
C Programming 101
or Some Things You Need To Know About C

Programming

Why Do I Have To Deal With This?

Well, actually, you don't really. Now that VEE 7 gives you access to the .NET library

you don't need to deal with any of this stuff. And you can use all kinds of ActiveX

thingies without ever having to know what sizeof(int) is. If you want to use the

Compiled Function Interface though, you will inevitably be thrown into the C and

there are a few simple things you can learn to keep yourself from drowning.

Data Size

Without a doubt, the most important consideration for the CFI is data size. If you call

a function that expects a four byte parameter and you pass it two bytes, chances are

something bad will happen. The CFI works at the machine level, bypassing all data

integrity and appropriateness checks made by VEE and other languages. If something

is not right it almost always spells disaster, but sometimes it doesn't and all that

happens is you get the wrong answer. In some ways that's worse than having your

program crash – you don't necessarily know anything at all went wrong. We'll see a

VEE to C data size and type table later on. I should point out that if you're calling a

__stdcall function (more about that later) VEE will catch many bad things that can

happen when passing incompatible data size parameters when the function returns to

VEE. It will say that the stack pointer has been corrupted (because it will have been).

Sometimes this doesn't happen though. If you pass 2 and 4 byte parameters to a

function that's expecting 4 and 2 byte parameters, the function still messes up but the

stack pointer will not be corrupted if the function returns to VEE. And very often

that's a big "if" the function returns to VEE.

Data Type

Other than data value (which we'll get to shortly) and data size, data type is

sometimes very important. Some numbers are in specific formats that have to be

interpreted correctly. Most often these take the form of floating point numbers. C

understands two types of floating point numbers: float and double. Their sizes are 4

and 8 bytes, respectively. VEE calls these types Real32 and Real64 respectively.

When you're passing these types across the CFI, their types must match or they will

be interpreted incorrectly. For example, you can pass an array of Int32 to a compiled

function that expects an array of float because float and Int32 are both the same size,

but the function will try to interpret the integers as if they were IEEE 32-bit floating

point numbers and whatever operation it performs on the array will probably be

completely wrong.

Record Type

VEE gives you the Record Type for creating records of data that are to be considered

as a unit, like an address book record for instance. It's members might include first

name, middle name, last name, address, phone number and email address. All of these

pieces of data belong to the same person, so it's convenient to keep them together.

You can create an array of these records to make an address book. C allows the same

thing, but VEE's Record Type variables are not allowed to cross the CFI so it would

seem that you can not pass records across the CFI. Fortunately this isn't exactly so,

but it's also not straightforward. Many, many Windows API functions deal with C

Structures (exactly equivalent to VEE Record Type vars) and these types must be

dealt with. Records can be passed across the CFI, but they cannot be in VEE Record

Type format. We'll see how to accomplish passing Record Type or "struct" vars

across the CFI, but there are a few other points to consider first, namely: data value

vs. data location.

What's A Pointer?

There is no aspect of C more misunderstood than pointers. And I personally really

have a hard time accounting for that. A piece of data has a value that is stored at an

address. A pointer is a variable that holds the address of a data value, hence it points

to the data. That's all there is to it. A pointer can point to anything, even another

pointer. The regression can be endless, though you'll soon go stark raving mad if you

have to deal with any more than two or three levels. In the Windows API, two levels

rarely happens and I don't know of any examples of three levels. It's just too

confusing. Dereferencing a pointer is getting the value of the data that the pointer

points too, and this operation can be deceptively simple looking. Here again, data size

is what counts. If you want to get the data value that a pointer points to, you have to

know the size of the data that you're getting in addition to where it is. This is obvious

when dealing with arrays: an array is always just a pointer. At the address of that

pointer is a contiguous list of data values of equal type. If you want to dereference the

tenth element of the array, you must add the start of the array to nine times the size of

the data in bytes to find the tenth element.

Nine? What? Shouldn't that be ten? No! Arrays always start at 0 so the first element is

number 0. The tenth element is number 9. That's a very confusing bit that nags

everybody and it's called OBO (Off By One). Watch carefully for this in your

programming endeavors. It will most definitely get you in one form or another. If

you're going to be manually dereferencing arrays you will most definitely have to deal

with it.

