÄCTRLÅÄYÅ.

To quickly move to the next or previous transaction, press ÄCTRLÅÄNÅ or

ÄCTRLÅÄPÅ respectively.

See Also

Printer Config, To, To File, To/From Named Pipe, and To StdOut.

\Using Transaction I/O" in Using HP VEE , chapter 12.

General Reference 2-333

To StdErr

An object that uses transactions to transmit data to the operating system

standard error output.

Use

Use To StdErr to output a wide variety of Õle encodings and formats to the

standard error output of HP VEE.

To StdErr Actions:

All ToStdErr objects use the same write pointer, even if they are in diÃerent

threads or diÃerent contexts. Data written by diÃerent ToStdErr objects

appears on stderr in the order the objects operated.

WRITE - Writes data to standard error using the speciÕed encoding and

format.

WAIT - Waits the speciÕed number of seconds before executing the next

transaction.

To StdErr Encodings:

TEXT - Writes all data types in a human-readable form. HP VEE numeric

data is automatically converted to text as it is written.

BYTE - Converts numeric data to binary integer and writes the least

signiÕcant byte.

CASE - Maps an enumerated value or an integer to a string and writes the

string. For example, you could use CASE to accept error numbers and write

error messages.

BINARY - Writes all data types in an machine-speciÕc binary format.

BINBLOCK - Writes all HP VEE data types in binary form with IEEE 488.2

deÕnite length block headers.

CONTAINER - Writes all data types in a machine-speciÕc text font.

2-334 General Reference

To StdErr

Location

I/O =) To =) StdErr

Open View Parameters

The open view shows the list of transactions to be executed.

Object Menu

Config - Allows you to view and edit the conÕguration that determines the

end-of-line character and formatting for arrays.

Add Trans - Adds a transaction to the end of the list.

Insert Trans - Inserts a transaction before the currently highlighted

transaction.

Cut Trans - Cuts (deletes) the currently highlighted transaction, but saves it

in the transaction \cut-and-paste" buÃer.

Copy Trans - Copies the currently highlighted transaction to the transaction

\cut-and-paste" buÃer.

Paste Trans - Pastes a transaction, previously \cut" or \copied" to the

buÃer, in the position before the currently highlighted transaction.

Notes

In general, standard error for HP VEE is the terminal window in which you

ran veetest or veeengine.

You can redirect standard error by starting the HP VEE process using a

command that redirects standard error, such as

veetest 2> someFileName For sh and ksh

veetest >& someFileName For csh

to send the stderr data to the Õle \someFileName".

General Reference 2-335

To StdErr

Short Cuts

To quickly insert a transaction, place the cursor on a transaction. Press

ÄCTRLÅÄOÅ to insert a transaction over the transaction where you placed the

cursor.

To quickly delete (\kill") a transaction, place the cursor on that transaction

and press ÄCTRLÅÄKÅ.

To paste a transaction from the \kill" buÃer press ÄCTRLÅÄYÅ.

To quickly move to the next or previous transaction, press ÄCTRLÅÄNÅ or

ÄCTRLÅÄPÅ respectively.

See Also

From File, From StdIn, and To/From Named Pipe.

\Using Transaction I/O" in Using HP VEE , chapter 12.

2-336 General Reference

To StdOut

To StdOut

An object that uses transactions to transmit data to the operating system

standard output.

Use

Use To StdOut to output a wide variety of Õle encodings and formats to

standard output of HP VEE.

To StdOut objects use the same write pointer, even if they are in diÃerent

threads or diÃerent contexts. Data written by diÃerent To StdOut objects

appears on stdout in the order the objects operated.

To StdOut Actions:

WRITE - Writes data to standard output using the speciÕed encoding and

format.

WAIT - Waits the speciÕed number of seconds before executing the next

transaction.

To StdOut Encodings:

TEXT - Writes all data types in a human-readable form. HP VEE numeric

data is automatically converted to text as it is written.

BYTE - Converts numeric data to binary integer and writes the least

signiÕcant byte.

CASE - Maps an enumerated value or an integer to a string and writes the

string. For example, you could use CASE to accept error numbers and write

error messages.

BINARY - Writes all data types in an machine-speciÕc binary format.

BINBLOCK - Writes all HP VEE data types in binary Õles with IEEE 488.2

deÕnite length block headers.

CONTAINER - Writes all data types in a machine-speciÕc text format.

General Reference 2-337

To StdOut

Location

I/O =) To =) StdOut

Open View Parameters

The open view shows the list of transactions to be executed.

Object Menu

Config - Allows you to view and edit the conÕguration that determines the

end-of-line character and formatting for arrays.

Add Trans - Adds a transaction to the end of the list.

Insert Trans - Inserts a transaction before the currently highlighted

transaction.

Cut Trans - Cuts (deletes) the currently highlighted transaction, but saves it

in the transaction \cut-and-paste" buÃer.

Copy Trans - Copies the currently highlighted transaction to the transaction

\cut-and-paste" buÃer.

Paste Trans - Pastes a transaction, previously \cut" or \copied" to the

buÃer, in the position before the currently highlighted transaction.

Notes

In general, standard output for HP VEE is the terminal window in which you

ran veetest or veeengine.

You can redirect standard output by starting the HP VEE process using a

command that redirects standard output, such as

veetest > someFileName

to send the stdout data to the Õle \someFileName".

2-338 General Reference

To StdOut

Short Cuts

To quickly insert a transaction, place the cursor on a transaction. Press

ÄCTRLÅÄOÅ to insert a transaction over the transaction where you placed the

cursor.

To quickly delete (\kill") a transaction, place the cursor on that transaction

and press ÄCTRLÅÄKÅ.

To paste a transaction from the \kill" buÃer press ÄCTRLÅÄYÅ.

To quickly move to the next or previous transaction, press ÄCTRLÅÄNÅ or

ÄCTRLÅÄPÅ respectively.

See Also

From File, From StdIn, To/From Named Pipe, and To StdErr.

\Using Transaction I/O" in Using HP VEE , chapter 12.

General Reference 2-339

To String

An object that uses transactions to write formatted text to a string.

Use

Use To String to created formatted text using transactions.

If only one string is generated by the To String transactions, the output

container is a string scalar. When more than one string is generated, the

output container is an Array 1D.

WRITE transactions ending with \EOL ON" will terminate the current output

string, causing the next transaction in the To String list to write data to the

next array element in the output container.

Write Transactions ending with \EOL OFF" will not terminate the output

string, causing the characters generated by the next Write transaction in the

To String list to be appended to the end of the current output string. The

last transaction in the To String list will always terminate the output string,

regardless of that transaction's \EOL" mode.

To String Actions:

WRITE - Writes data using the speciÕed encoding and format.

WAIT - Waits the speciÕed number of seconds before executing the next

transaction.

To String Encodings:

In almost all cases, you should use TEXT encoding to write data.

TEXT - Writes all data types in human-readable form. HP VEE numeric data

is automatically converted to text as it is written.

BYTE - Converts numeric data to binary form and writes the ASCII text

equivalent that maps to the least signiÕcant byte. For example, the following

transaction writes the character A (ASCII 65 decimal):

WRITE BYTE 65

2-340 General Reference

To String

CASE - Maps an enumerated value or an integer to a string and writes the

string. For example, you could use CASE to accept error numbers and write

error messages.

Location

I/O =) To =) String

Open View Parameters

The open view shows the list of transactions to be executed.

Object Menu

Config - Allows you to view and edit formatting for arrays.

Add Trans - Adds a transaction to the end of the list.

Insert Trans - Inserts a transaction before the currently highlighted

transaction.

Cut Trans - Cuts (deletes) the currently highlighted transaction, but saves it

in the transaction \cut-and-paste" buÃer.

Copy Trans - Copies the currently highlighted transaction to the transaction

\cut-and-paste" buÃer.

Paste Trans - Pastes a transaction, previously \cut" or \copied" to the

buÃer, in the position before the currently highlighted transaction.

Example

To String is a useful debug tool to explore how TEXT transactions operate.

Connect a Logging AlphaNumeric display to the To String output terminal to

immediately view the results.

General Reference 2-341

To String

Short Cuts

To quickly insert a transaction, place the cursor on a transaction. Press

ÄCTRLÅÄOÅ to insert a transaction over the transaction where you placed the

cursor.

To quickly delete (\kill") a transaction, place the cursor on that transaction

and press ÄCTRLÅÄKÅ.

To paste a transaction from the \kill" buÃer press ÄCTRLÅÄYÅ.

To quickly move to the next or previous transaction, press ÄCTRLÅÄNÅ or

ÄCTRLÅÄPÅ respectively.

See Also

To, To File, To/From Named Pipe, To StdOut, and To StdErr.

\Using Transaction I/O" in Using HP VEE , chapter 12.

2-342 General Reference

Toggle

Toggle

An object that outputs a 1 if pressed (or checked) and a 0 if left up (or

unchecked).

Use

Use Toggle to set a one or a zero output. Toggle is commonly used with an

If/Then object that contains an A==1 condition.

Location

Data =) Toggle

Object Menu

Auto Execute - If set, the object operates whenever the values in the Õeld

are edited.

Format =) - SpeciÕes the appearance of the object and the method of

selecting a choice.

Check Box - The choice is made by clicking on a recessed box. A check

mark denotes the selection.

Button - The choice is made by pressing a button.

Initialize - Used to set this object to a particular value at PreRun and/or

Activate time.

Initial Value - A dialog box that speciÕes the value to be set. Default

value is the Õrst string value in the list.

Initialize At PreRun - Whether to set the Initial Value at PreRun

time. Default is oÃ.

Initialize At Activate - Whether to set the Initial Value at Activate

time. Default is oÃ.

General Reference 2-343

Toggle

Notes

Initialize is most often used for initializing values inside a UserObject.

The other method for setting initial values Default Value control pin

available on most data constants. The Default Value pin allows you to

programmatically change the current value.

Since the icon of this object represents its greatest utility, the object menu

accessed from the icon is larger and more useful than the object menu accessed

from its open view.

The name of the button or check box (default = Toggle) can be changed by

changing the text in the open view.

See Also

Complex, Constant, Coord, Date/Time, Enum, If/Then/Else, Integer,

PComplex, Real, and Text.

2-344 General Reference

Trig Mode

Trig Mode

SpeciÕes the units used for trigonometric calculations.

Use

Use Trig Mode to specify the trigonometric units used in this context to

Degrees, Radians, or Gradians.

The current value of Trig Mode is saved with each model. The default value is

read from .veerc in your $HOME when HP VEE is started or New is selected.

Location

File =) Preferences =) Trig Mode

or

UserObject (Object Menu) =) Trig Mode

Notes

Trig Mode is context sensitive.

Be careful when using Merge as the Trig Mode preferences for objects at the

root context will not be read from the merge Õle. The merged objects will

use the currently active Preferences setting for Trig Mode. This may cause

unexpected results.

See Also

Preferences and UserObject.

General Reference 2-345

UnBuild Complex

An object that outputs the real and imaginary components of a Complex

number as Real numbers.

Use

Use UnBuild Complex to extract the real and imaginary components from a

rectangular Complex number.

Location

Data =) UnBuild Data =) Complex

Notes

You can also get the components of a Complex number by using the re(x) and

imag(x) functions or objects.

Even if inputs are mapped, the outputs are not.

See Also

Build Complex, UnBuild Data, and UnBuild PComplex.

\Formula Reference" chapter.

2-346 General Reference

UnBuild Coord

UnBuild Coord

An object that outputs the values of a Coord as Real numbers.

Use

Use UnBuild Coord to extract the x, y, z . . . values of a Coord data type.

Additional outputs can be added for the z and other coordinate dimensions.

The number of outputs must match the number of coordinate dimensions of

the input data.

Location

Data =) UnBuild Data =) Coord

See Also

Build Coord and UnBuild Data.

General Reference 2-347

UnBuild Data

A menu item.

Use

Use UnBuild to access the following data type conversion objects:

Coord

Complex

PComplex

Waveform

Spectrum

Record

Location

Data =) UnBuild Data

See Also

Access Array, Build, UnBuild Complex, UnBuild Coord, UnBuild PComplex,

UnBuild Record, UnBuild Spectrum, and UnBuild Waveform.

2-348 General Reference

UnBuild PComplex

UnBuild PComplex

An object that extracts the magnitude and phase components of a PComplex

number and outputs them as Real numbers.

Use

Use UnBuild PComplex to extract the magnitude and phase components from a

PComplex number.

Location

Data =) UnBuild Data =) PComplex

Notes

You can also get the components of a PComplex number by using the mag(x)

and phase(x) functions or objects.

Even if inputs are mapped, the output are not.

See Also

Build PComplex, Trig Mode, UnBuild Complex, and UnBuild Data.

General Reference 2-349

UnBuild Record

An object that allows the user to unbuild a record and recover its components.

Use

Use UnBuild Record to extract the data components from a record (A, B, and

so forth), and to obtain a Name List and Type List for those components.

The Name List output pin outputs a Text array of all the names of the input

record Õeld names.

The Type List output pin outputs a Text array of all the data types of the

input record.

The A, B, etc. output pins output the individual data components unbuilt

from the record.

Location

Data =) UnBuild Data =) Record

Notes

You may add an arbitrary number of output pins to this object. Each output

pin name must correspond to a name of a record Õeld. Field names are not

case sensitive (lowercase and uppercase letters are equivalent).

Note the distinction between the UnBuild Record, SubRecord, and Get Field

objects.

The UnBuild Record object has outputs for the Name List and Type List

of the input record Õelds. The other (optional) outputs A, B, etc. of the

UnBuild Record object return the same results as would multiple Get Field

objects.

The Get Field object works like a Formula object, in that it uses dot syntax

(A.B) to unbuild a record. Note that Get Field allows you to unbuild a

record of records in one step by using an expression such as A.B.C. This

process would require two UnBuild Record objects.

2-350 General Reference

UnBuild Record

The SubRecord object diÃers from UnBuild Record and Get Field in that

its output is always a record. The SubRecord device allows you to either

include or exclude a list of Õelds from a record to form a subrecord.

See Also

Build Record, From DataSet, Get Field, Record Constant, Set Field,

SubRecord, and To DataSet.

General Reference 2-351

UnBuild Spectrum

An object that outputs the PComplex values and frequency range of a

Spectrum.

Use

Use UnBuild Spectrum to extract an Array 1D of PComplex values and

interval information from a Spectrum.

Location

Data =) UnBuild Data =) Spectrum

Open View Parameters

Start/Stop j Center/Span - Changes the values in the outputs that describe

the frequency range of the Spectrum.

See Also

Build Spectrum, UnBuild Data, and UnBuild Waveform.

2-352 General Reference

UnBuild Waveform

UnBuild Waveform

An object that outputs the amplitude values and time span of a Waveform.

Use

Use UnBuild Waveform to extract an Array 1D of the amplitude values and a

real value for the time span from a Waveform.

Location

Data =) UnBuild Data =) Waveform

Notes

The Real array output will be unmapped.

See Also

Build Waveform, UnBuild Data, and UnBuild Spectrum.

General Reference 2-353

Until Break

An object that repeats execution of a subthread until a Break is encountered.

Use

Use Until Break to start a set of operations that is repeated until a Break is

encountered.

Location

Flow =) Repeat =) Until Break

Notes

Execution of the subthread hosted by the Until Break output continues until

one of the following occurs:

All objects that can, have operated; the subthread is deactivated. The

subthread is reactivated by reÕring the Until Break output until a Break

object is encountered.

A Break object operates . The subthread is deactivated and the sequence

output pin is activated.

A Next object operates. The subthread is deactivated then reactivated by

reÕring the Until Break output until a Break object is encountered.

Until Break outputs an output execution signal that has no value (nil).

When the subthread hosted by the Until Break object Õnishes an iteration, all

data containers sent during the previous iteration are invalidated before the

next iteration. This prevents \old" data from a previous iteration from being

reused in the current iteration. However, if Œow branching is present within the

iterative subthread, some objects may not execute on every iteration. Thus,

data containers sent by those objects may be invalidated before other objects

can execute on the data. To obtain the desired propagation in this case, use

the Sample & Hold object. Refer to \Iteration with Flow Branching" in chapter

4 of Using HP VEE for more information.

2-354 General Reference

Until Break

See Also

Break, For Count, For Log Range, For Range, Next, On Cycle, and Sample &

Hold.

General Reference 2-355

User Function

A user-deÕned function created from a UserObject.

Use

You can create a User Function by creating a UserObject and then executing

Make UserFunction (refer to UserObject for details). You can use Edit User

Function to edit the User Function once it has been created. User Functions

exist in the \background" and can be called with Call Function or from

certain expressions.

An advantage of making a User Function out of a UserObject is that the same

User Function can be called multiple times within the model, but it exists as

source code only in one place.

The following choices are also available when editing a User Function:

Make UserObject - The opposite operation from Make UserFunction. Turns

the User Function back into a UserObject

Delete - Deletes the User Function from the HP VEE model.

Notes

You can create a library of User Functions by creating several UserObjects,

turning them into User Functions, and then saving them all to a Õle. This

library then can be imported into a model using Import Library, and deleted

with Delete Library.

Not only can you call a User Function with Call Function, but you can call it

from any expression whose evaluation is delayed until run time. These include

expressions in Formula, If/Then/Else, Get Values, Get Field, Set Field,

or From DataSet devices, or expressions in Sequencer or I/O transactions.

However, the syntax of function calls in an expression allows only a single

return value. Thus, a call to a User Function from such an expression will

return only the value on the Õrst output. If there are additional outputs

(excluding the sequence output) their values will be dropped. If there are no

outputs, the returned value will be undeÕned.

2-356 General Reference

User Function

See Also

Call Function, Delete Library, Edit UserFunction, Formula,

If/Then/Else, Import Library, Sequencer, and UserObject.

General Reference 2-357

UserObject

An object that may contain other objects.

Use

Use UserObject to logically and physically group objects together. A

UserObject constitutes a separate \context" from the root context of a model.

You can use multiple UserObjects, or nested UserObjects within a model.

To create the desired UserObject, you can move other objects into the work

area of the open view of the UserObject, or you can select objects and use

Create UserObject from the Edit menu.

The Make UserFunction item in the object menu allows you to make the

UserObject into a User Function, which can then be called using the Call

Function object, or from certain expressions.

Operation:

A UserObject operates just like any other object|no objects inside of a

UserObject operate until all data inputs to the UserObject are activated.

All operations inside of the UserObject must be completed before the data

outputs are activated.

The right-most button on the title bar of the open view is a maximize button|

it increases the size of the UserObject to the full size of the HP VEE work

area.

When objects inside the UserObject are connected to objects outside the

UserObject, input and output pins are automatically created.

Creating a User Function:

Once you have created a UserObject, you can use Make UserFunction (see

\Object Menu," below) to create a User Function with the same functionality.

The UserObject will disappear from the screen and will be replaced with a

Call Function object containing a call to the new User Function. The User

Function will be added to the list of available User Functions, which exists in

the \background" within the model. You can call the User Function using the

Call Function object, or from certain expressions. You can edit the User

Function by using Edit UserFunction in the Edit menu.

2-358 General Reference

UserObject

Location

Device =) UserObject

Object Menu

You can select the object menu of the UserObject from the object menu

button, but you cannot select it from within the work area of the UserObject

open view. From within the work area, the right mouse button provides a

pop-up Edit menu, just like the one available in the main work area. When the

pointer is over an object within the UserObject, the right mouse button gives

the object menu for that object. You can also get UserObject object menu by

placing the pointer over the borders of the UserObject and clicking the right

mouse button.

Make UserFunction - Converts the UserObject into a User Function. The

UserObject will disappear from the work area and it is replaced with a

Call Function object containing a call to the new User Function. Before

you do this operation, enter a unique name into the title Õeld. This name

will become the User Function name, which will be the name by which

Call Function or certain expressions can call the User Function. Should

the name conŒict with the name of an existing User Function, an error will

be displayed. You will then need to enter a diÃerent name and repeat the

operation.

Unpack - Deletes the UserObject, but not the objects contained in it.

Secure - Prevents the UserObject from being modiÕed.

Show Panel on Exec - When set, shows the panel view associated with the

UserObject when the UserObject operates. This is only available after the

UserObject panel view has been created (by way of Add To Panel).

Trig Mode =) - SpeciÕes the trig mode used in the UserObject context

(degrees, radians, or gradians).

Edit =) - A parent menu that leads to the UserObject context Edit menu.

This menu contains the same choices as the main menu Edit menu. You

can get the pop-up Edit menu by clicking the right mouse button on the

UserObject work area.

The following choices are context sensitive to the UserObject:

General Reference 2-359

UserObject

Clean Up Lines - Routes the lines in the UserObject around objects.

Move Objects - Moves several objects at once.

Create UserObject - Creates a UserObject of the currently selected

objects.

Add To Panel - Creates a panel view (for the UserObject) containing the

selected objects.

Notes

To create a UserObject of the currently selected objects, use Create

UserObject.

It is convenient to save UserObjects of common functions (using Save

Objects) to create a library of functions to be used again.

You can create a library of User Functions by creating several UserObjects,

turning them into User Functions, and then saving them all to a Õle. This

library then can be imported into a model using Import Library, and deleted

with Delete Library.

UserObject allows the addition of XEQ inputs.

If the XEQ input is activated, UserObject operates even if all its data input

elements are not satisÕed.

When a breakpoint is set on an object in a UserObject that is displayed as an

icon view and Show Panel on Exec is oÃ, Step ignores the breakpoint.

See Also

Add To Panel, Call Function, Create UserObject, Delete Library, Direct

I/O, Edit UserFunction, Formula, If/Then/Else, Import Library, Secure,

Sequencer, and User Function.

2-360 General Reference

View Globals

View Globals

A menu item that allows you to view the list of global variables that are

currently deÕned.

Use

Use View Globals to look at the type, shape, and data values of any currently

deÕned global variables. (This menu item is \grayed" if no globals exist.)

Location

Edit =) View Globals

Notes

Before you may view any global variables, one or more must have been created

by running a model with one or more Set Global objects.

All global variables are deleted at the beginning of every Run, Start, or

auto-execution. Global variables are always deleted by either File =) New or

File =) Open. Global variable values are not saved with the model.

See Also

Get Global, and Set Global.

General Reference 2-361

Virtual Source

A menu item.

Use

Use Virtual Source to access the following virtual signal generators.

Function Generator

Pulse Generator

Noise Generator

Location

Device =) Virtual Source =)

Notes

Virtual Source objects output Waveforms.

See Also

Build Arb Waveform, Function Generator, Instruments, Noise Generator,

and Pulse Generator.

2-362 General Reference

VU Meter

VU Meter

This object has been renamed to Meter.

General Reference 2-363

Wait for SRQ

This menu item has been replaced with an SRQ option under Device Event.

2-364 General Reference

Waveform (Time)

Waveform (Time)

An object that displays time-domain information (waveforms) on a

two-dimensional graphical display.

Use

Use Waveform (Time) to display Waveforms or Spectrums in the time domain.

Spectrums are automatically converted to waveforms by way of an Inverse

Fast Fourier Transform (iÃt). The X axis is in the sampling units of the input

waveform (typically, seconds).

Location

Data =) Build Data =) Waveform

Open View Parameters

Auto Scale - Automatically scales the display to show the entire trace.

Mag - The name of the Y axis.

Trace1 - The name of the Õrst trace.

Time - The name of the X axis.

Object Menu

Auto Scale =) - Automatically scales the display to show the entire trace.

Auto Scale - Automatically scales both axes.

Auto Scale X - Automatically scales the X axis.

Auto Scale Y - Automatically scales the Y axis.

These parameters may be added as control inputs.

Clear Control =) - Parameters that specify when to clear the display.

Clear - Clears the displayed trace(s). This parameter may be added as a

control input.

General Reference 2-365

Waveform (Time)

Clear At PreRun - Clears the displayed trace(s) when the model or thread

is PreRun.

Clear At Activate - Clears the displayed trace(s) when the User Object is

activated.

Next Curve - Resets the pen to display the next curve in a family of

curves (data from the next time the display operates) without clearing the

previous curve. Next Curve must be selected (or activated) before each

new curve in the family. This parameter may be added as a control input.

Zoom =) - Scales the display.

In - MagniÕes the display to contain only the rectangular region that you

selected with the pointer. You select the region after selecting this feature

by dragging on the graph area. This action outlines the information with a

\rubber band" box.

Out 2|5|10|20|50|100 x - Expands the scales of the display by a factor in

both the X and Y directions about the center.

Markers =) - Allows you to Õnd the exact value of a data point on the

displayed curve. If the data is plotted on a log scale, the values shown on the

marker are the linear data points.

To move markers to a diÃerent trace, click on the button to the left of the

marker values near the bottom of the display. The button cycles through the

diÃerent line types and colors of the diÃerent traces.

Off - No markers are shown.

One On - One marker is available.

Two On - Two markers are available.

Delta On - Two markers are available and the x and y diÃerences between

them are displayed.

Interpolate - When checked, you can place markers in between the

displayed data points. The marker values displayed are calculated by linear

interpolation. Default is oÃ.

Center - If markers are available, brings them to the center of the visible

part of the trace. This is useful if you've scrolled the display and markers

are not visible.

2-366 General Reference

Waveform (Time)

Grid Type =) - Sets the type of grid marks. The value of the major x

division is shown below the maximum x value (to the right of the x scale

name). The value of the major y division is shown below the y scale name.

No Grid - No grid lines are shown.

Tic Marks - Shows tic marks at the major and minor divisions on all four

sides of the graph.

Axis - Shows tic marks at the major and minor divisions on the X and Y

axes of the graph. If the actual axes are scrolled oÃ the graph area, axis

lines are drawn on the edge closest to the axes.

Lines - Shows lines at the major divisions and tic marks at the minor

divisions. The X and Y axes are shown as thick lines.

Panel Layout =) - Sets the appearance of the open view.

Graph Only - The open view shows only the graph area and the marker

information (if it exists). No buttons, scales, scale names, or traces names

are shown. This layout redraws quickest and provides the largest display

area.

Scales - The open view shows the graph area, the scales, the scale names,

and trace names. These Õelds are not recessed and may not be edited.

This layout is useful when recessed Õelds might be distracting, such as

printing graphs, or when the Õelds should be protected from editing on a

User Panel.

Scales & Sliders - The open view shows all information about the graph.

It includes the most information and allows you to modify the most

elements interactively. It is the default.

Traces & Scales - A control panel that allows you to specify values such

as the names, colors, line and point characteristics, minimum values, and

maximum values for the traces and/or scales.

Traces:

Name: - The name of the trace that is displayed to the left of the graph

area and the name of the corresponding input terminal.

Scale: - If you have multiple Y scales, selects which Y scale is to be used

for this trace.

General Reference 2-367

Waveform (Time)

Color: - The color of the trace. Each added trace has a diÃerent color

than the existing traces. Default is Pen 4 (yellow).

Lines: - The format of the line connecting data points. Default is a

continuous line.

Points: - The symbol that marks each data point. To show unconnected

data points, select the single dot Lines format and the desired Points

symbol. Default is a dot.

You can add a Traces control input pin. However, the control input data

must be a record with the following Õelds: 1) A TraceNum Õeld with an

Integer value (1 is the top trace), and 2) one or more of the following Õelds:

Name, Pen, LineType, PointType. (The Pen, LineType, and PointType

values are integers from 0 to n, where 0 draws nothing.) Refer to \Records

and DataSets" in Using HP VEE for further information.

Scales:

Show Scale: - If you have multiple Y scales, a selection (using a check

box) to specify if the end points and an axis of each additional right scale

is displayed to the right of the graph area.

Scale Name: - The names of the scales. They may be set here or on the

Scales & Sliders layout.

Maximum: - The maximum values of the scales. They may be set here or

on the Scales & Sliders layout.

Minimum: - The minimum values of the scales. They may be set here or on

the Scales & Sliders layout.

Mapping: - The way the x and y data is mapped to the display. The

mapping may be linear or log. To make a log-log plot, change both X and

Y axes to Log. Default is Linear.

Log Cycles: - The maximum number of decades shown (counting down

from the maximum x and y values) when AutoScale is activated. Log

Cycles is only used when the Mapping is Log. Log Cycles is useful when a

trace contains a large dynamic range. Default is 4.

Scale Colors - The color of any background grid or tic marks. Default is

Gray.

2-368 General Reference

Waveform (Time)

You can add a Scales control input pin. However, the control input data

must be a record with the following Õelds: 1) A Text Õeld Scale with a value

X, Y (or Y1), Y2, or Y3, and 2) one or more of the following Õelds: Name, Min,

Max, and Mapping. (The Mapping text value may be Linear or Log). Refer

to \Records and DataSets" in Using HP VEE for further information.

Add Right Scale - Adds up to two additional scales to permit traces to have

diÃerent scale ranges. After adding a right scale, use Traces & Scales to

assign a trace to the scale.

Plot - Presents the Plotter Configuration control panel. When OK is

pressed, a copy of the device's entire display is plotted on the selected

plotter. This parameter may be added as a control input. If the current

Plotter Configuration is in Plot to File mode, you may specify the

destination Õle or directory name as string data on the Plot control input.

If no control input value is given, the Õle or directory name speciÕed in

Plotter Configuration will be used. See Plotter Config for more

information.

Notes

Inputs must be Scalar or Array 1D.

You can add traces as data inputs. Up to twelve traces are allowed.

Input data of type Coord is plotted by simply using its x and y values without

Õrst being converted to type Waveform.

A Title control input may be added, which sets the title bar name to the

speciÕed text value. This allows programmatic control over the title shown

when the display is printed or plotted.

See Also

Complex Plane, Magnitude Spectrum, Polar Plot, Strip Chart, X vs Y Plot,

XY Trace, and Plotter Config.

General Reference 2-369

Waveform Defaults

Changes the default Waveform sampling parameters.

Use

Use Waveform Defaults to change the default sampling parameters in newly

created Function Generator, Pulse Generator, Noise Generator, Build

Waveform, and Build Arb Waveform objects.

The current values for Waveform Defaults are saved with each model. The

defaults are read in from the .veerc Õle when HP VEE is started or New is

selected.

Location

File =) Preferences =) Waveform Defaults

Dialog Information

Time Span - Allows the specifying of the time interval covered by the entire

Waveform in time units.

Num Points - Allows the specifying of the number of data points in the

Waveform.

See Also

Build Arb Waveform, Build Waveform, Function Generator, Noise

Generator, Preferences, and Pulse Generator.

2-370 General Reference

X vs Y Plot

X vs Y Plot

An object that displays a Cartesian plot.

Use

Use X vs Y plot to graphically display values when separate data information is

available for X and Y data. When you plot more than one trace, each execution

of the X vs Y Plot object uses the single X input data with each trace's Y input

data, therefore all traces share the same X input data. If you want diÃerent X

data values, you must build coordinates or mapped arrays for each trace.

All inputs must be the same size and shape. Mapping information on the

input's data is ignored.

Location

Display =) X vs Y Plot

Open View Parameters

Auto Scale - Automatically scales the display to show the entire trace.

Y name - The name of the Y axis.

YData1 - The name of the Õrst trace.

X name - The name of the X axis.

Object Menu

Auto Scale =) - Automatically scales the display to show the entire trace.

Auto Scale - Automatically scales both axes.

Auto Scale X - Automatically scales the X axis.

Auto Scale Y - Automatically scales the Y axis.

These parameters may be added as control inputs.

Clear Control =) - Parameters that specify when to clear the display.

General Reference 2-371

X vs Y Plot

Clear - Clears the displayed trace(s). This parameter may be added as a

control input.

Clear At PreRun - Clears the displayed trace(s) when the model or thread

is PreRun.

Clear At Activate - Clears the displayed trace(s) when the User Object is

activated.

Next Curve - Resets the pen to display the next curve in a family of

curves (data from the next time the display operates) without clearing the

previous curve. Next Curve must be selected (or activated) before each

new curve in the family. This parameter may be added as a control input.

Zoom =) - Scales the display.

In - MagniÕes the display to contain only the rectangular region that you

selected with the pointer. You select the region after selecting this feature

by dragging on the graph area. This action outlines the information with a

\rubber band" box.

Out 2|5|10|20|50|100 x - Expands the scales of the display by a factor in

both the X and Y directions about the center.

Markers =) - Allows you to Õnd the exact value of a data point on the

displayed curve. If the data is plotted on a log scale, the values shown on the

marker are the linear data points.

To move markers to a diÃerent trace, click on the button to the left of the

marker values near the bottom of the display. The button cycles through the

diÃerent line types and colors of the diÃerent traces.

Off - No markers are shown.

One On - One marker is available.

Two On - Two markers are available.

Delta On - Two markers are available and the x and y diÃerences between

them are displayed.

Interpolate - When checked, you can place markers in between the

displayed data points. The marker values displayed are calculated by linear

interpolation. Default is oÃ.

2-372 General Reference

X vs Y Plot

Center - If markers are available, brings them to the center of the visible

part of the trace. This is useful if you've scrolled the display and markers

are not visible.

Grid Type =) - Sets the type of grid marks. The value of the major x

division is shown below the maximum x value (to the right of the x scale

name). The value of the major y division is shown below the y scale name.

No Grid - No grid lines are shown.

Tic Marks - Shows tic marks at the major and minor divisions on all four

sides of the graph.

Axis - Shows tic marks at the major and minor divisions on the X and Y

axes of the graph. If the actual axes are scrolled oÃ the graph area, axis

lines are drawn on the edge closest to the axes.

Lines - Shows lines at the major divisions and tic marks at the minor

divisions. The X and Y axes are shown as thick lines.

Panel Layout =) - Sets the appearance of the open view.

Graph Only - The open view shows only the graph area and the marker

information (if it exists). No buttons, scales, scale names, or traces names

are shown. This layout redraws quickest and provides the largest display

area.

Scales - The open view shows the graph area, the scales, the scale names,

and trace names. These Õelds are not recessed and may not be edited.

This layout is useful when recessed Õelds might be distracting, such as

printing graphs, or when the Õelds should be protected from editing on a

User Panel.

Scales & Sliders - The open view shows all information about the graph.

It includes the most information and allows you to modify the most

elements interactively. It is the default.

Traces & Scales - A control panel that allows you to specify values such

as the names, colors, line and point characteristics, minimum values, and

maximum values for the traces and/or scales.

Traces:

General Reference 2-373

X vs Y Plot

Name: - The name of the trace that is displayed to the left of the graph

area and the name of the corresponding input terminal.

Scale: - If you have multiple Y scales, selects which Y scale is to be used

for this trace.

Color: - The color of the trace. Each added trace has a diÃerent color

than the existing traces. Default is Pen 4 (yellow).

Lines: - The format of the line connecting data points. Default is a

continuous line.

Points: - The symbol that marks each data point. To show unconnected

data points, select the single dot Lines format and the desired Points

symbol. Default is a dot.

You can add a Traces control input pin. However, the control input data

must be a record with the following Õelds: 1) A TraceNum Õeld with an

Integer value (1 is the top trace), and 2) one or more of the following Õelds:

Name, Pen, LineType, PointType. (The Pen, LineType, and PointType

values are integers from 0 to n, where 0 draws nothing.) Refer to \Records

and DataSets" in Using HP VEE for further information.

Scales:

Show Scale: - If you have multiple Y scales, a selection (using a check

box) to specify if the end points and an axis of each additional right scale

is displayed to the right of the graph area.

Scale Name: - The names of the scales. They may be set here or on the

Scales & Sliders layout.

Maximum: - The maximum values of the scales. They may be set here or

on the Scales & Sliders layout.

Minimum: - The minimum values of the scales. They may be set here or on

the Scales & Sliders layout.

Mapping: - The way the x and y data is mapped to the display. The

mapping may be linear or log. To make a log-log plot, change both X and

Y axes to Log. Default is Linear.

Log Cycles: - The maximum number of decades shown (counting down

from the maximum x and y values) when AutoScale is activated. Log

2-374 General Reference

X vs Y Plot

Cycles is only used when the Mapping is Log. Log Cycles is useful when a

trace contains a large dynamic range in the data. Default is 4.

Scale Colors - The color of any background grid or tic marks. Default is

Gray.

You can add a Scales control input pin. However, the control input data

must be a record with the following Õelds: 1) A Text Õeld Scale with a value

X, Y (or Y1), Y2, or Y3, and 2) one or more of the following Õelds: Name, Min,

Max, and Mapping. (The Mapping text value may be Linear or Log). Refer

to \Records and DataSets" in Using HP VEE for further information.

Add Right Scale - Adds up to two additional scales to permit traces to have

diÃerent scale ranges. After adding a right scale, use Traces & Scales to

assign a trace to the scale.

Plot - Presents the Plotter Configuration control panel. When OK is

pressed, a copy of the device's entire display is plotted on the selected

plotter. This parameter may be added as a control input. If the current

Plotter Configuration is in Plot to File mode, you may specify the

destination Õle or directory name as string data on the Plot control input.

If no control input value is given, the Õle or directory name speciÕed in

Plotter Configuration will be used. See Plotter Config for more

information.

Notes

Inputs must be Scalar or Array 1D.

Add Y data inputs with the Terminals =) Add Data Input object menu

selection. Up to twelve traces are allowed.

A Title control input may be added, which sets the title bar name to the

speciÕed text value. This allows programmatic control over the title shown

when the display is printed or plotted.

See Also

Complex Plane, Magnitude Spectrum, Polar Plot, Strip Chart, Waveform

(Time), XY Trace, and Plotter Config.

General Reference 2-375

XY Trace

An object that displays a two-dimensional Cartesian plot.

Use

Use XY Trace to display mapped arrays or a set of values when y data is

generated with evenly-spaced x values. An XY Trace is useful for a quick look

at data when you don't need (or have) scaled x data values.

The x value that is automatically generated depends on the data type of the

trace data. For example, if trace is a Real value, the x values is 0, 1, 2, and so

forth. If the trace is a Waveform, the x values are time values.

Location

Display =) XY Trace

Open View Parameters

Auto Scale - Automatically scales the display to show the entire trace.

Y name - The name of the Y axis.

Trace1 - The name of the Õrst trace.

X name - The name of the X axis.

Object Menu

Auto Scale =) - Automatically scales the display to show the entire trace.

Auto Scale - Automatically scales both axes.

Auto Scale X - Automatically scales the X axis.

Auto Scale Y - Automatically scales the Y axis.

These parameters may be added as control inputs.

Clear Control =) - Parameters that specify when to clear the display.

Clear - Clears the displayed trace(s). This parameter may be added as a

control input.

2-376 General Reference

XY Trace

Clear At PreRun - Clears the displayed trace(s) when the model or thread

is PreRun.

Clear At Activate - Clears the displayed trace(s) when the User Object is

activated.

Next Curve - Resets the pen to display the next curve in a family of

curves (data from the next time the display operates) without clearing the

previous curve. Next Curve must be selected (or activated) before each

new curve in the family. This parameter may be added as a control input.

Zoom =) - Scales the display.

In - MagniÕes the display to contain only the rectangular region that you

selected with the pointer. You select the region after selecting this feature

by dragging on the graph area. This action outlines the information with a

\rubber band" box.

Out 2|5|10|20|50|100 x - Expands the scales of the display by a factor in

both the X and Y directions about the center.

Markers =) - Allows you to Õnd the exact value of a data point on the

displayed curve. If the data is plotted on a log scale, the values shown on the

marker are the linear data points.

To move markers to a diÃerent trace, click on the button to the left of the

marker values near the bottom of the display. The button cycles through the

diÃerent line types and colors of the diÃerent traces.

Off - No markers are shown.

One On - One marker is available.

Two On - Two markers are available.

Delta On - Two markers are available and the x and y diÃerences between

them are displayed.

Interpolate - When checked, you can place markers in between the

displayed data points. The marker values displayed are calculated by linear

interpolation. Default is oÃ.

Center - If markers are available, brings them to the center of the visible

part of the trace. This is useful if you've scrolled the display and markers

are not visible.

General Reference 2-377

XY Trace

Grid Type =) - Sets the type of grid marks. The value of the major x

division is shown below the maximum x value (to the right of the x scale

name). The value of the major y division is shown below the y scale name.

No Grid - No grid lines are shown.

Tic Marks - Shows tic marks at the major and minor divisions on all four

sides of the graph.

Axis - Shows tic marks at the major and minor divisions on the X and Y

axes of the graph. If the actual axes are scrolled oÃ the graph area, axis

lines are drawn on the edge closest to the axes.

Lines - Shows lines at the major divisions and tic marks at the minor

divisions. The X and Y axes are shown as thick lines.

Panel Layout =) - Sets the appearance of the open view.

Graph Only - The open view shows only the graph area and the marker

information (if it exists). No buttons, scales, scale names, or traces names

are shown. This layout redraws quickest and provides the largest display

area.

Scales - The open view shows the graph area, the scales, the scale names,

and trace names. These Õelds are not recessed and may not be edited.

This layout is useful when recessed Õelds might be distracting, such as

printing graphs, or when the Õelds should be protected from editing on a

User Panel.

Scales & Sliders - The open view shows all information about the graph.

It includes the most information and allows you to modify the most

elements interactively. It is the default.

Traces & Scales - A control panel that allows you to specify values such

as the names, colors, line and point characteristics, minimum values, and

maximum values for the traces and/or scales.

Traces:

Name: - The name of the trace that is displayed to the left of the graph

area and the name of the corresponding input terminal.

Scale: - If you have multiple Y scales, selects which Y scale is to be used

for this trace.

2-378 General Reference

XY Trace

Color: - The color of the trace. Each added trace has a diÃerent color

than the existing traces. Default is Pen 4 (yellow).

Lines: - The format of the line connecting data points. Default is a

continuous line.

Points: - The symbol that marks each data point. To show unconnected

data points, select the single dot Lines format and the desired Points

symbol. Default is a dot.

You can add a Traces control input pin. However, the control input data

must be a record with the following Õelds: 1) A TraceNum Õeld with an

Integer value (1 is the top trace), and 2) one or more of the following Õelds:

Name, Pen, LineType, PointType. (The Pen, LineType, and PointType

values are integers from 0 to n, where 0 draws nothing.) Refer to \Records

and DataSets" in Using HP VEE for further information.

Scales:

Show Scale: - If you have multiple Y scales, a selection (using a check

box) to specify if the end points and an axis of each additional right scale

is displayed to the right of the graph area.

Scale Name: - The names of the scales. They may be set here or on the

Scales & Sliders layout.

Maximum: - The maximum values of the scales. They may be set here or

on the Scales & Sliders layout.

Minimum: - The minimum values of the scales. They may be set here or on

the Scales & Sliders layout.

