
Visual Engineering Environment

An Introduction to

HP VEE-Test

Customer Training Course

ABCDE

HP Part No. E2110+24D

Printed in USA September 1991

Notice

The information contained in this document is subject to change without notice.

Hewlett-Packard Company (HP) shall not be liable for any errors contained in this document.

HP MAKES NO WARRANTIES OF ANY KIND WITH REGARD TO THIS DOCUMENT,

WHETHER EXPRESS OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. HP shall not be liable for any direct, indirect, special, incidental, or consequential

damages, whether based on contract, tort, or any other legal theory, in connection with the

furnishing of this document or the use of the information in this document.

Warranty Information

A copy of the speciÕc warranty terms applicable to your Hewlett-Packard product and

replacement parts can be obtained from your local Sales and Service Oœce.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth

in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause of

DFARS 252.227-7013.

Use of this manual and magnetic media supplied for this product are restricted. Additional

copies of the software can be made for security and backup purposes only. Resale of the

software in its present form or with alterations is expressly prohibited.

cŒ Copyright 1991 Hewlett-Packard Company. All rights reserved.

Printing History

September 1991 - First Edition

iii

0

Welcome to HP VEE

Class Overview

Welcome to An Introduction to HP VEE . In this class you'll learn to use the many capabilities

of Hewlett Packard's visual engineering environment products.

This chapter contains a general agenda and schedule for the class. Note that if you are taking

the HP VEE-Engine Class, that the class concludes at the end of Day Three.

Welcome to HP VEE 0-1

Agenda & Schedule

HP VEE CLASS|DAY ONE

Time Activity

8:30 Welcome & Orientation

9:00 LAB 1: Getting Started with HP VEE , chapter 2

9:50 BREAK

10:00 Module 1: Principles of Operation

10:50 BREAK

11:00 Module 2: Using HP VEE Objects

12:00 LUNCH

1:00 LAB 2: Using Objects

1:50 BREAK

2:00 Module 3: Virtual Devices

2:50 BREAK

3:00 LAB 3: Waveforms

3:50 BREAK

4:00 ADDITIONAL LAB TIME

5:00 Adjourn

0-2 Welcome to HP VEE

HP VEE CLASS|DAY TWO

Time Activity

9:00 Module 4: UserObjects

9:50 BREAK

10:00 LAB 4: UserObjects

10:50 BREAK

11:00 Module 5: User Interaction

12:00 LUNCH

1:00 LAB 5: Custom Dialog Box

1:50 BREAK

2:00 Module 6: Application Development Techniques

2:50 BREAK

3:00 LAB 6: Programming Techniques

4:00 ADDITIONAL LAB TIME

5:00 Adjourn

Welcome to HP VEE 0-3

HP VEE CLASS|DAY THREE

Time Activity

9:00 Module 7: I/O Transactions and Data Formatting

9:30 Module 8: Files and Standard I/O

9:50 BREAK

10:00 LAB 7: Files

10:50 BREAK

11:00 LAB 7: Files (cont.)

12:00 LUNCH

1:00 Module 9: HP-UX Escapes

1:50 BREAK

2:00 LAB 8: HP-UX Escapes

2:50 BREAK

3:00 Module 10: Install, ConÕgure & Customize

4:00 ADDITIONAL LAB TIME/Wrap up & Evaluation (Engine Only)

5:00 Adjourn

0-4 Welcome to HP VEE

HP VEE CLASS|DAY FOUR (HP VEE-Test Only)

Time Activity

9:00 Module 11: Instrument Control Interfaces

9:50 BREAK

10:00 Module 12: Using Drivers for Instrument Control

10:50 BREAK

11:00 LAB 9: Measuring Frequency Response

12:00 LUNCH

1:00 LAB 9: Measuring Frequency Response (cont.)

1:50 BREAK

2:00 Module 13: Using Direct Device I/O

2:50 BREAK

3:00 LAB 10: Instrument Control

3:50 BREAK

4:00 ADDITIONAL LAB TIME

5:00 Adjourn

Welcome to HP VEE 0-5

HP VEE CLASS|DAY FIVE (HP VEE-Test Only)

Time Activity

9:00 Module 14: HP-UX Escapes, Named Pipes & BASIC/UX

9:50 BREAK

10:00 LAB 11: HP-UX Escapes & Named Pipes

10:50 BREAK

11:00 LAB 12: Benchmarking HP BASIC/UX Escapes

12:00 LUNCH

1:00 Module 15: Instrumentation Application Development Techniques

1:50 BREAK

2:00 LAB 13: Develop Your Application

2:50 BREAK

3:00 Wrap-Up & Evaluations

4:00 Adjourn

0-6 Welcome to HP VEE

Contents

0. Welcome to HP VEE

Class Overview . 0-1

Agenda & Schedule . 0-2

1. Principles of Operation

How to Learn HP VEE . 1-1

Lab Exercise 1 Getting Started Guide 1-2

Task . 1-2

HP VEE Operation Fundamentals 1-3

Screenshot openicon . 1-6

Screenshot datactlin . 1-12

Screenshot debug . 1-28

2. Using HP VEE Objects

HP VEE Data Objects . 2-1

Slide|Screen Shot of Various Enum Formats 2-2

Slide|Screen Shot of Data Constants 2-6

Slide|Screen Shot of Data Constants 2-7

Slide|Screen Shot of Data Constants 2-8

Slide|Screen Shot of Data Constants 2-9

Slide|Screen Shot of Data Building 2-11

Slide|Screen Shot of Sliding Collector 2-12

Slide|Screen Shot of Concatenator 2-13

Slide|Screen Shot of UnBuilding Data 2-14

Flow Control . 2-15

Slide|Screen Shot of Sequence Control 2-16

Data Flow and Branching . 2-19

Slide|Screen Shot of Junction Objects 2-20

Slide|Screen Shot of Gates & Conditionals 2-22

Time Related & Miscellaneous Objects 2-24

Slide|Screen Shot of Misc. Objects 2-26

Display Objects . 2-27

Slide|Screen Shot of VU Meter 2-28

Slide|Screen Shot of VU Meter 2-28

Math Objects . 2-33

Lab 2a|Apple Bagger . 2-40

Background . 2-40

Task . 2-40

Suggested Objects . 2-40

Lab 2b|Testing Numbers . 2-41

Task 1 . 2-41

Suggested Objects . 2-41

Contents-1

Task 2 . 2-41

Lab 2c|Collect Random Numbers 2-42

Task . 2-42

Suggested Objects . 2-42

Hint . 2-42

Lab 2d|Random Number Generator 2-43

Task . 2-43

3. Virtual Sources

Virtual Source Objects . 3-1

Screenshot - AM Modulation . 3-3

Lab 3a|Two Mask Test . 3-8

Task 1 . 3-8

Hint . 3-8

Task 2 (Optional) . 3-8

Lab 3b|Lissajous Figures . 3-9

Background . 3-9

Task . 3-9

4. UserObjects

UserObjects . 4-1

Screenshot - Top-down Design . 4-13

Lab 4a|Damped Sinewave Generator 4-14

Task 1 . 4-14

Hint . 4-14

Lab 4b|Random Noise Generator 4-15

Task . 4-15

5. User Interaction

User Interaction . 5-1

Lab 5|Create a Custom Dialog Box 5-12

Task . 5-12

Hint: . 5-12

6. Application Development Techniques

Application Development Techniques 6-1

Screenshot sieve . 6-8

Screenshot sieve2 . 6-9

Lab 6a|Model Building Techniques 6-11

Background . 6-11

Task . 6-11

Suggested Objects . 6-11

Hint: . 6-11

Lab 6b|Model Building Techniques 6-12

Task . 6-12

Contents-2

7. I/O Transactions and Data Formatting

I/O Transactions and Data Formatting 7-1

Screenshot - To Printer . 7-3

Screenshot - HP-UX Escape . 7-5

Screenshot - From StdIn . 7-6

Screenshot - Container . 7-11

Screenshot - HP-UX Escape TEXT 7-12

Screenshot - To Printer . 7-14

8. Files and Standard I/O

Files and Standard I/O . 8-1

Screenshot - Echo with stdio . 8-9

Lab 7a|Communicating with HP VEE 8-10

Task . 8-10

Hint: . 8-10

Lab 7b|Using Files for Fun & ProÕt 8-11

Background . 8-11

Tasks . 8-11

Hints . 8-11

Lab 7c|To File . 8-12

Task . 8-12

9. HP-UX Escapes

HP-UX Escapes . 9-1

Screenshot - HP-UX Escape Select Shell 9-3

Lab 8|Using HP-UX Escape to Unpack Data 9-6

Background . 9-6

Task . 9-6

Hints . 9-6

10. ConÕguring & Customizing HP VEE

ConÕgure & Customize . 10-1

11. Instrument Control Interfaces

Instrument Control Interfaces . 11-1

An Introduction To IEEE 488.2 . 11-2

RS-232 Serial Interface . 11-28

GPIO Parallel Interface . 11-32

12. Using Drivers for Instrument Control

Using Drivers for Instrument Control 12-1

Screenshot - ConÕgure I/O Devices 12-10

Lab 9|HP3478 Frequency Response 12-14

Task 1 . 12-14

Task 2 . 12-14

Contents-3

13. Using Direct I/O

Using Direct I/O . 13-1

Screenshot - Direct I/O ConÕguration 13-4

Screenshot - Using Direct I/O . 13-6

Screenshot - Sending Low Level HP-IB Commands 13-7

Screenshot - Sending Low Level HP-IB Commands 13-9

Screenshot - Bus Monitor . 13-13

Lab 10a|Custom Instrument Panel 13-14

Task . 13-14

Lab 10b|Instrument Interrupts . 13-15

Task . 13-15

Hint . 13-15

14. Using Named Pipes & HP BASIC/UX

Using Named Pipes & HP BASIC/UX 14-1

Screenshot - To/From HP BASIC/UX 14-11

Lab 11|Exploring Named Pipes . 14-14

Background . 14-14

Tasks . 14-14

Lab 12|Benchmarking HP BASIC/UX Escapes 14-15

Task . 14-15

15. Instrument Application Development Techniques

Instrument Application Development Techniques 15-1

Lab 13|Develop Your Own Application 15-4

Task . 15-4

Contents-4

1

Principles of Operation

How to Learn HP VEE

The best way to learn HP VEE is experience. Think of this as an adventure game, discovering

a new way to think about and use computers. It will be fun. At Õrst it may be uncomfortable

to try to think in a new way. But you will quickly Õnd that HP VEE makes you much more

productive. Don't worry if you can't Õnd each object quickly. You'll soon learn the menus.

You'll be surprised at how fast you arrive at solutions.

Principles of Operation 1-1

Lab Exercise 1 Getting Started Guide

Task

To familiarize yourself with the fundamental operations of HP VEE, open the Getting Started

with HP VEE to chapter 2, \Interacting with HP VEE". Perform the exercises that it

describes.

1-2 Principles of Operation

HP VEE Operation Fundamentals

In this module we'll discuss the fundamental principles of operation used by HP VEE. We'll

cover

Synchronous Operation, how the HP VEE objects function

Propogation Rules, how HP VEE decides which object operates next

Multiple Threads, how multiple sets of objects relate and operate

Principles of Operation 1-3

First, lets deÕne some words commonly used with HP VEE.

1-4 Principles of Operation

The Õgure on the lower left-hand corner illustrates an \open view" of an object. In this mode,

you can see the internal operation, terminals, formulas or controls that function within the

object. You must be in this mode to change or modify the way an object works.

The Õgure in the upper right-hand corner illustrates an \icon". This mode minimizes the size

of the object, saving display space. You use this mode when you have completed editing the

object, or when there is no need for the user to interact with the object.

The screenshot on the following page illustrates an actual object in Open View and Icon View.

Principles of Operation 1-5

Screenshot openicon

This screenshot shows a Function Generator object in Open View and Icon View.

1-6 Principles of Operation

Lets deÕne some more words commonly used with HP VEE.

Principles of Operation 1-7

Pins and terminals provide input and output connections for data and control on HP VEE

objects.

Pins provide connecting points between objects. Data pins receive and send data. Sequence

pins control the execution Œow of objects. You do not have to connect sequence pins for the

object to operate. Asynchronous pins control the operation of the object. The action they

control activates immediately. It doesn't wait for the object to complete its operation. The

Error output pin sends error information and allows you to trap errors.

Terminals display data information for each pin. Note that sequence pins do not have a

corresponding terminal.

1-8 Principles of Operation

All HP VEE objects operate in the same manner. Data Œows from left to right through the

object. Sequence Œows from top to bottom.

All data input pins must be connected to another object. A data input pin cannot accept

more than one input connection. Data output pins may connect to one or several objects.

Data output and sequence in or out pins do not need to be connected.

Principles of Operation 1-9

HP VEE objects operate in the follwing manner:

1. The object receives data input. Sequence input is received (if connected).

2. The object operates, performing its designated function.

3. The object sends data out to the next object.

4. The object waits for the next object in the thread to complete operation and send a

\receipt acknowledged" back to it. This insures that all objects in a thread operate before

HP VEE executes the next thread or subthread.

5. The object activates its sequence out pin.

6. The object ceases operating.

1-10 Principles of Operation

Each object starts with a set of default input and output pins. Many devices allow additional

input and output data pins as well as control and error pins.