VEE and C both implement arrays in the same way, and that is a god send. It means

that a VEE array is exactly the same as a C array and both languages deal with them

in exactly the same way with almost exactly the same syntax. You can pass a VEE

array over the CFI simply by naming it. The receiving function must usually be told

how many elements are in the array, but that is a minor inconvenience. VEE has the

totSize function to tell you how large the array is, and you can use a Get Values object

to find out everything there is to know about an array, but that's only because when

the array exists within VEE it is described by a VDC - a VEE Data Container. This

container is not passed across the CFI and the called function has no way of knowing

how many elements are in the array.

There are two other thing I want to mention about pointers. First, the size of a pointer.

It is something of a complex issue, but for our purposes (VEE Programming for

Windows) you can assume that a pointer is always 32-bits. Secondly, I want to stress

again that a pointer can point to anything - even a C struct or VEE Record Type var

and that is how we ship VEE Records and C Structures across the CFI - as pointers

that point to the data value. In the case of a VEE Record or a C struct, the "data value"

is a block of memory that contains the data in the record or struct. This pointer can

even be an array of these records or structs. It makes no difference. All that's going

across the CFI is a 32-bit pointer.

The Type Table

Ok, that's a lot to take in all at once. Before we get involved in looking at some funky

Windows types, lets see just how all this type stuff works out between VEE and C.

The CFI isn't really picky about type, but it is very picky about size. Any parameter

passed to or returned from any compiled function must use types whose sizes

match. You might call this the Golden Rule of the Compiled Function Interface. The

types don't necessarily need to match, but the size of the type must match. Sometimes

you have no choice but to pick a type whose size fits and just use it regardless of what

the type actually is.

Def Type is the type you express in a definition file. VEE Version is the minimum

VEE Version on which the type can be used over the CFI. THIS IS NOT YET AN

AUTHORITIVE SOURCE. When I get my hands on a v9 Advanced Programming

Manual it will be. So on with the table...

VEE Type C Type
Def

Type

Data

Size

VEE

Version
Comments

VEE_BOOL ? ? 8 See note 3.

UInt8
unsigned
char

byte 1 Byte 8
Thankfully, now
usable as "byte".

Int16 short short 2 Bytes 6

UInt16
unsigned
short

WORD 2 Bytes 8.5

Specifically, 2
unsigned bytes is a
WORD.

Int32 long long 4 Bytes <=5

Int64 long long int64 8 Bytes 8 See note 4.

?
unsigned
long

? 4 Bytes
Specifically, 4
unsigned bytes is a
DWORD.

Real32 float float 4 Bytes <=5

Real64 double double 8 Bytes 6

Text char* char* 4 Bytes <=5 See note 1.

(none) int int 4 <=5 See note 2, 2a.

Bytes?

NOTE 1: The size of a text variable is of course the size of the string contained in the

text variable. When VEE passes a text variable over the CFI, it is always passed as

char* (here, the asterisk '*' is called a 'splat'. Kudos if you know why - you must have

read my Type Spoofing article on the VRF). The size of what's being passed over the

CFI on the other hand is that of a pointer, which is always the sizeof(int) and in a 32-

bit world that means 4 bytes.

NOTE 2: Though the CFI allows you to define parameters as "int", there is no explicit

VEE type that "int" directly translates to. The reason is that C defines the "int" type as

an integer of the width of the basic registers of the machine. On a 32-bit machine, a C

"int" is the same as C "long" or VEE "Int32". The advantage of using "int" instead of

"long" in CFI definitions is that VEE will always (I hope) realize what the

"sizeof(int)" is and since this is the same size as a pointer, parameters defined as "int"

in CFI definitions are useful for passing explicit pointers (as opposed to implicit

pointers - a VEE array is an implicit pointer). What all this gobbldy gook means is

that if and when VEE becomes a native 64-bit application then explicit pointers typed

as "int" will still work where as those typed as "long" will be only half as large as they

should be.

NOTE 2a: We recently got a hint that VEE will be going 64-bit, so this distinction is

now of paramount importance. Always define any pointer values as "int", not "long".

NOTE 3: I don't have any information on this type yet, but I imagine it's probably 1

byte. Recently, we got confirmation that VEE is now compiled with Microsoft Visual

C++, and that compiler's "boolean" entity is 1 byte long. This is assuming a bit much

though, since Windows has long defined BOOL as basically "int" and hence 4 bytes

(in a 32-bit world). This ambiguity will be resolved as soon as possible. In the event

that this really is "boolean", that's a C++ type and there isn't a C name for the same

concept, but "unsigned char" will do.

