
A Visual Engineering Environment for
Test Software Development
Software development for computer-automated testing is dramatically
eased by HP VEE, which allows a problem to be expressed on the
computer using the conceptual model most common to the technical user:
the block diagram.

by Douglas C. Beethe and William L. Hunt

For many years, the cost of developing computer-automated
testing software has grown while the cost of the computer
and instrumentation equipment required to run tests has
dropped significantly. Today, in many test systems, the hard
ware costs represent less than 25% of the total cost of the
system and software costs consume the other 75%. HP VEE
was designed to dramatically reduce test software develop
ment costs by allowing the test to be expressed on the com
puter using the conceptual model most common to the tech
nical user: the block diagram. This article will provide a
general overview of the development of HP VEE, its feature
set, and how it applies the concept of the executable block
diagram. Further details of the architecture of HP VEE can
be found in the articles on pages 78 and 84.

There was a time when business and finance people dreaded
using a computer because it meant an extended question-
and-answer session with a primitive mainframe application
being displayed on a dumb terminal. Even after the first per
sonal computers were introduced, very little changed, since
the existing applications were simply rewritten to run on
them. When the electronic spreadsheet was developed, busi
ness users could finally interact with the computer on their
own terms, expressing problems in the ledger language they
understood.

Un titled

The technical community was left out of this story, not be
cause the personal computer was incapable of meeting
many of their needs, but because their problems could sel
dom be expressed well in the rows and columns of a ledger.
Their only options, therefore, were to continue to work with
the question-and-answer style applications of the past, or to
write special-purpose programs in a traditional programming
language such as Pascal, C, or BASIC.

Technical people often find it difficult to discuss technical
issues without drawing block diagrams on white boards,
notebooks, lunch napkins, or anything else at hand. This
begins at the university where they are taught to model vari
ous phenomena by expressing the basic problem in the form
of a block diagram. These block diagrams usually consist of
objects or processes that interact with other objects or pro
cesses in a predictable manner. Sometimes the nature of the
interactions is well-known and many times these interactions
must be determined experimentally, but in nearly all cases
the common language of expression is the block diagram.

Unfortunately, the task of translating the block diagram on
the lunch napkin into some unintelligible computer language
is so difficult that most technical people simply cannot ex
tract real value from a computer. Staying up on the learning

H u n S t o p C e n t S t e p |

Fig. 1. A simple HI' \KE program
to draw a circle.

72 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

curve of their own problem domain is a sufficient challenge
that embracing a whole new learning curve (programming)
just to translate problems for the computer's benefit hardly
seems worth the effort. While it is true that many wonderful
solutions to certain kinds of problems have been generated
over the years, most of the potential usefulness of comput
ers has never been realized. In many cases, a good calcula
tor is still the best bet because it makes a manual solution
relatively easy to compute.

What is HP VEE?
HP VEE, Hewlett-Packard's visual engineering environment,
is a software tool that allows users to create solutions by
Unking visual objects (icons) into block diagrams, rather
than by using traditional textual programming statements.
HP VEE provides objects for data collection, analysis, and
presentation, in addition to objects and features for data
storage, flow, modularity, debugging, documenting, and
creating graphical user interfaces. The objects work to
gether in the form of an interconnected network or block
diagram constructed by the user to represent the problem at
hand. The user selects the necessary objects from the menu,
links them in the manner that represents how data flows
from one object to another, and then executes the resulting
block diagram. No translation to some other language. No
other intermediate step.

To understand HP VEE better, consider a simple graphical
program to draw a circle. By connecting a loop box, two

math boxes (sin and cos), and a graph, this simple program
can be built in less than one minute (Fig. 1). Although this is
not a difficult task using a traditional language that has sup
port for graphics, it is still likely that it will be quicker to
develop it using HP VEE.

HP \"EE eases the complexity of data typing by pro\iding
objects that can generate and interpret a variety of data
types in a number of shapes. For example, the virtual func
tion generator object generates a waveform data type, which
is just an array of real numbers plus the time-base informa
tion. It can be displayed on a graph simply by connecting its
output to the graph object. If its output is connected to a
special graph object called a MagSpec (magnitude spectrum)
graph, an automatic FFT (fast Fourier transform) is per
formed on the waveform (Fig. 2). By connecting a noise gen
erator through an add box, random noise can be injected into
this virtual signal (Fig. 3). If we had preferred to add a dc
offset to this virtual signal, we could have used a constant
box instead of the noise generator.

User panels allow HP VEE programs to be built with ad
vanced graphical user interfaces. They also allow the imple
mentation details to be hidden from the end user. To com
plete our waveform application, we can add the slider and
the graph to the user panel (Fig. 4). We can adjust the pre
sentation of this panel by stretching or moving the panel
elements as required for our application.

Unfilled : R u n Â ¡ S t o p . C o n t S t e p

F i l e E d i t F l o w D e v i c e D a t a M a t h

Fig. 2. A waveform displayed in
the time and frequency domains.

October 1992 Hewlett-Packard Journal 73

© Copr. 1949-1998 Hewlett-Packard Co.

Hun 1 S top : Con t

F l o w D e v i c e M a t h A d v M a t h D i s p l a y H e l p

Ã­ Frequency

Ã ̄Amplitude

| Phase I Deg

; Time Span

Fig. 3. Noise added to a wave
form in the time and frequency
domains.

This is just a trivial overview of the basic concept behind
HP VEE. Other major features not covered include objects
for sending data to and from files, data translation and con
version, advanced math capabilities, and data display func
tions. HP VEE actually consists of two products. HP VEE-
Engine is for the analysis and presentation of data gathered
from files or programs or generated mathematically. HP
VEE-Test is a superset of HP VEE-Engine and adds objects
and capabilities for device I/O and instrument control.

Development Philosophy
The team's goal for HP VEE was a new programming para
digm targeted not only at the casual user, but also at the
advanced user solving very complex problems. One simple
approach would have been to assign an icon to each state
ment in a traditional language and present it to the user in a
graphical environment. The user would simply create icons
(statements) and connect them in a structure similar to a
flowchart. However, such a system would be harder to use
than a traditional language, since the graphical program
would require more display space than the older textual
representation and would be more difficult to create,
maintain, and modify. This would actually have been a step
backward.

We decided that a genuine breakthrough in productivity
could only be achieved if we moved to a higher level of ab
straction to more closely model the user's problem. We
therefore chose to allow users to express their problems as

executable block diagrams in which each block contains the
functionality of many traditional program statements. Many
elements in HP VEE provide functionality that would require
entire routines or libraries if the equivalent functionality
were implemented using a traditional language. When users
can work with larger building blocks, they are freed from
worrying about small programming details.

Consider the task of writing data to a file. Most current pro
gramming languages require separate statements for opening
the file, writing the data, and closing the file. I(would have
been relatively easy to create a file open object, a file write
object, and a file close object in HP VEE. Such an approach
would have required at least three objects and (heir associ
ated connections for even the simplest operation. Instead,
we created a single object that handles the open and close
steps automatically, and also allows all of the intermediate
data operations to be handled in the same box. This single
To File box supports the block diagram metaphor because the
user's original block diagram would not include open and
close steps (unless this user is also a computer programmer),
it would only have a box labeled "Append this measurement
to the data file." The open and close steps are programming
details that are required by traditional programming languages
but are not part of the original problem.

Or, consider the task of evaluating mathematical expres
sions. In some common dataflow solutions, a simple opera
tion such as 2xA+3 would require four objects and their

74 October 1992 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

associated connections (two constants, one add operation,
and one multiply operation). Using HP VEE's formula box
requires only the single expression object to solve this prob
lem. The point of a block diagram is to show an overview of
how a complex system operates without regard to imple
mentation details. Had HP VEE been implemented without a
higher level of abstraction, the resulting graphical program
would have had so many boxes and lines that it would have
resembled a maze rather than a block diagram.

