
Using HP VEE

Notice

The information contained in this document is subject to change without

notice.

Hewlett-Packard Company (HP) shall not be liable for any errors contained in

this document. HP MAKES NO WARRANTIES OF ANY KIND WITH REGARD

TO THIS DOCUMENT, WHETHER EXPRESS OR IMPLIED. HP SPECIFICALLY

DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE. HP shall not be liable for any

direct, indirect, special, incidental, or consequential damages, whether based

on contract, tort, or any other legal theory, in connection with the furnishing

of this document or the use of the information in this document.

Warranty Information.

A copy of the speciÕc warranty terms applicable to your Hewlett-Packard

product and replacement parts can be obtained from your local Sales and

Service Oœce.

Restricted Rights Legend.

Use, duplication or disclosure by the U.S. Government is subject to

restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical

Data and Computer Software clause at DFARS 252.227-7013 for DoD agencies,

Computer Software Restricted Rights clause at FAR 52.227-19 for other

agencies.

Use of this manual and magnetic media supplied for this product are

restricted. Additional copies of the software can be made for security and

backup purposes only. Resale of the software in its present form or with

alterations is expressly prohibited.

Printing History.

Edition 1 - April 1991

Edition 2 - December 1992

Edition 3 - September 1993

cŒ Copyright 1991, 1992, 1993 Hewlett-Packard Company. All rights

reserved.

This document contains information which is protected by copyright. All

rights are reserved. Reproduction, adaptation, or translation without prior

written permission is prohibited, except as allowed under the copyright laws.

FrameMaker RŒ is a registered trademark of Frame Technology Corporation.

The Island Productivity Series RŒ, IslandWrite RŒ, IslandDraw RŒ, and

IslandPaint RŒ are registered trademarks of Island Graphics Corporation.

UNIX RŒ is a registered trademark of UNIX System Laboratories in the U.S.A.

and other countries.

Sun, SunOS and Openwindows are trademarks of Sun Microsystems, Inc.

SPARCstation is a registered trademark of SPARC International, Inc.

Microsoft RŒ and MS-DOS RŒ are registered trademarks of Microsoft

Corporation.

Conventions Used in this Manual

This manual uses the following typographical conventions:

Example Represents

Installing HP VEE Italicized words are used for book titles and for emphasis.

File Computer font represents text you will see on the screen, including menu

names, features, or text you have to enter.

cat Õlename In this context, the word in computer font represents text you type exactly

as shown, and the italicized word represents an argument that you must

replace with an actual value.

File ¡¡) Open Features separated with the arrow indicate the order of selection from a

menu.

Zoom Out | In 2x | In

5x

Choices in computer font, separated with a bar (|), indicates that you

should choose one of the options.

ÄReturnÅ The keycap font graphically represents a key on the workstation's keyboard.

Press ÄCTRLÅ-ÄOÅ Dash-separated keys represent a combination of keys on the workstation's

keyboard that you should press at the same time.

Dialog Box Bold font indicates the Õrst instance of a word deÕned in the glossary.

v

Contents

1. Using HP VEE Elements

What is HP VEE? . 1-2

About This Manual . 1-4

Starting HP VEE . 1-5

Finding Files . 1-7

Recovering from Errors 1-8

Accessing Example and Library Programs 1-9

Examples . 1-9

Libraries . 1-9

Numeric Data Entry Fields 1-11

Using Keyboard Short Cuts 1-12

Understanding How Programs Run 1-14

Threads and Subthreads 1-14

Running Programs . 1-15

Stopping Programs 1-15

Understanding PreRun 1-16

Activate vs. PreRun 1-17

Understanding Propagation 1-18

Understanding How Objects Operate 1-18

Basic Propagation Order 1-19

Understanding Pins 1-21

Propagation of Threads and Subthreads 1-23

Understanding Auto Execute 1-24

Understanding Feedback 1-26

Data Feedback . 1-27

Sequence Feedback 1-28

Propagation Summary 1-28

Understanding Containers 1-30

Data Types . 1-30

Special Instrument I/O Data Types 1-31

Instrument I/O Data Type Conversions 1-32

Data Shapes . 1-33

Mappings . 1-34

Converting Data Types on Input Terminals 1-35

Debugging Programs . 1-39

Viewing Data and Propagation 1-39

Contents-1

Resetting Buttons

Using Breakpoints . 1-40

Stepping Through Execution 1-40

Finding Line Endpoints 1-41

Sharing Programs With Others 1-42

Changing Preferences 1-43

Documenting Your Programs 1-45

Archiving Programs . 1-46

2. How To Build HP VEE Programs

Designing a Program . 2-3

Getting Data from Files 2-4

Setting Initial Values . 2-6

Setting Constants . 2-6

Getting User Input . 2-6

Setting Values at Run-Time 2-8

Resetting Values . 2-10

Controlling Program Flow 2-11

Starting . 2-11

Iterating . 2-11

Branching . 2-13

Stopping . 2-14

Iteration with Flow Branching 2-14

An Example . 2-15

The Sample & Hold 2-15

Mathematically Processing Data 2-17

General Concepts . 2-18

Using Strings in Expressions 2-19

Using Arrays in Expressions 2-19

Examples . 2-21

Building Arrays in Expressions 2-21

Examples . 2-22

Using Global Variables in Expressions 2-22

Using Records in Expressions 2-23

Using Dyadic Operators 2-25

Precedence of Dyadic Operators 2-26

Data Type Conversion 2-26

Record Considerations 2-27

Coord Considerations 2-28

Spectrum Considerations 2-28

Data Shape Considerations 2-29

Trapping Errors . 2-30

Contents-2

Resetting Buttons

Changing Data Types or Shapes 2-32

Displaying Data . 2-34

Displaying Values . 2-34

Graphing Data . 2-35

Displaying Multiple Traces 2-35

Using Markers . 2-36

Writing Data to Files . 2-37

Exporting Graphics to a Report 2-38

Printer ConÕguration (UNIX) 2-38

Printer ConÕguration (MS-Windows) 2-38

Graphic Output Techniques 2-38

Output Formats (UNIX) 2-39

Exporting to Document Publishing Packages 2-40

FrameMaker . 2-40

The Island Productivity Series 2-41

Optimizing Your Program 2-43

Examples . 2-44

Parallel Operations 2-44

Showing the Icon Instead of the Open View 2-47

Compacting Math Equations 2-48

3. How To Create Your Own Objects and Functions

UserObjects . 3-2

Understanding UserObjects 3-3

Understanding Contexts 3-3

Understanding Propagation in UserObjects 3-5

Creating UserObjects 3-7

Adding Inputs and Outputs 3-8

Exiting UserObjects Early 3-10

Exit UserObject . 3-10

Raise Error . 3-12

Creating a Library of Functions 3-14

Building Panel Views 3-14

Securing UserObjects 3-14

Merging and Saving UserObjects 3-15

Contents-3

Resetting Buttons

4. How To Build an Operator Interface

BeneÕts of Panel Views 4-3

Understanding Panel Views 4-4

Before You Start . 4-7

Creating Panel Views 4-8

Laying Out Panel Views 4-10

Setting Values and States 4-12

Saving Panel Views 4-13

Securing Panel Views 4-13

Main Panel View 4-14

UserObject Panel View 4-14

Adding Pop-up Elements 4-15

Before You Start . 4-16

Creating Pop-up Panel Views 4-16

Pop-up Layout . 4-16

Pop-up Examples . 4-17

Informational Messages 4-18

Overlaying Displays 4-19

Dialog Boxes . 4-20

5. Understanding Common Structures

Outputting Values from If/Then/Else 5-3

Specifying Messages from Conditionals 5-4

Displaying One of Multiple Outputs 5-5

Resetting Buttons . 5-6

Glossary

Index

Contents-4

Figures

1-1. Two Parallel Threads 1-14

1-2. Two Subthreads . 1-14

1-3. Object Operation . 1-19

1-4. Example of Basic Propagation 1-20

1-5. Propagation Through Data and Sequence Pins 1-20

1-6. Propagation of Parallel Subthreads 1-21

1-7. Pins on an Object . 1-21

1-8. Running Multiple Threads 1-24

1-9. Using Auto Execute 1-25

1-10. Using Sequence Pins with Auto Execute 1-26

1-11. Example of Data Feedback 1-27

1-12. Example of Sequence Feedback 1-28

1-13. Array Mappings and Sampling Intervals 1-34

2-1. Reading Multiple Values From a File 2-4

2-2. Using Read to End to Read Multiple Values 2-5

2-3. Getting User Input With a Constant Object 2-7

2-4. Example of Auto Execute 2-8

2-5. Initialize At PreRun 2-9

2-6. Resetting to a Default Value 2-10

2-7. Iteration Example . 2-13

2-8. Iteration and Flow Branching 2-15

2-9. Using Sample & Hold 2-16

2-10. Trapping an Error . 2-31

2-11. Example of a Parallel Operation 2-45

2-12. Another Parallel Operation Example 2-46

2-13. Increasing Speed with An Icon 2-47

2-14. Compact Math Example 2-48

3-1. Four DiÃerent Contexts 3-4

3-2. Example of Exit UserObject 3-11

3-3. Using a Raise Error 3-13

4-1. Detail View of Trajectory Example 4-5

4-2. Panel View of Trajectory Example 4-6

4-3. DiÃerences Between Detail View and Panel View 4-9

4-4. Panel View vs. Detail View of X vs Y Plot 4-12

4-5. Informational Message (Detail View) 4-18

4-6. Informational Message (Panel View) 4-19

4-7. Overlaying Displays on a Panel View 4-20

Contents-5

Contents

4-8. Dialog Box (Detail View) 4-21

4-9. Dialog Box (Panel View) 4-22

5-1. Getting a Value from If/Then/Else 5-3

5-2. Specifying a Conditional Message 5-4

5-3. Using a Toggle . 5-6

Contents-6

Tables

1-1. ISO Abbreviations . 1-11

1-2. Promotion and
NNNNNNNNNNNNNNNNNNNNNNNNNN

Demotion of Types in Input Terminals . . . 1-37

2-1. Objects That Change Data Shape 2-32

Contents-7

Contents

1

Using HP VEE Elements

Using HP VEE Elements

What is HP

VEE?

HP VEE is HP's visual engineering environment, an iconic programming

language for engineering problem solving. HP's visual engineering

environment includes HP VEE-Test, HP VEE-Engine, and HP VEE for

Windows collectively referred to in this manual as HP VEE.

N O T E

Throughout this manual references to HP VEE apply to HP VEE-Engine, HP VEE-Test, and

HP VEE for Windows except where noted otherwise.

HP VEE gives you the ability to gather, analyze, and display data without

conventional (text-based) programming. HP VEE increases your productivity

by shortening the time it takes you to solve engineering problems.

The HP VEE family includes several separate products:

– HP VEE for Windows is designed for the test and measurement

professional. It allows you to analyze and display data stored in a Õle,

input by the user, or generated mathematically, plus it allows you to

communicate with instruments from the visual environment running on an

MS-Windows platform.

– HP VEE-Test is designed for the test and measurement professional. It

allows you to analyze and display data stored in a Õle, input by the user,

or generated mathematically, plus it allows you to communicate with

instruments from the visual environment. This product runs only on

HP-UX platforms.

– HP VEE-Engine is designed for the engineer and scientist. It allows you

to analyze and display data stored in a Õle, input by the user, or generated

mathematically. This product runs only on HP-UX platforms.

– HP VEE RunOnly is a run-only environment that runs programs

developed with HP VEE-Test or HP VEE for Windows. (Programs developed

1-2

Using HP VEE Elements

with HP VEE-Engine also will run.) No program editing capabilities are

provided by HP VEE RunOnly.

– HP VEE RunOnly for Windows is a run-only environment that runs

programs developed with HP VEE-Test or HP VEE for Windows on

MS-Windows platforms. (Programs developed with HP VEE-Engine

also will run.) No program editing capabilities are provided by

HP VEE RunOnly for Windows.

– HP VEE for Sun SparcStation is designed for the test and measurement

professional. It includes everything in HP VEE-Engine, plus it allows you to

communicate with instruments from the visual environment. This product

runs only on Sun SPARCstation platforms.

1-3

About This Manual

This manual gives detailed information on using the features of HP VEE for

tasks that you may want to perform. If you are new to HP VEE, you may

want to start by working through the examples in Getting Started with

HP VEE. For reference information on speciÕc HP VEE features, refer to the

HP VEE Reference manual. If you haven't already installed HP VEE, refer to

Installing HP VEE on HP-UX and Sun platforms. See Getting Started with HP

VEE for Windows for installation instructions for MS-DOS RŒ platforms.

This manual is meant to be used as needed, rather than read from beginning

to end.

1-4

Starting HP VEE

To start HP VEE on a UNIX system, type veeengine or veetest at the shell

prompt. Because HP VEE's default directory paths for Open, Save, and From

File, To File, and Execute Program objects point to the startup directory,

start HP VEE from the same directory each time to Õnd your Õles quicker.

To start HP VEE on a Microsoft RŒ Windows system, double click on the HP

VEE icon in the HP VEE for Windows application window.

You can specify how you want HP VEE to run by using command line options.

For HP VEE for Windows, use the Program Manager Run . . . menu pick

under the File menu to specify command line options.

– Õlename

HP VEE is started and the program in Õlename is loaded into the HP VEE

work area. If you do not supply Õlename, HP VEE starts with an empty

work area.

– -d directory

The -d option starts HP VEE and uses the related Õles, such as help Õles

and instrument drivers, located in directory instead of the default HP VEE

installation directory.

– -r Õlename

The -r option starts HP VEE and runs the program speciÕed by Õlename.

When the program has completed, HP VEE exits. If you do not supply

Õlename, HP VEE ignores the -r option. If you specify a Õle name that

doesn't exist, HP VEE returns an error and exits.

– -display Xservername (UNIX only)

SpeciÕes the X Windows display server instead of using the default X

display. In this way, you can have HP VEE execute on one workstation, but

use the keyboard and display of a diÃerent workstation.

– -geometry width height xoÃset yoÃset (UNIX only)

SpeciÕes an initial window geometry instead of the default geometry. For

example, veeengine -geometry 800x500+0-0 starts HP VEE in a window

that is 800 pixels wide and 500 pixels tall and placed in the lower left

corner of your screen.

1-5

Using HP VEE Elements

Starting HP VEE

– -help (UNIX only)

Shows the command line options.

– -iconic

The -iconic option starts HP VEE as an icon instead of a window.

Double-click on the icon to open it to a window.

– -name name (UNIX only)

The -name option starts HP VEE and sets the application name of HP VEE

to name instead of veeengine or veetest. HP VEE uses name to

specify X11 options in addition to the X11 options speciÕed by the default

application class (Vee).

An example of using -name is in \Using Multiple Color Sets/Fonts (UNIX)"

in Appendix A in the HP VEE Advanced Programming Techniques manual.

– -prname name (UNIX only)

The -prname option speciÕes a diÃerent color palette for printing. HP VEE

will use name to specify the X11 options to use for printing instead of the

default VeePrint resources. Refer to \Using Multiple Color Sets/Fonts

(UNIX)" in Appendix A in the HP VEE Advanced Programming Techniques

manual for further information.

1-6

Finding Files

When you specify a Õle name to Open, Save, or Save As, or when you use

the To File, From File, or Execute Program objects, the default directory

path is listed from the HP VEE startup directory. For HP VEE for Windows,

this directory will generally be C:\VEE_USER.

When you Merge or Save Objects, the default directory is

/usr/lib/veeengine/lib/ or /usr/lib/veetest/lib/ or C:\VEE\LIB

the Õrst time you start HP VEE. When you start HP VEE again, the default

directory is the last directory you speciÕed in Merge or Save Objects if you

selected Save Preferences from the File menu.

To access a Õle in a directory other than the default, traverse the directory

structure using the operating system Õle path name conventions. (For

example, to move to the parent directory, double-click on ../ or type ../ in

the entry Õeld of the dialog box.)

HP VEE keeps track of the directories you accessed during each work session.

Each subsequent time you access a Õle, the default directory is the one you

previously used.

The Õle path listed in any dialog box that accesses Õles is relative to the

HP VEE startup directory (./) unless you specify otherwise (by specifying a

path from root, /).

1-7

Recovering from Errors

When HP VEE doesn't understand what you want to do, it displays a

Caution (yellow titled) or an Error (red titled) dialog box. Note that the

title colors are defaults that may be changed.

You will not get an Error dialog box if the object that generated the error

has an error output pin. In this case, the error number is output on the pin.

For information about trapping errors with an error output pin, refer to

\Trapping Errors" in Chapter 2.

If you don't get a caution or error message, but your program doesn't work as

you expected, refer to \Troubleshooting Problems" in the HP VEE Advanced

Programming Techniques manual.

1-8

Accessing Example and Library Programs

HP VEE provides examples that help you quickly learn how to build programs

and library programs that let you use HP VEE more eÃectively.

Examples

For your convenience, many example programs are provided with HP

VEE. On installation, these examples are stored in subdirectories under

/usr/lib/veeengine/examples/ or /usr/lib/veetest/examples/ or

C:\VEE\EXAMPLES. The particular subdirectories under examples (there are

several) depend on which version of HP VEE you have.

The example Õles and directories are read-only on UNIX systems. If you

modify an example program, you'll have to save it in a diÃerent directory,

such as in your $HOME directory.

Refer to \Example Programs and Library Objects," in the HP VEE Advanced

Programming Techniques manual for further information.

Libraries

HP VEE also contains library programs that you can incorporate in

your programs. They are stored in /usr/lib/veeengine/lib/,

/usr/lib/veetest/lib/ or C:\VEE\LIB. The lib directory is read-only

on UNIX systems. If you modify a library program, you'll have to save it in a

diÃerent directory such as contrib/. The default path for Merge and Save

Objects points to the lib/ directory (until the path is changed and Save

Preferences is selected).

1-9

Using HP VEE Elements

Accessing Example and Library Programs

The lib/ directory contains the contrib/ directory where you can store

your own useful library programs. This directory is writable by everyone so

you can use Õles you and others saved in contrib/.

1-10

Numeric Data Entry Fields

You can use most standard ISO (International Standards Organization)

abbreviations in the entry Õelds of HP VEE objects. For example, instead of

typing 1200000, you can type 1.2M.

Table 1-1. ISO Abbreviations

Abbreviation Suœxes Multiple

X exa 10
18

P peta 10
15

T tera 10
12

G giga 10
9

M mega 10
6

k or K kilo 10
3

m milli 10
-3

u micro 10
-6

n nano 10
-9

p pico 10
-12

f femto 10
-15

a atto 10
-18

1-11

Using Keyboard Short Cuts

The following keyboard short cuts allow you to perform common HP VEE

functions more quickly. These short cuts are also listed online in Help ¡¡)

Short Cuts.