As stated earlier, the control pins cause immediate execution of an object function, such as

clear, autoscale, etc. The object does not need to receive input on a control pin in order to

execute. However, it must receive input on each data pin in order to execute.

The error pin overides standard object behavior in the event of an error. It sends out an error

message when an error occurs. The object does not send out data on its data pins when an

error occurs.

Principles of Operation 1-11

Screenshot datactlin

Notice in this screenshot how HP VEE uses a dashed line to connect to Control inputs. This

provides a visual reminder that these are control inputs and do not need to be satisÕed for the

object to operate.

1-12 Principles of Operation

The Terminals selection on the object menu allows you to add pins to an object. Selecting

Show Terminals displays the terminal names on the object.

You can also open and edit terminal characteristics such as name, type and shape. Note that

some characteristics are unalterable.

Principles of Operation 1-13

The XEQ pin causes the object to operate immediately. The object uses whatever data is

available on its input pins. This is useful when continuing after an error. Some data building

objects require the use of this pin to \Õnish" their operation. Note that XEQ pins are only

available on the following objects:

UserObject

Confirm (Okay)

Set Values

Collector

1-14 Principles of Operation

To trap errors, add an error output pin to the object. When an error occurs the error pin

activates, sending out an error number. Other objects can then operate on that information,

correcting the error if possible. Note that when an error occurs, the data output pins do not

send out any data.

Principles of Operation 1-15

Now lets take a look at the Rules of Propogation, or how HP VEE decides which object

operates next. We'll also examine:

PreRun, how HP VEE initializes objects and work areas.

Activation, what happens when a work area begins operation.

Auto Execute, where some objects can operate without pressing Run.

1-16 Principles of Operation

HP VEE performs a PreRun (the following operations) when you press a Start or Run

button:

Checks the structure of your model for proper construction and connectivity.

Checks for Feedback loops, setting data input terminals on feedback loops to nil.

Determines if all data and XEQ inputs are connected.

Resets objects to initial conditions.

Rewinds data Õles to their beginning.

Clears errors.

Note that HP VEE PreRuns you entire model when you press Run, but only an individual

thread when you press Start on that thread.

Activation is analagous to a procedure call in a standard programming language. It initializes

the state (PreRuns) of an individual UserObject each time the UserObject operates.

Auto Execute causes an object to propogate data after a user input, if the thread has

completed running. It is not necessary to press Start or Run.

Principles of Operation 1-17

Start objects permit exectution of an individual thread within a model. They aÃect only

their thread, not the entire model. When you press Run, all Start objects operate.

In this example, pressing either Start button executes the thread A-B-C. Objects D and E

are unaÃected. Again, pressing Run causes all threads in a model to execute.

1-18 Principles of Operation

Start objects are never required in a model except to resolve where to start a feedback loop.

In the example shown here, A cannot execute until it receives data on both input pins. B

cannot execute until it receives data on its input pin. By adding a Start object, you force HP

VEE to begin execution with \old data" on one of the objects. Usually the old data is nil

and interpreted properly for the object. The PreRun operation will advise you to add a Start

object if it is necessary.

Principles of Operation 1-19

HP VEE models execute in the following order:

Start objects operate Õrst.

Unconstrained objects, objects with no data or sequence inputs, operate next.

Constrained objects then operate when their input contraints are satisÕed.

In this example, A or B may operate anytime after the Start object operates.

1-20 Principles of Operation

Just to be sure you understand propogation in HP VEE lets look at some more examples.

In the Õrst example, A or B may execute Õrst, but C must wait until both A and B have

completed their operation.

In the next example, A executes Õrst. B and C must wait until A Õnishes. Then B and C

execute. You cannot determine which one will go Õrst.

If the order in which B and C operate is important, use a sequence connection as shown in the

bottom example. In this case, B must wait until C Õnishes.

Principles of Operation 1-21

See if you can determine the execution order of the objects on this slide.

1-22 Principles of Operation

Here is a more complex example. Note that the objects operate in alphabetical order. Notice

that D cannot activate its Sequence Out pin until as many objects as possible down-thread

from it complete.

In the case of G, it activates its Sequence Out pin before I completes because I cannot

complete until H operates, providing data for I.

Principles of Operation 1-23

You can build many threads in the same work area. A Start object will selectively execute an

individual thread. Pressing Run executes all of the threads, which share the processor.

1-24 Principles of Operation

When multiple threads exist, HP VEE shares the processor among the various threads. The

time slice is the time it takes to execute a single primitive object.

Note that each object on an interating subthread executes for one time slice. Also note

that HP VEE treats UserObjects as multiple objects. Each object within the UserObject

operates for one time slice.

Principles of Operation 1-25

Here is an example of parallel thread propogation. Note that the objects execute according

to the letter in each object. The propogation engine shares time between each thread by

alternately executing an object from each.

1-26 Principles of Operation

HP VEE provides several tools under the Edit menu to help you debug your models.

Show Exec Flow Highlights the object that is currently executing. A highlighted border

appears around the executing object.

Show Data Flow Shows the route that data takes through the model. A small square

marked moves along the lines connecting objects to show the movement

of a data container.

Set Breakpoints Stops execution of the model before it exectutes this object. An object

with breakpoint set has a black border.

Line Probe Displays the container information (data) transmitted on a line between

two objects.

Principles of Operation 1-27

Screenshot debug

You Õnd the debugging options on the Edit menu. Show Data Flow and Show Exec Flow are

check boxes. Click on them to enable this function.

The Breakpoints menu cascades to provide additional options. Note that you must select an

object before you can use some of these options.

1-28 Principles of Operation

Now lets look at the various data types and structures implemented by HP VEE. You can see

that we provide many useful data types. Lets look at each one individually.

Principles of Operation 1-29

Int16 is a 16-bit signed integer. It is used only for I/O to Õles and instruments. Otherwise,

HP VEE uses the Int32 data type for integers.

1-30 Principles of Operation

Int32 is a 32-bit signed integer. HP VEE uses this data type for nearly every case of integers,

except as noted before.

Principles of Operation 1-31

HP VEE uses the IEEE 754 64-bit format to represent real numbers. It also uses this data

type to represent time/date. It measures the number of seconds from 00:00 am (midnight),

January 1, 1 A.D.

1-32 Principles of Operation

The Coord data type provides a means to represent Coordinates in n-dimensional space. You

may have a maximum of 10 dimensions in a Coord. Note that is useful to remember that this

is one independent variable and multiple dependent variables. HP VEE will operate on the

dependent variables with many of the math objects.

Coord must be either a scalar or an array of one dimension.

Principles of Operation 1-33

The Enum data type gives you the ability to deÕne your own enumerated data type. The

values of your data map onto the range 0, 1, 2, . . . n. Where n is the number of elements

minus one. You can use the object ordinal(x) to convert from the Text representation to the

positional representation. Note that an array of Enums becomes a Text array.

1-34 Principles of Operation

A Text data type is simply an arbitrary number of characters.

Principles of Operation 1-35

HP VEE uses the data types Complex and PComplex to represent complex numbers. Complex

respresents the number using a rectangular coodinate system, while PComplex (Polor

Complex) represents the number in a polar coodinate system. Note that phase (as well as all

angles in HP VEE) can be in degrees, radians or gradians. The Preferences --> Trig Mode

feature under the File menu allows you to select the angle mode.

1-36 Principles of Operation

The Spectrum data type represents waveform spectra. Note that the data is an array of

PComplex data with either start and stop frequencies or center frequency and span. The data

is mapped into the frequency domain and assumes a uniform frequency spacing.

Principles of Operation 1-37

The Waveform data type represents waveforms. The data is an array of Real numbers with a

timespan. The data maps onto the time domain and assumes a uniform spacing between data

points.

1-38 Principles of Operation

In most computer programming languages you must convert data types of two operands

before they can be operated on together. HP VEE peforms an automatic data type conversion

for you, where possible.

Each data container has a data type tag. Most objects accept any data type so it is not

necessary to make any conversion. However, occasionally you may want to operate on

dissimilar data types. HP VEE will convert the data types to match the input constraints of

the operation, or so that the operands match their data types.

Principles of Operation 1-39

You can consider data type conversion as simply a data promotion to a \higher" or more

complex data type, or a demotion to a \lower" or less complex type.

When converting data types for formula operations, HP VEE promotes whenever possible.

Note that both data types must have the same shape, if on a terminal.

When data types are demoted, \higher" data types may lose information. For example, when

converting a complex number to a real number, you would lose information.

1-40 Principles of Operation

This table shows which data types can be converted to other data types. Where the box

contains a \Y", data can be converted without data loss. Where the box contains a *", data

can be converted with the possibility of data loss. Refer to the Using HP VEE manual for

more information on data loss. Where the box is empty, no conversion can take place.

Refer to pages 3-24 and 3-25 in Using HP VEE for details on data promotion and demotion.

Note that the Int16 data type is only used for I/O. You will never use it within your models.

Principles of Operation 1-41

2

Using HP VEE Objects

HP VEE Data Objects

HP VEE provides several data objects to generate data and constants.

The Enum object permits you to create an enumerated list of items. The user then chooses one

of the items from the list. This can be done by choosing from a list of items, cycling through

the items or pushing a radio button.

The Toggle object allows the user to toggle the objects output on or oÃ.

The Slider objects (Real or Integer) lets the user select a data value by sliding up and down

a scale. You can deÕne the step values (detents) between data points on the slider.

Using HP VEE Objects 2-1

Slide|Screen Shot of Various Enum Formats

In this screen shot you can see the three diÃerent Enum object formats, list, cyclical and radio

button.

2-2 Using HP VEE Objects

Data constant objects permit you to deÕne a constant. Each of these objects outputs a data

container as described by its name. You may modify the shape of this data to be arrays.

You can also perform simple calculations within these constants, such as 10*3 or pi*2.

However, you cannot use variables within these constant calculations.

Using HP VEE Objects 2-3

Data object have some unique capabilities.

Initial Value A value assigned to the object at PreRun or Activate.

Auto Execute The object sends data when the user interacts with it. Does not require

Start or Run.

Config DeÕne Array size (or Scalar) for a data object.

Number Formats DeÕne number format for this object. (Binary, Octal, Hex, etc.)

Object Format DeÕne format of object. For example, deÕne the format of the Enum

object, cyclical, list or radio button.

Edit Values Edit the user-deÕned values of an object.

2-4 Using HP VEE Objects

The object menu allows you to interract with an object. Note that it is slightly diÃerent

between the icon view and the open view. With this menu you can:

Change the size of the object

Move it

Clone it

Set and clear breakpoints

Show the user comments about the object (Show Description)

Add Pins and Terminals

Change the object layout (such as adding a user-selectable bitmap)

Perform other object speciÕc operations

Delete the object

Using HP VEE Objects 2-5

Slide|Screen Shot of Data Constants

This screen shot illustrates using the Initial Value ConÕguration feature.

2-6 Using HP VEE Objects

Slide|Screen Shot of Data Constants

This screen shot illustrates deÕning an integer array constant.

Using HP VEE Objects 2-7

Slide|Screen Shot of Data Constants

This screen shot illustrates setting number formats for an object.

2-8 Using HP VEE Objects

Slide|Screen Shot of Data Constants

This screen shot illustrates resetting a data constant.

Using HP VEE Objects 2-9

To create data of speciÕc data types, HP VEE provides the Build objects. To retrieve data

contained within speciÕc data types, HP VEE provides the UnBuild objects.

To work with arrays, use the Get Values and Set Values objects. But Õrst be sure to allocate

an array before trying to write data to it.

2-10 Using HP VEE Objects

Slide|Screen Shot of Data Building

This screen shot illustrates reading individual datum from a Õle and writing them to an array.

Using HP VEE Objects 2-11

Slide|Screen Shot of Sliding Collector

This screen shot shows how the Sliding Collector captures a portion of a data stream.

2-12 Using HP VEE Objects

Slide|Screen Shot of Concatenator

This screen shot shows an open data container obtained by using a line probe. Note how HP

VEE concatinates text and integer data into a single container. In this case the integers were

promoted to be text.

Using HP VEE Objects 2-13

Slide|Screen Shot of UnBuilding Data

This screen shot shows an example of unbuilding a waveform into its component pieces of

data.

2-14 Using HP VEE Objects

Flow Control

The Start object initiate execution of a thread. Remember that all Start objects activate (in

no particular order) when you press Run.

The Confirm (OK) object halts execution of the thread until the user presses the OK button.

The Do object lets you specify which subthread exectutes next. The following screen shot

illustrates this point.

Using HP VEE Objects 2-15

Slide|Screen Shot of Sequence Control

This screen shot illustrates the use of the Do object. In the thread on the left, the Initialize

object will always operate Õrst. In the thread on the right you cannot be sure which will

operate Õrst.

2-16 Using HP VEE Objects

The Repeat objects let you repeatedly execute a subthread.

The Õrst set of objects repeat a bounded loop, executing a set number of times.

For Count This object executes this subthread the number of times deÕned by the count.

Note that if you use the output of the Count object that it counts from zero

(0) not one.

For Range This object executes a subthread a number of times speciÕed by a beginning

value, and ending value and an increment.

For Log

Range

This object executes a subthread a number of times speciÕed by a beginning

value, and ending value and an increment. The output values are evenly

distributed along the log 10 scale.

The second set of objects loop endlessly.