Development Process
We followed a fairly informal development lifecycle for HP
VEE. It was based on the spiral lifecycle,1 which divides the
development phase into a series of design/build/test cycles
with a risk assessment before each. This worked very well
for us for several reasons. Probably the most important fac
tor was that the team was small and highly motivated. This
made rigorous checkpoints and detailed design documents
unnecessary since all of the team members worked very
closely together toward the same goals. Another important
factor was the use of an object-oriented design approach
coupled with very careful design practices. This allowed us
to design classes according to their interactions with the
rest of the system without spending a great deal of time im
plementing the internals of the classes. This is important in
a spiral lifecycle because during each cycle, an entire class
or set of classes may need to be reimplemented. Without an
object-oriented approach, this would require an excessive
amount of time rewriting other seemingly unrelated parts of
the system. Another successful development decision was
the early incorporation of a full-time software testing team
to help us with the test phases of the lifecycle.

Fig. 4. User panel for waveform
plus noise application.

The Search for Primitives
The initial functionality was specified by the team based on
our experience as frustrated users of third-generation lan
guages (3GLs) such as Pascal, C, and BASIC. Certain tasks
appeared over and over on the "I wish there were some
other way to do this ..." list. Experience had already shown
that library of limited flexibility, the usual subroutine library
approach did not offer the type of productivity increase being
sought. However, with our executable block diagram meta
phor, we felt that many of these tasks could be implemented
as primitives in HP VEE while still providing the necessary
flexibility.

Foremost among these tasks were data management, engi
neering graphics, instrument control, and integration of mul
tiple applications. In each case we were convinced that a
higher level of abstraction could be developed that would be
flexible yet simple enough to require only minor configura
tion specification from the user in most situations.

Data Management
To tame the basic data management problem we developed
the container architecture. Containers hold data, either ar
rays or scalars, of a wide variety of data types, and provide a
rich set of mathematical intrinsics to operate on that data.
Many operations such as type conversion and array process
ing, formerly left to the user, are incorporated into these
object abstractions in a fashion that makes them relatively
transparent.

Another aspect of data management involves interfacing
with the file system because so much effort must be ex
pended on it when using 3GLs. We developed objects that
offer the powerful input/output capabilities of many 3GLs,

October 1992 Hewlett-Packard Journal 75
© Copr. 1949-1998 Hewlett-Packard Co.

Object-Oriented Programming in a Large System

The biggest problem with a large software development effort is that there is just
too much complexity for the human mind to manage. The obvious solution is to
add more people to the project so that the members are not asked to manage
more than their individual abilities permit. Unfortunately, the law of diminishing
returns applies, since each additional team member adds a very large communica
tion and training load on the rest of the team. In addition, there are increased
opportunities for disagreement and conflict.

In some to development of large software systems is like one person trying to
dig a canal using only a shovel. Yes, it is possible, but probably not in that person's
lifetime. If more people are assigned to the task, it can be done more quickly, but
only at an enormous cost. However, if equipped with the right tools (backhoes,
earth movers, etc.), one person can accomplish so much that only a small number
of people are required to complete the project within a reasonable amount of time.

This reducing amount the idea behind object-oriented programming. By reducing the amount
of complexity that one software developer must manage, that one person can be
responsible for a much larger portion of the system. The result is that much higher
productivity is attainable since smaller teams can be used, thereby avoiding the
effects of the law of diminishing returns. Features of object-oriented programming
such as larger and inheritance allow one person to maintain a much larger
portion of a large system than would be possible with a traditional approach.

Encapsulation is probably the strongest reason to use an object-oriented approach
for a large system. Object-oriented systems encapsulate functionality by combin
ing data and associated routines into one package (the class) and then disallowing
access code the data except through one of the routines. When this is done, code
outside of the class is less likely to have dependencies on the structure or mean
ing of the data in the class since its only access to the data is through the access
routines rather than directly to the data. This allows a class to define the exter
nally visible interface separately from the internal implementation. Because of this
basic structure, a class or even an entire hierarchy of classes can be completely
rewritten without affecting other parts of the system as long as the externally
visible interface remains constant.

Inheritance is another reason to use an object-oriented approach in a large system.
Inheritance allows a new class to be written simply by specifying additions or

changes to an existing class. This means that just a few lines of added code can
provide is significant increase in functionality. The other benefit of inheritance is
that code reuse of internal routines is increased substantially. For example, there
is only text single-line text editor in HP VEE, which is used for all single-line text
entry fields. However, since it is easy to add to the behavior of the editor class
through inheritance, the numeric fields that allow constant expressions as numeric
input editor. just a very small incremental effort over the original line editor. They
simply add to the "accept" mechanism at the end of an editing session and pass
the typed string to the parser for evaluation as an expression before attempting to
record the numeric result.

However, features such as encapsulation and inheritance do not automatically
result practices a system that is easier to maintain and build. Very careful design practices
must be followed and the team members must be motivated to do high-quality
work. partitioning the most important design practice is careful partitioning of the
system so that complexity in one area is not visible in an unrelated area.

An object-oriented approach coupled with careful design practices will often
cause the software development effort to seem harder than with a more tradi
tional approach. For example, in a traditional approach, if a variable in one module
needs reference be accessed in another module, it is easy to declare that reference directly
to the compiler. In an object-oriented approach, it is common for these variables to
exist only as instance variables, which are not allocated until the owning class
has been instantiated. This means that the compiler cannot reference a value
directly because it doesn't exist until run time. Therefore, a more complete solu
tion means be devised to find the required value. This usually means that a mes
sage the for the value must be sent to the object that knows the answer with
out ever the accessing the variable. This sounds harder, and it is, but in the
long run the resulting code is much more maintainable and extendable.

William L Hunt
Development Engineer
VXI Systems Division

but present them to the user by means of an interactive dia
log box to eliminate the need to remember syntax. Each of
these dialog boxes represents a single transaction with the
file such as read, write, or rewind, and as many transactions
as necessary can be put into a single file I/O object.

Engineering Graphics
For engineering graphics, the task of finding a higher level
of abstraction was relatively easy. Unlike data management,
engineering graphics is a fundamentally visual operation and
as such it is clear that a single element in a block diagram
can be used to encapsulate an entire graphical display.
Therefore, we just developed the basic framework for each
type of graph, and we present these to the user as graph
displays that require only minor interactive configuration. In
this area we had a rich set of examples to draw from because
of the wide variety of highly developed graphs available on
HP instruments. In some cases, we were even able to reuse
the graphics display code from these instruments.

Instrument Control
Instrument control is a collection of several problems:
knowing the commands required to execute specific opera
tions, keeping track of the state of the instrument, and (like
file I/O) remembering the elaborate syntax required by 3GLs
to format and parse the data sent over the bus. We developed

two abstractions to solve these problems: instrument drivers
and direct I/O.

Instrument drivers have all of the command syntax for an
instrument embedded behind an interactive, onscreen panel.
This panel and the driver behind it are developed using a
special driver language used by other HP products in addi
tion to HP VEE. With these panels the task of controlling the
instrument is reduced to interacting with the onscreen panel
in much the same fashion as one interacts with the instru
ment front panel. This is especially useful for modern card-
cage instruments that have no front panel at all. Currently
HP provides drivers for more than 200 HP instruments, as
well as special applications that can be used to develop
panels and drivers for other instruments.

In some situations instrument drivers are not flexible
enough or fast enough, or they are simply not available for
the required instruments. For these situations, we developed
direct I/O. Direct I/O uses transactions similar to the file I/O
objects with added capabilities for supporting instrument
interface features such as sending HP-IB commands. Direct
I/O provides the most flexible way to communicate with
instruments because it gives the user control over all of the
commands and data being sent across the bus. However,
unlike instrument drivers, the user is also required to know
the specific commands required to control the instrument.

76 October 1992 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

To simplify the process of reconfiguring an instrument for a
different measurement, direct I/O also supports the upload
ing and downloading of learn strings from and to the instru
ment. A learn string is the binary image of the current state
of an instrument. It can be used to simplify the process of
setting up an instrument for a measurement. A typical use of
this feature is to configure an instrument for a specific mea
surement using its front panel and then simply upload that
state into HP VEE, where it will be automatically down
loaded before making the measurements. Thus, the user is
saved from having to learn all of the commands required to
initially configure the instrument from a base or reset state
before making the measurement. In most cases the user is
already familiar with the instrument's front panel.

