
A Visual Engineering Environment for 
Test Software Development 
Software development for computer-automated testing is dramatically 
eased by HP VEE, which allows a problem to be expressed on the 
computer using the conceptual model most common to the technical user: 
the block diagram. 

by Douglas C. Beethe and William L. Hunt 

For many years, the cost of developing computer-automated 
testing software has grown while the cost of the computer 
and instrumentation equipment required to run tests has 
dropped significantly. Today, in many test systems, the hard 
ware costs represent less than 25% of the total cost of the 
system and software costs consume the other 75%. HP VEE 
was designed to dramatically reduce test software develop 
ment costs by allowing the test to be expressed on the com 
puter using the conceptual model most common to the tech 
nical user: the block diagram. This article will provide a 
general overview of the development of HP VEE, its feature 
set, and how it applies the concept of the executable block 
diagram. Further details of the architecture of HP VEE can 
be found in the articles on pages 78 and 84. 

There was a time when business and finance people dreaded 
using a computer because it meant an extended question- 
and-answer session with a primitive mainframe application 
being displayed on a dumb terminal. Even after the first per 
sonal computers were introduced, very little changed, since 
the existing applications were simply rewritten to run on 
them. When the electronic spreadsheet was developed, busi 
ness users could finally interact with the computer on their 
own terms, expressing problems in the ledger language they 
understood. 

Un titled 

The technical community was left out of this story, not be 
cause the personal computer was incapable of meeting 
many of their needs, but because their problems could sel 
dom be expressed well in the rows and columns of a ledger. 
Their only options, therefore, were to continue to work with 
the question-and-answer style applications of the past, or to 
write special-purpose programs in a traditional programming 
language such as Pascal, C, or BASIC. 

Technical people often find it difficult to discuss technical 
issues without drawing block diagrams on white boards, 
notebooks, lunch napkins, or anything else at hand. This 
begins at the university where they are taught to model vari 
ous phenomena by expressing the basic problem in the form 
of a block diagram. These block diagrams usually consist of 
objects or processes that interact with other objects or pro 
cesses in a predictable manner. Sometimes the nature of the 
interactions is well-known and many times these interactions 
must be determined experimentally, but in nearly all cases 
the common language of expression is the block diagram. 

Unfortunately, the task of translating the block diagram on 
the lunch napkin into some unintelligible computer language 
is so difficult that most technical people simply cannot ex 
tract real value from a computer. Staying up on the learning 
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Fig. 1. A simple HI' \KE program 
to draw a circle. 
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curve of their own problem domain is a sufficient challenge 
that embracing a whole new learning curve (programming) 
just to translate problems for the computer's benefit hardly 
seems worth the effort. While it is true that many wonderful 
solutions to certain kinds of problems have been generated 
over the years, most of the potential usefulness of comput 
ers has never been realized. In many cases, a good calcula 
tor is still the best bet because it makes a manual solution 
relatively easy to compute. 

What is HP VEE? 
HP VEE, Hewlett-Packard's visual engineering environment, 
is a software tool that allows users to create solutions by 
Unking visual objects (icons) into block diagrams, rather 
than by using traditional textual programming statements. 
HP VEE provides objects for data collection, analysis, and 
presentation, in addition to objects and features for data 
storage, flow, modularity, debugging, documenting, and 
creating graphical user interfaces. The objects work to 
gether in the form of an interconnected network or block 
diagram constructed by the user to represent the problem at 
hand. The user selects the necessary objects from the menu, 
links them in the manner that represents how data flows 
from one object to another, and then executes the resulting 
block diagram. No translation to some other language. No 
other intermediate step. 

To understand HP VEE better, consider a simple graphical 
program to draw a circle. By connecting a loop box, two 

math boxes (sin and cos), and a graph, this simple program 
can be built in less than one minute (Fig. 1). Although this is 
not a difficult task using a traditional language that has sup 
port for graphics, it is still likely that it will be quicker to 
develop it using HP VEE. 

HP \"EE eases the complexity of data typing by pro\iding 
objects that can generate and interpret a variety of data 
types in a number of shapes. For example, the virtual func 
tion generator object generates a waveform data type, which 
is just an array of real numbers plus the time-base informa 
tion. It can be displayed on a graph simply by connecting its 
output to the graph object. If its output is connected to a 
special graph object called a MagSpec (magnitude spectrum) 
graph, an automatic FFT (fast Fourier transform) is per 
formed on the waveform (Fig. 2). By connecting a noise gen 
erator through an add box, random noise can be injected into 
this virtual signal (Fig. 3). If we had preferred to add a dc 
offset to this virtual signal, we could have used a constant 
box instead of the noise generator. 

User panels allow HP VEE programs to be built with ad 
vanced graphical user interfaces. They also allow the imple 
mentation details to be hidden from the end user. To com 
plete our waveform application, we can add the slider and 
the graph to the user panel (Fig. 4). We can adjust the pre 
sentation of this panel by stretching or moving the panel 
elements as required for our application. 

Unfilled :  R u n  Â ¡ S t o p .  C o n t  S t e p  
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Fig. 2. A waveform displayed in 
the time and frequency domains. 
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Fig. 3. Noise added to a wave 
form in the time and frequency 
domains. 

This is just a trivial overview of the basic concept behind 
HP VEE. Other major features not covered include objects 
for sending data to and from files, data translation and con 
version, advanced math capabilities, and data display func 
tions. HP VEE actually consists of two products. HP VEE- 
Engine is for the analysis and presentation of data gathered 
from files or programs or generated mathematically. HP 
VEE-Test is a superset of HP VEE-Engine and adds objects 
and capabilities for device I/O and instrument control. 

Development Philosophy 
The team's goal for HP VEE was a new programming para 
digm targeted not only at the casual user, but also at the 
advanced user solving very complex problems. One simple 
approach would have been to assign an icon to each state 
ment in a traditional language and present it to the user in a 
graphical environment. The user would simply create icons 
(statements) and connect them in a structure similar to a 
flowchart. However, such a system would be harder to use 
than a traditional language, since the graphical program 
would require more display space than the older textual 
representation and would be more difficult to create, 
maintain, and modify. This would actually have been a step 
backward. 

We decided that a genuine breakthrough in productivity 
could only be achieved if we moved to a higher level of ab 
straction to more closely model the user's problem. We 
therefore chose to allow users to express their problems as 

executable block diagrams in which each block contains the 
functionality of many traditional program statements. Many 
elements in HP VEE provide functionality that would require 
entire routines or libraries if the equivalent functionality 
were implemented using a traditional language. When users 
can work with larger building blocks, they are freed from 
worrying about small programming details. 

Consider the task of writing data to a file. Most current pro 
gramming languages require separate statements for opening 
the file, writing the data, and closing the file. I( would have 
been relatively easy to create a file open object, a file write 
object, and a file close object in HP VEE. Such an approach 
would have required at least three objects and (heir associ 
ated connections for even the simplest operation. Instead, 
we created a single object that handles the open and close 
steps automatically, and also allows all of the intermediate 
data operations to be handled in the same box. This single 
To File box supports the block diagram metaphor because the 
user's original block diagram would not include open and 
close steps (unless this user is also a computer programmer), 
it would only have a box labeled "Append this measurement 
to the data file." The open and close steps are programming 
details that are required by traditional programming languages 
but are not part of the original problem. 

Or, consider the task of evaluating mathematical expres 
sions. In some common dataflow solutions, a simple opera 
tion such as 2xA+3 would require four objects and their 
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associated connections (two constants, one add operation, 
and one multiply operation). Using HP VEE's formula box 
requires only the single expression object to solve this prob 
lem. The point of a block diagram is to show an overview of 
how a complex system operates without regard to imple 
mentation details. Had HP VEE been implemented without a 
higher level of abstraction, the resulting graphical program 
would have had so many boxes and lines that it would have 
resembled a maze rather than a block diagram. 