NOTE 4: The type, __int64 is not a C type but an MS type. Usually, this is also

referred to as "long int", "long long", "long64", "int64" or (as far as Windows was

concerned until recently), LARGE_INTEGER or LONGLONG. This also gets into

the difference between C and C++. C has a standard 64-bit integer and C++ does not.

Here is another peculiarity of C: functions in the standard library which either are not

defined in the "standard" or operate in non-standard ways are usually prepended with

a single underscore (like int _kbhit(void) for instance in the Microsoft C RunTime

Library [aka CRT]). Any entity which is prepended by two underscores is unique to

that particular compiler (like __int64). Sometimes the differences are huge and very

important, and sometimes they're trivial and completely irrelevant (like stdcall,

_stdcall and __stdcall - they all mean the same thing but they're all different

identifiers).

So these then are the basic types allowed by the CFI. In addition, you can "splat"

(place an asterisk after) any particular type to indicate that the parameter will be a

pointer to the named type. In particular, this is how you tell the CFI that you want to

pass a VEE array to a compiled function, or pass a scalar by reference (except a string

scalar - strings are always passed by reference). If you have an array of VEE Real32

values that you need to pass to a data acquisition dll, then define the parameter as

"float*".

One curious case is "char**". This is how you pass a VEE Text array. If you think

about this carefully, you can figure it out: a Text var is a char* as far as C is

concerned. This is a value that points to a series of characters whose end marker is the

character value zero. Since an array is a pointer to a block of memory that contains

contiguous values of the same type, you know that a char** is a value that points to a

block of memory and each data value is a 4-byte pointer to a series of characters

whose end marker is the character value zero. It's tempting to think that the character

data is stored immediately after the individual pointers in the list, but that violates the

rule for arrays: in that case, there's no telling how large each data value is until they

are all scanned for the zero byte. In actuality, it looks like this:

Text array (char**) → Text[0] (char*) → Text[0] (char block) \0x00

 Text[1] (char*) → Text[1] (char block) \0x00

 Text[2] (char*) → Text[2] (char block) \0x00

 Text[3] (char*) → Text[3] (char block) \0x00

What About Multidimensional Arrays?

Glad you asked. Both VEE and C do multidimensional arrays, but with both

languages it's an illusion. And they both handle them in exactly the same way too -

another god send. Basically you multiply all the maximum indices together multiplied

by the size of the type to find the size of the memory block used to store the array. To

dereference any particular element, you multiply the indices of the previous

dimensions (from left to right) by the size of the type and then add the current index

multiplied by the size of the type. Add that to the starting address of the array and you

have the address of the element you're looking for. The number of indices doesn't

matter - any array is passed as a pointer to the type.

Pointers And 64-bit Processors

As we move into the realm of a 64-bit native VEE, traversing arrays of pointers

becomes a bit foggy. When you're trying to access successive pointers, you need to

know if you have to add 4 or 8 to your index value to get the next one. If you are

running a 64-bit version of VEE on a 64-bit processor, then you have 8-byte pointers.

If you're using a 32-bit version of VEE on a 64-bit processor, then you'll be operating

in a virtual 32-bit support subsystem and your pointers will be 4-bytes. Someday I'll

address this with a simple SizeofPointer function, but until then just be aware that this

little detail can trip you up.

Funky Windows Types

When you look at Windows application source code, or even look around in the

function definitions of the Windows SDK, you see lots of words that describe types

that are not listed in the table. This seems distressing until you know that this is yet

another technique for self documentation. Self documentation is a big deal in textual

languages. The idea is that the program itself should be it's own best documentation.

We are quite used to that with VEE, but with a text based language it takes a lot of

effort. Most programmers spend a lot of time developing the discipline necessary to

follow self documentation. In general, the more you do it the better your programs

become. Name decoration is a form of self documentation. So is typedefing and that's

what you see for a lot of Windows types.

In C, there are two ways to call a type by a different name. One of them is a simple

text replacement technique called a simple macro which offers no type-checking

capability or definition advantage and the other is called a typedef which offers both.

C is very loosely typed, which means that you can define a variable as one type and

use it as any other type as you wish. This offers great flexibility, but it also offers

great danger. Type checking means that the compiler will check to make sure that you

are actually doing what you think you are doing. But anyway...

A typedef is a statement that defines an alias for an intrinsic type. It can also define an

alias for a user defined type, but that's not important for the types shown in the table.