Mapping: - The way the x and y data is mapped to the display. The

mapping may be linear or log. To make a log-log plot, change both X and

Y axes to Log. Default is Linear.

Log Cycles: - The maximum number of decades shown (counting down

from the maximum x and y values) when AutoScale is activated. Log

Cycles is only used when the Mapping is Log. Log Cycles is useful when a

trace contains a large dynamic range in the data. Default is 4.

Scale Colors - The color of any background grid or tic marks. Default is

Gray.

General Reference 2-379

XY Trace

You can add a Scales control input pin. However, the control input data

must be a record with the following Õelds: 1) A Text Õeld Scale with a value

X, Y (or Y1), Y2, or Y3, and 2) one or more of the following Õelds: Name, Min,

Max, and Mapping. (The Mapping text value may be Linear or Log). Refer

to \Records and DataSets" in Using HP VEE for further information.

Add Right Scale - Adds up to two additional scales to permit traces to have

diÃerent scale ranges. After adding a right scale, use Traces & Scales to

assign a trace to the scale.

Plot - Presents the Plotter Configuration control panel. When OK is

pressed, a copy of the device's entire display is plotted on the selected

plotter. This parameter may be added as a control input. If the current

Plotter Configuration is in Plot to File mode, you may specify the

destination Õle or directory name as string data on the Plot control input.

If no control input value is given, the Õle or directory name speciÕed in

Plotter Configuration will be used. See Plotter Config for more

information.

Notes

Inputs must be Scalar or Array 1D that can be converted to type Real. You

must \unbuild" Complex, PComplex, and Spectrum data before inputting to

an XY Trace.

You can add traces as data inputs. Up to twelve traces are allowed.

Input data of type Coord is plotted by using its x and y values without Õrst

being convert to type Real.

A Title control input may be added, which sets the title bar name to the

speciÕed text value. This allows programmatic control over the title shown

when the display is printed or plotted.

See Also

Complex Plane, Magnitude Spectrum, Polar Plot, Strip Chart, Waveform

(Time), X vs Y Plot, and Plotter Config.

2-380 General Reference

3

Formula (Math and AdvMath) Reference

This chapter contains detailed reference information about all formula-based

functions in HP VEE, which includes all the features in the Math and AdvMath

menus.

The Õrst section of this chapter covers all the general concepts underlying the

Math and AdvMath features. Then the rest of the chapter contains the detailed

reference information about each feature. The detailed reference information is

ordered alphabetically by feature name to help you Õnd information about each

feature quickly and easily.

Formula (Math and AdvMath) Reference 3-1

Mathematically Processing Data

To process data, you operate on it with functions from the Math and AdvMath

menus or combine the functions to create mathematical expressions.

Note You can also process data before running a model by using

numeric entry Õelds such as those in Constant objects.

Numeric entry Õelds on some objects support the use of

arbitrary formulas. The formula is immediately evaluated; the

resulting Scalar is used as the value for the Õeld. You cannot

use input variable names in the formula. You also cannot use

global variables in Constants. Also, the typed-in formula

must evaluate to a Scalar value of the proper type or of a type

that can be converted to that which the object expects. In

general, you can use any of the dyadic operators, parentheses

for nesting, function calls, and the predeÕned numeric constant

PI (3.1416 . . .) in numeric entry Õelds.

The Math and AdvMath menus contain a set of mathematical functions to

process your data in numerous ways. All the features that are listed under the

Math and AdvMath menus (except Regression) can be used in any object that

allows expressions. The objects that allow expressions are:

Math =) Formula

Data =) Access Array =) Get Values

Data =) Access Array =) Get Field

Data =) Access Array =) Set Field

Device =) Sequencer

Flow =) If/Then/Else

I/O objects that use transactions

Expressions may contain the names of data input terminals, data output

terminals (I/O transactions only), and any mathematical expression from

the Math menu and AdvMath menu. Data input terminal names are used as

variables. HP VEE is not case sensitive about names of input variables within

expressions for USASCII keyboards. For non-USASCII keyboards, HP VEE is

3-2 Formula (Math and AdvMath) Reference

case insensitive for 7-bit ASCII characters only. Expressions are evaluated at

run-time.

General Concepts

Functions that are input an array operand perform the function on each

element of the array, unless stated otherwise. For example, sqrt of a scalar

returns a scalar; sqrt(4) returns 2. But sqrt of an array returns an array of

the same size; sqrt([1 4 9 64]) returns the array [1 2 3 8].

All numbers in an expression Õeld are considered Real values, unless you use

parentheses to specify Complex or PComplex values. Therefore, 2 is considered

to be a Real number, not an Int32. (1, @2) is a PComplex number, while (1,

2) is a rectangular Complex number.

Note HP VEE interprets any value contained within parentheses as a

Complex or PComplex value. If you need to use a Coord value

in an expression, use the coord(x, y) function. The coord

function takes 2 or more parameters. coord(1, 2) returns a

Scalar Coord container with two Õelds.

All functions that operate on Coord data operate only on the dependent (last)

Õeld of each Coord. For example, abs(coord(-1, -2, -3)) returns the

Coord (-1, -2, 3).

An Enum container is always converted to Text before every math operation

except the function ordinal(x). Enum arrays are not supported. If you try to

create an Enum array, a Text array is created instead.

For information on speciÕc data type deÕnitions, please refer to the section

titled \Understanding Containers" in the \Understanding Models" chapter of

Using HP VEE .

Formula (Math and AdvMath) Reference 3-3

Using Strings in Expressions

Strings within expressions must be surrounded by double quotes.

You may use the following escape sequences within strings:

Escape

Character

Meaning

nn Newline

nt Horizontal Tab

nv Vertical Tab

nb Backspace

nr Carriage Return

nf Form Feed

n" Double Quote

n' Single Quote

nn Backslash

nddd Character Value. d is an octal digit.

Using Arrays in Expressions

Arrays in expressions can be used just like scalars, just refer to them by the

terminal name. Array constants can be entered directly into an expression

(such as [1 2 3]). Arrays used in functions, like sin(x), have the sin function

applied on every element of the array.

Please note, however, that negative constants in array constants are evaluated

as expressions. For example, [5 4 -3 2] is evaluated as [5 1 2]. Therefore, you

must specify [5 4 (-3) 2] instead.

Note Array indices are 0-based. The indices start with zero and

continue to n-1, where n is the number of elements in that

particular dimension.

3-4 Formula (Math and AdvMath) Reference

You can use expressions to access portions of an array. Once you've speciÕed

the sub-array in the expression, you can output the sub-array, or use it in

further expression calculations.

You can access only contiguous sub-arrays from each array. To access

sub-arrays, you must specify a parameter for each dimension in the array.

Use the following characters to specify array parameters:

The comma, ",", separates array dimensions. Each sub-array operation must

have exactly one speciÕcation for each array dimension.

The colon, ":", speciÕes a range of elements from one of the array

dimensions.

The asterisk, '*', is a wildcard to specify all elements from that particular

array dimension.

Note Waveform time spans, Spectrum frequency spans, and array

mappings are adjusted according to the number of points in

the sub-array. For example, if you have a 256 point Waveform

(WF) and you ask for WF[0:127], you'll get the Õrst half of the

Waveform and a time span that is half of the old one.

Examples. A is an Array 1D, 10 elements long.

A[1] accesses the second element in A and outputs a Scalar.

A[0:5] returns a one-dimensional sub-array that contains the Õrst 6 elements

of A.

A[1:1] returns a one-dimensional sub-array that contains one element, which

is the second element of A. Note the diÃerence between this and the Õrst

example, A[1].

A[2:*] returns a one-dimensional sub-array that contains the third through

the tenth elements of A.

A or A[*] returns the entire array A.

A[1,2] returns an error because it speciÕes parameters for a two-dimensional

array.

Formula (Math and AdvMath) Reference 3-5

B is a 5x5 matrix (an Array 2D).

B[*] returns an error because it speciÕes only one parameter, and B is a

two-dimensional array.

B[1,2] returns a Scalar value from the second row, third element.

B[1,*] returns all of row one as an Array 1D.

B[1,1:*] returns all of row one, except for the Õrst element, as an Array 1D.

B[4,1:4] returns an Array 1D that contains four elements: the second

through Õfth values from row 4.

B[5,5] returns an error because arrays are zero-based. The array can only

be accessed through B[4,4].

B[1 1] returns an error because a comma must separate the dimension

speciÕers.

Building Arrays in Expressions

You can build an array from elements of other arrays or sub-arrays. Each

element in the expression must specify the same number of dimensions and

contain the same number of values in each dimension.

Examples. A is an Array 1D with ten elements. B is a 5x5 matrix.

[1 2 3] returns a three element Real Array 1D that contains the values 1, 2,

and 3.

[A[0] A[5:7] A[9]] causes an error because both Scalar and Array 1D

elements are speciÕed.

[A[0:4] B[0,*]] returns a ten element Array 2D that contains the Õrst Õve

elements from A as the Õrst row and the Õrst row from B as the second row.

[A[0] A[1] B[2,3] A[5]] returns a four element Array 1D that contains

the Õrst and second element of A, the element from the third row and fourth

column of B, and the sixth element of A.

3-6 Formula (Math and AdvMath) Reference

Using Global Variables in Expressions

You can create and set global variables by using the Set Global object, and

you can access global variables by using the Get Global object. Refer to \Set

Global" and \Get Global" in chapter 2 for further information.

In addition, you can access a global variable by including its name in a

mathematical expression. You can include a global variable in a mathematical

expression in a Formula object, or in any object with a delayed-evaluation

expression Õeld. These objects include If/Then/Else, Get Values, Get Field,

Set Field, and all devices using expressions in transactions, including To File,

From File, From DataSet, Direct I/O, From Stdin, To/From Named Pipes, and

Sequencer.

To include a global variable in an expression, just use the global variable

name as if it were an input variable. For example, suppose a model uses a Set

Global device to deÕne the global variable numFiles. Elsewhere in the model,

a Formula object with input A may use the expression numFiles+3*A.

Note Global variable names are case-insensitive. Either upper-case or

lower-case letters may be used. Thus, GLOBALA is equivalent to

globalA.)

To avoid errors or unexpected results, you should be aware of two limitations

when you include global variables in an expression:

1. Local input variables have higher precedence than global variables. This

means that, in case of duplicate variable names, the local variable is chosen

over the global variable. For example, if the expression Freq*10 is included

in a Formula object that has a Freq input (a local variable), and there is

also a global variable named Freq, the expression will be evaluated with the

local variable Freq, not the global one. No error will be reported regarding

this duplication.

2. Depending on the Œow of your model, an object that evaluates an expression

containing a global variable may execute before the global variable is deÕned.

For example, suppose the global variable globalA is set with a Set Global

object, and the expression globalA*X^2 is included in a Formula object.

Depending on the Œow of your model, the Formula object may execute

before the Set Global object executes. In this case, the Formula object

Formula (Math and AdvMath) Reference 3-7

won't be able to evaluate the expression because globalA is undeÕned. An

error message will appear.

It is important that you take steps to ensure correct propagation|that

Set Global executes Õrst. You can do this by connecting the sequence

output pin of the Set Global object to the sequence input pin of the

Formula object in this case, or of any other object that includes the global

variable in an expression to be evaluated. If a Get Global object is used, its

sequence input pin should also be connected to the sequence output pin of

Set Global. For further information, refer to \Using Global Variables" in

chapter 3 of Using HP VEE .

Global variables can be arrays. Just access a global variable array as if

it were an input variable using array syntax, for example: GlobAry[2].

If a global variable is a Record, use the record access syntax, such as

globRecord.numFiles.

Using Records in Expressions

You can use expressions to access a Õeld or sub-Õeld of a record. Use the A.B

sub-Õeld syntax to access the B Õeld of a record A. If A is a record with a Õeld

B, which itself is a record which has a Õeld C, you may use the A.B syntax

recursively to access the C Õeld. That is, use the expression A.B.C. If A does

not have a B Õeld, or B does not have a C Õeld, an error will result.

There is no limit on the number of recursions of A.b.c.d.e.f that may be

used in expressions. Note that Õeld names are not case sensitive (lowercase

and uppercase letters are equivalent). Field names may be duplicated in

sub-Records, so you may use the expression A.a.A.

Records are very useful as global variables, so that one global variable may

hold several diÃerent values. Note that a Formula object can be used in place

of a Get Global. Thus, you can accomplish the GlobRec.numFiles access

in one object, instead of using both a Get Global and a Formula object to

unbuild the record.

The record and array syntax may be combined in expressions to access a Õeld

of a record array (for example A[1].B), or to access a portion of an array

that is a Õeld of a record (for example, A.B[1]). Note the diÃerence between

A[1].b and A.b[1] (both are supported):

3-8 Formula (Math and AdvMath) Reference

You would use the Õrst for a record 1D with a Õeld b. A[1].b accesses the

Õeld b of the second record element of the record array A.

You would use the second for a scalar record with a Õeld b, which is a 1D

array. A.b[1] accesses the second element of the Õeld b of the record A.

To change a Õeld in a record, use the Set Field object. For example, suppose

you have a record R with a Õeld A, and you wish to change the value of R.A to

be sin(R.A). Just use R.A as the left-hand expression (specifying the Õeld to

change) and sin(R.A) as the right-hand expression (specifying the new value

for the Õeld) in a Set Field object. You can continue to use the record R (with

the new value for Õeld A) later in your HP VEE model.

Using Dyadic Operators

The set of dyadic operators have several additional conditions and guidelines.

The dyadic operators are under the Math menu and are as follows:

+ - * / =)

+

-

*

/

^ (exponentiation)

mod (modulo - returns remainder of division)

div (integer division - no remainder)

Relational =)

==

!=

<

>

<=

>=

Logical =)

AND

OR

XOR

NOT (a monadic that follows the same guidelines as dyadics)

Formula (Math and AdvMath) Reference 3-9

When using dyadic operators on arrays, the array size, array shape, and

array mappings (if they exist) must match. For Coords, the values of the

independent variable for each Coord must match.

Precedence of Dyadic Operators

This list is the order of precedence of the dyadic operators. They are listed

from highest to lowest, with operators of the same precedence listed on the

same level.

1. parentheses (and) used to group expressions

2. ^

3. unary minus -

4. * / MOD DIV

5. + -

6. == != < > <= >=

7. NOT

8. AND

9. OR XOR

Data Type Conversion

For the dyadic operators, the input values are promoted to the highest data

type and then the operation is performed. The data type of the output is the

highest input data type. For example, when the complex number (2, 3) is

added to the String "Dog", "Dog"+(2,3), the result is the String "Dog(2, 3)".

Note There is one exception to this rule. When you multiply a Text

string by an Int32, the result is a repeated string. For example,

"Hello"*3 returns HelloHelloHello. No data type promotion

occurs in this case.

3-10 Formula (Math and AdvMath) Reference

The data type order (from highest to lowest) is:

1. Record

2. Text (Enum is treated as Text)

3. Spectrum

4. PComplex

5. Complex

6. Coord (no conversion to any other numeric type possible)

7. Waveform

8. Real

9. Int32

Record Considerations. Records have the highest precedence of all data types,

but other data types can be converted to the Record data type only by using

special objects such as Build Record. Records will not automatically demote

to other types, nor will other types automatically promote to the Record type.

The dyadic operators do support combining records and other data types, but

they will always return a record in this case. A dyadic operation on a record

and non-record will apply the operation with the non-record to every Õeld of

the record. For example, consider a record R with two Õelds A, a scalar Real

value (2.0), and B, a scalar Complex value (3,30). The expression R+2 will

produce a record R with two Õelds A, a scalar Real with value 4, and B, a scalar

Complex with value (5,30). If the operation cannot be performed on every Õeld

in the record, an error occurs.

Dyadic operations on a record and any other type will return a record with the

same \schema," so the resulting record will have the same Õelds with the same

names, types, and shapes. The dyadic operation may not change the type or

shape of a Õeld of a record. For example, consider a record R with two Õelds A,

a scalar Real, and B, a scalar Complex. The expression R+(2,3) will cause an

error. HP VEE will Õrst try to add (2,3) to R.A, then do the same with R.B.

The error occurs because the R.A Õeld is a Real and the result of R.A+(2,3)

would be a Complex. The Complex cannot be demoted to a Real to be stored

back into R.A.

Formula (Math and AdvMath) Reference 3-11

Dyadic operations on records using arrays treat the record as having higher

precedence than the array. For example, [1 2 3] + [3 4 5] produces [4 6 8],

so the arrays are combined piece by piece. But records have higher precedence

than arrays. This means that if R is a record with two Õelds A and B, the

expression R + [1 2] will try to add the array [1 2] to each Õeld of R. It will

not add 1 to R.A, and 2 to R.B.

Things get even more complicated when you combine arrays with record arrays.

For example, suppose R is a record 1D array, two long, with three Õelds A, B,

and C. The expression R + [1 2 3], or the expression R + [1 2] will add the

entire array to each Õeld A, B, and C for every element of R. Even though R is

an array, the fact that it is a record is more important.

A dyadic operation on two records will combine them Õeld by Õeld, so the

two records must have the same \schema." That is, each record must have

the same number of Õelds, and each Õeld must have the same name, type and

shape, in the same order.

If you want to add 1 to Õeld A, add 2 to Õeld B, and so forth, there are two

ways to do this. The Õrst is to use multiple Set Field objects, one for

each Õeld, to change a Õeld of an existing record. (See Set Field for more

information.) The other way is to create a record of the same shape and

\schema" as the original; put 1 in its A Õeld, 2 in its B Õeld, and so forth; and

then add the two records.

Coord Considerations. The Coord data type has some special rules associated

with it:

Although arrays of Int32 and Real data types can be promoted to Coord, a

Coord cannot be converted to any other numeric type.

When unmapped arrays are converted to Coord, the independent Coord

values (the Õrst Coord Õelds) are created from the array indexes; the

dependent Coord value (the last Coord Õeld) contains the element value.

For example, if array A is converted to a Coord and A contains [1 5 7], it is

converted to a Coord array with [(0,1)(1,5)(2,7)] in it.

When mapped arrays are converted to Coord, the independent Coord

parameter ranges from the low value of the mapping to the value

Xmin+(Xmax-Xmin/N)*(N-1).

3-12 Formula (Math and AdvMath) Reference

Spectrum Considerations. If you choose to use dB scaling, you must keep

track of it yourself. Although dB-scaled data displays correctly (except

on the Waveform (Time) display), many math functions such as fft(x),

ifft(x), and those involving PComplex numbers don't operate correctly on

dB-scaled data. If you need to use these operations, convert the dB-scaled

data to linear scaling before operating on it. HP VEE supplies library

models for dB conversions in /usr/lib/veeengine/lib/conversions/ or

/usr/lib/veetest/lib/conversions/.

When you are using particular dB units, some math functions give meaningful

results, but only within the conÕnes of those units. For example, if you add

20 to a dBW-scaled Spectrum, 20 is added to the magnitude of each element

(which has the same eÃect as converting the Spectrum to a linear scale,

multiplying each element by 100, and converting back to dBW.).

Data Shape Considerations

For dyadic operations where both operands (inputs) are arrays, the size and

shape of the arrays must match. The result of the operation is an array with

the same size and shape as the input arrays, except for the relational operators

(==, <, and so on, which always return a Scalar.) If arrays have a diÃerent

number of dimensions or are of diÃerent sizes, HP VEE returns an error. For

example, [1 2] + [1 2 3] returns an error.

If you are operating on a scalar and an array, the scalar is treated as if it were

a constant array of the same size and shape as the array operand.

For example, 2 + [1 2 3] is treated as [2 2 2] + [1 2 3]. The result is [3 4 5].

When an n-dimensional array is converted to a Coord, the Coord data shape is

an Array 1D with n+1 Õelds in each Coord element.

Formula (Math and AdvMath) Reference 3-13

Math Output Types

The following table summarizes the Math output types and mappings. Given

the following parameter type (in the top row headings of the following table),

the particular Math function returns the type and mapping listed.

Note The Record data type is not included in this table. Most Math

and AdvMath functions will not operate on records. If you

attempt to do this you will generate an Invalid operation

for data type Record error. The only functions supported

for records are: sort(x), init(x, val), concat(x,y), and

totSize(x) (see the \AdvMath Output Types" table).

Table 3-1. Math Output Types

Complex,

PComplex

Enum,

Text

Inputs

Mapped

Output

Mapped?
Math

Function

Int32 Real Coord Wave-

form

Spec-

trum

bit(x,n) 0/1 0/1 0/1 0/1 * * * dc same as x

bits(x) * * * * * * Int32 dc same

setBit(x,n) same Int32 Int32 Int32 * * * dc same as x

clearBit(x,n) same Int32 Int32 Int32 * * * dc same as x

bitAnd(x,y) same same(1) same(1) same(1) * * * == same

bitOr(x,y) same same(1) same(1) same(1) * * * == same

bitXor(x,y) same same(1) same(1) same(1) * * * == same

bitCmpl(x) same same(1) same(1) same(1) * * * dc same

bitShift(x,y) same same(1) same(1) same(1) * * * dc same as x

abs(x) same same same same Real Real * dc same

signof(x) -1/0/1 -1/0/1 -1/0/1 -1/0/1 * * * dc same

ordinal(x) same same same same * * Int32(2) dc same

round(x) same same same same * * * dc same

Œoor(x) same same same same * * * dc same

ceil(x) same same same same * * * dc same

intPart(x) same same same same * * * dc same

fracPart(x) same same same same * * * dc same

3-14 Formula (Math and AdvMath) Reference

Table 3-1. Math Output Types (continued)

Complex,

PComplex

Enum,

Text

Inputs

Mapped

Output

Mapped?
Math

Function

Int32 Real Coord Wave-

form

Spec-

trum

j(x) Cpx Cpx * Cpx * * * dc same

re(x) same same same same Real Real * dc same

im(x) (3) (3) (3) (3) Real Real * dc same

mag(x) same same same same Real Real * dc same

phase(x) (3) (3) (3) (3) Real Real * dc same

conj(x) * * * * same same * dc same

strUp(str) Text Text Text Text Text Text Text dc same

strDown(str) Text Text Text Text Text Text Text dc same

strRev(str) Text Text Text Text Text Text Text dc same

strTrim(str) Text Text Text Text Text Text Text dc same

strLen(str) Int32 Int32 Int32 Int32 Int32 Int32 Int32 dc same

strFromThru

(str,from,thru)

Text Text Text Text Text Text Text dc same

strFromLen

(str,from,len)

Text Text Text Text Text Text Text dc same

strPosChar

(str,char)

Int32 Int32 Int32 Int32 Int32 Int32 Int32 dc same

strPosStr

(str,str1,str2)

Int32 Int32 Int32 Int32 Int32 Int32 Int32 dc same

ramp(n,f,t) Real Real * * * * * Scalar no

logRamp(n,f,t) Real Real * * * * * Scalar no

xramp(n,f,t) Real Real * * * * * Scalar no

xlogRamp(n,f,t) Real Real * * * * * Scalar no

sq(x) same same same same same same * dc same

sqrt(x) Real same same same same same * dc same

cubert(x) Real same same same same same * dc same

recip(x) Real same same same same same * dc same

log(x) Real same same same same same * dc same

log10(x) Real same same same same same * dc same

exp(x) Real same same same same same * dc same

exp10(x) Real same same same same same * dc same

Formula (Math and AdvMath) Reference 3-15

Table 3-1. Math Output Types (continued)

Complex,

PComplex

Enum,

Text

Inputs

Mapped

Output

Mapped?
Math

Function

Int32 Real Coord Wave-

form

Spec-

trum

poly(n,vec) Real Real * * * * * dc same as n

sin(x) Real same same same same same * dc same

cos(x) Real same same same same same * dc same

tan(x) Real same same same same same * dc same

cot(x) Real same same same same same * dc same

asin(x) Real same same same same same * dc same

acos(x) Real same same same same same * dc same

atan(x) Real same same same same same * dc same

acot(x) Real same same same same same * dc same

atan2(y,x) Real same same same same same * == same

sinh(x) Real same same same same same * dc same

cosh(x) Real same same same same same * dc same

tanh(x) Real same same same same same * dc same

coth(x) Real same same same same same * dc same

asinh(x) Real same same same same same * dc same

acosh(x) Real same same same same same * dc same

atanh(x) Real same same same same same * dc same

acoth(x) Real same same same same same * dc same

now() no parm | | | | | | | dc Scalar

wday(aDate) Real same same same * * * dc same

mday(aDate) Real same same same * * * dc same

month(aDate) Real same same same * * * dc same

year(aDate) Real same same same * * * dc same

dmyToDate(d,m,y) Real same same same * * * == same

hmsToSec(h,m,s) Real same same same * * * == same

hmsToHour(h,m,s) Real same same same * * * == same

3-16 Formula (Math and AdvMath) Reference

Legend for the Math Output Types Table

same Return same type.

* Error, not implemented or doesn't make sense.

Real Performs the action as Real and returns a Real.

| Returns a new container. For details, see the reference

information about that particular function later in this chapter.

Input Mappings Key for the Math Output Types Table

dc Don't care, don't look at mappings.

== Multi-parameter functions. Mappings, if they exist, must be

equal.

Scalar Input is Scalar, therefore unmapped.

Output Mappings Key for the Math Output Types Table

same Same as x or y or equally mapped parameters.

same as x Same as x, even if second parameter is mapped diÃerently.

no Output is not mapped, regardless of input mappings.

Scalar Output is Scalar, therefore unmapped.

Notes Referenced in the Math Output Types Table

(1) Performs action as an Int32 (error if overŒow), returns same

type.

(2) Text will return an error, Enum types will return the ordinal

value of the enum, an Int32.

(3) Will return same type, but value(s) will always be zero.

AdvMath Output Types

The following table summarizes the AdvMath output types. Given the following

parameter type (in the top row headings of the following table), the particular

AdvMath function returns the type and mapping listed.

Note The Record data type is not included in this table. Most Math

and AdvMath functions will not operate on records. The only

functions supported for records are: sort(x), init(x, val),

concat(x,y), and totsize(x).

Formula (Math and AdvMath) Reference 3-17

Table 3-2. AdvMath Output Types

Complex,

PComplex

Enum,

Text

Inputs

Mapped

Output

Mapped?
AdvMath

Function

Int32 Real Coord Wave-

form

Spec-

trum

init(x,val) same same same same same same Text dc same as val

totSize(x) Int32 Int32 Int32 Int32 Int32 Int32 Int32 dc same

rotate(x,n) same same same same same same same dc same as x

concat(x,y) same(4) same(4) same(4) same(4) same(4) same(4) same(4) dc special

sum(x) same same Real Real same Pcx Text dc Scalar

prod(x) same same Real Real same Pcx * dc Scalar

sort

(x,dir,Õeld)

same same same same same same same dc same

det(x) Real same * * same * * dc Scalar

inverse(x) Real same * * same * * dc same

transpose(x) same same * * same * same dc transposed

identity(x) same same * * same * * dc same

minor(x,r,c) Real same * * same * * dc Scalar

cofactor

(x,r,c)

Real same * * same * * dc Scalar

matMultiply

(A,B)

Real same * * same * * dc no

matDivide

(n,d)

Real same * * same * * dc no

integral(x) Real Real same(4) same * * * dc same as x

deriv(x,o) Real Real same(4) same * * * dc same as x

defIntegral

(x,a,b)

Real Real Real(4) Real * * * dc Scalar

derivAt

(x,o,pt)

Real Real same(4) Real * * * dc Scalar

polySmooth

(x)

Real same same(4) same * * * dc same

meanSmooth

(x,n)

Real same same(4) same * * * dc same as x

3-18 Formula (Math and AdvMath) Reference

Table 3-2. AdvMath Output Types (continued)

Complex,

PComplex

Enum,

Text

Inputs

Mapped

Output

Mapped?
AdvMath

Function

Int32 Real Coord Wave-

form

Spec-

trum

movingAvg

(x,n)

Real same same same * * * dc same as x

clipUpper

(x,a)

same same same same * * same == same

clipLower

(x,a)

same same same same * * same == same

minIndex(x) Int32 Int32 Int32 Int32 * * Int32 dc Scalar

maxIndex(x) Int32 Int32 Int32 Int32 * * Int32 dc Scalar

minX(x) Real same Real Real * * Real dc Scalar

maxX(x) Real same Real Real * * Real dc Scalar

random(l,h) Real Real * * * * * Scalar Scalar

randomize

(x,low,high)

same same same same same same * dc same as x

randomSeed

(s)

same same * * * * * Scalar Scalar

perm(n,r) Real same(5) same(5) same(5) * * * == same

comb(n,r) Real same(5) same(5) same(5) * * * == same

gamma(x) Real same same same * * * dc same

beta(x,y) Real same same same * * * == same

factorial(n) Real same(5) same(5) same(5) * * * dc same

binomial

(a,b)

Real same(5) same(5) same(5) * * * == same

erfc(x) Real same same same * * * dc same

erf(x) Real same same same * * * dc same

min(x) same same same Real * * same dc Scalar

max(x) same same same Real * * same dc Scalar

median(x) Real same Real Real * * * dc Scalar

mode(x) same same Real Real * * * dc Scalar

mean(x) Real same Real Real * * * dc Scalar

sdev(x) Real same Real Real * * * dc Scalar

Formula (Math and AdvMath) Reference 3-19

Table 3-2. AdvMath Output Types (continued)

Complex,

PComplex

Enum,

Text

Inputs

Mapped

Output

Mapped?
AdvMath

Function

Int32 Real Coord Wave-

form

Spec-

trum

vari(x) Real same Real Real * * * dc Scalar

rms(x) Real same Real Real * * * dc Scalar

magDist

(x,f,t,s)

Real same Real Real Real(6) Real(6) * dc no

logMagDist

(x,f,t,l)

Real same Real Real Real(6) Real(6) * dc no

j0(x) Real same same same * * * dc same

j1(x) Real same same same * * * dc same

jn(x,n) Real same same same * * * == same

y0(x) Real same same same * * * dc same

y1(x) Real same same same * * * dc same

yn(x,n) Real same same same * * * == same

Ai(x) Real same same same * * * dc same

Bi(x) Real same same same * * * dc same

i0(x) Real same same same * * * dc same

i1(x) Real same same same * * * dc same

k0(x) Real same same same * * * dc same

k1(x) Real same same same * * * dc same

Ãt(x) Cpx Cpx Cpx(4) Spectrum * * * dc special

iÃt(x) * * * * Real Waveform * dc special

convolve

(x,y)

Real same same Waveform * same(7) * dc special

xcorrelate

(x,y)

Real same same Waveform * same(7) * dc special

bartlet(x) Real same same same * same(8) * dc same

hamming(x) Real same same same * same(8) * dc same

hanning(x) Real same same same * same(8) * dc same

blackman(x) Real same same same * same(8) * dc same

rect(x) Real same same same * same(8) * dc same

3-20 Formula (Math and AdvMath) Reference

Legend for the AdvMath Output Types Table

same Return same type.

* Error, not implemented or doesn't make sense.

Real Performs the action as Real and returns a Real.

Input Mappings Key for the AdvMath Output Types Table

dc Don't care, don't look at mappings.

== Multi-parameter functions. Mappings, if they exist, must be

equal.

Scalar Input is Scalar, therefore unmapped.

Output Mappings Key for the AdvMath Output Types Table

same Same as x or y or equally mapped parameters.

same as x Same as x, even if second parameter is mapped diÃerently.

no Output is not mapped, regardless of input mappings.

Scalar Output is Scalar, therefore unmapped.

special Output container mappings are handled specially for each of

the functions. See the reference for each function later in this

chapter for information on how it is handled.

transposed Mappings for the two dimensions are transposed.

Notes Referenced in the AdvMath Output Types Table

(4) The dependent variable(s) of the Coord must be equidistant.

That is, the x-interval between the points must be a constant.

(5) The input parameters are converted to Int32 before the

function is performed.

(6) Uses the mag(x) magnitude of the

Complex/PComplex/Spectrum, and then performs

the function as Real.

(7) Using an ifft(x), converts the Spectrum to Waveform.

Applies the convolution or autoCorrelation function, and then

uses an fft(x) to convert back to Spectrum.

(8) Using an ifft(x), converts the Spectrum to a Waveform.

Applies the weighting for the windowing function, and then

uses an fft(x) to convert back to Spectrum.

Formula (Math and AdvMath) Reference 3-21

abs(x)

An object that returns the absolute value of x.

Use

Use abs(x) to obtain the absolute value of the number in a container. x

may be any shape and of the type Int32, Real, Coord, Waveform, Complex,

PComplex, or Spectrum. For types Int32, Real, Coord, and Waveform, the

same type is returned. For types Complex, PComplex, and Spectrum, the

absolute value is the magnitude of the complex number; therefore, a Real of the

same shape is returned.

Location

Math =) Real Parts =) abs(x)

Example

abs(-34) returns 34.

Notes

Mappings are retained in the result. The largest negative Int32 will cause an

error.

See Also

Complex Parts, mag(x), Real Parts, and signof(x).

3-22 Formula (Math and AdvMath) Reference

acos(x)

acos(x)

An object that returns the arccosine of x.

Use

Use acos(x) to generate the arccosine of the x data, with the result in

the range of 0 to PI. x can be any shape and of type Int32, Real, Coord,

Waveform, Complex, PComplex, or Spectrum. The return value will be in the

current Trig Mode units. Int32 returns a Real; all others will return the same

type. All will return the same shape as x.

Location

Math =) Trig =) acos(x)

Example

acos(1) returns 0 with Trig Mode set to Degrees.

acos((1.54308, @0)) returns (0.9999, @1.87079) with Trig Mode set to

Radians.

Notes

Mappings are retained in the result. Using Trig Mode set to anything except

Radians may result in accuracy errors beyond the 12th signiÕcant digit.

See Also

acosh(x), cos(x), sin(x), tan(x), and Trig.

Trig Mode in the \General Reference" chapter.

Formula (Math and AdvMath) Reference 3-23

acosh(x)

An object that returns the hyperbolic arccosine of x.

Use

Use acosh(x) to generate the hyperbolic arccosine of the x data. x can be

any shape and of type Int32, Real, Coord, Waveform, Complex, PComplex,

or Spectrum. The return value will be in the current Trig Mode units. Int32

returns a Real; all others will return the same type. All will return the same

shape as x.

Location

Math =) Hyper Trig =) acosh(x)

Example

acosh(1) returns 0 with Trig Mode set to Radians.

Notes

Mappings are retained in the result. Using Trig Mode set to anything except

Radians may result in accuracy errors beyond the 12th signiÕcant digit.

See Also

acos(x), cosh(x), Hyper Trig, sinh(x), and tanh(x).

Trig Mode in the \General Reference" chapter.

3-24 Formula (Math and AdvMath) Reference

acot(x)

acot(x)

An object that returns the arccotangent of x.

Use

Use acot(x) to generate the arccotangent of the x data, simply returning

atan(1/x). acot(0) will return PI/2. x can be any shape and of type Int32,

Real, Coord, Waveform, Complex, PComplex, or Spectrum. The return value

will be in the current Trig Mode units. Int32 returns a Real; all others will

return the same type. All will return the same shape as x.

Location

Math =) Trig =) acot(x)

Example

acot(1) returns 45 with Trig Mode set to Degrees.

acot((1.31303, @PI/2)) returns (1.00, @-1.57079) with Trig Mode set to

Radians.

Notes

Mappings are retained in the result. Using Trig Mode set to anything except

Radians may result in accuracy errors beyond the 12th signiÕcant digit.

See Also

acoth(x), atan2(y,x), cos(x), sin(x), tan(x), and Trig.

Trig Mode in the \General Reference" chapter.

Formula (Math and AdvMath) Reference 3-25

acoth(x)

An object that returns the hyperbolic arccotangent of x.

Use

Use acoth(x) to generate the hyperbolic arccotangent of the x data. x can be

any shape and of type Int32, Real, Coord, Waveform, Complex, PComplex,

or Spectrum. The return value will be in the current Trig Mode units. Int32

returns a Real; all others will return the same type. All will return the same

shape as x.

Location

Math =) Hyper Trig =) acoth(x)

Example

acoth(1.5) returns 0.8047 with Trig Mode set to Radians.

Notes

Mappings are retained in the result. Using Trig Mode set to anything except

Radians may result in accuracy errors beyond the 12th signiÕcant digit.

See Also

acot(x), cosh(x), coth(x), Hyper Trig, sinh(x), and tanh(x).

Trig Mode in the \General Reference" chapter.

3-26 Formula (Math and AdvMath) Reference

+ (add)

+ (add)

An object that performs an arithmetic addition on two operands.

Use

Use + to add the values of two containers. The two containers may be of any

type and of any shape. If one of the containers is an array, the other must be

either a scalar or an array of the same size and shape. The result is a container

of the highest type with the same shape as the operands.

If both operands are of type Coord, they must have their independent

variable(s) match exactly or an error is returned. The addition is only

performed on the dependent (last) variable.

Text performs addition as a concatenation. Enums convert to Text for the

addition. Note that this addition on two strings is not the same as the

concat(x, y) function. With the concat function, concat("hello","there")

yields a one-dimensional array, two long ["hello" "there"].

Location

Math =) + - * / =) +

Example

Array plus a scalar: [1 2 3] + 3 returns [4 5 6].

Two Complex scalars: (2,4) + (1,3) returns (3,7).

Two arrays: [1 2 3] + [4 5 6] returns [5 7 9].

Two Coord scalars: coord(1,3) + coord(1,5) returns coord(1,8).

Two Coord scalars: coord(1,3) + coord(2,5) returns an error.

Two Text: "hello" + "there" returns "hellothere".

Formula (Math and AdvMath) Reference 3-27

+ (add)

Notes

If either of the containers is mapped (that is, of type Waveform, Spectrum,

Coord, or a mapped array of any other type), the other container must be

unmapped or have identical mappings. The return value will have the same

mappings as the operands; otherwise an error is returned.

See Also

concat(x,y), / (divide), * (multiply), and - (subtract).

3-28 Formula (Math and AdvMath) Reference

+ - * /

+ - * /

A menu item.

Use

Use + - * / to access the following objects which perform arithmetic functions

on two operands:

+

-

*

/

^

mod

div

Location

Math =) + - * / =)

Notes

Dyadic operations which are given two diÃerent types convert the lower type

to the higher of the two types. See the type conversion information and the

hierarchy of types in the \Using Dyadic Operators" section at the beginning of

this chapter.

In the dyadic operation example below, adding an array and a scalar performs

the operation on each element of the array. The result is an array of the same

size and shape as the array operand. For example, a scalar plus a linear array

of four elements, 5 + [1 2 3 6], produces the linear array of four elements

[6 7 8 11]. The same is true for operations like exponentiation. Thus,

2 ^ [3 4] produces [8 16].

Dyadic operations which are given two arrays require the operands to be

conformant, that is, have the same size and shape. The result is an array with

the same size and shape as the operands. The operation is done on an element

by element basis. For example, adding two linear arrays of three elements each

Formula (Math and AdvMath) Reference 3-29

+ - * /

results in a linear array of three elements long. [1 2 3] + [4 5 6] produces

[5 7 9]. If the two arrays are not conformant, the result is an error.

3-30 Formula (Math and AdvMath) Reference

Ai(x)

Ai(x)

An object used to calculate the Airy fractional order Bessel function of x.

Use

Use Ai(x) to Õnd the Fractional order Bessel function Airy of the x. The x

input may be of any size and shape and of the type Int32, Real, Coord, or

Waveform. For x input of all types, the same output type is returned, except

for Int32 which returns a Real type. For Coord input types, the operation is

done on the dependent variable.

Location

AdvMath =) Bessel =) Ai(x)

Example

Ai(10) returns 0.110475325528986.

Notes

Mappings on the operand are ignored and the output container has the same

mappings as the input.

See Also

Bi(x), j0(x), j1(x), jn(x,n), y0(x), y1(x), and yn(x,n).

Formula (Math and AdvMath) Reference 3-31

~= (almost equal to)

An object that performs an almost equal to operation on two operands.

Use

Use ~= to determine whether the value(s) of one container is equal to the

value(s) of another container for the Õrst seven decimal digits. The two

containers may be of any type and of any shape. Integer, Enum and Text types

will be compared exactly. If one of the containers is an array (or a record), the

other must be either a scalar or an array (or a record) of the same size and

shape. The result is a scalar Int32 with the value 0 or 1. If the Õrst operand is

almost equal to the second, the value of the result is 1; otherwise the value is 0.

The operation of X ~= 0 (zero) is meaningless in this context since zero has an

inÕnite number of digits of precision and no order of magnitude. This requires

that any comparison to zero match exactly. Therefore, comparing any value X

to 0 (zero) will always return a 0 (false) unless X exactly equals 0.

Almost equals does not perform the same comparison as Device =)

Comparator. The Comparator should be used when comparing waveforms or

arrays which contain zeros. The Comparator can derive a value for \virtual

zero" from the reference data's magnitude.

If both operands are of type Coord, they must have all their dependent

variables match for the Õrst seven decimal digits for the the result to be 1. If

independent variables do not match, an error is returned. Complex, PComplex,

and Spectrum containers must have both parts almost match for the operation

to return 1. Enums are converted to Text for the comparison.

Arrays must have all the respective values of both containers almost equal for

the operation to return 1.

Location

Math =) Relational =) ~=

3-32 Formula (Math and AdvMath) Reference

~= (almost equal to)

Example

Two scalars: 3.1234560 ~= 3.1234559 returns 1.

Two scalars: 3.1234560 ~= 3.1234459 returns 0.

A scalar and an array: 3.1234560 ~= [3.1234559 3.1234562 3.1234563]

returns 1.

A scalar and an array: 3.1234560 ~= [3.1234459 3.1234562 3.1234569]

returns 0.

Two Complex scalars: (2.12345,3.12345) ~= (2.12344,3.12345) returns 0.

Two Complex scalars: (2.1234567,3.12345) ~= (2.1234566,3.12345)

returns 1.

Two Coord scalars: coord(1,3.123456) ~= coord(1,3.123446) returns 0.

Two Coord scalars: coord(1,3.123456) ~= coord(2,3.123456) returns

Values for independent variables must match.

Notes

If either of the containers is mapped (that is, of type Waveform, Spectrum,

Coord, or a mapped array of any other type), the other container must be

unmapped or have identical mappings; otherwise an error is returned.