Development Process 
We followed a fairly informal development lifecycle for HP 
VEE. It was based on the spiral lifecycle,1 which divides the 
development phase into a series of design/build/test cycles 
with a risk assessment before each. This worked very well 
for us for several reasons. Probably the most important fac 
tor was that the team was small and highly motivated. This 
made rigorous checkpoints and detailed design documents 
unnecessary since all of the team members worked very 
closely together toward the same goals. Another important 
factor was the use of an object-oriented design approach 
coupled with very careful design practices. This allowed us 
to design classes according to their interactions with the 
rest of the system without spending a great deal of time im 
plementing the internals of the classes. This is important in 
a spiral lifecycle because during each cycle, an entire class 
or set of classes may need to be reimplemented. Without an 
object-oriented approach, this would require an excessive 
amount of time rewriting other seemingly unrelated parts of 
the system. Another successful development decision was 
the early incorporation of a full-time software testing team 
to help us with the test phases of the lifecycle. 

Fig. 4. User panel for waveform 
plus noise application. 

The Search for Primitives 
The initial functionality was specified by the team based on 
our experience as frustrated users of third-generation lan 
guages (3GLs) such as Pascal, C, and BASIC. Certain tasks 
appeared over and over on the "I wish there were some 
other way to do this ..." list. Experience had already shown 
that library of limited flexibility, the usual subroutine library 
approach did not offer the type of productivity increase being 
sought. However, with our executable block diagram meta 
phor, we felt that many of these tasks could be implemented 
as primitives in HP VEE while still providing the necessary 
flexibility. 

Foremost among these tasks were data management, engi 
neering graphics, instrument control, and integration of mul 
tiple applications. In each case we were convinced that a 
higher level of abstraction could be developed that would be 
flexible yet simple enough to require only minor configura 
tion specification from the user in most situations. 

Data Management 
To tame the basic data management problem we developed 
the container architecture. Containers hold data, either ar 
rays or scalars, of a wide variety of data types, and provide a 
rich set of mathematical intrinsics to operate on that data. 
Many operations such as type conversion and array process 
ing, formerly left to the user, are incorporated into these 
object abstractions in a fashion that makes them relatively 
transparent. 

Another aspect of data management involves interfacing 
with the file system because so much effort must be ex 
pended on it when using 3GLs. We developed objects that 
offer the powerful input/output capabilities of many 3GLs, 
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Object-Oriented Programming in a Large System 

The biggest problem with a large software development effort is that there is just 
too much complexity for the human mind to manage. The obvious solution is to 
add more people to the project so that the members are not asked to manage 
more than their individual abilities permit. Unfortunately, the law of diminishing 
returns applies, since each additional team member adds a very large communica 
tion and training load on the rest of the team. In addition, there are increased 
opportunities for disagreement and conflict. 

In some to development of large software systems is like one person trying to 
dig a canal using only a shovel. Yes, it is possible, but probably not in that person's 
lifetime. If more people are assigned to the task, it can be done more quickly, but 
only at an enormous cost. However, if equipped with the right tools (backhoes, 
earth movers, etc.), one person can accomplish so much that only a small number 
of people are required to complete the project within a reasonable amount of time. 

This reducing amount the idea behind object-oriented programming. By reducing the amount 
of complexity that one software developer must manage, that one person can be 
responsible for a much larger portion of the system. The result is that much higher 
productivity is attainable since smaller teams can be used, thereby avoiding the 
effects of the law of diminishing returns. Features of object-oriented programming 
such as larger and inheritance allow one person to maintain a much larger 
portion of a large system than would be possible with a traditional approach. 

Encapsulation is probably the strongest reason to use an object-oriented approach 
for a large system. Object-oriented systems encapsulate functionality by combin 
ing data and associated routines into one package (the class) and then disallowing 
access code the data except through one of the routines. When this is done, code 
outside of the class is less likely to have dependencies on the structure or mean 
ing of the data in the class since its only access to the data is through the access 
routines rather than directly to the data. This allows a class to define the exter 
nally visible interface separately from the internal implementation. Because of this 
basic structure, a class or even an entire hierarchy of classes can be completely 
rewritten without affecting other parts of the system as long as the externally 
visible interface remains constant. 

Inheritance is another reason to use an object-oriented approach in a large system. 
Inheritance allows a new class to be written simply by specifying additions or 

changes to an existing class. This means that just a few lines of added code can 
provide is significant increase in functionality. The other benefit of inheritance is 
that code reuse of internal routines is increased substantially. For example, there 
is only text single-line text editor in HP VEE, which is used for all single-line text 
entry fields. However, since it is easy to add to the behavior of the editor class 
through inheritance, the numeric fields that allow constant expressions as numeric 
input editor. just a very small incremental effort over the original line editor. They 
simply add to the "accept" mechanism at the end of an editing session and pass 
the typed string to the parser for evaluation as an expression before attempting to 
record the numeric result. 

However, features such as encapsulation and inheritance do not automatically 
result practices a system that is easier to maintain and build. Very careful design practices 
must be followed and the team members must be motivated to do high-quality 
work. partitioning the most important design practice is careful partitioning of the 
system so that complexity in one area is not visible in an unrelated area. 

An object-oriented approach coupled with careful design practices will often 
cause the software development effort to seem harder than with a more tradi 
tional approach. For example, in a traditional approach, if a variable in one module 
needs reference be accessed in another module, it is easy to declare that reference directly 
to the compiler. In an object-oriented approach, it is common for these variables to 
exist only as instance variables, which are not allocated until the owning class 
has been instantiated. This means that the compiler cannot reference a value 
directly because it doesn't exist until run time. Therefore, a more complete solu 
tion means be devised to find the required value. This usually means that a mes 
sage the for the value must be sent to the object that knows the answer with 
out ever the accessing the variable. This sounds harder, and it is, but in the 
long run the resulting code is much more maintainable and extendable. 

William L Hunt 
Development Engineer 
VXI Systems Division 

but present them to the user by means of an interactive dia 
log box to eliminate the need to remember syntax. Each of 
these dialog boxes represents a single transaction with the 
file such as read, write, or rewind, and as many transactions 
as necessary can be put into a single file I/O object. 

Engineering Graphics 
For engineering graphics, the task of finding a higher level 
of abstraction was relatively easy. Unlike data management, 
engineering graphics is a fundamentally visual operation and 
as such it is clear that a single element in a block diagram 
can be used to encapsulate an entire graphical display. 
Therefore, we just developed the basic framework for each 
type of graph, and we present these to the user as graph 
displays that require only minor interactive configuration. In 
this area we had a rich set of examples to draw from because 
of the wide variety of highly developed graphs available on 
HP instruments. In some cases, we were even able to reuse 
the graphics display code from these instruments. 

Instrument Control 
Instrument control is a collection of several problems: 
knowing the commands required to execute specific opera 
tions, keeping track of the state of the instrument, and (like 
file I/O) remembering the elaborate syntax required by 3GLs 
to format and parse the data sent over the bus. We developed 

two abstractions to solve these problems: instrument drivers 
and direct I/O. 

Instrument drivers have all of the command syntax for an 
instrument embedded behind an interactive, onscreen panel. 
This panel and the driver behind it are developed using a 
special driver language used by other HP products in addi 
tion to HP VEE. With these panels the task of controlling the 
instrument is reduced to interacting with the onscreen panel 
in much the same fashion as one interacts with the instru 
ment front panel. This is especially useful for modern card- 
cage instruments that have no front panel at all. Currently 
HP provides drivers for more than 200 HP instruments, as 
well as special applications that can be used to develop 
panels and drivers for other instruments. 