Until Break This object repeatedly executes a subthread until it encounters a Break

object.

On Cycle This object repeatedly executes a subthread at a regulary timed interval.

Using HP VEE Objects 2-17

HP VEE provides two ways to terminate a loop early.

The Next object ends the current iteration and allows the iterator to go on to the next

iteration.

The Break object ends the current and all future iterations. The iterator activates its

Sequence Out pin and stops operating.

2-18 Using HP VEE Objects

Data Flow and Branching

As you may recall, an input pin may only have one connection. However, you may

occasionally wnat to connect two outputs to one input. The Junction object does this for

you. It acts like a \Wired-OR", sending out the most recently received input data container.

If you need to use more than two inputs, simply add more data inputs to the Junction.

The Gate object is very similar to a latch. It holds its last input until its sequence in pin is

activated. If the sequence in pin is not connected, it simply sends the data out immmediately.

Using HP VEE Objects 2-19

Slide|Screen Shot of Junction Objects

This screen shot shows how a JCT object combines the data stream from several objects.

2-20 Using HP VEE Objects

HP VEE provides the If/Then and Conditionals objects so that you can test data and

branch accordingly.

The If/Then object tests according to a user-provided formula. It also allows multiple inputs

and the Else/If construct to provide multi-conditional tests.

The Conditionals are simply pre-formulated If/Then objects.

Using HP VEE Objects 2-21

Slide|Screen Shot of Gates & Conditionals

This screen shot shows how a Conditional object and Gate objects select one of two inputs

depending on the input values.

2-22 Using HP VEE Objects

These two objects provide exits. Exit Thread terminates an individual thread. Stop

terminates the execution of a model. Note that it stops the model immediately. No other

objects operate. It is equivalent to pressing the Stop button.

Using HP VEE Objects 2-23

Time Related & Miscellaneous Objects

The Delay objects puts the thread to sleep for n seconds, as deÕned by the user. After that

time the thread continues.

The Timer object measures the time between receiving two data containers. You can use this

to measure the execution time between two objects.

The Time Stamp provides the real number corresponding to the system real-time clock.

Note that the clock and timer resolution is system dependent, but generally is accurate to

1/60th of a second.

2-24 Using HP VEE Objects

The Counter counts the number of times that it receives a data container.

The Accumulator keeps a running total of the data it receives.

The Shift Register holds the previous n values. You can deÕne n by the number of output

pins on this object.

The DeMultiplexer redirects data containers to 1 of n threads. You can deÕne n by the

number of ouput pins on this object.

The Comparator compares two values, counts the number of failures and collects the

coordinates of the failures.

Using HP VEE Objects 2-25

Slide|Screen Shot of Misc. Objects

2-26 Using HP VEE Objects

Display Objects

The Alphanumeric object displays a single text value.

The Logging Alphanumeric provides a scrolling text display. The user can conÕgure the

buÃer size for the data.

The VU Meter is an analog meter display. You can add red, yellow, and green limits on the

scale.

These displays permit:

Clear at PreRun

Clear at Activate

Set Number Formats

Set BuÃer Size

Using HP VEE Objects 2-27

Slide|Screen Shot of VU Meter

Slide|Screen Shot of VU Meter

2-28 Using HP VEE Objects

There are six diÃerent graphical displays.

The XY Trace plots a two-dimensional cartesian coordinate plot.

The Strip Chart displays XY data while continuously scrolling the X and Y axis.

The Complex Plane plots a two-dimensional cartesian coordinate plot of complex data (Real

vs Imaginary).

The X vs Y Plot plots pairs of (x,y) data points.

The Polar Plot plots a two-dimensional polar plot. It includes options to plot Smith charts

and Inverted Smith charts.

The Waveform (Time) plots a two-dimensional waveform plot against time.

Using HP VEE Objects 2-29

These objects display Spectrum plots. Note that you can plot magnitude vs phase or phase vs

frequency. You can also plot magnitude vs phase on a polar plane or a Smith chart.

2-30 Using HP VEE Objects

You can customize the display objects in many ways. For multiple graphs, add more data

inputs. Clear and Autoscale can be control inputs.

Plot multiple data instances by using the Next Curve control.

You can magnify the view of the data by using the Zoom command.

Using HP VEE Objects 2-31

You can also modify the panel layout, grid type, trace color and trace texture used on the

displays.

Note that many of these functions may be added as control pins to the object.

2-32 Using HP VEE Objects

Math Objects

The Formula object accepts any HP VEE Math function including expression evaluation and

conditional tests. With this object you can deÕne any math function.

Use the Formula objects to increase the eœciency of your model. Formula objects operate

most eÃeciently since it will only execute one object instead of the many objects that would

otherwise be needed. For example, instead of using several objects to create the math

operation sin(A+(B/C)), simply type the formula into a Formula object.

Using HP VEE Objects 2-33

In addition to the Formula object, HP VEE provides some predeÕned Formula objects with

prewritten math operations. These are listed on the following slides. If you can't Õnd your

favorite math function, you can write it using the Formula object.

The following slides list all of these math functions.

2-34 Using HP VEE Objects

Using HP VEE Objects 2-35

2-36 Using HP VEE Objects

Using HP VEE Objects 2-37

2-38 Using HP VEE Objects

Using HP VEE Objects 2-39

Lab 2a|Apple Bagger

Background

Manufacturers Õll food packages using a netweight method. In other words, they Õll

containers by weight not by volume. But just for fun, a new manager wants to know how

many apples it takes to Õll a ten pound basket. Your job is to weigh and count the apples

that Õll the basket.

Task

Create a model that counts how many apples it takes to Õll a ten pound basket of apples.

Each apple weighs between 0 and 1 pound.

Suggested Objects

This model can be created with eight or fewer objects. Choose from the following objects:

Start

Until Break

Random Number

Accumulator

Real

Conditional (A>=B)

Stop

Counter

If/Then

Break

2-40 Using HP VEE Objects

Lab 2b|Testing Numbers

Task 1

Create a model that allows a user to enter a number between 0 and 100. If the number is

greater than or equal to 50, display the number. If the number is less than 50, display the

message, \Sorry!"

Suggested Objects

This model can be created with seven or fewer objects. Choose from the following objects:

Start

Integer Slider

Real

If/Then

Formula

Gate

Text

Junction

Alphanumeric

Task 2

After the model is working with seven objects, try the following:

1. Delete the Start object, leaving the user input as the Õrst object in the thread.

2. Create this model without using a Gate object.

Using HP VEE Objects 2-41

Lab 2c|Collect Random Numbers

Task

Create a model that generates 100 random numbers and displays them. Record the total time

required to generate and display the values.

Suggested Objects

This model can be created with six or fewer objects. Choose from the following objects:

Start

For Range

Until Break

Random Seed

Random Number

Collector

Set Values

Allocate Array

Logging Alphanumeric

Strip Chart

VU Meter

Date/Time

Timer

Time Stamp

Break

Hint

To improve performance, send the data to the display only once (one container) by Õrst

collecting it in a Collector object.

2-42 Using HP VEE Objects

Lab 2d|Random Number Generator

Task

Create a random number generator. Display the random numbers. Test for randomness by

displaying the numbers graphically. Provide control for the following parameters:

Maximum random number

Minumum random number

number of random numbers generated

Using HP VEE Objects 2-43

3

Virtual Sources

Virtual Source Objects

The Virtual Source objects, found in the Device menu, provide simulated function, pulse

and noise generators. The dynamic data models they generate are useful for prototyping

complex models. You have full control over the device parameters

Virtual Sources 3-1

The Function Generator provides the waveform types listed in the slide above. Note that

you can control frquency, amplitude, oÃset and phase. In addition you can select the time

interval and the number of sampling points for the waveform. Remember that the number

of sampling points determines the detail of the waveform and the processing time. Also

remember that too few points can cause aliasing and give erroneous information. HP VEE

warns you if you use too few points unless you disable the Error on Aliasing feature.

3-2 Virtual Sources

Screenshot - AM Modulation

Here is an example of one use for the Function Generator. Note that the Formula object can

add waveforms.

Virtual Sources 3-3

The Pulse Generator provides the pulse funciton. Note that you have full control of the

generator as with the function generator.

3-4 Virtual Sources

Again, you can control the time interval of the waveforem and the sampling size.

Virtual Sources 3-5

The Noise Generator provide pseudo random noise. Again HP VEE permits you to control

all the parameters.

3-6 Virtual Sources

You can also create waveform data using the Build Waveform and Build Arb Waveform

objects. You can also build waveforms by feeding the Ramp and Log Ramp math functions into

the Build Waveform object.

Virtual Sources 3-7

Lab 3a|Two Mask Test

Task 1

1. Create a 50Hz sine wave with a user-controlable amount of noise.

2. Test the noisy sine wave to be certain that it stays below the following limits:

Upper Test Mask

Time Maximum

Value

0 0.5

2.2m 1.2

7.2m 1.2

10.2m 0.5

20m 0.5

3. If the waveform exceeds these limits, mark the failing points with a red diamond.

Hint

You can change the format of the Graphical Displays from lines to dots and other graphical

markers. Look under the Traces and Scales . . . menu operation on the display object's

menu.

Notice that the Function Generator default funtion is Cosine. Click on the raised box

labeled Cosine and select the Sine function in the Select Function list box. A sine wave

works best with the mask coordinates provided in this lab.

Task 2 (Optional)

1. Create a lower set of limits.

2. Make the test repeatable and show the percent of failures.

3-8 Virtual Sources

Lab 3b|Lissajous Figures

Background

In \the good old days," back before scopes needed a trigger, engineers determined their

unknown frequencies by comparing them to a known frequency. The frequency standard drove

the horizontal sweep, while the unknown frequency drove the vertical sweep. By consulting a

table of Lissajous Õgures, the unknown frequency and phase would be determined.

Task

1. Create a model that generates and displays Lissajous Õgures.

2. Sweep the frequency ratio from 1x to 5x.

3. For each frequency ratio, vary the phase from 0 to 180 degrees.

Virtual Sources 3-9

4

UserObjects

UserObjects

UserObjects provide you with a work area within a workarea. You build models inside it that

are completely independent of the work area outside of it. In fact you can run a model inside

the UserObject without aÃecting anything else in your work area. They create a new context,

or working environment.

UserObjects 4-1

UserObjects obey all of the same rules as other objects, namely

They operate only once per thread execution (including sending out data).

They must have all data and sequence inputs satisÕed before operating.

They behave exactly like the general work area, supporting all HP VEE objects and multiple

threads.

4-2 UserObjects

UserObjects are quite helpful in the development of HP VEE models. They permit you to

encapsulate groups of objects that provide a function into a single object, thus uncluttering

the work area. This also helps to document the model and guide understanding the model

behavior.

This also facilitates \top-down" design. You can nest an unlimited number of UserObjects.

So create your model as a block diagram. Then simply Õll in each UserObject with the

necessary functions.

You can also create a library of shared UserObjects.

UserObjects 4-3

The UserObject operates in the following fashion:

It activates only when all data and sequence inputs are satisÕed, even if one of its multiple

internal threads only requires one of the data inputs. All internal threads activate at once.

The data inputs act as Start objects for each thread. It then follows all of the standard

propogation rules.

Each object executes in the time-sliced manner describe previously for multiple threads.

When a thread is activated internally by a Start object within the the UserObject the

data remains inside the UserObject and does not propagate outside. Data will only

propogate out of a UserObject when it is activated by its surrounding context.

4-4 UserObjects

Here is an example of how the propogation engine shares time between parallel threads, where

a UserObject contains one of the threads.

Note that the propogation engine treats each object inside the UserObject as a primitive

object and executes them one at a time. In this example, the objects execute in alphabetical

order of the labels .

UserObjects 4-5

A UserObject terminates operation for the following reasons:

All threads completed execution.

Thread execution encounters an Exit UserObject device.

A thread causes an untrapped error.

When the UserObject terminates operation it activates only its data output pins that

received data from within the UserObject. It then activates its sequence out pin.

4-6 UserObjects

As mentioned before, UserObjects terminate operation when it encounters an Exit

UserObject. At that point

All threads in the UserObject terminate operation.

Output pins that received data, activate.

Sequence out activates.

UserObjects will also stop operation when they ecounter an Escape object. This provides a

user-generated error condition. At that time

All threads in the UserObject terminate operation.

No output pins activate.

The Error pin (if one exists on this UserObject) generates the escape code from the

Escape object. If there is no Error pin, an error dialog box appears.

Note that you can allow error messages to propagate up through nested UserObjects.

UserObjects 4-7

There are two methods of creating UserObjects. In the Õrst method, you select your desired

objects, create a working function and then encapsulate it in a UserObject.

The advantage to this method is that all connections become data pins automatically. It also

allows you to prototype in the main work area.

This method also presents some disadvantages. Encapsulating a function often creates

redundant data pin connections which must be deleted. Also, ill-conceived object selection

and the misunderstanding of how an object operates often yeilds a non-funcioning

UserObject. \It just doesn't work like it did before."

We'll illustrate this with the following slide.

4-8 UserObjects

In the model at the top, the iterator generates Õve pieces of data. But encapsulating the

iterator in a UserObject produces only one datum. Remember that objects only operate once

and only provide one data container.

UserObjects 4-9

Here you can see the beneÕts of Structured Modelling.

Its easier to verify that the model is logically correct.