Multiple Applications
Multiple application integration turned out to be one of the
easiest tasks in HP VEE, since the inherent parallelism of
multiprocess operations can be expressed directly in a
block diagram. Each element of a block diagram must
execute only after the elements that provide data for its in
puts. However, two elements that do not depend on each
other can execute in any order or in parallel. This feature,
along for the powerful formatting capabilities provided for
interprocess communication, allows the integration and
coordination of very disparate applications regardless of
whether they exist as several processes on one system or as
processes distributed across multiple systems. The only
object abstractions required to support these activities are
those that act as communication ports to other processes. A
pair of objects is available that supports communication
with local processes (both child and peer) using formatting
capabilities similar to those used by file and instrument I/O.

Finally, we needed to develop objects that would encapsu
late several other objects to form some larger user-defined
abstraction. This abstraction is available using the user ob
ject, which can be used to encapsulate an HP VEE block
diagram as a unit. It can have user-defined input and output
pins and a user panel, and from the outside it appears to be
just like any other primitive object.

Refining the Design
While still in the early cycles of our spiral lifecycle, we
sought a limited number of industry partners. This enabled
us to incorporate design feedback from target users attempt
ing real problems well before encountering design freezes.
Although there were fears that such attempts would slow
our development effort because of the additional support
time required, we felt that the payback in design refinement
for both user interface elements and functional elements
was substantial.

One example of such a refinement in the user interface is
the automatic line routing feature. Before line routing was
added, our early users would often spend half of their time
adjusting and readjusting the layouts of their programs.
When asked why they spent so much time doing this, they
generally were not certain, but felt compelled to do it any
way. We were very concerned about the amount of time
being spent because it reduced the potential amount of

productivity that could be gained by using HP VEE. Thus
we added automatic line routing and a snap grid for easier
object alignment so that users would spend less time trying
to make their programs look perfect.

An example of a refinement in the functional aspects of the
product is the comparator object. Several early users en
countered the need to compare some acquired or synthe
sized waveform against an arbitrary limit or envelope. This
task would not have been so difficult except that the bound
ary values (envelope) rarely contained the same number of
points as the test value. Before the comparator was devel
oped, this task required many different objects to perform
the interpolation and comparison operations on the wave
forms. The comparator was developed to perform all of
these operations and generate a simple pass or fail output.
In addition, it optionally generates a list of the coordinates
of failed points from the test waveform, since many users
want to document or display such failures.

Conclusion
Early prototypes of HP VEE were used for a wide variety of
technical problems from the control of manufacturing pro
cesses to the testing of widely distributed telecommunica
tions networks. Many began exploring it to orchestrate the
interaction of other applications, especially where network
interconnections were involved.

Current experience suggests that the block diagram form of
problem expression and its companion solution by means of
dataflow models has wide applicability to problems in many
domains: science, engineering, manufacturing, telecommu
nications, business, education, and many others. Many
problems that are difficult to translate to the inline text of
third-generation languages such as Pascal or C are easily
expressed as block diagrams. Potential users who are ex
perts in their own problem domain, but who have avoided
computers in the past, may now be able to extract real value
from computers simply because they can express their prob
lems in the more natural language of the block diagram. In
addition, large-scale problems that require the expert user to
orchestrate many different but related applications involv
ing multiple processes and/or systems can now be handled
almost as easily as the simpler problems involving a few
variables in a single process.

Acknowledgments
We would like to thank design team members Sue Wolber,
Randy Bailey, Ken Colasuonno, and Bill Heinzman, who
were responsible for many key features in HP VEE and who
patiently reviewed the HP Journal submissions. We would
also like to thank Jerry Schneider and John Frieman who
pioneered the testing effort and provided many key insights
on product features and usability. More than any other we
would like to thank David Palermo without whose far-sighted
backing through the years we could not have produced this
product.

Reference
1. B.W. Boehm, "A Spiral Model of Software Development and
Enhancement," IEEE Computer, May 1988.

1992 Hewlett-Packard Journal 77 © Copr. 1949-1998 Hewlett-Packard Co.

Developing an Advanced User
Interface for HP VEE
Simplicity and flexibility were the primary attributes that guided the user
interface development. Test programs generated with HP VEE can have
the same advanced user interface as HP VEE itself.

by William L. Hunt

HP VEE, Hewlett-Packard's visual engineering environment,
was developed as a programming tool for nonprogrammers.
In the past, computer users were required to move into the
computer's domain. Our goal for HP VEE was to bring the
computer into the user's domain. This meant developing a
system that operates in the way that our target users expect.

To accomplish this goal, ease of use was of critical impor
tance. However, because most target users of HP VEE are
highly educated technical professionals, simple-minded ap
proaches to user interface design were not appropriate. For
this audience, the system must be powerful and flexible, but
must not become an obstacle because of overprotection.

With these constraints in mind, we decided that the primary
attributes of HP VEE should be simplicity and flexibility.
Learnability was also considered to be important, but we
felt that no one would bother to learn the system unless it
were a truly useful and powerful tool. Therefore, we felt that
we could compromise some learnability in situations where
a great deal of the power of the system would be lost if
learnability were our primary goal. Our overall approach,
therefore, was to design a system that is as natural to learn
and use as possible and powerful enough that our customers
would be excited about learning how to use it.

Development Guidelines
In general, simplicity is very important in a user interface
because it frees the user from having to worry about unnec
essary details or rules. The underlying goal of a good user
interface is to increase the communication bandwidth be
tween the computer and the user. However, this does not
mean that there should be a myriad of displays and indica
tors. In fact, quite the opposite is true. The more things there
are for the user to comprehend, the greater the chance that
something will be missed. The goal, therefore, should be to
reduce the amount of data that the user must be aware of
and present the essential data in the simplest and most com
pact way possible. Similarly, any piece of data presented to
the user should always be presented in a consistent way be
cause this is known to increase comprehension dramatically.

An example of a simple way to present information to the
user is the 3D look used in the OSF/Motif graphical user
interface and more recently in other systems such as Micro
softÂ® Windows. When used properly, the 3D borders can be
used to communicate information about the state of indhid-
ual fields without consuming any additional display space.

Fig. 1 shows how HP VEE uses the 3D look to identify how
fields will respond to user input. Fields that are editable are
displayed as recessed or concave. Buttons and other fields
that respond to mouse clicks are shown as convex. Fields
that are only used as displays and do not respond to input
are shown as flat. These states are very simple to compre
hend because the three states are unique in the way that
they look and operate. Without realizing it, users will natu
rally learn how to identify which fields are editable, which
fields can be activated, and which fields will not respond to
input. This 3D display technique allows these states to be
displayed without any additional display area.

Fundamentally, HP VEE was designed around the concept
of direct manipulation. This means that wherever possible, a
setting can be changed by operating directly on the display
of that setting. This results in a significant simplification for
the user since special operations or commands are not gen
erally required to make changes to settings. For example,
the scale of a strip chart is shown near the edges of the
graph display (Fig. 2). If the user wants to change the graph
scaling, the limit fields themselves can be edited. It is not
necessary to make a menu choice to bring up a pop-up dia
log box for editing the scale. In many other systems, making
any change requires a menu pick. This effectively reduces a
system to a command-line interface that happens to use a
mouse and menus instead of the keyboard. Such a system is
no easier to use than the command line interface systems of
the past.

Flexibility is more important for an easy-to-use system than
for more traditional systems because there is a perception
that power and ease of use cannot be combined in the same
system. In the past, powerful systems have generally been

Ampl i t ude

S PitÃ³se Â¡Dtg
Time Span

Fig. some A view containing a noneditable field, two buttons, and some
editable fields.

78 October 1392 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 2. Direct manipulation is useful for settings such as graph
limits.

hard to use, and easy-to-use systems have generally not
been very flexible or powerful. To overcome this perception,
therefore, an easy-to-use system must be very powerful so
that potential customers' fears can be overcome. When de
signing HP VEE, we were very careful to avoid limiting flexi
bility wherever possible. It often seemed as if we were faced
with a choice between ease of use and flexibility. However,
with careful consideration of the alternatives, we usually
found that the more flexible approach could be implemented
with an easy-to-use interface.