There is a file in the Windows SDK that contains a lot of the funky types you see in

the function definitions, and it's called WinDef.h. There are far too many to list here,

but trust me when I say that most of them boil down to 32-bit numbers. There are a

great many unsigned types, and VEE does not do unsigned types (except of course

UInt8 - which we can't use anyway). This is largely immaterial. These are not

numbers that are meant to be interpreted by humans so you can usually ignore the

difference. Here is a partial list of the most important types:

Name Type Size Comments

DWORD unsigned long
4
Bytes

Four bytes is called a Double Word.

INT int
4
Bytes

Just an alias for int.

UINT unsigned int
4
Bytes

LONG long
4
Bytes

Just an alias for long.

BOOL int
4
Bytes

Boolean, Yes or No, True or False.

BYTE unsigned char 1 Byte

WORD
unsigned
short

2
Bytes

Two bytes is called a Word.

FLOAT float
4
Bytes

Just an alias for float.

LPFLOAT float*
4
Bytes

Pointer to FLOAT.

LPBOOL int*
4
Bytes

Pointer to BOOL.

LPBYTE
unsigned
char*

4
Bytes

Pointer to BYTE.

LPINT int*
4
Bytes

Pointer to INT.

LPWORD
unsigned
short*

4
Bytes

Pointer to WORD.

LPLONG long*
4
Bytes

Pointer to LONG.

LPDWORD
unsigned
long*

4
Bytes

Pointer to DWORD.

LPVOID void*
4
Bytes

Pointer to any type (see next section)..

UINT_PTR unsigned int
4
Bytes

Used for "polymorphic types".

ULONG_PTR unsigned long
4
Bytes

Used for "polymorphic types".

WPARAM unsigned int
4
Bytes

Used to be "word param", used in
messages.

LPARAM long
4
Bytes

"Long param", used in messages.

LRESULT long
4
Bytes

"Long result".

HANDLE void*
4
Bytes

"Handle" to object.

LPTSTR char*
4
Bytes

Pointer to string, i.e. VEE Text var.

These are just a few of the most frequently seen types, and I'm sure I've left a lot out.

As you can see, most are simply 32-bit values. Whenever you come across a type

you're not familiar with (eventually, you'll know the basic types by heart) you have to

go look it up in the SDK or your header files to see what type it actually is.

A Word About Void

No doubt you've noticed that there are a couple "void*" types up there. In C, a void

pointer is a pointer to any type. VEE does not accept "void*" in CFI definitions, so if

you have to use a void pointer you have to call it something else. Since it's a pointer, it

makes sense to call it an "int". If and when VEE changes to a 64-bit application, the

sizeof(int) will follow the change and the void pointer will still work. VEE is not the

only language that has trouble with void pointers. The C compiler itself will not allow

you to dereference a void pointer. The reason is simple: to dereference a pointer, you

need to know not only the location of the data but the size of the data, and since void

pointers point to any type it is impossible to know the size of the data. When you use

a void pointer, you have to know in advance what kind of data the pointer is pointing

to and you have to treat it appropriately by telling the compiler that this pointer is to

be considered a certain type. That's called a type cast.

Calling Convention

Ok, before we move on to type spoofing, I have to clear up something I said earlier

about stdcall. This is known as a function calling convention. There are four of them

used in C/C++: cdecl, stdcall, thiscall and fastcall. All are used to call functions, but

normally you only see stdcall. That's because if you happen to catch wind of the

calling convention of most Windows functions, you'll find that they are WINAPI,

APIENTRY or CALLBACK. All of these are just aliases for __stdcall - the stdcall

calling convention. All of these calling conventions have their own ins and outs, but

since we're really only concerned with stdcall that's the only one I'll comment on.

The CPU maintains an area of memory called the stack. It's like extra scratchpad

memory, beyond the actual registers in the machine. One of the things it's used for is

calling functions. First, the function parameters are pushed on the stack one by one,

then the current instruction pointer (the location of the instruction that the CPU is

currently executing - this is held in a CPU register) is pushed on the stack and

execution is transferred to the function address. Now, exactly how all this is done is

called the calling convention (I guess it really ought to be called a protocol, but oh

well). Also, there are two different ways to specify the parameters: by value or by

reference (no doubt VB people are thinking ByVal and ByRef - that's exactly the right

idea, though a little different - here we're considering the way the machine decides to

push parameters on the stack, not the language). The stdcall calling convention always

calls by value, but if the value you're pushing on the stack happens to be a pointer to

some variable then you have effectively called by reference. Ponder that - it's

important.