The test for \almost equal" is slightly diÃerent for Complex and Polar Complex

numbers. For two Real values (a and b) the test for \almost equal" is:

a - b <= a * 10E-7

However, for two Complex values (a and b) the test is:

re(a) - re(b) <= mag(a) * 10E-7

where:

re(a) is the real component of a

re(b) is the real component of b

mag(a) is the vector magnitude of a

Formula (Math and AdvMath) Reference 3-33

~= (almost equal to)

This test is used for both Complex and Polar Complex numbers to avoid any

ambiguity with regard the rectangular or polar treatment of \almost equal."

See Also

AND, == (equal to), > (greater than), >= (greater than or equal to),

< (less than), <= (less than or equal to), NOT, != (not equal to), OR,

Relational, and XOR.

Comparator, Conditional, and If/Then/Else in the \General Reference"

chapter.

3-34 Formula (Math and AdvMath) Reference

AND

AND

An object that performs a logical AND operation on two operands.

Use

Use AND to determine whether the value(s) of two containers are both logically

true (non-zero). The two containers may be of any type and of any shape. If

one of the containers is an array, the other must be either a scalar or an array

of the same size and shape. The result is an Int32 of the same shape as the

operands, with value(s) 0 or 1. If both operands are non-zero, the value of the

AND operation is 1; otherwise the value is 0.

If both operands are of type Coord, they must have their independent

variable(s) match exactly or an error is returned. Only the dependent (last)

variable is considered for the AND operation.

For Complex, PComplex, and Spectrum containers, the value of the operand is

true if either part is non-zero. Text is true if non-null. Enums are converted to

Text for the operation.

Location

Math =) Logical =) AND

Example

A scalar and an array: 3 AND [3 3 3] returns [1 1 1].

A scalar and an array: 3 AND [-3 0 3] returns [1 0 1].

Two arrays: [1 2 3] AND [0 1 (-1)] returns [0 1 1].

Two arrays: (1,@90) AND (1,@85) returns 1.

Two Complex scalars: (2,3) AND (0,1) returns 1.

Two Complex scalars: (0,1) AND (1,0) returns 1.

Two Complex scalars: (0,0) AND (0,0) returns 0.

Two Coord scalars: coord(1,3) AND coord(1,5) returns 1.

Formula (Math and AdvMath) Reference 3-35

AND

Two Coord scalars: coord(1,3) AND coord(2,3) returns an error.

A Text scalar and a scalar number: "too" AND 2 returns 1.

A Text scalar and a scalar number: "" AND 0 returns 0 because one string is

null and the other is not ("0").

Notes

If either of the containers is mapped (that is, of type Waveform, Spectrum,

Coord, or a mapped array of any other type), the other container must be

unmapped or have identical mappings. The return value will have the same

mappings as the operands; otherwise an error is returned.

Note that the If/Then/Else object requires the expression(s) inside it to

evaluate to either a scalar or an array, which is either all zeros or all ones.

See Also

NOT, OR, Relational, and XOR.

Conditional and If/Then/Else in the \General Reference" chapter.

3-36 Formula (Math and AdvMath) Reference

Array

Array

A menu item.

Use

Use Array to access the following objects which perform miscellaneous

functions on arrays.

init(x,val)

totSize(x)

rotate(x,numElem)

concat(x,y)

sum(x)

prod(x)

sort(x)

Location

AdvMath =) Array =)

Formula (Math and AdvMath) Reference 3-37

asin(x)

An object that returns the arcsine of x.

Use

Use asin(x) to generate the arcsine of the x data with the result in the range

of -PI/2 to +PI/2 for Real values. x can be any shape and of type Int32, Real,

Coord, Waveform, Complex, PComplex, or Spectrum. The return value will be

in the current Trig Mode units. Int32 returns a Real; all others will return the

same type. All will return the same shape as x.

Location

Math =) Trig =) asin(x)

Example

asin(1) returns 90 with Trig Mode set to Degrees.

asin((1.1752012, @90)) returns (1, @90) with Trig Mode set to Degrees.

Notes

Mappings are retained in the result. Using Trig Mode set to anything except

Radians may result in accuracy errors beyond the 12th signiÕcant digit.

See Also

asinh(x), cos(x), sin(x), tan(x), and Trig.

Trig Mode in the \General Reference" chapter.

3-38 Formula (Math and AdvMath) Reference

asinh(x)

asinh(x)

An object that returns the hyperbolic arcsine of x.

Use

Use asinh(x) to generate the hyperbolic arcsine of the x data. x can be any

shape and of type Int32, Real, Coord, Waveform, Complex, PComplex, or

Spectrum. The return value will be in the current Trig Mode units. Int32

returns a Real; all others will return the same type. All will return the same

shape as x.

Location

Math =) Hyper Trig =) asinh(x)

Example

asinh(0) returns 0 with Trig Mode set to Radians.

Notes

Mappings are retained in the result. Using Trig Mode set to anything except

Radians may result in accuracy errors beyond the 12th signiÕcant digit.

See Also

asin(x), cosh(x), Hyper Trig, sinh(x), and tan(x).

Trig Mode in the \General Reference" chapter.

Formula (Math and AdvMath) Reference 3-39

atan(x)

An object that returns the arctangent of x.

Use

Use atan(x) to generate the arctangent of the x data, with the result in the

range of -PI/2 to +PI/2 for Real values. x can be any shape and of type Int32,

Real, Coord, Waveform, Complex, PComplex, or Spectrum. The return value

will be in the current Trig Mode units. Int32 returns a Real; all others will

return the same type. All will return the same shape as x.

Location

Math =) Trig =) atan(x)

Example

atan(1) returns 45 with Trig Mode set to Degrees.

atan((1.5574, @0)) returns (0.999, @0) with Trig Mode set to Radians.

Notes

Mappings are retained in the result. Using Trig Mode set to anything except

Radians may result in accuracy errors beyond the 12th signiÕcant digit.

See Also

atanh(x), atan2(y,x), cos(x), sin(x), tan(x), and Trig.

Trig Mode in the \General Reference" chapter.

3-40 Formula (Math and AdvMath) Reference

atan2(y,x)

atan2(y,x)

An object that returns the arctangent of y divided by x.

Use

Use atan2(y,x) to generate the arctangent of y divided by x, with the proper

sign, in the range of -PI to +PI for Real values. x and y can be any shape and

of type Int32, Real, Coord, Waveform, Complex, PComplex, or Spectrum. If

one of the containers is an array, the other must be either a scalar or an array

of the same size and shape. The result is a container of the highest type, with

the same shape as the operands. x and y are assumed to be in the current

Trig Mode units. Int32 returns a Real; all others will return the same type. All

will return the same shape as x.

Location

Math =) Trig =) atan2(y,x)

Example

atan2(1, -1) returns 135 with Trig Mode set to Degrees.

atan2((1, 1), (5, 5)) returns (0.19739, 0) with Trig Mode set to Radians.

Notes

Mappings are retained in the result. Using Trig Mode set to anything except

Radians may result in accuracy errors beyond the 12th signiÕcant digit.

See Also

atan(x), cos(x), sin(x), tan(x), and Trig.

Trig Mode in the \General Reference" chapter.

Formula (Math and AdvMath) Reference 3-41

atanh(x)

An object that returns the hyperbolic arctangent of x.

Use

Use atanh(x) to generate the hyperbolic arctangent of the x data. x can be

any shape and of type Int32, Real, Coord, Waveform, Complex, PComplex,

or Spectrum. The return value will be in the current Trig Mode units. Int32

returns a Real; all others will return the same type. All will return the same

shape as x.

Location

Math =) Hyper Trig =) atanh(x)

Example

atanh(0.5) returns 0.5493 with Trig Mode set to Radians.

Notes

Mappings are retained in the result. Using Trig Mode set to anything except

Radians may result in accuracy errors beyond the 12th signiÕcant digit.

See Also

atan(x), cosh(x), Hyper Trig, sinh(x), and tanh(x).

Trig Mode in the \General Reference" chapter.

3-42 Formula (Math and AdvMath) Reference

bartlet(x)

bartlet(x)

An object used to apply a Bartlet window to a time series of values.

Use

Use bartlet(x) to Õlter the values in x in the same manner as convolving

x with the spectral transform of the Bartlet function. This has the eÃect of

suppressing some of the noise due to the tails of the input sequence and the

potential discontinuities they represent when sampling periodic signals.

The input x must be an Array 1D of type Int32, Real, Coord, or a Waveform,

or a Spectrum. The same type is returned, except for Int32, which returns

Real.

If x is a Spectrum, it is Õrst converted to a Waveform using an ifft(x) before

the window is applied. The result of the window is then converted back to type

Spectrum using an fft(x). A Spectrum is returned.

Location

AdvMath =) Signal Processing =) bartlet(x)

Example

bartlet([1 1 1 1 1 1 1 1]) returns

[0.125 0.375 0.625 0.875 0.875 0.625 0.375 0.125].

Notes

The Bartlet function in the time domain is represented as 2*(n+0.5)/N,

where n is the position (index) in the array, and N is the size of the array. The

result will be an array of the same type as x and will have the same mappings

as x (if any).

For a discussion of sidelobe levels and coherent gains, see: Ziemer, Tranter,

and Fannin, Signals and Systems, Macmillan Publishing, New York, NY, 1983.

ISBN #0-02-431650-4.

Formula (Math and AdvMath) Reference 3-43

bartlet(x)

See Also

blackman(x), convolve(a,b), fft(x), hamming(x), hanning(x), ifft(x),

and rect(x).

3-44 Formula (Math and AdvMath) Reference

Bessel

Bessel

A menu item.

Use

Use Bessel to calculate the bessel function of input data.

j0(x)

j1(x)

jn(x,n)

y0(x)

y1(x)

yn(x,n)

Ai(x)

Bi(x)

Location

AdvMath =) Bessel =)

See Also

Hyper Bessel.

Formula (Math and AdvMath) Reference 3-45

beta(x,y)

An object used to calculate the beta function of the input (x,y).

Use

Use beta(x,y) to calculate the beta function on x. The beta function is

deÕned as the:

(gamma(x) * gamma(y)) / gamma(x+y)

The x and y values must be positive.

The x input may be of any shape and size and of the type Int32, Real, Coord,

or Waveform. For x input of all types the same output type is returned, except

for Int32 which returns a Real type. The second y parameter must be of the

same type or be able to be converted to the same type as the x input value. If

both of the inputs are arrays, they must be of exactly the same shape and size.

Location

AdvMath =) Probability =) beta(x,y)

Example

beta(3, 1) returns 0.333333333333333.

beta(8, 7) returns 4.16250416250416E-05.

beta(-1, 3) returns an error.

Notes

If both of the inputs are mapped then the mappings must be the same. The

return value has the same mappings as the input if either input is mapped. If

neither of the inputs is mapped, then the output is unmapped.

See Also

comb(n,r), factorial(x), gamma(x), and perm(n,r).

3-46 Formula (Math and AdvMath) Reference

Bi(x)

Bi(x)

An object used to calculate the B-Airy fractional order Bessel function of the

second kind of x.

Use

Use Bi(x) to Õnd the Fractional order Bessel function B-Airy of the second

kind of x. The x input may be of any size and shape and of the type Int32,

Real, Coord, or Waveform. For x input of all types, the same output type is

returned, except for Int32 which returns a Real type. For Coord input types,

the operation is done on the dependent variable.

Location

AdvMath =) Bessel =) Bi(x)

Example

Bi(1) returns 1.20742359495287.

Notes

Mappings on the operand are ignored and the output container has the same

mappings as the input.

See Also

Ai(x), j0(x), j1(x), jn(x,n), y0(x), y1(x), and yn(x,n).

Formula (Math and AdvMath) Reference 3-47

binomial(a,b)

An object used to calculate the number of combinations of a things taken b at

a time.

Use

Use binomial(a,b) to calculate the number of combinations of a things taken

b at a time using the formula:

binomial(a, b) = a!/((a-b)! * b!)

The ! symbol means factorial.

The a input may be of any shape and size and of the type Int32, Real, Coord,

or Waveform. For a input of all types the same output type is returned, except

for Int32 which returns a Real type. The second b parameter must be of the

same type or be able to be converted to the same type as the a input value. If

both of the inputs are arrays, they must be of exactly the same shape and size.

The binomial(a,b) operation is only deÕned for integer operands so the

input numbers, while of unique type, are converted to Int32 type before the

calculation is done.

Location

AdvMath =) Probability =) binomial(a, b)

Example

binomial(10,3) will return as given by the formula:

10!/((10-3)!*3!) = 10!/(7!*3!) =(10*9*8)/(3*2*1) = 120.

binomial(10.4,3.9) will return as given by the formula:

10!/((10-3)!*3!) = 10!/(7!*3!) = (10*9*8)/(3*2*1) = 120.

The rule about converting Real to Int32 forces 10.4 to 10 and 3.9 to 3.

3-48 Formula (Math and AdvMath) Reference

binomial(a,b)

Notes

a and b must both be positive and a must be greater than b.

This function is identical to comb(n,r).

If both of the inputs are mapped then the mappings must be the same. The

return value has the same mappings as the input if either input is mapped. If

neither of the inputs is mapped, then the output is unmapped.

See Also

beta(x,y), comb(n,r), factorial(n), gamma(x), and perm(n,r).

Formula (Math and AdvMath) Reference 3-49

bit(x,n)

An object that returns the binary value in a particular bit position.

Use

Use bit(x,n) to return the bit value in the nth position of x. x can be any

shape and of type Int32, Real, Coord, or Waveform. If x is not of type Int32, it

is converted to Int32, retaining shape. The return type is the same as x with

a value of zero or one. n must be a container that is, or can be converted to,

Int32 and has a value between 0 and 31 inclusive. n must be either scalar or

match the shape of x.

Location

Math =) Bitwise =) bit(x,n)

Example

bit(9,0) returns 1 because the binary value of 9 is 1001 and the 0 bit is set.

Notes

The return value has the same mappings as x. Mappings on n are ignored.

See Also

bits(str), Bitwise, clearBit(x,n), and setBit(x,n).

3-50 Formula (Math and AdvMath) Reference

bitAnd(x,y)

bitAnd(x,y)

An object that returns the Bitwise AND of x and y.

Use

Use bitAnd(x,y) to perform a binary AND on two containers. x and y can be

any shape. But if both are arrays, the shape and sizes must match. x and y

may be of types Int32, Real, Coord, or Waveform. Both x and y are converted

to Int32 before doing the bitAnd. The return value is of type Int32.

Location

Math =) Bitwise =) bitAnd(x,y)

Example

bitAnd(5, [3 12]) returns [1 4].

Notes

If any of the input parameters are mapped, then those mappings must be the

same. The resultant container retains the mappings of the input container. If

only one of the inputs is mapped, the resultant container has those mappings.

See Also

AND, bit(x,n), bitCmpl(x), bitOr(x,y), Bitwise, bitXor(x,y), NOT, OR, and

XOR.

Formula (Math and AdvMath) Reference 3-51

bitCmpl(x)

An object that returns the Bitwise 1's complement of x.

Use

Use bitCmpl(x) to perform a binary 1's complement on a container. x may be

any shape and of the type Int32, Real, Coord, or Waveform. x is converted to

Int32 before the operation and the result is converted back to x's original type.

Location

Math =) Bitwise =) bitCmpl(x)

Example

bitCmpl(7) returns -8.

Notes

Mappings are retained in the result.

See Also

AND, bit(x,n), bitAnd(x,y), bitOr(x,y), Bitwise, bitXor(x,y), NOT, OR,

and XOR.

3-52 Formula (Math and AdvMath) Reference

bitOr(x,y)

bitOr(x,y)

An object that returns the Bitwise OR of x and y.

Use

Use bitOr(x,y) to perform a binary OR on two containers. x and y can be

any shape. But if both are arrays, the shapes and sizes must match. x and y

may be of types Int32, Real, Coord, or Waveform. Both x and y are converted

to Int32 before the bitOr. The return value is of type Int32.

Location

Math =) Bitwise =) bitOr(x,y)

Example

bitOr(5, [3 12]) returns [7 13].

Notes

If any of the input parameters are mapped, then those mappings must be the

same. The resultant container retains the mappings of the input container. If

only one of the inputs is mapped, the resultant container has those mappings.

See Also

AND, bit(x,n), bitAnd(x,y), bitCmpl(x), Bitwise, bitXor(x,y), NOT, OR,

and XOR.

Formula (Math and AdvMath) Reference 3-53

bits(str)

An object that returns the binary value of a string of 0s and 1s.

Use

Use bits(str) to return an Int32 with the value of the digits in the Text

str, converted to Int32 as base 2. str must be a Text or Enum container of

any shape. (Enum is converted to Text.) str may only contain leading white

space, then 0s and 1s to form a binary number.

Location

Math =) Bitwise =) bits(str)

Example

bits("011") returns 3.

Notes

The return value has the same mappings as the input container. The least

signiÕcant bit is on the right, and the most signiÕcant bit is on the left.

See Also

bit(x,n), Bitwise, clearBit(x,n), and setBit(x,n).

3-54 Formula (Math and AdvMath) Reference

bitShift(x,y)

bitShift(x,y)

An object that returns x with the bits shifted left or right n places.

Use

Use bitShift(x,y) to shift the bits of container x by y places. x may be any

shape and of the types Int32, Real, Coord, or Waveform. x is converted to

Int32 before the operation and the result is converted back to x's original type.

y must be a container which is or can be converted to Int32. If y is negative,

the bits are shifted right; otherwise the bits are shifted left. y must be either

scalar or match the shape of x. If y is greater than 31 or less than -31, the

return value will be zero.

Location

Math =) Bitwise =) bitShift(x,y)

Example

bitShift([1 7 7], [3 2 (-2)]) returns [8 28 1].

bitShift(8,2) returns 32.

bitShift(8,-2) returns 2.

Notes

Mappings are retained in the result.

See Also

bit(x,n), bitAnd(x,y), bitOr(x,y), Bitwise, bitXor(x,y), clearBit(x,n),

rotate(x,numElem), and setBit(x,n).

Formula (Math and AdvMath) Reference 3-55

Bitwise

A menu item.

Use

Use Bitwise to access the following objects which set, clear, access, or shift

bits in an Int32, or perform binary AND, OR, and XORs on Int32s.

bit(x,n)

bits(str)

setBit(x,n)

clearBit(x,n)

bitAnd(x,y)

bitOr(x,y)

bitXor(x,y)

bitCmpl(x)

bitShift(x,y)

Location

Math =) Bitwise =)

Notes

The objects on the Bitwise menu make sense only for the type Int32. But

for ease of use, most of the objects accept and return most types. Note

that internally most of these objects convert the arguments to Int32 before

performing the function, then convert the result back to the original type. This

means that the values of Reals, Coords, and Waveforms are truncated inside

the objects.

Bits are numbered from zero.

See Also

AND, NOT, OR, Relational, and XOR.

3-56 Formula (Math and AdvMath) Reference

bitXor(x,y)

bitXor(x,y)

An object that returns the Bitwise XOR of x and y.

Use

Use bitXor(x,y) to perform a binary XOR (exclusive or) on two containers.

x and y can be any shape. But if both are arrays, the shapes and sizes must

match. x and y may be of the type Int32, Real, Coord, or Waveform. Both x

and y are converted to Int32 before the bitXor(). The return value is of type

Int32.

Location

Math =) Bitwise =) bitXor(x,y)

Example

bitXor(5, [3 12]) returns [6 9].

Notes

If any of the input parameters are mapped, then those mappings must be the

same. The resultant container retains the mappings of the input container. If

only one of the inputs is mapped, the resultant container has those mappings.

See Also

AND, bit(x,n), bitAnd(x,y), bitCmpl(x), bitOr(x,y), Bitwise, NOT, OR, and

XOR.

Formula (Math and AdvMath) Reference 3-57

blackman(x)

An object used to apply a Blackman window to a time series of values.

Use

Use blackman(x) to Õlter the values in x in the same manner as convolving x

with the spectral transform of the Blackman function. This has the eÃect of

suppressing some of the noise due to the tails of the input sequence and the

potential discontinuities they represent when sampling periodic signals.

The input x must be an Array 1D of type Int32, Real, Coord, or a Waveform,

or a Spectrum. The same type is returned, except for Int32, which returns

Real.

If x is a Spectrum, it is Õrst converted to a Waveform using an ifft(x) before

the window is applied. The result of the window is then converted back to type

Spectrum using an fft(x). A Spectrum is returned.

Location

AdvMath =) Signal Processing =) blackman(x)

Example

blackman([1 1 1 1 1 1 1 1]) returns

[0.014 0.172 0.555 0.938 0.938 0.555 0.172 0.014].

Notes

The Blackman function is represented in the time domain as:

0.42 - 0.5*cos(2*PI*(n+0.5)/N) + 0.08*cos(4*PI*(n+0.5)/N)

where n is the position (index) in the array, and N is the size of the array. The

result will be an array of the same type as x and will have the same mappings

as x (if any).

For a discussion of sidelobe levels and coherent gains, see: Ziemer, Tranter,

and Fannin, Signals and Systems , Macmillan Publishing, New York, NY, 1983.

ISBN #0-02-431650-4.

3-58 Formula (Math and AdvMath) Reference

blackman(x)

See Also

bartlet(x), convolve(a,b), fft(x), hamming(x), hanning(x), ifft(x), and

rect(x).

Formula (Math and AdvMath) Reference 3-59

Calculus

A menu item.

Use

Use Calculus to take the integral or the derivative of a one-dimensional array

of simple numeric values (Int, Real, Waveform, . . .) or lists of two-dimensional

(two Õeld) coordinates.

integral(x)

deriv(x,1)

deriv(x,2)

deriv(x,order)

defIntegral(x,a,b)

derivAt(x,1,pt)

derivAt(x,2,pt)

derivAt(x,order,pt)

Location

AdvMath =) Calculus =)

Notes

The integral and derivative functions are applicable to one-dimensional arrays

of simple numeric values (Int, Real, Waveform, and so forth) and lists of

two-dimensional (two Õeld) coordinates which represent equally spaced ordered

data. For unmapped arrays, it is assumed that the data is equally spaced

and ordered, and a value of 1 is assumed for the interval dx between points.

For mapped arrays, the operation is performed with the interval value dx

equal to (Xmax-Xmin)/N and is thus automatically scaled appropriately. For a

coordinate list, the independent (Õrst Õeld) values are Õrst checked to be sure

that they are ordered and equally spaced, then the operation is performed on

the dependent (second Õeld) values using the previously determined spacing as

the value for dx.

If an unmapped array is used, but it is known otherwise that the interval

between points is some value dx, then the correct value for the operation can

3-60 Formula (Math and AdvMath) Reference

Calculus

still be obtained. For the integral, multiply the result by the known dx value.

For the derivative, divide the result by the known dx value.

Formula (Math and AdvMath) Reference 3-61

ceil(x)

An object that returns the rounded-up value of x to the nearest integer of a

container.

Use

x may be any shape and of the types Int32, Real, Coord, or Waveform. The

ceil(x) function returns the smallest integer (as the same type) greater than

or equal to x; that is, the value of x rounded to the next larger integer, the

nearest integer towards positive inÕnity.

Location

Math =) Real Parts =) ceil(x)

Example

ceil([23.0 23.1 23.9 23.5 (-23.5)]) returns [23 24 24 24 -23].

Notes

Mappings are retained in the result.

See Also

abs(x), Complex Parts, floor(x), fracPart(x), intPart(x), Real Parts,

and round(x).

3-62 Formula (Math and AdvMath) Reference

clearBit(x,n)

clearBit(x,n)

An object that returns x with the nth bit set to 0.

Use

Use clearBit(x,n) to set a particular binary digit of a container x to 0. x

can be any shape and of types Int32, Real, Coord, or Waveform. If x is not of

type Int32, it is converted to Int32, retaining shape. The return value is of type

Int32. n must be a container which is, or can be converted to, Int32 and has a

value between 0 and 31 inclusive. n must be either scalar or match the shape

of x.

Location

Math =) Bitwise =) clearBit(x,n)

Example

clearBit(7,1) returns 5 because the binary value of 7 is 111, and the Õrst bit

is cleared yielding 101 (decimal 5). (Bit numbering starts with 0.)

Notes

The mappings of the resultant container are the same as the x parameter.

See Also

bit(str), bits(x,n), Bitwise, and setBit(x,n).

Formula (Math and AdvMath) Reference 3-63

clipLower(x,a)

An object used to clip the input data x to a certain minimum value a.

Use

Use clipLower(x,a) to clip the data to a minimum value a, that is, any data

that is less than a will be changed to a.

The x input may be of any size and shape and of the type Int32, Real, Coord,

Waveform, or Text. For x input of all types, the same output type is returned.

The clip parameter a must be of the same type, or be able to be converted to

the same type, as the x input value and must either be Scalar in shape or the

same shape and size as x. If one of the inputs is Scalar and one of the inputs is

non-Scalar, the Scalar input is treated as if it were an array of the same shape

and size as the non-Scalar input.

Location

AdvMath =) Data Filtering =) clipLower(x,a)

Example

Using the clipLower(x,.5) function on data, where x is the array

[.1, .4, .6, .9], returns [.5, .5, .6, .9].

Using clipLower([.1, .4, .6, .9],[.2, .2, .7, .7]) returns [.2, .4, .7,

.9].

You can use clipLower to clip the values of a Waveform to an arbitrary

lower limit. Use an array of Coords to deÕne the limiting points on the

waveform. The limiting points are the endpoints of line segments that deÕne

the limiting waveform shape. There might be just a few of these points. Send

the Coord array through the Build Arb Waveform object to create a lower

limit waveform with the same number of points as your actual waveform. Send

that new waveform into a clipLower function as the a input. When the

clipLower(x,a) is done, the input waveform x will have all values below the

lower limit clipped to the minimum allowed by the a input.

3-64 Formula (Math and AdvMath) Reference

clipLower(x,a)

Notes

If both of the inputs are mapped, then the mappings must be the same. The

return value has the same mappings as the input if either input is mapped. If

neither of the inputs is mapped, then the output is unmapped.

See Also

clipUpper(x,a).

Build Arb Waveform and Comparator in the \General Reference" chapter.

Formula (Math and AdvMath) Reference 3-65

clipUpper(x,a)

An object used to clip the input data x to a certain maximum value a.

Use

Use clipUpper(x,a) to clip the data to a maximum value a. That is, any data

that is greater than a will be changed to a.

The x input may be of any size and shape and of the type Int32, Real, Coord,

Waveform, or Text. For x input of all types, the same output type is returned.

The clip parameter a must be of the same type, or be able to be converted to

the same type, as the x input value and must either be Scalar in shape or the

same shape and size as x. If one of the inputs is Scalar and one of the inputs is

non-Scalar, the Scalar input is treated as if it were an array of the same shape

and size as the non-Scalar input.

Location

AdvMath =) Data Filtering =) clipUpper(x,a)

Example

Using the clipUpper(x,.5) function on data, where x is the array [.1, .4,

.6, .9], returns [.1, .4, .5, .5].

Using clipUpper([.1, .4, .6, .9],[.2, .2, .5, .5]) returns [.1, .2, .5,

.5].

You can use clipUpper to clip the values of a waveform to an arbitrary upper

limit. Use an array of Coords to deÕne the limiting points on the waveform.

The limiting points are the endpoints of line segments that deÕne the limiting

waveform shape. Send the Coord array through the Build Arb Waveform

object to create an upper limit waveform with the same amount of points as

your actual waveform. Send that new waveform into a clipUpper function as

the a input. When the clipUpper(x,a) is done, the input waveform x will

have all values above the upper limit clipped to the maximum allowed by the a

input.

3-66 Formula (Math and AdvMath) Reference

clipUpper(x,a)

Notes

If both of the inputs are mapped then the mappings must be the same. The

return value has the same mappings as the input if either input is mapped. If

neither of the inputs is mapped, then the output is unmapped.

See Also

clipLower(x,a).

Build Arb Waveform and Comparator in the \General Reference" chapter.

Formula (Math and AdvMath) Reference 3-67

cofactor(x,row,col)

An object used to calculate the cofactor of the input matrix x, at row r and

column c.

Use

Use cofactor(x,row,col) to calculate the cofactor of the square matrix x.

The cofactor of a matrix is deÕned as the determinant of the submatrix of the

input matrix x obtained by deleting the rth row and cth column, times (-1)

raised to the (r+c) power.

The x input must be a square matrix shape and of the type Int32, Real,

Complex or PComplex. For x input of all types the same output type is

returned and is Scalar in shape, except for Int32 which returns a Real. The

input for the row and column to delete, r and c, must be an Int32 Scalar or be

able to be converted to Int32 type.

A square matrix has the same number of rows as columns.

Location

AdvMath =) Matrix =) cofactor(x,row,col)

Example

cofactor(a,1,2), where a is a matrix [[3 -1 2] [4 5 6] [7 1 2]], returns

34.

Notes

Mappings on the operand are ignored.

The r and c inputs are expected to be of Int32 type or be able to be converted

to that type. The rows and columns of the matrix are numbered from 0 to n-1.

Therefore, be careful when specifying which row and column to use.

See Also

det(x)and minor(x,row,col).

3-68 Formula (Math and AdvMath) Reference

comb(n,r)

comb(n,r)

An object used to calculate the number of combinations of n things taken r at

a time.

Use

Use comb(n,r) to calculate the number of combinations of n things taken r at

a time using the formula:

comb(n, r) = n!/((n -r)! * r!)

The ! symbol means factorial.

The n input may be of any shape and size and of the type Int32, Real, Coord,

or Waveform. For n input of all types the same output type is returned, except

for Int32 which returns a Real type. The second r parameter must be of the

same type or be able to be converted to the same type as the n input value. If

both of the inputs are arrays, they must be of exactly the same shape and size.

The comb(n, r) operation is only deÕned for integer operands so the input

numbers, while of unique type, are converted to Int32 type before the

calculation is done.

Location

AdvMath =) Probability =) comb(n, r)

Example

comb(10,3) will return 120 as given by the formula:

10!/((10-3)!*3!) = 10!/(7!*3!) = (10*9*8)/(3*2*1) = 120.

comb(10.4,3.9) will return 120 as given by the formula:

10!/((10-3)!*3!) = 10!/(7!*3!) = (10*9*8)/(3*2*1) = 120.

The rule about converting Real to Int32 forces 10.4 to 10 and 3.9 to 3.

Formula (Math and AdvMath) Reference 3-69

comb(n,r)

Notes

Both n and r must be positive and n must be greater than r.

If both of the inputs are mapped, then the mappings must be the same. The

return value has the same mappings as the input if either input is mapped. If

neither of the inputs is mapped, then the output is unmapped.

This function is identical to binomial(a,b).

See Also

beta(x,y), binomial(a,b), factorial(n), gamma(x), and perm(n,r).

3-70 Formula (Math and AdvMath) Reference

Complex Parts

Complex Parts

A menu item.

Use

Use Complex Parts to access the following objects which return diÃerent parts

of Complex and PComplex containers.

j(x)

re(x)

im(x)

mag(x)

phase(x)

conj(x)

Location

Math =) Complex Parts =)

Notes

The objects on the Complex Parts menu make sense only for the type Complex

and PComplex. But for ease of use, most of the objects accept and return most

types.

See Also

Real Parts.

Build Complex, Build PComplex, Complex, UnBuild Complex, and UnBuild

PComplex in the \General Reference" chapter.

Formula (Math and AdvMath) Reference 3-71

concat(x,y)

An object used to concatenate containers.

Use

Use concat(x,y) to concatenate two containers. The input parameters can be

of any type and any shape. The concat(x,y) function will Œatten arrays that

are greater than one dimension into an Array 1D. The resulting 1D arrays are

then concatenated together. For x and y input of all types, a 1D container of

the highest type is returned.

Location

AdvMath =) Array =) concat(x,y)

Example

If x is a Real Scalar container with 3 in it, and y is a Text array container with

["This" "is" "a" "test"] in it, then concat(x,y) will return a Text array

container ["3" "This" "is" "a" "test"]. In this case, the numeric 3 has been

converted to the higher type Text string "3" before the concat operation.

Notes

If the x value is mapped, the y value may be either mapped with the same

point spacing, or unmapped. The result will be mapped from Xmin to

Xmin+dx*N, where Xmin is the minimum value of the x mapping, dx is the

distance between two consecutive points in x, and N is the size of the resultant

array.

Note the diÃerence between the concat(x,y) and sum(x) functions on Text

inputs. The concat(x,y) creates an Array 1D in all cases. The sum(x)

function will simply link all the text strings together to form one large output

string. That is, concat(x,y), where x is the Scalar Text value "a" and y is the

Scalar Text input "b", yields the Array 1D ["a","b"]. On the other hand,

sum(["a","b"]) will return the Scalar container with the text value of "ab" in

it.

3-72 Formula (Math and AdvMath) Reference

concat(x,y)

All nil inputs are automatically converted to Real scalars with the value

0. Thus, where x is nil and y is an Int32 scalar value 5, concat(x,y)

results in the Array 1D two long of Real with values [0 5]. In contrast, the

Concatenator object with two inputs with nil and an Int32 scalar value 5 will

output an Int32 array one long with value [5].

See Also

sum(x).

Concatenator in the \General Reference" chapter.

Formula (Math and AdvMath) Reference 3-73

conj(x)

An object that returns the complex conjugate of a Complex number x.

Use

Use conj(x) to generate the complex conjugate of a Complex number x. x can

be any shape and of type Complex, PComplex, or Spectrum. The complex

conjugate of a Complex number simply reverses the sign of the imaginary

component. The complex conjugate of a PComplex number simply reverses the

sign of the phase.

Location

Math =) Complex Parts =) conj(x)

Example

conj((2, 3)) returns (2, -3).

conj((8, @45)) returns (8, @-45) with Trig Mode set to Degrees.

Notes

Mappings are retained in the result.

See Also

im(x), j(x), mag(x), phase(x), re(x), and Real Parts.

Build Complex, Trig Mode, and UnBuild Complex in the \General Reference"

chapter.

3-74 Formula (Math and AdvMath) Reference

convolve(a,b)

convolve(a,b)

An object used to convolve two arrays of data.

Use

Use convolve(a,b) to calculate the discrete aperiodic convolution of two

1D arrays a and b. The result will be an array of the same type and of size

(Na+Nb)-1, where Na is the size of input array a, and Nb is the size of input

array b.

The input values a and b must be an Array 1D of type Int32, Real, Coord,

or Waveform. The return type is the same as the highest type of the inputs,

except Int32, which returns Real. a and b do not have to be the same size.

The resultant values are not normalized.

Location

AdvMath =) Signal Processing =) convolve(a,b)

Example

convolve([1 2 3 4 5],[1 1 1]) returns [1 3 6 9 12 9 5].

Notes

The inputs a and b must represent equally spaced data. In addition, the

interval between any two values of a must be the same as that between any two

values of b. For two unmapped arrays, it is assumed that the interval is always

1. For mapped arrays, the interval is (Xmax-Xmin)/N, where Xmax and Xmin are

the mappings, and N is the size of the array. When one input is mapped and

the other is not, the unmapped input is assumed to be sampled at the same

frequency as the mapped input. The resultant values will never be normalized

to any scale factor.

See Also

fft(x)and xcorrelate(a,b).

Formula (Math and AdvMath) Reference 3-75

cos(x)

An object that returns the cosine of x.

Use

Use cos(x) to generate the cosine of the x data. x can be any shape and of

type Int32, Real, Coord, Waveform, Complex, PComplex, or Spectrum. x is

assumed to be in the current Trig Mode units. Int32 returns a Real; all others

will return the same type. All will return the same shape as x.

Location

Math =) Trig =) cos(x)

Example

cos([0 180]) returns [1 -1] with Trig Mode set to Degrees.

cos((1, PI/4)) returns (0.715684, -0.73096) with Trig Mode set to

Radians.

Notes

Mappings are retained in the result. Using Trig Mode set to anything except

Radians may result in accuracy errors beyond the 12th signiÕcant digit.

See Also

acos(x), cosh(x), sin(x), tan(x), and Trig.

Trig Mode in the \General Reference" chapter.

3-76 Formula (Math and AdvMath) Reference

cosh(x)

cosh(x)

An object that returns the hyperbolic cosine of x.

Use

Use cosh(x) to generate the hyperbolic cosine of the x data. x can be any

shape and of type Int32, Real, Coord, Waveform, Complex, PComplex, or

Spectrum. x is assumed to be in the current Trig Mode units. Int32 returns a

Real; all others will return the same type. All will return the same shape as x.

Location

Math =) Hyper Trig =) cosh(x)

Example

cosh(0) returns 1 with Trig Mode set to Radians.

Notes

Mappings are retained in the result. Using Trig Mode set to anything except

Radians may result in accuracy errors beyond the 12th signiÕcant digit.

See Also

acosh(x), cos(x), Hyper Trig, sinh(x), and tanh(x).

Trig Mode in the \General Reference" chapter.

Formula (Math and AdvMath) Reference 3-77

cot(x)

An object that returns the cotangent of x.

Use

Use cot(x) to generate the cotangent of the x data. x can be any shape and

of type Int32, Real, Coord, Waveform, Complex, PComplex, or Spectrum. x is

assumed to be in the current Trig Mode units. Int32 returns a Real; all others

will return the same type. All will return the same shape as x.

Location

Math =) Trig =) cot(x)

Example

cot([45 90]) returns [1 61E-18] with Trig Mode set to Degrees. Note that

the second number, which should be zero, is smaller than the system precision.

cot((3, @PI/2)) returns (1.0049698, @-1.57079) with Trig Mode set to

Radians.

cot((3, @90)) returns (1.0049698, @-90) with Trig Mode set to Degrees.

Notes

Mappings are retained in the result. Using Trig Mode set to anything except

Radians may result in accuracy errors beyond the 12th signiÕcant digit.

See Also

acot(x), atan2(y,x), cos(x), coth(x), sin(x), tan(x), and Trig.

Trig Mode in the \General Reference" chapter.

3-78 Formula (Math and AdvMath) Reference

coth(x)

coth(x)

An object that returns the hyperbolic cotangent of x.

Use

Use coth(x) to generate the hyperbolic cotangent of the x data. x can be any

shape and of type Int32, Real, Coord, Waveform, Complex, PComplex, or

Spectrum. x is assumed to be in the current Trig Mode units. Int32 returns a

Real; all others will return the same type. All will return the same shape as x.

Location

Math =) Hyper Trig =) coth(x)

Example

coth(0.4) returns 2.631 with Trig Mode set to Radians, essentially, positive

inÕnity.

Notes

Mappings are retained in the result. Using Trig Mode set to anything except

Radians may result in accuracy errors beyond the 12th signiÕcant digit.

See Also

acoth(x), cot(x), Hyper Trig, sinh(x), and tanh(x).

Trig Mode in the \General Reference" chapter.

Formula (Math and AdvMath) Reference 3-79

cubert(x)

An object that returns the cube root of the value of x.

Use

Use cubert(x) to generate the cube root of a number x. x can be any shape

and of type Int32, Real, Coord, Waveform, Complex, PComplex, or Spectrum.

For PComplex, the cubert(x) is deÕned as the cube root of the magnitude and

one third the phase. Complex is converted to PComplex before the function is

applied. Int32 arguments will return a Real; all others will return the same

type. All will return the same shape as x.

Location

Math =) Power =) cubert(x)

Example

cubert((8, @90)) will return (2, @30).

cubert((1,1)) will return (1.08, 0.291).

Notes

Mappings are retained in the result.

See Also

^ (exponent), Power, sq(x), and sqrt(x).

3-80 Formula (Math and AdvMath) Reference

Data Filtering

Data Filtering

A menu item.

Use

Use Data Filtering to apply Õltering algorithms to the data to smooth it.

polySmooth(x)

meanSmooth(x,numPts)

movingAvg(x,numPts)

clipUpper(x,a)

clipLower(x,a)

minIndex(x)

maxIndex(x)

minX(x)

maxX(x)

Location

AdvMath =) Data Filtering =)

See Also

Regression and Signal Processing.

Formula (Math and AdvMath) Reference 3-81

defIntegral(x,a,b)

An object used to calculate the integral of those values of the input data which

are between points a and b (inclusive) using Simpson's 1/3 rule.

Use

Use defIntegral(x,a,b) to calculate the numerical approximation of the

integral of a set of ordered, equally-spaced values (x) between points a and b.

The result is a scalar value of type Real.

Location

AdvMath =) Calculus =) defIntegral(x,a,b)

Example

defIntegral([0 1 2 3 4 4 3 2 1 0], 2, 5) returns 10.12.

Notes

The defIntegral(x,a,b) function is applicable to one-dimensional arrays of

simple numeric values (Int32, Real, Waveform) and lists of two-dimensional

(two Õeld) coordinates which represent equally spaced ordered data. For

unmapped arrays, the values a and b represent indices in the array (0 to

N-1). For coordinate lists, the values a and b represent real values between

the x-values of the Õrst and last point in the coordinate list (inclusive). For

mapped arrays, the values a and b represent real values between the Xmin

mapping and Xmax-dx (inclusive), where dx is the interval between consecutive

points: (Xmax-Xmin)/N.

For unmapped arrays, it is assumed that the data is equally spaced and

ordered, and a value of 1 is assumed for the interval dx between points. For

mapped arrays, the operation is performed with the interval value dx equal

to (Xmax-Xmin)/N and is thus automatically scaled appropriately. For a

coordinate list, the independent (Õrst Õeld) values are Õrst checked to be sure

that they are ordered and equally spaced, then the operation is performed on

the dependent (second Õeld) values using the previously determined spacing as

the value for dx.

3-82 Formula (Math and AdvMath) Reference

defIntegral(x,a,b)

If an unmapped array is used, but it is known otherwise that the interval

between points is some value dx, then the correct value for the operation can

be obtained by multiplying the result of defIntegral(x,a,b) by the known dx

value.

When the values represent noisy data, the result of defIntegral(x) can often

be improved (in a pragmatic sense) by Õrst Õltering or smoothing the data.

Smoothing removes much of the unwanted noise which is superimposed on the

underlying values. See the polySmooth(x) function and related smoothing

functions for examples.

See Also

integral(x).

Formula (Math and AdvMath) Reference 3-83

deriv(x,order)

An object used to calculate the derivative of order order across all values of

the input data using a sliding fourth-order (Õve-point) polynomial.

Use

Use deriv(x,order) to calculate the numerical approximation of the

derivative of order order across all points of a set of ordered equally spaced

values (x). The result is an array of the same size and shape as the input x.

The result is the same type as x except for Int32. Int32 returns a Real and has

the same mappings (if any) as the input x.

Location

AdvMath =) Calculus =) deriv(x,order)

Example

deriv([0 1 2 3 3 2 1 0], 1) returns

[1.25 0.9167 1.083 0.5833 -0.5833 -1.083 -0.9167 -1.25].