In some situations instrument drivers are not flexible 
enough or fast enough, or they are simply not available for 
the required instruments. For these situations, we developed 
direct I/O. Direct I/O uses transactions similar to the file I/O 
objects with added capabilities for supporting instrument 
interface features such as sending HP-IB commands. Direct 
I/O provides the most flexible way to communicate with 
instruments because it gives the user control over all of the 
commands and data being sent across the bus. However, 
unlike instrument drivers, the user is also required to know 
the specific commands required to control the instrument. 
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To simplify the process of reconfiguring an instrument for a 
different measurement, direct I/O also supports the upload 
ing and downloading of learn strings from and to the instru 
ment. A learn string is the binary image of the current state 
of an instrument. It can be used to simplify the process of 
setting up an instrument for a measurement. A typical use of 
this feature is to configure an instrument for a specific mea 
surement using its front panel and then simply upload that 
state into HP VEE, where it will be automatically down 
loaded before making the measurements. Thus, the user is 
saved from having to learn all of the commands required to 
initially configure the instrument from a base or reset state 
before making the measurement. In most cases the user is 
already familiar with the instrument's front panel. 

Multiple Applications 
Multiple application integration turned out to be one of the 
easiest tasks in HP VEE, since the inherent parallelism of 
multiprocess operations can be expressed directly in a 
block diagram. Each element of a block diagram must 
execute only after the elements that provide data for its in 
puts. However, two elements that do not depend on each 
other can execute in any order or in parallel. This feature, 
along for the powerful formatting capabilities provided for 
interprocess communication, allows the integration and 
coordination of very disparate applications regardless of 
whether they exist as several processes on one system or as 
processes distributed across multiple systems. The only 
object abstractions required to support these activities are 
those that act as communication ports to other processes. A 
pair of objects is available that supports communication 
with local processes (both child and peer) using formatting 
capabilities similar to those used by file and instrument I/O. 

Finally, we needed to develop objects that would encapsu 
late several other objects to form some larger user-defined 
abstraction. This abstraction is available using the user ob 
ject, which can be used to encapsulate an HP VEE block 
diagram as a unit. It can have user-defined input and output 
pins and a user panel, and from the outside it appears to be 
just like any other primitive object. 

Refining the Design 
While still in the early cycles of our spiral lifecycle, we 
sought a limited number of industry partners. This enabled 
us to incorporate design feedback from target users attempt 
ing real problems well before encountering design freezes. 
Although there were fears that such attempts would slow 
our development effort because of the additional support 
time required, we felt that the payback in design refinement 
for both user interface elements and functional elements 
was substantial. 

One example of such a refinement in the user interface is 
the automatic line routing feature. Before line routing was 
added, our early users would often spend half of their time 
adjusting and readjusting the layouts of their programs. 
When asked why they spent so much time doing this, they 
generally were not certain, but felt compelled to do it any 
way. We were very concerned about the amount of time 
being spent because it reduced the potential amount of 

productivity that could be gained by using HP VEE. Thus 
we added automatic line routing and a snap grid for easier 
object alignment so that users would spend less time trying 
to make their programs look perfect. 

An example of a refinement in the functional aspects of the 
product is the comparator object. Several early users en 
countered the need to compare some acquired or synthe 
sized waveform against an arbitrary limit or envelope. This 
task would not have been so difficult except that the bound 
ary values (envelope) rarely contained the same number of 
points as the test value. Before the comparator was devel 
oped, this task required many different objects to perform 
the interpolation and comparison operations on the wave 
forms. The comparator was developed to perform all of 
these operations and generate a simple pass or fail output. 
In addition, it optionally generates a list of the coordinates 
of failed points from the test waveform, since many users 
want to document or display such failures. 

Conclusion 
Early prototypes of HP VEE were used for a wide variety of 
technical problems from the control of manufacturing pro 
cesses to the testing of widely distributed telecommunica 
tions networks. Many began exploring it to orchestrate the 
interaction of other applications, especially where network 
interconnections were involved. 

Current experience suggests that the block diagram form of 
problem expression and its companion solution by means of 
dataflow models has wide applicability to problems in many 
domains: science, engineering, manufacturing, telecommu 
nications, business, education, and many others. Many 
problems that are difficult to translate to the inline text of 
third-generation languages such as Pascal or C are easily 
expressed as block diagrams. Potential users who are ex 
perts in their own problem domain, but who have avoided 
computers in the past, may now be able to extract real value 
from computers simply because they can express their prob 
lems in the more natural language of the block diagram. In 
addition, large-scale problems that require the expert user to 
orchestrate many different but related applications involv 
ing multiple processes and/or systems can now be handled 
almost as easily as the simpler problems involving a few 
variables in a single process. 
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Developing an Advanced User 
Interface for HP VEE 
Simplicity and flexibility were the primary attributes that guided the user 
interface development. Test programs generated with HP VEE can have 
the same advanced user interface as HP VEE itself. 

by William L. Hunt 

HP VEE, Hewlett-Packard's visual engineering environment, 
was developed as a programming tool for nonprogrammers. 
In the past, computer users were required to move into the 
computer's domain. Our goal for HP VEE was to bring the 
computer into the user's domain. This meant developing a 
system that operates in the way that our target users expect. 

To accomplish this goal, ease of use was of critical impor 
tance. However, because most target users of HP VEE are 
highly educated technical professionals, simple-minded ap 
proaches to user interface design were not appropriate. For 
this audience, the system must be powerful and flexible, but 
must not become an obstacle because of overprotection. 

With these constraints in mind, we decided that the primary 
attributes of HP VEE should be simplicity and flexibility. 
Learnability was also considered to be important, but we 
felt that no one would bother to learn the system unless it 
were a truly useful and powerful tool. Therefore, we felt that 
we could compromise some learnability in situations where 
a great deal of the power of the system would be lost if 
learnability were our primary goal. Our overall approach, 
therefore, was to design a system that is as natural to learn 
and use as possible and powerful enough that our customers 
would be excited about learning how to use it. 

Development Guidelines 
In general, simplicity is very important in a user interface 
because it frees the user from having to worry about unnec 
essary details or rules. The underlying goal of a good user 
interface is to increase the communication bandwidth be 
tween the computer and the user. However, this does not 
mean that there should be a myriad of displays and indica 
tors. In fact, quite the opposite is true. The more things there 
are for the user to comprehend, the greater the chance that 
something will be missed. The goal, therefore, should be to 
reduce the amount of data that the user must be aware of 
and present the essential data in the simplest and most com 
pact way possible. Similarly, any piece of data presented to 
the user should always be presented in a consistent way be 
cause this is known to increase comprehension dramatically. 

An example of a simple way to present information to the 
user is the 3D look used in the OSF/Motif graphical user 
interface and more recently in other systems such as Micro 
softÂ® Windows. When used properly, the 3D borders can be 
used to communicate information about the state of indhid- 
ual fields without consuming any additional display space. 

Fig. 1 shows how HP VEE uses the 3D look to identify how 
fields will respond to user input. Fields that are editable are 
displayed as recessed or concave. Buttons and other fields 
that respond to mouse clicks are shown as convex. Fields 
that are only used as displays and do not respond to input 
are shown as flat. These states are very simple to compre 
hend because the three states are unique in the way that 
they look and operate. Without realizing it, users will natu 
rally learn how to identify which fields are editable, which 
fields can be activated, and which fields will not respond to 
input. This 3D display technique allows these states to be 
displayed without any additional display area. 

Fundamentally, HP VEE was designed around the concept 
of direct manipulation. This means that wherever possible, a 
setting can be changed by operating directly on the display 
of that setting. This results in a significant simplification for 
the user since special operations or commands are not gen 
erally required to make changes to settings. For example, 
the scale of a strip chart is shown near the edges of the 
graph display (Fig. 2). If the user wants to change the graph 
scaling, the limit fields themselves can be edited. It is not 
necessary to make a menu choice to bring up a pop-up dia 
log box for editing the scale. In many other systems, making 
any change requires a menu pick. This effectively reduces a 
system to a command-line interface that happens to use a 
mouse and menus instead of the keyboard. Such a system is 
no easier to use than the command line interface systems of 
the past. 