Flexible and powerful systems are naturally very complex
because there are so many features and capabilities to re
member. In these systems, it is extremely important that each
area of the system operate in a way that is consistent with
the rest of the system because even the most advanced users
are rarely familiar with all aspects of the system. Users must
be able to rely on their experience with other parts of the
system to help guide them through the unfamiliar areas.
For this reason, consistency was an important guideline
throughout the development of HP VEE.

High performance for interactive operations is critical be
cause users will become frustrated using a product that is
too slow. Very few users will be happy if they must wait an
inordinate amount of time before a particular operation is
complete. The allowable time for the system to complete a
task depends on the nature of the task and what the user is
likely to be doing at the time. For example, a key press
should be echoed back to the user within about 100 ms or
so. If it takes longer, the user may press the key again think
ing that the system didn't get the first one. A pop-up dialog
hriY nr menu should appear within ahnnt 500 ms. Other

tasks such as loading a file can take many seconds before
the user will become annoyed because of sluggish perfor
mance. We created a list of about ten different interactive
operations for which we felt that performance was an im
portant goal. On all supported platforms, many of the opera
tions in this list such as the pop-up menus and dialog boxes
are completed within the required time. Unfortunately, there
are still a few operations that are completed within the spe
cified time limits only on the very fast HP 9000 Series 700
workstations. On the other hand, we have received very few
complaints about interactive performance, so our time limits
may have been overly stringent.

In some situations, such as saving a file to the disk, perfor
mance1 simply cannot be guaranteed. In these cases, continu
ous feedback indicating progress being made is important.

Otherwise, it isn't easy to tell whether something is happen
ing or not. In HP VEE. all user-invoked operations that could
take more than about 200 ms will result in a change to the
mouse cursor. Some of these cursors represent specific ac
tivities such as reading from or writing to the disk. For other
situations, a general hourglass cursor is used. Any action
that is expected to take longer than one or two seconds is
also accompanied by a pop-up message box that indicates
that the operation is in progress.

Reducing the total number of mouse clicks, menu choices,
and various other adjustments required of the user was a
major challenge. Each adjustment required of the user, no
matter how easy, will reduce the user's overall effectiveness.
For this reason, HP VEE is designed to do as much as pos
sible with default settings while allowing adjustments if
more control is desired. Other systems often require that the
user fill out a form each time a new object is selected from
the menu. In most cases, HP VEE will insert default values
for all settings and then allow the user to change them later
if it becomes necessary.

System messages for errors and other reasons are an espe
cially important source of difficulty or frustration for users.
Most software developers seem to take the attitude of a hos
tile enemy when presenting the user with an error message.
However, errors are seldom true user mistakes, but instead
are usually triggered by failings in the system either because
it misled the user or because it did not adequately protect
the user from making the mistake in the first place. In many
cases in HP VEE, we were able to avoid generating errors
simply by restricting available choices to those that would
not result in an error. For example, if a certain combination
of selections will cause an error, we show them as mutually
exclusive choices. In cases where such restrictions could
not be used to avoid the potential for an error, we worked to
simplify the interface so that users would be less likely to
make mistakes in the first place. In cases where errors were
unavoidable, we kept the attitude that error messages should
help the user complete a task. We tried to remember that
the user generally has a valid reason for performing the
operation that resulted in an error.

Two kinds of messages that are common in many systems
are not present in HP VEE. The first is the message "Please
wait." It is irritating to users because they don't want to wait
and they are being instructed to do so. The message is also
unnecessary since more descriptive messages can be used
instead. Messages such as "Reading from file program!" are
much more informative and are nut-nearly so annoying. Theâ€”
other common message is a confirmation box that asks "Are
you sure?" This is also very annoying because the user sel
dom initiates any operation without being pretty sure about
wanting to perform that operation. There are really two rea
sons for asking "Are you sure?" One is to caution the user
about data loss and the other is to protect against accidental
requests.

In HP VEE, we solve the first situation by asking a question
such as "Save changes before clearing workspace?" This has
the same result as "Are you sure?", but does not sound as if
the user's choice (or sanity) is being questioned.

In the second situation, accidental requests are better solved
by making the input mechanisms easier to operate without
error or by making corrections easy to perform. For example,

October 1992 Hewlett-Packard Journal 79

© Copr. 1949-1998 Hewlett-Packard Co.

instead of asking "Are you sure?" to find out if the user really
wants to delete an object, HP VEE puts the deleted object
into the cut buffer so that if the user decides that a mistake
was made, the paste operation can be used to restore the
deleted object.

Attention to detail is very important to a user. Most systems
available today lack the small details that make a system
more convenient and easier to use. In HP VEE, we have at
tempted to pay attention to as many of these small details as
possible. For example, when connecting a line to a box, an
outline is displayed around the pin that would be connected
if the line were released at that point. Another example of a
very small detail is that HP VEE allows objects to be resized
as they are being placed on the workspace for the first time.
These seemingly minor details help reduce the amount of
frustration that users often feel.

Program Visualization Features
In a traditional programming environment, the programmer
must spend a large fraction of the development time think
ing about details of the programming process including the
language syntax, debuggers, and so on. Since HP VEE allows
the user to think almost exclusively in terms of the problem
domain, most of the development time and effort is spent on
solving the problem instead of the programming details.
This is the primary source of the productivity gains that
many users of HP VEE have experienced. However, even
though HP VEE allows programs to be expressed directly in
terms of the problem, not all user-written programs will run
correctly the first time. Although the so-called accidental
complexities1 of program development such as language
syntax and semantics have been reduced or even eliminated,
the fundamental complexities of the problem itself still re
main. Therefore, once an HP VEE program is developed, it is
likely that some aspect of it will not quite work as expected.
For this reason, we developed several tools that can be used
to visualize the execution of a program to help identify the
source of any problems.

Show Execution Flow animates the execution of the program by
outlining each object as it begins to execute and then eras
ing that outline when execution is complete. Besides helping
to visualize how the program executes, this is useful when
trying to understand performance issues, since an object in
the program that consumes a lot of time will be highlighted
for more time than other objects. HP VEE also has a timer
object, which allows a more objective way to measure
performance.

Show Data Flow animates the movement of data as it travels
between objects in the program by displaying an icon mov
ing rapidly along each line as data flows across it. This helps
the user visualize the relationships between the data and the
execution of the objects of a dataflow program. Both Show
Execution Flow and Show Data Flow slow the execution of HP
VEE programs so much that they are designed to be turned
on and off separately.

All data in HP VEE has additional information such as size
and shape associated with it. This information is maintained
so that one operation can work with a variety of different
data types and shapes. For example, math functions such as
sin() can operate on either an individual number or an array
of numbers with any number of elements. This is possible
because the size and number of dimensions are packaged
with the data. Other information such as the name of the
data and mappings (the implied domain of the data) can also
be associated with the data. The line probe feature allows
the user to examine the data and this associated information
at any time.

The execution of a program can be halted when execution
reaches a particular object simply by setting that object's
breakpoint flag. Breakpoints can be set on any number of
objects at any time. When execution reaches an object with
its breakpoint flag set, the program will pause and an arrow
pointing to that object will appear. At that point the step
button can be used to single-step the program one object at
a time or the line probe can be used to examine data.

If an error occurs during execution of the program and no
error recovery mechanism has been attached, a message
will be displayed and an outline will highlight the source of
the error visually. This allows the user to locate the source
of the error more quickly.

User Interface for HP VEE Programs
Since a user of HP VEE should be able to generate programs
with the same advanced user interface as HP VEE itself,
several important capabilities have been incorporated into
HP VEE to make the task of building impressive-looking
programs simple.