Notes

The deriv(x,order) function is applicable to one-dimensional arrays of simple

numeric values (Int32, Real, Waveform) and lists of two-dimensional (two

Õeld) coordinates that represent equally spaced ordered data. For mapped

arrays, the mappings of the resultant array will be identical to those of x. For

coordinate lists, the values a and b represent real values between the x-values

of the Õrst and last point in the coordinate list (inclusive). For mapped

arrays, the values a and b represent real values between the Xmin mapping

and Xmax-dx (inclusive), where dx is the interval between consecutive points:

(Xmax-Xmin)/N.

For unmapped arrays, it is assumed that the data is equally spaced and

ordered, and a value of 1 is assumed for the interval dx between points. For

mapped arrays, the operation is performed with the interval value dx equal

to (Xmax-Xmin)/N and is thus automatically scaled appropriately. For a

coordinate list, the independent (Õrst Õeld) values are Õrst checked to be sure

3-84 Formula (Math and AdvMath) Reference

deriv(x,order)

that they are ordered and equally spaced, then the operation is performed on

the dependent (second Õeld) values using the previously determined spacing as

the value for dx.

If an unmapped array is used, but it is known otherwise that the interval

between points is some value dx, then the correct value for the operation can

be obtained by dividing the result of deriv(x,order) by the known dx value.

When the values represent noisy data, the result of deriv(x,order) can often

be improved (in a pragmatic sense) by Õrst Õltering or smoothing the data.

Smoothing removes much of the unwanted noise which is superimposed on the

underlying values. See the polySmooth(x) function and related smoothing

functions for examples.

See Also

derivAt(x,order,pt).

Formula (Math and AdvMath) Reference 3-85

derivAt(x,order,pt)

An object used to calculate the derivative of order order at value pt of the

input data using a sliding fourth-order (Õve-point) polynomial.

Use

Use derivAt(x,order,pt) to calculate the numerical approximation of the

derivative of order order at some point pt in the set of ordered equally spaced

values (x). The result is a scalar value of type Real, except for Coord, which

returns Coord.

Location

AdvMath =) Calculus =) derivAt(x,order,pt)

Example

derivAt([0 1 2 3 3 2 1 0], 1, 3) returns 0.5833.

Notes

The derivAt(x,order,pt) function is applicable to one-dimensional arrays of

simple numeric values (Int32, Real, Waveform) and lists of two-dimensional

(two Õeld) coordinates that represent equally spaced ordered data. For

unmapped arrays, the value a represents an index in the array (0 to N-1). For

coordinate lists, the values a and b represent real values between the x-values

of the Õrst and last point in the coordinate list (inclusive). For mapped

arrays, the values a and b represent real values between the Xmin mapping

and Xmax-dx (inclusive), where dx is the interval between consecutive points:

(Xmax-Xmin)/N.

For unmapped arrays, it is assumed that the data is equally spaced and

ordered, and a value of 1 is assumed for the interval dx between points. For

mapped arrays, the operation is performed with the interval value dx equal

to (Xmax-Xmin)/N and is thus automatically scaled appropriately. For a

coordinate list, the independent (Õrst Õeld) values are Õrst checked to be sure

that they are ordered and equally spaced. Then the operation is performed on

3-86 Formula (Math and AdvMath) Reference

derivAt(x,order,pt)

the dependent (second Õeld) values using the previously determined spacing as

the value for dx.

If an unmapped array is used, but it is known otherwise that the interval

between points is some value dx, then the correct value for the operation can

be obtained by dividing the result of derivAt(x,order,pt) by the known dx

value.

When the values represent noisy data, the result of derivAt(x,order,pt) can

often be improved (in a pragmatic sense) by Õrst Õltering or smoothing the

data. Smoothing remove much of the unwanted noise which is superimposed on

the underlying values. See the polySmooth(x) function and related smoothing

functions for examples.

See Also

deriv(x,order).

Formula (Math and AdvMath) Reference 3-87

det(x)

An object used to calculate the determinant of a square matrix.

Use

Use det(x) to calculate the determinant of the square matrix x. The x input

must be a square matrix shape and of the type Int32, Real, Complex or

PComplex. For x input of all types, the same output type is returned and is

Scalar in shape, except Int32, which returns a Real. A square matrix has the

same number of rows as columns.

Location

AdvMath =) Matrix =) det(x)

Example

Where x is a square matrix [[1 2] [3 4]], det(x) returns -2.

Notes

Mappings on the operand are ignored.

See Also

identity(x), inverse(x), and transpose(x).

3-88 Formula (Math and AdvMath) Reference

div (truncated division)

div (truncated division)

An object that performs an arithmetic div (truncated division) on two

operands.

Use

Use div to determine the number of times one container divides evenly into

another container, that is, the truncated division value. The two containers

may be of type Int32, Real, Coord, or Waveform. The two containers may be

of any shape. But if one of the containers is an array, the other must be either

a scalar or an array of the same size and shape. The result is a container of the

highest type, with the same shape as the operands.

If both operands are of type Coord, they must have their independent

variable(s) match exactly or an error is returned. The div is only performed on

the dependent (last) variable.

Location

Math =) + - * / =) div

Example

A scalar div an array: 3.2 DIV [1 2 3 4] returns [3 1 1 0].

An array div a scalar: [1 2 3] DIV 2 returns [0 1 1].

Two scalars: 12.95 DIV 4 returns 3.

Two Coord scalars: coord(1,3) DIV coord(1,5) returns coord(1,0).

Two Coord scalars: coord(1,3) DIV coord(2,5) returns an error.

Notes

If either of the containers is mapped (that is, of type Waveform, Coord, or a

mapped array of any other type), the other container must be unmapped or

have identical mappings. The return value will have the same mappings as the

operands; otherwise an error is returned.

Formula (Math and AdvMath) Reference 3-89

div (truncated division)

See Also

+ (add), / (divide), * (multiply), and - (subtract).

3-90 Formula (Math and AdvMath) Reference

/ (divide)

/ (divide)

An object that performs an arithmetic division of two operands.

Use

Use / to divide the value of one container by the value of another container.

The two containers may be of type Int32, Real, Coord, Waveform, Complex,

PComplex, or Spectrum. The two containers may be of any shape. But if one

of the containers is an array, the other must be either a scalar or an array of

the same size and shape. The result is a container of the highest type, with the

same shape as the operands.

If both operands are of type Coord, they must have their independent

variable(s) match exactly or an error is returned. The division is only

performed on the dependent (last) variable.

This division operation performs a parallel division on all arrays, including

matrices. For a matrix divide, see the function matDivide(numer,denom).

Location

Math =) + - * / =) /

Example

A scalar divided by an array: 3.0 / [1 2 3] returns [3 1.5 1].

Two arrays: [4 5 6] / [1 2 3] returns [4 2.5 2].

Two PComplex scalars: (1,@90) / (2,@30) returns (0.5, @60) with Trig

Mode set to Degrees.

Two Coord scalars: coord(1,3) / coord(1,5) returns coord(1,0.6).

Two Coord scalars: coord(1,3) / coord(2,5) returns an error.

Formula (Math and AdvMath) Reference 3-91

/ (divide)

Notes

If either of the containers is mapped (that is, of type Waveform, Spectrum,

Coord, or a mapped array of any other type), the other container must be

unmapped or have identical mappings. The return value will have the same

mappings as the operands; otherwise an error is returned.

See Also

+ (add), div (truncated division), matDivide(numer,denom), *

(multiply), and - (subtract).

3-92 Formula (Math and AdvMath) Reference

dmyToDate(d,m,y)

dmyToDate(d,m,y)

An object that returns the value of the parameters d, m, and y converted to a

date.

Use

Use dmyToDate(d,m,y) to convert three values, day, month, and year, into

the date. d, m, and y can be any shape. If one of the containers is an array,

the other must be either a scalar or an array of the same size and shape. The

result is a container of the highest type, with the same shape as the operands.

d, m, and y can be of type Int32, Real, Coord, or Waveform. Int32 arguments

will return a Real; all others will return the same type. All will return the

same shape as x.

Location

Math =) Time & Date =) dmyToDate(d,m,y)

Example

dmyToDate(25, 12, 1991) returns 62.8293999G.

Notes

If any of the input parameters are mapped, then those mappings must be the

same. The resultant container retains the mappings of the input container. If

only one of the inputs is mapped, the resultant container has those mappings.

Also note that dmy is speciÕed as modern Gregorian dates.

See Also

hmsToHour(h,m,s), hmsToSec(h,m,s), mday(aDate), month(aDate), now(),

Time & Date, wday(aDate), and year(aDate).

Formula (Math and AdvMath) Reference 3-93

== (equal to)

An object that performs an is equal to operation on two operands.

Use

Use == to determine whether the value(s) of one container is equal to the

value(s) of another container. The two containers may be of any type and

of any shape. If one of the containers is an array, the other must be either a

scalar or an array of the same size and shape. The result is a scalar Int32 with

the value 0 or 1. If the Õrst operand is equal to the second, the value of the

result is 1; otherwise the value is 0.

If both operands are of type Coord, they must have all their independent

variable(s) and dependent variables match exactly for the the result to be 1. If

independent variables do not match, an error is returned. Complex, PComplex,

and Spectrum containers must have both parts match for the operation to

return 1. Enums are converted to Text for the comparison.

Arrays must have all the respective values of both containers equal for the

operation to return 1.

Location

Math =) Relational =) ==

Example

A scalar and an array: 3.0 == [3 3 3] returns 1.

A scalar and an array: 3.0 == [3 1 3] returns 0.

Two arrays: [1 2 3] == [1 2 4] returns 0.

Two PComplex scalars: (1,@90) == (1,@85) returns 0.

Two Complex scalars: (2,3) == (2,4) returns 0.

Two Complex scalars: (2,3) == (2,3) returns 1.

Two Coord scalars: coord(1,3) == coord(1,5) returns 0.

3-94 Formula (Math and AdvMath) Reference

== (equal to)

Two Coord scalars: coord(1,3) == coord(2,3) returns Values for

independent variables must match.

Notes

If either of the containers is mapped (that is, of type Waveform, Spectrum,

Coord, or a mapped array of any other type), the other container must be

unmapped or have identical mappings; otherwise an error is returned.

See Also

~= (almost equal to), AND, > (greater than), >= (greater than or equal

to), < (less than), <= (less than or equal to), NOT, != (not equal to), OR,

Relational, and XOR.

Comparator, Conditional, and If/Then/Else in the \General Reference"

chapter.

Formula (Math and AdvMath) Reference 3-95

erf(x)

An object used to calculate the error function of the input x.

Use

Use erf(x) to calculate the error function of x. The erf function is deÕned as:

(2/SQRT(PI)) * [the integral of (e^(-t^2)) * dt]

where the integral is evaluated over the range from zero to x.

The x input may be of any shape and size and of the type Int32, Real, Coord,

or Waveform. For x input of all types the same output type is returned, except

for Int32 which returns a Real type.

Location

AdvMath =) Probability =) erf(x)

Example

erf(.5) returns 0.52049987781305.

Notes

Mappings on the operand are ignored and the output container has the same

mappings as the input.

See Also

erfc(x).

3-96 Formula (Math and AdvMath) Reference

erfc(x)

erfc(x)

An object used to calculate the complementary error function of the input x.

Use

Use erfc(x) to calculate the complementary error function of x. The erfc

function is deÕned as:

1-(2/SQRT(PI)) * [the integral of (e^(-t^2)) * dt]

where the integral is evaluated over the range from zero to x.

The x input may be of any shape and size and of the type Int32, Real, Coord,

or Waveform. For x input of all types the same output type is returned, except

for Int32 which returns a Real type.

Location

AdvMath =) Probability =) erfc(x)

Example

erfc(.5) returns 0.47950012218695.

Notes

Mappings on the operand are ignored and the output container has the same

mappings as the input.

The erfc(x) function, which returns 1.0 - erf(x), is provided because of the

extreme loss of relative accuracy if a large x is called for in erf(x), the result

is subtracted from 1.0 (for example, x=5, twelve places are lost).

See Also

erf(x).

Formula (Math and AdvMath) Reference 3-97

exp(x)

An object that returns the exponential of the value of x.

Use

Use exp(x) to generate the exponential, or natural antilogarithm (base e),

of a number x; that is, e raised to the x power. x can be any shape and of

type Int32, Real, Coord, Waveform, Complex, PComplex, or Spectrum. Int32

arguments will return a Real; all others will return the same type. All will

return the same shape as x.

Location

Math =) Power =) exp(x)

Example

exp(10) returns 22.0264657948k.

exp((1,2)) returns (-1.131204384, 2.471726672).

Notes

Mappings are retained in the result.

See Also

exp10(x), ^ (exponent), log(x), log10(x), and Power.

3-98 Formula (Math and AdvMath) Reference

exp10(x)

exp10(x)

An object that returns the exponential base 10 of the value of x.

Use

Use exp10(x) to generate the common antilogarithm (base 10) of a number x;

that is, 10 raised to the x power. x can be any shape and of type Int32, Real,

Coord, Waveform, Complex, PComplex, or Spectrum. Int32 arguments will

return a Real; all others will return the same type. All will return the same

shape as x.

Location

Math =) Power =) exp10(x)

Example

exp10(10) returns 10G.

exp10((1, 2)) returns (-4.16146837, 9.09297427).

Notes

Mappings are retained in the result.

See Also

exp(x), ^ (exponent), log(x), log10(x), and Power.

Formula (Math and AdvMath) Reference 3-99

^ (exponent)

An object that performs an arithmetic exponentiation of two operands.

Use

Use ^ to raise one number to the power of the other number. The two

numbers may be of type Int32, Real, Coord, Waveform, Complex, PComplex,

or Spectrum. The two containers may be of any shape. But if one of the

containers is an array, the other must be either a scalar or an array of the same

size and shape. The result is a container of the highest type, with the same

shape as the operands.

If both operands are of type Coord, they must have their independent

variable(s) match exactly or an error is returned. The exponentiation is only

performed on the dependent (last) variable.

Location

Math =) + - * / =) ^

Example

A scalar raised to an array: 3.0 ^ [1 2 3] returns [3 9 27].

An array raised to a scalar: [1 2 3] ^ 3 returns [1 8 27].

Two arrays: [4 5 6] ^ [1 2 3] returns [4 25 216].

Two Complex scalars: (2,3) ^ (4,5) returns (-0.753046, -0.986429).

Two Coord scalars: coord(4,3) ^ coord(4,2) returns coord(4,9).

Two Coord scalars: coord(1,3) ^ coord(2,5) returns an error.

Notes

If either of the containers is mapped (that is, of type Waveform, Spectrum,

Coord, or a mapped array of any other type), the other container must be

unmapped or have identical mappings. The return value will have the same

mappings as the operands; otherwise an error is returned.

3-100 Formula (Math and AdvMath) Reference

^ (exponent)

See Also

exp(x) and log(x).

Formula (Math and AdvMath) Reference 3-101

exponential regression

An object used to Õt an exponential curve to (x,y) data.

Use

Use the exponential regression to Õt the data to the equation

y = C0 + exp(C1*x), where x is the x coordinate and C0 and C1 are calculated

coeœcients. The exp function is the transcendental number e raised to the

(C1*x) power.

The exponential regression object expects an array of Coord type of input

with one independent variable, that is, an (x,y) pair. If the input array is not

a Coord type, an attempt is made to convert it to Coord. If the input data

is mapped (Waveform, Spectrum, or a mapped array) then the conversion to

Coord uses the mapping information to create the x part of the (x,y) pairs. If

the input data is not mapped (for example, an array), then the x part of the

(x,y) pair is implicitly generated from its position in the array.

Location

AdvMath =) Regression =) exponential

Open View Parameters

The Fit Type Õeld on the open view is used to change the regression type

to linear, logarithmic, exponential, power curve or polynomial

regression. Clicking on the Õeld will bring up a list of the diÃerent regression

types.

Example

See Regression for a Coord conversion example.

3-102 Formula (Math and AdvMath) Reference

exponential regression

Notes

See Regression for general notes on regression.

See Also

linear regression, logarithmic regression, meanSmooth(x,numPts),

movingAvg(x,numPts), polynomial regression, polySmooth(x), and power

curve regression.

Build Coord in the \General Reference" chapter.

Formula (Math and AdvMath) Reference 3-103

factorial(n)

An object used to calculate the factorial of the input number n.

Use

Use factorial(n) to calculate the factorial of the natural

number n. The factorial is deÕned for any natural number n as

n! = (n) * (n-1) * (n-2) . . . (3) * (2) * (1).

The n input may be of any shape and size and of the type Int32, Real, Coord,

or Waveform. For n input of all types the same output type is returned, except

for Int32 which returns a Real type. The n input must not be less than zero.

The factorial(n) operation is only deÕned for integer operands so the

input numbers, while of unique type, are converted to Int32 type before the

calculation is done.

Location

AdvMath =) Probability =) factorial(n)

Example

factorial(6) returns 720 from the multiplication of 6*5*4*3*2*1.

factorial(6.7) returns 720 from the multiplication of 6*5*4*3*2*1. The rule

about converting Real to Int32 forces 6.7 to 6.

Notes

Mappings on the operand are ignored and the output container has the same

mappings as the input.

See Also

beta(x,y), binomial(a,b), comb(n,r), gamma(x), and perm(n,r).

3-104 Formula (Math and AdvMath) Reference

fft(x)

fft(x)

An object to compute the Discrete Fourier Transform on the input data.

Use

Use fft(x) to calculate the Discrete Fourier Transform of the values in x.

The result is a Complex array for Int and Real inputs, or a Spectrum for a

Waveform input, and represents the positive half of the transformed values.

The size of the resultant array will be (N DIV 2)+1, where N is the size of the

input array.

The input x must represent an array of ordered, equally-spaced data. For

non-Waveform inputs, the output will be an unmapped array of Complex

values. For Waveform inputs, the output will be mapped from a minimum

frequency of 0 to a maximum frequency of (1+(N DIV 2))/(Tmax-Tmin), where

N is the size of the input array, and Tmin and Tmax are the mappings of the

input Waveform. Also note that the output will not be normalized.

Location

AdvMath =) Signal Processing =) fft(x)

Example

fft([0 1 2 3 4 5 6 7])

returns

[(28,0) (-4,9.657) (-4,4) (-4,1.657) (-4,0)]

Notes

1. Truncation and Periodicity: A basic assumption in the use of the discrete

Fourier transform is that the given waveform h(t) is periodic. If this is not

the case, then the waveform must be truncated and represented as a periodic

function. For a band-limited periodic function h(t), the waveform must be

truncated at an integer multiple of the period; otherwise, the resulting discrete

and continuous Fourier transform will diÃer considerably in that sidelobes,

frequency leakage, and sharp discontinuities can appear. These diœculties are

Formula (Math and AdvMath) Reference 3-105

fft(x)

often reduced through the use of windows. If the waveform is not band-limited,

one generally must adjust (increase) the truncation interval and use windows

[0,L] to reduce time-domain truncation errors. L is deÕned as the period of

the waveform.

2. Aliasing: The problem of aliasing (frequency folding) occurs when the

sampling interval T is chosen too large. One can expect a degradation in

the performance of the discrete Fourier transform when the sampling rate

is close to the Nyquist sampling rate. If the waveform is not periodic or

not band-limited, increasing the truncation interval[0,L] and decreasing the

sampling interval T can help to control truncation errors and aliasing.

A reference on the Ãt can be found in the book: E. Oran Brigham, The Fast

Fourier Transform and Its Applications, Second Edition, Prentice-Hall, Inc.,

Englewood CliÃs, NJ, 1988. ISBN #0-13-307505-2.

See Also

convolve(a,b) and ifft(x).

3-106 Formula (Math and AdvMath) Reference

floor(x)

floor(x)

An object that returns the rounded-down value of x to the nearest integer of a

value.

Use

x may be any shape and of the types Int32, Real, Coord, or Waveform. The

floor(x) function returns the largest integer (as the same type) less than

or equal to x; that is, the value of x rounded to the next smaller integer, the

integer nearest negative inÕnity.

Location

Math =) Real Parts =) floor(x)

Example

floor([23.0 23.1 23.9 23.5 (-23.5)]) returns [23 23 23 23 -24].

Notes

Mappings are retained in the result.

See Also

abs(x), ceil(x), Complex Parts, fracPart(x), intPart(x), Real Parts, and

round(x).

Formula (Math and AdvMath) Reference 3-107

fracPart(x)

An object that returns the value of the fractional part of x.

Use

Use fracPart(x) to obtain the fractional part of a container. x may be any

shape and of the type Int32, Real, Coord, or Waveform. The fracPart(x)

function returns the fractional part of x with the same sign. It returns x -

intPart(x).

Location

Math =) Real Parts =) fracPart(x)

Example

fracPart([23.0 23.1 23.9 23.5 (-23.5)]) returns [0 0.1 0.9 0.5 -0.5].

Notes

Mappings are retained in the result.

See Also

abs(x), ceil(x), Complex Parts, floor(x), intPart(x), Real Parts, and

round(x).

3-108 Formula (Math and AdvMath) Reference

Freq Distribution

Freq Distribution

A menu item.

Use

Use Freq Distribution to calculate the distribution of values over a range into

a Õxed number of sub-ranges.

magDist(x,from,thru,step)

logMagDist(x,from,thru,logStep)

Location

AdvMath =) Freq Distribution =)

Formula (Math and AdvMath) Reference 3-109

gamma(x)

An object used to calculate the gamma function of the input x.

Use

Use gamma(x) to calculate the gamma function of x. The gamma function is

deÕned as:

(the integral of [t^(x-1) * e^(-t) * dt])

where the integral is evaluated over the range from 0 to inÕnity.

The x input may be of any shape and size and of the type Int32, Real, Coord,

or Waveform. For x input of all types, the same output type is returned,

except for Int32 which returns a Real type.

Location

AdvMath =) Probability =) gamma(x)

Examples

gamma(8) returns (8-1)! = 5040.

gamma(-1) returns an error.

gamma(3.7) returns = 4.17065178379660.

gamma(-3.7) returns = 0.251643995902422.

Notes

The gamma(x) function is not deÕned for non-positive integral values of x.

When x is a positive integer, gamma(x) is deÕned as (x-1)! (factorial).

Mappings on the operand are ignored and the output container has the same

mappings as the input.

See Also

beta(x,y), comb(n,r), factorial(x), and perm(n,r).

3-110 Formula (Math and AdvMath) Reference

Generate

Generate

A menu item.

Use

Use Generate to access the following objects which generate Real

one-dimensional arrays of data with speciÕc values.

ramp(numElem,from,thru)

logRamp(numElem,from,thru)

xramp(numElem,from,thru)

xlogRamp(numElem,from,thru)

Location

Math =) Generate =)

Formula (Math and AdvMath) Reference 3-111

> (greater than)

An object that performs an is greater than operation on two operands.

Use

Use > to determine whether the value(s) of one container is greater than the

value(s) of another container. The two containers may be of type Int32, Real,

Coord, Waveform, Text, or Enum. The two containers may be of any shape.

But if one of the containers is an array, the other must be either a scalar or an

array of the same size and shape. The result is a scalar Int32, with the value 0

or 1. If the Õrst operand is greater than the second, the value of the result is 1;

otherwise the value is 0.

If both operands are of type Coord, their independent variable(s) must be

identical before the operation is even attempted; if not, an error is returned.

Enums are converted to Text for the comparison. Text is compared using

ASCII lexical ordering.

When two arrays are compared to each other, each pair of elements must

satisfy the relational operator for the operation to return 1.

Location

Math =) Relational =) >

Example

A scalar and an array: 3.0 > [1 3 9] returns 0.

An array and a scalar: [5 9 7] > 4 returns 1.

Two arrays: [3 4 7] > [2 3 5] returns 1.

Two arrays: [3 4 3] > [2 3 5] returns 0.

Two Coord scalars: coord(1,3) > coord(1,5) returns 0.

Two Coord scalars: coord(1,3) > coord(2,5) returns Values for

independent variables must match.

Two Text scalars: "too" > "zoo" returns 0.

3-112 Formula (Math and AdvMath) Reference

> (greater than)

Notes

If either of the containers is mapped (that is, of type Waveform, Coord, or a

mapped array of any other type), the other container must be unmapped or

have identical mappings; otherwise an error is returned.

See Also

~= (almost equal to), AND, == (equal to), >= (greater than or equal to),

< (less than), <= (less than or equal to), NOT, != (not equal to), OR,

Relational, and XOR.

Comparator, Conditional, and If/Then/Else in the \General Reference"

chapter.

Formula (Math and AdvMath) Reference 3-113

>= (greater than or equal to)

An object that performs an is greater than or equal to operation on two

operands.

Use

Use >= to determine whether the value(s) of one container is greater than

or equal to the value(s) of another container. The two containers may be of

type Int32, Real, Coord, Waveform, Text, or Enum. The two containers may

be of any shape. But if one of the containers is an array, the other must be

either be a scalar or an array of the same size and shape. The result is a scalar

Int32, with the value 0 or 1. If the Õrst operand is greater than or equal to the

second, the value of the result is 1; otherwise the value is 0.

If both operands are of type Coord, their independent variable(s) must be

identical before the operation is even attempted; if not, an error is returned.

Enums are converted to Text for the comparison. Text is compared using

ASCII lexical ordering.

When two arrays are mapped against each other, each set of elements must

satisfy the relational operator for the operation to return 1.

Location

Math =) Relational =) >=

Example

A scalar and an array: 3.0 >= [1 3 9] returns 0.

An array and a scalar: [4 5 6] >= 4 returns 1.

Two arrays: [3 3 6] >= [2 3 5] returns 1.

Two arrays: [1 4 3] >= [2 3 5] returns 0.

Two Coord scalars: coord(1,3) >= coord(1,5) returns 0.

Two Coord scalars: coord(1,3) >= coord(2,5) returns Values for

independent variables must match.

Two Text scalars: "too" >= "zoo" returns 0.

3-114 Formula (Math and AdvMath) Reference

>= (greater than or equal to)

Notes

If either of the containers is mapped (that is, of type Waveform, Coord, or a

mapped array of any other type), the other container must be unmapped or

have identical mappings; otherwise an error is returned.

See Also

~= (almost equal to), AND, == (equal to), > (greater than), < (less

than), <= (less than or equal to), NOT, != (not equal to), OR, Relational,

and XOR.

Comparator, Conditional, and If/Then/Else in the \General Reference"

chapter.

Formula (Math and AdvMath) Reference 3-115

hamming(x)

An object used to apply a Hamming window to a time series of values.

Use

Use hamming(x) to Õlter the values in x in the same manner as convolving x

with the spectral transform of the Hamming function. This has the eÃect of

suppressing some of the noise due to the tails of the input sequence and the

potential discontinuities they represent when sampling periodic signals.

The input x must be an Array 1D of type Int32, Real, Coord, or a Waveform,

or a Spectrum. The same type is returned, except for Int32, which returns

Real.

If x is a Spectrum, it is Õrst converted to a Waveform using an ifft(x) before

the window is applied. The result of the window is then converted back to type

Spectrum using an fft(x). A Spectrum is returned.

Location

AdvMath =) Signal Processing =) hamming(x)

Example

hamming([1 1 1 1 1 1 1 1]) returns

[0.115 0.364 0.716 0.965 0.965 0.716 0.364 0.115].

Notes

The Hamming function is represented in the time domain as 0.54-

0.46*cos(2*PI*(n+0.5)/N), where n is the position (index) in the array, and

N is the size of the array. The result will be an array of the same type as x and

will have the same mappings as x (if any).

For a discussion of sidelobe levels and coherent gains, see: Ziemer, Tranter,

and Fannin, Signals and Systems , Macmillan Publishing, New York, NY, 1983.

ISBN #0-02-431650-4.

3-116 Formula (Math and AdvMath) Reference

hamming(x)

See Also

bartlet(x), blackman(x), convolve(a,b), fft(x), hanning(x), ifft(x),

and rect(x).

Formula (Math and AdvMath) Reference 3-117

hanning(x)

An object used to apply a Hanning window to a time series of values.

Use

Use hanning(x) to Õlter the values in x in the same manner as convolving x

with the spectral transform of the Hanning function. This has the eÃect of

suppressing some of the noise due to the tails of the input sequence and the

potential discontinuities they represent when sampling periodic signals.

The input x must be an Array 1D of type Int32, Real, Coord, or a Waveform,

or a Spectrum. The same type is returned, except for Int32, which returns

Real.

If x is a Spectrum, it is Õrst converted to a Waveform using an ifft(x) before

the window is applied. The result of the window is then converted back to type

Spectrum using an fft(x). A Spectrum is returned.

Location

AdvMath =) Signal Processing =) hanning(x)

Example

hanning([1 1 1 1 1 1 1 1]) returns

[0.038 0.309 0.691 0.962 0.962 0.691 0.309 0.038].

Notes

The Hanning function is represented in the time domain as 0.5*(1-

cos(2*PI*(n+0.5)/N)), where n is the position (index) in the array, and N is

the size of the array. The result will be an array of the same type as x and will

have the same mappings as x (if any).

For a discussion of sidelobe levels and coherent gains, see: Ziemer, Tranter,

and Fannin, Signals and Systems , Macmillan Publishing, New York, NY, 1983.

ISBN #0-02-431650-4.

3-118 Formula (Math and AdvMath) Reference

hanning(x)

See Also

bartlet(x), blackman(x), convolve(a,b), fft(x), hamming(x), ifft(x),

and rect(x).

Formula (Math and AdvMath) Reference 3-119

hmsToHour(h,m,s)

An object that returns the value of the parameters h, m, and s converted to

hours.

Use

Use hmsToHour(h,m,s) to convert three values, hours, minutes, and seconds,

into hours. h, m, and s can be any shape. If one of the containers is an array,

the others must be either scalar or arrays of the same size and shape. The

result is a container of the highest type, with the same shape as the operands.

h, m, and s can be of type Int32, Real, Coord, or Waveform. Int32 arguments

will return a Real; all others will return the same type. All will return the

same shape as x.

Location

Math =) Time & Date =) hmsToHour(h,m,s)

Example

hmsToHour(1, [0 12 60], 36) returns [1.01 1.21 2.01].

Notes

If any of the input parameters are mapped, then those mappings must be the

same. The resultant container retains the mappings of the input container. If

only one of the inputs is mapped, the resultant container has those mappings.

See Also

dmyToDate(d,m,y), hmsToSec(h,m,s), mday(aDate), month(aDate), now(),

Time & Date, wday(aDate), and year(aDate).

3-120 Formula (Math and AdvMath) Reference

hmsToSec(h,m,s)

hmsToSec(h,m,s)

An object that returns the value of the parameters h, m, and s converted to

seconds.

Use

Use hmsToSec(h,m,s) to convert three values, hours, minutes, and seconds,

into seconds. h, m, and s can be any shape. If one of the containers is an array,

the others must be either scalar or arrays of the same size and shape. The

result is a container of the highest type, with the same shape as the operands.

h, m, and s can be of type Int32, Real, Coord, or Waveform. Int32 arguments

will return a Real; all others will return the same type. All will return the

same shape as x.

Location

Math =) Time & Date =) hmsToSec(h,m,s)

Example

hmsToSec(1,[2 4 6],3) returns [3723, 3843, 3963].

Notes

If any of the input parameters are mapped, then those mappings must be the

same. The resultant container retains the mappings of the input container. If

only one of the inputs is mapped, the resultant container has those mappings.

See Also

dmyToDate(d,m,y), hmsToHour(h,m,s), mday(aDate), month(aDate), now(),

Time & Date, wday(aDate), and year(aDate).

Formula (Math and AdvMath) Reference 3-121

Hyper Bessel

A menu item.

Use

Use Hyper Bessel to calculate the modiÕed (hyperbolic) bessel function of the

input data.

i0(x)

i1(x)

k0(x)

k1(x)

Location

AdvMath =) Hyper Bessel =)

See Also

Bessel.

3-122 Formula (Math and AdvMath) Reference

Hyper Trig

Hyper Trig

A menu item.

Use

Use Hyper Trig to access the following objects which perform hyperbolic

trigonometric functions on data.

sinh(x)

cosh(x)

tanh(x)

coth(x)

asinh(x)

acosh(x)

atanh(x)

acoth(x)

Location

Math =) Hyper Trig =)

See Also

Trig.

Trig Mode in the \General Reference" chapter.

Formula (Math and AdvMath) Reference 3-123

i0(x)

An object used to calculate the modiÕed (hyperbolic) Bessel function of x of

the Õrst kind of order zero.

Use

Use i0(x) to Õnd the modiÕed (hyperbolic) Bessel function of x of the Õrst

kind of order zero. The x input may be of any size and shape and of the type

Int32, Real, Coord, or Waveform. For all x input types, the same output type

is returned, except for Int32 which returns a Real type. For Coord input types,

the operation is done on the dependent variable.

Location

AdvMath =) Hyper Bessel =) i0(x)

Example

i0(1) returns 1.26606587775200.

Notes

Mappings on the operand are ignored and the output container has the same

mappings as the input.

See Also

i1(x), k0(x), and k1(x).

3-124 Formula (Math and AdvMath) Reference

i1(x)

i1(x)

An object used to calculate the modiÕed (hyperbolic) Bessel function of x of

the Õrst kind of order one.

Use

Use i1(x) to Õnd the modiÕed (hyperbolic) Bessel function of x of the Õrst

kind of order one. The x input may be of any size and shape and of the type

Int32, Real, Coord, or Waveform. For all x input types, the same output type

is returned, except for Int32 which returns a Real type. For Coord input types,

the operation is done on the dependent variable.

Location

AdvMath =) Hyper Bessel =) i1(x)

Example

i1(1) returns 0.565159103992485.

Notes

Mappings on the operand are ignored and the output container has the same

mappings as the input.

See Also

i0(x), k0(x), and k1(x).

Formula (Math and AdvMath) Reference 3-125

identity(x)

An object used to return the identity matrix.

Use

Use identity(x) to return the identity matrix that is the same size as the

square input matrix. The x input must be a square matrix and of the type

Int32, Real, Complex or PComplex. For all x input types the same output type

is returned. A square matrix has the same number of rows as columns.

Location

AdvMath =) Matrix =) identity(x)

Example

Where x is a square matrix [[1 2] [3 4]], identity(x) returns

[[1 0] [0 1]].

Where x is the complex square matrix [[(1,1) (2,2)] [(3,3) (4,4)]],

identity(x) returns [[(1,0) (0,0)] [(0,0) (1,0)]].

Notes

Mappings on the operand are ignored and the output container has the same

mappings as the input.

See Also

det(x), inverse(x), and transpose(x).

3-126 Formula (Math and AdvMath) Reference

ifft(x)

ifft(x)

An object to compute the Inverse Discrete Fourier Transform on the input

data.

Use

Use ifft(x) to calculate the Inverse Discrete Fourier Transform of the

values in x. The input x should be the positive half of a symmetric Complex,

PComplex, or Spectral sequence. The result is a Real array for Complex

or PComplex inputs, or a Waveform, for a Spectrum input. The size of the

resultant array will be 2*(N-1), where N is the size of the input array (which

should be an odd-count sequence).

For non-Spectrum inputs, the output will be an unmapped array of Real

values. For Spectrum inputs, the mapping must be linear (not log), and

Fmin must be 0. The output will be mapped from a minimum time of 0 to a

maximum time of N/(Fmax-Fmin), where N is the size of the input array, and

Fmin and Fmax are the mappings of the input Spectrum. Also note that the

output will not be normalized.

It is assumed that the values of x represent data that has not been normalized.

Location

AdvMath =) Signal Processing =) ifft(x)

Example

ifft([(3.5,0) (-1,2.414) (-1,1) (-1,0.414) (-1,0)]) returns

[0 1 2 3 4 5 6 7].

Notes

1. Truncation and Periodicity: A basic assumption in the use of the discrete

Fourier transform is that the given waveform h(t) is periodic. If this is not

the case, then the waveform must be truncated and represented as a periodic

function. For a band-limited periodic function h(t), the waveform must be

truncated at an integer multiple of the period; otherwise, the resulting discrete

and continuous Fourier transform will diÃer considerably since sidelobes,

Formula (Math and AdvMath) Reference 3-127

ifft(x)

frequency leakage, and sharp discontinuities can appear. These diœculties are

often reduced through the use of windows. If the waveform is not band-limited,

you generally must increase the truncation interval and use windows [0,L]

to reduce time-domain truncation errors. L is deÕned as the period of the

waveform.

2. Aliasing: The problem of aliasing (frequency folding) occurs when the

sampling interval T is chosen too large. One can expect a degradation in

the performance of the discrete Fourier transform when the sampling rate is

close to the Nyquist sampling rate. If the waveform is not periodic or not

band-limited, increasing the truncation interval [0,L] and decreasing the

sampling interval T can help to control truncation errors and aliasing.

A reference on the iÃt can be found in the book: E. Oran Brigham, The Fast

Fourier Transform and Its Applications, Second Edition, Prentice-Hall, Inc.,

Englewood CliÃs, NJ, 1988. ISBN #0-13-307505-2.

See Also

fft(x).

3-128 Formula (Math and AdvMath) Reference

im(x)

im(x)

An object that returns the imaginary part of a Complex number x.

Use

Use im(x) to extract the imaginary part of a Complex number x. x can be any

shape and of types Int32, Real, Coord, Waveform, Complex, PComplex, or

Spectrum. For types Int32, Real, Coord, and Waveform, the same type with

value(s) of zero is returned. For types Complex, PComplex, and Spectrum,

im(x) returns a Real container with the value of the imaginary part of the

Complex number. (PComplex is Õrst converted to Complex.)

Location

Math =) Complex Parts =) im(x)

Example

im((1,2)) returns 2.

im((1,@90)), with Trig Mode in Degrees, returns 1.

Notes

Mappings are retained in the result.

See Also

conj(x), j(x), mag(x), phase(x), re(x), and Real Parts.

Build Complex and UnBuild Complex in the \General Reference" chapter.

Formula (Math and AdvMath) Reference 3-129

init(x,val)

An object used to initialize an array to a speciÕc value.

Use

Use init(x,val) to initialize an input array x to a value of val. The x input

may be of any size and shape and of the type Int32, Real, Coord, Waveform,

Complex, PComplex, Spectrum, or Text. For all x input types, the same

output type is returned. The second val parameter must be of the same type

or be able to be converted to the same type as the x input value.

If the input x is an array then the val init value parameter can be a Scalar

value or an array. If val is an array, it must have the same number of

dimensions and size as the x input. That is, if x is an Array 1D then val can

either be a Scalar or an Array 1D of the same size.

Location

AdvMath =) Array =) init(x,val)

Example

init(a,5) initializes the input array to a value of 5.

init(a,[1 2 3]) initializes an input array of three elements to the values [1 2

3].

Notes

The init value must be the same type as the input array or be able to be

converted to the same type. That is, you cannot initialize a real array to a

complex initial value because a complex number cannot be converted to a real

number.

The mapping on the output container is the same as the input val.

3-130 Formula (Math and AdvMath) Reference

init(x,val)

See Also

ramp(numElem,from,thru) and randomize(x,low,high).

Alloc Array in the \General Reference" chapter.

Formula (Math and AdvMath) Reference 3-131

integral(x)

An object used to calculate the integral across all values of the input data

using Simpson's 1/3 rule.

Use

Use integral(x) to calculate the numerical approximation of the indeÕnite

integral of a set of ordered, equally-spaced values (x). The result is an array

of the same size and shape as the input x. The result is the same type as x

except for Int32. Int32 returns a Real and has the same mappings (if any) as

the input x.

Location

AdvMath =) Calculus =) integral(x)

Example

integral([0 1 2 3 3 2 1 0]) returns

[0 0.5 2 4.5 7.667 10.17 11.67 12.17].

Notes

The integral(x) function is applicable to one-dimensional arrays of simple

numeric values (Int32, Real, Waveform) and lists of two-dimensional (two

Õeld) coordinates that represent equally spaced ordered data. For mapped

arrays, the mappings of the resultant array will be identical to those of x.

For coordinate lists, the values of the independent Õeld (Õrst Õeld) of each

coordinate will be identical to those of the corresponding values in x.

For unmapped arrays, it is assumed that the data is equally spaced and

ordered, and a value of 1 is assumed for the interval dx between points. For

mapped arrays, the operation is performed with the interval value dx equal

to (Xmax-Xmin)/N and is thus automatically scaled appropriately. For a

coordinate list, the independent (Õrst Õeld) values are Õrst checked to be sure

that they are ordered and equally spaced, then the operation is performed on

the dependent (second Õeld) values using the previously determined spacing as

the value for dx.

3-132 Formula (Math and AdvMath) Reference

integral(x)

If an unmapped array is used, but it is known otherwise that the interval

between points is some value dx, then the correct value for the operation can

be obtained by multiplying the result of integral(x) by the known dx value.

When the values represent noisy data, the result of integral(x) can often

be improved (in a pragmatic sense) by Õrst Õltering or smoothing the data.

Smoothing removes much of the unwanted noise which is superimposed on the

underlying values. See the polySmooth(x) function and related smoothing

functions for examples.

See Also

defIntegral(x,a,b).

Formula (Math and AdvMath) Reference 3-133

intPart(x)

An object that returns the value of the integer part of x.

Use

Use intPart(x) to obtain the integer part of a container. x may be any shape

and of the type Int32, Real, Coord, or Waveform. The intPart(x) function

returns the integer portion of the data. If the data is less than zero, it returns

the ceil(x); otherwise it returns the floor(x). The result will have the same

mappings as x.

Location

Math =) Real Parts =) intPart(x)

Example

intPart([23.0 23.1 23.9 23.5 (-23.5)]) returns [23 23 23 23 -23].

Notes

Mappings are retained in the result.

See Also

abs(x), ceil(x), Complex Parts, floor(x), fracPart(x), Real Parts, and

round(x).

3-134 Formula (Math and AdvMath) Reference

inverse(x)

inverse(x)

An object used to calculate the inverse of a square matrix.

Use

Use inverse(x) to calculate the inverse of the square matrix x. The x

input must be a square matrix shape and of the type Int32, Real, Complex

or PComplex. For x input of all types, the same output type and shape is

returned, except for Int32, which returns a Real. A square matrix has the same

number of rows as columns.

Location

AdvMath =) Matrix =) inverse(x)

Example

Where x is a square matrix [[1 2] [3 4]], inverse(x) returns

[[-2 1] [1.5 -0.5]].

Notes

Mappings on the operand are ignored and the output container has the same

mappings as the input.