Its easier to see and understand the model and its structures.

Its much easier to change and maintain the model.

Its easier for peers to reveiw the model.

4-10 UserObjects

Lets reveiw the \Top-Down" design methodology by refering to the above slide.

DeÕne the problem, including all of its contraints.

Identify a logical order and sequence for each of the tasks within the problem.

DeÕne each subtask within each task. Note how well this Õts into HP VEE's paradigm of

nested UserObjects.

Continue deÕning each subtask into manageble units.

Now implement each of these tasks as a UserObject within HP VEE.

UserObjects 4-11

Here's how you do top-down design with UserObjects.

Start with empty UserObjects. Use them as stubs or empty boxes.

Build the model that provides basic functionality.

Add data inputs and outputs

Test each UserObject individually.

Note that HP VEE does not support recursion. When you need multiple occurances of an

object you must make multiple copies.

4-12 UserObjects

Screenshot - Top-down Design

Here is an example of a top-down design model.

UserObjects 4-13

Lab 4a|Damped Sinewave Generator

Task 1

Create a UserObject that generates a damped sine wave. The object's inputs are:

Initial Amplitude

Damping Factor

Frequency

Timespan

Number of Points

Its output is a waveform.

Hint

Remember that the formula for a exponentially decreasing term involves the form e-kt. Also,

HP VEE provides the exp(x) object under the Math menu to perform the exponentiation

function.

Note that HP VEE has an object that generates a log waveform for you.

(Math --> Generate --> logRamp)

4-14 UserObjects

Lab 4b|Random Noise Generator

Task

1. Create a UserObject that generates a random noise waveform.

2. Display the noise waveform and the noise spectrum.

3. Provide control for the following parameters:

a. Amplitude

b. number of points

c. Interval (timespan)

d. DC oÃset

4. Compare its performance to the built-in Noise Generator.

UserObjects 4-15

5

User Interaction

User Interaction

Lets look now at some features that HP VEE provides that help you interract with people

using your model.

We'll discuss:

User Inputs How the user enters data.

Customization How you can customize the manner in which users interact with your

model.

Panel Views A custom interface for your users.

Secure Models You can secure your model so that others cannot alter it.

Combine Panels

and UserObjects

You can attach custom panel views to speciÕc UserObjects.

User Interaction 5-1

The user enters data into a model by using the Enum, Toggle, Slider, and Constants objects.

These objects permit you to prompt the user for inputs. These objects also allow Auto

Execute, which automatically propogates the data to other objects. Note that you don't need

to stop and restart the model to enter data. It can be entered while the model is running.

5-2 User Interaction

You can customize your model in many ways such as:

Changing the size of objects to denote importance or to make them easier to use.

Changing display features and colors.

Anotating your model with user instructions or documentation for maintenance purposes.

You can make annotations by:

Using Notepad objects write notes to yourself in the work area.

Editing object titles for further clarity of function or purpose.

Writing in the Show Description area of each object.

Changing or adding Bitmaps to the icon view of the object.

User Interaction 5-3

The panel view of a model provides another means of customizing your model. You choose

which objects appear on the panel. The panel view does not show the interconnecting lines

between objects. By using a panel view, you simplify and clarify the model seen by the user.

5-4 User Interaction

With Panel Views you display only the objects necessary to operate your model. You can

also secure your model behind the panel, thus preventing the user from altering the model.

Again, the Panel View provides an easy to read interface for complex models. Panel Views

also enhance performance by decreasing screen interaction.

User Interaction 5-5

So how do you create a Panel View?

1. Create the model and verify that it works as desired.

2. Select the objects that you want to appear on the Panel View. These should be objects

that the user interacts with or that display information for the user.

3. Select Add to Panel from the Edit menu.

4. Move and size the objects on the panel View to maximize its eÃectiveness for the user.

5. Use Panel and Detail buttons on the title bar to move between views.

Remember that changes to the Detail View do not aÃect the Panel View.

5-6 User Interaction

Note that fewer choices appear on the main menu bar in the panel view. This prohibits the

user from altering the operation of the model.

When you delete an object from the detail view, its corresponding object on the panel view is

also deleted.

HP VEE does not share appearance characteristics between the panel and detail views. You

can change the size or location in one without aÃecting the other. However, it does share the

characteristics:

Initial Values

Clear Values

Number Formats

Scaling

etc.

User Interaction 5-7

Securing a panel prevents the user from seeing the detail view. To secure a panel perform the

following steps:

1. Create the model and the panel.

2. Select the Secure function from the File menu.

3. Save the source Õle.

4. Save the secured Õle using a diÃerent Õle name.

5-8 User Interaction

Remember that a UserObject is an independent work area within the main work area or

another object. Each UserObject allows you to create a panel view associated with that

individual object. As before, select the objects that you want to appear on the panel view,

then select Add to Panel from the UserObject's object menu or the pop-up Edit menu inside

the UserObject work area. Add to Panel is context sensitive.

User Interaction 5-9

The UserObjects also implement a unique feature with respect to the panel view. You can

display the panel only while the UserObject is operating. To do this, select Show Panel

on Exec from the UserObject's object menu. Now the panel view associated with that

UserObject appears in the work area when the UserObject is operating.

5-10 User Interaction

When the UserObject operates, the panel view appears in the work area. It disappears when

the UserObject Õnishes. Therefore, to use this feature eÃectively you should add a Confirm

(OK) object to the panel view to pause execution until the user responds.

User Interaction 5-11

Lab 5|Create a Custom Dialog Box

Task

Create a UserObject which interacts with the operator. Use two inputs, A and B. If A and

B are equal, send A to the output. If A and B are unequal, prompt the operator to select

either A or B as the information displayed. If the operator does not choose within 10 seconds,

generate an error.

Hint:

Each panel that \pops up" needs to be a separate UserObject. UserObjects may be nested!

Also, remember to enable, Display on Exec on each UserObject where you want the Panel

View to pop into the workarea.

5-12 User Interaction

6

Application Development Techniques

Application Development Techniques

HP VEE helps you create solutions to your programming problems quickly and easily. You

spend more of your time actually deÕning and describing your problem, rather than trying to

Õnd syntax errors or missing semicolons. You will also Õnd that your development time is

much shorter since there is no edit-compile cycle. You simply build your model on the screen

and then execute it. The HP VEE paradigm also provides an inherent user interface.

Application Development Techniques 6-1

Developing models in HP VEE requires a paradigm shift on your part. You need to set aside

for the moment all of the traditional programming that you have done in the past.

Change the way you think about the problem from \what happens next" to \what do I need

to do to the data". Think in terms of Data Œow instead of Control Œow. Operate on blocks of

data instead of individual datum.

Remember the block diagrams, sketches and Œow charts that you used to originate ideas and

designs. Use these same ideas to generate your HP VEE model.

One picture is worth a thousand lines of code.

6-2 Application Development Techniques

Remember to think spatially. An HP VEE subthread is the basic unit of your model. Each

block in your block diagram becomes a UserObject in the HP VEE model. Here we illustrate

how you structure subthreads for sequential and nested loops.

Application Development Techniques 6-3

At this point, remember the points of top-down design which we discussed previously.

DeÕne the problem, including all of its contraints.

Identify a logical order and sequence for each of the tasks within the problem.

DeÕne each subtask within each task. Note how well this Õts into HP VEE's paradigm of

nested UserObjects.

Continue deÕning each subtask into manageble units.

Now implement each of these tasks as a UserObject within HP VEE.

6-4 Application Development Techniques

Another consideration for the model developer is the user interface. As with standard

programming, you can create complex and useless interfaces with HP VEE. However, if

remembering little tricks like, Show on Execute with Panel Views and careful, logical and

orderly spatial layout of your model greatly enhance the usability and quality of your model.

To optimize performance remember:

Iconify as many objects as possible. Displays on the objects require more processing time to

update.

Combine as many calculations as possible into a single Formula object. This reduces the

actual calculation time.

Use HP-UX Escapes to enhance performance with compiled library programs.

Application Development Techniques 6-5

As you look at your models, you will Õnd that some models are simply \Visual Calculations",

simple straight forward models.

However, larger models and applications require more complex models. By applying the

principles discussed earlier, with careful thought with respect to robustness, the user interface

and error handling you will create useful models quickly and with ease.

6-6 Application Development Techniques

You also need to consider the beginnings and endings of models.

Remember that Run, Start and Auto Execute aÃect models diÃerently.

How will you handle user interaction? Entry boxes, Toggle objects, Confirm (Ok) objects.

How do you terminate the model? Will it exit cleanly or leave the user wondering what's

happening?

Application Development Techniques 6-7

Screenshot sieve

Here's an example of a well designed HP VEE model versus a model designed using an old

programming paradigm. Notice that in this model large amounts of data Œow between

each object in a single container. The model on the next page shows a model using the old

programming paradigms.

6-8 Application Development Techniques

Screenshot sieve2

This model operates on each individual datum. Note the diÃerence in execution speed as well

as the additional complexity of the model. The model on the previous page uses one Formula

object to generate a container of data for comparison. This model generates each datum, one

at a time.

Application Development Techniques 6-9

To help you see the diÃerences and practice developing an application, lets look at the

Fibonacci Sequence model, a classical programming problem.

The Fibonacci sequence is: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

This is simply the sequence that occurs by adding the previous two numbers together to

get the next number in the sequence. With \old-style" programming, we use variables and

subscripts i-1 and i-2. But with HP VEE you simply use a feedback loop that keeps track of

the previous values.

Just some further notes. You will only Õnd feedback in subthreads driven by iterating objects

(Repeat). And don't try to think of this in the old n-1 paradigm. Its a new way of thinking

for programs. It harks back to the old days of engineering.

6-10 Application Development Techniques

Lab 6a|Model Building Techniques

Background

The Fibonacci Number sequence is a series of numbers such that any given number in the

sequence is the sum of the last two numbers. Hence, the Õrst 10 Fibonacci numbers are:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55

Task

Create a model that computes Õbonacci numbers. The model requires just one input

parameter|how many numbers in the sequence to compute. The output is in the form of a

one-dimensional array.

Suggested Objects

Important objects to the solution are:

+ object

Shift Register

Collector

Junction

Hint:

Use data feedback loops.

Application Development Techniques 6-11

Lab 6b|Model Building Techniques

Task

Create a model that generates an array of random numbers, each of which is between 1

and 10. The sum of all the numbers in the array should be less than or equal to 100. This

problem illustrates the use of the Until Break iterative loop.

6-12 Application Development Techniques

7

I/O Transactions and Data Formatting

I/O Transactions and Data Formatting

HP VEE uses transactions and data formatting to provide:

\Standard I/O" facilities or communication with unix stdin and stdout.

Ability to read and write Õles.

Access to the printer spooler.

Ability to format strings.

I/O Transactions and Data Formatting 7-1

All of the communications paths between HP VEE and other HP-UX resources go through

transaction objects. For example, this slide shows a To String transaction object.

Note that each object may have multiple transactions contained within it, ie., multiple reads

and writes.

Also note that each transaction may handle multiple data items. For example you can read in

a single coordinate pair, or an array of coordinate pairs as a single transaction.

7-2 I/O Transactions and Data Formatting

Screenshot - To Printer

This screen shot illustrates the To Printer object. You can open each transaction to modify

it for your particular operation.

I/O Transactions and Data Formatting 7-3

You can specify the following actions in a transaction box:

READ|Read data into HP VEE from another resource

WRITE|Write data out of HP VEE to another resource

EXECUTE|Performs operations on the resource

WAIT|Waits the speciÕed number of seconds before performing the next transaction

You can specify the following data encodings in a transaction box:

TEXT|(Read or Write)

BYTE|(Wrie Only)

CASE|(Write Only)

BINARY|(Read Only)

BINBLOCK|(Read Only)

CONTAINER|(Read Only)

We'll explain these in detail in just a moment.

You can specify the following data formats in a transaction box (with full control of Õeld

width and justiÕcation):

REAL

INTEGER

HEX

OCTAL

7-4 I/O Transactions and Data Formatting

Screenshot - HP-UX Escape

This screen shot illustrates selecting an action for an HP-UX Escape object.

I/O Transactions and Data Formatting 7-5

Screenshot - From StdIn

This screen shot illustrates reading text from a From StdIn object.

7-6 I/O Transactions and Data Formatting

You can specify the following actions in a transaction box:

READ|Read data into HP VEE from another resource

WRITE|Write data out of HP VEE to another resource

EXECUTE|Performs a device-dependent operation on the resource

REWIND Õles to the beginning

TRIGGER HP-IB command (HP VEE-Test only)

WAIT|Waits the speciÕed number of seconds before performing the next transaction

FOR INTERVAL inserts a time delay

UNTIL SPOLL MASK waits for the speciÕed serial poll condition on HP-IB (HP VEE-Test

only)

SEND|Write a low level HP-IB control or data sequence (HP VEE-Test only)

I/O Transactions and Data Formatting 7-7

You can specify the following data encodings in a transaction box:

TEXT|A data stream of ASCII characters. Data types are constructed character by

character. For example, the data stream "1.23456" EOL becomes the REAL value 1.23456.

BINARY|A data stream of bytes which match the HP VEE internal representation. For

example, a REAL value will have the IEEE 754 64-bit data format, which uses 8 bytes.

BYTE|A data stream consisting of one byte per variable.