Flexibility is more important for an easy-to-use system than 
for more traditional systems because there is a perception 
that power and ease of use cannot be combined in the same 
system. In the past, powerful systems have generally been 
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Fig. some A view containing a noneditable field, two buttons, and some 
editable fields. 
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Fig. 2. Direct manipulation is useful for settings such as graph 
limits. 

hard to use, and easy-to-use systems have generally not 
been very flexible or powerful. To overcome this perception, 
therefore, an easy-to-use system must be very powerful so 
that potential customers' fears can be overcome. When de 
signing HP VEE, we were very careful to avoid limiting flexi 
bility wherever possible. It often seemed as if we were faced 
with a choice between ease of use and flexibility. However, 
with careful consideration of the alternatives, we usually 
found that the more flexible approach could be implemented 
with an easy-to-use interface. 

Flexible and powerful systems are naturally very complex 
because there are so many features and capabilities to re 
member. In these systems, it is extremely important that each 
area of the system operate in a way that is consistent with 
the rest of the system because even the most advanced users 
are rarely familiar with all aspects of the system. Users must 
be able to rely on their experience with other parts of the 
system to help guide them through the unfamiliar areas. 
For this reason, consistency was an important guideline 
throughout the development of HP VEE. 

High performance for interactive operations is critical be 
cause users will become frustrated using a product that is 
too slow. Very few users will be happy if they must wait an 
inordinate amount of time before a particular operation is 
complete. The allowable time for the system to complete a 
task depends on the nature of the task and what the user is 
likely to be doing at the time. For example, a key press 
should be echoed back to the user within about 100 ms or 
so. If it takes longer, the user may press the key again think 
ing that the system didn't get the first one. A pop-up dialog 
hriY nr  menu should appear  within ahnnt  500 ms.  Other    

tasks such as loading a file can take many seconds before 
the user will become annoyed because of sluggish perfor 
mance. We created a list of about ten different interactive 
operations for which we felt that performance was an im 
portant goal. On all supported platforms, many of the opera 
tions in this list such as the pop-up menus and dialog boxes 
are completed within the required time. Unfortunately, there 
are still a few operations that are completed within the spe 
cified time limits only on the very fast HP 9000 Series 700 
workstations. On the other hand, we have received very few 
complaints about interactive performance, so our time limits 
may have been overly stringent. 

In some situations, such as saving a file to the disk, perfor 
mance1 simply cannot be guaranteed. In these cases, continu 
ous feedback indicating progress being made is important. 

Otherwise, it isn't easy to tell whether something is happen 
ing or not. In HP VEE. all user-invoked operations that could 
take more than about 200 ms will result in a change to the 
mouse cursor. Some of these cursors represent specific ac 
tivities such as reading from or writing to the disk. For other 
situations, a general hourglass cursor is used. Any action 
that is expected to take longer than one or two seconds is 
also accompanied by a pop-up message box that indicates 
that the operation is in progress. 

Reducing the total number of mouse clicks, menu choices, 
and various other adjustments required of the user was a 
major challenge. Each adjustment required of the user, no 
matter how easy, will reduce the user's overall effectiveness. 
For this reason, HP VEE is designed to do as much as pos 
sible with default settings while allowing adjustments if 
more control is desired. Other systems often require that the 
user fill out a form each time a new object is selected from 
the menu. In most cases, HP VEE will insert default values 
for all settings and then allow the user to change them later 
if it becomes necessary. 

System messages for errors and other reasons are an espe 
cially important source of difficulty or frustration for users. 
Most software developers seem to take the attitude of a hos 
tile enemy when presenting the user with an error message. 
However, errors are seldom true user mistakes, but instead 
are usually triggered by failings in the system either because 
it misled the user or because it did not adequately protect 
the user from making the mistake in the first place. In many 
cases in HP VEE, we were able to avoid generating errors 
simply by restricting available choices to those that would 
not result in an error. For example, if a certain combination 
of selections will cause an error, we show them as mutually 
exclusive choices. In cases where such restrictions could 
not be used to avoid the potential for an error, we worked to 
simplify the interface so that users would be less likely to 
make mistakes in the first place. In cases where errors were 
unavoidable, we kept the attitude that error messages should 
help the user complete a task. We tried to remember that 
the user generally has a valid reason for performing the 
operation that resulted in an error. 

Two kinds of messages that are common in many systems 
are not present in HP VEE. The first is the message "Please 
wait." It is irritating to users because they don't want to wait 
and they are being instructed to do so. The message is also 
unnecessary since more descriptive messages can be used 
instead. Messages such as "Reading from file program!" are 
much more informative and are nut-nearly so annoying. Theâ€” 
other common message is a confirmation box that asks "Are 
you sure?" This is also very annoying because the user sel 
dom initiates any operation without being pretty sure about 
wanting to perform that operation. There are really two rea 
sons for asking "Are you sure?" One is to caution the user 
about data loss and the other is to protect against accidental 
requests. 

In HP VEE, we solve the first situation by asking a question 
such as "Save changes before clearing workspace?" This has 
the same result as "Are you sure?", but does not sound as if 
the user's choice (or sanity) is being questioned. 

In the second situation, accidental requests are better solved 
by making the input mechanisms easier to operate without 
error or by making corrections easy to perform. For example, 
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instead of asking "Are you sure?" to find out if the user really 
wants to delete an object, HP VEE puts the deleted object 
into the cut buffer so that if the user decides that a mistake 
was made, the paste operation can be used to restore the 
deleted object. 

Attention to detail is very important to a user. Most systems 
available today lack the small details that make a system 
more convenient and easier to use. In HP VEE, we have at 
tempted to pay attention to as many of these small details as 
possible. For example, when connecting a line to a box, an 
outline is displayed around the pin that would be connected 
if the line were released at that point. Another example of a 
very small detail is that HP VEE allows objects to be resized 
as they are being placed on the workspace for the first time. 
These seemingly minor details help reduce the amount of 
frustration that users often feel. 

Program Visualization Features 
In a traditional programming environment, the programmer 
must spend a large fraction of the development time think 
ing about details of the programming process including the 
language syntax, debuggers, and so on. Since HP VEE allows 
the user to think almost exclusively in terms of the problem 
domain, most of the development time and effort is spent on 
solving the problem instead of the programming details. 
This is the primary source of the productivity gains that 
many users of HP VEE have experienced. However, even 
though HP VEE allows programs to be expressed directly in 
terms of the problem, not all user-written programs will run 
correctly the first time. Although the so-called accidental 
complexities1 of program development such as language 
syntax and semantics have been reduced or even eliminated, 
the fundamental complexities of the problem itself still re 
main. Therefore, once an HP VEE program is developed, it is 
likely that some aspect of it will not quite work as expected. 
For this reason, we developed several tools that can be used 
to visualize the execution of a program to help identify the 
source of any problems. 

Show Execution Flow animates the execution of the program by 
outlining each object as it begins to execute and then eras 
ing that outline when execution is complete. Besides helping 
to visualize how the program executes, this is useful when 
trying to understand performance issues, since an object in 
the program that consumes a lot of time will be highlighted 
for more time than other objects. HP VEE also has a timer 
object, which allows a more objective way to measure 
performance. 

Show Data Flow animates the movement of data as it travels 
between objects in the program by displaying an icon mov 
ing rapidly along each line as data flows across it. This helps 
the user visualize the relationships between the data and the 
execution of the objects of a dataflow program. Both Show 
Execution Flow and Show Data Flow slow the execution of HP 
VEE programs so much that they are designed to be turned 
on and off separately. 

All data in HP VEE has additional information such as size 
and shape associated with it. This information is maintained 
so that one operation can work with a variety of different 
data types and shapes. For example, math functions such as 
sin( ) can operate on either an individual number or an array 
of numbers with any number of elements. This is possible 
because the size and number of dimensions are packaged 
with the data. Other information such as the name of the 
data and mappings (the implied domain of the data) can also 
be associated with the data. The line probe feature allows 
the user to examine the data and this associated information 
at any time. 