See Also

det(x), identity(x), and transpose(x).

Formula (Math and AdvMath) Reference 3-135

j(x)

An object that returns a Complex number with x as the imaginary part.

Use

Use j(x) to generate a Complex number of the same shape as x, with x as the

imaginary part and 0 as the real part. x may be any shape and of the type

Int32, Real, or Waveform.

Location

Math =) Complex Parts =) j(x)

Example

j(5) returns the Complex number (0,5).

Notes

Mappings are retained in the result. To return a complex number with x as

the real part, use the type promotions on input terminals to promote Real to

Complex.

See Also

Complex Parts, conj(x), im(x), mag(x), phase(x), re(x), and Real Parts.

Build Complex and UnBuild Complex in the \General Reference" chapter.

3-136 Formula (Math and AdvMath) Reference

j0(x)

j0(x)

An object used to calculate the Bessel function of x of the Õrst kind of order

zero.

Use

Use j0(x) to Õnd the Bessel function of x of the Õrst kind of order zero. The

x input may be of any size and shape and of the type Int32, Real, Coord, or

Waveform. For x input of all types, the same output type is returned, except

for Int32 which returns a Real type. For Coord input types, the operation is

done on the dependent variable.

Location

AdvMath =) Bessel =) j0(x)

Example

j0(10) returns -0.245935764451348.

Notes

Mappings on the operand are ignored and the output container has the same

mappings as the input.

See Also

Ai(x), Bi(x), j1(x), jn(x,n), y0(x), y1(x), and yn(x,n).

Formula (Math and AdvMath) Reference 3-137

j1(x)

An object used to calculate the Bessel function of x of the Õrst kind of order

one.

Use

Use j1(x) to Õnd the Bessel function of x of the Õrst kind of order one. The

x input may be of any size and shape and of the type Int32, Real, Coord, or

Waveform. For x input of all types, the same output type is returned, except

for Int32 which returns a Real type. For Coord input types, the operation is

done on the dependent variable.

Location

AdvMath =) Bessel =) j1(x)

Example

j1(1) returns 0.440050585744933.

Notes

Mappings on the operand are ignored and the output container has the same

mappings as the input.

See Also

Ai(x), Bi(x), j0(x), jn(x,n), y0(x), y1(x), and yn(x,n).

3-138 Formula (Math and AdvMath) Reference

jn(x,n)

jn(x,n)

An object used to calculate the Bessel function of x of the Õrst kind of order n.

Use

Use jn(x,n) to Õnd the Bessel function of x of the Õrst kind of order n. The

x input may be of any size and shape and of the type Int32, Real, Coord, or

Waveform. For x input of all types, the same output type is returned, except

for Int32 which returns a Real type. For Coord input types, the operation is

done on the dependent variable.

The n parameter must be of Int32 type or be able to be converted to Int32.

The n parameter also has to be a Scalar in shape or the same shape as x.

Location

AdvMath =) Bessel =) jn(x,n)

Example

jn(1,2) returns 0.114903484931900.

Notes

If both of the inputs are mapped, then the mappings must be the same. The

return value has the same mappings as the input if either input is mapped. If

neither of the inputs is mapped, then the output is unmapped.

See Also

Ai(x), Bi(x), j0(x), j1(x), y0(x), y1(x), and yn(x,n).

Formula (Math and AdvMath) Reference 3-139

k0(x)

An object used to calculate the modiÕed (hyperbolic) Bessel function of x of

the second kind of order zero.

Use

Use k0(x) to Õnd the modiÕed (hyperbolic) Bessel function of x of the second

kind of order zero. The x input may be of any size and shape and of the type

Int32, Real, Coord, or Waveform. For all x input types, the same output type

is returned, except for Int32 which returns a Real type. For Coord input types,

the operation is done on the dependent variable.

Location

AdvMath =) Hyper Bessel =) k0(x)

Example

k0(1) returns 0.421024438240708.

Notes

Mappings on the operand are ignored and the output container has the same

mappings as the input.

The x argument must be positive.

See Also

i0(x), i1(x), and k1(x).

3-140 Formula (Math and AdvMath) Reference

k1(x)

k1(x)

An object used to calculate the modiÕed (hyperbolic) Bessel function of x of

the second kind of order one.

Use

Use k1(x) to Õnd the modiÕed (hyperbolic) Bessel function of x of the second

kind of order one. The x input may be of any size and shape and of the type

Int32, Real, Coord, or Waveform. For all x input types, the same output type

is returned, except for Int32 which returns a Real type. For Coord input types,

the operation is done on the dependent variable.

Location

AdvMath =) Hyper Bessel =) k1(x)

Example

k1(1) returns 0.601907230197234.

Notes

Mappings on the operand are ignored and the output container has the same

mappings as the input.

The x argument must be positive.

See Also

i0(x), i1(x), and k0(x).

Formula (Math and AdvMath) Reference 3-141

< (less than)

An object that performs an is less than operation on two operands.

Use

Use < to determine whether the value(s) of one container is less than the

value(s) of another container. The two containers may be of type Int32, Real,

Coord, Waveform, Text, or Enum. The two containers may be of any shape.

But if one of the containers is an array, the other must be either a scalar or an

array of the same size and shape. The result is a scalar Int32, with the value

0 or 1. If the Õrst operand is less than the second, the value of the result is 1;

otherwise the value is 0.

If both operands are of type Coord, their independent variable(s) must be

identical before the operation is even attempted; if not, an error is returned.

Enums are converted to Text for the comparison. Text is compared using

ASCII lexical ordering.

When two arrays are compared to each other, each pair of elements must

satisfy the relational operator for the operation to return 1.

Location

Math =) Relational =) <

Example

A scalar and an array: 3.0 < [1 3 9] returns 0.

An array and a scalar: [1 2 3] < 4 returns 1.

Two arrays: [1 2 3] < [2 3 5] returns 1.

Two arrays: [1 4 3] < [2 3 5] returns 0.

Two Coord scalars: coord(1,3) < coord(1,5) returns 1.

Two Coord scalars: coord(1,3) < coord(2,5) returns Values for

independent variables must match.

Two Text scalars: "too" < "zoo" returns 1.

3-142 Formula (Math and AdvMath) Reference

< (less than)

Notes

If either of the containers is mapped (that is, of type Waveform, Coord, or a

mapped array of any other type), the other container must be unmapped or

have identical mappings; otherwise an error is returned.

See Also

~= (almost equal to), AND, == (equal to), > (greater than), >= (greater

than or equal to), <= (less than or equal to), NOT, != (not equal to), OR,

Relational, and XOR.

Comparator, Conditional, and If/Then/Else in the \General Reference"

chapter.

Formula (Math and AdvMath) Reference 3-143

<= (less than or equal to)

An object that performs an is less than or equal to operation on two operands.

Use

Use <= to determine whether the value(s) of one container is less than or equal

to the value(s) of another container. The two containers may be of type Int32,

Real, Coord, Waveform, Text, or Enum. The two containers may be of any

shape. But if one of the containers is an array, the other must be either a

scalar or an array of the same size and shape. The result is a scalar Int32, with

the value 0 or 1. If the Õrst operand is less than or equal to the second, the

value of the result is 1; otherwise the value is 0.

If both operands are of type Coord, their independent variable(s) must be

identical before the operation is even attempted; if not, an error is returned.

Enums are converted to Text for the comparison. Text is compared using

ASCII lexical ordering.

When two arrays are mapped against each other, each set of elements must

satisfy the relational operator for the operation to return 1.

Location

Math =) Relational =) <=

Example

A scalar and an array: 3.0 <= [1 3 9] returns 0.

An array and a scalar: [1 2 4] <= 4 returns 1.

Two arrays: [1 2 3] <= [2 3 3] returns 1.

Two arrays: [1 4 3] <= [2 3 5] returns 0.

Two Coord scalars: coord(1,3) <= coord(1,5) returns 1.

Two Coord scalars: coord(1,3) <= coord(2,5) returns Values for

independent variables must match.

Two Text scalars: "too" <= "zoo" returns 1.

3-144 Formula (Math and AdvMath) Reference

<= (less than or equal to)

Notes

If either of the containers is mapped (that is, of type Waveform, Coord, or a

mapped array of any other type), the other container must be unmapped or

have identical mappings; otherwise an error is returned.

See Also

~= (almost equal to), AND, == (equal to), > (greater than), >= (greater

than or equal to), < (less than), NOT, != (not equal to), OR, Relational,

and XOR.

Comparator, Conditional, and If/Then/Else in the \General Reference"

chapter.

Formula (Math and AdvMath) Reference 3-145

linear regression

An object used to Õt a linear regression line to (x,y) data.

Use

Use the linear regression to Õt a straight line to the data using the equation

y = C0 + C1*x, where x is the x coordinate and C0 and C1 are calculated

coeœcients. This type of regression should be thought of as Õtting the best

straight line through the data.

The linear regression object expects an array of Coord type of input with one

independent variable, that is, an (x,y) pair. If the input array is not a Coord

type, an attempt is made to convert it to Coord. If the input data is mapped

(Waveform, Spectrum, or a mapped array) then the conversion to Coord uses

the mapping information to create the x part of the (x,y) pairs. If the input

data is not mapped (for example, an array), then the x part of the (x,y) pair

is implicitly generated from its position in the array.

Location

AdvMath =) Regression =) linear

Open View Parameters

The Fit Type Õeld on the open view is used to change the regression type

to linear, logarithmic, exponential, power curve or polynomial

regression. Clicking on the Õeld will bring up a list of the diÃerent regression

types.

Example

See Regression for a Coord conversion example.

3-146 Formula (Math and AdvMath) Reference

linear regression

Notes

See Regression for general notes on regression.

See Also

exponential regression, logarithmic regression, meanSmooth(x,numPts),

movingAvg(x,numPts), polynomial regression, polySmooth(x), and power

curve regression.

Build Coord in the \General Reference" chapter.

Formula (Math and AdvMath) Reference 3-147

log(x)

An object that returns the natural logarithm of the value of x.

Use

Use log(x) to generate the natural logarithm (base e) of a number x. x can be

any shape and of type Int32, Real, Coord, Waveform, Complex, PComplex, or

Spectrum. Int32 arguments will return a Real; all others will return the same

type. All will return the same shape as x.

Location

Math =) Power =) log(x)

Example

log([10 2]) will return [2.302585092994 0.693147180559945].

log((1,2)) will return (0.804718956, 1.10714872).

Notes

Mappings are retained in the result.

See Also

exp(x), exp10(x), ^ (exponent), log10(x), and Power.

3-148 Formula (Math and AdvMath) Reference

log10(x)

log10(x)

An object that returns the common logarithm of the value of x.

Use

Use log10(x) to generate the common logarithm (base 10) of a number x.

x can be any shape and of type Int32, Real, Coord, Waveform, Complex,

PComplex, or Spectrum. Int32 arguments will return a Real; all others will

return the same type. All will return the same shape as x.

Location

Math =) Power =) log10(x)

Example

log10([10 2]) will return [1 0.301029995663981].

log10((1,2)) will return [0.349485, 0.480828579].

Notes

Mappings are retained in the result.

See Also

exp(x), exp10(x), ^ (exponent), log(x), and Power.

Formula (Math and AdvMath) Reference 3-149

logarithmic regression

An object used to Õt a logarithmic curve to data.

Use

Use the logarithmic regression to Õt the data to the equation:

y = C0 + C1*log(x)

where x is the x coordinate and C0 and C1 are calculated coeœcients. The log

function is the natural logarithm. The input data (x) must always be greater

than zero.

The logarithmic regression object expects an array of Coord type of input with

one independent variable, that is, an (x,y) pair. If the input array is not a

Coord type, an attempt is made to convert it to Coord. If the input data is

mapped (Spectrum or a mapped array) then the conversion to Coord uses the

mapping information to create the x part of the (x,y) pairs. If the input data

is not mapped (for example, an array), then the x part of the (x,y) pair is

implicitly generated from its position in the array.

Location

AdvMath =) Regression =) logarithmic

Open View Parameters

The Fit Type Õeld on the open view is used to change the regression type

to linear, logarithmic, exponential, power curve or polynomial

regression. Clicking on the Õeld will bring up a list of the diÃerent regression

types.

Example

See Regression for a Coord conversion example.

3-150 Formula (Math and AdvMath) Reference

logarithmic regression

Notes

See Regression for general notes on regression.

This function will not work for unmapped arrays. Unmapped arrays are

converted to Coord starting with x=0, which will fail in the log function. This

function will not work with a Waveform for the same reason.

See Also

exponential regression, meanSmooth(x,numPts), movingAvg(x,numPts),

polynomial regression, polySmooth(x), and power curve regression.

Build Coord in the \General Reference" chapter.

Formula (Math and AdvMath) Reference 3-151

Logical

A menu item.

Use

Use Logical to access the following objects which perform logical operations

on operands:

AND

OR

XOR

NOT

Location

Math =) Logical =)

Notes

If logic requirements are met, a 1 is returned. If logic requirements are not

met, a 0 is returned.

Note that the return value is of type Int32 and is the same shape as the

operands. This is diÃerent than the conditionals, such as ==, that always

return a scalar.

The logical operators are deÕned for type Text only in the sense of whether the

string is null or not. That is, "zoo" AND "" (null string) is logically false since

the second string is null. Remember that when comparing a Text type to a

non-string type, the latter is promoted to a Text type. This means that "zoo"

AND 0 is true since the Real 0 is promoted to the string "0" and, since both

strings are non-null, the AND expression is true and returns 1.

See Also

Relational.

Conditional and If/Then/Else in the \General Reference" chapter.

3-152 Formula (Math and AdvMath) Reference

logMagDist(x, from,thru,logStep)

logMagDist(x, from,thru,logStep)

An object used to calculate the distribution of numbers in the input container

given a logarithmic distribution.

Use

Use logMagDist(x,from,thru,logStep) to calculate a distribution of the

log10 values of the values in the input array. The distribution is done in the

range of from to thru by a size of logStep. The logStep parameter is the

sub-range size in the log10 domain into which the log values are sorted (for

example, a logStep of 0.2 would be equivalent to 5 sub-ranges per decade).

The x input may be of any size and of the type Int32, Real, Coord, Waveform,

Complex, PComplex, or Spectrum. For Complex, PComplex, and Spectrum

type inputs, the magnitude of the complex number is calculated Õrst, then

that magnitude is used in determining the frequency distribution. The x input

shape must be an Array.

Since log10(x) is not deÕned for values of x<=0, the input values should be

positive.

For input of all types, a Real Array 1D is returned. Each array element

represents how many of the input value will Õt in each distribution range.

The from, thru and logStep parameters must be Scalar in shape and of Real

type or be able to be converted to Real.

The from parameter must be less than the thru parameter.

The logStep parameter must be greater than zero.

Location

AdvMath =) Freq Distribution =) logMagDist(x,from,thru,logStep)

Formula (Math and AdvMath) Reference 3-153

logMagDist(x, from,thru,logStep)

Example

logMagDist(x,1,100,1), where x is the array:

[1 2 3 10 40 50 100 100 100]

returns the array [3 6]. In this example there are 2 sub-ranges ranging from

1 to 2 by 1. The output array shows how many of the input numbers fall into

each range.

Notes

The sub-ranges for the distribution are determined in the following manner.

Note that the log10 of "from" and "thru" parameters is calculated before

determining the range distribution.

Distribution of Numbers Accepted

Range Range

Minimum

range Range Maximum

1. "from" parm <= range1 < "from" parm + "step" parm (range1limit)

2. range1limit <= range2 < range1limit + "step" parm (range2limit)

3. range2limit <= range3 < range2limit + "step" parm (range3limit)

.

n-1 range(n-

2)limit

<= range(n-1) <= "thru" parm

Mappings on the operands are ignored and the return value is not mapped.

See Also

magDist(x,from,thru,step).

3-154 Formula (Math and AdvMath) Reference

logRamp (numElem,from, thru)

logRamp (numElem,from, thru)

An object that generates a logarithmically ramped array.

Use

Use logRamp(numElem,from,thru) to generate a Real one-dimensional array

of length numElem, with the values logarithmically ramped from from to thru.

numElem must be a scalar container which is, or can be converted to, Int32

and with a value greater than zero. from and thru must be scalar containers

which are, or can be converted to, Real. If from is less than thru the ramping

is positive; otherwise it automatically ramps negatively. Both from and thru

must have values greater than zero.

Location

Math =) Generate =) logRamp(numElem,from,thru)

Example

logRamp(3, 1, 100) returns a 1D Array with values [1 10 100].

Notes

The return value has no mappings.

The algorithm for generating values is:

Y[I]=exp10(log10(from)+I*((log10(thru)-log10(from))/numElem-1))

for I=0..numElem-1

This has the eÃect that the last element in the resultant array has the value

thru.

See Also

Alloc Real and ramp(numElem,from,thru).

Formula (Math and AdvMath) Reference 3-155

mag(x)

An object that returns the magnitude of a PComplex number x.

Use

Use mag(x) to extract the magnitude of a PComplex number x. x can be any

shape and of type Int32, Real, Coord, Waveform, Complex, PComplex, or

Spectrum. For types Int32, Real, Coord, and Waveform, the same type with

the same value(s) is returned. For types Complex, PComplex, and Spectrum,

mag(x) returns a Real container with the value of the magnitude of the

PComplex number. (Complex is Õrst converted to PComplex.)

Location

Math =) Complex Parts =) mag(x)

Example

mag((1,@45)) returns 1.

Notes

Mappings are retained in the result.

See Also

conj(x), im(x), j(x), phase(x), re(x), and Real Parts.

Build Complex, Trig Mode, and UnBuild Complex in the \General Reference"

chapter.

3-156 Formula (Math and AdvMath) Reference

magDist(x,from, thru,step)

magDist(x,from, thru,step)

An object used to calculate the distribution of numbers in the input container.

Use

Use magDist(x,from,thru,step) to calculate a distribution of numbers in the

input array. The distribution is done in the range of from to thru by a size of

step. The step parameter is the size of the range of the sub-array that the

numbers will go into.

The x input may be of any size and of the type Int32, Real, Coord, Waveform,

Complex, PComplex, or Spectrum. For Complex, PComplex, and Spectrum

type inputs, the magnitude of the complex number is calculated Õrst, then that

magnitude is used to calculate the frequency distribution. The x input shape

must be an Array.

For input of all types, a Real Array 1D is returned. Each array element

represents how many of the input values will Õt in each distribution range.

The from, thru and step parameters must be Scalar in shape and of Real type

or be able to be converted to Real.

The from parameter must be less than the thru parameter.

The step parameter must be greater than zero.

Location

AdvMath =) Freq Distribution =) magDist(x,from,thru,step)

Example

magDist(x,1,5,1), where x is the array [1 2 3 4 5 5 3 3 3 2 2 2], returns the

array [1 4 4 3]. In this example there are four sub-ranges ranging from 1 to 5

by 1. The output array shows how many of the input numbers fall into each

sub-range.

Formula (Math and AdvMath) Reference 3-157

magDist(x,from, thru,step)

Notes

The sub-ranges for the distribution are determined in the following manner:

Distribution of Numbers Accepted

Range Range

Minimum

range Range Maximum

1. "from" parm <= range1 < "from" parm + "step" parm (range1limit)

2. range1limit <= range2 < range1limit + "step" parm (range2limit)

3. range2limit <= range3 < range2limit + "step" parm (range3limit)

.

n-1 range(n-

2)limit

<= range(n-1) <= "thru" parm

Mappings on the operands are ignored and the return value is not mapped.

See Also

logMagDist(x,from,thru,logStep).

3-158 Formula (Math and AdvMath) Reference

matDivide(numer, denom)

matDivide(numer, denom)

This object will divide two matrices A and B. The matDivide(numer,denom)

operation is deÕned in algebraic terms as A/B; but in matrix (linear algebraic)

terms, it is deÕned as inv(B)*A.

Use

Use the matDivide(numer,denom) to divide one matrix into another. Given

the linear system BX=A, where the B and A matrices are known, solve for the

solution matrix X. In algebraic terms the solution is to solve for X by dividing

A by B: X = A/B. But, by solving the system of equations with linear algebraic

matrix rules, the operation is really X = inv(B)*A. This operation is useful to

Õnd the solution of a linear system of n equations in n unknowns.

If B is an n x n (square) matrix, then the linear system BX = A is a system

of n equations in n unknowns. Suppose that B is non-singular. Then inv(B)

(inverse of B) exists and multiplying BX = A by inv(B) on both sides, obtains X

= inv(B)*A.

The solution to the multiplication of inv(B)*A is the solution to the given

linear system. If B is nonsingular, then there is a unique solution to the system.

Location

AdvMath =) Matrix =) matDivide(numer,denom)

Example

matDivide(numer,denom), where A is an 3x3 matrix

[[1 1 1] [0 2 3] [5 5 1]] and B is a 3x1 matrix [[8] [24] [8]],

returns a 3x1 matrix [[0] [0] [8]].

Notes

Mappings on the operand are ignored and the return value is not mapped.

matDivide(numer,denom) uses the inverse of B; hence, B must be a square

matrix. The rules for matMultiply(A,B) apply to the inv(B) * A operation.

Formula (Math and AdvMath) Reference 3-159

matDivide(numer, denom)

See Also

/ (divide) and matMultiply(A,B).

3-160 Formula (Math and AdvMath) Reference

matMultiply(A,B)

matMultiply(A,B)

An object used to multiply two matrices together according to linear Algebra

rules.

Use

Use matMultiply(A,B) to multiply together the two input matrices A and B.

Let A be an m x p matrix and B be a p x n matrix. The matMultiply of A and

B is a new matrix, Z, that is an m x n matrix. Notice that the multiplication is

deÕned if and only if the matrices are of the sizes where A is an m x p matrix

and B is a p x n matrix (that is, where the number of rows of the second matrix

equals the number of columns of the Õrst).

The input matrices must be of matrix shape and of the type Int32, Real,

Complex or PComplex. For all input types the same output type is returned,

except for Int32 which returns a Real type. If the two matrices are not of the

same type, they lower type matrix is promoted to the higher type and the

return value is of the higher type.

Location

AdvMath =) Matrix =) matMultiply(A,B)

Example

matMultiply(A,B), where A is an 2x1 matrix [[3] [1]] and B is a 1x2

matrix [2 4], returns a 2x2 matrix [[6 12] [2 4]].

Notes

Mappings on the operand are ignored and the return value is not mapped.

See Also

matDivide(numer,denom) and * (multiply).

Formula (Math and AdvMath) Reference 3-161

Matrix

A menu item.

Use

Use the Matrix operations to calculate common linear algebra operations on

matrices.

det(x)

inverse(x)

transpose(x)

identity(x)

minor(x,row,col)

cofactor(x,row,col)

matMultiply(A,B)

matDivide(numer,denom)

Location

AdvMath =) Matrix =)

3-162 Formula (Math and AdvMath) Reference

max(x)

max(x)

An object used to return the maximum value in the input container.

Use

Use max(x) to return the maximum value in the container.

The x input may be of any size and shape and of the type Int32, Real, Coord,

Waveform, or Text. For x input of all types except Waveform, the same output

type is returned, but is Scalar in shape. A Waveform input type returns a

Real Scalar. For Coord input types, the operation is done on the dependent

variable. For Text input types, the max(x) text string is the one that is the

highest lexically ordered string.

Location

AdvMath =) Statistics =) max(x)

Example

max(x), where x is the array [5 34 1 54 6 2 9 7 16 42], returns 54.

Notes

Mappings on the operand are ignored.

See Also

maxIndex(x), maxX(x), mean(x), median(x), min(x), mode(x), rmx(x),

sdev(x), and vari(x).

Formula (Math and AdvMath) Reference 3-163

maxIndex(x)

An object used to return the index in the input array of the largest element.

Use

Use maxIndex(x) to return the index of the largest element in a 1D array.

The x input must be of Array 1D shape and of the type Int32, Real, Coord,

Waveform, or Text. For all x input types, an Int32 number representing the

index of the largest element is returned.

Location

AdvMath =) Data Filtering =) maxIndex(x)

Example

Applying the maxIndex(x) to an array, where x is the array [.1, .4, .6, .9]

returns 3 because .9 is the largest element of the array.

maxIndex(x) of ["Ken" "Sue" "Randy" "Bill" "Doug"] returns 1 because

"Sue" is the highest lexically ordered term.

Notes

Note that array indices start with zero.

Mappings on the operand are ignored.

See Also

max(x), maxX(x), min(x), minIndex(x), and minX(x).

3-164 Formula (Math and AdvMath) Reference

maxX(x)

maxX(x)

An object used to return the x value of a maximum point of the input Array

1D where the array is mapped.

Use

Use maxX(x) to return the Xindex of the largest y element in a 1D (linear)

array. The x input must be of Array 1D shape and of the type Int32, Real,

Coord, Waveform, or Text. For x input of all types, a Real Scalar container is

returned.

If the data is mapped, the value returned is the x value corresponding to the

maximum y value of the input data. The x value is calculated using the array

mappings. If the data is not mapped, then the value returned is the index

in the array of the maximum y value. That is, it will return the (implicit)

position in the array of maximum x value.

The Coord type returns the independent variable x at the maximum y value.

This function is only useful for mapped data or Coord types, as it is the same

as maxIndex(x) for unmapped data.

Location

AdvMath =) Data Filtering =) maxX(x)

Example

Take the maxX(x) of a sine waveform type that has 256 points and is mapped

over 0 to 20 milliseconds. The return value is .009219.

Take the maxX(x) of an array, where x is the unmapped array. [.1 .4 .6 .9]

returns 3 because .9 is the largest element of the array. This is identical to

maxIndex(x).

See Also

max(x), maxIndex(x), min(x), minIndex(x), and minX(x).

Get Mappings and Set Mappings in the \General Reference" chapter.

Formula (Math and AdvMath) Reference 3-165

mday(aDate)

An object that returns the day of the month of the time x.

Use

Use mday(aDate) to transform the given time x into a container of the same

shape with value(s) 1 - 31 corresponding to the day of the month. x must be

of type Int32, Real, Coord, or Waveform of any shape. Int32 returns Real; all

others will return the same type. All will return the same shape as x.

Location

Math =) Time & Date =) mday(aDate)

Example

mday(dmyToDate(25,12,1991)) returns 25, the 25th day of the month.

Notes

mday(aDate) returns 1-31, not 0-30. This is one of the few non-zero based

functions in HP VEE. Mappings are retained in the return value.

See Also

dmyToDate(d,m,y), hmsToHour(h,m,s), hmsToSec(h,m,s), month(aDate),

now(), Time & Date, wday(aDate), and year(aDate).

3-166 Formula (Math and AdvMath) Reference

mean(x)

mean(x)

An object used to calculate the mean value of the data in the input container.

Use

Use mean(x) to return the mean (average) value of the container. The numbers

in the input container are added, then the sum is divided by the number of

elements in the input.

The x input may be of any size and shape and of the type Int32, Real, Coord,

or Waveform. For x input of all types, a Real Scalar container is returned. For

Coord input types, the operation is done on the dependent variable.

Location

AdvMath =) Statistics =) mean(x)

Example

Where x is the array [1 2 3 11 12 34], mean(x) returns 10.5.

Notes

Mappings on the operand are ignored.

See Also

max(x), median(x), min(x), mode(x), rms(x), sdev(x), and vari(x).

Formula (Math and AdvMath) Reference 3-167

meanSmooth(x, numPts)

An object used to smooth input data using the mean of a speciÕed number of

data points surrounding the data point of interest to calculate the smoothed

data point.

Use

Use meanSmooth(x,numPts) to perform a data smoothing similar to the

polySmooth(x) routine. The algorithm calculates an arithmetic mean of the n

data points around the point to be smoothed. For example, if n is 5, take the

mean of: 2 points before the current point, the current point, and two points

after the current point. If n is even, the algorithm will add one more to the

number of points to make it odd.

The x input must be of Array 1D shape and of the type Int32, Real, Coord, or

Waveform. For x input of all types, the same output type is returned, except

for Int32 which returns a Real type. The independent variables of a Coord

input type must be equidistant, that is, the x-interval between adjacent points

must be a constant. The smoothing is only done on the dependent variable

(the y data of the Coord).

The noise suppression capability of this technique is a function of the size

n of the averaging which you specify. Large values of n will suppress noise

to a much greater degree than small values of n. Quite often this function

can be used to dramatically improve the results of other functions (like

deriv(x,order)) if used to preprocess the data.

Location

AdvMath =) Data Filtering =) meanSmooth(x,numPts)

Notes

Mappings on input parameters are ignored and the output has the same

mappings as the input parameter x.

3-168 Formula (Math and AdvMath) Reference

meanSmooth(x, numPts)

See Also

movingAvg(x,numPts), polySmooth(x), Regression types, and Signal

Processing.

Formula (Math and AdvMath) Reference 3-169

median(x)

An object used to calculate the median value of the input container.

Use

Use median(x) to return the middle value of the container.

The x input may be of any size and shape and of the type Int32, Real, Coord,

or Waveform. For x input of all types, a Real Scalar is returned. For Coord

input types, the operation is done on the dependent variable.

Location

AdvMath =) Statistics =) median(x)

Example

median([1 2 3 8 20]) returns 3.

median(x), where x is the array [1 2 5 11 12 33], returns 8. The median value

is the one in the middle of the range of numbers. In the case where there are

an even number of numbers, the median is calculated as the average between

the two middle numbers. In this case, the median value is the average of 5 and

11, which is 8.

median([20 5 10]) returns 10.

Notes

Mappings on the operand are ignored.

See Also

max(x), mean(x), min(x), mode(x), rms(x), sdev(x), and vari(x).

3-170 Formula (Math and AdvMath) Reference

min(x)

min(x)

An object used to return the minimum value in the input container.

Use

Use min(x) to return the minimum value in the container.

The x input may be of any size and shape and of the type Int32, Real, Coord,

Waveform, or Text. For x input of all types except Waveform, the same output

type is returned, but is Scalar in shape. A Waveform input type returns a

Real Scalar. For Coord input types, the operation is done on the dependent

variable. For Text input types, the min(x) text string is the one that is the

lowest lexically ordered string.

Location

AdvMath =) Statistics =) min(x)

Example

min(x), where x is the array [5 34 1 54 6 2 9 7 16 42], returns 1.

Notes

Mappings on the operand are ignored.

See Also

max(x), mean(x), median(x), minIndex(x), minX(x), mode(x), rms(x),

sdev(x), and vari(x).

Formula (Math and AdvMath) Reference 3-171

minIndex(x)

An object used to return the index in the input array of the smallest element.

Use

Use minIndex(x) to return the index of the smallest element in a 1D array.

The x input must be of Array 1D shape and of the type Int32, Real, Coord,

Waveform, or Text. For all x input types, an Int32 Scalar number representing

the index of the smallest element is returned.

Location

AdvMath =) Data Filtering =) minIndex(x)

Example

Applying the minIndex(x) to an array, where x is the array [.1 .4 .6 .9]

returns 0 because .1 is the smallest element of the array.

minIndex(x) of ["Ken" "Randy" "Doug" "Bill" "Sue"] returns 3 because

"Bill" is the lowest lexically ordered term.

Notes

Note that array indices start with zero.

Mappings on the operand are ignored.

See Also

max(x), maxIndex(x), maxX(x), min(x), and minX(x).

3-172 Formula (Math and AdvMath) Reference

minor(x,row,col)

minor(x,row,col)

An object used to calculate the minor of a matrix x at row r and column c.

Use

Use minor(x,row,col) to calculate the minor of the square input matrix

x. The minor of matrix is deÕned as the determinant of the submatrix of

the input matrix x obtained by deleting the rth row and cth column. The x

input must be a square matrix shape and of the type Int32, Real, Complex or

PComplex. For x input of all types, output of the same type is returned and is

Scalar in shape, except for Int32 which returns a Real. The input for the row

and column to delete, r and c, must be Int32 Scalar or be able to be converted

to Int32 type.

A square matrix has the same number of rows as columns.

Location

AdvMath =) Matrix =) minor(x,row,col)

Example

minor(a,1,2), where a is a matrix [[3 -1 2] [4 5 6] [7 1 2]], returns -34.

Notes

Mappings on the operand are ignored.

The r and c inputs are expected to be of type Int32 or be able to be converted

to that type. The rows and columns of the matrix are numbered from 0 to n-1

so be careful when specifying which row and column to use.

See Also

cofactor(x,row,col)and det(x).

Formula (Math and AdvMath) Reference 3-173

minX(x)

An object used to return the x value of the minimum point of the input Array

1D where the array is mapped.

Use

Use minX(x) to return the Xindex of the smallest y element in an 1D (linear)

array. The x input must be of Array 1D shape and of the type Int32, Real,

Coord, Waveform, or Text. For x input of all types a Real Scalar container is

returned.

If the data is mapped, the value returned is the x value corresponding to the

minimum y value of the input data. The x value is calculated using the array

mappings. If the data is not mapped, then the value returned is the index in

the array of the minimum y value. That is, it will return the (implicit) position

in the array of minimum x value.

The Coord type returns the independent variable x at the minimum y value.

This function is only useful for mapped data or Coord types. It is the same as

minIndex(x) for unmapped data.

Location

AdvMath =) Data Filtering =) minX(x)

Example

Take the minX(x) of a sine waveform that has 256 points and is mapped over 0

to 20 milliseconds. The return value is .0107.

Take the minX(x) of an array, where x is the unmapped array. [.1 .4 .6 .9]

returns 0 because .1 is the smallest element of the array. This is identical to

minIndex(x).

See Also

max(x), maxIndex(x), maxX(x), min(x), and minIndex(x).

Get Mappings and Set Mappings in the \General Reference" chapter.

3-174 Formula (Math and AdvMath) Reference

mod (modulo)

mod (modulo)

An object that performs an arithmetic modulo (remainder) of two operands.

Use

Use mod to determine the remainder of the division of two containers. The

two containers may be of type Int32, Real, Coord, or Waveform. The two

containers may be of any shape. But if one of the containers is an array, the

other must be either a scalar or an array of the same size and shape. The

result is a container of the highest type, with the same shape as the operands.

If both operands are of type Coord, they must have their independent

variable(s) match exactly or an error is returned. The modulo is only

performed on the dependent (last) variable.

Location

Math =) + - * / =) mod

Example

A scalar modulo an array: 3.2 MOD [1 2 3] returns [0.2 1.2 0.2].

An array modulo a scalar: [1 2 3] MOD 2 returns [1 0 1].

Two Coord scalars: coord(1,3) MOD coord(1,5) returns coord(1,2).

Two Coord scalars: coord(1,3) MOD coord(2,5) returns an error.

Two scalars: 12.95 mod 2 returns 0.95.

Two scalars: 12.95 mod 2.1 returns 0.32.

Notes

If either of the containers is mapped (that is, of type Waveform, Coord, or a

mapped array of any other type), the other container must be unmapped or

have identical mappings. The return value will have the same mappings as the

operands; otherwise an error is returned.

Formula (Math and AdvMath) Reference 3-175

mod (modulo)

See Also

+ (add), div (truncated division), / (divide), * (multiply), and

- (subtract).

3-176 Formula (Math and AdvMath) Reference

mode(x)

mode(x)

An object used to calculate the mode of the data in the input container.

Use

Use mode(x) to return the mode of the value in the container. The mode value

is the one which is found most often in the data. In case of bimodal data (two

numbers represented the same number of times) or higher modes, mode(x)

returns the lowest valued mode found in the array container.

In the case where there is no mode value (that is, every number is unique), the

Õrst value in the input container is returned.

The x input may be of any size and shape and of the type Int32, Real, Coord,

or Waveform. For x input of all types except Int32, a Real Scalar is returned.

For Coord input types, the operation is done on the dependent variable. An

Int32 input type returns an Int32.

Location

AdvMath =) Statistics =) mode(x)

Example

Single mode: where x is the array [2 1 12 11 2 33], mode(x) returns 2.

Bimodal: where x is the array [2 1 2 12 11 12], mode(x) returns 2.

No mode: where x is the array [3 2 1 11 12 33], mode(x) returns 3.

Notes

Mappings on the operand are ignored.

See Also

max(x), mean(x), median(x), min(x), rms(x), sdev(x), and vari(x).

Formula (Math and AdvMath) Reference 3-177

month(aDate)

An object that returns the month of the year of the time x.

Use

Use month(aDate) to transform the given time x into a container of the same

shape with value(s) 1 - 12 corresponding to the month of the year. x must be

of type Int32, Real, Coord, or Waveform of any shape. Int32 returns Real; all

others will return the same type. All will return the same shape as x.

Location

Math =) Time & Date =) month(aDate)

Example

month(dmyToDate(25,12,1991)) returns 12, the 12th month of the year.

Notes

month(aDate) returns 1-12, not 0-11. This is one of the few non-zero based

functions in HP VEE. Mappings are retained in the return value.

See Also

dmyToDate(d,m,y), hmsToHour(h,m,s), hmsToSec(h,m,s), mday(aDate),

now(), Time & Date, wday(aDate), and year(aDate).

3-178 Formula (Math and AdvMath) Reference

movingAvg(x, numPts)

movingAvg(x, numPts)

An object used to smooth the input data using the average of a speciÕed

number of data points preceding the data point of interest to calculate the

smoothed data point.

Use

Use movingAvg(x,numPts) to perform a data smoothing similar to the

meanSmooth(x,numPts) routine. The algorithm calculates an arithmetic mean

of n previous data points.

The x input must be of Array 1D shape and of the type Int32, Real, Coord, or

Waveform. For x input of all types the same output type is returned, except

for Int32 which returns a Real type. The independent variables of a Coord

input type must be equidistant, that is, the x-interval between adjacent points

must be a constant. The smoothing is only done on the dependent variable

(the y data of the Coord).

This technique tends to represent more of a \historical" view of the data since,

for any point in the array, the average value is calculated only from earlier

points. This is in contrast to the average value being calculated from points

on both sides of the point in question, as is the case for polySmooth(x) and

meanSmooth(x,numPts).

Location

AdvMath =) Data Filtering =) movingAvg(x,numPts)

Example

If n is 5, the average of the 4 previous points and the point of interest are used

to determine what the smoothed point should be.

Formula (Math and AdvMath) Reference 3-179

movingAvg(x, numPts)

Notes

Mappings on input parameters are ignored and the output has the same

mappings as the input parameter x.

See Also

meanSmooth(x,numPts), polySmooth(x), Regression types, and Signal

Processing.

3-180 Formula (Math and AdvMath) Reference

* (multiply)

* (multiply)

An object that performs an arithmetic multiplication on two operands.

Use

Use * to multiply the values of two containers. The two containers may be

of any type and of any shape. If one of the containers is an array, the other

must be either a scalar or an array of the same size and shape. The result is a

container of the highest type, with the same shape as the operands.

If both operands are of type Coord, they must have their independent

variable(s) match exactly or an error is returned. The multiplication is only

performed on the dependent (last) variable.

If one of the containers is Text, the other must be an Int32. Text

multiplication consists of repeating the string the number of times given by the

value of the Int32. Enums are converted to Text for multiplication.

This multiplication operation performs a parallel multiplication on all elements

of the arrays, including matrices. For a matrix multiply, see the function

matMultiply(A,B).

Location

Math =) + - * / =) *

Example

Array times a scalar: [1 2 3] * 3 returns [3 6 9].

Two arrays: [4 5 6] * [1 2 3] returns [4 10 18].

Two PComplex scalars: (2,@45) * (3,@90) returns (6,@135) with Trig Mode

set to Degrees.

Two Coord scalars: coord(1,3) * coord(1,5) returns coord(1,15).

Two Coord scalars: coord(1,3) * coord(2,5) returns an error.

Text times a scalar: "hello" * 3 returns "hellohellohello".

Formula (Math and AdvMath) Reference 3-181

* (multiply)

A Text array times an array: ["hello" "b"] * [3 2] returns

["hellohellohello" "bb"].

Notes

If either of the containers is mapped (that is, of type Waveform, Spectrum,

Coord, or a mapped array of any other type), the other container must be

unmapped or have identical mappings. The return value will have the same

mappings as the operands; otherwise an error is returned.

See Also

+ (add), / (divide), matMultiply(A,B), and - (subtract).

3-182 Formula (Math and AdvMath) Reference

NOT

NOT

An object that performs a logical NOT operation on one operand.

Use

Use NOT to determine the logical opposite of the value(s) of a container. The

container may be of any type and of any shape. The result is an Int32 of the

same shape as the operand, with value(s) 0 or 1. If the operand is false (zero),

the value of the NOT operator is 1; otherwise the value is 0.

For Coord containers, only the dependent (last) variable is considered for the

NOT operation.

For Complex, PComplex, and Spectrum containers, the value of the operand is

true if either part is non-zero. Text is true if non-null. Enums are converted to

Text for the operation.

Location

Math =) Logical =) NOT

Example

A scalar: NOT 3 returns 0.

A scalar: NOT 0 returns 1.

An array: NOT [-3 0 3] returns [0 1 0].

A PComplex scalar: NOT (1,@90) returns 0.

A Complex scalar: NOT (0,1) returns 0.

A Complex scalar: NOT (0,0) returns 1.

A Coord scalar: NOT coord(1,3) returns 0.

A Coord scalar: NOT coord(1,0) returns 1.

A Text scalar: NOT "too" returns 0.

A Text scalar: NOT "" returns 1.

Formula (Math and AdvMath) Reference 3-183

NOT

Notes

The result has the same mapping as the operand.

Note that the If/Then/Else device requires the expression(s) inside it to

evaluate to either a scalar or an array, which is either all zeros or all ones.

See Also

Conditional and If/Then/Else in the \General Reference" chapter.

3-184 Formula (Math and AdvMath) Reference

!= (not equal to)

!= (not equal to)

An object that performs an is not equal to operation on two operands.

Use

Use != to determine whether the value(s) of one container is not equal to the

value(s) of another container. The two containers may be of any type and

of any shape. If one of the containers is an array, the other must be either a

scalar or an array of the same size and shape. The result is a scalar Int32 with

the value 0 or 1. If the Õrst operand is not equal to the second, the value of the

result is 1; otherwise the value is 0.

For Coord containers, if any of the independent variable(s) do not match

exactly, an error is returned. For Complex, PComplex, and Spectrum

containers, if either part or both parts do not match, the result is 1. Enums are

converted to Text for the comparison.

Arrays must have one or more of their respective values not equal for the result

to be 1.

Location

Math =) Relational =) !=

Example

A scalar and an array: 3.0 != [3 3 3] returns 0.

A scalar and an array: 3.0 != [3 1 3] returns 1.

Two arrays: [1 2 3] != [1 2 4] returns 1.