CASE|A data stream that behaves like an enumerated type. For example, the statement

CASE x OF "Zero", "One", "Two" will select the string Two if x equals 2.

Note that this works only for WRITE transactions.

7-8 I/O Transactions and Data Formatting

BINBLOCK|A data stream sent as an IEEE-488.2 indeÕnite length block. This data stream

consists of the following elements:

character

digit specifying the length of the length Õeld

length field specifying the number of bytes that will follow

data

For example, #12AB deÕnes, one length digit, length of two, and data equal to AB.

Another example, #2101234567890 deÕnes, two length digits, length of ten, and data equal

to 1234567890.

I/O Transactions and Data Formatting 7-9

CONTAINER|A data stream in HP VEE descriptive format.

For example:

(INT 32

(numdims 1)

(size 2)

(data 1 2)

)

7-10 I/O Transactions and Data Formatting

Screenshot - Container

Here's what a container looks like, using Line Probe. Notice that it lists the data type, shape

and mappings as well as listing the actual data.

I/O Transactions and Data Formatting 7-11

Screenshot - HP-UX Escape TEXT

This screen shot illustrates selecting a write encoding data format.

7-12 I/O Transactions and Data Formatting

These are the TEXT formats available for a WRITE action in a transaction box. You use them to

\beautify" your output data. Note that very little type checking or conversion takes place. It

simply formats your data.

DEFAULT All data is in a free-Õeld notation. It includes all characters of string data or all

signiÕcant digits of numeric data.

STRING All data is in a free-Õeld notation, as in the DEFAULT format. However, with

this format you can control the Õeld width and justiÕcation (left or right).

QUOTED

STRING

This format is the same as STRING format, except that all data is enclosed in

double quotes. It also handles data with embedded quotes.

REAL All data is in a free-Õeld notation, as the above formats. You can control the sign

preÕx and number of signiÕcant digits. You can also designate FIXED, STANDARD,

or SCIENTIFIC notation formats for the data.

COMPLEX This format appears the same as two REALs separated by a comma.

PCOMPLEX This format appears the same as COMPLEX, except that the angle value is preceded

by a @.

I/O Transactions and Data Formatting 7-13

Screenshot - To Printer

This screen shot illustrates selecting a TEXT encoding data format.

7-14 I/O Transactions and Data Formatting

You also specify TEXT formats for READ actions. HP VEE then matches the input data stream

to the required values and types. It enforces the data conversion speciÕed. The object's

output pin then takes on the type and shape of the data.

CHAR This format reads the speciÕed number of characters and stores it as a string.

TOKEN This format allows you to read several strings from a data stream.

SPACE DELIM speciÕes that a space separates each string.

INCLUDE CHARACTERS speciÕes that any character not speciÕed in the set

separates each string.

EXCLUDE CHARACTERS speciÕes that any character in the speciÕed set separates

each string.

STRING This format reads all characters up to the number speciÕed.

I/O Transactions and Data Formatting 7-15

HP VEE uses a Number Builder to extract a numeric value from textual data when you

specify a numeric format for READ action data. The number builder works in the following

manner:

1. Skip data until it encounters a numeric character.

2. Build value from data until it encounters an EOL or non-numeric character.

3. Build the Õnal number.

Valid numeric characters are:

OCTAL: 0-7

HEX: 0-9, a-f, A-F

INTEGER: 0-9

REAL: +, -, 0-9, e, E, . (decimal point)

7-16 I/O Transactions and Data Formatting

The text formats for numeric READ actions are:

OCTAL build an Int32 from received numeric data.

HEXADECIMAL build an Int32 from received numeric data.

INTEGER build an Int32 from received numeric data.

REAL build a Real (64-bit) from received numeric data.

COMPLEX build two Reals (64-bit) from received numeric data.

PCOMPLEX build two Reals (64-bit) from received numeric data. Remember to specify

RAD, DEG, or GRAD to interpret the angle correctly.

COORD build the speciÕed number of Reals (64-bit) from received numeric data.

I/O Transactions and Data Formatting 7-17

8

Files and Standard I/O

Files and Standard I/O

HP VEE provides objects for you to communicate data with the \outside world". That way

you can share information with other programs, or simply archive data generated by your

model.

Files and Standard I/O 8-1

Here are some thing to remember about HP-UX Õles:

They are typeless. The program reading or writing the data performs all data formatting.

They provide ONLY sequential access, not random access to their contents.

The operating system buÃers all Õle transfers to improve performance.

Files are extensible, meaning that they grow in size as require to hold.

8-2 Files and Standard I/O

When you Use Files remember:

HP VEE opens each Õle once per direction (READ or WRITE).

The Õrst Õle object that operates after PreRun opens the Õle.

HP VEE closes each Õle when the model Õnishes.

File objects either overwrite or append data to existing Õles.

To File and From File objects maintain separate Õle pointers. However, you should note

that:

All To File objects that use the same Õle share one Õle pointer.

All From File objects that use the same Õle share one Õle pointer.

A REWIND command from a From File object does not aÃect the Õle pointer of a To File

object using the same Õle.

Files and Standard I/O 8-3

To File and From File support two EXECUTE commands to help you work with Õles:

REWIND Move Õle pointer to beginning of Õle. All further READ or WRITE operations

will be from that point. Note that you cannot use REWIND on a Õle opened in

APPEND mode.

CLEAR Resets Õle to zero length, erasing all old data. Note that you cannot use this

command with a Õle opened in OVERWRITE mode.

8-4 Files and Standard I/O

HP-UX associates three standard communications paths with each process that it runs. These

paths are:

Standard Input

(stdin)

Provides input data to the process. Normally associated with the

keyboard.

Standard Output

(stdout)

Receives output data from the process. Normally associated with the

display.

Standard Error

(stderr)

Receives error information from the process. Normally associated with

the display.

Files and Standard I/O 8-5

HP-UX shells attach these standard I/O (\stdio") paths to a child process. You can redirect

data to the child process from Õles or other sources through these paths.

The command /bin/cat <file1 >file2 2>errs sends data to the program /bin/cat from

Õle file1, receives data from cat and writes it into file2 and writes any errors in the Õle

errs.

Remember that stdio is always buÃered. You cannot write one character at a time. You

must send an entire line of data terminated with an EOL character.

8-6 Files and Standard I/O

When you run HP VEE from a window, HP-UX attaches stdio to that window. Therefore,

the To StdOut object writes data back to the window, and the From StdIn object reads data

from that window.

Note When you run HP VEE in background mode in HP-UX, there is no

connection to standard I/O. In other words, the To StdOut and From StdIn

objects will not operate.

Files and Standard I/O 8-7

Standard I/O proves to be very useful when prototyping HP VEE models. The model can

write data to the invoking window. You can type data on the keyboard for entry into HP

VEE. You can also regain control of HP VEE with ÄCtrl-CÅ when it hangs.

You could also call HP VEE from another program. For example,

veeengine -r veeprogram < datafile | sort | more

calls HP VEE, starting the model veeprogram. It then sends in data from datafile.

8-8 Files and Standard I/O

Screenshot - Echo with stdio

Here is an example of the use of standard I/O.

Note From StdOut doesn't work if you run HP VEE in background mode on

HP-UX.

Files and Standard I/O 8-9

Lab 7a|Communicating with HP VEE

Task

Build a model that sends an initial prompt to the invoking terminal, then echoes back each

response in quotes. Have this model read and echo continuously until the word bye is entered.

Hint:

Use veetest -r [LABNAME] -iconic

8-10 Files and Standard I/O

Lab 7b|Using Files for Fun & Profit

Background

Knowing that you are all highly motivated, patriotic, taxpaying, loyal employees, we thought

that you'd like to plot your proÕts for the last 30 years. We've provided a set of hypothetical

proÕt percentages in a Õle called /labs/profit.dat. Read the data from the Õle and plot

it on your display. Since you'd also like to know where to invest your money, you also want

to calculate a Õve year moving average of this data. Remember, data in the Õle is individual

percentages for each year. The data has the format of YEAR PERCENTAGE, for example

the 1990 data would be 90 4.33.

Tasks

Build an HP VEE model that:

1. opens the Õle profit.dat

2. reads all of the data from the Õle

3. calculates a Õve-year moving average of the data

4. transforms the data into a \graphable form"

5. plots the data and moving average on a display.

Hints

Read the data from the Õle as a COORD data type.

Use the movingAvg object (found under the Data Filtering menu in the AdvMath menu.)

Files and Standard I/O 8-11

Lab 7c|To File

Task

Create an HP VEE model to:

1. Generate 100 random numbers along with their index as follows:

1: xxx

2: yyy

3: zzz

.. etc. ..

2. Write the time of day at the beginning of a data Õle.

3. Write these random numbers to the Õle.

4. Calculate the mean and standard deviation of the random numbers.

5. Append this data to the end of the data Õle as:

Mean: mmm

Std. Dev: sss

8-12 Files and Standard I/O

9

HP-UX Escapes

HP-UX Escapes

HP-UX Escapes give you the means to use HP-UX commands, shells and other programs with

HP VEE. With this object you can:

Reuse existing code. Call programs written in C, Pascal or other programming languages.

Call libraries of optimized programs, and routines

Obtain system information from HP-UX.

You can send and receive data from a single HP-UX Escape object. This object uses the

transaction box syntax that we saw in other other I/O objects previously. HP-UX Escape is

similar to the To/From Stdio objects. HP-UX Escape calls the program as a child process

of HP VEE. The program receives data and sends data through its standard I/O channels,

stdin, stdout and stderr.

HP-UX Escapes 9-1

You can call the child process through a shell or directly from HP VEE. By calling through a

shell you have the advantage of being able to interpret metacharacters such as *. You can also

set up pipes or redirection.

However, by calling through a shell you also have the added overhead of another process

execution time. It also increases the time need to start the process, since you read the .*rc

and .profile Õles to start an additional process for the shell.

9-2 HP-UX Escapes

Screenshot - HP-UX Escape Select Shell

This screen shot shows how you can select one of three shells to use with the HP-UX Escape

object.

HP-UX Escapes 9-3

When do you Wait for child exit? And what does that really mean? When do you want to

exit?

Wait for child exit: YES

HP VEE starts a new process each time it activates this HP-UX Escape object.

HP VEE executes all of the transactions contained in the HP-UX Escape object.

HP VEE then waits for the new process to terminate. The process must terminate for the

HP-UX Escape object to complete operation.

Wait for child exit: NO

The process remains active after the HP-UX Escape object terminates.

Repeated activations of an HP-UX Escape do not need to restart a process.

The called process must be designed to cooperate with the HP-UX Escape object. It

should be a continuous loop with no unexpected terminations.

HP VEE restarts the called process as needed after a PreRun.

Or more simply stated:

Use Wait for child exit: YES when communicating with a forked shell or shell script.

Use Wait for child exit: NO when communicating with a compiled program.

9-4 HP-UX Escapes

Here are some things that you should remember when working with HP-UX Escapes.

You must either disable or Œush the buÃers, otherwise, READ actions could hang. This is

diœcult to do with shell scripts. In C programs use the code

setbuf(stdout, NULL)

or

fflush(stdout)

HP VEE Œushes its WRITE buÃers before each READ action and when it Õnishes its last

transaction. Note that HP VEE uses buÃered writes and reads. Therefore, everything must

be done with complete lines of data, not single characters.

HP-UX Escapes 9-5

Lab 8|Using HP-UX Escape to Unpack Data

Background

Binary data from an HP 3852 High Speed DVM has been stored in a Õle (/labs/3852data)

of indeÕnite length. (You always wondered what anyone did with gigabytes of continuous

100KHz data. Well, here it is!)

You have a c program (/labs/unpack.c) that accepts one word of data from stdin and sends

one Real voltage to stdout.

Task

1. Compile the unpack.c program.

2. Create a model to read ALL of the data in the /labs/3852data Õle.

3. Convert the data to voltage using unpack.

4. Plot the data to a strip chart for inspection.

You may alter the c program to give the best performance.

Hints

Use Read BINARY a INT16 to read data from the Õle.

Use Write BINARY a INT16 to write data to unpack.

Change num=1 to reduce the overhead in unpack.c.

Add an indeÕnite loop and change Wait for EXIT to further improve throughput.

To compile a c program, use the the following command,

cc <file_name.c> -o <file_name>

9-6 HP-UX Escapes

10

Configuring & Customizing HP VEE

Configure & Customize

This slide lists the \Recommended ConÕgurations" for your computer system hardware.

Remember that these are minimum recommendations. For better performance, a faster CPU

and disk drive and more RAM always help.

Configuring & Customizing HP VEE 10-1

The Õlesets used by update are listed here just for your information. The installation process

takes care of this for you.

10-2 Configuring & Customizing HP VEE

These are the actual Õles used by HP VEE. Those of most interest to you are the examples

directory which contains many example HP VEE models. Browse through this directory and

look at some of this models at your leisure.

Another very useful directory is the ./lib directory, which contains many useful UserObjects

or other small models which you can merge into your models.

Configuring & Customizing HP VEE 10-3

HP VEE uses several Õles to remember your customization features.

.veeio contains information on your instrument conÕguration.

.Xdefaults contains information for the Xwindows system.

.veerc contains your preferences for HP VEE setup.