The execution of a program can be halted when execution 
reaches a particular object simply by setting that object's 
breakpoint flag. Breakpoints can be set on any number of 
objects at any time. When execution reaches an object with 
its breakpoint flag set, the program will pause and an arrow 
pointing to that object will appear. At that point the step 
button can be used to single-step the program one object at 
a time or the line probe can be used to examine data. 

If an error occurs during execution of the program and no 
error recovery mechanism has been attached, a message 
will be displayed and an outline will highlight the source of 
the error visually. This allows the user to locate the source 
of the error more quickly. 

User Interface for HP VEE Programs 
Since a user of HP VEE should be able to generate programs 
with the same advanced user interface as HP VEE itself, 
several important capabilities have been incorporated into 
HP VEE to make the task of building impressive-looking 
programs simple. 

For example, data can be entered using a variety of data 
entry objects. The simplest of these is a text field that accepts 
a single line of textual data. Numeric fields of various types 
such as integer, real, complex, or polar complex accept the 
appropriate numeric data. In addition, these numeric fields 
can accept constant expressions such as "SQRT(45)" or 
system-defined constants such as "PI." When typed, these 
constant expressions are immediately evaluated and the 
result is converted to the expected type by the input field. 
Since all editable fields in HP VEE share the same editing 
code internally, any numeric field in the system that requires 
a numeric entry can also accept a constant expression. 

There are other more advanced mechanisms for entering 
data or specifying selections to an HP VEE program. Integer 
or real numeric input can be generated within a predefined 
range by using the mouse to drag the handle of a slider ob 
ject. Selections from a list of acceptable values can be made 
using an enumerated list box, which can be displayed as 
radio buttons, as a single button that cycles through the list 
of values, or as a button that accesses a pop-up list box of 
choices. An HP VEE program can be designed to pause until 
the user is ready to continue by using the Confirm button. 
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Data can be displayed in a variety of ways. In addition to 
textual displays, real or integer numbers can be displayed 
on a meter object, which can show \isually where a number 
falls within a range. Graphical displays such as XY graphs 
and polar plots show two-dimensional plots of data and 
can be interactively scrolled or zoomed. Stripcharts graph 
a continuous scrolling history of the input data. 

All of these input and output types would have limited value 
if they could only be displayed when the rest of the HP VEE 
program with all of its lines and boxes is also visible. For 
this reason, HP VEE is designed with a feature called user 
panels, which allows an advanced user interface to be at 
tached to a user-written HP VEE program. The user panel is 
built using an approach similar to many of the available user 
interface builders. Elements to be placed on the user panel 
are selected from the HP VEE program and added to the 
panel. The user can then move and resize these elements as 
appropriate for the design of the panel. Other layout options 
such as whether a title bar appears can also be adjusted. 
Since the elements on the user panel are selected from the 
user's program, no external code is required and the finished 
program is easier to build than with most user interface 
builder tools. 

Another important aspect of an advanced human interface is 
the ability to hide data until the user has asked to examine 
it. HP VEE is designed with a feature called Show On Execute 
which allows HP VEE programs to use pop-up windows to 
hide data until a user request is received. This works by 
associating a user panel with a user object (similar to a sub 
routine in traditional programming languages) and enabling 
the Show On Execute feature. When the user object begins 
executing, the associated user panel is automatically dis 
played. When execution of the object is complete, the user 
panel is erased. Messages such as "Writing test results to file" 
can be displayed using this mechanism simply by putting the 
appropriate message on the associated user panel. If it is 
desirable to pause the program until the user has finished 
examining the displayed panel, a confirm object can be used. 

Programs developed in HP VEE are highly malleable; they 
can be changed and adjusted as much as desired. However, 
in many situations it is desirable to protect the program 
from being changed. The secure feature in IIP VEE accom 
plishes this by displaying only the user panel and making it 
impossible to alter the program or even look at it after the 
program has been secured. 

Object 
V i e w  

View3d 
ConView 

DevCarrier 
SubProg 

IPEdilor 
DispDriver 

Container 
Real 
Inl 
Complex 

Device 
Context 

Fig. 3. Simplified class hierarchy of HP VEE. 

Using all of these features allows users to generate complete 
application programs with professional appearances without 
having to work outside of the simple dataflow environment. 

Internal Architecture 
Fig. 3 shows a simplified class hierarchy for HP VEE show 
ing some of the key classes in the system and how they re 
late to each other in the inheritance hierarchy. The Object 
class is at the root of this hierarchy and implements the fun 
damental protocol for all objects in the system. This includes 
creating, freeing, and copying objects. The key subclasses of 
Object include View, which maintains a rectangle on the dis 
play, Container, which holds a unit of data, and Device, which 
represents the inner workings of an element in an HP VEE 
block diagram. 

The fundamental visible element in HP VEE is implemented 
with the class called View. It maintains a single rectangular 
region on the display and can be transparent or a composite 
of other views. The ViewSd class adds a solid background 
color and a 3D border to View. 

Views are organized into a hierarchy tree based on the dis 
play stacking order. The root of this tree is called DispDriver. 
II is always mapped to overlay the system window allocated 
to HP VEE. It performs all low-level screen display opera 
tions such as drawing lines and filling regions. It also han 
dles the window system interface functions such as repaint 
requests and dispatching of input events. Fig. 4 shows a 
composite of views in a view hierarchy with some of the 
views labeled with the name of their associated class. Fig. 5 
shows the complete hierarchy tree of the views in Fig. 4. 

GenField 

Fig. 4. A composite view with 
sonic of l he component views 
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Fig. 5. Display hierarchy tree. 

Subviews are views that are attached to another view called 
the superview in the display hierarchy tree. Subviews are 
clipped at the edges of their superview. In this way, each 
level of the view hierarchy tree limits the visual boundaries 
of all views below it. This view hierarchy indirectly de 
scribes the view stacking order, which ultimately controls 
which views appear to be on top and which ones are hidden. 

Each view maintains a description of the region on which it 
is allowed to display itself. This clip region is calculated by 
taking its own bounds, subtracting any region that falls out 
side the bounds of any view in its superview hierarchy, and 
then subtracting any views that partially or completely 
cover it or any view in its superview hierarchy. 

Repainting 
When repainting an area that it is maintaining, a view may 
either use the clip region to limit the areas it actually changes 
on the display, or it may paint any area that it owns and then 
paint every view that appears closer to the user in the view 
stack. The full view stack repaint method has nothing to 
calculate or check before it begins painting itself completely 
and then painting anything that might be on top of it. If noth 
ing is on top of it, then the complete stack repaint is very 
efficient because it is so simple. However, if there are many 
other views covering the view to be repainted, the full stack 
repaint will be very slow because of all of the unnecessary 
repainting that must be done. The clip region repaint method 
is much more efficient in this situation since only those 
areas that are directly visible to the user will be repainted. 
This means that no unnecessary repainting must be done. 

Unfortunately, the clip region is at best an approximation 
since views are allowed to display images of arbitrary com 
plexity (such as text) and be transparent in other areas. This 
gives the user the illusion that views can have any shape 
without incurring the performance penalties associated with 
nonrectangular views. It would be very costly to calculate 
these regions accurately, so only the approximation based 
on the rectangular view bounds is actually calculated. This 
means that repaints using the clip region method will not 
correctly update regions behind transparent areas of other 
views. Therefore, the clip region repaint method is used in 
only a few special cases. 