For example, data can be entered using a variety of data
entry objects. The simplest of these is a text field that accepts
a single line of textual data. Numeric fields of various types
such as integer, real, complex, or polar complex accept the
appropriate numeric data. In addition, these numeric fields
can accept constant expressions such as "SQRT(45)" or
system-defined constants such as "PI." When typed, these
constant expressions are immediately evaluated and the
result is converted to the expected type by the input field.
Since all editable fields in HP VEE share the same editing
code internally, any numeric field in the system that requires
a numeric entry can also accept a constant expression.

There are other more advanced mechanisms for entering
data or specifying selections to an HP VEE program. Integer
or real numeric input can be generated within a predefined
range by using the mouse to drag the handle of a slider ob
ject. Selections from a list of acceptable values can be made
using an enumerated list box, which can be displayed as
radio buttons, as a single button that cycles through the list
of values, or as a button that accesses a pop-up list box of
choices. An HP VEE program can be designed to pause until
the user is ready to continue by using the Confirm button.

80 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Data can be displayed in a variety of ways. In addition to
textual displays, real or integer numbers can be displayed
on a meter object, which can show \isually where a number
falls within a range. Graphical displays such as XY graphs
and polar plots show two-dimensional plots of data and
can be interactively scrolled or zoomed. Stripcharts graph
a continuous scrolling history of the input data.

All of these input and output types would have limited value
if they could only be displayed when the rest of the HP VEE
program with all of its lines and boxes is also visible. For
this reason, HP VEE is designed with a feature called user
panels, which allows an advanced user interface to be at
tached to a user-written HP VEE program. The user panel is
built using an approach similar to many of the available user
interface builders. Elements to be placed on the user panel
are selected from the HP VEE program and added to the
panel. The user can then move and resize these elements as
appropriate for the design of the panel. Other layout options
such as whether a title bar appears can also be adjusted.
Since the elements on the user panel are selected from the
user's program, no external code is required and the finished
program is easier to build than with most user interface
builder tools.

Another important aspect of an advanced human interface is
the ability to hide data until the user has asked to examine
it. HP VEE is designed with a feature called Show On Execute
which allows HP VEE programs to use pop-up windows to
hide data until a user request is received. This works by
associating a user panel with a user object (similar to a sub
routine in traditional programming languages) and enabling
the Show On Execute feature. When the user object begins
executing, the associated user panel is automatically dis
played. When execution of the object is complete, the user
panel is erased. Messages such as "Writing test results to file"
can be displayed using this mechanism simply by putting the
appropriate message on the associated user panel. If it is
desirable to pause the program until the user has finished
examining the displayed panel, a confirm object can be used.

Programs developed in HP VEE are highly malleable; they
can be changed and adjusted as much as desired. However,
in many situations it is desirable to protect the program
from being changed. The secure feature in IIP VEE accom
plishes this by displaying only the user panel and making it
impossible to alter the program or even look at it after the
program has been secured.

Object
V i e w

View3d
ConView

DevCarrier
SubProg

IPEdilor
DispDriver

Container
Real
Inl
Complex

Device
Context

Fig. 3. Simplified class hierarchy of HP VEE.

Using all of these features allows users to generate complete
application programs with professional appearances without
having to work outside of the simple dataflow environment.

Internal Architecture
Fig. 3 shows a simplified class hierarchy for HP VEE show
ing some of the key classes in the system and how they re
late to each other in the inheritance hierarchy. The Object
class is at the root of this hierarchy and implements the fun
damental protocol for all objects in the system. This includes
creating, freeing, and copying objects. The key subclasses of
Object include View, which maintains a rectangle on the dis
play, Container, which holds a unit of data, and Device, which
represents the inner workings of an element in an HP VEE
block diagram.

The fundamental visible element in HP VEE is implemented
with the class called View. It maintains a single rectangular
region on the display and can be transparent or a composite
of other views. The ViewSd class adds a solid background
color and a 3D border to View.

Views are organized into a hierarchy tree based on the dis
play stacking order. The root of this tree is called DispDriver.
II is always mapped to overlay the system window allocated
to HP VEE. It performs all low-level screen display opera
tions such as drawing lines and filling regions. It also han
dles the window system interface functions such as repaint
requests and dispatching of input events. Fig. 4 shows a
composite of views in a view hierarchy with some of the
views labeled with the name of their associated class. Fig. 5
shows the complete hierarchy tree of the views in Fig. 4.

GenField

Fig. 4. A composite view with
sonic of l he component views

lain l< 'I

October l!l!)2 Hewlett-Packard JournaJ 81
© Copr. 1949-1998 Hewlett-Packard Co.

IPEdJtor
HScrol lBar
VScrol lBar
StretchBox
ContextView

DevCarr ier
IFromThru

St r ingView
CXField
St r ingView
CXField
S t r ingView
CXField

Ti t leBar
GenField

M e n u B a r
T i t leBar

GenField
P i x m a p V i e w
Button
Button
Button
Button

Fig. 5. Display hierarchy tree.

Subviews are views that are attached to another view called
the superview in the display hierarchy tree. Subviews are
clipped at the edges of their superview. In this way, each
level of the view hierarchy tree limits the visual boundaries
of all views below it. This view hierarchy indirectly de
scribes the view stacking order, which ultimately controls
which views appear to be on top and which ones are hidden.

Each view maintains a description of the region on which it
is allowed to display itself. This clip region is calculated by
taking its own bounds, subtracting any region that falls out
side the bounds of any view in its superview hierarchy, and
then subtracting any views that partially or completely
cover it or any view in its superview hierarchy.

Repainting
When repainting an area that it is maintaining, a view may
either use the clip region to limit the areas it actually changes
on the display, or it may paint any area that it owns and then
paint every view that appears closer to the user in the view
stack. The full view stack repaint method has nothing to
calculate or check before it begins painting itself completely
and then painting anything that might be on top of it. If noth
ing is on top of it, then the complete stack repaint is very
efficient because it is so simple. However, if there are many
other views covering the view to be repainted, the full stack
repaint will be very slow because of all of the unnecessary
repainting that must be done. The clip region repaint method
is much more efficient in this situation since only those
areas that are directly visible to the user will be repainted.
This means that no unnecessary repainting must be done.

Unfortunately, the clip region is at best an approximation
since views are allowed to display images of arbitrary com
plexity (such as text) and be transparent in other areas. This
gives the user the illusion that views can have any shape
without incurring the performance penalties associated with
nonrectangular views. It would be very costly to calculate
these regions accurately, so only the approximation based
on the rectangular view bounds is actually calculated. This
means that repaints using the clip region method will not
correctly update regions behind transparent areas of other
views. Therefore, the clip region repaint method is used in
only a few special cases.

Input events such as mouse clicks are dispatched to individ
ual views in the system using a two-phase search mecha
nism. In the first phase, working from back to front, each
view in the view stack where the event occurred asks the
views in front of it to process the event. When there are no
more views in front of the current view, the second phase
begins with an attempt to consume the event. Working from
front to back, each view in the view stack (as determined
during the first phase) is given an opportunity to consume or
ignore the event. If the view takes no special action, the
event is passed to the next view down in the view stack. If
the the view intends to consume the event, it does so by
performing an action associated with the event such as indi
cating that a button has been pressed and then marking the
event as consumed. This process continues until the event is
consumed, or until the DispDriver class is given the event (this
class consumes all events).

Other Classes
The visible part of each object in an HP VEE program is
maintained by the DevCarrier class. DevCarrier's job is to main
tain the visual appearance of all objects in the system by
showing the terminal pins, maintaining the various high
lights and outlines required by HP VEE, and allowing vari
ous editing operations on the user's program such as con
necting lines and adjusting the sizes or positions of objects.
DevCarrier does not display any object-specific information.
That information is displayed by object-specific view
classes, which are attached to DevCarrier as subviews.

User objects are specialized objects that are built using a
subclass of DevCarrier called SubProg. SubProg maintains a
visual subprogram which acts just like a normal object when
viewed from the outside, but contains an internal dataflow
network of its own that is just like the main program. All of
the dataflow networks in HP VEE are maintained by a class
called ConView (context view). It is the gray background area
behind the lines and boxes in a dataflow network.