10-4 Configuring & Customizing HP VEE

Remember, that when you're setting up your system, you must install Xwindows and the

drivers for all of the interfaces that you might access. You also need to allocate suœcient swap

space on your disk drive. Each HP VEE process requires at least 6 Mbytes of swap space.

Configuring & Customizing HP VEE 10-5

HP VEE permits several command line options when calling it. This slide lists the command

line options. Note that typing veetest -help will print these command-line options on your

terminal.

Remember that you can invoke HP VEE across a network, using a PC or an Xterminal as a

display device using the -display displayname option.

10-6 Configuring & Customizing HP VEE

You can also use the X11 defaults Õle to help you customize your HP VEE work environment

color and fonts. This slide lists the command to control the window manager decoration

(window border) and geometry.

Configuring & Customizing HP VEE 10-7

Finally, within the HP VEE File --> Preferences menu selection, you can select

several preference and configuration items, such as the Trig Mode angle preference

(degrees, radians, or gradians) and number display formats.

You also specify the printer conÕguration, spooling, color, orientation, etc.

10-8 Configuring & Customizing HP VEE

11

Instrument Control Interfaces

Instrument Control Interfaces

Computers now use many diÃerent interfaces to connect to various peripherals and

instruments. We'll discuss the three most common for instrument control, HP-IB (IEEE 488),

RS-232 and GPIO.

Instrument Control Interfaces 11-1

An Introduction To IEEE 488.2

In this Õrst section we do a quick overview of the IEEE 488 standard. We will also discuss a

newer standard accepted by the IEEE in June, 1987, IEEE Standard 488.2.

11-2 Instrument Control Interfaces

First, lets look at the objectives of IEEE 488.

It deÕnes a general purpose, limited distance, digital interface. It deÕnes the \device-

independent" mechanical, electrical and functional aspects. It speciÕes and deÕnes

terminology used in describing the interface.

It permits diÃerent manufacturers to interconnect equipment.

The devices can communicate without sending the messages through a control device.

There are minimal restrictions or deÕnitions on device performance characteristics. In fact,

the performance restrictions only apply to the interface.

The interface uses an asynchronous handshake system with a very wide range of data transfer

rates. It will work with slow and fast devices.

Finally it provides a relatively low cost interfacing system.

Instrument Control Interfaces 11-3

Here are the bus lines deÕned by IEEE 488.1:

Data Lines

DIO1

DIO2

DIO3

DIO4

DIO5

DIO6

DIO7

DIO8

Byte Transfer Lines

DAV|Data Valid

NRFD|Not Ready For Data

NDAC|Not Data Accepted

General Bus Management Lines

ATN|Attention

IFC|Interface Clear

REN|Remote Enable

SRQ|Service Request

EOI|End Or Identify

11-4 Instrument Control Interfaces

Now lets look at the Key SpeciÕcations of IEEE 488.1.

There can be a maximum of 15 devices connected together by IEEE 488.1 That includes the

controller. They can be connected in a star or linear fashion, or a combination thereof. It uses

a total of sixteen signal lines, eight data lines, three handshake lines and Õve bus management

lines.

Data is transfered in a \Byte Serial, Bit Parallel" fashion, namely, entire bytes of data are

transfered at a time.

When connecting a system together, the maximum length of cable allowed is 2 meters per

device, with a total of 20 meters maximum in the total system.

The system is designed for a maximum 1 MegaByte per second data transfer rate.

Each device within the system is assigned a unique address. There are thirty one primary

addresses and nine hundred ninety-two secondary addresses available.

There is also a provision to pass control amoung the various devices in the system.

Finally, it deÕnes two types of electronics for the interface, open collector TTL or Schottky

Tristate.

Instrument Control Interfaces 11-5

IEEE 488 also deÕnes four basic bus device functions.

A LISTENER device receives data oÃ of the bus, by performing the handshake operation.

A TALKER device places data on the bus and initiates the handshake operation.

The CONTROLLER (the controller in charge at this time) assigns who is a talker and who is

a listener. Note that there may be more than one listener at a time.

The SYSTEM CONTROLLER can clear the bus, and put devices in Remote Mode. There

can only be ONE System Controller in a measurement system, but there can be many

controllers. However, there can only be one controller in charge at a time.

11-6 Instrument Control Interfaces

IEEE 488 also deÕnes the device capability subsets. The devices may use all, part, or nothing

out of the total set of capabilities. Each subset is carefully deÕned.

The source and acceptor handshakes allow the device to send and receive bytes on the bus.

However, this does not mean that talker and listener capabilities exist.

Talker capability subsets include the ability to source data, respond to a serial poll, talk only

and unaddress on \My Listen Address".

Listen capability subsets are similar, ability to accept data, listen only and unaddress on \My

Talk Address".

Service Request is all or nothing. Either you can pull the SRQ line or you can't.

Remote/Local again is an all or nothing subset. In addition, there is an option to not include

Local Lock Out. As you recall, Local Lock Out prevents the user from re-enabling the device

front panel with a return-to-local button on the device.

With Parallel Poll, you can have no capability, local conÕguration or remote conÕguration.

The diÃerence being, whether it can be programmed by the controller.

Device Clear is again, all or nothing with the option of omitting Selected Device Clear.

Device Trigger, all or nothing.

Controller Subsets are very complex. IEEE 488.1 deÕnes 29 of them. Essentially, it covers

the ability to be system controller, clear the interface and take charge, send remote enable,

respond to service requests, pass control and those sorts of things.

Finally, Open Collector or Tristate bus driver electronics.

Instrument Control Interfaces 11-7

Again, IEEE 488 devices each have a unique bus address. Devices can be connected in a linear

fashion as shown here or in a star conÕguration or some combination.

That's ALL that IEEE 488.1 deÕnes. Anything else that you understand to be IEEE 488 is

something that an individual manufacturer has added to their implementation of 488.

11-8 Instrument Control Interfaces

IEEE 488 does NOT deÕne:

Status Reporting. It does deÕne a Status Byte and bit 6 within that byte. But, its up to each

device designer to decide what data is reported in that byte, and what each bit means.

Data Coding and Formats. IEEE 488 simply states that any commonly recognized binary or

alphanumeric code may be used. The ASCII charts that you may have seen that include the

commands and addresses for IEEE 488 are only used for the convenience of the user. They are

not part of the Standard. Therefore, you can represent data in anyway that you like.

Minimum Required Capability. Devices that conform to IEEE 488 can be anything from a

Listen Only printer to a full blown computer acting as system controller. Infact, there could

be devices that simply implement the handshakes.

Message Protocol. IEEE 488 only deÕnes how to pass one byte from one device to another.

What do you do if you are interrupted in the middle of a data transfer? What if a device

doesn't terminate its data the way another device wants it to terminate? What does a device

do when its buÃers are full and the controller is trying to send it another device command?

IEEE 488 does not deÕne anything of this nature. Each device designer gets to make these

decisions. As you know by experience, this doesn't always work.

Instrument Control Interfaces 11-9

In an eÃort to standardize the data formats and codes the IEEE deÕned the IEEE 728

Standard. Notice, that this is a RECOMMENDED standard, not a required standard.

It deÕned data messages of various types, data headers and separators. However, it was

loosely deÕned and left the designer with way to many choices. It was wide open to personal

interpretation.

11-10 Instrument Control Interfaces

Another example of the diœculties encountered when using IEEE 488 is Device Clear. What

should a device do when it receives the DCL command? According to the standard it \returns

to a pre-deÕned, device-dependent state." Well, that leaves the Õeld wide open. The device

designer can decide to do anything that appears to be good for him. Some devices clear their

I/O buÃers. Other devices change the function state of the device, setting it to do a totally

diÃerent function. Others do a complete self-test and reset.

Instrument Control Interfaces 11-11

In summary, here are some of the problems encountered when you use IEEE 488.

There is no required minimum set of capabilities.

IEEE 488 does not deÕne data formats or codes. IEEE 728 gives you too many choices.

Other than transfering one byte, it does not deÕne a message protocol.

IEEE 488 does not deÕne a set of common commands and some of the bus commands deÕned

by it leave too much room for interpretation.

IEEE 488 does not deÕne a status reporting structure other than implementing the SRQ bit in

the Status Byte.

11-12 Instrument Control Interfaces

To resolve these problems, the IEEE formed Committee 981. This commitee, made up of

representatives from both instrument manufacturers and purchasers, drew up a new standard

to be used in conjunction with IEEE 488. Since it was very closely tied to 488, rather than

giving it a new number they gave it a suœx, IEEE 488.2 and renamed IEEE 488 to 488.1. In

addition, they obsoleted IEEE 728.

Instrument Control Interfaces 11-13

So what does IEEE 488.2 deÕne? In a nutshell, it deÕnes a required minimum set of interface

function capabilities. These required capabilities deÕne that every device will at least be able

to talk, listen, and be serial polled. They may have capabilities in addition to these, but they

will all have this minimum set.

IEEE 488.2 also deÕnes a set of Data Codes and Formats. This means that all numbers

passed back and forth between devices will look the same. We'll take a more detailed look at

these formats in just a few moments.

This new standard also deÕnes a Message Protocol. This protocol minimizes bus hangups by

deÕning what to do in the \exception cases", where something interrupts the normal Œow of

bytes between devices.

It also deÕnes a set of Common Commands. These commands execute functions common to

every bus device, such as Reset or Identify.

IEEE 488.2 also deÕnes a common Status Model. This provides for consistent usage of the

Status Byte. We'll discuss this at more depth later in this presentation.

11-14 Instrument Control Interfaces

We can look at the relationship of IEEE 488.1 and 488.2 graphically as well.

The bottom layer is IEEE 488.1. It provides the basic communication of bytes between

devices. This is the mechanical, and electrical interface between devices.

The next two layers are deÕned by IEEE 488.2. Now that we can pass bytes between devices

we need to deÕne what those bytes mean. The syntax and data structures included in IEEE

488.2 provide the framework for the data.

The next layer are the common commands and queries deÕned by 488.2. Again, these are

commands common to every device.

The top layer contains the commands necessary to control the individual device. These

commands are deÕned by the device itself and are unique to the device. IEEE 488.2 does not

address these commands.

From this slide you can see the layered structure of the device interface and how these two

standards work together.

Instrument Control Interfaces 11-15

Let's begin examining some of the details of IEEE 488.2.

First, what does it take to put an IEEE 488.2 seal of approval on a device?

It must have the minimum set of IEEE 488.1 capabilities, meet message exchange, syntax and

status reporting requirements. It must implement a set of required common commands. It

must also meet requirements on system synchronization and conÕguration.

If the device implements controller capabilities, it must meet certain requirements in this area.

Now, this does not mean that all devices must be controllers, just that if it is a controller, it

must implement a minimum set of controller capabilities.

Finally, the device documentation must indicate all of the capabilities that the device

implements.

11-16 Instrument Control Interfaces

Lets look at the data codes and formats deÕned by IEEE 488.2

IEEE 488.2 standardizes on the ASCII 7-Bit Code. This is the standard code for passing text

and data between devices. We'll look at the format for this data in just a moment.

In some cases, its more eœcient to move data in a binary code rather than converting to

ASCII. For those cases, IEEE 488.2 deÕnes an 8-bit code and a Binary Floating-Point Code.

The 8-bit code is ordinary 8 bit coding, with the lowest bit corresponding to the lowest

numbered data line. For Œoating point numbers, IEEE 488.2 recommends using the IEEE

754-1985 Floating Point Format.

Instrument Control Interfaces 11-17

In deÕning data formats, IEEE 488.2 uses a concept that may be new to some of you as far as

relating to device data exchange. This concept is \Forgiving Listening, Precise Talking". This

concept embodies the idea of accepting various data formats when listening, or receiving data,

but being very precise when talking, or sending data. This allows older devices to still be able

to communicate with the newer devices.

Here are some examples of Forgiving Listening and Precise Talking.

11-18 Instrument Control Interfaces

This is an example of Forgiving Listening. This is the deÕnition of the Listener Format for a

Decimal Number. The two basic elements are the mantissa and the exponent, separated by

white space.

The mantissa may or may not have a leading sign. Note that there may or may not be digits

preceeding and trailing the decimal point. This leaves a great deal of Œexibility in accepting

data.

The exponent is very similar. The leading \E" may be in either upper or lower case. White

space and the sign are optional, followed by the exponent digits. Again, a great deal of

Œexibility.

Finally, white space is deÕned as any ascii character, 0 through 32 (decimal) except line feed

(newline). That includes all of the control characters. Again, its very Œexible.

Instrument Control Interfaces 11-19

Contrast the Forgiving Listening with this example of Precise Talking.

This is the deÕnition of the Floating Point response data for IEEE 488.2. The initial sign

is optional. After that the choices are very carefully deÕned. There must be at least one

digit preceeding and trailing the decimal point. The \E" separating the mantissa from the

exponent must be upper-case. No white space is permitted. There must be a sign for the

exponent and at least one digit in the exponent. Everything here is very carefully deÕned in

contrast with the listening format where there was much more Œexibility. By precisely deÕning

the format for talkers, it will be easier to parse and interpret the data transfered across the

bus.

11-20 Instrument Control Interfaces

Lets turn now to the Status Reporting Model. You may recall that IEEE 488 deÕned a status

byte, and bit 6, the Service Request Bit within that byte. The rest of the status byte, and

how it operates is left up to the device designer.