Keys Action

ÄCTRLÅ-left mouse

button click on

objects

Selects unselected objects or unselects selected objects

ÄShiftÅ-left mouse

button click near a

line

Edit ¡¡) Line Probe

ÄShiftÅ-ÄCTRLÅ-left

mouse button click

Deletes the line under the pointer

ÄClear displayÅ File ¡¡) New

ÄCTRLÅ-ÄAÅ Object menu ¡¡) Terminals ¡¡) Add Data Input or

Object menu ¡¡) Terminals ¡¡) Add Data Output.

(To add a terminal, Show Terminals must be active

and the pointer must be over the terminal area of the

object.)

ÄCTRLÅ-ÄDÅ Object menu ¡¡) Terminals ¡¡) Delete Input or

Object menu ¡¡) Terminals ¡¡) Delete Output.

(To delete a terminal, Show Terminals must be active

and the pointer must be over the terminal to be deleted.

Otherwise, ÄCTRLÅ-ÄDÅ will delete the object itself.)

ÄCTRLÅ-ÄOÅ File ¡¡) Open

ÄCTRLÅ-ÄSÅ File ¡¡) Save

ÄCTRLÅ-ÄWÅ File ¡¡) Save As

ÄCTRLÅ-ÄEÅ File ¡¡) Exit

ÄCTRLÅ-ÄRÅ Repaints window

ÄCTRLÅ-ÄDÅ Deletes object under pointer (except when the pointer is

over a terminal, as described above.)

1-12

Using HP VEE Elements

Using Keyboard Short Cuts

ÄCTRLÅ-ÄCÅ Pauses a running program or cancels an edit

ÄShiftÅ-ÄPrintÅ Prints screen with the current options speciÕed in

Printer Config (UNIX only)

ÄPrint ScreenÅ Copies screen to clipboard. (MS-Windows only)

Arrow Keys

(È, É, Æ, Ç)

Moves the pointer (UNIX only)

ÄShiftÅ-Arrow Key Scrolls the work area in the direction of the arrow key

ÄNextÅ Scrolls the work area up one screen

ÄPrevÅ Scrolls the work area down one screen

ÄShiftÅ-ÄNextÅ Scrolls the work area left one screen

ÄShiftÅ-ÄPrevÅ Scrolls the work area right one screen

Ë (home key) Moves the upper left corner of the program to the upper

left corner of the work area

ÄShiftÅ-Ë Moves the lower right corner of the program to the

lower right corner of the work area

There are some additional short cuts that you can use when the mouse

cursor is positioned over an object containing transactions (for example, the

Sequencer, To File, and so forth. These short cuts are as follows:

Keys Action

ÄCTRLÅ-ÄKÅ Object menu ¡¡) Cut Trans

ÄCTRLÅ-ÄYÅ Object menu ¡¡) Paste Trans

ÄCTRLÅ-ÄOÅ Object menu ¡¡) Insert Trans

ÄCTRLÅ-ÄXÅ Object menu ¡¡) Step Trans (Sequencer only)

ÄCTRLÅ-ÄNÅ Move to next transaction.

ÄCTRLÅ-ÄPÅ Move to previous transaction.

1-13

Understanding How Programs Run

With HP VEE, you build a program to solve your engineering problem. A

program looks like a block diagram. When you run the program, the objects

operate on the data that is input to them by you interactively or by lines that

are connected from other objects.

Threads and Subthreads

Each independent set of connected objects is called a thread. Multiple

threads are completely independent of each other; they are not connected by

data or sequence lines, however they may be connected by control (dashed)

lines.

Figure 1-1. Two Parallel Threads

A branch of a thread is a subthread. When subthreads begin at the data

output of the same object and have no sequence or data dependencies (no

solid line connections) between them, they are parallel.

Figure 1-2. Two Subthreads

1-14

Using HP VEE Elements

Understanding How Programs Run

Running Programs

You run a program by pressing the Run button in the upper right corner of

the HP VEE window. After you press Run, all threads run. You can run a

single thread in the program by adding a Start object to the thread and then

pressing Start.

After you start to run your program (by pressing Run or Start), HP VEE

initializes your program in a process called PreRun. PreRun clears the signals

from the lines and resets the objects so they are ready to run. For speciÕc

information about what happens immediately before objects start to operate,

refer to \Understanding PreRun".

Stopping Programs

There are three reasons why a program stops.

– The program runs to completion.

– You press the Stop button twice (pressing Stop once pauses the program).

– HP VEE encounters an untrapped error.

When a program stops:

– Any Õles communicated with are closed.

– Any opened named pipes are closed.

– The To Printer object delivers data to the printer.

N O T E

If your program communicates with other gcs, you need to monitor their execution. They do not

necessarily stop when the program stops.

1-15

Using HP VEE Elements

Understanding How Programs Run

Understanding PreRun

After you start a program but before the objects start to operate, HP VEE

PreRuns your program. The following actions occur at PreRun.

– Data input terminals are set to nil. Output terminals and Line Probe will

show nil containers on the lines.

– Objects are reset to their initial conditions (unless you specify otherwise).

For example, the default settings for Counter cause it to be reset to zero at

PreRun but you can change the settings.

– HP VEE checks to see if all data and XEQ inputs are connected.

– Any objects with initial values have their initial values set (if you speciÕed

this to happen). For example, the default settings for Real Slider do not

set an initial value, but you can change the settings.

– Any feedback loops are checked for resolution (a Start object on the loop).

– Any Õles speciÕed in From File are rewound so that Õle pointers are at

the beginning of the Õle.

– Any Õles speciÕed in To File (when Clear File at PreRun & Open is set)

are rewound.

– Any previous error conditions are cleared.

– (HP VEE-Test only.) You are cautioned regarding any devices that would

do instrument I/O, but have Live Mode turned oÃ. Such devices include

HP Instrument Drivers as well as Direct I/O objects. These warnings are

suppressed if you start HP VEE using the -nowarn option.

N O T E

If you have multiple threads in your program and start one of them by pressing Start, the PreRun

activities occur only on the thread started.

1-16

Using HP VEE Elements

Understanding How Programs Run

Each UserObject completes a stage similar to PreRun, called Activate,

before the UserObject operates each time. Activate clears the data lines

between objects to ensure that the UserObject processes new values (if you

specify) each time it operates.

Many objects, such as displays, counters, collectors, and constants have

features on the object menu that allow you to specify what happens to

the object at Activate and PreRun. These features include Clear and

Initialize to reset an object to a known state when the program runs or a

UserObject operates.

Activate vs. PreRun The scope of Activate is only one level of UserObject (a context); the

scope of PreRun is the entire program (when Run is pressed) or thread

(when Start is pressed) including all levels of nested UserObjects. If you

have a UserObject nested inside a UserObject, the objects in the nested

UserObject are only Activated when the nested UserObject operates.

PreRun is done only once per run. Activate is done for the root context every

time the program is run and is done for each UserObject every time it

operates. For more information about contexts, refer to Chapter 4.

1-17

Understanding Propagation

Propagation is the general Œow of execution through your program. The

propagation guidelines deÕne the order in which objects operate.

Understanding How Objects Operate

An object operates by processing the input data, completing its function, and

putting active data on its output data lines. An object operates only after

there is active data on all of its input data terminal(s) (the only exception is

the JCT object, which has asynchronous data input terminals, therefore if one

of its data inputs is activated, JCT operates).

N O T E

All data and XEQ input pins must be connected before you press Run or HP VEE returns an error.

For example in Figure 1-3, the Timer must have both its input data pins

activated before it operates (subtracts the two times). Each input data pin is

activated when it receives a container from another object. After the Timer

operates, the output pin is activated, and the output container data is the

time diÃerence. After all the objects to the right of the Timer (on the same

subthread) that can operate have done so, the sequence output pin of the

Timer is activated.

1-18

Using HP VEE Elements

Understanding Propagation

Figure 1-3. Object Operation

Basic Propagation Order

When you press Run (or Start), the objects in your program (or thread)

operate in the following order:

1. All Start objects operate Õrst (if they exist).

N O T E

Start is not required unless your program has at least one data feedback loop. For details about

feedback, refer to \Understanding Feedback"

2. Objects without data or sequence dependencies operate next.

3. Objects that have all data and sequence (if connected) input pins activated

operate next. These objects in turn activate the data and/or sequence

input terminals of other objects so that they operate.

1-19

Using HP VEE Elements

Understanding Propagation

In Figure 1-4, the A objects operate Õrst (in no particular order) then B, C, D,

and so on. No object can operate until its data and sequence (if connected)

inputs are activated.

Figure 1-4. Example of Basic Propagation

The program shown in Figure 1-4 is saved in manual01.vee in your

examples directory.

Sequence output pins do not activate until propagation has progressed as far

as possible for data output pins. The order of sequence output pin activation

is reverse the order of data output pin activation; the sequence pins at the

beginning of a thread or subthread activate last.

In Figure 1-5, the order of operation is A, B, C, D, E, F, and G.

Figure 1-5. Propagation Through Data and Sequence Pins

The program shown in Figure 1-5 is saved in manual02.vee in your

examples directory.

1-20

Using HP VEE Elements

Understanding Propagation

When you have parallel subthreads (subthreads that begin at the same data

output), they operate in no particular order to each other. In fact, the order

of propagation is aÃected by the order in which the objects were wired and

whether the program has been saved to a Õle. In Figure 1-6, either B or C

could operate after A. To ensure B operates before C, connect B's sequence

output pin to C's sequence input pin.

Figure 1-6. Propagation of Parallel Subthreads

Understanding Pins

The pins on objects aÃect the way that they operate, therefore aÃecting

the execution Œow of the program. Here is a summary of the types of pins

available on objects and what they do:

Figure 1-7. Pins on an Object

1-21

Using HP VEE Elements

Understanding Propagation

– Data pins input and output a container. An object will not operate until all

of its synchronous data input pins are activated. (Note that the JCT object

has asynchronous data inputs and therefore will operate when any of its

data input pins is activated.)

After the object operates, the output data pin(s) are activated.

– Control pins (optional) are asynchronous inputs that aÃect the state of the

object but have no eÃect on the propagation. Common control pins include

Clear, Reset, and Default Value. Lines that connect to a control pin

are dashed to show that their inputs do not aÃect propagation.

– XEQ pins are asynchronous input pins that force the object to operate. An

XEQ pin must be used on Collector and Set Values to tell the object

when you're done inputting data.

You can add an XEQ input pin to a UserObject to force it to operate

before the data and sequence input pins have been activated. Adding an

XEQ pin is rarely necessary to have your program run correctly.

– Sequence pins are used only to specify the order of execution. You

generally don't have to use them. An object operates only after all the

synchronous data input pins and sequence input pins (if connected) are

activated. You cannot open a sequence pin; it does not have a terminal.

A sequence output pin activates after all the data output pins have

activated and data Œow has propagated as far as possible.

N O T E

Sequence input and XEQ pins are activated by the presence of a container. These pins ignore the data

in the container. A sequence output pin activates with an empty (nil) container.

– Error pins (optional) An error pin is an output pin that traps the error

condition generated by the object and outputs the associated error number.

If an error occurs, the error pin is activated instead of any data output

pins. Only the error pin and the sequence output pin (if connected) are

activated.

1-22

Using HP VEE Elements

Understanding Propagation

For information about trapping errors, refer to \Trapping Errors" in

Chapter 2. For information about generating your own error codes within a

UserObject, refer to \Raise Error" in Chapter 3.

N O T E

You may leave data output pins, control pins, and error pins unconnected. Sequence pins, more often

than not, should be left unconnected. However, an error will occur when you run your program if any

data input pins or XEQ pins (if present) have been left unconnected.

Propagation of Threads and Subthreads

Parallel threads and subthreads operate round-robin style. Propagation

through each thread proceeds according to the rules above. But it is

important to know that multiple threads and subthreads operate in a parallel

manner; no single thread or subthread takes over and runs to completion.

N O T E

(HP VEE-Test only.) The only exceptions to parallel execution are threads or subthreads hosted by

Interface Event or Device Event. When either object traps an event (such as an

HP-IB SRQ for Interface Event), no objects in the rest of the program will execute until the

thread hosted by Interface Event or Device Event executes to completion. For further

information about Device Event and Interface Event, refer to the HP VEE Reference

manual.

1-23

Using HP VEE Elements

Understanding Propagation

When Run is pressed in Figure 1-8, the objects on both threads operate in

parallel.

Figure 1-8. Running Multiple Threads

The program shown in Figure 1-8 is saved in manual03.vee in your

examples directory.

N O T E

If you run one thread by pressing Start, you cannot start another thread until the Õrst has Õnished.

Understanding Auto Execute

You can select Auto Execute from the object menu on objects that allow user

input. These objects include many of the objects under the Data menu; for

example, the Real Slider and Real Constant objects.

The purpose of Auto Execute is to allow an object to automatically execute

whenever you change its value, thus outputting the new value and initiating

propagation through those objects in the thread that are \downstream" from

the object that is automatically executing. However, unlike the Start object,

1-24

Using HP VEE Elements

Understanding Propagation

an auto executing object does not initiate full propagation of the thread. To

see how this works, let's look at an example.

Suppose you turn on Auto Execute for the Real Slider in the following

thread:

Figure 1-9. Using Auto Execute

When you press Run, the thread will propagate to completion. The + object

will sum the values output by the Real Slider and the Real Constant

objects, outputting 1.943 in this case. (You do have to press Run once to

initiate propagation in the thread. Until run has been pressed the Õrst time,

Auto Execute has no eÃect.)

Once Run has been pressed, changing a value on the Real Slider causes the

Real Slider to execute, outputting the new value and initiating propagation

through the + and AlphaNumeric objects. However, Auto Execute does

not initiate full propagation of the thread. The Real Constant object does

not execute when you move the slider in our example. Rather, the + object

uses its \old" data from the Real Constant each time the Real Slider

auto executes. This is only a problem if you change the value of the Real

Constant, which doesn't have Auto Execute turned on. There are three

solutions:

1. Press Run after each change to the value of the Real Constant, initiating

full propagation of the thread.

2. Turn on Auto Execute for the Real Constant, as well as the Real

Slider. However, in many cases this solution is not available. If, instead

of a Real Constant, the thread contains a From File or an instrument

1-25

Using HP VEE Elements

Understanding Propagation

I/O object, which has no Auto Execute feature, you'll have to use the

third solution.

3. Connect the sequence output pin on the Real Slider (with Auto

Execute on) to the sequence input pin on the Real Constant (with Auto

Execute oÃ), as shown below. This is the recommended solution for most

cases.

Figure 1-10. Using Sequence Pins with Auto Execute

There is one other point to be made about Auto Execute. So far we've

considered the eÃect of Auto Execute when the thread has completed

execution. But what happens if the thread is currently executing when you

edit an object for which Auto Execute is turned on? Again looking at our

example, if you move the slider on the Real Slider (with Auto Execute

on), the object will execute only if the thread has Õnished executing. If the

thread is currently executing, the new value will be set on the Real Slider

object, but the object won't execute and propagation won't be aÃected.

Understanding Feedback

Use feedback to access previous values or to allow a set of values to change

together. (If one value changes, the others are forced to operate again.) You

1-26

Using HP VEE Elements

Understanding Propagation

cannot use feedback to end an iteration subthread | iteration ends at the end

of the thread.

HP VEE feedback can occur through either data or sequence pins. If a thread

contains feedback through control pins (dashed lines), it will not operate

properly.

When your program contains at least one feedback loop, you must have a

Start object on each thread that has feedback so that HP VEE can resolve

the initial order of operation.

Data Feedback Iteration objects are always used when there is data feedback. Data

feedback is often used to evaluate equations that use previous results in the

calculation. In Figure 1-11, the feedback loop is necessary to perform the

recursive calculation: x=(x)+2.

Figure 1-11. Example of Data Feedback

The program shown in Figure 1-11 is saved in manual04.vee in your

examples directory. In data feedback, you must specify what value the

loop will take for the initial cycle. Although generally the previous value

is evaluated as zero the Õrst time, you should use a JCT object to deÕne

speciÕcally what should happen.

1-27

Using HP VEE Elements

Understanding Propagation

Sequence Feedback Figure 1-12 shows a use of sequence feedback. The Sliders have Auto

Execute set; the feedback loop ensures that whenever a value on either of

them is changed, the program runs.

Figure 1-12. Example of Sequence Feedback

The program shown in Figure 1-12 is saved in manual05.vee in your

examples directory.

Propagation Summary

– Data Œows through objects from left to right; sequence Œows from top to

bottom.

– All data and XEQ input pins must be connected.

1-28

Using HP VEE Elements

Understanding Propagation

– Start objects operate Õrst. Objects with no data or sequence input

dependencies operate next.

– All synchronous data input pins must be activated before an object

operates.

– If the sequence input pin is connected, it must be activated before an

object can operate.

– Objects with synchronous data inputs operate only once unless connected

to an iteration subthread or forced to operate by an XEQ pin.

– Control pins are asynchronous and do not aÃect the operation of the object.

– When an error is generated from an object with an error pin, the error pin

is activated instead of the data output pins(s). The sequence output pin is

activated.

– Parallel subthreads, hosted by a single output pin, may operate in any

order.

– Multiple threads operate simultaneously.

N O T E

If an iteration subthread includes Œow branching, a Sample & Hold object may be required to

obtain correct propagation. Refer to \Iteration with Flow Branching" in the next chapter.

1-29

Understanding Containers

A container carries data between objects. When a container arrives at the

object's pin, the pin is activated. A non-nil container has data of a speciÕc

type and shape. Arrays may be mapped.

When Show Data Flow is checked, a small box indicates the movement of the

containers along lines.

Data Types

HP VEE provides 13 data types, but 3 of these types are used only in

instrument I/O transactions. Remember that HP VEE-Engine does not support

instrument I/O and therefore won't support the instrument I/O data types.

The following 10 data types are used for all internal HP VEE operations. That

is, every HP VEE data container sent between HP VEE objects is of one of

these 10 types.

N O T E

If an input terminal on an HP VEE object speciÕes Any, it will accept containers of any HP VEE data

type.

Composite data types (Waveform, Spectrum, and Coord) are associated with particular data shapes.

– Int32 is a 32-bit two's complement integer (-2147483648 to 2147483647).

– Real (or REAL64) is a 64-bit real that conforms to the IEEE

754 standard (approximately 16 signiÕcant decimal digits or «

1.7976931348623157E308).

1-30

Using HP VEE Elements

Understanding Containers

– PComplex is a magnitude and a phase component in the form (mag,

@phase). Phase is in the trigonometric units set under Preferences ¡¡)

Trig Mode for the main work area or Trig Mode under the UserObject

object menu for a UserObject. For example, the PComplex number 4

at 30 degrees is represented as (4,@30) when Trig Mode is set to

Degrees. Each component is Real.

– Complex is a rectangular or Cartesian complex number. Each complex

number has a real and an imaginary component in the form (real,

imag). Each component is Real. For example, the complex number 1 +2i

is represented as (1,2).