The top-level workspace environment class â€” IPEditor (iconic
program editor) â€” is just a special case of SubProg and is
therefore built as a subclass of SubProg. It is attached as the
only subview of DispDriver and maintains the top-level editing
environment. It is the same as SubProg, except that it must
maintain the menu bar, run/stop buttons, and other features
specific to the top level.

The context view class (ConView) maintains a list of all ob
jects in the context and the lines connecting them. When the
context view is asked to repaint itself, it first paints its back
ground color (gray, by default), and then paints all lines in
the line list. Then each HP VEE object in the context is
painted according to the stacking order. If an HP VEE object
falls partially or completely outside the context view's
bounds, then according to the clipping rules, that view will
be only partially painted or not painted at all.

The clipping and repaint algorithms allow an HP VEE pro
gram to be visually much larger than the screen space al
lotted to it. By adding navigation controls such as the back
ground scroll capability, a very large dataflow network can
be supported even on a comparatively small screen.

82 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Model-Mew Architecture
HP VEE is organized around a model-view architecture. This
is similar to the model-view-controller architecture used in
other object-oriented systems except that we chose to
merge the functionality of the controller into the view. The
fundamental assumption in the model-view architecture is
that the internal data and program elements (the models)
can operate without any knowledge of or dependence on
their visual representations (the views). By separating the
system at this natural boundary, both the views and the
models can be written more simply without any unneces
sary dependencies. One feature of this architecture is that
one model can be attached to any of several different views
without any special support in the model. For example, a
model that contains a real number can be attached to a text
field or to a meter. Since the properties of the number do
not change based on how it is displayed, no changes are
required of the class that holds the number. However, since
there are few similarities between a meter view and a text
view, they need not be built with one view class.

User panels are one area that really benefit from the split
between models and views. When the user selects an HP
VEE object such as a slider and asks that it be added to the
user panel, several things happen internally to make that
happen. First, if a user panel has not been created for this
program or user object, one is created. The user panel class
is similar in concept to the context view class, but without
support for interconnections required for dataflow net
works. Next, an instance of the PanelCarrier class is created to
hold a copy of the object-specific part of the slider view.
This copy is created from the original and attached to the
new panel carrier and to the original slider model (which is
not copied). The panel carrier is then attached to the user
panel view.

One of the most significant architectural impacts of the im
plementation of user panels is the fact that there can be
many independent views attached to the same underlying
model at the same time. Because of this architecture, it is
easy for panels from user objects to be added as a unit to
higher-level panels. This allows the creation of complex
panels consisting of grouped controls and displays.

The DispDriver class is designed to be the only place where
calls to the underlying window system (such as the X Win
dow System) occur. This allows the display driver to be re
placed if appropriate when porting to a new platform. Dur
ing development, for example, we used a driver written to
talk directly to the display card of an HP 9000 Series 300
computer because it ran so much faster than the window
systems. Now that very high-performance workstations are
available, this is no longer necessary.

Printing is handled simply by replacing DispDriver with the
printer driver class, which knows how to perform graphics
operations on a printer. The information intended for the
printer is just "displayed" on the printer and no special
printer support must be developed aside from the printer
driver itself. This also allows the print output to match the
screen display very nicely.

Acknowledgments
Building an advanced user interface is really not difficult,
but it takes a great deal of thought and perseverance. It also
requires support from management. We were lucky on the
HP VEE team because we had managers who understood
the value of a good user interface. They encouraged the
team to produce the best product that we were capable of
even if the schedule would be put at risk. Of course, the
team members themselves were very highly motivated to
produce an exciting product. John Bidwell, the HP VEE
project manager, provided the leadership and management
support required for our success. He was able to resist the
temptation to ship the product before it was ready, and kept
all of the various team members focused on the goal of a
truly easy-to-use product. Sue Wolber, Randy Bailey, and
Ken Colasuanno each contributed to the overall usability of
the system in each of their respective areas. Jon Pennington
performed usability testing and provided most of the usability
feedback during development.

Reference
1. P. Brooks, "No Silver Bullet: Essence and Accidents of Software
Engineering," IEEE Computer, September 1987, pp. 43-57.

Microsoft is a U.S. registered trademark of Microsoft Corp.

October 1992 Hewlett-Packard Journal 83

© Copr. 1949-1998 Hewlett-Packard Co.

HP VEE: A Dataflow Architecture
HP VEE is an object-oriented implementation. Its architecture strictly
separates views from the underlying models. There are two types of
models: data models and device models. Special devices allow users to
construct composite devices.

by Douglas C. Beethe

The HP VEE dataflow programming environment was devel
oped that the specific objective of providing an interface that
would allow users to express a problem in block diagram
form on the screen and then execute it directly. Dataflow
programming was chosen because of its direct correlation
to the block diagram models we wished to emulate.

Previous efforts in industry and academia related to data
flow programming had yielded some interesting results, but
general applicability had not yet been established. Thus our
early research efforts were directed primarily at the question
of whether we could solve some of the problems that had
plagued earlier attempts and prove general applicability.

The design and construction of HP VEE used object-oriented
technology from the beginning. We had enough experience
with procedural coding technology to realize that a project
like HP VEE would be too complex to achieve with proce
dural technology. The architecture that evolved from this
development is the subject of this article. The design of vari
ous elements of the underlying HP VEE architecture will be
discussed as will the manner in which they work together to
produce the executable block diagram as a dataflow model.

The Model- View Paradigm
One of the characteristics of the HP VEE architecture that is
common to most object-oriented implementations is the
strict separation between models and views. Most users are
familiar with the world of views, and indeed often make no
distinction between the view of an object and its underlying
model.

From a functional point of view the model is the essence of
an object, incorporating both the data (state variables) that
gives the object its uniqueness, and the algorithms that oper
ate on that data. In HP VEE, by definition, the model oper
ates independently of the view, and does not even know of
the existence of any graphical renderings of itself , except as
anonymous dependents that are alerted when the state of
the model changes (see Fig. 1).

There are many examples of applications that have views
possessing no underlying functional models. Consider the
various draw and paint programs, which allow the user to
create very sophisticated views that, once created, are inca
pable of performing any function other than displaying
themselves. Likewise, there are numerous examples of ap
plications that support very sophisticated functional models
but lack any ability to display a view of those models, be it
for passive display of state or for active control.

Most of the scientific visualization software appearing today
is used to create views of the data output of functional mod
els that have little or no display capability. Most of the views
that are seen by the HP VEE user are actually graphical ren
derings of the states of underlying models. In the interactive
mode, access to the models is by means of these views,
which communicate with their respective models to change
their the initiate execution, and so forth. For example, the
view of the ForCount iterator has a field in which the user can
enter the number of times the iterator should fire at run
time. Upon entry, this value is sent to the underlying device
model, where it is kept as a state variable. When this state
variable is changed, the model sends out a signal to anyone
registered as a dependent (e.g., the view) that its state has
changed, and the view then queries the model to determine
the appropriate state information and display it accordingly
(see Fig. 2).

This strict separation between model and view might seem
excessive at first, but it results in a partitioning that makes
the task of generating the two different kinds of code (very
different kinds of code!) much easier from the standpoint of
initial development, portability, and long-term code mainte
nance. It also eases the job of dealing with noninteractive
operations in which HP VEE is running without any views at
all, either by itself or as the slave of another application.
And finally, this separation eases the task of developing ap
plications that must operate in a distributed environment
where the models live in one process while the views are

State Variables

â€¢ Array Size

â€¢ Array Data

Operations

â€¢ Set/Get Array Size
â€¢ Set/Get Value at <index>

â€¢ Sort Array Values
â€¢ Get Mm/Max Value

Fig. 1. Two different views of the same underlying model.

84 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Edi t Set Count (l
Tel l Al l Dependents (Views)

that Count Has Changed

Display: Get Count
Value as Formatted '
Text (for Display!

ForCount Model
State Variables

Operations

â€¢â€¢ Set Count <value>
â€¢ Get Count Text

Fig. time. Interaction of a view and the underlying model at edit time.

displayed by another process, possibly on an entirely differ
ent system. This last aspect is becoming more and more
important in an application world that is taking increasing
advantage of networked systems.