Input events such as mouse clicks are dispatched to individ 
ual views in the system using a two-phase search mecha 
nism. In the first phase, working from back to front, each 
view in the view stack where the event occurred asks the 
views in front of it to process the event. When there are no 
more views in front of the current view, the second phase 
begins with an attempt to consume the event. Working from 
front to back, each view in the view stack (as determined 
during the first phase) is given an opportunity to consume or 
ignore the event. If the view takes no special action, the 
event is passed to the next view down in the view stack. If 
the the view intends to consume the event, it does so by 
performing an action associated with the event such as indi 
cating that a button has been pressed and then marking the 
event as consumed. This process continues until the event is 
consumed, or until the DispDriver class is given the event (this 
class consumes all events). 

Other Classes 
The visible part of each object in an HP VEE program is 
maintained by the DevCarrier class. DevCarrier's job is to main 
tain the visual appearance of all objects in the system by 
showing the terminal pins, maintaining the various high 
lights and outlines required by HP VEE, and allowing vari 
ous editing operations on the user's program such as con 
necting lines and adjusting the sizes or positions of objects. 
DevCarrier does not display any object-specific information. 
That information is displayed by object-specific view 
classes, which are attached to DevCarrier as subviews. 

User objects are specialized objects that are built using a 
subclass of DevCarrier called SubProg. SubProg maintains a 
visual subprogram which acts just like a normal object when 
viewed from the outside, but contains an internal dataflow 
network of its own that is just like the main program. All of 
the dataflow networks in HP VEE are maintained by a class 
called ConView (context view). It is the gray background area 
behind the lines and boxes in a dataflow network. 

The top-level workspace environment class â€” IPEditor (iconic 
program editor) â€” is just a special case of SubProg and is 
therefore built as a subclass of SubProg. It is attached as the 
only subview of DispDriver and maintains the top-level editing 
environment. It is the same as SubProg, except that it must 
maintain the menu bar, run/stop buttons, and other features 
specific to the top level. 

The context view class (ConView) maintains a list of all ob 
jects in the context and the lines connecting them. When the 
context view is asked to repaint itself, it first paints its back 
ground color (gray, by default), and then paints all lines in 
the line list. Then each HP VEE object in the context is 
painted according to the stacking order. If an HP VEE object 
falls partially or completely outside the context view's 
bounds, then according to the clipping rules, that view will 
be only partially painted or not painted at all. 

The clipping and repaint algorithms allow an HP VEE pro 
gram to be visually much larger than the screen space al 
lotted to it. By adding navigation controls such as the back 
ground scroll capability, a very large dataflow network can 
be supported even on a comparatively small screen. 
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Model-Mew Architecture 
HP VEE is organized around a model-view architecture. This 
is similar to the model-view-controller architecture used in 
other object-oriented systems except that we chose to 
merge the functionality of the controller into the view. The 
fundamental assumption in the model-view architecture is 
that the internal data and program elements (the models) 
can operate without any knowledge of or dependence on 
their visual representations (the views). By separating the 
system at this natural boundary, both the views and the 
models can be written more simply without any unneces 
sary dependencies. One feature of this architecture is that 
one model can be attached to any of several different views 
without any special support in the model. For example, a 
model that contains a real number can be attached to a text 
field or to a meter. Since the properties of the number do 
not change based on how it is displayed, no changes are 
required of the class that holds the number. However, since 
there are few similarities between a meter view and a text 
view, they need not be built with one view class. 

User panels are one area that really benefit from the split 
between models and views. When the user selects an HP 
VEE object such as a slider and asks that it be added to the 
user panel, several things happen internally to make that 
happen. First, if a user panel has not been created for this 
program or user object, one is created. The user panel class 
is similar in concept to the context view class, but without 
support for interconnections required for dataflow net 
works. Next, an instance of the PanelCarrier class is created to 
hold a copy of the object-specific part of the slider view. 
This copy is created from the original and attached to the 
new panel carrier and to the original slider model (which is 
not copied). The panel carrier is then attached to the user 
panel view. 

One of the most significant architectural impacts of the im 
plementation of user panels is the fact that there can be 
many independent views attached to the same underlying 
model at the same time. Because of this architecture, it is 
easy for panels from user objects to be added as a unit to 
higher-level panels. This allows the creation of complex 
panels consisting of grouped controls and displays. 

The DispDriver class is designed to be the only place where 
calls to the underlying window system (such as the X Win 
dow System) occur. This allows the display driver to be re 
placed if appropriate when porting to a new platform. Dur 
ing development, for example, we used a driver written to 
talk directly to the display card of an HP 9000 Series 300 
computer because it ran so much faster than the window 
systems. Now that very high-performance workstations are 
available, this is no longer necessary. 

Printing is handled simply by replacing DispDriver with the 
printer driver class, which knows how to perform graphics 
operations on a printer. The information intended for the 
printer is just "displayed" on the printer and no special 
printer support must be developed aside from the printer 
driver itself. This also allows the print output to match the 
screen display very nicely. 
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HP VEE: A Dataflow Architecture 
HP VEE is an object-oriented implementation. Its architecture strictly 
separates views from the underlying models. There are two types of 
models: data models and device models. Special devices allow users to 
construct composite devices. 

by Douglas C. Beethe 

The HP VEE dataflow programming environment was devel 
oped that the specific objective of providing an interface that 
would allow users to express a problem in block diagram 
form on the screen and then execute it directly. Dataflow 
programming was chosen because of its direct correlation 
to the block diagram models we wished to emulate. 

Previous efforts in industry and academia related to data 
flow programming had yielded some interesting results, but 
general applicability had not yet been established. Thus our 
early research efforts were directed primarily at the question 
of whether we could solve some of the problems that had 
plagued earlier attempts and prove general applicability. 

The design and construction of HP VEE used object-oriented 
technology from the beginning. We had enough experience 
with procedural coding technology to realize that a project 
like HP VEE would be too complex to achieve with proce 
dural technology. The architecture that evolved from this 
development is the subject of this article. The design of vari 
ous elements of the underlying HP VEE architecture will be 
discussed as will the manner in which they work together to 
produce the executable block diagram as a dataflow model. 

The Model- View Paradigm 
One of the characteristics of the HP VEE architecture that is 
common to most object-oriented implementations is the 
strict separation between models and views. Most users are 
familiar with the world of views, and indeed often make no 
distinction between the view of an object and its underlying 
model. 

From a functional point of view the model is the essence of 
an object, incorporating both the data (state variables) that 
gives the object its uniqueness, and the algorithms that oper 
ate on that data. In HP VEE, by definition, the model oper 
ates independently of the view, and does not even know of 
the existence of any graphical renderings of itself , except as 
anonymous dependents that are alerted when the state of 
the model changes (see Fig. 1). 

There are many examples of applications that have views 
possessing no underlying functional models. Consider the 
various draw and paint programs, which allow the user to 
create very sophisticated views that, once created, are inca 
pable of performing any function other than displaying 
themselves. Likewise, there are numerous examples of ap 
plications that support very sophisticated functional models 
but lack any ability to display a view of those models, be it 
for passive display of state or for active control. 

Most of the scientific visualization software appearing today 
is used to create views of the data output of functional mod 
els that have little or no display capability. Most of the views 
that are seen by the HP VEE user are actually graphical ren 
derings of the states of underlying models. In the interactive 
mode, access to the models is by means of these views, 
which communicate with their respective models to change 
their the initiate execution, and so forth. For example, the 
view of the ForCount iterator has a field in which the user can 
enter the number of times the iterator should fire at run 
time. Upon entry, this value is sent to the underlying device 
model, where it is kept as a state variable. When this state 
variable is changed, the model sends out a signal to anyone 
registered as a dependent (e.g., the view) that its state has 
changed, and the view then queries the model to determine 
the appropriate state information and display it accordingly 
(see Fig. 2). 