– Waveform is a composite data type of time domain values that contains the

Real values of evenly-spaced, linearly-mapped points and the total time

span of the waveform. The data shape of a Waveform must be an Array 1D

(a one-dimensional array).

– Spectrum is a composite data type of frequency domain values that

contains the PComplex values of points and the minimum and maximum

frequency values. Spectrum allows the domain data to be uniformly

mapped as log or linear. The data shape of a Spectrum must be an Array

1D.

– Coord is a composite data type that contains at least two components in

the form (x, y, . . .). Each component is Real. The data shape of a Coord

must be a Scalar or an Array 1D.

– Enum is a text string that has an associated integer value. You can access

the integer value with the ordinal(x) function.

The data shape of an Enum must be Scalar; an array of Enum is

automatically promoted to Text. Enum cannot be a required data input

type.

– Text is a string of alphanumeric characters.

– Record is a data type composed of Õelds. Each Õeld has a name and a

container, which can be of any type (including Record) and any shape.

Special Instrument I/O Data

Types

Note that these data types are not supported by HP VEE-Engine.

All integer values are stored and manipulated internally by HP VEE as the

Int32 data type, and all real numbers are stored and manipulated as the

Real (or Real64) data type. However, instruments generally support 16-bit

integers or 8-bit bytes. Also, some instruments support a 32-bit real format.

1-31

Using HP VEE Elements

Understanding Containers

Therefore, HP VEE-Test supports the following three data types, which are

used only for I/O transactions involving instruments:

– Byte is an 8-bit two's complement byte (-128 to 127). (Byte is used

in READ BINARY, WRITE BINARY, and WRITE BYTE instrument I/O

transactions. The WRITE BYTE transaction is used for specialized character

output to HP-IB instruments.)

– Int16 is a 16-bit two's complement integer (-32768 to 32767).

– Real32 is a 32-bit real that conforms to the IEEE 754 standard

(«3.40282347E«38).

Instrument I/O Data Type

Conversions

Note that these data type conversions are not supported by HP VEE-Engine.

On instrument I/O transactions involving integers, HP VEE performs an

automatic data-type conversion according to the following rules:

N O T E

These data-type conversions are completely automatic, so you won't normally need to be concerned

with them. However, the following list shows what happens.

– On an input transaction, Int16 or Byte values from an instrument are

individually converted to Int32 values, preserving the sign extension.

On the other hand, Real32 values from an instrument are individually

converted to 64-bit Real numbers.

– On an output transaction, Int32 or Real values are individually

converted to the appropriate output format for the instrument:

If an instrument supports the Real32 format, HP VEE converts 64-bit

Real values individually to Real32 values, which are output to the

instrument. If the Real value is outside of the range for Real32 values,

an error will occur.

If an instrument supports the Int16 format, HP VEE truncates Int32

values to Int16 values, which are output to the instrument. Real

values are Õrst converted to Int32 values, which are then truncated and

1-32

Using HP VEE Elements

Understanding Containers

output. However, if a Real value is outside the range for an Int32, an

error will occur.

If an instrument supports the Byte format, HP VEE truncates Int32

values to Byte values, which are output to the instrument. Real values

are Õrst converted to Int32 values, which are then truncated and

output. However, if a Real value is outside the range for an Int32, an

error will occur.

Data Shapes

Each non-composite data type may be in one of Õve data shapes:

– Scalar is a single number such as 10 or (32, @10).

– Array 1D is a one-dimensional array of values.

– Array 2D is a two-dimensional array of values.

– Array 3D is a three-dimensional array of values.

– Array is an array with one to ten dimensions.

N O T E

An input data shape requirement is Any when the object accepts containers of more than one of the

data shapes.

1-33

Using HP VEE Elements

Understanding Containers

Mappings

A mapping is a set of continuous or discrete values that express the

independent variables for an array. For example, the mappings on a

Waveform are the times for each amplitude value. Waveform, Spectrum, and

Coord data types are mapped. Arrays of other data types can also be mapped

by using Data ¡¡) Access Array ¡¡) Set Mappings.

Mappings are either continuous (Waveform, Spectrum, or mapped arrays

created with Set Mappings) or discrete (Coord). Continuous mappings are

attached to the array and may be viewed on the terminal or by using Line

Probe, but are not part of the array and are diÃerent than the array indices.

Discrete mappings are part of the array and are displayed as the Õrst n-1

Õelds in a Coord value with n Õelds.

The sampling interval of linear mappings is the maximum value minus

the minimum value, divided by the number of points. There are the same

number of points as sampling intervals; each point is at the beginning of

a sampling interval. For example, if array A (where A = [1, 2, 3, 4]) is

linearly mapped from 10 to 50, the mappings and sampling intervals are as

shown in Figure 1-13. Note that the mappings are from the Õrst element to

the end of the last interval.

Figure 1-13. Array Mappings and Sampling Intervals

When mapped values (except Coord) are displayed, the X axis displays the

mappings.

To get information about a continuous-mapped array, use

Data ¡¡) Access Array ¡¡) Get Mappings. Get Mappings gives you the

type of mapping (log or linear) and the minimum and maximum mapping

values for each dimension.

1-34

Using HP VEE Elements

Understanding Containers

Converting Data Types on Input Terminals

In conventional programming languages, you manually convert between data

types. HP VEE automatically converts between most data types.

N O T E

Data shapes are not converted on input terminals, but data types and shapes may be automatically

converted when used in math functions. These conversions are discussed in \Mathematically Processing

Data" in Chapter 2.

Most objects accept any data type, but a few need a particular data type or

shape input. For these objects, their data input terminal automatically tries to

convert the container to have the desired data type.

For example, a Magnitude Spectrum display needs Spectrum data. If

the output of a Function Generator (a Waveform) is connected to the

Magnitude Spectrum display, the input terminal of the Magnitude

Spectrum automatically does an FFT to convert time-domain data to

frequency-domain data (Waveform to a Spectrum).

The conversion can be a promotion or demotion. A promotion is the

conversion from a data type with less information to one with more. For

example, a conversion from an Int32 to Real is a promotion. Such promotions

take place automatically as needed | you rarely if ever need to be concerned

with them.

A demotion is a conversion that loses data. For example, the conversion

from a Real to an Int32 is a demotion because the fractional part of the

Real number is lost. A demotion of data type occurs only if you force it by

specifying a certain data type for an input on an object. Once you have

speciÕed a data type, the demotion will occur automatically if it is needed and

possible.

1-35

Using HP VEE Elements

Understanding Containers

For example, if you change the input on a Formula object to Int32, and

another object supplies a Real number to that input (such as 28.2), the value

will be demoted to an Int32 (28).

To change the data type on the Formula input from Any to Int32, just

double-click on the input terminal's information area (not the pin), and then

click on the Required Type Õeld. Double click on Int32 in the \pop-up" list

to change types.

N O T E

The conversion of data types for instrument I/O transactions is a special case. Refer to \Data Types"

for further information.

When the conversion can't be done, HP VEE returns an error. The following

table shows when conversion is automatic (yes) or when HP VEE returns an

error (no). Demotions are indicated by
NNNNNNNNNNNNNNNNNNNNNNN

shading .

N O T E

The Record data type has the highest priority. However, HP VEE does not automatically promote to or

demote from the Record data type. To convert between Record and non-Record data, use Build

Record and Unbuild Record. For further information, refer to \Using Records and DataSets"

in the HP VEE Advanced Programming Techniques manual.

1-36

Using HP VEE Elements

Understanding Containers

Table 1-2. Promotion and

NNNNNNNNNNNNNNNNNNNNNNNNNN

Demotion of Types in Input Terminals

To Ç

É From

Int32 Real Complex PComplex Waveform Spectrum Coord Enum Text

Int32 n/a yes yes
(1)

yes
(1)

no no yes
(2)

no yes

Real
FFFFFFFFFF

yes
(3)

n/a yes
(1)

yes
(1)

no no yes
(2)

no yes

Complex
FFFFFFF

no
FFFFFFF

no
(4)

n/a yes no no no no yes

PComplex
FFFFFFF

no
FFFFFFF

no
(4)

yes n/a no no no no yes

Waveform
FFFFFFFFFF

yes
(3)

FFFFFFFFFF

yes
(8)

FFFFFFF

no
FFFFFFF

no n/a yes
(5)

yes no yes

Spectrum
FFFFFFF

no
FFFFFFF

no
FFFFFFFFFF

yes
(8)

FFFFFFFFFF

yes
(8)

yes
(5)

n/a yes no yes

Coord
FFFFFFF

no
FFFFFFF

no
FFFFFFF

no
FFFFFFF

no
FFFFFFF

no
FFFFFFF

no n/a no yes

Enum
FFFFFFF

no
(6)

FFFFFFF

no
FFFFFFF

no
FFFFFFF

no
FFFFFFF

no
FFFFFFF

no
FFFFFFF

no n/a yes

Text
FFFFFFFFFF

yes
(7)

FFFFFFFFFF

yes
(7)

FFFFFFFFFF

yes
(7)

FFFFFFFFFF

yes
(7)

FFFFFFF

no
FFFFFFF

no
FFFFFFFFFF

yes
(7)

FFFFFFF

no n/a

Notes:

n/a = Not applicable.

(1) An Int32, or Real value promotes to Complex (value, 0) or to PComplex

(value, @0).

(2) The independent component(s), which are the Õrst n-1 Õeld(s) of

an n-Õeld Coord, are the array indexes of the value unless the array is

mapped. If the array is mapped, the independent component(s) are derived

from the mappings of each dimension. The dependent component, y, is the

array element. If the container is a Scalar (non-array), conversion fails

with an error.

(3) These demotions will cause an error if the value is out of range for the

destination type.

(4) This demotion is not done automatically, but can be done with the

re(x), im(x), mag(x), and phase(x) objects or the Build/UnBuild ¡¡)

objects.

(5) An FFT or inverse FFT is automatically done.

(6) This demotion is not done automatically, but can be done with the

ordinal(x) object.

1-37

Using HP VEE Elements

Understanding Containers

(7) This demotion causes an error if the text value is not a number (such as

34 or 42.6) or is not in an acceptable numerical format. The acceptable

formats are as follows (spaces, except within each number, are ignored):

– Text that is demoted to an Int32 or Real type may also include:

A preceding sign. For example, -34.

A suœx of e or E followed by an optional sign or space and an integer.

For example, 42.6E-3.

– Text demoted to Complex must be in the following format: (number,

number).

– Text demoted to PComplex must be in the following format: (number,

@number). The phase (the second component) is considered to be

radians for this conversion, regardless of the Trig Mode setting.

– Text demoted to a Coord type must be in the following format: (number,

number, . . .).

(8) These demotions keep the Waveform and Spectrum mappings.

1-38

Debugging Programs

When you are building a program, you may have some problems and not

know how your program is running. HP VEE has many tools to help you

debug your program.

Viewing Data and Propagation

The following debugging tools are under the Edit menu:

– Line Probe allows you to view the data container output from the

previous object. You can use Line Probe when the program is running or

paused. If the program is running, Line Probe pauses it until you press

OK. After selecting Line Probe, click on the line you want information

about. (You can double-click on a terminal to see similar container

information.) As a short cut, you can hold down ÄShiftÅ instead of selecting

Line Probe and then click on a line to quickly view the container.

To view the endpoints of a line, select Line Probe, but then drag the

pointer over the line; the line and its endpoints are highlighted. To view

the container, release the pointer when the line is highlighted, otherwise

drag the pointer oÃ the line then release the mouse button.

– Show Data Flow shows the position of each data container by a small box

moving on the lines between objects when the program is running.

– Show Exec Flow shows the object currently operating by surrounding it

with a yellow highlight (default) when the program is running.

1-39

Using HP VEE Elements

Debugging Programs

Using Breakpoints

Set breakpoints to stop the program before certain objects operate. You can

set, activate, and clear breakpoints. Under the Edit menu, the breakpoint

options are under the Breakpoints cascading menu.

To Set Breakpoint(s) Do This

On a single object Select Breakpoint from the object menu

On multiple objects Select the objects, then select Edit ¡¡)

Breakpoints ¡¡) Set Breakpoints

Breakpoints are saved with the program.

When you run your program, execution stops before the object with a

breakpoint. At this point you can check the data on lines and terminals. An

arrow points to the next object to operate (the object with the breakpoint).

To continue execution, press the Cont or Step button on the upper right of

the title bar.

To allow your program to run without stopping at breakpoints, deselect

Activate Breakpoints temporarily from the Edit menu. The breakpoints

are still on each object, but not active at the moment.

To Delete

Breakpoint(s)

Do This

On a single object Deselect Breakpoint from the object menu

On multiple objects Select the objects, then select Edit ¡¡)

Breakpoints ¡¡) Clear Breakpoints

On all objects Select Edit ¡¡) Breakpoints ¡¡) Clear All

Breakpoints

Stepping Through Execution

To have your program run one object at a time, press the Step button on the

upper right of the title bar. The Õrst time you press Step (from a stopped

1-40

Using HP VEE Elements

Debugging Programs

program), the program PreRuns. Press Step to operate each object. An

arrow points to the object that will operate next.

You may wish to Run your program until it stops at a breakpoint and Step it

from that point on.

When you want the program to continue running, press Cont. To pause the

program, press Stop once. When the program is paused, you may continue

execution by pressing Cont or step through by pressing Step.

When a UserObject is an icon, a panel view, or Show Panel on Exec is set,

press Step to operate the entire UserObject (all objects in the UserObject

operate). When a UserObject is an open view without Show Panel on

Exec, press Step to operate each object in the UserObject.

N O T E

An inÕnite loop can occur using Step in the following situation: a UserObject contains an inÕnite

loop, and that UserObject is reduced to an icon. When you step execution into the UserObject, the

UserObject will never return since the entire UserObject must be executed before control returns. To

overcome this inÕnite loop, open the UserObject before stepping into it. Open UserObjects don't have

to execute to completion before allowing parallel threads to execute.

This inÕnite loop situation occurs only with Step, not with Run.

Finding Line Endpoints

To highlight a continuous line and its endpoints, select Line Probe and drag

the pointer over the line. If you release the mouse button over a line, you'll

see the container information.

1-41

Sharing Programs With Others

Often you'll be creating programs for others to use. To make it easy for others

to understand your programs, follow these guidelines:

– Include the .veeio Õle (UNIX) or VEE.IO Õle (MS-Windows) used.

– Include any custom bitmaps you've created.

– Include any program used in Execute Program or To/From HP BASIC/UX

(HP VEE-Test only).

– Include any library Õles used via Import Library.

– Extensively document your program using the techniques described in

\Documenting Your Programs".

If you are sharing a disk with others and want to share programs also use the

following guidelines:

– Specify absolute paths in To File, From File, Execute Program,

To/From Named Pipes, and HP BASIC/UX (HP VEE-Test) objects.

– Specify absolute paths to any .cid Õles used (HP VEE-Test only).

1-42

Changing Preferences

The defaults for your environment are set with the Preferences features

on the File menu. Preferences speciÕes overall HP VEE options. Some

of these preferences are saved with each program and as the defaults. The

defaults are used whenever you start HP VEE or select New from the File

menu.

The Preferences options are as follows:

– Trig Mode speciÕes the units that the program uses: degrees, radians,

or gradians. Trig Mode may also be set for each UserObject. This

preference is saved with each program as well as in .veerc (or VEE.RC on

PC's).

– Number Format speciÕes the default display format for real and integer

numbers. The Number Format settings are used in most entry Õelds except

State Drivers (HP VEE-Test only). This preference is saved with each

program as well as in .veerc (or VEE.RC on PC's).

– Waveform Defaults speciÕes the time span and number of points that is

the default for Waveforms (such as those created by Function Generator,

Pulse Generator, and Noise Generator). This preference is saved with

each program as well as in .veerc (or VEE.RC on PC's).

– Auto Line Routing speciÕes if lines are automatically routed around other

objects each time you draw a line, or move or size an object.

– Printer Config (UNIX only) speciÕes the printer options for a graphics

printer (used for printing the HP VEE window with Print Screen, Print

Objects, and Print All), and a text printer (used for outputting data

with the To Printer objects).

– Plotter Config (UNIX only) speciÕes the options for a graphics plotter.

Used for plotting the graphical display objects such as XY Trace, Strip

Chart, Polar Plot, and so forth.

– Default directory path where Merge and Save Objects point. When you

select Save Preferences, the most recently used path is saved.

When you select Save Preferences, the preferences are saved in the

.veerc (or VEE.RC on PC's) file in your $HOME directory (typically your

/users directory or C:\VEE directory on PC's).

1-43

Using HP VEE Elements

Changing Preferences

For more information about customizing your HP VEE work sessions, refer to

Appendix A in HP VEE Advanced Programming Techniques

1-44

Documenting Your Programs

To make it easier to use, modify, debug, and share your program, use the

following HP VEE features to document it:

– Give the program a meaningful symbolic name. You can name your

program in the HP VEE title bar.

– Rename objects to names that are more meaningful to you. For example,

Repeat 100x may be more useful than the default For Count.

– Rename input and output terminals to names that are more meaningful

to you. Note that you cannot change the name of some input and output

terminals.

– Add descriptions about key objects by using Show Description on the

object menu. The information may include why you used that particular

object, details about the inputs and the outputs, and the options that you

used on the object and why.

– Add notes to yourself or others by using Display ¡¡) Note Pad. The

information on Note Pad could include:

Your name, phone number, and the date you created the program.

What this program does.

Who should use this program.

The dates that you made changes and what the changes were.

Any changes you're expecting to happen in the future.

– Customize icons to display bitmaps that help you recognize them quickly.

Choose your own bitmap from the icon's object menu under Layout ¡¡)

Select Bitmap. For details about creating your own bitmaps, refer to

\ConÕguring HP VEE" in the HP VEE Advanced Programming Techniques

manual.

1-45

Archiving Programs

Once your program is completed, you'll want to archive it. Use the

documentation techniques listed in \Documenting Your Programs" to fully

describe the functions of the program.

For an electronic archive, use the program Õle itself. It is an ASCII Õle that

documents each object, its position, any options set, and connections.

For a paper archive, use the Print All selection under the File menu. If

you select all options, you'll get a printout of the entire program, the contents

of all UserObjects, both views of the object (icon and open view), and

and all Show Descriptions. You can also use the veedoc utility to get a

hierarchical listing of all objects, with their Show Descriptions and the

contents of any Note Pads.

N O T E

Depending on the size of your program, a complete paper archive may take several minutes or up to

an hour to print.

If you want to change the color palette for your printout, refer to ConÕguring

HP VEE in the HP VEE Advanced Programming Techniques manual.

To complete the paper archive, print the program Õle to keep with the

graphical printout.

1-46

2

How To Build HP VEE

Programs

How To Build HP VEE Programs

This chapter explains the general tasks you'll do when building a program.

For detailed information about the speciÕc operation of an object, refer the

HP VEE Reference manual.