HP VEE itself is composed of two kinds of models. The first
is the device model, which acts like a black box having in
puts, outputs, and some operational characteristic that
transforms the data at the inputs to the result at the outputs.
The second is the data model (container), which handles the
transport of information along the data lines, which inter
connect devices. The data model also provides mathemati
cal functions, which can be invoked to operate on the data,
and formatting and deformatting functions, which change
the representation of the data when required for display or
for communication with some other application that requires
the data in a different form. Both types of models will be
discussed in some detail.

Data Models
The fundamental abstraction for information in HP VEE is
the container object (Fig. 3). Containers can hold data for
any of the supported data types: text, enumerated, integer,
real, complex, polar complex, coordinate, waveform, spec
trum, and record. Both scalars (zero dimensions) and arrays
from one to ten dimensions are supported. In addition, the
dimensions of array containers can be mapped in either lin
ear or logarithmic fashion from a minimum value at the first
cell of a dimension to a maximum value at the last cell of
that dimension. This allows an array of values to have some
physical or logical relationship associated with the data. For
example, a one-dimensional array of eleven measurements

Container Model

State Variables

â€¢ Name
â€¢ Data Type
â€¢ Number of Dimensions: 0 10.

â€¢ Dimension Sizes

â€¢ Dimension Mappings [from, through]

Operations

â€¢ Configuration
â€¢ Value Assignment/Access
â€¢ Type Conversion

â€¢ Mathematics
â€¢ Text Generation

Fig. 3. Container model attributes.

Supported Data Types
â€¢ Text
â€¢ Enum
â€¢ Integer, Real, Time
â€¢ Complex, Polar Complex

â€¢ Coord, Waveform, Spectrum
â€¢ Record

can be mapped from 0 to 32 cm to indicate the physical rela
tionship of the values in each position in the array to some
real-world phenomenon. The first value would be at 0 cm,
the next at 3.2 cm. the next at 6.4 cm. and so on.

One of the properties of containers that is used extensively
in HP YEE is the knowledge of how to transform to another
type on demand. The automatic form of this transform is
allowed only for transforms that incur no loss of informa
tion. This has the effect of allowing most promotions, but
disallows any automatic demotions. For example, integer
can be promoted to real, and real to complex or polar com
plex, but complex cannot be demoted automatically to real.
To do so would likely cause the loss of information that
would not reappear in the promotion of that real value back
to complex. An interesting special case of this is the revers
ible transformation between waveform and spectrum (time
and frequency domains). While these data types seem to
have the same irreversible relationship to each other as the
real and complex types just discussed, it is a well-known
fact that a reversible transformation exists between these
two special types by means of the Fourier transform. For
example, a 256-point waveform is transformed to a 129-point
spectrum (ignoring the symmetrical values with negative
frequency), and the same spectrum regenerates the original
256-point waveform by means of the inverse Fourier
transformation (Fig. 4).

Another powerful property of containers is their inherent
knowledge of data structure as it applies to mathematical
operations. At first glance, operations such as addition and
subtraction seem relatively simple, but only from the stand
point of two scalar operands. For other structural combina
tions (scalar + array, array + scalar, or array + array) the task
requires some form of iteration in typical third-generation
languages (3GLs) like C that has always been the responsi
bility of the user-programmer. Containers encapsulate these
well-understood rules so that the user deals with, say, A and
B simply as variables independent of structure. When any of
the nontrivial combinations is encountered, the containers
decide among themselves if there is an appropriate struc
tural match (scalar with any array, or array with conforma!
array) and execute the appropriate operations to generate
the result.

Other more complicated operations with more robust con
straints (e.g., matrix multiplication) are handled just as easily
since the appropriate structural rules are well-understood
and easily encapsulated in the containers. These properties
aid the user in two ways. First, the user can express power
ful mathematical relationships either in fields that accept

Waveform Display

_n_n_n
0 m s 2 0 m s

Fig. 4. Automatic transformation of a time-domain waveform
(e.g., 256 real values, 0 to 20 ms) to a frequency-domain spectrum
(129 complex values, 0 to 6400 Hz).

October 1992 Hewlett-Packard Journal 85
© Copr. 1949-1998 Hewlett-Packard Co.

Device Mode l

State Variables

â€¢ Name and Description

â€¢ Input/Output Configuration

â€¢ Device-Specific Properties

Operations

â€¢ Add/Delete Inputs and Outputs
â€¢ Run-Time Validation
â€¢ Device-Specific Execution

â€¢ Propagation

Fig. 5. Attributes of a simple device model.

constant expressions or in any of several delayed-evaluation
fields the Formula, If/Then, ...) without having to deal with the
cumbersome iteration syntax of 3GL programming. This by
itself has the pleasant side effect of eliminating much if not
most of the iteration in many applications, compared to their
3GL equivalents. Second, the interconnection of the various
objects that make up a model in HP VEE is much simpler
when any of the inputs is constrained to a specific data type.
Since the containers know how to respond to most requests
for type change, the user is freed from the cumbersome task
of explicitly changing (casting) the original type to the re
quired type. For example, the inputs to a spectral display
that requires a spectrum input will not disallow connection
to a waveform (time-series data) because the output supply
ing the waveform will transform it to a spectrum on demand
at run time. This same capability is used during the evalua
tion of any mathematical expression, thus allowing the user
to intermix types of operands without explicit type casting.

Device Models
Fig. 5 shows the attributes of a simple device model. Each
device can have its own inputs and outputs. Many have user-
controllable parameters that are accessed as constants
through the panel view of the device or as optionally added
inputs. In general, the device will execute only when each of
the data inputs has been given new data (including nil data).
Thus the data inputs to any given device define a system of
constraints that control when that device can execute. This
turns out to be quite natural for most users since the data
relationships that are depicted by the data lines that inter
connect devices generally map directly from the block dia
gram of the system in question, and often are the only form
of constraint required for the successful execution of a
model.

There are numerous cases, however, where an execution
sequence must be specified when no such data dependen
cies exist. Such cases typically fall into two categories:
those where there is some external side effect to consider
(communications with the real world outside my process)
and those that deal explicitly with real time. To deal with
this situation we developed the sequence input and output
for each device (on the top and bottom of the device, re
spectively), as shown in Fig. 6. The sequence output be
haves like any other data output by firing after successful
execution of the device except that the signal that is propa
gated to the next device is a always a nil signal. Likewise,
the sequence input behaves like any other data input with
one exception. When connected it must be updated (any data
will do, even nil) along with any other data inputs before the

Sequence Output
Sequence Input

Fig. 6. While B and C both need the data from A, the sequence
connection between B and C will cause C to execute after B.

device will be allowed to execute, but unlike other data in
puts, connection is not required. Thus any time it is required
that A must execute before B where no other data dependen
cies exist between the two devices, it is sufficient to connect
the sequence output of A to the sequence input of B.

For users who have already been introduced to program
ming in third-generation languages such as Pascal, C, or
BASIC this can require a paradigm shift. Experience with
such users has shown that they are often preoccupied with
sequencing (since 3GLs almost universally use control-flow
paradigms) and have a difficult time at first believing that
the data constraints represented by the lines that intercon
nect the devices are sufficient to define a robust sequence of
execution. It is only after using the system for a time that
they are weaned away from this need to sequence each and
every device explicitly and begin to feel comfortable with
the dataflow paradigm.

Contexts
Several types of devices are supplied as primitives with HP
VEE, including those used for flow control, data entry and
display, general data management, mathematical expressions,
device, file, and interprocess I/O, virtual signal sources, and
others. There is also a mechanism that allows users to con
struct special devices with their own panels and a specific
functional capability. This device is known as a UserObject
and is essentially a graphical subprogram.

UserObjects (Fig. 7) encapsulate networks of other devices
(including other UserObjects) and have their own input/output
pins and custom panel displays. Viewed as a single collec
tive object with its own panel, each UserObject operates un
der the same rules as any primitive device: all data inputs
must be updated before the UserObject will execute its inter
nal subnet. Each UserObject will contain one or more threads,
which in in parallel at run time. In addition, threads in
subcontexts (hierarchically nested contexts) may well be

Fig. into a UserObject encapsulates a subnetwork of other objects into a
single larger object with its own inputs and outputs.