This strict separation between model and view might seem 
excessive at first, but it results in a partitioning that makes 
the task of generating the two different kinds of code (very 
different kinds of code!) much easier from the standpoint of 
initial development, portability, and long-term code mainte 
nance. It also eases the job of dealing with noninteractive 
operations in which HP VEE is running without any views at 
all, either by itself or as the slave of another application. 
And finally, this separation eases the task of developing ap 
plications that must operate in a distributed environment 
where the models live in one process while the views are 

State Variables 

â€¢ Array Size 

â€¢ Array Data 

Operations 

â€¢ Set/Get Array Size 
â€¢ Set/Get Value at <index> 

â€¢ Sort Array Values 
â€¢ Get Mm/Max Value 

Fig. 1. Two different views of the same underlying model. 
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Fig. time. Interaction of a view and the underlying model at edit time. 

displayed by another process, possibly on an entirely differ 
ent system. This last aspect is becoming more and more 
important in an application world that is taking increasing 
advantage of networked systems. 

HP VEE itself is composed of two kinds of models. The first 
is the device model, which acts like a black box having in 
puts, outputs, and some operational characteristic that 
transforms the data at the inputs to the result at the outputs. 
The second is the data model (container), which handles the 
transport of information along the data lines, which inter 
connect devices. The data model also provides mathemati 
cal functions, which can be invoked to operate on the data, 
and formatting and deformatting functions, which change 
the representation of the data when required for display or 
for communication with some other application that requires 
the data in a different form. Both types of models will be 
discussed in some detail. 

Data Models 
The fundamental abstraction for information in HP VEE is 
the container object (Fig. 3). Containers can hold data for 
any of the supported data types: text, enumerated, integer, 
real, complex, polar complex, coordinate, waveform, spec 
trum, and record. Both scalars (zero dimensions) and arrays 
from one to ten dimensions are supported. In addition, the 
dimensions of array containers can be mapped in either lin 
ear or logarithmic fashion from a minimum value at the first 
cell of a dimension to a maximum value at the last cell of 
that dimension. This allows an array of values to have some 
physical or logical relationship associated with the data. For 
example, a one-dimensional array of eleven measurements 

Container Model  

State Variables 

â€¢ Name 
â€¢ Data Type 
â€¢ Number of Dimensions: 0 10. 

â€¢ Dimension Sizes 

â€¢ Dimension Mappings [from, through] 

Operations 

â€¢ Configuration 
â€¢ Value Assignment/Access 
â€¢ Type Conversion 

â€¢ Mathematics 
â€¢ Text Generation 

Fig. 3. Container model attributes. 

Supported Data Types 
â€¢ Text 
â€¢ Enum 
â€¢ Integer, Real, Time 
â€¢ Complex, Polar Complex 

â€¢ Coord, Waveform, Spectrum 
â€¢ Record 

can be mapped from 0 to 32 cm to indicate the physical rela 
tionship of the values in each position in the array to some 
real-world phenomenon. The first value would be at 0 cm, 
the next at 3.2 cm. the next at 6.4 cm. and so on. 

One of the properties of containers that is used extensively 
in HP YEE is the knowledge of how to transform to another 
type on demand. The automatic form of this transform is 
allowed only for transforms that incur no loss of informa 
tion. This has the effect of allowing most promotions, but 
disallows any automatic demotions. For example, integer 
can be promoted to real, and real to complex or polar com 
plex, but complex cannot be demoted automatically to real. 
To do so would likely cause the loss of information that 
would not reappear in the promotion of that real value back 
to complex. An interesting special case of this is the revers 
ible transformation between waveform and spectrum (time 
and frequency domains). While these data types seem to 
have the same irreversible relationship to each other as the 
real and complex types just discussed, it is a well-known 
fact that a reversible transformation exists between these 
two special types by means of the Fourier transform. For 
example, a 256-point waveform is transformed to a 129-point 
spectrum (ignoring the symmetrical values with negative 
frequency), and the same spectrum regenerates the original 
256-point waveform by means of the inverse Fourier 
transformation (Fig. 4). 

Another powerful property of containers is their inherent 
knowledge of data structure as it applies to mathematical 
operations. At first glance, operations such as addition and 
subtraction seem relatively simple, but only from the stand 
point of two scalar operands. For other structural combina 
tions (scalar + array, array + scalar, or array + array) the task 
requires some form of iteration in typical third-generation 
languages (3GLs) like C that has always been the responsi 
bility of the user-programmer. Containers encapsulate these 
well-understood rules so that the user deals with, say, A and 
B simply as variables independent of structure. When any of 
the nontrivial combinations is encountered, the containers 
decide among themselves if there is an appropriate struc 
tural match (scalar with any array, or array with conforma! 
array) and execute the appropriate operations to generate 
the result. 

Other more complicated operations with more robust con 
straints (e.g., matrix multiplication) are handled just as easily 
since the appropriate structural rules are well-understood 
and easily encapsulated in the containers. These properties 
aid the user in two ways. First, the user can express power 
ful mathematical relationships either in fields that accept 

Waveform Display 

_n_n_n 
0  m s  2 0  m s  

Fig. 4. Automatic transformation of a time-domain waveform 
(e.g., 256 real values, 0 to 20 ms) to a frequency-domain spectrum 
(129 complex values, 0 to 6400 Hz). 
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Device  Mode l  

State Variables 

â€¢ Name and Description 

â€¢ Input/Output Configuration 

â€¢ Device-Specific Properties 

Operations 

â€¢ Add/Delete Inputs and Outputs 
â€¢ Run-Time Validation 
â€¢ Device-Specific Execution 

â€¢ Propagation 

Fig. 5. Attributes of a simple device model. 

constant expressions or in any of several delayed-evaluation 
fields the Formula, If/Then, ...) without having to deal with the 
cumbersome iteration syntax of 3GL programming. This by 
itself has the pleasant side effect of eliminating much if not 
most of the iteration in many applications, compared to their 
3GL equivalents. Second, the interconnection of the various 
objects that make up a model in HP VEE is much simpler 
when any of the inputs is constrained to a specific data type. 
Since the containers know how to respond to most requests 
for type change, the user is freed from the cumbersome task 
of explicitly changing (casting) the original type to the re 
quired type. For example, the inputs to a spectral display 
that requires a spectrum input will not disallow connection 
to a waveform (time-series data) because the output supply 
ing the waveform will transform it to a spectrum on demand 
at run time. This same capability is used during the evalua 
tion of any mathematical expression, thus allowing the user 
to intermix types of operands without explicit type casting. 

Device Models 
Fig. 5 shows the attributes of a simple device model. Each 
device can have its own inputs and outputs. Many have user- 
controllable parameters that are accessed as constants 
through the panel view of the device or as optionally added 
inputs. In general, the device will execute only when each of 
the data inputs has been given new data (including nil data). 
Thus the data inputs to any given device define a system of 
constraints that control when that device can execute. This 
turns out to be quite natural for most users since the data 
relationships that are depicted by the data lines that inter 
connect devices generally map directly from the block dia 
gram of the system in question, and often are the only form 
of constraint required for the successful execution of a 
model. 

There are numerous cases, however, where an execution 
sequence must be specified when no such data dependen 
cies exist. Such cases typically fall into two categories: 
those where there is some external side effect to consider 
(communications with the real world outside my process) 
and those that deal explicitly with real time. To deal with 
this situation we developed the sequence input and output 
for each device (on the top and bottom of the device, re 
spectively), as shown in Fig. 6. The sequence output be 
haves like any other data output by firing after successful 
execution of the device except that the signal that is propa 
gated to the next device is a always a nil signal. Likewise, 
the sequence input behaves like any other data input with 
one exception. When connected it must be updated (any data 
will do, even nil) along with any other data inputs before the 

Sequence Output 
Sequence Input 

Fig. 6. While B and C both need the data from A, the sequence 
connection between B and C will cause C to execute after B. 

device will be allowed to execute, but unlike other data in 
puts, connection is not required. Thus any time it is required 
that A must execute before B where no other data dependen 
cies exist between the two devices, it is sufficient to connect 
the sequence output of A to the sequence input of B. 