2-2

Designing a Program

An important structured approach to building complex programs is to

modularize the many operations or functions needed. Top-down design allows

you to solve complex problems by creating modules that perform particular

functions. You can create a program by starting from a broad perspective and

moving to the lower-level speciÕcs when all the functions in the current level

are characterized. This approach implicitly causes solutions to be modularized

in terms of the functions necessary to solve a problem. HP VEE supports

an environment where the creation of functional modules can be achieved

quickly and, to a large part, automatically.

Although HP VEE allows you to prototype solutions quickly, you'll Õnd that

you'll create quicker, easier to understand programs if you take some time to

design your program in modular form instead of trying to solve the entire

problem at once.

You should use UserObjects to create discrete modules using top-down

design. Building UserObjects is discussed in Chapter 6.

2-3

Getting Data from Files

Often you'll want to use data created by another program or test in your

program. You can read data from Õles by using a From File object from the

I/O menu. Generally, you'll be reading numerical data from an ASCII Õle.

The default transaction READ TEXT x REAL reads a single numeric value from

a Õle.

You can change values on the transaction by clicking on the highlighted

transaction, Õlling in Õelds, and clicking OK. Figure 2-1 reads four values

(separated by spaces or on diÃerent lines) from a Õle.

Figure 2-1. Reading Multiple Values From a File

To read multiple values from a Õle into an array, click on the SCALAR Õeld to

get the Select Read Dimension dialog box. Choose ARRAY 1D and click on

OK. Enter the number of values to read into the Õeld labeled SIZE:.

2-4

How To Build HP VEE Programs

Getting Data from Files

In Figure 2-2, values are read until the end of the Õle (EOF) is encountered:

Figure 2-2. Using Read to End to Read Multiple Values

You can use the From File object in more complicated ways. For more

information, refer to \Using Transaction I/O" in the HP VEE Advanced

Programming Techniques manual.

To read multiple values when you don't know the number of values, click on

the SIZE: Õeld to get To End:. In Figure 2-2, values are read until the end

of Õle (EOF) is encountered.

2-5

Setting Initial Values

This section explains the following ways to set values for data input:

– Setting constants

– Getting user input

– Setting values at run-time

– Resetting values

Setting Constants

To set values that are constants (such as 9.8), use the Data ¡¡) Constant

¡¡) objects. Type the value in the entry Õeld before you run the program. If

the constant is not dependent on a sequence input, it will operate Õrst. For

more information about entry Õelds, refer to the Getting Started with HP VEE

for Windows manual.

To input a one-dimensional array of values, select Config from the object

menu to specify the size of the array. Type the array values in the constant

object.

Getting User Input

The easiest way to get user input while the program is running is to use the

input objects under the Data menu including: Enum, Slider, and Constant

¡¡) objects. Edit the title of the object to ask a question and let the user type

in a response.

2-6

How To Build HP VEE Programs

Setting Initial Values

Figure 2-3 shows an example of getting user input and outputting it to a

display. After you press Run, the AlphaNumeric object doesn't receive the

data until the OK button is pressed.

Figure 2-3. Getting User Input With a Constant Object

The program shown in Figure 2-3 is saved in manual08.vee in your

examples directory.

To have the object operate (and propagate) each time the user enters a value,

set the Auto Execute option on the object menu. When Auto Execute is

set, it causes the object to operate which, in turn, causes objects on the same

subthread (which had their data input pins activated) to operate.

2-7

How To Build HP VEE Programs

Setting Initial Values

In Figure 2-4, the Slider is set to Auto Execute. A new output is displayed

each time the slider is moved. This only works because the sequence output

pin of the Slider is connected to the sequence input pin of the Real. If this

sequence connection was not made, the Slider would operate when the

value was changed, but the + wouldn't. Because there would be no new data

input to the + from the Real object, the + would not operate.

Figure 2-4. Example of Auto Execute

Refer to \Understanding Auto Execute" in Chapter 1 for information about

how Auto Execute aÃects propagation. Refer to \Understanding Feedback"

in Chapter 1 for information about using Auto Execute with feedback.

A more sophisticated method to get user input is through a dialog box.

You can create your own dialog box by using a UserObject. For detailed

information about creating your own dialog boxes, refer to Chapter 4.

Setting Values at Run-Time

Many objects allow you to set or clear values each time the program is run

(at PreRun or Activate). For information about PreRun and Activate, refer to

\Understanding PreRun" in Chapter 1.

2-8

How To Build HP VEE Programs

Setting Initial Values

The object menu features for setting values on user input objects under the

Data menu (Enum, Toggle, Integer Slider, Real Slider, and Constant

¡¡) objects) are:

– Initial Value

– Initialize At PreRun

– Initialize At Activate

The default action is not to initialize at PreRun or Activate.

Figure 2-5 shows an example where an initial value is set. If you select

Initialize ¡¡) Initial Value on the object menu for \Enter your name

and press OK", the Initial Value Configuration will appear, as shown in

the Õgure. In this case, the initial value is set to Marvin and is initialized at

PreRun. Once the program is started, you can press OK to send the default

value to the display, or you can type another name in the edit Õeld and press

OK.

Figure 2-5. Initialize At PreRun

The program shown in Figure 2-5 is saved in manual09.vee in your

examples directory.

The object menu options for clearing values and graphs on all objects under

the Display menu (except Note Pad) are:

– Clear (not available on AlphaNumeric)

– Clear At PreRun

2-9

How To Build HP VEE Programs

Setting Initial Values

– Clear At Activate

The default is to Clear at PreRun and Activate.

Resetting Values

The user-input objects under the Data menu (Enum, Toggle, Integer

Slider, Real Slider, and Constant ¡¡) objects), allow you to add control

terminals to set a Default Value and to Reset to a cleared state. These

pins set and reset the values asynchronously while the program is running

(not at a speciÕc time such as PreRun or Activate).

The Default Value object (a Text constant) in Figure 2-6 is connected to

the other Text object (titled Enter your Name) by means of a control line.

The OK button ensures (via a sequence line) that the Default Value object

will execute before Enter Your Name executes.

Figure 2-6. Resetting to a Default Value

The program shown in Figure 2-6 is saved in manual10.vee in your

examples directory.

2-10

Controlling Program Flow

HP VEE programs use constructs to control the Œow of operation. These

controls allow you to:

– Start the program running

– Repeat the operation of a set of objects

– Branch to a subthread

– Stop running

Starting

Normally you'll start your program by simply pressing Run. However,

if you put a Start object on a thread, you can start just one thread by

pressing Start. When you are creating and debugging your program, you

can use Start objects to test individual threads. Run starts all threads in

the program, regardless of whether they contain Start objects. If you have

multiple Starts on a thread, all of them operate when one of them (or Run)

is pressed.

Normally, you won't need to include any Start objects in your program.

However, there is one exception. Any thread in your program that contains

feedback must have a Start object so that HP VEE knows where to start the

thread. Any thread that contains feedback, but has no Start object, will

result in an error.

Iterating

To repeat a set of operations, use the iteration objects under Flow ¡¡)

Repeat ¡¡). Each iteration object hosts a subthread from its data output pin.

2-11

How To Build HP VEE Programs

Controlling Program Flow

The entire subthread repeats until the termination condition is met, then

subthread execution stops.

Object Terminating Condition

For Count The subthread has executed entry value number of

times

For Range The output value is > the Thru value (if Step is

positive)

or the output value is < the Thru value (if Step is

negative)

For Log Range The output value is > the Thru value (if /Dec is

positive)

or the output value is < the Thru value (if /Dec is

negative)

Until Break A Break operates on the subthread

On Cycle A Break operates on the subthread

When the subthread has completed, the sequence output pin of the iteration

object is activated.

2-12

How To Build HP VEE Programs

Controlling Program Flow

In Figure 2-7, the subthread that begins with the For Count object completes

before the For Count sequence output pin is activated. Notice that the

end of the subthread (Times in the Loop) marks the end of the iteration

subthread.

Figure 2-7. Iteration Example

The program shown in Figure 2-7 is saved in manual11.vee in your

examples directory.

To skip a set of operations in the current iteration, use the Next object. To

stop the iteration subthread and continue propagation through the sequence

output pin of the iterator, use the Break object.

Branching

To conditionally branch the Œow of execution, use the If/Then/Else and

Conditional ¡¡) objects under the Flow menu.

2-13

How To Build HP VEE Programs

Controlling Program Flow

The If/Then/Else object allows you the most Œexibility. The

If/Then/Else entry Õeld accepts expressions and allows you to create

complicated conditions. To select one of several conditions and activate the

data output pin associated with that condition, add Else/If conditions from

the object menu (note that each condition adds a data output pin to the

object).

Conditional ¡¡) objects are pre-deÕned If/Then/Else objects for your

convenience. You cannot change the condition or the number of inputs on

them.

Stopping

To permanently stop the program after it has run as long as you want, use

the Exit Thread or Stop objects. When the Exit Thread object operates, it

stops only the thread to which it's attached. When the Stop object operates,

it is the same as pressing the Stop button on the upper right of the HP VEE

title bar twice; the entire program stops.

If you want to pause the program momentarily, press the Stop button

once. Use the Cont or Step button to continue execution. If you want

your program to pause at a certain point during each execution (usually to

wait for user input), use the OK object (Flow ¡¡) Confirm (OK)) or use Set

Breakpoints.

Iteration with Flow Branching

If your program uses both iteration and Œow branching within a thread, there

are some special considerations.

When a subthread hosted by an iterator (For Count, For Range, For Log

Range, Until Break, or On Cycle) Õnishes an iteration, all data containers

sent during the previous iteration are invalidated before the next iteration.

This prevents \old" data from a previous iteration from being reused in the

2-14

How To Build HP VEE Programs

Controlling Program Flow

current iteration. However, if Œow branching is present within the iterative

subthread, some objects may not execute on every iteration. Thus, data

containers sent by those objects may be invalidated before other objects can

execute on the data.

An Example In the following example, the iterative subthread hosted by For Count

includes an If/Then/Else object, which causes Œow branching.

Figure 2-8. Iteration and Flow Branching

Counter2 executes and sends the count to the + object. However, Counter2

does not execute on the last iteration. Thus, the data previously sent to the +

object is invalidated before the iterations are completed. Thus, the + object

cannot execute to add 3 to the count because valid data is not present at one

of its inputs. But this is no problem. All you need to do is add a Sample &

Hold object.

The Sample & Hold In the following example a Sample & Hold has been added to the thread of

the previous example:

2-15

How To Build HP VEE Programs

Controlling Program Flow

Figure 2-9. Using Sample & Hold

Each time Counter2 executes, it sends a data container to the Sample &

Hold, where it is stored internally. When the iterations are Õnished, the

XEQ input terminal on the Sample & Hold is Õred, and the Sample & Hold

outputs the last data container it received to the + object, which adds 3 to the

count.

The programs shown in Figure 2-8 and Figure 2-9 are included as examples

\manual12.vee" and \manual13.vee", respectively. These examples are

located in manual12.vee and manual13.vee in your examples directory.

To see how propagation occurs in each case, load the appropriate example

and run it with Show Data Flow and Show Exec Flow active.

2-16

Mathematically Processing Data

To process data, you operate on it with functions from the Math and AdvMath

menus or combine the functions to create mathematical expressions.

N O T E

You can also process data before running a program by using numeric entry Õelds such as those

in Constant objects. Numeric entry Õelds on some objects support the use of arbitrary

formulas. The formula is immediately evaluated; the resulting Scalar is used as the value for the

Õeld. You cannot use input variable names in the formula. You also cannot use global variables in

Constants. Also, the typed-in formula must evaluate to a Scalar value of the proper type or of

a type that can be converted to that which the object expects. In general, you can use any of the

dyadic operators, parentheses for nesting, function calls, and the predeÕned numeric constant PI

(3.1416 . . .) in numeric entry Õelds.

The Math and AdvMath menus contain a set of mathematical functions to

process your data in numerous ways. All the features that are listed under

the Math and AdvMath menus (except Regression) can be used in any

object that allows expressions. The objects that allow expressions are:

– Math ¡¡) Formula

– Data ¡¡) Access Array ¡¡) Get Values

– Data ¡¡) Access Array ¡¡) Get Field

– Data ¡¡) Access Array ¡¡) Set Field

– Device ¡¡) Sequencer

– Flow ¡¡) If/Then/Else

– I/O objects that use transactions

Expressions may contain the names of data input terminals, data output

terminals (I/O transactions only), and any mathematical expression from

the Math menu and AdvMath menu. Data input terminal names are used as

2-17

How To Build HP VEE Programs

Mathematically Processing Data

variables. HP VEE is not case sensitive about names of input variables within

expressions for USASCII keyboards. For non-USASCII keyboards, HP VEE is

case insensitive for 7-bit ASCII characters only. Expressions are evaluated at

run-time.

General Concepts

Functions that are input an array operand perform the function on each

element of the array, unless stated otherwise. For example, sqrt of a scalar

returns a scalar; sqrt(4) returns 2. But sqrt of an array returns an array of

the same size; sqrt([1 4 9 64]) returns the array [1 2 3 8].

All numbers in an expression Õeld are considered Real values, unless you

use parentheses to specify Complex or PComplex values. Therefore, 2 is

considered to be a Real number, not an Int32. (1, @2) is a PComplex

number, while (1, 2) is a rectangular Complex number.

N O T E

HP VEE interprets any value contained within parentheses as a Complex or PComplex value. If you

need to use a Coord value in an expression, use the coord(x, y) function. The coord

function takes 2 or more parameters. coord(1, 2) returns a Scalar Coord container with two

Õelds.

All functions that operate on Coord data operate only on the dependent (last)

Õeld of each Coord. For example, abs(coord(-1, -2, -3)) returns the

Coord (-1, -2, 3).

An Enum container is always converted to Text before every math operation

except the function ordinal(x). Enum arrays are not supported. If you try

to create an Enum array, a Text array is created instead.

2-18

How To Build HP VEE Programs

Mathematically Processing Data

For information on speciÕc data type deÕnitions, please refer to the section

titled \Understanding Containers" in Chapter 3.

Using Strings in Expressions Strings within expressions must be surrounded by double quotes.

You may use the following escape sequences within strings:

Escape

Character

Meaning

nn Newline

nt Horizontal Tab

nv Vertical Tab

nb Backspace

nr Carriage Return

nf Form Feed

n" Double Quote

n' Single Quote

nn Backslash

nddd Character Value. d is an octal digit.

Using Arrays in Expressions Arrays in expressions can be used just like scalars, just refer to them by the

terminal name. Array constants can be entered directly into an expression

(such as [1 2 3]). Arrays used in functions, like sin(x), have the sin

function applied on every element of the array.

Please note, however, that negative constants in array constants are

evaluated as expressions. For example, [5 4 -3 2] is evaluated as [5 1 2].

Therefore, you must specify [5 4 (-3) 2] instead.

N O T E

Array indices are 0-based. The indices start with zero and continue to n-1, where n is the number of

elements in that particular dimension.

2-19

How To Build HP VEE Programs

Mathematically Processing Data

You can use expressions to access portions of an array. Once you've speciÕed

the sub-array in the expression, you can output the sub-array, or use it in

further expression calculations.

You can access only contiguous sub-arrays from each array. To access

sub-arrays, you must specify a parameter for each dimension in the array.

Use the following characters to specify array parameters:

– The comma, ",", separates array dimensions. Each sub-array operation

must have exactly one speciÕcation for each array dimension.

– The colon, ":", speciÕes a range of elements from one of the array

dimensions.

– The asterisk, '*', is a wildcard to specify all elements from that particular

array dimension.

N O T E

Waveform time spans, Spectrum frequency spans, and array mappings are adjusted according to the

number of points in the sub-array. For example, if you have a 256 point Waveform (WF) and you ask

for WF[0:127], you'll get the Õrst half of the Waveform and a time span that is half of the old

one.

2-20

How To Build HP VEE Programs

Mathematically Processing Data

Examples. A is an Array 1D, 10 elements long.

– A[1] accesses the second element in A and outputs a Scalar.

– A[0:5] returns a one-dimensional sub-array that contains the Õrst 6

elements of A.

– A[1:1] returns a one-dimensional sub-array that contains one element,

which is the second element of A. Note the diÃerence between this and the

Õrst example, A[1].

– A[2:*] returns a one-dimensional sub-array that contains the third

through the tenth elements of A.

– A or A[*] returns the entire array A.

– A[1,2] returns an error because it speciÕes parameters for a

two-dimensional array.

B is a 5x5 matrix (an Array 2D).

– B[*] returns an error because it speciÕes only one parameter, and B is a

two-dimensional array.

– B[1,2] returns a Scalar value from the second row, third element.

– B[1,*] returns all of row one as an Array 1D.

– B[1,1:*] returns all of row one, except for the Õrst element, as an Array

1D.

– B[4,1:4] returns an Array 1D that contains four elements: the second

through Õfth values from row 4.

– B[5,5] returns an error because arrays are zero-based. The array can only

be accessed through B[4,4].

– B[1 1] returns an error because a comma must separate the dimension

speciÕers.

Building Arrays in Expressions You can build an array from elements of other arrays or sub-arrays. Each

element in the expression must specify the same number of dimensions and

contain the same number of values in each dimension.

2-21

How To Build HP VEE Programs

Mathematically Processing Data

Examples. A is an Array 1D with ten elements. B is a 5x5 matrix.

– [1 2 3] returns a three element Real Array 1D that contains the values 1,

2, and 3.

– [A[0] A[5:7] A[9]] causes an error because both Scalar and Array 1D

elements are speciÕed.

– [A[0:4] B[0,*]] returns a ten element Array 2D that contains the Õrst

Õve elements from A as the Õrst row and the Õrst row from B as the second

row.

– [A[0] A[1] B[2,3] A[5]] returns a four element Array 1D that contains

the Õrst and second element of A, the element from the third row and

fourth column of B, and the sixth element of A.

Using Global Variables in

Expressions

You can create and set global variables by using the Set Global object, and

you can access global variables by using the Get Global object. Refer to

\Set Global" and \Get Global" in the HP VEE Reference manual for further

information.

In addition, you can access a global variable by including its name in a

mathematical expression. You can include a global variable in a mathematical

expression in a Formula object, or in any object with a delayed-evaluation

expression Õeld. These objects include If/Then/Else, Get Values, Get

Field, Set Field, and all devices using expressions in transactions,

including To File, From File, From DataSet, Direct I/O, From Stdin,

To/From Named Pipes, and Sequencer.

To include a global variable in an expression, just use the global variable

name as if it were an input variable. For example, suppose a program uses

a Set Global device to deÕne the global variable numFiles. Elsewhere

in the program, a Formula object with input A may use the expression

numFiles+3*A.

N O T E

Global variable names are case-insensitive. Either upper-case or lower-case letters may be used. Thus,

GLOBALA is equivalent to globalA.