Two PComplex scalars: (1,@90) != (1,@85) returns 1.

Two Complex scalars: (2,3) != (2,4) returns 1.

Two Complex scalars: (2,3) != (2,3) returns 0.

Two Coord scalars: coord(1,3) != coord(1,5) returns 1.

Two Coord scalars: coord(1,3) != coord(2,3) returns Values for

independent variables must match.

Formula (Math and AdvMath) Reference 3-185

!= (not equal to)

Notes

If either of the containers is mapped (that is, of type Waveform, Spectrum,

Coord, or a mapped array of any other type), the other container must be

unmapped or have identical mappings; otherwise an error is returned.

See Also

~= (almost equal to), AND, == (equal to), > (greater than), >= (greater

than or equal to), < (less than), <= (less than or equal to), NOT, OR,

Relational, and XOR.

Comparator and Conditional in the \General Reference" chapter.

3-186 Formula (Math and AdvMath) Reference

now()

now()

An object that returns the current time.

Use

Use now() to generate a Real scalar container with the value of the current

time. The value of the Real is the number of seconds since 00:00 hours 1

January 0001 AD given in UTC.

Location

Math =) Time & Date =) now()

Example

now() returns around 62.802G.

See Also

dmyToDate(d,m,y), hmsToHour(h,m,s), hmsToSec(h,m,s), mday(aDate),

month(aDate), Time & Date, wday(aDate), and year(aDate).

Formula (Math and AdvMath) Reference 3-187

OR

An object that performs a logical OR operation on two operands.

Use

Use OR to determine whether the value(s) of either of two containers is logically

true (non-zero). The two containers may be of any type and of any shape. If

one of the containers is an array, the other must be either a scalar or an array

of the same size and shape. The result is an Int32 of the same shape as the

operands, with value(s) 0 or 1. If either or both operands are non-zero, the

value of the OR operation is 1; otherwise the value is 0.

If both operands are of type Coord, they must have their independent

variable(s) match exactly or an error is returned. Only the dependent (last)

variable is considered for the OR operation.

For Complex, PComplex, and Spectrum containers, the value of the operand is

true if either part is non-zero. Text is true if non-null. Enums are converted to

Text for the operation.

Location

Math =) Logical =) OR

Example

A scalar and an array: 3 OR [3 3 3] returns [1 1 1].

A scalar and an array: 0 OR [-3 0 3] returns [1 0 1].

Two arrays: [1 0 0] OR [0 1 (-1)] returns [1 1 1].

Two PComplex scalars: (1,@90) OR (1,@85) returns 1.

Two Complex scalars: (0,0) OR (0,1) returns 1.

Two Complex scalars: (0,1) OR (1,0) returns 1.

Two Complex scalars: (0,0) OR (0,0) returns 0.

Two Coord scalars: coord(1,3) OR coord(1,5) returns 1.

3-188 Formula (Math and AdvMath) Reference

OR

Two Coord scalars: coord(1,3) OR coord(2,3) returns an error.

A Text scalar and a scalar number: "too" OR 0 returns 1.

A Text scalar and a scalar number: "" OR 0 returns 1 because the 0 is

promoted to the string "0", which is non-null.

Notes

If either of the containers is mapped (that is, of type Waveform, Spectrum,

Coord, or a mapped array of any other type), the other container must be

unmapped or have identical mappings. The return value will have the same

mappings as the operands; otherwise an error is returned.

Note that the If/Then/Else device requires the expression(s) inside it to

evaluate to either a scalar or an array, which is either all zeros or all ones.

See Also

AND, NOT, Relational, and XOR.

Conditional and If/Then/Else in the \General Reference" chapter.

Formula (Math and AdvMath) Reference 3-189

ordinal(x)

An object that returns the ordinal value of x.

Use

Use ordinal(x) to obtain the ordinal value of a container. x may be any

shape and of the types Int32, Real, Coord, Waveform, or Enum. For Int32,

Real, Coord, and Waveform, the result is the same as the argument with the

same mappings. For Enum, the result is an Int32 of the same shape as x with

the value of the ordinal value of the Enum. Enums created from the Enum

Constant have their ordinal values starting at 0 and going to n-1, where n is

the number of Enum values in the list.

Location

Math =) Real Parts =) ordinal(x)

Example

If an Enum constant is created with the strings ordered "a", "b", and "c", and

the current value "a" is selected, ordinal(x) on that container would return

0 since the Õrst value is selected. Remember that HP VEE is zero-based. If,

with the the same Enum constant, the currently selected value is "c", then

ordinal(x) on that container would return 2, the oÃset of the currently

selected value.

Notes

Mappings are retained in the result.

See Also

Complex Parts, Enum, and Real Parts.

3-190 Formula (Math and AdvMath) Reference

perm(n,r)

perm(n,r)

An object used to calculate the permutations of n numbers taken r at a time.

Use

Use perm(n,r) to calculate the number of permutations of n things taken r at

a time using the formula:

Perm(n, r) = n! / (n - r)!

The ! symbol means factorial. The n input may be of any shape and size and

of the type Int32, Real, Coord, or Waveform. For n input of all types the

same output type is returned, except for Int32 which returns a Real type. The

second r parameter must be of the same type or be able to be converted to the

same type as the n input value. If both of the inputs are arrays, they must be

of exactly the same shape and size.

The perm(n, r) operation is only deÕned for integer operands so the input

values, while of unique type, are converted to Int32 type before the calculation

is done.

Location

AdvMath =) Probability =) perm(n, r)

Example

perm(10,3) will return 720 as given by the formula

10!/(10-3)! = 10!/7! = 10*9*8 = 720.

perm(10.4,3.9) will return 720 as given by the formula

10!/(10-3)! = 10!/7! = 10*9*8 = 720. The rule about converting

Real to Int32 forces 10.4 to 10 and 3.9 to 3.

Formula (Math and AdvMath) Reference 3-191

perm(n,r)

Notes

Both n and r must be positive and n must be greater than r. If both of the

inputs are mapped, then the mappings must be the same. The return value has

the same mappings as the input if either input is mapped. If neither of the

inputs is mapped, then the output is unmapped.

See Also

beta(x,y), binomial(a,b), comb(n,r), factorial(n), and gamma(x).

3-192 Formula (Math and AdvMath) Reference

phase(x)

phase(x)

An object that returns the phase of a PComplex number x.

Use

Use phase(x) to extract the phase of a PComplex number x. x can be any

shape and of type Int32, Real, Coord, Waveform, Complex, PComplex, or

Spectrum. For types Int32, Real, Coord, and Waveform, the same type with

value(s) of zero is returned. For types Complex, PComplex, and Spectrum,

phase(x) returns a Real container with the value of the polar phase angle

of the PComplex number. (Complex is Õrst converted to PComplex.) The

phase(x) value is returned in the units of the current Trig Mode.

Location

Math =) Complex Parts =) phase(x)

Example

phase((1,@45)) returns 45.

Notes

Mappings are retained in the result.

See Also

conj(x), im(x), j(x), mag(x), re(x), and Real Parts.

Build PComplex, Trig Mode, and UnBuild PComplex in the \General

Reference" chapter.

Formula (Math and AdvMath) Reference 3-193

poly(x,vec)

An object that returns the polynomial value of the values of x and vec.

Use

Use poly(x,vec) to generate the polynomial result of the x data and vec

coeœcients. x can be any shape and of type Int32 or Real. vec must be either

a scalar or a one-dimensional array. poly(x,vec) takes the elements of vec as

the polynomial coeœcients, and x as the data. vec starts with a0, then a1, and

so on, out to the length of vec. The return value is Real and the same shape as

x.

The polynomial equation computes:

a0 + a1*x + a2*x*x + a3*x*x*x + . . .

Location

Math =) Polynomial =) poly(x,vec)

Example

poly([10 2], [3 2 4]) generates [423 23].

Notes

Mappings of the resultant container are the same as the input container x.

See Also

ramp(numElem,from,thru).

3-194 Formula (Math and AdvMath) Reference

Polynomial

Polynomial

A menu item.

Use

Use Polynomial to access the following object which generates a Real

polynomial result from the data and coeœcient values.

poly(x,vec)

Location

Math =) Polynomial =)

See Also

Generate.

Formula (Math and AdvMath) Reference 3-195

polynomial regression

An object used to Õt a polynomial curve of arbitrary degree to (x,y) data.

Use

Use the polynomial regression to Õt the data to the equation

y = C0 + C1*x + C2*x^2 + . . . , where x is the x coordinate and C0, C1, and so

forth, are calculated coeœcients. Polynomial curve Õtting requires the degree of

the polynomial to be set on the Order input Õeld on the regression object.

The polynomial regression object expects an array of Coord type of input with

one independent variable, that is, an (x,y) pair. If the input array is not a

Coord type, an attempt is made to convert it to Coord. If the input data is

mapped (Waveform, Spectrum, or a mapped array), then the conversion to

Coord uses the mapping information to create the x part of the (x,y) pairs. If

the input data is not mapped (for example, an array), then the x part of the

(x,y) pair is implicitly generated from its position in the array.

Location

AdvMath =) Regression =) polynomial

Open View Parameters

The Fit Type Õeld on the open view is used to change the regression type

to linear, logarithmic, exponential, power curve or polynomial

regression. Clicking on the button will bring up a list of the diÃerent

regression types.

The Order input Õeld is used to set the order of the polynomial to which the

data is Õtted. The order of the polynomial Õt must be greater than or equal to

one. A polynomial Õt of order one Õts the data to a straight line and is the

same as the linear regression choice.

3-196 Formula (Math and AdvMath) Reference

polynomial regression

Example

See Regression for a Coord conversion example.

Notes

See Regression for general notes on regression.

See Also

exponential regression, linear regression, logarithmic regression,

meanSmooth(x,numPts), movingAvg(x,numPts), polySmooth(x), and power

curve regression.

Build Coord in the \General Reference" chapter.

Formula (Math and AdvMath) Reference 3-197

polySmooth(x)

An object used to smooth data using a polynomial Õt of the data.

Use

Use polySmooth(x) to smooth out data. A fourth order polynomial is Õtted

to the data and a new data point is calculated based on the curve Õt using

the polynomial. To do the 4th order curve Õt, 5 points are used, two on either

side of the data point being Õtted and the data point itself, with special

consideration for the two end points.

The x input must be of Array 1D shape and of the type Int32, Real, Coord, or

Waveform. For x input of all types the same output type is returned, except

for Int32 which returns a Real type. The independent variables of a Coord

input type must be equidistant. That is, the x-interval between adjacent points

must be a constant. The smoothing is only done on the dependent variable

(the y data of the Coord).

Location

AdvMath =) Data Filtering =) polySmooth(x)

Notes

The method used is to take a 5-element sliding window and apply the standard

formula for a 4th-degree Stirling collocation polynomial. Refer to Francis

Scheid, Schaum's Outline of Theory and Problems of Numerical Analysis,

McGraw Hill, New York, NY, 1968. ISBN #07-055197-9.

Mappings on the operand are ignored and the output container has the same

mappings as the input.

The Õltering operation which results from this technique has a Õxed \frequency

response" which suppresses only the noisiest part of the data. If more noise

suppression is required, see the meanSmooth(x,numPts) function, which you

can use to suppress much more noise.

3-198 Formula (Math and AdvMath) Reference

polySmooth(x)

See Also

meanSmooth(x,numPts), movingAvg(x,numPts), Regression types, and

Signal Processing.

Formula (Math and AdvMath) Reference 3-199

Power

A menu item.

Use

Use Power to access the following objects which perform power functions such

as square root, square, log, exp, and log base 10.

sq(x)

sqrt(x)

cubert(x)

recip(x)

log(x)

log10(x)

exp(x)

exp10(x)

Location

Math =) Power =)

See Also

+ (add), / (divide), ^ (exponent), * (multiply), and - (subtract).

3-200 Formula (Math and AdvMath) Reference

power curve regression

power curve regression

An object used to Õt a power curve to (x,y) data.

Use

Use the power regression to Õt the data to the equation y = C0 * x^C1, where x

is the x coordinate and C0 and C1 are calculated coeœcients.

The power curve regression object expects an array of Coord type of input with

one independent variable. That is, an (x,y) pair. If the input array is not a

Coord type an attempt is made to convert it to Coord. If the input data is

mapped (Waveform, Spectrum, or a mapped array), then the conversion to

Coord uses the mapping information to create the x part of the (x,y) pairs. If

the input data is not mapped (for example, an array), then the x part of the

(x,y) pair is implicitly generated from its position in the array.

Location

AdvMath =) Regression =) power curve

Open View Parameters

The Fit Type Õeld on the open view is used to change the regression type

to linear, logarithmic, exponential, power curve or polynomial

regression. Clicking on the Õeld will bring up a list of the diÃerent regression

types.

Example

See Regression for a Coord conversion example.

Notes

See Regression for general notes on regression.

This function will not work for unmapped arrays. Unmapped arrays are

converted to Coord starting with x=0, which fails in the conversion in the log

function. The log function is used in the internal regression calculation.

Formula (Math and AdvMath) Reference 3-201

power curve regression

See Also

exponential regression, linear regression, logarithmic regression,

meanSmooth(x,numPts), movingAvg(x,numPts), polynomial regression, and

polySmooth(x).

Build Coord in the \General Reference" chapter.

3-202 Formula (Math and AdvMath) Reference

Probability

Probability

A menu item.

Use

Use these Probability functions in problems dealing with random numbers

and probabilities.

random(low,high)

randomize(x,low,high)

randomSeed(seed)

perm(n,r)

comb(n,r)

gamma(x)

beta(x,y)

factorial(n)

binomial(a,b)

erf(x)

erfc(x)

Location

AdvMath =) Probability =)

See Also

Random Number and Random Seed in the \General Reference" chapter.

Formula (Math and AdvMath) Reference 3-203

prod(x)

An object used to multiply all the elements of the input array.

Use

Use prod(x) to multiply together all the elements of the input array. The

x input may be of any size and shape and of the type Int32, Real, Coord,

Waveform, Complex, PComplex, or Spectrum. For x input of all types, except

Waveform, Coord, and Spectrum, output of the same type as the input is

returned. An input of type Waveform or Coord returns a Real Scalar. An

input of type Spectrum returns a PComplex Scalar.

The output of this object is the arithmetic product of all the data contained in

the input container and is Scalar in shape.

Location

AdvMath =) Array =) prod(x)

Example

Where x is an array [1 2 3 4], prod(x) returns 24.

Notes

Mappings on the operand are ignored.

See Also

* (multiply) and sum(x).

3-204 Formula (Math and AdvMath) Reference

ramp(numElem, from,thru)

ramp(numElem, from,thru)

An object that generates a linearly ramped array.

Use

Use ramp(numElem,from,thru) to generate a Real one-dimensional array of

length numElem, with the values linearly ramped from from to thru. numElem

must be a scalar container that is, or can be converted to, Int32 and with a

value greater than zero. from and thru must be scalar containers that are, or

can be converted to, Real.

If from is less than thru, the ramping is positive; otherwise it automatically

ramps negatively.

Location

Math =) Generate =) ramp(numElem,from,thru)

Example

ramp(3, 0.5, 0) returns a one-dimensional array with values [0.5 0.25 0].

ramp(5, 2, 10) returns a one-dimensional array with values [2 4 6 8 10].

Notes

The return value has no mappings.

The algorithm for generating values is:

Y[I] = from + I*(thru-from/numElem-1)

for I=0..numElem-1

This has the eÃect that the last element in the resultant array has the value

thru.

See Also

Alloc Real and logRamp(numElem,from,thru).

Formula (Math and AdvMath) Reference 3-205

random(low,high)

An object used to generate random numbers between a low and high value.

This function generates pseudo-random numbers using the linear congruential

algorithm and 48-bit integer arithmetic.

Use

Use random(low,high) to generate pseudo-random numbers between the low

and high value. The numbers generated are in the interval including the low

value, but not including the high value, which is denoted as "[l h)".

The l and h inputs must be Scalar in shape and of the type Int32 or Real. A

Real Scalar is returned in all cases that are in the range of "[l h)".

This function only outputs a single Scalar value. Use the

randomize(x,low,high) function with an array input to generate

an array of scaled random numbers.

If the l value is greater than the h value, then the range of random numbers

returned is in the interval "(l h]".

Location

AdvMath =) Probability =) random(low,high)

Example

random(0,1) will generate real numbers in the range (0.0 1.0). That is,

including 0.0, but excluding 1.0.

Notes

random(low,high) will return a Real Scalar container in the range

"(0.0 1.0)".

Also, random(low,high) will return a diÃerent number each time it is used in

a model or if it is activated several times by an iterator object.

3-206 Formula (Math and AdvMath) Reference

random(low,high)

See Also

randomize(x,low,high) and randomSeed(seed).

Random Number and Random Seed in the \General Reference" chapter.

Formula (Math and AdvMath) Reference 3-207

randomize(x, low,high)

An object used to randomize the values of a numeric input container in the

range of [low high). The numbers generated are in the interval including

low, but not including high, which is denoted as \[low high)". This function

generates pseudo-random numbers using the linear congruential algorithm and

48-bit integer arithmetic.

This object can also be used to randomize strings in Text input containers

within the range of [low high].

Use

For numeric values:

Use randomize(x,low,high) to generate pseudo-random numbers between low

and high, that is, between the low and high value. The numbers generated

are in the interval including low, but not including high, which is denoted as

\[low high)". All of the data in the input container, x is overwritten with the

pseudo-random numbers.

The x input may be of any size and shape and of the type Int32, Real, Coord,

Waveform, Complex, PComplex, or Spectrum. For x input of all types,

the same output type is returned, except for PComplex or Spectrum. For

PComplex and Spectrum types, only the magnitude of the number is in the

range [low high). The phase is random in the range (-PI to PI). For type

Coord, only the dependent variable is randomized.

The low and high inputs must be Scalar in shape and of the type Int32, Real,

or of a type that can be converted to Int32 or Real. The random numbers

generated are in the range of [low high).

If the low value is greater than the high value, then the range of random

numbers returned is in the interval (low high].

For string values:

To randomize a string, use randomize(x,low,high) with input values of the

Text data type. The input string (the data container on the x input) will be

overwritten by an output string of ASCII characters in pseudo-random order,

within the range [low high], where low is the Õrst character in the low input

container and high is the Õrst character in the high input container. (Note

3-208 Formula (Math and AdvMath) Reference

randomize(x, low,high)

that the range is inclusive of both low and high, which is diÃerent than for

numeric values.) The length of the output string is the same as that of the

input string.

The default values for low and high are the space (\ ", ASCII 32) and the tilde

(\~", ASCII 126).

Note Default values are used for strings when the input data for low

or high is "" (null string).

Location

AdvMath =) Probability =) randomize(x,low,high)

Examples

Numeric example:

If the container on the x input is of the Real data type, randomize(x,0,10)

will randomize all the values of the input container x to real numbers in the

range (0.0 10.0). That is, including 0.0, but excluding 10.0.

String examples:

randomize("abcdef","a","b") might return \abbaba".

randomize("abcabcabcab","a","z") might return \pterodactyl". (Well|it

might!)

randomize("abcabc","","") might return \Al@z~#". (With null strings for

low and high, the default limits|ASCII 32 through 126|are used.)

randomize("aaaaa","go","stop") might return \smjpg". (Only the Õrst

characters in low and high count in determining the range.)

randomize("aaaaa","97","99") returns \99999". (The low and high values

are interpreted as strings, not ASCII decimal values.)

Formula (Math and AdvMath) Reference 3-209

randomize(x, low,high)

Notes

Mappings on input parameters are ignored and the output has the same

mappings as the input parameter x.

For a numeric x input, randomize(x) will return the a container the same size

and shape as x, but with the data randomized in the range (0.0 - 1.0).

For string operations, the character set for output cannot be deÕned

outside the limits low = ASCII 32 and high = ASCII 126. That is, the

ASCII characters below 32 and above 126 are not allowed for output in the

randomized string.

See Also

random(low,high) and randomSeed(seed).

Random Number and Random Seed in the \General Reference" chapter.

3-210 Formula (Math and AdvMath) Reference

randomSeed(seed)

randomSeed(seed)

An object used to set initial values for the random(low,high) and the

randomize(x,low,high) functions.

Use

Use randomSeed(seed) to input a random seed entry point for the

linear congruential algorithm used by the random(low,high) and the

randomize(x,low,high) functions.

The seed input s must be Scalar in shape and of the type Int32 or of a type

able to be converted to Int32. The return value of this function is the s seed

value.

Location

AdvMath =) Probability =) randomSeed(seed)

Example

randomSeed(97) initializes the pseudo-random number algorithm.

Notes

This function is the same as the Random Seed object.

See Also

random(low,high) and randomize(x,low,high).

Random Number and Random Seed in the \General Reference" chapter.

Formula (Math and AdvMath) Reference 3-211

re(x)

An object that returns the real part of a Complex number x.

Use

Use re(x) to extract the real part of a Complex number x. x can be any

shape and of type Int32, Real, Coord, Waveform, Complex, PComplex, or

Spectrum. For types Int32, Real, Coord, and Waveform, the same type with

the same value(s) is returned. For types Complex, PComplex, and Spectrum,

re(x) returns a Real container with the value of the real part of the Complex

number. (PComplex is Õrst converted to Complex.)

Location

Math =) Complex Parts =) re(x)

Example

re((1,2)) returns 1.

re(1,@180), with Trig Mode in Degrees, returns -1.

Notes

Mappings are retained in the result.

See Also

Complex Parts, conj(x), im(x), j(x), mag(x), phase(x), and Real Parts.

Build Complex and UnBuild Complex in the \General Reference" chapter.

3-212 Formula (Math and AdvMath) Reference

Real Parts

Real Parts

A menu item.

Use

Use Real Parts to access the following objects which return diÃerent real parts

of a container.

abs(x)

signof(x)

ordinal(x)

round(x)

floor(x)

ceil(x)

intPart(x)

fracPart(x)

Location

Math =) Real Parts =)

See Also

Complex Parts.

Formula (Math and AdvMath) Reference 3-213

recip(x)

An object that returns the reciprocal of the value of x.

Use

Use recip(x) to generate the reciprocal of a number; that is, one divided by

the number x. x can be any shape and of type Int32, Real, Coord, Waveform,

Complex, PComplex, or Spectrum. For PComplex, the recip(x) is deÕned as

the reciprocal of the magnitude, and the phase's sign is reversed. Complex is

converted to PComplex before the function is applied. Int32 arguments will

return a Real; all others will return the same type. All will return the same

shape as x.

Location

Math =) Power =) recip(x)

Example

recip((5, @45)) will return (0.2, @-45).

recip((1,-1))) will return (0.5, 0.5).

Notes

Mappings are retained in the result.

See Also

/ (divide), Power, sq(x), and sqrt(x).

3-214 Formula (Math and AdvMath) Reference

rect(x)

rect(x)

An object used to apply a rectangular window to a time series of values.

Use

Use rect(x) to Õlter the values in x in the same manner as convolving x with

the spectral transform of the rectangular function. This has the eÃect of

suppressing some of the noise due to the tails of the input sequence and the

potential discontinuities they represent when sampling periodic signals.

The input x must be an Array 1D of type Int32, Real, Coord, or a Waveform,

or a Spectrum. The same type is returned, except for Int32, which returns

Real.

If x is a Spectrum, it is Õrst converted to a Waveform using an ifft(x) before

the window is applied. The result of the window is then converted back to type

Spectrum using an fft(x). A Spectrum is returned.

Location

AdvMath =) Signal Processing =) rect(x)

Example

rect([1 1 1 1 1 1 1 1]) returns [1 1 1 1 1 1 1 1].

Notes

The rect function is represented in the time domain as 1 for all values, where

0 <= n <= N -1, where n is the position (index) in the array, and N is the size of

the array. The result will be an array of the same type as x and will have the

same mappings as x (if any).

For a discussion of sidelobe levels and coherent gains, see: Ziemer, Tranter,

and Fannin, Signals and Systems, Macmillan Publishing, New York, NY, 1983.

ISBN #0-02-431650-4.

Formula (Math and AdvMath) Reference 3-215

rect(x)

See Also

bartlet(x), blackman(x), convolve(a,b), fft(x), hamming(x), and

hanning(x).

3-216 Formula (Math and AdvMath) Reference

Regression

Regression

A menu item.

Use

Use Regression to Õt various types of regression equations to data.

linear

logarithmic

exponential

power curve

polynomial

Location

AdvMath =) Regression =)

Notes

All the Regression objects expect an array of Coord type for input. If the input

array is not a Coord type it is converted to Coord. The conversion to Coord

type follows standard type conversion rules summarized here. If the input

array is not mapped, then an implicit x parameter is generated from the array

indices. That is, the regression must be done on (x,y) pairs. The x values will

start at zero and range to n - 1, where n is the number of data points. If the

input array is mapped then the generated x data will range from the low value

of the mapping to the high value of the mapping.

The regression gives as output an array of data Õtted to the equation chosen.

The number of points of the output array is the same as in the input data

array. It also outputs an array of coeœcients that corresponds to the derived

constants for each regression type. See the individual regression type to

determine to which equation the data is Õtted. The third output is the

R-squared or \goodness of Õt" coeœcient. It ranges between -1 and 1. A Õt

of -1 or 1 is an exact Õt and numbers in between -1 and 1 represent varying

degrees of goodness of Õt.

Formula (Math and AdvMath) Reference 3-217

Regression

Example

You have an unmapped array input [10 20 30 40 50]. It would be converted

to Coord array:

[(0, 10) (1, 20) (2, 30) (3, 40) (4, 50)].

If an input array is the array [1 2 3 4 5], and it is mapped from 1 to 2

(seconds for instance), it would be converted to Coord array:

[(1, 1) (1.25, 2) (1.5, 3) (1.75, 4) (2, 5)].

See Also

meanSmooth(x,numPts), movingAvg(x,numPts), and polySmooth(x).

3-218 Formula (Math and AdvMath) Reference

Relational

Relational

A menu item.

Use

Use Relational to access the following objects which perform relational

operations on two operands:

==

!=

<

>

<=

>=

Location

Math =) Relational =)

Notes

All of these operations return a scalar Int32 with the value of 0 or 1, which

corresponds to whether the operation is true or false.

It is possible for two operands to not be relational, that is, the two operands

are not less than, greater than, or equal to each other. Examples are Coords

with mismatched mappings and arrays. For example, [1 2 6] != [2 3 4]

is true, but the two operands are neither less than nor greater than each

other, they are simply not equal. That is, [1 2 6] < [2 3 4] is false, and

[1 2 6] > [2 3 4] is false because each element in the Õrst array is not < or >

respectively to each element in the second array.

Also note the diÃerence between menu items under Relational and under

Conditional. Relationals are formulas with output 0 or 1. Conditionals

are If/Then/Else and have two outputs, of which one activates.

Note that the return value is of type Int32 and is the same shape as the

operands. This is diÃerent than the conditionals such as == that always return

a scalar.

Formula (Math and AdvMath) Reference 3-219

Relational

The logical operators are deÕned for type Text only in the sense of whether the

string is null or not. That is, "zoo" AND "" (null string) is logically false since

the second string is null. Remember that when comparing a Text type to a

non-string type, the latter is promoted to a Text type. This means that "zoo"

AND 0 is true since the Real 0 is promoted to the string "0" and, since both

strings are non-null, the AND expression is true, returning 1.

See Also

~= (almost equal to), AND, == (equal to), > (greater than), >= (greater

than or equal to), < (less than), <= (less than or equal to), NOT, != (not

equal to), OR, and XOR.

Comparator, Conditional, and If/Then/Else in the \General Reference"

chapter.

3-220 Formula (Math and AdvMath) Reference

rms(x)

rms(x)

An object used to return the rms (Root Mean Square) value of the data in the

input container.

Use

Use rms(x) to calculate the Root Mean Square value of the input container.

The rms value is deÕned as the square root of [(The sum of x^2)/N], where N

is the number of the points.

The x input may be of any size and shape and of the type Int32, Real, Coord,

or Waveform. For all x input types, a Real Scalar container is returned. For

Coord input types, the operation is done on the dependent variable.

Location

AdvMath =) Statistics =) rms(x)

Example

Where x is the array [1 2 3 4 5 11 12 13 14 34], rms(x) returns 13.319159.

Notes

Mappings on the operand are ignored.

See Also

max(x), mean(x), median(x), min(x), mode(x), sdev(x), and vari(x).

Formula (Math and AdvMath) Reference 3-221

rotate(x,numElem)

An object used to rotate elements in an array.

Use

Use rotate(x,numElem) to rotate the elements of the input array x by n

positions. The x input may be of any size and shape and of the type Int32,

Real, Coord, Waveform, Complex, PComplex, Spectrum, or Text. For all x

input types the same output type is returned. The input n must be a scalar

Int32 or be able to be converted to Int32 type. If the n rotate value is a

positive value, the rotation direction is down the array (forward). For example,

if n was 2, then the Õrst element of the array would end up in the third

position (x[2]) , the second element ends up in the fourth position (x[3]), and

so on. If the n value is negative, the array elements are rotated up the array

(backward).

If the rotate number n is larger than the number of elements in the array, then

the number of places to rotate is calculated by taking the modulo of the rotate

number by the number of array elements. For example, if the input array has

5 elements and you want to rotate the array 13 places, the modulo operation

(13 MOD 5 = 3) determines that the array should be rotated 3 places.

Location

AdvMath =) Array =) rotate(x,numElem)

Example

rotate(x,5) rotates the input array elements 5 positions further to the right

in the array.

rotate(x,15), where the input array x has 15 elements, does nothing because

you have rotated the array back on top of itself.

rotate([1 2 3 4 5], 1) returns [5 1 2 3 4].

3-222 Formula (Math and AdvMath) Reference

rotate(x,numElem)

Notes

You might think of the array as a circular list when using the rotate function,

meaning that the last element in the array is connected to the Õrst array

element. When you rotate array elements past the end of the array, they wrap

back around to the top of the list. For example, if the array is 10 elements long

and you do a rotate(A,5), then the tenth array element number will end up

in Õfth position in the array.

Mappings on input parameters are ignored and the output has the same

mappings as the input parameter x.

See Also

concat(x,y) and init(x,y).

Formula (Math and AdvMath) Reference 3-223

round(x)

An object that returns the rounded value of x.

Use

Use round(x) to obtain the rounded value, to the nearest integer, of a

container. x may be any shape and of the types Int32, Real, Coord, or

Waveform. The round(x) function returns the closest integer (as the same

type) to x. The dividing line is at 0.5, which rounds up.

Location

Math =) Real Parts =) round(x)

Example

round([23.0 23.1 23.9 23.5 (-23.5)]) returns [23 23 24 24 -23].

Notes

Mappings are retained in the result.

See Also

abs(x), ceil(x), Complex Parts, floor(x), fracPart(x), intPart(x), and

Real Parts.

3-224 Formula (Math and AdvMath) Reference

sdev(x)

sdev(x)

An object used to return the standard deviation of the data in the input

container.

Use

Use sdev(x) to calculate the standard deviation of the container.

The x input may be of any size and shape and of the type Int32, Real, Coord,

or Waveform. For all x input types, a Real Scalar container is returned. For

Coord input types, the operation is done on the dependent variable.

The sdev(x) is deÕned as the square root of the vari(x).

Location

AdvMath =) Statistics =) sdev(x)

Example

Where x is the array [1 2 3 4 5 11 12 13 14 34], sdev(x) returns 9.50789.

Notes

Mappings on the operand are ignored.

See Also

max(x), mean(x), median(x), min(x), mode(x), rms(x), and vari(x).

Formula (Math and AdvMath) Reference 3-225

setBit(x,n)

An object that returns x with the nth bit set to 1.

Use

Use setBit(x,n) to set a particular binary digit of a container x to 1. x can

be any shape and of type Int32, Real, Coord, or Waveform. If x is not of type

Int32, it is converted to Int32, retaining shape. The return value is of type

Int32. n must be a container which is, or can be converted to, Int32 and have a

value between 0 and 31 inclusive. n must be either scalar or match the shape

of x.

Location

Math =) Bitwise =) setBit(x,n)

Example

setBit(8,0) returns 9.

setBit(8.24,0.9) also returns 9.

Notes

The mappings of the return value are the same as the x parameter.

The least signiÕcant bit is on the right, and the most signiÕcant bit is on the

left.

See Also

bit(x,n), bits(str), Bitwise, and clearBit(x,n).

3-226 Formula (Math and AdvMath) Reference

Signal Processing

Signal Processing

A menu item.

Use

Use Signal Processing to access one of several signal processing

functions that can be applied to one-dimensional arrays (Int32, Real,

Complex, PComplex, Waveform, Spectrum) for some functions, and lists of

two-dimensional (two Õeld) coordinates.

fft(x)

ifft(x)

convolve(a,b)

xcorrelate(a,b)

bartlet(x)

hamming(x)

hanning(x)

blackman(x)

rect(x)

Location

AdvMath =) Signal Processing =)

Notes

The functions under Signal Processing are applicable to one-dimensional

arrays of values that represent ordered, equally spaced data.

Formula (Math and AdvMath) Reference 3-227

signof(x)

An object that returns, as an Int32, the sign of x.

Use

Use signof(x) to obtain the sign of a container. x may be any shape and of

the types Int32, Real, Coord, or Waveform. The return value will be an Int32

of the same shape as x, with value(s) of -1, 0, or +1, depending on whether

the x value is negative, zero, or positive. If x is negative, -1 is returned; if x is

zero, 0 is returned; if x is positive then +1 is returned.

Location

Math =) Real Parts =) signof(x)

Example

signof([23 0 -1]) returns [1 0 -1].

Notes

Mappings are retained in the result.

See Also

abs(x), Complex Parts, and mag(x).

3-228 Formula (Math and AdvMath) Reference

sin(x)

sin(x)

An object that returns the sine of x.

Use

Use sin(x) to generate the sine of the x data. x is assumed to be in the

current Trig Mode units. x can be any shape and of type Int32, Real, Coord,

Waveform, Complex, PComplex, or Spectrum. Int32 returns a Real; all others

will return the same type. All will return the same shape as x.

Location

Math =) Trig =) sin(x)

Example

sin([0 PI/2]) returns [0 1] with Trig Mode set to Radians.

sin((1, @PI)) returns (0.84147, @3.14159) with Trig Mode set to Radians.

Notes

Mappings are retained in the result. Using Trig Mode set to anything except

Radians may result in accuracy errors beyond the 12th signiÕcant digit.

See Also

asin(x), cos(x), tan(x), sinh(x), and Trig.

Trig Mode in the \General Reference" chapter.

Formula (Math and AdvMath) Reference 3-229

sinh(x)

An object that returns the hyperbolic sine of x.

Use

Use sinh(x) to generate the hyperbolic sine of the x data. x can be any shape

and of type Int32, Real, Coord, Waveform, Complex, PComplex, or Spectrum.

x is assumed to be in the current Trig Mode units. Int32 returns a Real; all

others will return the same type. All will return the same shape as x.

Location

Math =) Hyper Trig =) sinh(x)

Example

sinh(1.2) returns 1.509 with Trig Mode set to Radians.

Notes

Mappings are retained in the result. Using Trig Mode set to anything except

Radians may result in accuracy errors beyond the 12th signiÕcant digit.

See Also

asinh(x), cosh(x), Hyper Trig, sin(x), and tanh(x).

Trig Mode in the \General Reference" chapter.

3-230 Formula (Math and AdvMath) Reference

sort(x,direction,field)

sort(x,direction,field)

A function that sorts an array of data (any data type).

Use

Use the sort function in a Formula object to sort an array of data on input x.

All data types are allowed, and by default the data is sorted in ascending order.

If you use sort in a Formula object the syntax is:

sort(x [,direction [,Õeld]])

where:

direction (optional) speciÕes the direction of sort. The default is ascending

order, and any non-zero value will specify ascending order. A value of 0

speciÕes a sort in descending order.

Õeld (optional) speciÕes the Õeld on which to sort the array:

For the Real, Integer, and Text data types, this parameter is ignored.

For the Complex data type, specify 0 or "real" to sort on the real Õeld.

Specify 1 or "imag" to sort on the imaginary Õeld. All three parameters

must be speciÕed.

For the PComplex data type, specify 0 or "mag" to sort on the magnitude

Õeld. Specify 1 or "phase" to sort on the phase Õeld. All three parameters

must be speciÕed.

For the Coordinate data type, the array will be sorted by the dependent

Õeld by default ("y" in an x-y pair, "z" in an x-y-z triplet). Specify 0 or

"x" to sort on the x Õeld, 1 or "y" to sort on the y Õeld, and so forth.

For the Record data type, the array will be sorted by the Õrst Õeld by

default. Or you can specify the Õeld by number (0, 1, and so forth) or by

name ("operator", "date", etc.).

Note For Coordinate data type, the Õeld names will always be

x,y, z,w, v,u, t,s, r,q even though you may change the input

terminal names.

Formula (Math and AdvMath) Reference 3-231

sort(x,direction,field)

Location

AdvMath =) Array =) sort

Examples

sort(x) will sort a Real array x in ascending order.

sort(x,0) will sort a Real array x in descending order.

sort(x,1,"real") or sort(x,1,0) will sort a Complex array x by the real

Õeld in ascending order.

sort(x,0,"phase") or sort(x,0,1) will sort a PComplex array x by the

phase Õeld in descending order.

sort(x,1,"A") or sort(x,1,0) will sort a Coordinate array x by the \A" Õeld

in ascending order.

sort(x,1,1) will sort a Record array x by the second Õeld in ascending order.

Notes

Text data is sorted by the standard ASCII character-code order. Thus,

uppercase letters come before lowercase letters.

See Also

Formula in the \General Reference", Chapter 2, and String Functions.

3-232 Formula (Math and AdvMath) Reference

sq(x)

sq(x)

An object that returns the square of the value of x.

Use

Use sq(x) to perform the squaring of a number x. x can be any shape and of

type Int32, Real, Coord, Waveform, Complex, PComplex, or Spectrum. The

sq(x) function multiplies the value of x times itself. The return value is of the

same type and shape as x.

Location

Math =) Power =) sq(x)

Example

sq([1 4]) returns [1 16].

sq((1,2)) returns the complex number (-3,4).

Notes

Mappings are retained in the result.

See Also

Power and sqrt(x).

Formula (Math and AdvMath) Reference 3-233

sqrt(x)

An object that returns the square root of the value of x.

Use

Use sqrt(x) to generate the square root of a number x. x can be any shape

and of type Int32, Real, Coord, Waveform, Complex, PComplex, or Spectrum.

For PComplex, the sqrt(x) is deÕned as the square root of the magnitude

and half the phase. Complex is converted to PComplex before the function is

applied. Int32 arguments will return a Real; all others will return the same

type. All will return the same shape as x.

Location

Math =) Power =) sqrt(x)

Example

sqrt((16, @90)) will return (4, @45).

sqrt((1,1)) will return (1.1, 0.455).

sqrt([4 9 64]) will return [2 3 8].

Notes

Mappings are retained in the result.

See Also

cubert(x), ^ (exponent), Power, and sq(x).

3-234 Formula (Math and AdvMath) Reference

Statistics

Statistics

A menu item.

Use

Use the Statistics functions to calculate these common statistical parameters

on data.

min(x)

max(x)

median(x)

mode(x)

mean(x)

sdev(x)

vari(x)

rms(x)

Location

AdvMath =) Statistics =)

See Also

Matrix.

Formula (Math and AdvMath) Reference 3-235

strDown(str)

An object that changes all uppercase alphabetic characters in a string to

lowercase characters.

Use

Use strDown(str) to change the case of an input string str to lowercase.

All uppercase alphabetic characters (\A" through \Z") are converted to the

corresponding lowercase characters (\a" through \z"). Non-alphabetic ASCII

characters are left unchanged.

Location

Math =) String =) strDown(str)

Examples

strDown("ABCdefg%+#") returns \abcdefg%+#"

strDown("123456") returns \123456"

See Also

strRev(str), strTrim(str), strUp(str), and String.

3-236 Formula (Math and AdvMath) Reference

strFromLen(str,from,len)

strFromLen(str,from,len)

An object that returns a substring of a speciÕed length and starting point.

Use

Use strFromLen(str,from,len) to return a substring from the input string

str, beginning at index position from and of length len in bytes. If from = 0,

the substring starts at the beginning of the input string. Base 0 indexing of the

string is used.

Location

Math =) String =) strFromLen(str,from,len)

Notes

If the value of len is less than or equal to 0, a nil string will be returned.

If the value of from is greater than the length of the input string str, a nil

string will be returned.

If the value of len is greater than the length of the input string str, the

returned string stops at the end of the input string.

Examples

strFromLen("Now is the time",0,6) returns \Now is"

strFromLen("Now is the time",6,9) returns \ the time"

strFromLen("Now is the time",0,30) returns \Now is the time"

See Also

strFromThru(str,from,thru), strPosChar(str,char),

strPosStr(str1,str2), and String.

Formula (Math and AdvMath) Reference 3-237

strFromThru(str,from,thru)

An object that returns a substring of a speciÕed starting point and ending

point.

Use

Use strFromThru(str,from,thru) to return a substring from the input string

str, beginning at index position from and ending at index position thru. If

from = 0, the substring starts at the beginning of the input string. Base 0

indexing of the string is used.

Location

Math =) String =) strFromThru(str,from,thru)

Notes

Negative values of from or thru are converted to 0.

Values of from or thru that are greater than the length of the input string str

are converted to the index position of the last character in the input string.

If the value of from is greater than the length of the input string str, or

greater than thru, a nil string is returned.

Examples

strFromThru("Now is the time",0,6) returns \Now is "

strFromThru("Now is the time",0,0) returns \N"

strFromThru("Now is the time",6,9) returns \ the"

strFromThru("Now is the time",0,30) returns \Now is the time"

See Also

strFromLen(str,from,len), strPosChar(str,char),

strPosStr(str1,str2), and String.

3-238 Formula (Math and AdvMath) Reference

String

String

A menu item.

Use

Use the String functions to perform these operations on string data:

strDown(str)

strFromLen(str,from,len)

strFromThru(str,from,thru)

strLen(str)

strPosChar(str,char)

strPosStr(str1,str2)

strRev(str)

strTrim(str)

strUp(str)

Location

Math =) String =)

Formula (Math and AdvMath) Reference 3-239

strLen(str)

An object used to determine the length of a string in bytes.

Use

Use strLen(str) to determine the length of an input string str. The return

value is an Int32 Scalar giving the number of bytes present. Kanji characters

and other 16-bit characters count as two bytes each.