86 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

running in parallel with their host threads in their parent
contexts.

UserObjects can be secured such that the user of the de\ice
can access only the panel and not the internals. In this form
the UserObject is almost indistinguishable from any primitive
device. This capability allows developers to create arbitrary
devices that can be archived in a libran,- for later access by
users, who can treat these devices as true primitives in their
application.

Threads
Devices that are connected to each other within the same
context form a single thread of execution. One of the in
herent advantages of dataflow programming is the ability to
support multiple independent threads of execution with
relative ease (see Fig. 8). This becomes particularly useful
when interacting with the rest of the world, since indepen
dent monitoring operations ("Has that message arrived
yet?") can proceed in parallel with related operations. In
typical 3GLs such operations require elaborate schemes for
enabling interrupts and related interrupt service routines.
Most who have dealt with such code as inline text can attest
to the difficulty of maintaining that code because of the diffi
culty of easily recreating the relationship between parallel
operations once the code has been written.

Several devices were developed especially for thread-related
activities. One of these is the Exit Thread device, which termi
nates all execution for devices on that same thread when
encountered. Another is the Exit UserObject device, which ter
minates all execution on all threads within the context in
which it is encountered.

Certain devices have the ability to elevate a thread's priority
above the base level to guarantee that thread all execution
cycles until completion. One such device is the Wait For SRQ
device (SRQ = service request), which watches a specified
hardware I/O bus in anticipation of a service request. If and
when such a request is detected, this device automatically
elevates the priority of the subthread attached to its output
so that all devices connected to that subthread will execute
before devices on any other thread (within this context or
any other context) until that subthread completes.

Virtual Context

Fig. 8. Any context (e.g., a UserObject) can contain one or more
threads, each of which executes independently of all others within
that context.

Fig. 9. Objects A and B and the XV display will execute 10 times
each at side) time as the iterator fires its only data output (right side)
10 times before firing its sequence output (bottom). The data from
the output of X is reused for the last 9 of the 10 executions of A
(active data rule).

Although it is not specifically thread related, a similar capa
bility exists for exception service. At the time an exception
is raised (e.g., an error occurs), all other devices on all other
threads are suspended until an exception handler is found
(discussed later).

Propagation: Flow of Execution
From an external point of view, the determination of which
devices can execute is a simple problem of finding out
which devices have had all of their inputs updated. From an
internal point of view, the problem is a bit more difficult. To
prevent infinite feedback the general rule for dataflow pro
grams is that each device can execute only once per activa
tion of the context in which the device resides. On the other
hand, it was felt from our earliest prototypes that having
iteration occur within some subgroup of devices in a con
text was superior to dropping down into a subcontext multi
ple times to accomplish the same thing, especially for
nested iteration.

Thus we were faced with the problem of allowing groups of
devices to execute multiple times within a single activation
of a context. Identification of these devices could only occur
at run time as they appeared on the subthread hosted by the
primary output of an iterator. To deal with this we devel
oped the virtual context, which is defined not by the user
but by the system (see Fig. 9). At run time, the devices that
are executed on the subthread hosted by an iterator are re
membered. Then, just before the next firing of the iterator
(since an iterator generally fires its output more than once
for each execution of that iterator), the devices in this
virtual context are selectively deactivated separately from
the other devices in the context. This allows them to be re-
executed when the iterator fires again by the normal rules of
propagation.

One other side effect of such iteration is that any data being
supplied to a device within the virtual context by a device
that is outside that virtual context is going to be delivered
only once to the device within the virtual context. Thus new
data is supplied to the inputs as required on the first itera
tion, but on all subsequent iterations no new data arrives.
One could solve this by using a special intermediary
Sample&Hold device, but a simple extension to the rules of
propagation turned out to be much easier. The extension,

October 1992 Hewlett-Packard Journal 87

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. output The special error output will fire in lieu of the data output if
any error is encountered while evaluating the formula. The value
posted at the error output is the error code number. This allows the
user to decide how to handle the situation.

known as the "active data rule," says that data from any ac
tive but of a device that is currently active (executed, but
not yet deactivated) can be reused. This has essentially the
same effect as the Sample&Hold but is much less error-prone.

The goal in all of this is to create a scheme of execution that
does not require the user to specify a sequence of execution
with explicit device-by-device triggering as is common in the
world of digital design. In addition, we wanted execution to
proceed as if the entire network were running on a multipro
cessor architecture with true parallelism. On a typical uni
processor machine only one primitive device is actually
drawing cycles from the processor at any one instant, but
the overall effect is as if all devices both within the same con
text level and across other levels of the network hierarchy
are running in parallel.

Asynchronous Operations
For some devices we found a need to invoke certain opera
tions programmatically that were peripheral to the general
operation of the device, such as AutoScale or Clear for an XY
graph. While the primary function of the graph is to con
struct a graph from the data present at the synchronous data
inputs, operations such as AutoScale could happen at any
time. A different class of inputs that were not incorporated
into the general scheme of propagation was needed to initi
ate these asynchronous operations. Thus we developed the
control input, which when updated at run time will perform
its assigned function within the associated device regardless
of the state of any other input on the device.

Exception Management
Exception (error) management could have been approached
from a number of different points of view, but it proved most
effective to implement a strategy based on an optional out
put that fires if and only if an untrapped exception is raised
from within the scope of that device (Fig. 10). For primitive
devices this allows the user to trap common errors such as
division by zero and deal with possibly errant input data
accordingly. In each case a number (an error code) is fired
from the error pin and can be used by the ensuing devices to
determine just which error has occurred. If the decision is
not to handle the error locally, the error can be propagated
upward with the Escape device, either as the same error that
could not be handled locally or as a new user-defined code
and message text, which may be more informative to the
handler that eventually owns the exception.

Hierarchical exception handling is possible because an error
pin can be added to any context object (UserObject) to trap
errors that have occurred within its scope and that have not
been serviced by any other interior handler. If the exception
pops all the way to the root context without being serviced,
it generates a dialog box informing the user of the condition
and stops execution of the model. To enable the user to lo
cate the exception source, the entire chain of nested devices
is highlighted with a red outline from the root context down
to the primitive device that last raised the exception.

Acknowledgments
Much of the conceptual framework for HP VEE in the early
stages came from lengthy discussions with John Uebbing at
HP Labs in Palo Alto. His insights and questions contributed
significantly to many elements of the underlying structure
which eventually matured into the HP VEE product. John's
vision and imagination were invaluable. I would also like to
thank several members of the design and test teams whose
continued feedback concerning the functional aspects of the
product proved equally invaluable: Sue Wolber, Randy Bailey,
Ken Colasuonno, Bill Heinzman, John Friemen, and Jerry
Schneider. Finally, I would like to thank David Palermo who
in his position as lab manager provided the resources and
direction to see this project make it from the first conceptual
sketches to the real world. No project of this nature can
succeed without such a sponsor.

88 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

	The HP Network Advisor: A Portable Test Tool for Protocol Analysis
	Network Advisor Product Enhancement Philosophy
	Embedding Artificial Intelligence in a LAN Test Instrument
	The User Interface for the HP 4980 Network Advisor Protocol Analyzer
	Object-Oriented Design and Smalltalk
	The Forth Interpreter
	The Network Advisor Analysis and Real-Time Environment
	Network Advisor Protocol Analysis: Decodes
	Mechanical Design of the HP 4980 Network Advisor
	Frequency Translation as Convolution
	Design Considerations in the Microwave Transition Analyzer
	A Visual Engineering Environment for Test Software Development
	Object-Oriented Programming in a Large System
	Developing an Advanced User Interface for HP VEE
	HP VEE: A Dataflow Architecture
	A Performance Monitoring System for Digital Telecommunications Networks
	G Link: A Chipset for Gigabit-Rate Data Communication
	Bang-Bang Loop Analysis