2-22

How To Build HP VEE Programs

Mathematically Processing Data

To avoid errors or unexpected results, you should be aware of two limitations

when you include global variables in an expression:

1. Local input variables have higher precedence than global variables. This

means that, in case of duplicate variable names, the local variable is

chosen over the global variable. For example, if the expression Freq*10

is included in a Formula object that has a Freq input (a local variable),

and there is also a global variable named Freq, the expression will be

evaluated with the local variable Freq, not the global one. No error will

be reported regarding this duplication.

2. Depending on the Œow of your program, an object that evaluates an

expression containing a global variable may execute before the global

variable is deÕned. For example, suppose the global variable globalA

is set with a Set Global object, and the expression globalA*X^2 is

included in a Formula object. Depending on the Œow of your program, the

Formula object may execute before the Set Global object executes. In

this case, the Formula object won't be able to evaluate the expression

because globalA is undeÕned. An error message will appear.

It is important that you take steps to ensure correct propagation|that Set

Global executes Õrst. You can do this by connecting the sequence output

pin of the Set Global object to the sequence input pin of the Formula

object in this case, or of any other object that includes the global variable

in an expression to be evaluated. If a Get Global object is used, its

sequence input pin should also be connected to the sequence output pin of

Set Global. For further information, refer to \Using Global Variables" in

Chapter 3.

Global variables can be arrays. Just access a global variable array as if it

were an input variable using array syntax, for example: GlobAry[2].

If a global variable is a Record, use the record access syntax, such as

globRecord.numFiles.

Using Records in Expressions You can use expressions to access a Õeld or sub-Õeld of a record. Use the A.B

sub-Õeld syntax to access the B Õeld of a record A. If A is a record with a Õeld

B, which itself is a record which has a Õeld C, you may use the A.B syntax

recursively to access the C Õeld. That is, use the expression A.B.C. If A does

not have a B Õeld, or B does not have a C Õeld, an error will result.

There is no limit on the number of recursions of A.b.c.d.e.f that may be

used in expressions. Note that Õeld names are not case sensitive (lowercase

2-23

How To Build HP VEE Programs

Mathematically Processing Data

and uppercase letters are equivalent). Field names may be duplicated in

sub-Records, so you may use the expression A.a.A.

Records are very useful as global variables, so that one global variable may

hold several diÃerent values. Note that a Formula object can be used in place

of a Get Global. Thus, you can accomplish the GlobRec.numFiles access

in one object, instead of using both a Get Global and a Formula object to

unbuild the record.

The record and array syntax may be combined in expressions to access a Õeld

of a record array (for example A[1].B), or to access a portion of an array

that is a Õeld of a record (for example, A.B[1]). Note the diÃerence between

A[1].b and A.b[1] (both are supported):

– You would use the Õrst for a record 1D with a Õeld b. A[1].b accesses the

Õeld b of the second record element of the record array A.

– You would use the second for a scalar record with a Õeld b, which is a 1D

array. A.b[1] accesses the second element of the Õeld b of the record A.

To change a Õeld in a record, use the Set Field object. For example,

suppose you have a record R with a Õeld A, and you wish to change the value

of R.A to be sin(R.A). Just use R.A as the left-hand expression (specifying

the Õeld to change) and sin(R.A) as the right-hand expression (specifying

the new value for the Õeld) in a Set Field object. You can continue to use

the record R (with the new value for Õeld A) later in your HP VEE program.

N O T E

The syntax of the left-hand expression in the Set Field object is limited. Refer to Set Field

in the bookref manual.

2-24

How To Build HP VEE Programs

Mathematically Processing Data

Using Dyadic Operators

The set of dyadic operators have several additional conditions and guidelines.

The dyadic operators are under the Math menu and are as follows:

– + - * / ¡¡)

+

-

*

/

^ (exponentiation)

mod (modulo - returns remainder of division)

div (integer division - no remainder)

– Relational ¡¡)

==

!=

<

>

<=

>=

– Logical ¡¡)

AND

OR

XOR

NOT (a monadic that follows the same guidelines as dyadics)

When using dyadic operators on arrays, the array size, array shape, and

array mappings (if they exist) must match. For Coords, the values of the

independent variable for each Coord must match.

2-25

How To Build HP VEE Programs

Mathematically Processing Data

Precedence of Dyadic

Operators

This list is the order of precedence of the dyadic operators. They are listed

from highest to lowest, with operators of the same precedence listed on the

same level.

1. parentheses (and) used to group expressions

2. ^

3. unary minus -

4. * / MOD DIV

5. + -

6. == != < > <= >=

7. NOT

8. AND

9. OR XOR

Data Type Conversion For the dyadic operators, the input values are promoted to the highest data

type and then the operation is performed. The data type of the output is the

highest input data type. For example, when the complex number (2, 3) is

added to the String "Dog", "Dog"+(2,3), the result is the String "Dog(2,

3)".

N O T E

There is one exception to this rule. When you multiply a Text string by an Int32, the result is a

repeated string. For example, "Hello"*3 returns HelloHelloHello. No data type

promotion occurs in this case.

2-26

How To Build HP VEE Programs

Mathematically Processing Data

The data type order (from highest to lowest) is:

1. Record

2. Text (Enum is treated as Text)

3. Spectrum

4. PComplex

5. Complex

6. Coord (no conversion to any other numeric type possible)

7. Waveform

8. Real

9. Int32

Record Considerations. Records have the highest precedence of all data

types, but other data types can be converted to the Record data type only by

using special objects such as Build Record. Records will not automatically

demote to other types, nor will other types automatically promote to the

Record type.

The dyadic operators do support combining records and other data types, but

they will always return a record in this case. A dyadic operation on a record

and non-record will apply the operation with the non-record to every Õeld of

the record. For example, consider a record R with two Õelds A, a scalar Real

value (2.0), and B, a scalar Complex value (3,30). The expression R+2 will

produce a record R with two Õelds A, a scalar Real with value 4, and B, a

scalar Complex with value (5,30). If the operation cannot be performed on

every Õeld in the record, an error occurs.

Dyadic operations on a record and any other type will return a record with

the same \schema," so the resulting record will have the same Õelds with the

same names, types, and shapes. The dyadic operation may not change the

type or shape of a Õeld of a record. For example, consider a record R with

two Õelds A, a scalar Real, and B, a scalar Complex. The expression R+(2,3)

will cause an error. HP VEE will Õrst try to add (2,3) to R.A, then do the

same with R.B. The error occurs because the R.A Õeld is a Real and the

result of R.A+(2,3) would be a Complex. The Complex cannot be demoted

to a Real to be stored back into R.A.

2-27

How To Build HP VEE Programs

Mathematically Processing Data

Dyadic operations on records using arrays treat the record as having higher

precedence than the array. For example, [1 2 3] + [3 4 5] produces [4

6 8], so the arrays are combined piece by piece. But records have higher

precedence than arrays. This means that if R is a record with two Õelds A and

B, the expression R + [1 2] will try to add the array [1 2] to each Õeld of R.

It will not add 1 to R.A, and 2 to R.B.

Things get even more complicated when you combine arrays with record

arrays. For example, suppose R is a record 1D array, two long, with three

Õelds A, B, and C. The expression R + [1 2 3], or the expression R + [1 2]

will add the entire array to each Õeld A, B, and C for every element of R.

Even though R is an array, the fact that it is a record is more important.

A dyadic operation on two records will combine them Õeld by Õeld, so the

two records must have the same \schema." That is, each record must have

the same number of Õelds, and each Õeld must have the same name, type and

shape, in the same order.

If you want to add 1 to Õeld A, add 2 to Õeld B, and so forth, there are two

ways to do this. The Õrst is to use multiple Set Field objects, one for

each Õeld, to change a Õeld of an existing record. (See Set Field for more

information.) The other way is to create a record of the same shape and

\schema" as the original; put 1 in its A Õeld, 2 in its B Õeld, and so forth; and

then add the two records.

Coord Considerations. The Coord data type has some special rules

associated with it:

– Although arrays of Int32 and Real data types can be promoted to Coord, a

Coord cannot be converted to any other numeric type.

– When unmapped arrays are converted to Coord, the independent Coord

values (the Õrst Coord Õelds) are created from the array indexes; the

dependent Coord value (the last Coord Õeld) contains the element value.

For example, if array A is converted to a Coord and A contains [1 5 7], it is

converted to a Coord array with [(0,1)(1,5)(2,7)] in it.

– When mapped arrays are converted to Coord, the independent Coord

parameter ranges from the low value of the mapping to the value

Xmin+(Xmax-Xmin/N)*(N-1).

Spectrum Considerations. If you choose to use dB scaling, you must keep

track of it yourself. Although dB-scaled data displays correctly (except on the

Waveform (Time) display), many math functions such as fft(x), ifft(x),

and those involving PComplex numbers don't operate correctly on dB-scaled

2-28

How To Build HP VEE Programs

Mathematically Processing Data

data. If you need to use these operations, convert the dB-scaled data to linear

scaling before operating on it. HP VEE supplies library programs for dB

conversions in the HP VEE lib/conversions/ or C:\VEE\LIB\CONVERT\

directory.

When you are using particular dB units, some math functions give meaningful

results, but only within the conÕnes of those units. For example, if you add

20 to a dBW-scaled Spectrum, 20 is added to the magnitude of each element

(which has the same eÃect as converting the Spectrum to a linear scale,

multiplying each element by 100, and converting back to dBW.).

Data Shape Considerations For dyadic operations where both operands (inputs) are arrays, the size and

shape of the arrays must match. The result of the operation is an array

with the same size and shape as the input arrays, except for the relational

operators (==, <, and so on, which always return a Scalar.) If arrays have a

diÃerent number of dimensions or are of diÃerent sizes, HP VEE returns an

error. For example, [1 2] + [1 2 3] returns an error.

If you are operating on a scalar and an array, the scalar is treated as if it were

a constant array of the same size and shape as the array operand.

For example, 2 + [1 2 3] is treated as [2 2 2] + [1 2 3]. The result is

[3 4 5].

When an n-dimensional array is converted to a Coord, the Coord data shape

is an Array 1D with n+1 Õelds in each Coord element.

2-29

Trapping Errors

If you get an error while running your program, HP VEE normally stops

running your program and displays an error dialog box that presents the

error number and error message.

To trap the error so that the program doesn't stop and display the error

dialog box, add an error output pin to the object that generates the error or

to the UserObject that contains that object. You can put an error handling

routine on the subthread that is hosted by the error pin.

When an object with an an output error pin generates an error, the error pin

is activated and the container data is the error number. Double-click on the

error output terminal to view the error number.

To Õnd out the message associated with the error number, refer to the Help

¡¡) How To topic Error Codes.

N O T E

An Error pin cannot trap the error you get when an object cannot convert the input container to a

type or shape that the object needs. To trap this error, you must add both the object sending the

container and the object receiving the container to a UserObject with an error pin.

An error pin on a UserObject traps errors generated by any object inside

the UserObject. For more information about UserObjects, refer to

Chapter 3.

2-30

How To Build HP VEE Programs

Trapping Errors

Figure 2-10 shows how a \Divide by Zero" error is trapped and the iteration

continues.

Figure 2-10. Trapping an Error

The program shown in Figure 2-10 is saved in manual14.vee in your

examples directory.

To generate an error to exit a context (a level of UserObject), use the Raise

Error object. Raise Error generates an error and jumps the propagation to

the nearest enclosing context that has an error pin. If no context has an error

pin, then an error dialog box is displayed with the error number and message

that you speciÕed on the Raise Error object. Refer to \Raise Error" in

Chapter 3 for more information.

2-31

Changing Data Types or Shapes

You may want to change the type or shape of a container if you're combining

data after a user inputs it, processing data in parallel, or graphically

displaying information.

To change the data type, use the Build Data ¡¡) and UnBuild Data ¡¡)

objects from the Data menu.

N O T E

You can also change the type by changing the Required Type Õeld on input terminals (where

permitted); the object then converts the data type as explained in \Converting Data Types on Input

Terminals" in Chapter 1.

To change the data shape, use the Data ¡¡) objects listed in the following

table:

Table 2-1. Objects That Change Data Shape

From . . . To . . . Use Object . . .

no data Array n-dimensions Alloc Array ¡¡) objects

Scalar Array 1-dimension Collector

Scalar Array 1-dimension Sliding Collector

Array Sub-array of diÃerent size or number of

dimensions

Access Array ¡¡)

Get Values

Array Array of diÃerent mappings Access Array ¡¡)

Set Mappings

Array

(n dimensions)

Array (n+1 dimensions) Collector

2-32

How To Build HP VEE Programs

Changing Data Types or Shapes

N O T E

If you build an array of Enum values, it is converted to Text. The Record and Coord data types allow

only the Scalar and Array 1D data shapes.

2-33

Displaying Data

After you've processed data, you'll want to display it. HP VEE allows you to

display alphanumeric values or graph numeric data.

Displaying Values

There are three objects that display values:

– Meter (Scalar numeric data only)

– AlphaNumeric

– Logging AlphaNumeric (Scalar and Array 1D data only)

You can change the way that numbers are displayed by using the Number

Formats feature on the object menu.

If a Scalar value or Array 1D sent to AlphaNumeric or

Logging AlphaNumeric won't Õt within the object size, you'll get

*** displayed. Resize the object to see the entire value.

If an Array 2D sent to AlphaNumeric won't Õt within the object size, scroll

bars are added to the display so that you can see all the data. You may have

to resize the AlphaNumeric to see the vertical scroll bar.

If an array with 3 or more dimensions is send to AlphaNumeric the string nD

Array is displayed.

2-34

How To Build HP VEE Programs

Displaying Data

Graphing Data

The objects that allow you to graph your data are:

– XY Trace

– Strip Chart

– X vs Y Plot

– Complex Plane

– Polar Plot

– Waveform (Time)

– Magnitude Spectrum

– Phase Spectrum

– Magnitude vs Phase (Polar and Smith)

The data graphing objects require their input data shapes to be Scalar or

Array 1D. If an input array is mapped, the array mappings are used for the X

values when the data is displayed.

The axis lines or reference circle (on Polar and Smith charts) are bold on each

display.

There are many features on the object menu that allow you to control and

interact with the display. For example, you can change the appearance of

these graphs with the Panel Layout ¡¡) and Grid Type ¡¡) features on the

object menu.

Displaying Multiple Traces To display more than one trace simultaneously, add a data input for each

trace; the maximum number of traces is 12. Each trace is a diÃerent color.

You can change the trace color, line type, and point type from the Traces

and Scales dialog box accessed from the object menu.

To set diÃerent Y scales for diÃerent traces, select Add Right Scale from the

object menu. From the Traces and Scales dialog box, specify the scale you

want each trace to use. You can add up to two scales.

If you don't want to see the additional scales, un-check the scale choices from

the SCALES section of the Traces and Scales dialog box. If you don't want

to use the additional scales, select the original scale from the TRACES section

of the Traces and Scales dialog box.

To change Trace or Scale attributes programmatically, use the Traces or

Scales control inputs. These control inputs require data of the Record type

2-35

How To Build HP VEE Programs

Displaying Data

to alter the Trace or Scale. You can merge in the Õle xy_cntrl in your

examples/lib directory to get pre-built Records for these inputs. Or you can

build your own Records. Refer to xy_cntrl.vee for an example of their use.

To display a family of curves (from one data input) while the program is

running, activate the Next Curve control pin before sending each trace to the

display.

To display a family of curves (from one data input) when each curve is

generated each time you run your program, select the Next Curve object

menu feature before you run the program each time. Clear At Activate

and Clear At PreRun must not be set.

Using Markers To examine successive points on a trace, use markers to mark the points

and display the values at these points. Add markers from the Markers ¡¡)

feature on the object menu. You can place markers only at actual data points

unless you choose Interpolate from the Marker ¡¡) features.

To move markers between traces, click on the trace color button near the

marker name until it displays the destination trace's color. Then click on the

destination trace to place the marker.

When you have displayed a family of curves (by using Next Curve), you can

drag the marker along any of those curves.

2-36

Writing Data to Files

Often you'll want to save data created by your program in a Õle. Write data

to a Õle by using a To File object from the I/O menu. Generally, you'll be

writing to an ASCII (text) Õle. The default transaction WRITE TEXT a EOL

writes the data from a single container to a Õle.

Once the information is in a Õle, it may be read by other programs or merged

into reports.

You can use To File in very sophisticated ways. For more information,

refer to \Using Transaction I/O" in the HP VEE Advanced Programming

Techniques manual.

2-37

Exporting Graphics to a Report

You can use graphical program information such as the program itself, parts

of the program, or a display, in a report. You can include an image as it

appears on the screen, or for displays, an HPGL representation of the display.

Printer ConÕguration (UNIX)

To get a graphical image from HP VEE, use Printer Config to specify a

graphics directory (not a printer). To do this, click on Graphics Printer to

toggle to Graphics Directory and edit the text Õeld next to it.

Printer ConÕguration (MS-Windows)

To get a graphical image from HP VEE for Windows, open the MS-Windows

Control Panel and double-click on the Printers icon. Press the ÄConnect...Å

button in the Printers dialog box. In the Ports: window select FILE: and

then press the ÄOKÅ button. Verify that the Default Printer is selected to

print to on FILE:. Then press the ÄCloseÅ button. Now when you use the

techniques described below MS-Windows will ask you which Õle to use when

printing your output. The Õle is written in PCL format.

Graphic Output Techniques

Use one of the following techniques to get the desired output:

2-38

How To Build HP VEE Programs

Exporting Graphics to a Report

– To get an image of the open view of an object when the program is

running, activate the Print control pin on that object. This technique is

especially useful for display objects.

– To get an image at a certain point when the program is running, operate

the Print Screen object.

– To get an image when the program is not running, select Print Screen,

Print Objects, or Print All from the Edit menu

N O T E

To manually capture graphics in a Õle from HP VEE for Windows press the ÄPrint ScreenÅ key. This

places the screen graphics on the clipboard. You can paste this graphic in the Microsoft Windows

Paintbrush program using the Paste menu selection from the Edit menu. Then save the

Õle as a .BMP bitmap Õle. Many MS-DOS editors accept .BMP Õles for graphical input.

Output Formats (UNIX)

The screen information is stored in either the \xwd" (X Window Dump)

format or the Postscript format.

Postscript Õles may be sent directly to a Postscript printer using the UNIX lp

command.

The xwd format may be converted into many common graphics formats such

as TIFF and PCL by graphics packages or utilities. For example, to transform

an xwd Õle into PCL, use the xwd2sb and pcltrans utilities. These utilities

are provided with HP VEE in case they are not already installed on your

UNIX system. For example:

2-39

How To Build HP VEE Programs

Exporting Graphics to a Report

cat xwdÕle | /usr/lib/veeengine/xwd2sb |

/usr/lib/veeengine/pcltrans -r300 -e3 > pclÕle

-or-

cat xwdÕle | /usr/lib/veetest/xwd2sb | /usr/lib/veetest/pcltrans

-r300 -e3 > pclÕle

You can print a pcl Õle, once it has been converted, by executing the UNIX lp

-oraw command. For example:

lp -oraw pclÕle

For more information about xwd2sb and pcltrans, refer to their UNIX man

pages.