Location

Math =) String =) strLen(str)

Examples

strLen("ABCdefg%+#") returns 10

strLen("123456") returns 6

See Also

String.

3-240 Formula (Math and AdvMath) Reference

strPosChar(str,char)

strPosChar(str,char)

An object that returns the index within the input string str of any character

in the character list char.

Use

Use strPosChar(str,char) to return the index within the input string str of

the Õrst occurrence of any character in character list char. Base 0 indexing of

the string is used.

Location

Math =) String =) strPosChar(str,char)

Notes

If there is more than one occurrence of more that one listed character, only the

index of the Õrst listed character found is returned.

If none of the characters listed in char are found in the input string str, a

value of -1 is returned.

If either str or char is the nil string, a value of -1 is returned.

Note that the character match is case sensitive.

Examples

strPosChar("Now is the time","Nwme") returns 0

strPosChar("Now is the time","nwme") returns 2

strPosChar("Now is the time","x yz ") returns 3

strPosChar("Now is the time","") returns -1

strPosChar("Now is the time","xyz") returns -1

Formula (Math and AdvMath) Reference 3-241

strPosChar(str,char)

See Also

strFromLen(str,from,len), strFromThru(str,from,thru),

strPosStr(str1,str2), and String.

3-242 Formula (Math and AdvMath) Reference

strPosStr(str1,str2)

strPosStr(str1,str2)

An object that returns the index of string str2 within string str1.

Use

Use strPosStr(str1,str2) to return the index of the Õrst occurrence of string

str2 within string str1|that is, the index position within str1 where str2

begins. Base 0 indexing is used.

Location

Math =) String =) strPosStr(str1,str2)

Notes

If str2 occurs more than once in str1, only the index of the Õrst occurrence is

returned.

If an occurrence of str2 is not found within str1, a value of -1 is returned.

If either str1 or str2 is the nil string, a value of -1 is returned.

Note that the character match is case sensitive.

Examples

strPosStr("Now is the time","Now") returns 0

strPosStr("Now is the time","is the") returns 4

strPosStr("Now is the time"," ") returns 3

strPosStr("Now is the time","") returns -1

strPosStr("Now is the time","is The") returns -1

See Also

strFromLen(str,from,len), strFromThru(str,from,thru),

strPosChar(str,char), and String.

Formula (Math and AdvMath) Reference 3-243

strRev(str)

An object used to reverse the order of a string.

Use

Use strRev(str) to reverse the order in which the characters in a string

appear.

Location

Math =) String =) strRev(str)

Examples

strRev("ABCdefg%+#") returns \#+%gfedCBA"

strRev("123456") returns \654321"

See Also

strDown(str), strTrim(str), strUp(str), and String.

3-244 Formula (Math and AdvMath) Reference

strTrim(str,trimlist)

strTrim(str,trimlist)

An object used to trim spaces and tab characters from the front and back of a

string.

Use

Use the strTrim(str) object to trim leading and trailing spaces and tab

characters from an input string str. All spaces and tab characters that precede

the Õrst non-space/non-tab character, or follow the last non-space/non-tab

character, are trimmed. In a Formula object the complete syntax is:

strTrim(str [,trimlist])

Use strTrim(str,trimlist) to trim oÃ any characters from str that are

contained in trimlist. Note that these characters are trimmed only if they are

leading or trailing characters in str.

Location

Math =) String =) strTrim(str)

Notes

You can extend the syntax of this function to strTrim(str,trimlist) by

using it in a Formula object with two inputs: str and trimlist. In this case,

any characters listed in the trimlist string, if leading or trailing, are trimmed

from the str input string.

Examples

strTrim(" ABCdefg%+#") returns \ABCdefg%+#"

strTrim("eeeABCdefg%+#","eg#") returns \ABCdefg%+"

See Also

strDown(str), strRev(str), strUp(str), and String.

Formula (Math and AdvMath) Reference 3-245

strUp(str)

An object used to change all lowercase alphabetic characters in a string to

uppercase characters.

Use

Use strUp(str) to change the case of an input string str to uppercase.

All lowercase alphabetic characters (\a" through \z") are converted to the

corresponding uppercase characters (\A" through \Z"). Non-alphabetic ASCII

characters are left unchanged.

Location

Math =) String =) strUp(str)

Examples

strUp("ABCdefg%+#") returns \ABCDEFG%+#"

strUp("123456") returns \123456"

See Also

strDown(str), strRev(str), strTrim(str), and String.

3-246 Formula (Math and AdvMath) Reference

- (subtract)

- (subtract)

An object that performs an arithmetic subtraction on two operands.

Use

Use - to subtract the value of one container from another container. The

two containers may be of type Int32, Real, Coord, Waveform, Complex,

PComplex, or Spectrum. The two containers may be any shape. But if one of

the containers is an array, the other must be either a scalar or an array of the

same size and shape. The result is a container of the highest type, with the

same shape as the operands.

If both operands are of type Coord, they must have their independent

variable(s) match exactly or an error is returned. The subtraction is only

performed on the dependent (last) variable.

Location

Math =) + - * / =) -

Example

Array minus a scalar: [1 2 3] - 3 returns [-2 -1 0].

Scalar minus an array: 3 - [1 2 3] returns [2 1 0].

Two arrays: [4 5 6] - [3 2 1] returns [1 3 5].

Two Complex scalars: (2,4) - (1,3) returns (1,1).

Two Coord scalars: coord(1,3) - coord(1,5) returns coord(1,-2).

Two Coord scalars: coord(1,3) - coord(2,5) returns an error.

Notes

If either of the containers is mapped (that is, of type Waveform, Spectrum,

Coord, or a mapped array of any other type), the other container must be

unmapped or have identical mappings. The return value will have the same

mappings as the operands; otherwise an error is returned.

Formula (Math and AdvMath) Reference 3-247

- (subtract)

See Also

+ (add), / (divide), and * (multiply).

3-248 Formula (Math and AdvMath) Reference

sum(x)

sum(x)

An object used to sum up (add) all the elements of the input array.

Use

Use sum(x) to add together all the elements of the input array. The x input

may be of any size and shape and of the type Int32, Real, Coord, Waveform,

Coord, Complex, PComplex, Spectrum, or Text. For x input of all types,

except Waveform and Spectrum, output of the same type as the input is

returned. An input of a Waveform or Coord returns a Real scalar. An input of

Spectrum returns a PComplex.

The output of this object (for numeric types) is the arithmetic sum of all the

data contained in the input container and is a Scalar. For Text type input, the

output is a Scalar Text container and contains the concatenation of all of the

Text elements together to form one large string.

The sum(x) object obeys the same rules for Text string addition as the dyadic

operator +.

Location

AdvMath =) Array =) sum(x)

Example

Where x is an array [1 2 3 4], sum(x) returns 10.

Where x is an array ["first" "second" "third"], sum(x) returns

"firstsecondthird".

Notes

Mappings on the operand are ignored.

Note the diÃerence between the concat(x,y) and sum(x) functions on text

inputs. The concat(x,y) creates an Array 1D in all cases. The sum(x)

function will simply link all the text strings together to form one large output

string. That is, concat(x,y), where x is the Scalar Text value "a" and y is the

Scalar Text value "b", yields the Array 1D ["a","b"]. On the other hand,

Formula (Math and AdvMath) Reference 3-249

sum(x)

sum(["a","b"]) will return the Scalar container with the Text value of "ab" in

it.

See Also

+ (add), concat(x,y), and prod(x).

3-250 Formula (Math and AdvMath) Reference

tan(x)

tan(x)

An object that returns the tangent of x.

Use

Use tan(x) to generate the tangent of the x data. x can be any shape and of

type Int32, Real, Coord, Waveform, Complex, PComplex, or Spectrum. x is

assumed to be in the current Trig Mode units. Int32 returns a Real; all others

will return the same type. All will return the same shape as x.

Location

Math =) Trig =) tan(x)

Example

tan([0 45]) returns [0 1] with Trig Mode set to Degrees.

tan((1, 2)) returns (33.8128m, 1.01479) with Trig Mode set to Radians.

tan((3, @PI/2)) returns (0.99505, @1.57079) with Trig Mode set to

Radians.

Notes

Mappings are retained in the result. Using Trig Mode set to anything except

Radians may result in accuracy errors beyond the 12th signiÕcant digit.

See Also

atan(x), atan2(y,x), cos(x), cot(x), sin(x), tanh(x), and Trig.

Trig Mode in the \General Reference" chapter.

Formula (Math and AdvMath) Reference 3-251

tanh(x)

An object that returns the hyperbolic tangent of x.

Use

Use tanh(x) to generate the hyperbolic tangent of the x data. x can be any

shape and of type Int32, Real, Coord, Waveform, Complex, PComplex, or

Spectrum. x is assumed to be in the current Trig Mode units. Int32 returns a

Real; all others will return the same type. All will return the same shape as x.

Location

Math =) Hyper Trig =) tanh(x)

Example

tanh(0.6) returns 0.537 with Trig Mode set to Radians.

Notes

Mappings are retained in the result. Using Trig Mode set to anything except

Radians may result in accuracy errors beyond the 12th signiÕcant digit.

See Also

atanh(x), cosh(x), Hyper Trig, sinh(x), and tan(x).

Trig Mode in the \General Reference" chapter.

3-252 Formula (Math and AdvMath) Reference

Time & Date

Time & Date

A menu item.

Use

Use Time & Date to access the following objects which perform date and time

conversions.

now()

wday(aDate)

mday(aDate)

month(aDate)

year(aDate)

dmyToDate(d,m,y)

hmsToSec(h,m,s)

hmsToHour(h,m,s)

Location

Math =) Time & Date =)

Notes

The now() and dmyToDate(d,m,y) functions will output a time as the

number of seconds since the beginning of the Epoch (00:00 hours 1 January

0001 AD) and is stored in UTC (Universal Coordinated Time). That is, a

correction is applied for the time zone diÃerence between your local time

and GMT (Greenwich Mean Time). Since the wday(), mday(), month(),

and year() functions expect a UTC type of time as input (from the now(),

dmyToDate,(), Time Stamp or Date Time constant), they will remove the

correction before doing the calculation.

The hmsToSec(h,m,s) and hmsToHour(h,m,s) are only doing conversion to

delta (elapsed) time and do not apply any UTC correction. You may notice

that output from one of these functions displayed in an alpha display (in some

Time format) is oÃ by the number of hours between your time zone and UTC.

You will need to display this information with the Delta Time: time selection

on the alpha Time Stamp display on transactions.

Formula (Math and AdvMath) Reference 3-253

Time & Date

See Also

Time Stamp and To String in the \General Reference" chapter.

3-254 Formula (Math and AdvMath) Reference

totSize(x)

totSize(x)

An object that returns an integer value that is the total size of a container.

Use

Use the totSize(x) function in a Formula object to determine the size of the

container on input x. If x is a scalar or an array with one element, totSize(x)

will return a value of 1.

Location

AdvMath =) Array =) TotSize

Examples

For x= scalar: totSize(x) returns 1.

For x= [1]: totSize(x) returns 1.

For x= [1 2]: totSize(x) returns 2.

For x= [[1 2] [3 4]]: totSize(x) returns 4.

Notes

The totSize(x) function performs the same function as the TotSize pin in

the Get Values object.

See Also

Formula, Get Values.

Formula (Math and AdvMath) Reference 3-255

transpose(x)

An object used to calculate the transpose of a 2D array (a matrix).

Use

Use transpose(x) to return the transpose of a matrix. The x input must be

of matrix shape and of the type Int32, Real, Complex, PComplex, or Text.

For x input of all types, the same output type is returned. The matrix shape

required for this function is any 2-Dimensional matrix. It does not have to be

square.

Location

AdvMath =) Matrix =) transpose(x)

Example

Where x is a square matrix [[1 2] [3 4]], transpose(x) returns

[[1 3] [2 4]].

Where x is a matrix [[1 2 3] [4 5 6]], transpose(x) returns

[[1 4] [2 5] [3 6]].

Notes

Mappings on the operand are ignored and the output container has its

mappings transposed.

See Also

det(x), identity(x), and inverse(x).

3-256 Formula (Math and AdvMath) Reference

Triadic Operator

Triadic Operator

An operator that returns the result of one expression if a condition is true, but

returns the result of another expression if that condition is false.

Use

Use the triadic operator in a Formula object with the following syntax:

(condition ? expression : expression)

If the condition is true, the result of the Õrst expression is returned.

If the condition is false, the result of the second expression is returned.

Location

Must be used within a Formula object.

Example

(A<10 ? A*2 : A*3) returns the result of A*2 if A<10 is true, but returns the

result of A*3 if A<10 is false.

Notes

The enclosing parentheses are required.

The triadic operator is useful in setting up \IF/THEN/ELSE" conditional

tests.

See Also

Formula, If/Then/Else.

Formula (Math and AdvMath) Reference 3-257

Trig

A menu item.

Use

Use Trig to access the following objects which perform trigonometric functions

on data.

sin(x)

cos(x)

tan(x)

cot(x)

asin(x)

acos(x)

atan(x)

acot(x)

atan2(y,x)

Location

Math =) Trig =)

Notes

All Trig operations are performed in Radians. If Trig Mode is set to Degrees,

all containers must be converted from Degrees to Radians before the function

can be performed. Therefore, for the best performance, use Trig Mode set to

Radians.

See Also

Hyper Trig.

Trig Mode in the \General Reference" chapter.

3-258 Formula (Math and AdvMath) Reference

vari(x)

vari(x)

An object used to return the variance of the data in the input container.

Use

Use vari(x) to calculate the variance of the data in the input container.

The x input may be of any size and shape and of the type Int32, Real, Coord,

or Waveform. For all x input types, a Real Scalar container is returned. For

Coord input types, the operation is done on the dependent variable.

The vari(x) is deÕned as:

[The SUM of (Xi - Xmean)^2] divided by (numPts - 1)

where Xi is the individual data point, Xmean is the mean of the data points,

and numPts is the number of elements in the input array x.

Location

AdvMath =) Statistics =) vari(x)

Example

Where x is the array [1 2 3 4 5 11 12 13 14 34], vari(x) returns 90.4.

Notes

Mappings on the operand are ignored.

See Also

max(x), mean(x), median(x), min(x), mode(x), rms(x), and sdev(x).

Formula (Math and AdvMath) Reference 3-259

wday(aDate)

An object that returns the weekday of the time x.

Use

Use wday(aDate) to transform the given time x into a container of the same

shape with value(s) 0 - 6, corresponding to the day of the week. The value 0

corresponds to Sunday, 1 to Monday, and so on, with 6 as Saturday. x must be

of type Int32, Real, Coord, or Waveform any shape. Int32 returns Real; all

others will return the same type. All will return the same shape as x.

Location

Math =) Time & Date =) wday(aDate)

Example

wday(dmyToDate(25,12,1991)) returns 3, so Dec 25, 1991 is a Wednesday.

Notes

Mappings are retained in the return value.

See Also

dmyToDate(d,m,y), hmsToHour(h,m,s), hmsToSec(h,m,s), mday(aDate),

month(aDate), now(), Time & Date, and year(aDate).

3-260 Formula (Math and AdvMath) Reference

xcorrelate(a,b)

xcorrelate(a,b)

An object used to cross-correlate two arrays of data.

Use

Use xcorrelate(a,b) to calculate the discrete cross-correlation of two 1D

arrays a and b. The result will be an array of the same type and of size

(Na+Nb)-1, where Na is the size of input array a, and Nb is the size of input

array b.

The input values a and b must be an Array 1D of type Int32, Real, Coord,

or Waveform. The return type is the same as the highest type of the inputs,

except Int32, which returns Real. a and b do not have to be the same size.

The resultant values are not normalized.

Location

AdvMath =) Signal Processing =) xcorrelate(a,b)

Example

xcorrelate([1 2 3 4 5],[3 2 1]) returns [1 4 10 16 22 22 15].

Notes

The inputs a and b must represent equally spaced data. In addition, the

interval between any two values of a must be the same as that between any two

values of b. For two unmapped arrays, it is assumed that the interval is always

1. For mapped arrays, the interval is (Xmax-Xmin)/N, where Xmax and Xmin are

the mappings and N is the size of the array. When one input is mapped and

the other is not, the unmapped input is assumed to be sampled at the same

frequency as the mapped input. The resultant values will not be normalized.

Note that the xcorrelate(a,b) algorithm is essentially identical to the

standard algorithm for discrete convolution, except that the second operand is

not sequence-reversed as it is in convolution.

Formula (Math and AdvMath) Reference 3-261

xcorrelate(a,b)

See Also

convolve(a,b).

3-262 Formula (Math and AdvMath) Reference

xlogRamp (numElem,from, thru)

xlogRamp (numElem,from, thru)

An object that generates a logarithmically ramped array in the same manner

used to generate x values for coordinate conversions of log mapped 1D Arrays.

Use

Use xlogRamp(numElem,from,thru) to generate a Real one-dimensional array

of length numElem, with the values logarithmically ramped from from to thru.

numElem must be a scalar container which is, or can be converted to, Int32

and with a value greater than zero. from and thru must be scalar containers

which are, or can be converted to, Real. If from is less than thru the ramping

is positive; otherwise it automatically ramps negatively. Both from and thru

must have values greater than zero.

Location

Math =) Generate =) xlogRamp(numElem,from,thru)

Example

xlogRamp(3, 1, 100) returns a 1D Array with values [1 10 100].

Notes

The return value has no mappings.

The algorithm for generating values is:

Y[I]=exp10(log10(from)+I*((log10(thru)-log10(from))/numElem))

for I=0..numElem-1

This has the eÃect that the last element in the resultant array has a value

which is less than thru by:

exp10(log10(thru)-log10(from)/numElem).

See Also

Alloc Real, logRamp(numElem,from,thru), and xramp(numElem,from,thru).

Formula (Math and AdvMath) Reference 3-263

XOR

An object that performs a logical exclusive OR operation on two operands.

Use

Use XOR to determine whether one and only one of the value(s) of two

containers is logically true (non-zero). The two containers may be of any type

and of any shape. If one of the containers is an array, the other must be either

a scalar or an array of the same size and shape. The result is an Int32 of the

same shape as the operands, with value(s) 0 or 1. If either operand is non-zero,

but not both, the value of the XOR operation is 1; otherwise the value is 0.

If both operands are of type Coord, they must have their independent

variable(s) match exactly or an error is returned. Only the dependent (last)

variable is considered for the XOR operation.

For Complex, PComplex, and Spectrum containers, the value of the operand is

true if either part is non-zero. Text is true if non-null. Enums are converted to

Text for the operation.

Location

Math =) Logical =) XOR

Example

A scalar and an array: 3 XOR [3 3 3] returns [0 0 0].

A scalar and an array: 3 XOR [-3 0 3] returns [0 1 0].

Two arrays: [1 2 3] XOR [0 1 (-1)] returns [1 0 0].

Two PComplex scalars: (1,@90) XOR (1,@85) returns 0.

Two Complex scalars: (0,0) XOR (0,1) returns 1.

Two Complex scalars: (0,1) XOR (1,0) returns 0.

Two Complex scalars: (0,0) XOR (0,0) returns 0.

Two Coord scalars: coord(1,3) XOR coord(1,5) returns 0.

3-264 Formula (Math and AdvMath) Reference

XOR

Two Coord scalars: coord(1,3) XOR coord(2,3) returns an error.

A Text scalar and a scalar number: "too" XOR 0 returns 1.

A Text scalar and a scalar number: "" XOR 0 returns 1 because the real 0 is

promoted to "0", which is a non-null string.

Notes

If either of the containers is mapped (that is, of type Waveform, Spectrum,

Coord, or a mapped array of any other type), the other container must be

unmapped or have identical mappings. The return value will have the same

mappings as the operands; otherwise an error is returned.

Note that the If/Then/Else device requires the expression(s) inside it to

evaluate to either a scalar or an array, which is either all zeros or all ones.

See Also

AND, NOT, OR, and Relational.

Conditional and If/Then/Else in the \General Reference" chapter.

Formula (Math and AdvMath) Reference 3-265

xramp(numElem, from,thru)

An object that generates a linearly ramped array in the same manner used

to generate x values for coordinate conversions of mapped 1D Arrays (for

example, Waveform).

Use

Use xramp(numElem,from,thru) to generate a Real one-dimensional array of

length numElem, with the values linearly ramped from from to thru. numElem

must be a scalar container that is, or can be converted to, Int32 and with a

value greater than zero. from and thru must be scalar containers that are, or

can be converted to, Real.

If from is less than thru, the ramping is positive; otherwise it automatically

ramps negatively.

Location

Math =) Generate =) xramp(numElem,from,thru)

Example

xramp(3, 0.5, 0) returns a one-dimensional array with values [0.5 0.25 0].

xramp(5, 2, 10) returns a one-dimensional array with values [2 4 6 8 10].

Notes

The return value has no mappings.

The algorithm for generating values is:

Y[I] = from + I*(thru-from/numElem)

for I=0..numElem-1

This has the eÃect that the last element in the resultant array has a

value which is less than thru by the size of the sampling interval:

(thru-from)/numElem.

3-266 Formula (Math and AdvMath) Reference

xramp(numElem, from,thru)

See Also

Alloc Real, ramp(numElem,from,thru), and xlogRamp(numElem,from,thru).

Formula (Math and AdvMath) Reference 3-267

y0(x)

An object used to calculate the Bessel function of x of the second kind of order

zero.

Use

Use y0(x) to Õnd the Bessel function of x of the second kind of order zero.

The x input may be of any size and shape and of the type Int32, Real, Coord,

or Waveform. For x input of all types, the same output type is returned,

except for Int32 which returns a Real type. For Coord input types, the

operation is done on the dependent variable.

Location

AdvMath =) Bessel =) y0(x)

Example

y0(2) returns 0.510375672649745.

Notes

Mappings on the operand are ignored and the output container has the same

mappings as the input.

The value of x must be positive.

See Also

Ai(x), Bi(x), j0(x), j1(x), jn(x,n), y1(x), and yn(x,n).

3-268 Formula (Math and AdvMath) Reference

y1(x)

y1(x)

An object used to calculate the Bessel function of x of the second kind of order

one.

Use

Use y1(x) to Õnd the Bessel function of x of the second kind of order one. The

x input may be of any size and shape and of the type Int32, Real, Coord, or

Waveform. For x input of all types, the same output type is returned, except

for Int32 which returns a Real type. For Coord input types, the operation is

done on the dependent variable.

Location

AdvMath =) Bessel =) y1(x)

Example

y1(9) returns the value 0.104314575196715.

Notes

Mappings on the operand are ignored and the output container has the same

mappings as the input.

The value of x must be positive.

See Also

Ai(x), Bi(x), j0(x), j1(x), jn(x,n), y0(x), and yn(x,n).

Formula (Math and AdvMath) Reference 3-269

year(aDate)

An object that returns the year of the time x.

Use

Use year(aDate) to transform the given time x into a container of the same

shape with the value of the year of the time x. x must be an Int32, Real,

Coord, or Waveform any shape. Int32 returns Real; all others will return the

same type. All will return the same shape as x.

Location

Math =) Time & Date =) year(aDate)

Example

year(dmyToDate(25,12,1991)) returns 1991.

Notes

Mappings are retained in the return value.

See Also

dmyToDate(d,m,y), hmsToHour(h,m,s), hmsToSec(h,m,s), mday(aDate),

now(), month(aDate), Time & Date, and wday(aDate).

3-270 Formula (Math and AdvMath) Reference

yn(x,n)

yn(x,n)

An object used to calculate the Bessel function of x of the second kind of order

n.

Use

Use yn(x,n) to Õnd the Bessel function of x of the second kind of order n. The

x input may be of any size and shape and of the type Int32, Real, Coord, or

Waveform. For x input of all types, the same output type is returned, except

for Int32 which returns a Real type. For Coord input types, the operation is

done on the dependent variable.

The n parameter must be of Int32 type or be able to be converted to Int32.

The n parameter also has to be a Scalar in shape or the same shape as x.

Location

AdvMath =) Bessel =) yn(x,n)

Example

yn(10,4) returns -0.144949511868093.

Notes

If both of the inputs are mapped, then the mappings must be the same. The

return value has the same mappings as the input if either input is mapped. If

neither of the inputs is mapped, then the output is unmapped.

The value of x must be positive.

See Also

Ai(x), Bi(x), j0(x), j1(x), jn(x,n), y0(x), and y1(x).

Formula (Math and AdvMath) Reference 3-271

A

Data Type Conversions

This appendix contains reference information about the data type conversions

which occur on input terminals in HP VEE.

In conventional programming languages, you manually convert between data

types. HP VEE automatically converts between most data types. These

conversions are discussed in the \Formula (Math and AdvMath) Reference"

chapter.

Note Data shapes are not converted on input terminals, but data

types and shapes may be automatically converted when used

in math functions. These conversions are discussed in the

\Formula (Math and AdvMath) Reference" chapter.

Most objects accept any data type, but a few need a particular data type or

shape input. For these objects, their data input terminal automatically tries to

convert the container to have the desired data type.

For example, a Magnitude Spectrum display needs Spectrum data. If the

output of a Function Generator (a Waveform) is connected to the Magnitude

Spectrum display, the input terminal of the Magnitude Spectrum automatically

does an FFT to convert time-domain data to frequency-domain data

(Waveform to a Spectrum).

The conversion can be a promotion or demotion. A promotion is the conversion

from a data type with less information to one with more. For example, a

conversion from an Int32 to Real is a promotion.

A demotion is a conversion that loses data. For example, the conversion from a

Real to an Int32 is a demotion because the fractional part of the Real number

is lost. Demotion only generally occurs when you have speciÕed a certain

data type for an input. HP VEE objects generally accept any data type. For

Data Type Conversions A-1

example, if you change the input on a Formula object to Int32, and you try to

input a Real number (such as 28.2), the value that will be input to the object

will be 28.

When the conversion can't be done, HP VEE returns an error. The following

table shows when conversion is automatic (yes) or when HP VEE returns an

error (no).

Table A-1. Promotion and
NNNNNNNNNNNNNNNNNNNNNNNN

Demotion of Types In Input Terminals

To Ç

É From

Int32 Real Complex PComplex Waveform Spectrum Coord Enum Text

Int32 n/a yes yes(1) yes(1) no no yes(2) no yes

Real

FFFFFFFF

yes
(3) n/a yes(1) yes(1) no no yes(2) no yes

Complex

FFFFFF

no

FFFFFF

no
(4) n/a yes no no no no yes

PComplex

FFFFFF

no

FFFFFF

no
(4) yes n/a no no no no yes

Waveform

FFFFFFFF

yes
(3)

FFFFFFFF

yes
(8)

FFFFFF

no

FFFFFF

no n/a yes(5) yes no yes

Spectrum

FFFFFF

no

FFFFFF

no

FFFFFFFF

yes
(8)

FFFFFFFF

yes
(8) yes(5) n/a yes no yes

Coord

FFFFFF

no

FFFFFF

no

FFFFFF

no

FFFFFF

no

FFFFFF

no

FFFFFF

no n/a no yes

Enum

FFFFFF

no (6)
FFFFFF

no

FFFFFF

no

FFFFFF

no

FFFFFF

no

FFFFFF

no

FFFFFF

no n/a yes

Text

FFFFFFFF

yes (7)
FFFFFFFF

yes (7)
FFFFFFFF

yes (7)
FFFFFFFF

yes (7)
FFFFFF

no

FFFFFF

no

FFFFFFFF

yes (7)
FFFFFF

no n/a

Notes:

n/a = Not applicable.

(1) An Int32, or Real value promotes to Complex (value, 0) or to PComplex

(value, @0).

(2) The independent component(s), which are the Õrst n-1 Õeld(s) of an

n-Õeld Coord, are the array indexes of the value unless the array is mapped.

If the array is mapped, the independent component(s) are derived from the

mappings of each dimension. The dependent component, y, is the array

element. If the container is a Scalar (non-array), conversion fails with an

error.

(3) These demotions will cause an error if the value is out of range for the

destination type.

A-2 Data Type Conversions

(4)
This demotion is not done automatically, but can be done with the re(x),

im(x), mag(x), and phase(x) objects or the Build/UnBuild =) objects.

(5) An FFT or inverse FFT is automatically done.

(6) This demotion is not done automatically, but can be done with the

ordinal(x) object.

(7) This demotion causes an error if the text value is not a number (such

as 34 or 42.6) or is not in an acceptable numerical format. The acceptable

formats are as follows (spaces, except within each number, are ignored):

Text that is demoted to an Int32 or Real type may also include:

A preceding sign. For example, -34.

A suœx of e or E followed by an optional sign or space and an integer.

For example, 42.6E-3.

Text demoted to Complex must be in the following format: (number,

number).

Text demoted to PComplex must be in the following format: (number,

@number). The phase (the second component) is considered to be radians

for this conversion, regardless of the Trig Mode setting.

Text demoted to a Coord type must be in the following format: (number,

number, . . .).

(8) These demotions keep the Waveform and Spectrum mappings.

Note The Record data type has the highest precedence. But

non-record data cannot be automatically converted to or from

Record data type by promotion or demotion. Use the Build

Record and UnBuild Record objects to accomplish this task.

Data Type Conversions A-3

B

ASCII Table

This appendix contains reference tables of ASCII 7-bit codes.

ASCII Table B-1

ASCII 7-bit Codes

Binary Oct Hex Dec HP-IB Msg

NUL 0000000 000 00 0

SOH 0000001 001 01 1 GTL

STX 0000010 002 02 2

ETX 0000011 003 03 3

EOT 0000100 004 04 4 SDC

ENQ 0000101 005 05 5 PPC

ACK 0000110 006 06 6

BEL 0000111 007 07 7

BS 0001000 010 08 8 GET

HT 0001001 011 09 9 TCT

LF 0001010 012 0A 10

VT 0001011 013 0B 11

FF 0001100 014 0C 12

CR 0001101 015 0D 13

SO 0001110 016 0E 14

SI 0001111 017 0F 15

DLE 0010000 020 10 16

DC1 0010001 021 11 17 LLO

DC2 0010010 022 12 18

DC3 0010011 023 13 19

DC4 0010100 024 14 20 DCL

NAK 0010101 025 15 21 PPU

SYN 0010110 026 16 22

ETB 0010111 027 17 23

Binary Oct Hex Dec HP-IB Msg

CAN 0011000 030 18 24 SPE

EM 0011001 031 19 25 SPD

SUB 0011010 032 1A 26

ESC 0011011 033 1B 27

FS 0011100 034 1C 28

GS 0011101 035 1D 29

RS 0011110 036 1E 30

US 0011111 037 1F 31

space 0100000 040 20 32 listen addr 0

! 0100001 041 21 33 listen addr 1

" 0100010 042 22 34 listen addr 2

0100011 043 23 35 listen addr 3

$ 0100100 044 24 36 listen addr 4

% 0100101 045 25 37 listen addr 5

& 0100110 046 26 38 listen addr 6

' 0100111 047 27 39 listen addr 7

(0101000 050 28 40 listen addr 8

) 0101001 051 29 41 listen addr 9

* 0101010 052 2A 42 listen addr 10

+ 0101011 053 2B 43 listen addr 11

, 0101100 054 2C 44 listen addr 12

- 0101101 055 2D 45 listen addr 13

. 0101110 056 2E 46 listen addr 14

/ 0101111 057 2F 47 listen addr 15

B-2 ASCII Table

ASCII 7-bit Codes (continued)

Binary Oct Hex Dec HP-IB Msg

0 0110000 060 30 48 listen addr 16

1 0110001 061 31 49 listen addr 17

2 0110010 062 32 50 listen addr 18

3 0110011 063 33 51 listen addr 19

4 0110100 064 34 52 listen addr 20

5 0110101 065 35 53 listen addr 21

6 0110110 066 36 54 listen addr 22

7 0110111 067 37 55 listen addr 23

8 0111000 070 38 56 listen addr 24

9 0111001 071 39 57 listen addr 25

: 0111010 072 3A 58 listen addr 26

; 0111011 073 3B 59 listen addr 27

< 0111100 074 3C 60 listen addr 28

= 0111101 075 3D 61 listen addr 29

> 0111110 076 3E 62 listen addr 30

? 0111111 077 3F 63 UNL

@ 1000000 100 40 64 talk addr 0

A 1000001 101 41 65 talk addr 1

B 1000010 102 42 66 talk addr 2

C 1000011 103 43 67 talk addr 3

D 1000100 104 44 68 talk addr 4

E 1000101 105 45 69 talk addr 5

F 1000110 106 46 70 talk addr 6

G 1000111 107 47 71 talk addr 7

H 1001000 110 48 72 talk addr 8

Binary Oct Hex Dec HP-IB Msg

I 1001001 111 49 73 talk addr 9

J 1001010 112 4A 74 talk addr 10

K 1001011 113 4B 75 talk addr 11

L 1001100 114 4C 76 talk addr 12

M 1001101 115 4D 77 talk addr 13

N 1001110 116 4E 78 talk addr 14

O 1001111 117 4F 79 talk addr 15

P 1010000 120 50 80 talk addr 16

Q 1010001 121 51 81 talk addr 17

R 1010010 122 52 82 talk addr 18

S 1010011 123 53 83 talk addr 19

T 1010100 124 54 84 talk addr 20

U 1010101 125 55 85 talk addr 21

V 1010110 126 56 86 talk addr 22

W 1010111 127 57 87 talk addr 23

X 1011000 130 58 88 talk addr 24

Y 1011001 131 59 89 talk addr 25

Z 1011010 132 5A 90 talk addr 26

[1011011 133 5B 91 talk addr 27

\ 1011100 134 5C 92 talk addr 28

] 1011101 135 5D 93 talk addr 29

^ 1011110 136 5E 94 talk addr 30

_ 1011111 137 5F 95 UNT

` 1100000 140 60 96 secondary

addr 0

ASCII Table B-3

ASCII 7-bit Codes (continued)

Binary Oct Hex Dec HP-IB Msg

a 1100001 141 61 97 secondary

addr 1

b 1100010 142 62 98 secondary

addr 2

c 1100011 143 63 99 secondary

addr 3

d 1100100 144 64 100 secondary

addr 4

e 1100101 145 65 101 secondary

addr 5

f 1100110 146 66 102 secondary

addr 6

g 1100111 147 67 103 secondary

addr 7

h 1101000 150 68 104 secondary

addr 8

i 1101001 151 69 105 secondary

addr 9

j 1101010 152 6A 106 secondary

addr 10

k 1101011 153 6B 107 secondary

addr 11

l 1101100 154 6C 108 secondary

addr 12

m 1101101 155 6D 109 secondary

addr 13

n 1101110 156 6E 110 secondary

addr 14

o 1101111 157 6F 111 secondary

addr 15

p 1110000 160 70 112 secondary

addr 16

Binary Oct Hex Dec HP-IB Msg

q 1110001 161 71 113 secondary

addr 17

r 1110010 162 72 114 secondary

addr 18

s 1110011 163 73 115 secondary

addr 19

t 1110100 164 74 116 secondary

addr 20

u 1110101 165 75 117 secondary

addr 21

v 1110110 166 76 118 secondary

addr 22

w 1110111 167 77 119 secondary

addr 23

x 1111000 170 78 120 secondary

addr 24

y 1111001 171 79 121 secondary

addr 25

z 1111010 172 7A 122 secondary

addr 26

{ 1111011 173 7B 123 secondary

addr 27

| 1111100 174 7C 124 secondary

addr 28

} 1111101 175 7D 125 secondary

addr 29

~ 1111110 176 7E 126 secondary

addr 30

[del] 1111111 177 7F 127

B-4 ASCII Table

Glossary

This Glossary contains the terms and deÕnitions used to name or describe

graphical objects and processes in the HP VEE software, as well as some

hardware items related to installing and using HP VEE.

Activate

1. To send a container to a terminal. See also Container and Terminal.

2. The action that resets the context of a UserObject before it operates

each time. See also Context and PreRun.

Application

A software program that completes work directly for the user. For example,

HP VEE-Engine is a general purpose engineering application, and

HP VEE-Test is a test and measurement application.

Array

A data shape that contains a systematic arrangement of data items in one

or more dimensions. The data items are accessed via indexes. See also Data

Shape.

Arrow

1. An arrow-shaped pointer. See Pointer.

2. A scroll arrow that is a part of a scroll bar and is used either to scroll a

list box, or to pan the work area.

Asynchronous

A method of operating without a common signal to synchronize events;

rather, the events occur at unspeciÕed times. Control pins in HP VEE are

asynchronous.

Glossary-1

Auto Execute

An option on the object menus of the data constant objects. When Auto

Execute is set, the object operates when its value is edited.

Bitmap

A bit pattern or picture. In HP VEE you can display a bitmap on an icon.

BuÃer

An area where information is stored temporarily.

Button

1. A button on a mouse. See Mouse Button.

2. A graphical object in HP VEE that simulates a real-life pushbutton and

appears to pop out from your screen. When a button is \pressed" in HP

VEE, by clicking on it with a mouse, an action occurs.

Cascading Menu

A submenu on a pull-down or pop-up menu that provides additional

selections to a menu selection (feature).

Checkbox

A recessed square box on HP VEE menus and dialog boxes that allows you

to select a setting. To select a setting, click on the box and a checkmark

appears in the box to indicate a selection has been made. To cancel the

setting, simply click on the box again to remove the checkmark.

Click

To press and release a mouse button quickly. Clicking usually selects a

menu feature or object in the HP VEE window. See also Double-Click and

Drag.

Compiled Function

A user-deÕned function created by dynamically linking a program, written

in a programming language such as C, into the HP VEE process. The user

must create a shared library Õle and a deÕnition Õle for the program to

be linked. The Import Library object attaches the shared library to the

HP VEE process and parses the deÕnition Õle declarations. The Compiled

Function can then be called with the Call Function object, or from certain

expressions. See also User Function and Remote Function.

Glossary-2

Component

A single instrument function or measurement value in an HP VEE-Test

State Driver or Component Driver. For example, a voltmeter driver

contains components that record the range, trigger source, and latest

reading. See also Component Driver, Driver Files, State, and State Driver.

Component Driver

An instrument control object that reads and writes values to components

you speciÕcally select. Use Component Drivers to control an instrument

using a driver by setting the values of only a few components at a time. See

also Component, Driver Files, and State Driver.

Composite Data Type

A data type that has an associated shape. See also Data Shape and Data

Type.

ConÕgure

To arrange or modify software, hardware, or both in a computer system. In

HP VEE, a menu selection with which you may change transaction array

formats, the number of elements in a constant, and so forth.

Container

The package that is transmitted over lines and is processed by objects.

Each container contains data, the data type, and the data shape. See also

Data Shape and Data Type.

Context

A level of the work area that can contain other levels of work areas (such as

nested UserObjects) but is independent of them. See also UserObject.

Control Pin

An asynchronous input pin that transmits data to the object without

waiting for the object's other input pins to contain data. For example,

control pins in HP VEE are commonly used to clear or autoscale a display.

Coupling

The interrelationship of certain functions in a test and measurement

instrument. If in a state or component driver, functions A and B are

coupled, changing the value of A may automatically change the value of B,

even though you do not change B explicitly.

Glossary-3

Crosshairs

A cross-shaped pointer in HP VEE that indicates that the software is

waiting for your action. For example, when you see the crosshairs, you

can select an object in the work area to perform some action on it, select

a menu feature, or select any of the window controls (such as the scroll

arrows, minimize or maximize buttons, and so forth).

Cursor

A white rectangular pointer in an entry Õeld that shows where

alphanumeric data will appear when you type information from the

keyboard.

Data Field

The Õeld within a transaction speciÕcation in which you specify either the

expression to be written (WRITE transactions), or the variable to receive

data that is read (READ transactions). See also Transactions.

Data Flow

The direction in which data moves in HP VEE. Data Œows from left to right

through objects and propagation has continued as far as it can in this way.

Propagation continues through the sequence input and output pins.

Data Input Pin

A connection point on the left side of an object that permits data to Œow

into the object.

Data Output Pin

A connection point on the right side of an object that propagates data Œow

to the next object and passes the results of the Õrst object's operation on to

the next object.

DataSet

A collection of Record containers saved into a Õle for later retrieval. The

To DataSet object collects Record data on its input and writes that data

to a named Õle (the DataSet). The From DataSet object retrieves Record

data from the named Õle (the DataSet) and outputs that data as Record

containers on its Rec output pin. See also Record.

Glossary-4

Data Shape

A pre-deÕned structure that deÕnes how data is grouped together. See also

Array, Container, and Data Type.

Data Type

A pre-deÕned structure that determines how data is organized and treated

by HP VEE and supports common engineering constructs. See also

Container and Data Shape.

Default

A value or action that HP VEE automatically selects.

Default Button

The button in a dialog box who's action is performed by default if ÄReturnÅ is

pressed or the selection is double-clicked. The default button has a recessed

border.

Demote

To convert from a data type that contains more information to one that

contains less information. See also Data Type and Promote.

Detail View

A view of a model in HP VEE that shows all the objects and the lines

between them. Compare with Panel View.

Device

An instrument attached to or plugged into an HP-IB, RS-232, GPIO or

VXI interface. SpeciÕc HP VEE-Test objects such as the Direct I/O object

send and receive information to a device.

Device Driver

See Interface Driver.

Dialog Box

A secondary window displayed when HP VEE requires information from

you before it can continue. For example, a dialog box may contain a list

of Õles from which you must choose a Õle before HP VEE can perform a

particular operation.

Glossary-5

Directory

A collection of Õles. For example, your /users directory usually contains all

the Õles you have created. See $HOME and Startup Directory.

Double-Click

To press and release a mouse button twice in rapid succession.

Double-clicking is usually a short-cut to selecting and performing an action.

Drag

To press and continue to hold down a mouse button while moving the

mouse. Dragging moves something (for example, an object or scroll slider)

within the HP VEE window. A drag ends when you release the mouse

button.

Driver

Software that allows a computer to communicate with other software or

hardware more easily than with raw reads and writes. See also Component

Driver, Driver Files, Interface Driver, and State Driver.

Driver Files

A set of Õles included with HP VEE-Test that contains the information

needed to create State Driver and Component Driver objects for

instrument control. These Õles (.cid Õles) are copied to your system's hard

disk automatically when you install HP VEE-Test.

Edit

To make changes in a Õle or entry Õeld containing text or data.

Entry Field

A Õeld that is typically part of a dialog box or an editable object and is

used for text entry. An entry Õeld appears recessed. For example, the open

view of the For Range object has entry Õelds where you type values that

specify the beginning, ending, and step values.