The stdcall calling convention dictates that:

1. Parameters are pushed on the stack from right to left as they occur in

parentheses.

2. Function parameters are passed by value (unless a pointer or reference is

explicitly passed).

3. An underscore character '_' is pre-pended to the internal name of the function.

4. An at sign '@' is appended to the internal name of the function.

5. The number of bytes passed as parameters are appended as an ASCII string to

the internal name of the function.

6. The callee (the called function) cleans up the stack (gets rid of the parameters).

7. The function's return value is located in the primary arithmatic (EAX) register

upon return.

Ok, let's take those one at a time. Parameters are pushed from right to left. Opposite of

the way English reads. That means that the last parameter pushed is the first spelled

out. Since the stack is used in reverse order, that means that the first parameter spelled

out is in the lowest memory address. I know it's insane, just remember that the first

parameter is first in memory. Sometimes that's important. Next we know that

parameters are passed by value. That is, the value of the variable named is what VEE

pushes on the stack. In the case of an array, VEE pushes the address of the array - thus

passing the array by reference. Ponder that - it's important. An underscore, at sign and

the number of bytes passed as parameters are added to the function name. What? Yes,

this really happens, but Microsoft has kindly arranged it so that these three directives

were not carried out on public API calls. For those of you who are struggling to get

away from this (and have tried 'extern "C"' to no avail), use a .def file with an

EXPORTS section. For those of you who are struggling with "The function was not

loadable" errors in VEE, prepend an underscore to the beginning of the function

name, and append an at sign and the number of bytes to the function name and the

function will be loadable.

Getting back to the list, the callee cleans the stack. Parameter values have been

pushed on the stack, and they need to be gotten rid of. Somebody has to do it, so

stdcall says that it's the called function that is responsible for getting rid of them. It's

an interesting detail, but of no consequence to us. Next however we have the

function's return value is located in the EAX register upon return. Now, this is very

important. The type of the function return value is shown at the left of the function

declaration (a declaration is also what VEE calls a definition) and winds up stored in

the variable on the left side of the equal sign when a function is used in an expression

such as "bSuccess = WriteFile(...)". If the return value is not used it is simply

overwritten. But wait, isn't something fishy here? Ponder this - it's important. What

about functions such as:

DWORD GetCurrentDirectory(DWORD dwBufSize, LPTSTR

lpBuffer);

The SDK says that if the function succeeds, the return value is the number of

characters copied to the buffer. What about lpBuffer? How does it get back to VEE?

This is why you've been pondering. Besides the function return value, the only way

to return information from a function back to the caller is to pass one of the

parameters by reference (address, pointer) and stuff the information into the

memory pointed to by the pointer that has been passed. This is so incredibly

important it's worth saying a different way. If you want to return anything back to the

caller besides a single number, then one of the parameters has to be passed by

reference and that reference must point to a memory block big enough to store what

you want to return.

Now I hear all you C people bitchin' and moaning that that's not true. The return value

can itself be a pointer to whatever you want. Yes, that's so. And sometimes that's a

keen way to do things except for one little detail: that pointer will have to have been

allocated by something, and that something can only be the called function except in

one instance. If that return value is not picked up by the caller and that memory is not

later deallocated you have a memory leak and that's not cool.

That one instance is when the caller allocates memory and passes the pointer as a

parameter. Well if you're going to do that then why bother returning the pointer as the

return value when it can be put to far better use by returning a pass / fail value. Oh,

the pointer may be reallocated you say? To make room for a bigger block if

necessary? Well if you're going to do that then pass the blessed pointer itself by

reference and return the new value in the same bloody parameter!

Ok, ok. There is one catch when doing this with VEE. If you're going to return values

through parameters that have been passed by reference, then VEE dictates that you

must retrieve the returned value via the parameter's output pin on the right side of the

call object. Now, this is the reason I use Wrapper Functions. In the above

GetCurrentDirectory example, the wrapper allocates a text variable large enough to

contain any return text and calls the actual function with the buffer's size and a pointer

to the buffer (remember, the function is defined with parameters (long, char*) so all I

do is hook up the outputs of a formula that allocates & outputs the buffer and then

outputs it's size to the input of the call object). The Return Value pin of the call object

is sent to a global var where I can examine it later if necessary and the buffer output

pin of the call object is sent to the output of the wrapper function. So outside the

wrapper, to the rest of the program, I have effectively redefined:

DWORD GetCurrentDirectory(DWORD dwBufSize, LPTSTR

lpBuffer);

 to

 Text GetCurrentDirectory(void);

The reason I do all this is because then I can write strCurDir = GetCurrentDirectory();

instead of having several small objects plus one big honker scattered all over the

place. When you start dealing with Windows programming, you're going to call lots

of functions with lots of inputs and sometimes lots of outputs and do lots of things

with lots of large data structures. When you do things with objects of this size the

simple flowchart paradigm of VEE breaks down horribly and you wind up with a total

mess.