Instrument Control Interfaces 11-21

IEEE 488.2 deÕnes the meaning of two additional bits within the Status Byte and gives

additional duty to bit 6. Bit 6, when read with a new command deÕned by IEEE 488.2,

becomes the Master Summary Status Bit. It lets you know that something of interest has

occured. The other two deÕned bits are the Event Status Bit and the Message Available Bit.

The Event Status Bit summarizes the Standard Event Status Register. This newly deÕned

register contains information, standard to every device, such as command errors, or request for

control of the bus. You can see the bits listed here on the slide.

The Message Available Bit indicates that data is available in the Output Queue, another

feature deÕned by 488.2.

11-22 Instrument Control Interfaces

Looking at the graphical representation of the new status models allows you to see how these

diÃerent bits and registers interact. Notice that both the Standard Event Status Register and

the Status Byte have a corresponding \Enable" register to determine which bits are reported

in the Request Service Bit or Master Summary Status Bit.

The Output Queue status is reported in the MAV bit of the Status Byte. IEEE 488.2 only

requires a depth of 1 byte in the queue, but it must be implemented as a queue.

As you can see, the status model leaves 5 bits undeÕned in the Status Byte. Devices are free

to use these bits to report information. However, they must follow the same model of either

an event status register or a queue, like those used for the Standard Event Status Register and

Output Queue. The register may only be one bit wide, but it must have an enable register

and a summary bit. This means that the Status Byte reports only a summary of other status

structures.

Instrument Control Interfaces 11-23

IEEE 488.2 deÕnes a set of common commands that each device will implement. These

commands are deÕned as ASCII characters. All of the commands have an asterisk as

the Õrst character. Queries all end with a question mark. The thing to note about these

commands are that they are passed across the bus in the data mode. These are NOT new bus

commands, but rather a set of common device commands.

11-24 Instrument Control Interfaces

This slide and the next slide list the Required Common Commands. Every IEEE 488.2 device

must recognized and execute these commands. There are commands for identiÕcation, reset

and self-test, sychronization and status. The 488.2 standard deÕnes what the devices will do

and won't do for each one of these commands.

Some commands that you might not be familiar with are the Synchronization and the Status

and Event commands.

The synchronization commands provide a method to synchronize the operation of several

diÃerent devices. The Operation Complete Command and Query instruct the device to

indicate when it completes an operation.

The Wait command causes a device to complete all pending instructions before it begins

executing any newly received instructions. This is useful for more powerful devices that can

pipeline commands.

Instrument Control Interfaces 11-25

The status commands, listed on this next slide, allow the user to access the newly deÕned

status structures that we discussed earlier.

11-26 Instrument Control Interfaces

So to summarize, IEEE 488.2 deÕnes a required minimum set of 488.1 interface capabilities.

In other words, every device can talk, listen and be serial polled. It deÕnes data codes and

formats, and a message protocol. It deÕnes a set of common commands and deÕnes the

operation of those commands. And it deÕnes a common status model.

For more information on IEEE 488.1 and 488.2 contact your local HP Sales Oœce and ask for

the \Tutorial Description of the Hewlett-Packard Interface Bus", part number 5021-1927.

Instrument Control Interfaces 11-27

RS-232 Serial Interface

In 1963, the Electronic Industry Association (EIA) established a standard for the interface

between Data Terminal Equipment (DTE) and Data Communications Equipment (DCE) that

uses a serial binary data interchange. The latest revision of this standard, which has been in

eÃect since 1969 and reaœrmed in 1981, is known as RS-232-C. The standard covers:

Mechanical Characteristics of an interface.

Electrical Characteristics of an interface.

Interchange circuits with descriptions of their functions

Relationship of interchange circuits to standard interface types

The Comite Consultatif International Telephonique et Telegraphique (CCITT) also established

standards that correspond to RS-232-C. While these standards, CCITT V.24 and CCITT

V.28, are very similar to RS-232-C, they are not identical.

The mechanical speciÕcation deÕnes 22 pins and designates three pins as unassigned, but

does not specify a connector. However, industry accepted one as a defacto standard. DTE's

(Terminals, computers, etc.) use the male connector. DCE's (modems) use the female

connector. Cables should be no longer than 15.24 meters (50 feet).

You can purchase a copy of the RS-232-C standard from:

Electronics Industries Association, Engineering Department, 2001 Eye Street, N.W.,

Washington, DC 20006

11-28 Instrument Control Interfaces

Although RS-232 deÕnes 25 lines, you really need to understand the operation of only three

of them, Transmit Data, Receive Data and Signal Ground. The data moves along these lines.

The others provide a means of handshaking between devices and detecting status.

The important thing to note with RS-232 is which direction the data is going. Note that for

DTE devices, data Œows OUT of pin 2 and into pin 3. Just the opposite occurs for a DCE

device. Therefore, if you have diœculty moving data via RS-232, check pins 2 and 3 to see if

the data is going the right direction for that device.

Instrument Control Interfaces 11-29

For those of you that are curious, this slide shows the deÕnitions and directions for all of the

RS-232 pins.

11-30 Instrument Control Interfaces

RS-232-C Connector Pin Assignments

Pin Name Direction

1 Earth Ground N.A.

2 Transmitted Data To DCE

3 Received Data To DTE

4 Request to Send To DCE

5 Clear to Send To DTE

6 Data Set Ready To DTE

7 Logic Ground N.A.

8 Carrier Detect To DTE

9 Reserved

10 Reserved

11 Unassigned

12 Secondary Carrier Detect To DTE

13 Secondary Clear to Send To DTE

14 Secondary Transmitted Data To DCE

15 Transmit Clock To DTE

16 Secondary Received Data To DTE

17 Receiver Clock To DTE

18 Unassigned

19 Secondary Request to Send To DCE

20 Data Terminal Ready To DCE

21 Signal Quality Detect To DTE

22 Ring Detect To DTE

23 Data Rate Select To DCE

24 Transmit Clock To DCE

25 Unassigned

Instrument Control Interfaces 11-31

GPIO Parallel Interface

The GPIO interface provides the most Œexibility of all interfaces for communicating with a

variety of devices. This interface sends and receives up to sixteen bits of data with a choice of

several handshake methods. It also provides external interrupt and deÕnable signal lines for

additional Œexibility.

Just to keep things simple, remember that there are several ways to move data in and out

of GPIO interfaces. When you want to use it READ THE BOOK that accompanies the

interface.

11-32 Instrument Control Interfaces

12

Using Drivers for Instrument Control

Using Drivers for Instrument Control

HP VEE communicates with instruments in three ways.

It uses HP Instrument drivers; we call them state drivers. These are the same drivers

developed for HP ITG. They provide easy interactive instrument control. They are called

state drivers because they keep track of the instrument's state or function settings.

HP VEE also uses the instrument drivers in a fashion called Component drivers. These same

drivers can also communicate more eÃeciently by not keeping track of the instrument state

and not displaying the instrument information.

For those devices which do not have a driver, or for the very fastest I/O with instruments, HP

VEE provides Direct I/O. This object is the fastest and most Œexible, but requires the user to

provide the actual instrument commands, where the two methods above do not require this.

Direct I/O uses the same transaction interface that we've learned about previously.

Using Drivers for Instrument Control 12-1

HP VEE uses the same instrument drivers as HP ITG. So if you've written a driver for ITG,

you can use the same driver with HP VEE. You can also use the driver writing tools provided

for HP ITG to write new drivers.

These instrument drivers are text Õles that deÕne:

Instrument components or functions

Instrument commands or mnemonics that control the instrument functions.

User interface for front panel interaction.

The drivers also contain information on how various instrument functions interact. This

interaction is called coupling.

HP instrument drivers provide access to most of the programmable instrument functions

available in the device.

These drivers also permit you to use incremental state programming since it tracks the state

of the instrument.

12-2 Using Drivers for Instrument Control

The HP VEE product includes all of the HP ITG drivers in compiled form. Compiled drivers

load faster. HP VEE supports all of the instrument drivers currently available, except the HP

3852 driver, since it uses HP BASIC user subs.

Note that all HP VEE instrument drivers default to Incremental On mode. This mode only

works for state programmable drivers, like the drivers supplied with HP VEE. Incremental

Off mode may work for some \homemade" drivers that you write.

Using Drivers for Instrument Control 12-3

Now let's take a look at the diÃerence between State drivers and Component drivers.

The State drivers are equivalent to the ITG Recall function. They show the complete

graphical user interface panel. Use these objects when you want to work with full instrument

states.

The Component drivers are equivalent to the ITG Set and Get functions. These objects do

not display the user interface panel. Use them to set speciÕc components and functions of an

instrument. For example to set the function of a DVM to DC Volts or AC Volts.

The Component drivers are more eÃecient than the state drivers since they don't maintain the

state of speciÕc components. They also do not require the user to know the speciÕc details of

instrument commands.

12-4 Using Drivers for Instrument Control

With incremental state programming, HP VEE maintains a state table of current settings

for the instrument. You can then request that HP VEE sends an individual component or

function change or an entirely new instrument state. When you have Incremental Mode ON,

HP VEE sends only those components required to update the state of the instrument.

Using Drivers for Instrument Control 12-5

State drivers also check for errors when sending commands to instruments by requesting the

instrument's error status. To improve the speed of exectution, turn error checking oÃ. This

leaves you vulnerable to unreported errors.

We'll show you some better ways to improve performance later.

12-6 Using Drivers for Instrument Control

With HP VEE component drivers, you only add the functions you need to the object. You

simply add an input or output terminal, choosing from the list of available functions. This

driver only tracks the state of the functions you add. Since Comp drivers do not look up the

entire state of the instrument they execute faster than state drivers. These drivers assume

that incremental state programming and error checking are disabled.

Using Drivers for Instrument Control 12-7

So to summarize:

State drivers provide a full graphical user interface panel.

Component drivers set and get speciÕc instrument components to optimize performance.

You can use both state and component drivers in the same model.

Multiple instances of the same driver (either state or component) to the same instrument

share the same state table.

12-8 Using Drivers for Instrument Control

So how do you really use these instrument drivers? First, you must do some work to set up

your system.

When you install HP VEE, the installation process runs a utility, vee_config, which creates

HP-UX device driver Õles for each interface that you will be using. However, vee_config

does not verify that the actual drivers are conÕgured in your HP-UX kernel. Be sure to

have your system administrator verify that your kernel conÕguration contains the proper

interface drivers. Also note that you must run vee conÕg on each cnode of a diskless system

to conÕgure the /dev Õles for that system.

Next use the Configure I/O function to specify the instruments that you will be using. With

Configure I/O you specify the instrument interface, address, timeout and so forth. You

must do this for each instrument. There are two menus under Configure I/O to conÕgure

instrument drivers and direct I/O.

Using Drivers for Instrument Control 12-9

Screenshot - Configure I/O Devices

Here is an illustration of conÕguring instruments with Configure I/O.

12-10 Using Drivers for Instrument Control

So what do you do to conÕgure and instrument driver?

NAME a unique name for this instrument object. This name appears in the

instrument title.

INTERFACE specify the interface type: HP-IB, Serial (RS-232), GPIO

ADDRESS 0 - for no instrument connected to system.

714|interface address (7) and instrument address (14)

DEVICE TYPE a descriptive name for the instrument. This defaults to the instrument driver

Õle name.

TIMEOUT instrument timeout, in seconds.

LIVE MODE ON, instrument connect to system.

OFF, no instrument connected to system. If address is 0, LIVE MODE is OFF

automatically.

Using Drivers for Instrument Control 12-11

ID FILENAME Designate Instrument Driver Õle to use with instrument.

SUB ADDRESS Defaults to -1.

Only required by some instruments, designates slot or card address.

This is NOT HP-IB secondary address.

INCREMENTAL

MODE

ON|Only send commands required to update state of instrument.

OFF|Send all commands.

ERROR

CHECKING

ON|Query instrument for errors after sending commands.

OFF|Don't check for errors.

12-12 Using Drivers for Instrument Control

You can use instrument drivers within a model to interactively control control an instrument.

It need not be connected to any other objects.

By adding terminals to an instrument driver, the model can control the instrument. All

instrument components known by an instrument driver may be controlled or queried via input

or output terminals. You can also add terminals by selecting them from the instrument soft

front panel display. To do so, select Add Terminals --> Select Input Component or Add

Terminals --> Select Output Component from the instrument's object menu. Then simply

click on the instrument Õeld that you want to become a terminal.

Using Drivers for Instrument Control 12-13

Lab 9|HP3478 Frequency Response

Task 1

Measure and graph the input frequency response of the HP 3478A over the range of 0.1Hz to

10MHz. Use the instrument drivers for the HP 3314A and the HP 3478A.

Task 2

Characterize the speed diÃerence between state and component drivers.

12-14 Using Drivers for Instrument Control

13

Using Direct I/O

Using Direct I/O

But what if HP VEE does't have an instrument driver for your favorite instrument? HP VEE

can still communicate with it using Direct I/O objects. These objects use the transaction box

construct that we've seen before.

Direct I/O provides the following actions:

READ and WRITE data to your instrument in all formats.

SEND gives Õne control of data and commands.

EXECUTE controls the instrument interface and your device.

WAIT until you're ready for the next command.

Using Direct I/O 13-1

What are the trade oÃs of using Direct I/O?

Direct I/O provides the following beneÕts:

Highest performance I/O

Consistent interface with other I/O transactions

Access to instrument functionality unavailable through instrument drivers

However, it also has the following disadvantages:

You must be familiar with the instrument programming commands or have access to

documentation.