Error Message

Information that appears in a special type of dialog box in the HP VEE

window and explains that a problem has occurred.

Glossary-6

Error Pin

A pin that traps any errors that occur in an object. Instead of getting an

error message, the error number is output on the error pin. When an error

is generated, the data output pins are not activated.

Execute

The action of a model, or parts of a model, running.

Execution Flow

The order in which objects operate. See also Data Flow.

Expression

An equation in an entry Õeld that can contain the input terminal names

and any Math or AdvMath functions. An expression is evaluated at run-time.

Expressions are only allowed in the Formula, If/Then/Else, Get Values,

and I/O transaction objects.

Feature

An item on a menu that you select to cause a particular action to occur (for

example, to open a Õle), or to get a particular object.

Feedback

A continuous thread path of sequence and/or data lines that uses values

from the previous execution to change values in the current execution.

File

A set of information (such as a model or data) that is stored in an area of

computer storage.

Flow

See Data Flow and Execution Flow.

Function

The name and action of objects where the output is a function of the input.

These objects are located under Math or AdvMath menus and may be used

in the Formula object. For example sqrt(x) is a function; + is not.

Global Variable

A named variable that is set globally, and which can be used by name in

any context of an HP VEE model. For example, a global variable can be set

Glossary-7

with Set Global in the root context of the model, and can be accessed by

name with Get Global or from certain expressions within the context of a

UserObject. However, a local variable with the same name as the global

variable takes precedence in an expression.

Grayed Feature

A menu feature that is not currently available for use. For example, Move

Object is grayed when no objects are selected.

Highlight

1. The colored band or shadow around an object that provides a visual cue

to the status of the object.

2. The change of color on a menu feature that indicates you are pointing to

that feature.

Host

To begin a thread or subthread. For example, the subthread that is hosted

by For Count is the subthread that iterates.

$HOME

Your home directory (usually /users).

HP-UX

Hewlett-Packard Company's enhanced version of the UNIXTM operating

system. (UNIX is a trademark of AT&T Bell Laboratories.)

Icon

The small, graphical representation of an HP VEE object, such as the

representation of an instrument, a control, or a display. Compare with

Open View.

Instrument Driver

See Driver Files, Component Driver, and State Driver.

Interface

HP-IB, RS-232, GPIO, and VXI are referred to as interfaces used for I/O.

SpeciÕc HP VEE-Test objects, such as the Interface Event object can

only send commands to an interface.

Glossary-8

Interface Driver

Software that allows a computer to communicate with a hardware

interface, such as HP-IB or RS-232. Also called device driver in the

UNIXTMoperating system, interface drivers are conÕgured into the kernel of

the operating system.

Interrupt

A signal that requires immediate attention that may suspend a process,

such as the execution of a computer program. An interrupt is usually

caused by an event external to that process; after the interrupt is serviced,

the process may be resumed.

Label

The text area or name on an icon or button that identiÕes that object or

button.

Library

A collection of often-used objects or small models grouped together for easy

access.

Line

A link between two objects in HP VEE that transmits data containers to be

processed. See also Subthread and Thread.

Log In

The process of typing in a valid user name and its associated password (if

one exists) to gain access to a computer system.

Login

A valid name and password (if one exists) that you use to log in to a

computer system.

Main Menu

The menus located in the HP VEE menu bar. The main menus may be

opened by clicking or dragging on the menu titles in the menu bar.

Main Work Area

The area where you create a model. The main work area is the parent

context of all other contexts.

Glossary-9

Mapping

To associate a set of independent values with an array, when the array is a

function of the values.

Maximize

To enlarge a window to its maximum size. You maximize a window by

selecting the square button on the right side of the window's title bar. In

HP VEE, the UserObject has a maximize button.

Menu

A collection of features that are presented in a list. See also Cascading

Menu, Main Menu, Object Menu, Pop-Up Menu, and Pull-Down Menu.

Menu Bar

A rectangular bar at the top of the HP VEE window that contains titles of

the pull-down, main menus from which you select features.

Menu Title

The name of a menu within the HP VEE menu bar. For example, File or

Edit.

Minimize

1. To reduce an open view of an object to its smallest size|an icon.

2. To reduce an X11 window to its smallest size|an icon.

Model

In HP VEE, a set of objects connected with lines that simulates an

engineering problem and, when run, provides a solution to that problem.

You build, modify, and run models in HP VEE by selecting objects from

menus and connecting them in the work area. A model can contain multiple

threads. You load a model into the HP VEE work area with Open. A model

includes both the detail and panel views and all related contexts.

Mouse

A pointing device that you move across a surface to move a pointer within

the HP VEE window.

Mouse Button

One of the buttons on a mouse that you can click, double-click, or drag to

Glossary-10

perform a particular action with the corresponding pointer in the HP VEE

window.

Object

A graphical representation of an element in a model, such as an instrument,

control, display, or mathematical operator. An object is placed on the work

area and connected to other objects to create a model. Objects can be

displayed as icons or as open views. See Icon and Open View.

Object Menu

The menu associated with an object that contains features that operate on

the object such as moving, sizing, copying, deleting, and adding inputs to

the object. It is accessed by clicking on the upper-left corner of an open

view or clicking the right mouse button on any non-Õeld area on the object.

Open

To start an action or begin working with a text, data, or graphics Õle.

When you select Open from HP VEE, a model is loaded into the work area.

Open View

The representation of an HP VEE object that is more detailed than an

icon. Within the open view, you can modify the operation of the object and

change the object's title. Compare with Icon. See also Object.

Operate

The action of an object processing data and outputting a result. An object

operates when its data and sequence input pins have been activated. See

Activate.

Outline Box

A box that represents the outer edges of an object or set of objects and

indicates where the object(s) will be placed in the work area.

Network

A group of computers and peripherals linked together to allow the sharing

of data and work loads.

Palette

A set of colors and fonts that is supplied with HP VEE and used in your

HP VEE environment.

Glossary-11

Panel

Information displayed in the center of the object's open view. In a

UserObject, the panel contains a work area. In a For Count object, the

panel contains an entry Õeld. Compare with Panel View.

Panel View

The view of a model in HP VEE that shows only those objects needed

for the user to run the model and view the resultant data. You create a

panel view to meet the needs of your users. Compare with Detail View and

Panel.

Pin

An external connection point on an object to which you can attach a

line. See also Control Pin, Data Input Pin, Data Output Pin, Error Pin,

Sequence Input Pin, Sequence Output Pin, Terminal, and XEQ Pin.

Pointer

The graphical image that maps to the movement of the mouse. A pointer

allows you to make selections and provides you feedback on a particular

process underway. HP VEE has pointers of diÃerent shapes that correspond

to process modes, such as an arrow, crosshairs, and hourglass. See also

Arrow and Crosshairs. Compare with Cursor.

Pop-Up Menu

A menu that provides no visual cue to its presence, but simply pops up

when you perform a particular action. For example, the Edit menu in

HP VEE pops up when you position the pointer in the work area and then

click the right mouse button.

PostRun

The set of actions that are performed when the model is stopped.

PreRun

The set of actions that resets the model and checks for errors before the

model starts to run.

Priority Thread

A priority thread executes to completion blocking all other parallel threads

from executing. Certain of the I/O objects for devices and interfaces will

host a priority thread.

Glossary-12

Promote

To convert from a data type that contains less information to one that

contains more information. See also Data Type and Demote.

Propagation

The rules that objects and models follow when they operate or run. See

also Data Flow and Execution Flow.

Pterodactyl

Any of various extinct Œying reptiles of the order Pterosauria of the Jurassic

and Cretaceous periods. Pterodactl are characterized by wings consisting of

a Œap of skin supported by the very long fourth digit on each front leg.

Pull-Down Menu

A menu that is pulled down from the menu bar when you position the

pointer over a menu title and click or drag the left mouse button.

Radio Button

A diamond-shaped button in HP VEE dialog boxes that allows you to

select a setting that is mutually exclusive with other radio buttons in that

dialog box. To select a setting, click on the radio button. To remove the

setting, click on another radio button in the same dialog box.

Record

A data type that has named data Õelds which can contain multiple values.

Each Õeld can contain another Record container, a Scalar, or an Array.

The Record data type has the highest precedence of all HP VEE data

types. However, data cannot be converted to and from the Record data

type through the automatic promotion/demotion process. Records must be

built/unbuilt using the using Build Record and UnBuild Record objects.

Remote Function

A User Function running on a remote host computer, which is callable from

the local host. The Import Library object starts the process on the remote

host and loads the Remote File into the HP VEE process on the local host.

You can then call the Remote Function with the Call Function object, or

from certain expressions. See also User Function and Compiled Function.

Glossary-13

Resource Manager

A program which exists on VXI controllers that runs at start-up and after a

VXI system reset. This program initializes and manages the instruments in

a VXI card cage.

Restore

To return a minimized window or an icon to its full size as a window or

open view by double-clicking on it.

Run

To start the objects on a model or thread operating.

Save

To write a Õle to a storage device, such as a hard disk, for safekeeping.

Scalar

A data shape that contains a single value. See also Data Shape.

Schema

The structure or framework used to deÕne a data record. This includes each

Õeld's name, type, shape (and dimension sizes) and mapping.

Screen Dump

A graphical printout of a window or part of a window.

Scroll

The act of using a scroll bar either to move through a list of data Õles or

other choices in a dialog box or to pan the work area.

Scroll Arrow

An arrow that is part of a scroll bar and, when clicked on, moves you

through a list of data Õles or other choices in a dialog box or pans the work

area.

Scroll Bar

A graphical device used either to move through a list of data Õles or other

choices in a dialog box or to pan the work area. A scroll bar consists of one

or more scroll sliders and scroll arrows.

Glossary-14

Scroll Slider

A rectangular bar that is part of a scroll bar and, when dragged, moves you

through a list of data Õles or other choices in a dialog box or pans the work

area.

Select

To choose an object, an action to be performed, or a menu item. Usually

you select by clicking with your mouse.

Select Code

A number used to identify the logical address of a hardware interface. For

example, the factory default select code for most HP-IB interfaces is 7.

Selection

1. A menu selection (feature).

2. An object or action you have selected in the HP VEE window.

Sequence Input Pin

The top pin of an object. When connected, this input pin must be

activated before the object will operate.

Sequence Output Pin

The bottom pin of an object. When connected, this output pin is activated

when the object and all data propagation from that object Õnishes

executing.

Sequencer

An object that controls execution Œow through a series of sequence

transactions, each of which may call a User Function, Compiled Function,

or Remote Function. The sequencer is normally used to perform a series of

tests by specifying a series of sequence transactions.

Shell

The program that interfaces between the user and the operating system.

Shell Prompt

The character or characters that denote the place where you type

commands while at the operating system shell level. The prompt you see

displayed depends upon the type of shell you are running, such as a #

prompt for the Bourne shell.

Glossary-15

Sleep

An object sleeps during execution when it is waiting for an operation or

time interval to complete or for an event to occur. A sleeping object will

allow other parallel threads to run concurrently. Once the event, time

interval, or operation occurs, the object will execute, allowing execution to

continue.

Startup Directory

The directory from which you type veeengine or veetest. This directory

determines the default paths for most Õle actions including Save and Open.

State

A particular set of values for all of the components related to an

HP VEE-Test instrument driver which represents the measurement

state of an instrument. For example, a digital multimeter uses one state

for high-speed voltage readings and a diÃerent state for high-precision

resistance measurements. See also State Driver.

State Driver

An instrument control object that forces all the function settings in the

corresponding physical instrument to match the settings in the control

panel displayed in the open view of the object. See also Component Driver,

Driver Files, and State.

Step

The action of operating one object at a time. An arrow points to the object

that will operate next.

Submenu

See Cascading Menu.

Subthread

A portion of a thread.

Synchronous

A method of execution that requires all events to occur before operation.

Terminal

The internal representation of a pin that displays information about the pin

Glossary-16

and the data container held by the pin. Double-click on the terminal to

view the container information.

Thread

A set of objects connected by solid lines in an HP VEE model. A model

with multiple threads can run all threads simultaneously.

Title Bar

The rectangular bar at the top of the HP VEE window or the object's open

view where the model's or object's name is shown.

Transactions

The speciÕcations for input and output (I/O) used by certain objects in

HP VEE, such as To File and From File, as well as by Direct I/O and

Sequencer. Transactions appear as English-like phrases listed in the open

view of I/O objects.

User-DeÕned Function

HP VEE allows three types of user-deÕned functions: the User Function,

Compiled Function, and Remote Function. See also Function, User

Function, Compiled Function, and Remote Function.

User Function

A user-deÕned function created from a UserObject by executing Make

UserFunction. The User Function exists in background, but provides

the same functionality as the original UserObject. You can call a User

Function with the Call Function object, or from certain expressions. A

User Function can be created and called locally, or it can be saved in a

library and imported into an HP VEE model with Import Library. See

also Compiled Function, Remote Function, and UserObject.

User Interface

The part of an application that permits a user and the application to

communicate with each other to perform certain tasks. HP VEE uses a

graphical user interface, which includes windows, menus, dialog boxes, and

objects.

UserObject

An object that can encapsulate a group of objects that perform a particular

function. A UserObject allows you to use top-down design techniques when

Glossary-17

building a model and to build user-deÕned objects that can be saved in a

library and reused. See also Context.

View

See Detail View, Icon, Open View, and Panel View.

Wait

See Sleep.

Window

A rectangular area on the screen that contains a particular application

program, such as HP VEE or the shell.

Window Frame

The area surrounding a window that contains a resize border, window menu

button, minimize and maximize buttons, and a title area.

Work Area

The area within the HP VEE window or the open view of a UserObject

where you group objects together. When you Open a model, it is loaded

into the main work area. The panel of a UserObject is a work area. See

also Panel.

X Window System (X11)

An industry-standard windowing system used on UNIXTM computer

systems. See also X11 Resources.

X11 Resources

A Õle or set of Õles that deÕne your X11 environment.

XEQ Pin

A pin that forces the operation of the object, even if the data or sequence

input pins have not been activated. See also Control Pin, Data Input Pin,

and Sequence Input Pin.

Glossary-18

Index

Special characters

+ - * /, 3-29

+ (add), 3-27

/ (divide), 3-91

div (truncated division), 3-89

^ (exponent), 3-100

mod (modulo), 3-175

* (multiply), 3-181

- (subtract), 3-247

A

abs(x), 3-22

Access Array, 2-2

Get Mappings, 2-144

Get Values, 2-146

Set Mappings, 2-284

Set Values, 2-286

Access Record, 2-3

Accumulator, 2-4

acosh(x), 3-24

acos(x), 3-23

acoth(x), 3-26

acot(x), 3-25

Activate Breakpoints, 2-5

+ (add), 3-27

Add Control Input, 2-6

Add Data Input, 2-7

Add Data Output, 2-9

Add Error Output, 2-10

Add To Panel, 2-11

Add XEQ Input, 2-12

Advanced I/O, 2-14

AdvMath, 1-9

Ai(x), 3-31

Array, 3-37

bartlet(x), 3-43

Bessel, 3-45

beta(x,y), 3-46

binomial(a,b), 3-48

Bi(x), 3-47

blackman(x), 3-58

Calculus, 3-60

clipLower(x,a), 3-64

clipUpper(x,a), 3-66

cofactor(x,row,col), 3-68

comb(n,r), 3-69

concat(x,y), 3-72

convolve(a,b), 3-75

Data Filtering, 3-81

defIntegral(x,a,b), 3-82

derivAt(x,order,pt), 3-86

deriv(x,order), 3-84

det(x), 3-88

erfc(x), 3-97

erf(x), 3-96

exponential regression, 3-102

factorial(n), 3-104

Ãt(x), 3-105

Freq Distribution, 3-109

gamma(x), 3-110

hamming(x), 3-116

hanning(x), 3-118

Hyper Bessel, 3-122

i0(x), 3-124

Index-1

i1(x), 3-125

identity(x), 3-126

iÃt(x), 3-127

init(x,val), 3-130

integral(x), 3-132

inverse(x), 3-135

j0(x), 3-137

j1(x), 3-138

jn(x,n), 3-139

k0(x), 3-140

k1(x), 3-141

linear regression, 3-146

logarithmic regression, 3-150

logMagDist(x,from,thru,logStep),

3-153

magDist(x,from,thru,step), 3-157

matDivide(numer,denom), 3-159

matMultiply(A,B), 3-161

Matrix, 3-162

maxIndex(x), 3-164

max(x), 3-163

maxX(x), 3-165

meanSmooth(x,numPts), 3-168

mean(x), 3-167

median(x), 3-170

minIndex(x), 3-172

minor(x,row,col), 3-173

min(x), 3-171

minX(x), 3-174

mode(x), 3-177

movingAvg(x,numPts), 3-179

perm(n,r), 3-191

polynomial regression, 3-196

polySmooth(x), 3-198

power curve regression, 3-201

Probability, 3-203

prod(x), 3-204

randomize(x,low,high), 3-208

random(low,high), 3-206

randomSeed(seed), 3-211

rect(x), 3-215

Regression, 3-217

rms(x), 3-221

rotate(x,numElem), 3-222

sdev(x), 3-225

Signal Processing, 3-227

Statistics, 3-235

sum(x), 3-249

transpose(x), 3-256

vari(x), 3-259

xcorrelate(a,b), 3-261

y0(x), 3-268

y1(x), 3-269

yn(x,n), 3-271

Ai(x), 3-31

Allocate Array, 2-15

Complex, 2-16

Coord, 2-17

Integer, 2-18

PComplex, 2-20

Real, 2-21

Text, 2-23

~= (almost equal to), 3-32

AlphaNumeric, 2-24

AND, 3-35

Arb Waveform, 2-30

Array, 3-37

concat(x,y), 3-72

init(x,val), 3-130

prod(x), 3-204

rotate(x,numElem), 3-222

sum(x), 3-249

asinh(x), 3-39

asin(x), 3-38

atan2(y,x), 3-41

atanh(x), 3-42

atan(x), 3-40

B

bartlet(x), 3-43

Beep object, 2-26

Bessel, 3-45

Index-2

Ai(x), 3-31

Bi(x), 3-47

j0(x), 3-137

j1(x), 3-138

jn(x,n), 3-139

y0(x), 3-268

y1(x), 3-269

yn(x,n), 3-271

beta(x,y), 3-46

binomial(a,b), 3-48

bitAnd(x,y), 3-51

bitCmpl(x), 3-52

bitOr(x,y), 3-53

bitShift(x,y), 3-55

bits(str), 3-54

Bitwise, 3-56

bitAnd(x,y), 3-51

bitCmpl(x), 3-52

bitOr(x,y), 3-53

bitShift(x,y), 3-55

bits(str), 3-54

bit(x,n), 3-50

bitXor(x,y), 3-57

clearBit(x,n), 3-63

setBit(x,n), 3-226

bit(x,n), 3-50

bitXor(x,y), 3-57

Bi(x), 3-47

blackman(x), 3-58

Break, 2-27

Breakpoint, 2-28

Breakpoints, 2-29

Activate Breakpoints, 2-5

Clear Breakpoints, 2-48, 2-49

Set Breakpoints, 2-278

Build Data, 2-33

Arb Waveform, 2-30

Complex, 2-31

Coord, 2-32

PComplex, 2-34

Spectrum, 2-37, 2-300

Waveform, 2-39, 2-365

Build Record, 2-35

Bus I/O Monitor, 2-40

C

Calculus, 3-60

defIntegral(x,a,b), 3-82

derivAt(x,order,pt), 3-86

deriv(x,order), 3-84

integral(x), 3-132

Call Function, 2-44

case

changing, 3-236, 3-246

ceil(x), 3-62

changing case, 3-236, 3-246

Clean Up Lines, 2-47

clearBit(x,n), 3-63

Clear Breakpoints, 2-48, 2-49

clipLower(x,a), 3-64

clipUpper(x,a), 3-66

Clone, 2-50, 2-51

cofactor(x,row,col), 3-68

Collector, 2-52

comb(n,r), 3-69

Comparator, 2-55

Complex, 2-16, 2-31, 2-59, 2-346

Complex Parts, 3-71

conj(x), 3-74

im(x), 3-129

j(x), 3-136

mag(x), 3-156

phase(x), 3-193

re(x), 3-212

Complex Plane, 2-61

Component Driver, 2-57

Concatenator, 2-66

concat(x,y), 3-72

Conditional, 2-68

If A != B, 2-159

If A <= B, 2-157

If A < B, 2-158

Index-3

If A == B, 2-154

If A >= B, 2-155

If A > B, 2-156

conÕguration

I/O, 2-290

ConÕgure I/O, 2-70

conÕguring

plotters, 2-226

ConÕrm (OK), 2-72, 2-209

conj(x), 3-74

constant

record, 2-255

Constant, 2-73

Complex, 2-59

Coord, 2-76

Date/Time, 2-85

Integer, 2-168

PComplex, 2-219

Real, 2-251

Text, 2-316

Cont, 2-75

convolve(a,b), 3-75

Coord, 2-17, 2-32, 2-76, 2-347

Copy, 2-78

cosh(x), 3-77

cos(x), 3-76

coth(x), 3-79

cot(x), 3-78

Counter, 2-79

Create UserObject, 2-80

cubert(x), 3-80

Cut, 2-83, 2-84

D

Data, 1-7

Access Array, 2-2

Access Record, 2-3

Allocate Array, 2-15

Arb Waveform, 2-30

Build Data, 2-33

Collector, 2-52

Complex, 2-16, 2-31, 2-59, 2-346

Concatenator, 2-66

Constant, 2-73

Coord, 2-17, 2-32, 2-76, 2-347

Date/Time, 2-85

Enum, 2-107

Get Mappings, 2-144

Get Values, 2-146

Integer, 2-18, 2-168

Integer Slider, 2-170

PComplex, 2-20, 2-34, 2-219, 2-349

Real, 2-21, 2-251

Real Slider, 2-253

Set Mappings, 2-284

Set Values, 2-286

Sliding Collector, 2-298

Spectrum, 2-37, 2-300

Text, 2-23, 2-316

Toggle, 2-343

UnBuild Data, 2-348

Waveform, 2-39, 2-352, 2-353, 2-365

Data Filtering, 3-81

clipLower(x,a), 3-64

clipUpper(x,a), 3-66

maxIndex(x), 3-164

maxX(x), 3-165

meanSmooth(x,numPts), 3-168

minIndex(x), 3-172

minX(x), 3-174

movingAvg(x,numPts), 3-179

polySmooth(x), 3-198

dataset, 2-320

DataSet, 2-126

data type

record, 3-8

Date/Time, 2-85

defIntegral(x,a,b), 3-82

Delay, 2-88

Delete, 2-90

Delete Bitmap, 2-91

Delete Input, 2-92

Index-4

Delete Library, 2-93

Delete Line, 2-95

Delete Output, 2-96

DeMultiplexer, 2-97

derivAt(x,order,pt), 3-86

deriv(x,order), 3-84

Detail, 2-98

det(x), 3-88

Device, 1-5

Accumulator, 2-4

Comparator, 2-55

Counter, 2-79

DeMultiplexer, 2-97

Event, 2-99

Function Generator, 2-137

Noise Generator, 2-204

Pulse Generator, 2-246

Random Number, 2-249

Random Seed, 2-250

Shift Register, 2-288

Timer, 2-318

Virtual Source, 2-362

Direct I/O, 2-102

Display, 1-10

AlphaNumeric, 2-24

Complex Plane, 2-61

Logging AlphaNumeric, 2-183

Magnitude Spectrum, 2-184

Magnitude vs Phase (Polar), 2-189

Meter, 2-199

Note Pad, 2-205

Phase Spectrum, 2-221

Polar Plot, 2-229

Spectrum (Freq), 2-300

Strip Chart, 2-308

VU Meter, 2-363

Waveform (Time), 2-365

X vs Y Plot, 2-371

XY Trace, 2-376

/ (divide), 3-91

div (truncated division), 3-89

dmyToDate(d,m,y), 3-93

Do, 2-105

E

Edit, 1-3

Activate Breakpoints, 2-5

Add To Panel, 2-11

Breakpoints, 2-29

Clean Up Lines, 2-47

Clear Breakpoints, 2-48, 2-49

Clone, 2-50

Copy, 2-78

Create UserObject, 2-80

Cut, 2-83

Delete Line, 2-95

Line Probe, 2-181

Move Objects, 2-200

Paste, 2-218

Select Objects, 2-269

Set Breakpoints, 2-278

Show Data Flow, 2-291

Show Exec Flow, 2-293

Edit UserFunction, 2-106

Enum, 2-107

== (equal to), 3-94

erfc(x), 3-97

erf(x), 3-96

Escape, 2-109

Event

Device, 2-99

Interface, 2-172

Execute Program, 2-110

Exit, 2-114

Exit Thread, 2-115

Exit UserObject, 2-116

exp10(x), 3-99

^ (exponent), 3-100

exponential regression, 3-102

exp(x), 3-98

Index-5

F

factorial(n), 3-104

Ãt(x), 3-105

Õeld

get, 2-140

set, 2-279

File, 1-2, 2-129, 2-322

Exit, 2-114

Line Routing, 2-25

Merge, 2-195

Merge Library, 2-196

New, 2-202

Number Formats, 2-206

Open, 2-216

Preferences, 2-235

Print All, 2-236

Printer ConÕg, 2-244

Print Screen, 2-241

Save, 2-263

Save As, 2-264

Save Objects, 2-265

Save Preferences, 2-266

Secure, 2-267

Trig Mode, 2-345

Waveform Defaults, 2-370

Œoor(x), 3-107

Flow, 1-4

Break, 2-27

Conditional, 2-68

ConÕrm (OK), 2-72, 2-209

Delay, 2-88

Do, 2-105

Exit Thread, 2-115

Exit UserObject, 2-116

For Count, 2-117

For Log Range, 2-119

For Range, 2-123

Gate, 2-139

If A != B, 2-159

If A <= B, 2-157

If A < B, 2-158

If A == B, 2-154

If A >= B, 2-155

If A > B, 2-156

If/Then/Else, 2-160

Junction, 2-179

Next, 2-203

On Cycle, 2-210

Raise Error, 2-248

Repeat, 2-258

Start, 2-302

Stop, 2-307

Until Break, 2-354

For Count, 2-117

For Log Range, 2-119

formula

object, 2-121

For Range, 2-123

fracPart(x), 3-108

Freq Distribution, 3-109

logMagDist(x,from,thru,logStep),

3-153

magDist(x,from,thru,step), 3-157

From, 2-125

File, 2-129

StdIn, 2-132

From DataSet, 2-126

From String object, 2-135

function

sort, 3-231

totSize, 3-255

Function Generator, 2-137

functions

string, 3-239

G

gamma(x), 3-110

Gate, 2-139

Generate, 3-111

logRamp(numElem,from,thru), 3-155

ramp(numElem,from,thru), 3-205

xlogRamp(numElem,from,thru), 3-263

Index-6

xramp(numElem,from,thru), 3-266

Get Field, 2-140

Get Global, 2-142

Get Mappings, 2-144

Get Values, 2-146

globals, 2-148

global variables, 2-142, 2-148, 2-282,

2-361, 3-7

Glossary, 2-149

> (greater than), 3-112

>= (greater than or equal to), 3-114

H

hamming(x), 3-116

hanning(x), 3-118

Help, 1-11, 2-150

Glossary, 2-149

How To, 2-151

On Features, 2-212

On Help, 2-213

On Instruments, 2-214

On Version, 2-215

Short Cuts, 2-289

hmsToHour(h,m,s), 3-120

hmsToSec(h,m,s), 3-121

How To, 2-151

HP BASIC/UX, 2-152

Init HP BASIC/UX, 2-165

To/From HP BASIC/UX, 2-325

HP-IB bus operations, 2-177

HP-UX Escape, 2-153

Hyper Bessel, 3-122

i0(x), 3-124

i1(x), 3-125

k0(x), 3-140

k1(x), 3-141

Hyper Trig, 3-123

acosh(x), 3-24

acoth(x), 3-26

asinh(x), 3-39

atanh(x), 3-42

cosh(x), 3-77

coth(x), 3-79

sinh(x), 3-230

tanh(x), 3-252

I

i0(x), 3-124

i1(x), 3-125

identity(x), 3-126

If A != B, 2-159

If A <= B, 2-157

If A < B, 2-158

If A == B, 2-154

If A >= B, 2-155

If A > B, 2-156

iÃt(x), 3-127

If/Then/Else, 2-160

Import Library, 2-162

im(x), 3-129

Init HP BASIC/UX, 2-165

init(x,val), 3-130

Instrument, 2-166

Component Driver, 2-57

Direct I/O, 2-102

State Driver, 2-303

Integer, 2-18, 2-168

Integer Slider, 2-170

integral(x), 3-132

Interface

Event, 2-172

Interface Operations, 2-177

intPart(x), 3-134

inverse(x), 3-135

I/O, 1-6

Advanced, 2-14

Bus I/O Monitor, 2-40

Component Driver, 2-57

conÕguration, 2-290

ConÕgure I/O, 2-70

Direct I/O, 2-102

Execute Program, 2-110

Index-7

File, 2-129, 2-322

From, 2-125

HP BASIC/UX, 2-152

HP-UX Escape, 2-153

Init HP BASIC/UX, 2-165

Instrument, 2-166

Interface Operations, 2-177

Printer, 2-331

Print Screen, 2-243

State Driver, 2-303

StdErr, 2-334

StdIn, 2-132

StdOut, 2-337

String, 2-340

To, 2-319

To/From HP BASIC/UX, 2-325

To/From Named Pipe, 2-328

J

j0(x), 3-137

j1(x), 3-138

jn(x,n), 3-139

Junction, 2-179

j(x), 3-136

K

k0(x), 3-140

k1(x), 3-141

L

Layout, 2-180

length

string, 3-240

< (less than), 3-142

<= (less than or equal to), 3-144

library

delete, 2-93

import, 2-162

linear regression, 3-146

Line Probe, 2-181

Line Routing, 2-25

log10(x), 3-149

logarithmic regression, 3-150

Logging AlphaNumeric, 2-183

Logical, 3-152

AND, 3-35

NOT, 3-183

OR, 3-188

XOR, 3-264

logMagDist(x,from,thru,logStep), 3-153

logRamp(numElem,from,thru), 3-155

log(x), 3-148

lowercase, 3-236

M

magDist(x,from,thru,step), 3-157

Magnitude Spectrum, 2-184

Magnitude vs Phase (Polar), 2-189

mag(x), 3-156

matDivide(numer,denom), 3-159

math

formula, 2-121

Math, 1-8

+ - * /, 3-29

abs(x), 3-22

acosh(x), 3-24

acos(x), 3-23

acoth(x), 3-26

acot(x), 3-25

+ (add), 3-27

~= (almost equal to), 3-32

AND, 3-35

asinh(x), 3-39

asin(x), 3-38

atan2(y,x), 3-41

atanh(x), 3-42

atan(x), 3-40

bitAnd(x,y), 3-51

bitCmpl(x), 3-52

bitOr(x,y), 3-53

bitShift(x,y), 3-55

bits(str), 3-54

Index-8

Bitwise, 3-56

bit(x,n), 3-50

bitXor(x,y), 3-57

ceil(x), 3-62

clearBit(x,n), 3-63

Complex Parts, 3-71

conj(x), 3-74

cosh(x), 3-77

cos(x), 3-76

coth(x), 3-79

cot(x), 3-78

cubert(x), 3-80

/ (divide), 3-91

div (truncated division), 3-89

dmyToDate(d,m,y), 3-93

== (equal to), 3-94

exp10(x), 3-99

^ (exponent), 3-100

exp(x), 3-98

Œoor(x), 3-107

fracPart(x), 3-108

Generate, 3-111

> (greater than), 3-112

>= (greater than or equal to), 3-114

hmsToHour(h,m,s), 3-120

hmsToSec(h,m,s), 3-121

Hyper Trig, 3-123

im(x), 3-129

intPart(x), 3-134

j(x), 3-136

< (less than), 3-142

<= (less than or equal to), 3-144

log10(x), 3-149

Logical, 3-152

logRamp(numElem,from,thru), 3-155

log(x), 3-148

mag(x), 3-156

mday(aDate), 3-166

mod (modulo), 3-175

month(aDate), 3-178

* (multiply), 3-181

NOT, 3-183

!= (not equal to), 3-185

now(), 3-187

OR, 3-188

ordinal(x), 3-190

phase(x), 3-193

Polynomial, 3-195

poly(x,vec), 3-194

Power, 3-200

ramp(numElem,from,thru), 3-205

Real Parts, 3-213

recip(x), 3-214

Relational, 3-219

re(x), 3-212

round(x), 3-224

setBit(x,n), 3-226

signof(x), 3-228

sinh(x), 3-230

sin(x), 3-229

sqrt(x), 3-234

sq(x), 3-233

- (subtract), 3-247

tanh(x), 3-252

tan(x), 3-251

Time & Date, 3-253

Trig, 3-258

wday(aDate), 3-260

xlogRamp(numElem,from,thru), 3-263

XOR, 3-264

xramp(numElem,from,thru), 3-266

year(aDate), 3-270

matMultiply(A,B), 3-161

Matrix, 3-162

cofactor(x,row,col), 3-68

det(x), 3-88

identity(x), 3-126

inverse(x), 3-135

matDivide(numer,denom), 3-159

matMultiply(A,B), 3-161

minor(x,row,col), 3-173

transpose(x), 3-256

Index-9

maxIndex(x), 3-164

max(x), 3-163

maxX(x), 3-165

mday(aDate), 3-166

meanSmooth(x,numPts), 3-168

mean(x), 3-167

median(x), 3-170

Merge, 2-195

Merge Library, 2-196

Merge Record, 2-198

Meter, 2-199

minIndex(x), 3-172

minor(x,row,col), 3-173

min(x), 3-171

minX(x), 3-174

mode(x), 3-177

mod (modulo), 3-175

month(aDate), 3-178

Move, 2-201

Move Objects, 2-200

movingAvg(x,numPts), 3-179

* (multiply), 3-181

N

New, 2-202

Next, 2-203

Noise Generator, 2-204

NOT, 3-183

Note Pad, 2-205

!= (not equal to), 3-185

now(), 3-187

Number Formats, 2-206

O

object

beep, 2-26

formula, 2-121

From String, 2-135

sequencer, 2-270

Object Menu

Add Control Input, 2-6

Add Data Input, 2-7

Add Data Output, 2-9

Add Error Output, 2-10

Add To Panel, 2-11

Add XEQ Input, 2-12

Breakpoint, 2-28

Clone, 2-51

Cut, 2-84

Delete, 2-90

Delete Bitmap, 2-91

Delete Input, 2-92

Delete Output, 2-96

Help, 2-150

Layout, 2-180

Move, 2-201

Select Bitmap, 2-268

Show Description, 2-292

Show Label, 2-294

Show Terminals, 2-295

Show Title, 2-296

Size, 2-297

OK, 2-209

On Cycle, 2-210

On Features, 2-212

On Help, 2-213

On Instruments, 2-214

On Version, 2-215

Open, 2-216

operator

triadic, 3-257

OR, 3-188

ordinal(x), 3-190

P

Panel, 2-217

Paste, 2-218

PComplex, 2-20, 2-34, 2-219, 2-349

perm(n,r), 3-191

Phase Spectrum, 2-221

phase(x), 3-193

Plotter ConÕg, 2-226

Index-10

plotters

conÕguring, 2-226

Polar Plot, 2-229

Polynomial, 3-195

poly(x,vec), 3-194

polynomial regression, 3-196

polySmooth(x), 3-198

poly(x,vec), 3-194

Power, 3-200

cubert(x), 3-80

exp10(x), 3-99

exp(x), 3-98

log10(x), 3-149

log(x), 3-148

recip(x), 3-214

sqrt(x), 3-234

sq(x), 3-233

power curve regression, 3-201

Preferences, 2-235

Line Routing, 2-25

Number Formats, 2-206

Printer ConÕg, 2-244

Save Preferences, 2-266

Trig Mode, 2-345

Waveform Defaults, 2-370

Print All, 2-236

Printer, 2-331

Printer ConÕg, 2-244

Print Objects, 2-239

Print Screen, 2-241, 2-243

Probability, 3-203

beta(x,y), 3-46

binomial(a,b), 3-48

comb(n,r), 3-69

erfc(x), 3-97

erf(x), 3-96

factorial(n), 3-104

gamma(x), 3-110

perm(n,r), 3-191

randomize(x,low,high), 3-208

random(low,high), 3-206

randomSeed(seed), 3-211

prod(x), 3-204

Pulse Generator, 2-246

R

Raise Error, 2-248

ramp(numElem,from,thru), 3-205

randomize(x,low,high), 3-208

random(low,high), 3-206

Random Number, 2-249

Random Seed, 2-250

randomSeed(seed), 3-211

Real, 2-21, 2-251

Real Parts, 3-213

abs(x), 3-22

ceil(x), 3-62

Œoor(x), 3-107

fracPart(x), 3-108

intPart(x), 3-134

ordinal(x), 3-190

round(x), 3-224

signof(x), 3-228

Real Slider, 2-253

recip(x), 3-214

record

build, 2-35

merge, 2-198

unbuild, 2-350

Record Constant, 2-255

Record data type, 3-8

rect(x), 3-215

Regression, 3-217

exponential regression, 3-102

linear regression, 3-146

logarithmic regression, 3-150

polynomial regression, 3-196

power curve regression, 3-201

Relational, 3-219

~= (almost equal to), 3-32

== (equal to), 3-94

> (greater than), 3-112

Index-11

>= (greater than or equal to), 3-114

< (less than), 3-142

<= (less than or equal to), 3-144

!= (not equal to), 3-185

Repeat, 2-258

Break, 2-27

For Count, 2-117

For Log Range, 2-119

For Range, 2-123

Next, 2-203

On Cycle, 2-210

Until Break, 2-354

reversing a string, 3-244

re(x), 3-212

rms(x), 3-221

rotate(x,numElem), 3-222

round(x), 3-224

Run, 2-260

S

Sample & Hold, 2-261

Save, 2-263

Save As, 2-264

Save Objects, 2-265

Save Preferences, 2-266

sdev(x), 3-225

Secure, 2-267

Select Bitmap, 2-268

Select Objects, 2-269

sequence

transaction, 2-270

sequencer, 2-270

object, 2-270

setBit(x,n), 3-226

Set Breakpoints, 2-278

Set Field, 2-279

Set Global, 2-282

Set Mappings, 2-284

Set Values, 2-286

Shift Register, 2-288

Short Cuts, 2-289

Show ConÕg, 2-290

Show Data Flow, 2-291

Show Description, 2-292

Show Exec Flow, 2-293

Show Label, 2-294

Show Terminals, 2-295

Show Title, 2-296

Signal Processing, 3-227

bartlet(x), 3-43

blackman(x), 3-58

convolve(a,b), 3-75

Ãt(x), 3-105

hamming(x), 3-116

hanning(x), 3-118

iÃt(x), 3-127

rect(x), 3-215

xcorrelate(a,b), 3-261

signof(x), 3-228

sinh(x), 3-230

sin(x), 3-229

Size, 2-297

Sliding Collector, 2-298

sort function, 3-231

Spectrum, 2-37, 2-300

Spectrum (Freq), 2-300

Magnitude Spectrum, 2-184

Magnitude vs Phase (Polar), 2-189

Phase Spectrum, 2-221

sqrt(x), 3-234

sq(x), 3-233

Start, 2-302

State Driver, 2-303

Statistics, 3-235

max(x), 3-163

mean(x), 3-167

median(x), 3-170

min(x), 3-171

mode(x), 3-177

rms(x), 3-221

sdev(x), 3-225

vari(x), 3-259

Index-12

StdErr, 2-334

StdIn, 2-132

StdOut, 2-337

Step, 2-305

Stop, 2-306, 2-307

strDown(str), 3-236

strFromLen(str,from,len), 3-237

strFromThru(str,from,thru), 3-238

string

folding case, 3-236, 3-246

functions, 3-239

indexing, 3-241, 3-243

length, 3-240

reversing a, 3-244

trimming a, 3-245

String, 2-340

Strip Chart, 2-308

strLen(str), 3-240

strPosChar(str,char), 3-241

strPosStr(str1,str2), 3-243

strRev(str), 3-244

strTrim(str), 3-245

strUp(str), 3-246

SubRecord, 2-313

substrings, 3-237, 3-238

- (subtract), 3-247

sum(x), 3-249

T

tanh(x), 3-252

tan(x), 3-251

Terminals, 2-315

test sequencer, 2-270

Text, 2-23, 2-316

Time & Date, 3-253

dmyToDate(d,m,y), 3-93

hmsToHour(h,m,s), 3-120

hmsToSec(h,m,s), 3-121

mday(aDate), 3-166

month(aDate), 3-178

now(), 3-187

wday(aDate), 3-260

year(aDate), 3-270

Timer, 2-318

To, 2-319

File, 2-322

Printer, 2-331

StdErr, 2-334

StdOut, 2-337

String, 2-340

To DataSet, 2-320

To/From HP BASIC/UX, 2-325

To/From Named Pipe, 2-328

Toggle, 2-343

totSize function, 3-255

transaction

sequence, 2-270

transpose(x), 3-256

triadic operator, 3-257

Trig, 3-258

acos(x), 3-23

acot(x), 3-25

asin(x), 3-38

atan2(y,x), 3-41

atan(x), 3-40

cos(x), 3-76

cot(x), 3-78

sin(x), 3-229

tan(x), 3-251

Trig Mode, 2-345

trimming a string, 3-245

truncated division, div, 3-89

U

UnBuild Data, 2-348

Complex, 2-346

Coord, 2-347

PComplex, 2-349

Waveform, 2-352, 2-353

Unbuild Record, 2-350

Until Break, 2-354

uppercase, 3-246

Index-13

User Function, 2-356

UserObject, 2-358

V

variables

global, 2-142, 2-148, 2-282, 2-361, 3-7

vari(x), 3-259

View Globals, 2-361

Virtual Source, 2-362

Function Generator, 2-137

Noise Generator, 2-204

Pulse Generator, 2-246

VU Meter, 2-363

W

Waveform, 2-39, 2-352, 2-353, 2-365

Waveform Defaults, 2-370

Waveform (Time), 2-365

wday(aDate), 3-260

X

xcorrelate(a,b), 3-261

xlogRamp(numElem,from,thru), 3-263

XOR, 3-264

xramp(numElem,from,thru), 3-266

X vs Y Plot, 2-371

XY Trace, 2-376

Y

y0(x), 3-268

y1(x), 3-269

year(aDate), 3-270

yn(x,n), 3-271

Index-14