To get an HPGL or HPGL/2 plot, set Plotter Config to specify a Õle (not a

plotter). Use one of the following techniques to obtain the desired output:

– To get a plot when the program is running, activate the Plot control pin

on the display.

– To get a plot when the program is not running, select Plot from the

display Object Menu.

Exporting to Document Publishing Packages

Often, you may want to capture images of programs, objects or displays

in HP VEE and put them in your report. In order to do so, you need to

save your image or plot into a Õle as described above. Choose a Õle format

that your documentation package can import. The steps for exporting

graphics to FrameMaker and to programs of the Island Productivity Series are

described here. The general techniques are applicable to other documentation

publishing packages as well.

FrameMaker FrameMaker can import Õles in xwd format. It cannot import regular

Postscript Õles. A Õlter for HPGL Õles is currently available from FrameMaker.

The steps described here are for importing an xwd Õle.

1. Save your image to a Õle in xwd format. Use Print Objects or the

object's Print control pin if you only want one object. Use Print All if

2-40

How To Build HP VEE Programs

Exporting Graphics to a Report

you want an image of your entire program. Use Print Screen if you

want an image of the screen.

2. In FrameMaker, use the File ¡¡) Import command. Choose a scaling

option (100 dpi is a good place to start).

3. Once the image is in your document, you can crop, scale or rotate the

image. You can also add titles and labels.

N O T E

The colors (or shades of gray) may appear lighter in the resulting hardcopy than on the display. This

is because the colors were adjusted to compensate for darkening that occurs during the gray-scale

conversion prior to printing. You may want to use the Dark setting in the HP VEE Printer

Config.

The Island Productivity Series The Island Productivity Series consists of three programs, IslandPaint,

IslandDraw, and IslandWrite. To get your image into IslandWrite, you'll have

to use either IslandPaint or IslandDraw, depending on the format of your Õle.

IslandPaint can import xwd Õles, and IslandDraw can import Postscript and

HPGL Õles.

The steps to import a xwd Õle are:

1. Save your image to a Õle in xwd format. Use Print Objects or the

object's Print control pin if you only want one object. Use Print All if

you want an image of your entire program. Use Print Screen if you

want an image of the screen.

2. In IslandPaint, use the File ¡¡) Convert command. Choose the \X11

Window Dump" (xwd) format to Open and Convert From.

3. Once the image is imported, you can edit it in IslandPaint.

4. Next you need to move the image to IslandWrite. There are two ways to

do so:

– First, save the image to a Õle in IslandPaint format using the File ¡¡)

Save As command. Then, in IslandWrite, use the File ¡¡) Import

2-41

How To Build HP VEE Programs

Exporting Graphics to a Report

command to import the Õle using the TIFF/IslandPaint format. Choose

an appropriate scaling factor (100 dpi is a good place to start). You must

have an appropriate container in your document to put the image in.

– Use the IslandPaint clipboard to transfer the image. In IslandPaint, select

the image you want to transfer, then use Cut or Copy to put the image

on the clipboard. Then go to IslandWrite and use Paste IslandPaint

to bring the image into a container. You will probably have to scale it

once it is in the document.

The steps to import a Postscript (HPGL) Õle are:

1. Save your image to a Õle in Postscript format. Use Print Objects or the

object's Print control pin if you only want one object. Use Print All if

you want an image of your entire program. Use Print Screen if you

want an image of the screen. (Save your plot to a Õle in HPGL format.

Use Plot on the display's Object Menu or the display's Plot control pin.)

2. In IslandDraw, use the File ¡¡) Convert command. Choose the

Postscript (HPGL) format to Open and Convert From.

3. Once the image is imported, you can edit it in IslandDraw.

4. Next you need to move the image to IslandWrite. There are two ways to

do so:

– First, save the image to a Õle in IslandDraw format using the File ¡¡)

Save As command. Then, in IslandWrite, use the File ¡¡) Import

command to import the Õle using the IslandDraw format. Your document

must have an appropriate container in which to put the image.

– Use the IslandDraw clipboard to transfer the image. In IslandDraw,

select the image you want to transfer, then use Cut or Copy to put

the image on the clipboard. Then go to IslandWrite and use Paste

IslandDraw to bring the image into a container.

N O T E

The colors (or shades of gray) may appear lighter in the resulting hardcopy than on the display. This

is because the colors were adjusted to compensate for darkening that occurs during the gray-scale

conversion prior to printing. You may want to use the Dark setting in the HP VEE Printer

Config.

2-42

Optimizing Your Program

Although the time to run a program varies (depending on the current load

on your computer system), the following techniques may help you improve

execution speed:

– Leave input terminals set to type/shape Any where possible. HP VEE will

convert data types only when necessary.

– Turn oÃ Clear At Prerun and Clear At Activate on displays where not

needed.

– Use Initialize At PreRun and Initialize At Activate instead of

setting defaults with control pins.

– Collect data for graphical displays and plot the entire array at once rather

than plotting each individual scalar point. If the X values of a plot are

regularly spaced, use an XY Trace display rather than an X vs Y Plot.

– Run the program from the panel view (if the panel view contains fewer

objects then the detail view).

– Set graphical displays to be as plain as possible. The settings that allow the

fastest update times are Grid Type ¡¡) No Grid and Panel Layout ¡¡)

Graph Only.

– Iconify those objects that continuously update their displays (such as

Timer, Counter, Accumulator, and Display objects).

– Use parallel operations (processing an array at a time) rather than iterators

(processing each element separately).

– Use Complex data in expressions rather than PComplex. Most of the math

libraries will convert PComplex to Complex, calculate the answer, and

convert Complex back to PComplex.

– To display PComplex data, set Trig Mode (under Edit ¡¡) Preferences)

to Radians. HP VEE internally stores PComplex values as radians.

– In general, the fewer objects that need to operate, the faster the program

will run. Perform as many functions as possible in each object.

– Connect the sequence input pins on displays so that displays do not

operate on intermediate values; the displays wait to update until the Õnal

values are sent.

2-43

How To Build HP VEE Programs

Optimizing Your Program

Many objects can perform a set of logical functions. Your programs will be

more compact and easier to maintain if you use the following techniques to

use these objects to their fullest:

– Type equations in a Formula object instead of using multiple Constant

¡¡) and single-function Math and AdvMath objects. You can nest functions

in the Formula object. For example (sin(ramp(100, 0, 360))).

– Use one If/Then/Else object with multiple conditions instead of multiple

If/Then/Else or Conditional ¡¡) objects.

– To input a one-dimensional array of data, use a Constant ¡¡) object

conÕgured as an array instead of using one Constant ¡¡) object per value

and then building an array.

– To read all of the \rest" of the data available from a Õle or other source,

you can use the ARRAY 1D TO END:(*) transaction. This is simpler than

looping on single-element reads and collecting the result into an array.

– Use the Sequencer (chapter 13) to control the Œow of execution of several

User Functions.

– When using the Sequencer, only enable logging for transactions where the

Log record is required. If the Log output pin is not used, delete it to speed

up execution slightly.

Examples

The following examples illustrate some of the techniques listed above.

Parallel Operations HP VEE can process data in any data shape. If you have an array of data and

want to perform an operation on each element, you don't have to iterate

through each element of the array. You just operate on the array as a whole.

Parallel operations are useful because they allow you to easily analyze your

data in the shape that makes the most sense.

For example, if you want to multiply each element of an array by 100, you

don't have to use an iterator to do it. Simply multiply the array by 100 as

shown in Figure 2-11.

2-44

How To Build HP VEE Programs

Optimizing Your Program

Figure 2-11. Example of a Parallel Operation

The program shown in Figure 2-11 is saved in manual24.vee in your

examples directory.

Figure 2-12 shows another example of saving time with parallel operations.

In the top half of the example, an array with 100 elements is sent to the

Sin(X), Cos(X), and X vs Y Plot objects, so each of these objects only

executes once. In the bottom half of the example, a Scalar Real value is sent

to the Sin(X), Cos(X), and X vs Y Plot objects 100 times. The graphical

result of both methods is the same, but the top version runs more than 25

times faster.

2-45

How To Build HP VEE Programs

Optimizing Your Program

Figure 2-12. Another Parallel Operation Example

The program shown in Figure 2-12 is saved in manual25.vee in your

examples directory.

2-46

How To Build HP VEE Programs

Optimizing Your Program

Showing the Icon Instead of

the Open View

Figure 2-13 shows that updating any display (including the open view of

a Counter) takes time: you can increase the speed of your program by

iconifying display objects.

Figure 2-13. Increasing Speed with An Icon

The program shown in Figure 2-13 is saved in manual26.vee in your

examples directory.

2-47

How To Build HP VEE Programs

Optimizing Your Program

Compacting Math Equations The more objects on your work area, the more diœcult it is to see the

connections between objects and understand exactly the operations taking

place. By compacting a math equation to a single Formula object, the

program becomes easier to maintain.

Figure 2-14 shows you two ways to complete the same operation. The second

thread (on the bottom) is more compact than the Õrst thread.

Figure 2-14. Compact Math Example

2-48

3

How To Create Your Own

Objects and Functions

How To Create Your Own Objects and

Functions

UserObjects A UserObject provides a means for you to encapsulate a group of objects

that perform a particular function. This encapsulation allows you to:

– Use modular design techniques necessary for an organized approach

towards designing and building complex programs.

UserObjects allow you to use top-down design techniques to create a

more Œexible and maintainable program.

– Build user-deÕned objects that you can save in a library for later re-use.

Once a UserObject is created and saved, you can Merge it in other

programs so that common functions are built only once.

– Create pop-up panels to dynamically display information.

To create an interface element such as a dialog box, you can specify

that the panel of a UserObject appear in the work area only when the

UserObject operates. This topic is discussed in Chapter 4.

3-2

Understanding UserObjects

A UserObject is an enclosed environment that provides a virtual HP

VEE work area. Any program that works properly in the main HP VEE

environment can be completely encapsulated into a UserObject and it will

work the same way.

When the program runs, a UserObject operates like any other object; data

is sent to the UserObject through the input terminals, the internal function

operates, and data is sent out over the output terminals.

It is possible to nest UserObjects within UserObjects. Therefore a

hierarchy of environments can be formed. Each UserObject has its own

context separate from the UserObjects which are external or internal to it.

Understanding Contexts

A context is a work area that includes all objects except those inside nested

UserObjects. The main work area is a context (the root context) and every

UserObject is a context. Any action that is context-sensitive aÃects only

the objects on the context's work area; it excludes the objects inside nested

UserObjects.

In the Õgure below, the main work area, UserObject1, UserObject2, and

UserObject3 are all separate contexts. The main work area's context does

not include UserObject2. UserObject1's context includes all objects inside

of it, including UserObject2, but not the objects inside of UserObject2.

3-3

How To Create Your Own Objects and Functions

Understanding UserObjects

Figure 3-1. Four DiÃerent Contexts

Because each context is a work area, you can access a pop-up Edit menu

inside each UserObject work area. An Edit menu is also available from the

UserObject object menu. The following Edit actions are context-sensitive

and operate only within each work area:

– Clean Up Lines

– Add To Panel (each context has its own panel)

– Move Objects

– Create UserObject

For example, if you select Clean Up Lines from the main Edit menu, only

the lines in the main work area are rerouted. If you select Clean Up Lines

from the UserObject1 Edit menu, only the lines in the UserObject1 work

area are rerouted; UserObject2 is not aÃected.

The following actions are also context-sensitive:

3-4

How To Create Your Own Objects and Functions

Understanding UserObjects

– Clear At Activate is available on certain objects from their object menu.

If selected, this action occurs every time the UserObject containing the

object operates.

– Initialize At Activate is available on various Data objects from their

object menu. If selected, this action occurs every time the UserObject

containing the object operates.

– Trig Mode is available from the File ¡¡) Preferences ¡¡) feature of the

main work area or from the object menu of the UserObject.

Objects within the UserObject (internal objects) can only communicate

with objects outside the UserObject boundary (external objects) through

the UserObject data input and output terminals. (The exception is that

Global variables can be used within any context of the program, including a

UserObject. Refer to \Using Global Variables in UserObjects," later in this

chapter, for details.)

Understanding Propagation in UserObjects

Each UserObject, or context, is a group of objects that provide a particular

function. The propagation rules of a UserObject are as follows:

– All data inputs and the sequence input (if connected) of the UserObject

must be activated before any internal objects operate (even if you have

objects without input dependencies or on independent threads).

– When the internal objects operate, they follow the rules of propagation

as listed in \Understanding Propagation" in Chapter 1. Internal objects

timeshare with external objects on diÃerent subthreads. The UserObject

does not block the operation of external objects on diÃerent subthreads.

– If the optional XEQ input pin is activated, the UserObject immediately

begins operation of its internal objects, using whatever old data that may

still be on the UserObjects's unactivated input pins. XEQ is rarely

necessary for most UserObjects.

– Within a UserObject, input terminals operate with the same precedence

as an unconstrained device.

3-5

How To Create Your Own Objects and Functions

Understanding UserObjects

– All internal objects must Õnish operating before any data outputs are

activated (unless the UserObject is exited prematurely by an error or

an Exit UserObject). Only those output pins activated from inside the

UserObject pass data out to other objects.

Refer to \Understanding Propagation" in Chapter 1 for more information

about propagation rules.

N O T E

If you have a Start object in a UserObject (to handle feedback), pressing Start runs only

the internal objects; it will not read the data from the UserObjects's input terminals or activate

the UserObject's output terminals (data or sequence), therefore no propagation outside the

UserObject takes place.

Short Cut

You can connect an object inside a UserObject to another object that is outside the UserObject, or even

inside a diÃerent UserObject. When you do this, the appropriate input and output terminals on the

UserObject(s) will automatically appear.

3-6

Creating UserObjects

You create a UserObject in either of the following ways:

– Select UserObject from the Device menu. Place the objects you want

within the UserObject.

This method is useful when building a new UserObject (top-down

method).

– Build the UserObject's desired function as a program. When the program

runs as you want it to, select all the objects (with Edit ¡¡) Select

Objects) and then select Create UserObject from the Edit menu

(bottom-up method).

This method is useful when you have an existing structure to incorporate

into a UserObject. By using the principle of bottom-up design, you can

design the function needed and then incorporate it into the UserObject.

Both methods give you the same result. To add objects to an existing

UserObject, move the objects in to the existing UserObject work area.

N O T E

Problems can arise if the objects selected are already part of a program. There are subtle diÃerences

in the way the objects interact when they are communicating across UserObject boundaries. For

example, a For Range object connected to the output terminal of a UserObject will activate

the UserObject output pin only once, since the UserObject buÃers its terminals.

3-7

How To Create Your Own Objects and Functions

Creating UserObjects

Adding Inputs and Outputs

Add data input and output terminals to the UserObject to get data from

other objects or output data to other objects. You can add data input and

output terminals two ways:

– Use the object menu to add terminals (as you would for any object). Or

you can use the short cut ÄCTRLÅ-ÄAÅ to add a terminal. Once the terminals

are created, you must connect the internal and external pins of the

terminal.

– Draw a line to connect the external object and the internal object; the

terminal is automatically created.

N O T E

A UserObject transmits only data across its boundary, therefore only data terminals are created

to connect external objects to internal objects. If you try to connect control, sequence, or trigger pins

across the UserObject boundary, HP VEE creates a data terminal. This may not operate in the

desired manner for your program.

You can add other terminals to a UserObject to aÃect how it operates. The

terminals you can add are as follows:

– XEQ - an input pin that forces the objects in the UserObject to

start executing before all the data or sequence input terminals of the

UserObject are activated. Input terminals that have not been activated

contain old data or nil.

– Print - a control input that graphically prints the open view of the

UserObject.

– Error - an output pin that traps any errors that are generated from any

object within the UserObject that does not have an error pin or by a

Raise Error object. If an error is trapped by an error pin, the program

3-8

How To Create Your Own Objects and Functions

Creating UserObjects

continues to run and you can process the error. For more information

about trapping errors, refer to \Trapping Errors" in Chapter 2

3-9

Exiting UserObjects Early

To exit a UserObject before all internal objects have operated, use the Flow

¡¡) Exit UserObject or Flow ¡¡) Raise Error object.

Exit UserObject

When an Exit UserObject operates, the UserObject stops running. Any

data on those data output pins which have been activated from inside the

UserObject is sent and propagation continues outside the UserObject.

Use Exit UserObject to output data without waiting for all internal objects

to operate.

3-10

How To Create Your Own Objects and Functions

Exiting UserObjects Early

Figure 3-2 shows a dialog box that queries for a name from inside a

UserObject. Exit UserObject terminates execution of all threads within

the UserObject when either button (OK or Cancel) is pressed.

Figure 3-2. Example of Exit UserObject

The program shown in Figure 3-2 is saved in manual18.vee in your

examples directory.

N O T E

In the above example, Exit UserObject is connected so that it will not operate until the data

propagates to the User Object output data pin X. If the Exit UserObject were connected to

the data output of the object labeled Enter your name the order of execution would not be

determinant. The User Object might exit before passing the data to its output terminal. Therefore, to

ensure that data is propagated before terminating, the Exit UserObject must be connected to

the sequence out pin.

3-11

How To Create Your Own Objects and Functions

Exiting UserObjects Early

Raise Error

The Raise Error object allows you to exit a UserObject with an error

condition. When Raise Error operates, the UserObject stops running.

Any data on the data output pins is lost. Raise Error sends a message and

error number upward through contexts until they encounter an error pin or

the the main work area's context (the root context).

If an error pin is encountered, the error number is output on that pin and

may be handled like any trapped error. The sequence output pin of the

trapping context activates after the error pin thread completes.

If the root context is encountered, the entire program stops running and an

error dialog box is displayed. It contains the message and the error number.

To create a robust and usable program, it is important to trap errors with an

error pin and to deÕne your own error numbers and messages with Raise

Error. User-generated error numbers should not be in the range of 300 to

1000 since HP VEE error numbers are in that range.

3-12

How To Create Your Own Objects and Functions

Exiting UserObjects Early

Figure 3-3 shows how to use Raise Error to generate your own error

messages. When an out of range value is entered and OK is pressed, the

Raise Error generates an error.

Figure 3-3. Using a Raise Error

The program shown in Figure 3-3 is saved in manual19.vee in your

examples directory.

3-13

Creating a Library of Functions

You can build a library of self-contained functions with UserObjects. When

you create the functions as UserObjects, they are easy to use and easy to

incorporate into other programs. A library saves you time and energy by

allowing you to leverage existing functions instead of re-creating them.