It is not interactive, ie., no live mode control.

13-2 Using Direct I/O

Even though you have conÕgured an instrument driver for a particular device, you must also

conÕgure the instrument for Direct I/O.

Direct I/O conÕguration speciÕes:

Terminators and EOL sequence

Format of array data

Conformance or non-conformance to IEEE 488 or 488.2 (HP-IB)

Information need to save and restore an instrument learn string

Using Direct I/O 13-3

Screenshot - Direct I/O Configuration

This screen shot illustrates conÕguring a device for Direct I/O.

13-4 Using Direct I/O

Lets look at some of the details fo the Direct I/O actions.

EXECUTE Sends addressed commands CLEAR, TRIGGER, LOCAL, REMOTE, RESET

WAIT UNTIL

SPOLL MASK

Performs an HP-IB serial poll, compares the result against a mask, then

continues.

READ

IOSTATUS

Reads the 2-bit value of the GPIO interface lines, STS0 and STS1.

WRITE STATE writes an uploaded learn string to the device.

IOCONTROL controls the state of GPIO interface PCTL, CTL0 and CTL1 lines.

Using Direct I/O 13-5

Screenshot - Using Direct I/O

This screen shot illustrates using Direct I/O to control an instrument.

13-6 Using Direct I/O

Screenshot - Sending Low Level HP-IB Commands

This screen shot illustrates sending low level HP-IB commands with Direct I/O.

Using Direct I/O 13-7

HP VEE also provides Advanced HP-IB functions for advanced control of HP-IB.

EXECUTE sends non-addressed (global) bus commands to all devices. ABORT, CLEAR,

TRIGGER, REMOTE, LOCAL, LOCAL LOCKOUT

SEND sends custom command or data transactions.

COMMAND sends data with ATN line TRUE (HP-IB command)

MESSAGE IEEE-488 deÕned mnemonic commands sent with ATN line TRUE.

DCL, TCT, etc.

DATA data sent with ATN line FALSE (HP-IB data)

You can also use the commands:

TALK, LISTEN, UNLISTEN, UNTALK, MTA, MLA, SECONDARY.

13-8 Using Direct I/O

Screenshot - Sending Low Level HP-IB Commands

This screen shot illustrates sending low level HP-IB commands with Advanced HP-IB -->

HP-IB Bus Operations.

Using Direct I/O 13-9

Advanced HP-IB also provides some high level HP-IB functions.

HP-IB Serial Poll causes the controller to poll the addressed instrument for its status byte.

Wait for SRQ suspends the current thread until the SRQ line is asserted. Remeber, SRQ

is shared by all instruments on the bus. You must poll each instrument

to determine which one requested service.

All other independent threads continue operation even though the

thread containing the Wait for SRQ objects suspends operation until it

receives the SRQ bus message.

13-10 Using Direct I/O

So how do you maintain the state of an instrument?

Direct I/O objects can upload an instrument state or learn string from the instrument. The

object maintains the state and shares it with other objects. It does not interact with the

instrument driver state.

To do this you would:

Set up the instrument with a State Driver or the instrument front panel.

Upload the learn string.

Use the learn string to preset the instrument state.

Use Direct I/O to make incremental changes to the instrument state.

Using Direct I/O 13-11

To help you debug your instrument control models, HP VEE provides the Bus Monitor object.

The Bus Monitor works with all of the interfaces conÕgured in your computer, recording

traœc generated by instrument drivers or Direct I/O, or received by the controller. The

monitor timestamps the data, displays it as hex digits, indicating the I/O direction. It also

interprets command bytes for you.

Note The Bus Monitor only records I/O traœc related to HP VEE. It does not

monitor or record traœc generated or received by other devices or programs.

13-12 Using Direct I/O

Screenshot - Bus Monitor

This screen shot shows an example of data displayed on the Bus Monitor.

Using Direct I/O 13-13

Lab 10a|Custom Instrument Panel

Task

Create an object that acts as a custom instrument panel for the HP 3478A. The Õnished

model should allow interactive control of the following functions:

Function

Range

Display

Trigger

Autozero

As any value is entered, display the resultant measurement. The Õnished model should be

within a UserObject (on a panel). Use at least one Enum object.

13-14 Using Direct I/O

Lab 10b|Instrument Interrupts

Task

Create a model that allows the operator to:

1. Manually take measurements with an HP 3478A.

2. Use Direct I/O to establish the instrument's initial setup.

3. Initiate readings from the front panel of the instrument.

4. Append each reading to a Õle, along with a timestamp.

5. Graph the data at any time with the press of a button.

Hint

To set the HP 3478 for Front Panel SRQ, send the command KM20.

Using Direct I/O 13-15

14

Using Named Pipes & HP BASIC/UX

Using Named Pipes & HP BASIC/UX

You will occasionally want several processes to run at the same time, passing information back

and forth to each other. In this manner, each process is less complex and may be optimized

for an individual task. You also take advantage of operating system facilities, instead of

reinventing each task, such as:

Data buÃering

Process prioritization

Virtual memory

Concurrent operations

By doing so, you build complex systems from less-complex modules which are easier to

maintain.

Using Named Pipes & HP BASIC/UX 14-1

So why use Interprocess Communication? It provides an eÃective method for transfering data

between programs. You can also use it to synchronize concurrent processes. By doing so, you

trade the added complexity of passing data between programs for the reduced complexity of a

large program structure. Its easier to synchronize data exchange between programs than to

handle asynchronous control events in a single program.

14-2 Using Named Pipes & HP BASIC/UX

HP VEE implements interprocess communication through the HP-UX Õle system only. It uses

either normal Õles or pipes.

You may use other methods through the HP-UX Escape object if you Õnd them necessary.

These other methods include:

Shared memory

Semaphores

Message Queue

Signals

Using Named Pipes & HP BASIC/UX 14-3

When you use HP-UX Õles for communication, you have unlimited data capacity, limited only

by the system resources. An unlimited number of processes can access these Õles as well. Each

program must agree on arbitrary conventions of format and synchronization. For example, you

may use auxilary Õles for lock Õles or to indicate the state of Õle information.

This method provides excellent performance if both the Reader and Writer can share the Õle

buÃer. This happens on a lightly loaded system or with small amounts of data. Performance

degrades rapidly when the physical Õle system becomes involved.

14-4 Using Named Pipes & HP BASIC/UX

HP VEE provides access to pipes as an alternate communication link. Pipes enforce FIFO

message order. Multiple processes can read from or write to pipes. However, you must

remember that you can only read the data once.

The Õle system creates and accesses named pipes. Use the command

mknod mypipe p

or

mkfifo mypipe

to create the pipe mypipe. It then exists independent of any process.

Note that the pipes used with HP VEE must exist locally. They cannot be NFS mounted.

Using Named Pipes & HP BASIC/UX 14-5

Here are a few things to remember while using pipes:

Pipes have a limited capacity, typically 4 to 8 Kbytes.

Writing to a full pipe \blocks" the writing processes, causing it to wait until another process

reads data from the pipe.

Reading from an empty pipe \blocks" the reading processes, causing it to wait until another

process writes data to the pipe.

Synchronizing processes with pipes is only reliable if there is only one reading process and

one writing process. The kernel suspends processes until there is both a reader and a writer.

The kernel will block one of the processes if needed for synchronization.

Pipes must exist locally. They cannot be NFS mounted.

14-6 Using Named Pipes & HP BASIC/UX

HP VEE uses the To/From Named Pipe object to communicate with pipes. It automatically

creates the pipe on the Õrst attempt to open the pipe. HP VEE opens a read pipe as

read-only, allowing it to detect an EOF. It also opens a write pipe as write-only.

HP VEE closes pipes upon termination of the entire model, rather than at the termination of

an object. It also never deletes a pipe.

Also note that HP VEE opens pipes as \blocking," for synchronization. This may hang your

HP VEE process or other processes while they wait for data or space in the pipe.

Using Named Pipes & HP BASIC/UX 14-7

To most eÃectively use named pipes with HP VEE remeber:

The user can initate named pipes and processes separately

You need a reliable user process.

HP VEE can start other processes with the HP-UX Escape object. Remember to select Wait

for child exit: NO.

Other processes can start HP VEE

14-8 Using Named Pipes & HP BASIC/UX

To be successful when using IPC's with HP VEE the non-HP VEE process should:

Open pipes as Read-Only or Write-Only, not bi-directional

Check for EOF condition on each read.

Trap a SIGPIPE signal to help diagnose mysterious failures. The kernel issues this signal

when you attempt to write after the reader closes.

Use unbuÃered write operations or Œush the buÃers prior to any read after a write.

Use a single reader/single writer model, ideally interleaving the read/write operation.

Using Named Pipes & HP BASIC/UX 14-9

HP VEE also provides a specialized To/From Named Pipe object to communicate with HP

BASIC/UX. It calls HP BASIC/UX in a two-step process to avoid booting HP BASIC

multiple times.

Initialize HP BASIC/UX starts HP BASIC and then loads and runs the requested program.

To/From HP BASIC/UX is simply a To/From Named Pipe object with the parameters Õlled in to

work with HP BASIC/UX.

14-10 Using Named Pipes & HP BASIC/UX

Screenshot - To/From HP BASIC/UX

This screenshot shows how the two HP BASIC/UX objects work together.

Using Named Pipes & HP BASIC/UX 14-11

For more eÃective use of To/From HP BASIC/UX remember the following:

HP BASIC/UX ASSIGNS all I/O paths as Read-Write capable.

You must always have a writer for every reader and vice versa.

Checking for EOF and SIGPIPE is not possible.

An OUTPUT with only block on a full pipe.

An ENTER will block on an empty or closed pipe.

Remember to be especially careful to write well-designed and cooperative processes.

14-12 Using Named Pipes & HP BASIC/UX

Perhaps the most eÃective means of transferring data between HP VEE and HP BASIC is the

TRANSFER process within HP BASIC. TRANSFER creates a subprocess, rmbxfr to read from

and write to the pipe. The main HP BASIC/UX process remains unblocked. Because of this

you can use EOR/EOT interrupts to signal data availability. You can also use ON DELAY as a

watchdog timer to timeout an errant TRANSFER process.

This technique has the following advantages and disadvantages:

Advantages:

No process blocking

You can have multiple sets of TRANSFER and pipes connected to a single HP BASIC

process.

Disadvantages:

Its not as easy to implement as OUTPUT/ENTER.

Using Named Pipes & HP BASIC/UX 14-13

Lab 11|Exploring Named Pipes

Background

Interprocess communication with named pipes involves cooperation between two HP-UX

processes as well as the kernel.

A c program (/labs/ToFromPipe.c) is supplied which reads data from a pipe, prompts for

input, and sends the response to another pipe.

Tasks

1. Create a model to talk to the c program.

2. Explore the eÃects of starting and stopping the c program and HP VEE independently.

3. What is the largest amount of data ever held in the pipe?

4. Write an HP BASIC/UX program that emulates the c program. How does its behavior

diÃer from the c program? Why? Test the hypothesis by modifying the c program.

14-14 Using Named Pipes & HP BASIC/UX

Lab 12|Benchmarking HP BASIC/UX Escapes

Task

Benchmark the data throughput rate of a named pipe.

1. Write an HP BASIC/UX program which writes progressively larger binary blocks of data

to a HP VEE model through a pipe. The program should write in response to a prompt

from the HP VEE model.

2. Plot the throughput rate versus block size. Block size may be up to 1MByte in size.

Using Named Pipes & HP BASIC/UX 14-15

15

Instrument Application Development Techniques

Instrument Application Development Techniques

As we explained previously, HP VEE helps you create solutions to your programming

problems quickly and easily. You spend more of your time actually deÕning and describing

your problem, rather than trying to Õnd syntax errors or missing semicolons. You will also

Õnd that your development time is much shorter since there is no edit-compile cycle. You

simply build your model on the screen and then execute it. The HP VEE paradigm also

provides an inherent user interface.

These same ideas apply when working with instrument control applications.

Instrument Application Development Techniques 15-1

As before, remember the points of top-down design.

DeÕne the problem, including all of its contraints.

Identify a logical order and sequence for each of the tasks within the problem.

DeÕne each subtask within each task. Note how well this Õts into HP VEE's paradigm of

nested UserObjects.

Continue deÕning each subtask into manageble units.

Now implement each of these tasks as a UserObject within HP VEE.

15-2 Instrument Application Development Techniques

Test and measurement models lend themselves well to HP VEE since it implements data Œow

directly. Think of how data needs to Œow from one part of your system to another, or from

one function to another.

When working with instruments you will Õnd it easiest to work with just a few objects as you

begin developing your model, mostly instruments and display objects. Get the instruments

setup and collecting data properly. Then develop the data analysis portion of your model.

When developing with high speed data acquisition systems, work to optimize the speed of

the I/O functions. You may want to develop external programs to speed the collection or

conversion of data.

Instrument Application Development Techniques 15-3

Lab 13|Develop Your Own Application

Task

Create an HP VEE-Test model applicable to your own work assignments. Use any objects

necessary. You may incorporate objects, UserObjects, or models created in previous lab

exercises, or models from the examples directory.

Remember to keep the user in mind as you create the user interface for this model.

15-4 Instrument Application Development Techniques