For users who have already been introduced to program 
ming in third-generation languages such as Pascal, C, or 
BASIC this can require a paradigm shift. Experience with 
such users has shown that they are often preoccupied with 
sequencing (since 3GLs almost universally use control-flow 
paradigms) and have a difficult time at first believing that 
the data constraints represented by the lines that intercon 
nect the devices are sufficient to define a robust sequence of 
execution. It is only after using the system for a time that 
they are weaned away from this need to sequence each and 
every device explicitly and begin to feel comfortable with 
the dataflow paradigm. 

Contexts 
Several types of devices are supplied as primitives with HP 
VEE, including those used for flow control, data entry and 
display, general data management, mathematical expressions, 
device, file, and interprocess I/O, virtual signal sources, and 
others. There is also a mechanism that allows users to con 
struct special devices with their own panels and a specific 
functional capability. This device is known as a UserObject 
and is essentially a graphical subprogram. 

UserObjects (Fig. 7) encapsulate networks of other devices 
(including other UserObjects) and have their own input/output 
pins and custom panel displays. Viewed as a single collec 
tive object with its own panel, each UserObject operates un 
der the same rules as any primitive device: all data inputs 
must be updated before the UserObject will execute its inter 
nal subnet. Each UserObject will contain one or more threads, 
which in in parallel at run time. In addition, threads in 
subcontexts (hierarchically nested contexts) may well be 

Fig. into a UserObject encapsulates a subnetwork of other objects into a 
single larger object with its own inputs and outputs. 
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running in parallel with their host threads in their parent 
contexts. 

UserObjects can be secured such that the user of the de\ice 
can access only the panel and not the internals. In this form 
the UserObject is almost indistinguishable from any primitive 
device. This capability allows developers to create arbitrary 
devices that can be archived in a libran,- for later access by 
users, who can treat these devices as true primitives in their 
application. 

Threads 
Devices that are connected to each other within the same 
context form a single thread of execution. One of the in 
herent advantages of dataflow programming is the ability to 
support multiple independent threads of execution with 
relative ease (see Fig. 8). This becomes particularly useful 
when interacting with the rest of the world, since indepen 
dent monitoring operations ("Has that message arrived 
yet?") can proceed in parallel with related operations. In 
typical 3GLs such operations require elaborate schemes for 
enabling interrupts and related interrupt service routines. 
Most who have dealt with such code as inline text can attest 
to the difficulty of maintaining that code because of the diffi 
culty of easily recreating the relationship between parallel 
operations once the code has been written. 

Several devices were developed especially for thread-related 
activities. One of these is the Exit Thread device, which termi 
nates all execution for devices on that same thread when 
encountered. Another is the Exit UserObject device, which ter 
minates all execution on all threads within the context in 
which it is encountered. 

Certain devices have the ability to elevate a thread's priority 
above the base level to guarantee that thread all execution 
cycles until completion. One such device is the Wait For SRQ 
device (SRQ = service request), which watches a specified 
hardware I/O bus in anticipation of a service request. If and 
when such a request is detected, this device automatically 
elevates the priority of the subthread attached to its output 
so that all devices connected to that subthread will execute 
before devices on any other thread (within this context or 
any other context) until that subthread completes. 

Virtual Context 

Fig. 8. Any context (e.g., a UserObject) can contain one or more 
threads, each of which executes independently of all others within 
that context. 

Fig. 9. Objects A and B and the XV display will execute 10 times 
each at side) time as the iterator fires its only data output (right side) 
10 times before firing its sequence output (bottom). The data from 
the output of X is reused for the last 9 of the 10 executions of A 
(active data rule). 

Although it is not specifically thread related, a similar capa 
bility exists for exception service. At the time an exception 
is raised (e.g., an error occurs), all other devices on all other 
threads are suspended until an exception handler is found 
(discussed later). 

Propagation: Flow of Execution 
From an external point of view, the determination of which 
devices can execute is a simple problem of finding out 
which devices have had all of their inputs updated. From an 
internal point of view, the problem is a bit more difficult. To 
prevent infinite feedback the general rule for dataflow pro 
grams is that each device can execute only once per activa 
tion of the context in which the device resides. On the other 
hand, it was felt from our earliest prototypes that having 
iteration occur within some subgroup of devices in a con 
text was superior to dropping down into a subcontext multi 
ple times to accomplish the same thing, especially for 
nested iteration. 

Thus we were faced with the problem of allowing groups of 
devices to execute multiple times within a single activation 
of a context. Identification of these devices could only occur 
at run time as they appeared on the subthread hosted by the 
primary output of an iterator. To deal with this we devel 
oped the virtual context, which is defined not by the user 
but by the system (see Fig. 9). At run time, the devices that 
are executed on the subthread hosted by an iterator are re 
membered. Then, just before the next firing of the iterator 
(since an iterator generally fires its output more than once 
for each execution of that iterator), the devices in this 
virtual context are selectively deactivated separately from 
the other devices in the context. This allows them to be re- 
executed when the iterator fires again by the normal rules of 
propagation. 

One other side effect of such iteration is that any data being 
supplied to a device within the virtual context by a device 
that is outside that virtual context is going to be delivered 
only once to the device within the virtual context. Thus new 
data is supplied to the inputs as required on the first itera 
tion, but on all subsequent iterations no new data arrives. 
One could solve this by using a special intermediary 
Sample&Hold device, but a simple extension to the rules of 
propagation turned out to be much easier. The extension, 
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Fig. output The special error output will fire in lieu of the data output if 
any error is encountered while evaluating the formula. The value 
posted at the error output is the error code number. This allows the 
user to decide how to handle the situation. 

known as the "active data rule," says that data from any ac 
tive but of a device that is currently active (executed, but 
not yet deactivated) can be reused. This has essentially the 
same effect as the Sample&Hold but is much less error-prone. 

The goal in all of this is to create a scheme of execution that 
does not require the user to specify a sequence of execution 
with explicit device-by-device triggering as is common in the 
world of digital design. In addition, we wanted execution to 
proceed as if the entire network were running on a multipro 
cessor architecture with true parallelism. On a typical uni 
processor machine only one primitive device is actually 
drawing cycles from the processor at any one instant, but 
the overall effect is as if all devices both within the same con 
text level and across other levels of the network hierarchy 
are running in parallel. 

Asynchronous Operations 
For some devices we found a need to invoke certain opera 
tions programmatically that were peripheral to the general 
operation of the device, such as AutoScale or Clear for an XY 
graph. While the primary function of the graph is to con 
struct a graph from the data present at the synchronous data 
inputs, operations such as AutoScale could happen at any 
time. A different class of inputs that were not incorporated 
into the general scheme of propagation was needed to initi 
ate these asynchronous operations. Thus we developed the 
control input, which when updated at run time will perform 
its assigned function within the associated device regardless 
of the state of any other input on the device. 

Exception Management 
Exception (error) management could have been approached 
from a number of different points of view, but it proved most 
effective to implement a strategy based on an optional out 
put that fires if and only if an untrapped exception is raised 
from within the scope of that device (Fig. 10). For primitive 
devices this allows the user to trap common errors such as 
division by zero and deal with possibly errant input data 
accordingly. In each case a number (an error code) is fired 
from the error pin and can be used by the ensuing devices to 
determine just which error has occurred. If the decision is 
not to handle the error locally, the error can be propagated 
upward with the Escape device, either as the same error that 
could not be handled locally or as a new user-defined code 
and message text, which may be more informative to the 
handler that eventually owns the exception. 

Hierarchical exception handling is possible because an error 
pin can be added to any context object (UserObject) to trap 
errors that have occurred within its scope and that have not 
been serviced by any other interior handler. If the exception 
pops all the way to the root context without being serviced, 
it generates a dialog box informing the user of the condition 
and stops execution of the model. To enable the user to lo 
cate the exception source, the entire chain of nested devices 
is highlighted with a red outline from the root context down 
to the primitive device that last raised the exception. 
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