Building Panel Views

To create a custom user interface to the UserObject, you can build a panel

view that contains the objects with which the user will interact. Each

UserObject has a panel view available. For information about building a

panel view on a UserObject, refer to Chapter 4.

Securing UserObjects

After the functionality of a UserObject is Õnal, and you don't want anyone

to change the internal operations, secure the UserObject. (Users will use

only the input and output terminals to interact with the UserObject.)

After selecting Secure from the UserObject object menu, you'll be

prompted to save the unsecured version of the UserObject.

C A U T I O N
Make sure you keep an unsecured version so that in the future you can edit

the internal objects. Once secured, UserObjects cannot be unsecured.

If the UserObject does not have a panel view, securing it minimizes the

UserObject to an icon that cannot be opened. If it has a panel view, the

secured view of the UserObject is the panel view.

3-14

How To Create Your Own Objects and Functions

Creating a Library of Functions

To put the secured UserObject in your library of functions, select the

UserObject and select Save Objects from the File menu. Save the

secured version under a diÃerent name than the unsecured version.

Merging and Saving UserObjects

You do not need to secure a UserObject to store it in your library of

functions. To save a UserObject, select it then select Save Objects from

the File menu.

N O T E

HP VEE provides a directory for you to store useful objects:

/usr/lib/veeengine/lib/contrib/ or

/usr/lib/veetest/lib/contrib/.

The initial path for Save Objects (until you select Save Preferences) is

/usr/lib/veeengine/lib/ or /usr/lib/veetest/lib or C:\VEE\LIB.

To retrieve functions from your library, select Merge from the File menu.

Merge allows you to keep the existing program on the work area so you may

add to it.

Occasionally, you may want to merge a library object or program inside of a

UserObject. Be sure that the white outline box of the merging object Õts

completely inside the UserObject work area. Otherwise the merged object

will be placed outside of the UserObject and you will have to move the

object into the UserObject.

3-15

How To Create Your Own Objects and Functions

Creating a Library of Functions

4

How To Build an Operator

Interface

How To Build an Operator Interface

HP VEE provides a powerful tool to create an operator interface for your

program with the panel view. The panel view uses the graphical interface

provided by HP VEE while hiding the details of the program.

4-2

BeneÕts of Panel Views

A panel view provides the following beneÕts:

– Shows only the objects necessary for operation.

A panel view contains only what is needed to run a program. (This could

be as little as the data input Õelds and a display).

– Protects the program from intervention by a user.

From a panel view, a user does not see the details of a program. From a

secured panel view, a user cannot change the program in any way.

– Allows you to create a complete application from your program.

A panel view provides a user interface to the complex program, making an

application that is easier to use and understand.

– Improves the performance of programs by decreasing run time.

Updating object views takes time. Depending on the complexity of a

program, running from the simpler panel view may increase performance.

4-3

Understanding Panel Views

A panel view is an alternate view of the program that provides a user

interface to your program (you created your program in the detail view).

You choose which objects from the detail view to include on the panel view,

which view of the object (icon or open view) to use on the panel view, and

where on the panel to place them; the lines connecting objects on the detail

view are not shown on the panel view. Once you create a panel view, it is

part of your program and is aÃected by the File features (such as New or

Save).

There are two diÃerent types of panel views: the main panel and

UserObject panel views.

– The main panel view is the alternate view of the main work area. The

main panel view can contain objects and UserObject panels.

– A UserObject panel view is the alternate view of a UserObject. Each

UserObject may have an associated panel view, which may be statically

or dynamically displayed. A UserObject panel view can contain objects

and nested UserObject panel views.

Both types of panel views are created and used the same way, except

UserObject panel views may be dynamically displayed (as pop-ups) when

they operate.

Figure 4-1 and Figure 4-2 show the detail view and the panel view of a

program that calculates position, velocity, and acceleration for an object

in motion in the presence of drag. Notice the diÃerences in size and

conÕguration of the X vs Y Plot between the detail view and panel view.

4-4

How To Build an Operator Interface

Understanding Panel Views

Figure 4-1. Detail View of Trajectory Example

4-5

How To Build an Operator Interface

Understanding Panel Views

Figure 4-2. Panel View of Trajectory Example

The program shown in Figure 4-1 and Figure 4-2 is saved in manual20.vee

in your examples directory.

4-6

Before You Start

Before you construct a panel view, the program should run correctly. Since

you often need to edit both the detail view and the panel view, it is diœcult

to build a detail view and the panel view at the same time due to the

iterative nature of constructing both. Construct the program Õrst in the detail

view, then create the panel view.

4-7

Creating Panel Views

After your program runs properly and you've prepared the objects on the

detail view, you can create the panel view. To create the panel view, select

the objects you want on the panel view and select Add to Panel from the

Edit menu. Note that once the object is on the panel view, you cannot

change its view (icon or open view).

Add to Panel is context-sensitive. Add to Panel from the main work area's

Edit menu creates the main panel view that contains only the selected

objects from the main work area. Add to Panel from a UserObject's Edit

menu creates a UserObject panel view that contains only the selected

objects from the UserObject. If no objects are selected, Add to Panel is not

available.

After you've added objects to the panel view, press the Panel and Detail

buttons in the upper left corner of the window to move between the diÃerent

views. You can continue to add objects from the detail view.

N O T E

Once an object is added to the panel view, it must have a corresponding object on the detail view. If

you Cut an object from the detail view, the corresponding object on the panel view is gone. If you

Paste the object back to the detail view, you'll have to add the object to the panel view again.

Objects visible on the detail view appear on the panel view in the same

position as they were on the detail view. If objects are not visible on the

detail view (located oÃ the visible part of the work area), the objects will

appear justiÕed against an edge of the panel view. The panel view work area

does not scroll, although you may resize it. The sizes of the panel view and

the detail view may be diÃerent.

4-8

How To Build an Operator Interface

Creating Panel Views

N O T E

A large-sized panel view created on a high-resolution monitor will not be fully displayed if it is

displayed on a low-resolution monitor.

The title and menu bar are diÃerent on the panel view and the detail view.

Figure 4-3 shows that on the panel view, only the File menu choice is

available and the Step button is gone because debugging can be done only in

the detail view.

Figure 4-3. DiÃerences Between Detail View and Panel View

4-9

How To Build an Operator Interface

Creating Panel Views

After you place the objects on the panel view, you can modify the objects to

construct the layout and alter the conÕguration of the objects using features

from their object menus. The next section explains how to layout panel

views.

Laying Out Panel Views

The panel view creates an interface for the users of your program. After

you've added objects to the panel view, modify the look of the panel view to

meet the needs of the users and their interaction with the program. Some

layout techniques are:

– Logically group objects. For example, you may want to group all data input

objects or displays together.

– Chronologically order objects. For example, if the user needs to Õll in

an entry Õeld and then press a button, make sure the objects are close

together and that the entry Õeld precedes the button.

– Resize objects to Õt together. For example, if you have a row of displays,

make them all the same size.

– Resize objects to denote importance. For example, you may want to

increase the size of buttons such as Stop.

The best way to make sure that the panel view layout meets your user's

needs is to check your layout by having someone (perhaps a potential user)

run your program from the panel view and give you feedback.

N O T E

This section explains layout of static objects on the panel view. If you put pop-up elements on the

panel view, be sure to consider their layout. Pop-up elements are discussed later in this chapter.

4-10

How To Build an Operator Interface

Creating Panel Views

You can change an object's size, location, and appearance by using the

following features from its object menu:

– Move - Move the object.

– Size - Resize the object.

– Show Title - Hide or display the title bar.

– Layout ¡¡) (icons only) - Change the bitmap displayed.

– Delete - Delete the object from the panel view (the corresponding object

remains on the detail view).

The object menus of some open views contain other features that allow you

to change the appearance of the objects on the panel view. For example,

on graphical displays the Grid Type and Panel Layout choices change the

appearance of the object on the view (panel or detail view) without aÃecting

the appearance of the object on the other view.

N O T E

The panel view of your program is to a large extent independent of the detail view. Not only can you

show only selected objects in the panel view, you can show the objects in a diÃerent size or location

than in the detail view. You can show the title in one view, but not the other. Or you can select a

diÃerent scale or grid type for a display object in each view. For the Note Pad object, you can

enable editing in the detail view, but disable editing in the panel view.

4-11

How To Build an Operator Interface

Creating Panel Views

Figure 4-4 shows how the the appearance of an X vs Y Plot on the panel

view was changed without aÃecting the corresponding object on the detail

view.

Figure 4-4. Panel View vs. Detail View of X vs Y Plot

Setting Values and States

Although the appearance of an object on the panel view is not connected to

the appearance of the object on the detail view, the entry values and states

are shared between the panel view and detail view.

For example, if you change the the size of a Slider on the panel view, the

size of the associated Slider on the detail view does not change. But if you

4-12

How To Build an Operator Interface

Creating Panel Views

change the Slider's maximum and minimum values from the open view on

the panel view, the values change on the associated Slider on the detail

view.

The object menus of many open view objects contain features that allow

you to set values and states that aÃect the way the objects operate. Some

features that are shared between the open view object on a panel view and

its associated detail view are:

– Initialize At PreRun

– Initialize At Activate

– Clear At PreRun

– Clear At Activate

– Auto Execute

– Slider Detents

– Slider limit values

– Graphical display trace names

Saving Panel Views

When you save a program that has both a panel view and detail view, both

views are saved in the Õle. When you Open that Õle, you'll see whichever

view was visible when it was saved (but both views are still present).

When you save a secured panel view, only the panel view is saved.

Securing Panel Views

Once you are satisÕed with the panel view's functionality and appearance,

the program or UserObject can be secured. As mentioned previously,

securing a program or UserObject prevents the user from altering the

program and accessing the detail view. It may also enhance the program's

performance. Before you secure a panel view, make sure you don't want to

modify it or the detail view. After you secure the panel view, you will not be

4-13

How To Build an Operator Interface

Creating Panel Views

able to edit it; you won't be able to access any features that modify objects'

appearance, settings, or the way they operate.

Main Panel View Secure the program by selecting Secure from the File menu (on either the

panel view or detail view). Before the program is secured, you'll be prompted

to save the unsecured program. Note that this method secures the entire

program, including any UserObjects.

After the program is secured, save it. Use a name that is diÃerent from the

unsecured program name.

N O T E

The secured panel view and the unsecured program are unconnected. If you change the unsecured

program, you'll have to Secure it again. Once a program is secured, it cannot be unsecured.

UserObject Panel View To secure a UserObject without securing the rest of the program, select

Secure from the UserObject's object menu. Before the UserObject is

secured, you'll be prompted to save the unsecured UserObject.

After the UserObject is secure, save it using the Save Object feature under

the File menu. Use a name that is diÃerent from the unsecured object.

N O T E

The secured object and the unsecured object are unconnected. If you change the unsecured object,

you'll have to Secure it again.

4-14

Adding Pop-up Elements

You can add a dynamically-displayed element to the main panel view by

selecting Show Panel on Exec from the UserObject object menu instead of

adding the UserObject panel view to the main panel view.

A pop-up is a UserObject panel view that is displayed when the

UserObject starts to operate and stays displayed until the UserObject has

Õnished operating.

It is very useful to add dynamically-displayed (pop-up) elements to a panel

view. Pop-ups allow you to:

– Save space.

Because a pop-up doesn't permanently occupy space on the panel view,

you can overlap the pop-ups to save space.

– Page information.

When you've got multiple actions to perform, you can \page" through

them using pop-ups.

– Help users focus on information.

If all information is displayed at all times, users may not know which Õelds

are getting updated. If new or critical information is put in a pop-up, users

may be more aware of changes.

Another use for pop-ups is to let the user specify the information wanted;

the program only displays what the user asks for.

– Create dialog boxes.

Pop-ups are very useful when asking for user input. When you use a dialog

box, you can prevent users from changing information later and more

easily perform error checking.

4-15

How To Build an Operator Interface

Adding Pop-up Elements

Before You Start

As with any aspect of panel views, your program should work before you

create any pop-ups. If you want objects to pop-up, but they are not in

UserObjects, you must put them in a UserObject and make sure your

program still works. Many times the action of creating a UserObject

will change the way your program operates. For more information about

UserObjects, refer to Chapter 3.

UserObject panel views follow the same layout and functionality guidelines

discussed earlier in this chapter.

Creating Pop-up Panel Views

Any UserObject panel view can be popped-up. Select objects in the

UserObject and then, from the UserObject's Edit menu, select Add to

Panel.

The UserObject's title remains on the pop-up so you can use the title bar to

label the pop-up panel view.

Pop-up Layout Size the UserObject panel view to the size you want the pop-up to be.

Arrange the objects on the panel view using the techniques described earlier

in this chapter.

After you have completed the UserObject panel view layout, set the Show

Panel on Exec option on the UserObject's object menu.

When the UserObject operates, the default pop-up position is in the center

of the work area. To set the pop-up's location, switch to the panel view and

run the program. When the UserObject panel view pops-up, move it to the

desired location by dragging the title bar.

It is useful to use a Confirm (OK) button on the UserObject and the

UserObject's panel view. Because a UserObject operates until all objects

4-16

How To Build an Operator Interface

Adding Pop-up Elements

within it Õnish operating, the Confirm (OK) button allows the pop-up to stay

displayed until OK is clicked.

N O T E

The UserObject pop-up is displayed on both the detail view and the panel view. If you move

the position of the pop-up on either view, it will also move on the other. The position of the pop-up is

relative to the HP VEE work area; moving the UserObject does not change the location of the

pop-up.

Pop-up Examples

The following examples show some uses for pop-ups.

4-17

How To Build an Operator Interface

Adding Pop-up Elements

Informational Messages Pop-ups are useful to display informational messages. In Figure 4-5, after the

user has read the message, he or she clicks OK and the pop-up disappears.

Figure 4-5. Informational Message (Detail View)

Figure 4-6 shows the panel after the user presses Start.

4-18

How To Build an Operator Interface

Adding Pop-up Elements

Figure 4-6. Informational Message (Panel View)

The program shown in Figure 4-5 and Figure 4-6 is saved in manual21.vee

in your examples directory.

Overlaying Displays When you overlay displays, you allow the user to select the type of display

wanted. Only the selected display is shown.

4-19

How To Build an Operator Interface

Adding Pop-up Elements

In Figure 4-7, the display shows the data you select.

Figure 4-7. Overlaying Displays on a Panel View

The program shown in Figure 4-7 is saved in manual22.vee in your

examples directory.

Dialog Boxes Dialog boxes allow you to get user input at a particular time without letting

the user change the information later. Dialog boxes also allow you to perform

error checking on the information the user entered.

The program in Figure 4-8 and Figure 4-9 asks for the user's name. The user

can Õll in the name or cancel the operation. If the user presses OK, the name

is displayed. If the user presses Cancel, the message No Name Entered is

displayed.

4-20

How To Build an Operator Interface

Adding Pop-up Elements

Figure 4-8. Dialog Box (Detail View)

4-21

How To Build an Operator Interface

Adding Pop-up Elements

Figure 4-9. Dialog Box (Panel View)

The program shown in Figure 4-8 and Figure 4-9 is saved in manual23.vee

in your examples directory.

N O T E

Some other commonly-used dialog boxes are in /usr/lib/veeengine/concepts/ or

/usr/lib/veetest/concepts/ or C:\VEE\EXAMPLES\CONCEPTS.

4-22

5

Understanding Common

Structures

Understanding Common Structures

This chapter shows some common structures that may be useful in your

programs that allow you to perform the following tasks:

– Outputting values from an If/Then/Else object

– Specifying messages from Conditional objects

– Displaying one of multiple outputs

– Resetting buttons

For more examples of common structures, browse through

the /usr/lib/veeengine/examples/concepts/

or /usr/lib/veetest/examples/concepts/ or

C:\VEE\EXAMPLES\CONCEPTS directory.

5-2

Outputting Values from If/Then/Else

Figure 5-1 shows how to get the value that satisÕes a condition. For example,

if A > B, then output A; if B > A, then output B. Figure 5-1 works only for

Scalar data.

The If/Then/Else object evaluates each expression as a formula. The

If/Then/Else returns a 1 if the condition is true. Since each condition is a

formula box, you can operate on the result of the condition. If the expression

evaluates as non-zero, the value propagates to the output pin. Otherwise it

evaluates the next expression.

Figure 5-1. Getting a Value from If/Then/Else

5-3

Specifying Messages from Conditionals

Figure 5-2 shows how to output a speciÕc message that is dependent on the

condition met in any If/Then/Else or Conditional ¡¡) object. Use a Gate

to allow the message associated with the true condition to be propagated.

Figure 5-2 works for both Scalar and Array data.

Figure 5-2. Specifying a Conditional Message

The program shown in Figure 5-2 is saved in manual36.vee in your

examples/concepts directory.

5-4

Displaying One of Multiple Outputs

The previous two examples also show how to use a JCT object to display

whichever statement or value is true from multiple possibilities.

5-5

Resetting Buttons

The Toggle button is very useful for getting user input (a one or zero), but it

must be reset to allow a user to repeat an action (such as clearing a display).

The feedback on each Toggle button resets it by activating the Reset control

pin.

Figure 5-3 shows two Toggle buttons. The Õrst clears the display whenever

the button is pushed; the second stops the program. Notice the use of

If/Then/Else objects to check the Toggle output.

Figure 5-3. Using a Toggle

The program shown in Figure 5-3 is saved in manual37.vee in your

examples/concepts directory.

5-6

Glossary

Glossary

This Glossary deÕnes several terms used to name or describe HP VEE

features.

Activate

1. To send a container to a terminal. See also \Container" and

\Terminal."

2. The action that resets the context of a UserObject before it operates

each time. See also \Context" and \PreRun."

Array

A data shape that contains a systematic arrangement of data items in one

or more dimensions. The data items are accessed via indexes. See also

\Data Shape."

Asynchronous

In asynchronous operation, a device operates without a common signal

to synchronize events. Rather, the events occur at unspeciÕed times. HP

VEE control pins are asynchronous.

Auto Execute

An option on the object menus of the data constant objects. When Auto

Execute is set, the object operates when its value is edited.

Bitmap

A bit pattern or picture. In HP VEE you can display a bitmap on an icon.

BuÃer

An area in memory where information is stored temporarily.

Button

1. A button on a mouse.

2. A graphical object in HP VEE that simulates a real-life pushbutton and

appears to pop out from your screen. When you \press" a button in HP

VEE, by clicking on it with the mouse, an action occurs.

Cascading Menu

A sub-menu on a pull-down or pop-up menu that provides additional

selections.

Glossary-2

Resetting Buttons

Checkbox

A recessed square box on HP VEE menus and dialog boxes that allows

you to select a setting. To select a setting, click on the box and a

checkmark appears in the box to indicate a selection has been made. To

cancel the setting, simply click on the box again.

Click

To press and release a mouse button quickly. Clicking usually selects a

menu feature or object in the HP VEE window. See also \Double-Click"

and \Drag."

Compiled Function

A user-deÕned function created by dynamically linking a program, written

in a programming language such as C, into the HP VEE process. For

UNIX systems, the user must create a shared library Õle and a deÕnition

Õle for the program to be linked. For Windows, the user must create a

DLL (Dynamically Linked Library) Õle and a deÕnition Õle. The Import

Library object attaches the shared library or DLL to the HP VEE process

and parses the deÕnition Õle declarations. The Compiled Function

can then be called with the Call Function object, or from certain

expressions. See also \User Function" and \Remote Function."

Component

A single instrument function or measurement value in an HP VEE

instrument panel or component driver. For example, a voltmeter driver

contains components that record the range, trigger source, and latest

reading. See also \Component Driver," \Driver Files," \State," and

\Instrument Panel."

Component Driver

An instrument control object that reads and writes values to components

you speciÕcally select. Use component drivers to control an instrument

using a driver by setting the values of only a few components at a time.

(Component drivers do not support coupling.)

Composite Data Type

A data type that has an associated shape. See also \Data Shape" and

\Data Type."

Container

The package that is transmitted over lines and is processed by objects.

Each container contains data, the data type, and the data shape.

Glossary-3

Resetting Buttons

Context

A level of the work area that can contain other levels of work areas (such

as nested UserObjects), but is independent of them.

Control Pin

An asynchronous input pin that transmits data to the object without

waiting for the object's other input pins to contain data. For example,

control pins in HP VEE are commonly used to clear or autoscale a display.

Coupling

The inter-relationship of certain functions in an instrument. If, in an

instrument panel, functions A and B are coupled, changing the value of A

may automatically change the value of B, even though you do not change

B explicitly.

Cursor

A pointer in an entry Õeld that shows where alphanumeric data will

appear when you type information from the keyboard.

Data Field

The Õeld within a transaction speciÕcation in which you specify either the

expression to be written (WRITE transactions), or the variable to receive

data that is read (READ transactions). See also \Transactions."

Data Flow

The Œow of data through and between HP VEE objects. Data Œows from

left to right through objects, but an object does not execute until it has

data on all of its data input pins. Data is propagated from the data output

pin of one object to the data input pin of the next object. Data Œow is the

chief factor that determines the execution of a HP VEE program.

Data Input Pin

A connection point on the left side of an object that permits data to Œow

into the object.

Data Output Pin

A connection point on the right side of an object that propagates data Œow

to the next object and passes the results of the Õrst object's operation on

to the next object.

Glossary-4

Resetting Buttons

DataSet

A collection of \Record" containers saved into a Õle for later retrieval.

The To DataSet object collects Record data on its input and writes that

data to a named Õle (the DataSet). The From DataSet object retrieves

Record data from the named Õle (the DataSet) and outputs that data as

Record containers on its Rec output pin. See also \Record."

Data Shape

A pre-deÕned structure that deÕnes how data is grouped together (for

example, an array).

Data Type

A pre-deÕned structure that determines how data is organized and treated

by HP VEE (for example, Real or Complex).

DDE (Dynamic Data Exchange)

A communication mechanism that allows HP VEE for Windows to

communicate with other Windows applications that support DDE. HP VEE

can send data to, and receive data from, such applications. Also, HP VEE

can execute commands in the other application. Examples of Windows

applications that support DDE are Microsoft Excel and Microsoft Word for

Windows.

Default

A value or action that HP VEE automatically selects.

Default Button

The button in a dialog box that is activated by default if ÄEnterÅ or ÄReturnÅ

is pressed, or the selection is double-clicked. The default button has a

recessed border.

Demote

To convert from a data type that contains more information to one that

contains less information. See also \Data Type" and \Promote."

Detail View

The view of an HP VEE program that shows all the objects and the lines

between them.

Device

An instrument attached to or plugged into an HP-IB, RS-232, GPIO, or VXI

interface. SpeciÕc HP VEE objects such as the Direct I/O object send

and receive information to a device.

Glossary-5

Resetting Buttons

Device Driver

See \Interface Driver."

Dialog Box

A secondary window displayed when HP VEE requires information from

you before it can continue. For example, a dialog box may contain a list of

Õles from which you may choose.

Direct I/O Object

An instrument control object that allows HP VEE to directly control an

instrument without using an HP Instrument Driver.

DLL (Dynamically Linked Library)

A collection of functions written in C that can be called from HP VEE for

Windows. DLLs can be created by experienced C programmers using tools

available from Microsoft and Borland. DLLs in the Windows environment

are similar to shared libraries in the UNIX environment.

Double-Click

To press and release a mouse button twice in rapid succession.

Double-clicking is usually a short-cut to selecting and performing an

action. For example, double-clicking on a Õle name from File ¡¡) Open

will select the Õle and open it.

Drag

To press and continue to hold down a mouse button while moving the

mouse. Dragging moves something (for example, an object or scroll

slider).

Driver

Software that allows a computer to communicate with other software

or hardware. See also \Component Driver," \Driver Files," \Interface

Driver," and \Instrument Panel."

Driver Files

A set of Õles included with HP VEE that contains the information needed

to create instrument panel and component driver objects for instrument

control.

Entry Field

A Õeld that is typically part of a dialog box or an editable object, and

which is used for text entry. An entry Õeld appears recessed. For

Glossary-6

Resetting Buttons

example, the open view of the For Range object has entry Õelds where

you type values that specify the beginning, ending, and step values.

Error Message

Information that appears in an error dialog box, explaining that a problem

has occurred.

Error Pin

A pin that traps any errors that occur in an object. Instead of getting an

error message, the error number is output on the error pin. When an

error is generated, the data output pins are not activated.

Execute

The action of a program, or parts of a program, running.

Execution Flow

The order in which objects operate. See also \Data Flow."

Expression

An equation in an entry Õeld that can contain the input terminal names

and any Math or AdvMath functions. An expression is evaluated at

run-time. Expressions are allowed in Formula, If/Then/Else, Get

Values, Get Field, Set Field, and Sequencer objects, and in I/O

transaction objects.

Feature

An item on a menu that you select to cause a particular action to occur

(for example, to open a Õle), or to get a particular object.

Feedback

A continuous thread path of sequence and/or data lines that uses values

from the previous execution to change values in the current execution.

Flow

See \Data Flow" and \Execution Flow."

Function

The name and action of objects where the output is a function of the

input. These objects are located under Math or AdvMath menus and may

be used in the Formula object. For example sqrt(x) is a function; + is

not.

Glossary-7

Resetting Buttons

Global Variable

A named variable that is set globally, and which can be used by name in

any context of an HP VEE program. For example, a global variable can

be set with Set Global in the root context of the program, and can be

accessed by name with Get Global or from certain expressions within

the context of a UserObject. However, a local variable with the same

name as the global variable takes precedence in an expression.

Grayed Feature

A menu feature that is displayed in gray rather than black, indicating that

the feature is not active or not available.

Group Window

A group window in Microsoft Windows is a window that contains icons for

a group of applications. Each icon starts an application in the group.

Highlight

1. The colored band or shadow around an object that provides a visual

cue to the status of the object.

2. The change of color on a menu feature that indicates you are pointing

to that feature.

Host

To begin a thread or subthread. For example, the subthread that is hosted

by For Count is the subthread that iterates.

HP-UX

Hewlett-Packard Company's enhanced version of the UNIX operating

system.

Hypertext

A system of linking topics so that you can jump to a related topic when

you want more information. In online help systems, typically hypertext

links are designated with underlined text. When you click on such text,

related information is presented.

Icon

1. The small, graphical representation of an HP VEE object, such as the

representation of an instrument, a control, or a display.

2. The small, graphical representation of a Microsoft Windows application

within a group window. See \Group Window."

Glossary-8

Resetting Buttons

Instrument Driver

See \Driver Files," \Component Driver," and \Instrument Panel."

Instrument Panel

An instrument control object that forces all the function settings in the

corresponding physical instrument to match the settings in the control

panel displayed in the open view of the object.

Interface

HP-IB, RS-232, GPIO, and VXI are referred to as interfaces used for I/O.

SpeciÕc HP VEE objects, such as the Interface Event object can only

send commands to an interface.

Interface Driver

Software that allows a computer to communicate with a hardware

interface, such as HP-IB or RS-232. Also called device driver in the UNIX

operating system, interface drivers are conÕgured into the kernel of the

operating system.

Interrupt

A signal that requires immediate attention that may suspend a process,

such as the execution of a computer program. An interrupt is usually

caused by an event external to that process. After the interrupt is

serviced, the process may be resumed.

Label

The text area or name on an icon or button that identiÕes that object or

button.

Library

A collection of often-used objects or small programs grouped together for

easy access.

Line

A link between two objects in HP VEE that transmits data containers to

be processed. See also \Subthread" and \Thread."

Main Menu

The menus located in the HP VEE menu bar. The main menus may be

opened by clicking or dragging on the menu titles in the menu bar.

Glossary-9

Resetting Buttons

Main Work Area

The area where you create a program. The main work area is the parent

context of all other contexts.

Mapping

To associate a set of independent values with an array, when the array is

a function of the values.

Maximize

To enlarge a window to its maximum size. In HP VEE, the UserObject

has a maximize button.

Menu

A collection of features that are presented in a list. See also \Cascading

Menu," \Main Menu," \Object Menu," \Pop-Up Menu," and \Pull-Down

Menu."

Menu Bar

A rectangular bar at the top of the HP VEE window that contains titles of

the pull-down, main menus from which you select features.

Menu Title

The name of a menu within the HP VEE menu bar. For example, File or

Edit.

Minimize

1. To reduce an open view of an object to its smallest size|an icon.

2. To reduce a window to its smallest size|an icon.

Mouse

A pointing device that you move across a surface to move a pointer

within the HP VEE window.

Mouse Button

One of the buttons on a mouse that you can click, double-click, or drag to

perform a particular action with the corresponding pointer in the HP VEE

window.

Network

A group of computers and peripherals linked together to allow the sharing

of data and work loads.

Glossary-10

Resetting Buttons

Object

A graphical representation of an element in a program, such as an

instrument, control, display, or mathematical operator. An object is

placed in the work area and connected to other objects to create a

program. Objects can be displayed as icons or as open views.

Object Menu

The menu associated with an object that contains features that operate on

the object (for example, moving, sizing, copying, and deleting the object).

Open

To start an action or begin working with a text, data, or graphics Õle.

When you select Open from HP VEE, a program is loaded into the work

area.

Open View

The representation of an HP VEE object that is more detailed than an

icon. Within the open view, you can modify the operation of the object

and change the object's title.

Operate

The action of an object processing data and outputting a result. An object

operates when its data and sequence input pins have been activated. See

\Activate."

Outline Box

A box that represents the outer edges of an object or set of objects and

indicates where the object(s) will be placed in the work area.

Palette

A set of colors and fonts that is supplied with HP VEE and used in your

HP VEE environment.

Panel

Information displayed in the center of the object's open view. In a

UserObject, the panel contains a work area. In a For Count object, the

panel contains an entry Õeld. Compare with \Panel View."

Panel View

The view of a program in HP VEE that shows only those objects needed

for the user to run the program and view the resultant data. You can

create a panel view to meet the needs of your users.

Glossary-11

Resetting Buttons

Pin

An external connection point on an object to which you can attach a line.

Pointer

The graphical image that maps to the movement of the mouse. A

pointer allows you to make selections and provides you feedback on a

particular process underway. HP VEE has pointers of diÃerent shapes that

correspond to process modes, such as an arrow, crosshairs, and hourglass.

Pop-Up Menu

A menu that is raised by clicking the right mouse button. For example,

you can raise the Edit menu by clicking the right mouse button in an

empty area within the work area. Or you can raise the object menu by

clicking the right mouse button on an inactive area of an object.

PostRun

The set of actions that are performed when the program is stopped.

PreRun

The set of actions that resets the program and checks for errors before the

program starts to run.

Priority Thread

A priority thread executes to completion blocking all other parallel

threads from executing. Certain of the I/O objects for devices and

interfaces will host a priority thread.

Program

In HP VEE, a graphical program that consists of a set of objects connected

with lines. The program typically represents a solution to an engineering

problem.

Promote

To convert from a data type that contains less information to one that

contains more information. See also \Data Type" and \Demote."

Propagation

The rules that objects and programs follow when they operate or run. See

also \Data Flow."

Pterodactyl

Any of various extinct Œying reptiles of the order Pterosauria of the

Jurassic and Cretaceous periods. Pterodactyl are characterized by wings

Glossary-12

Resetting Buttons

consisting of a Œap of skin supported by the very long fourth digit on each

front leg.

Pull-Down Menu

A menu that is pulled down from the menu bar when you position the

pointer over a menu title and click the left mouse button.

Radio Button

A diamond-shaped button in HP VEE dialog boxes that allows you to

select a setting that is mutually exclusive with other radio buttons in that

dialog box. To select a setting, click on the radio button. To remove the

setting, click on another radio button in the same dialog box.

Record

A data type that has named data Õelds which can contain multiple values.

Each Õeld can contain another Record container, a Scalar, or an Array.

The Record data type has the highest precedence of all HP VEE data

types. However, data cannot be converted to and from the Record data

type through the automatic promotion/demotion process. Records must be

built/unbuilt using the using Build Record and UnBuild Record objects.

Remote Function

A User Function running on a remote host computer, which is callable

from the local host. (Remote functions are supported only on UNIX

systems.) The Import Library object starts the process on the remote

host and loads the Remote File into the HP VEE process on the local host.

You can then call the Remote Function with the Call Function object,

or from certain expressions. See also \User Function" and \Compiled

Function."

Resource Manager

A program which exists on VXI controllers that runs at start-up and after

a VXI system reset. This program initializes and manages the instruments

in a VXI card cage.

Restore

To return a minimized window or an icon to its full size as a window or

open view by double-clicking on it.

Run

To start the objects on a program or thread operating.

Glossary-13

Resetting Buttons

Save

To write a Õle to a storage device, such as a hard disk, for safekeeping.

Scalar

A data shape that contains a single value. See also \Data Shape."

Schema

The structure or framework used to deÕne a data record. This includes

each Õeld's name, type, shape (and dimension sizes), and mapping.

Screen Dump

A graphical printout of a window or part of a window.

Scroll

The act of using a scroll bar either to move through a list of data Õles or

other choices in a dialog box, or to pan the work area.

Scroll Arrow

An arrow that, when clicked on, moves you through a list of data Õles or

other choices in a dialog box, or moves the work area.

Scroll Slider

A rectangular bar that, when dragged, moves you through a list of data

Õles or other choices in a dialog box, or moves the work area.

Select

To choose an object, an action to be performed, or a menu item. Usually

you select by clicking with your mouse.

Select Code

A number used to identify the logical address of a hardware interface. For

example, the factory default select code for most HP-IB interfaces is 7.

Selection

1. A menu selection (feature).

2. An object or action you have selected in the HP VEE window.

Sequence Input Pin

The top pin of an object. When connected, execution of the object is held

oÃ until the pin receives a container.

Glossary-14

Resetting Buttons

Sequence Output Pin

The bottom pin of an object. When connected, this output pin is activated

when the object and all data propagation from that object Õnishes

executing.

Sequencer

An object that controls execution Œow through a series of sequence

transactions, each of which may call a \User Function," \Compiled

Function," or \Remote Function." The sequencer is normally used to

perform a series of tests by specifying a series of sequence transactions.

Shared Library

A collection of functions, written in a programming language such as

C, that can be called from HP VEE running on a UNIX system. Shared

libraries can be created by experienced programmers. Shared libraries in

the UNIX environment are similar to DLLs in the Windows environment.

Shell

In a UNIX system, the program that interfaces between the user and the

operating system.

Shell Prompt

In a UNIX system, the character or characters that denote the place

where you type commands while at the operating system shell level.

The prompt you see displayed depends upon the type of shell you are

running, such as a # prompt for the Bourne shell.

Sleep

An object sleeps during execution when it is waiting for an operation or

time interval to complete, or for an event to occur. A sleeping object will

allow other parallel threads to run concurrently. Once the event, time

interval, or operation occurs, the object will execute, allowing execution

to continue.

Startup Directory

The directory from which you start HP VEE on a UNIX system. This

directory determines the default paths for most Õle actions including Save

and Open.

State

A particular set of values for all of the components related to an HP

VEE instrument panel, which represents the measurement state of

an instrument. For example, a digital multimeter uses one state for

Glossary-15

Resetting Buttons

high-speed voltage readings and a diÃerent state for high-precision

resistance measurements. See also \Instrument Panel."

Step

The action of operating one object at a time. An arrow points to the

object that will operate next.

Terminal

The internal representation of a pin that displays information about the

pin and the data container held by the pin. Double-click on the terminal

to view the container information.

Thread

A set of objects connected by solid lines in an HP VEE program. A

program with multiple threads can run all threads simultaneously.

Title Bar

The rectangular bar at the top of the open view of an object or window,

which shows the title of the object or window.

Tool Bar

The rectangular bar at the top of the HP VEE window which provides the

Run, Stop, Cont, and Step buttons to control HP VEE programs. The

tool bar also displays the title of a program.

Transaction

The speciÕcations for input and output (I/O) used by certain objects

in HP VEE. These include the To File, From File, Direct I/O, and

Sequencer objects. Transactions appear as English-like phrases listed in

the open view of these objects.

User-DeÕned Function

HP VEE allows three types of user-deÕned functions: the \User

Function," \Compiled Function," and \Remote Function."

User Function

A user-deÕned function created from a \UserObject" by executing Make

UserFunction. The User Function exists in background, but provides

the same functionality as the original UserObject. You can call a User

Function with the Call Function object, or from certain expressions. A

User Function can be created and called locally, or it can be saved in a

library and imported into an HP VEE program with Import Library. See

also \Compiled Function," \Remote Function," and \UserObject."

Glossary-16

Resetting Buttons

User Interface

The part of an application that permits a user and the application to

communicate with each other to perform certain tasks. HP VEE uses a

graphical user interface, which includes windows, menus, dialog boxes,

and objects.

UserObject

An object that can encapsulate a group of objects to perform a particular

purpose within a program. A UserObject allows you to use top-down

design techniques when building a program, and to build user-deÕned

objects that can be saved in a library and reused.

View

See \Detail View," \Icon," \Open View," and \Panel View."

Wait

See Sleep.

Window

A rectangular area on the screen that contains a particular application

program, such as HP VEE.

Work Area

The area within the HP VEE window or the open view of a UserObject

where you group objects together. When you Open a program, it is loaded

into the main work area.

X Window System (X11)

An industry-standard windowing system used on UNIX computer systems.

X11 Resources

A Õle or set of Õles that deÕne your X11 environment in a UNIX system.

XEQ Pin

A pin that forces the operation of the object, even if the data or sequence

input pins have not been activated. See also \Control Pin," \Data Input

Pin," and \Sequence Input Pin."

Glossary-17

Resetting Buttons