The more compact it is the much, much easier to read it is. You can do traditional

VEE if you want, but trust me: one little line of text is a whole lot better than using a

4"x6" area of precious screen real estate to simply accomplish one puny function call.

I use wrapper functions and Massive Formula Objects (MoFos) because when I do so

I can see one complete functional thought at once in one nice, neat little box instead

of having that thought broken up over several different screens with all kinds of wires

running all over the place. If your scroll bars are active then there's probably too much

in one place, and you're going to have to troubleshoot and maintain all those wires

running helter skelter all over the place too. A large VEE User Function or User

Object can be a nightmare to maintain. Keep 'em small and keep 'em easy to figure

out. The problem with that is you can't do a whole lot with Windows programming by

keepin' 'em that way.

A&W Functions

There's one teeny weeny little thing to consider when doing what is essentially raw

programming with the Windows API and that's ANSI and WideChar functions.

Originally (way back in the misty dawn of C programming), the American National

Standards Institute defined the standard C library and several common practices to

follow when programming in C. Though ANSI has long been replaced by the CCITT

(which purportedly stands for "Can't Conceive Intelligent Thoughts Today) we still

speak of standard C programming as "ANSI C". The ANSI defined a C string as an

array of char terminated by a zero byte. That's all fine and good - if you want to speak

only one language. Specifically English (because it also defined ASCII as the official

C character set). A better way to represent strings had to be found, and UNICODE

was the answer. A UNICODE character is a character with two bytes instead of one

and is often called a "wide character". Ok, ok! I know it's not technically true that a

UNICODE char is two bytes but for the purposes of the current discussion just

pretend that it is.

Windows had already been under development for some time using ANSI only

strings, but obviously it had to be able to accommodate wide characters too. The only

way to provide wide character capability while not breaking software that uses one

byte characters was to create two different versions of every function that deals with

strings. This was eventually done and the result was that for every function that deals

with strings there's one version appended with an "A" and one appended with a "W".

The A functions are for one byte character string software and the W functions are for

two byte character string software.

Whenever you're importing a function from almost any Windows API, if it deals with

strings then you can bet that there's one A function and one W function. VEE is one

byte character string software (we say it is not UNICODE aware), and it will always

use A strings. So even though the SDK doesn't tell you about this, if there's a string

parameter or return value then you'll have to append an "A" to the function name to

have VEE find the function. There are exceptions to this rule, but when we find them

I'll say something about it. In general, COM functions and Network functions do not

have "A" versions. This is because COM was designed from the start to use wide

characters and networks had been using wide characters long before Windows even

knew networks existed.

As VEE moves into the future, I don't know what the status of it's UNICODE

awareness will be. The upcoming release might mark the beginning of it's UNICODE

aware self. As development is now being carried on in China, my guess would be that

getting VEE into being multi-lingual would be an important priority. Like I said

though, that's just a guess.

Where The Hell Are We?

To sum up, lets go over the most important points: Data has three attributes that must

be considered when using the CFI. They are size, type and value. While data size

must match on either side of the CFI, type need not and sometimes it actually either

can't match or it's just easier to use a different type on one side or the other. Pointers

point to data. The value of a pointer is the address of some data. A pointer can also

point to a pointer. In this case, the value of the first pointer is the address of the value

of the second pointer which then points to some data. An array is a pointer that points

to a list of data entities, all of the same type. An array is passed over the CFI by

declaring it as a pointer to the target type. Multidimensional arrays are handled

exactly as if they had only one dimension.

A record is a group of discrete data handled as a unit. This is usually for convenience

in handling data. Remember: an application lives and dies by it's data structures.

Though a record can't be passed over the CFI, it can be passed by reference over the

CFI. Well learn more about that in Type Spoofin' For Dummies, but it's best to take it

a little at a time. The Front Page timer tells me that this page takes over 20 seconds to

load and that means it's time to quit.

We saw several fascinating facts about calling convention, but in general we'll never

have to deal with the ramifications of these except that one single value is returned

from all compiled functions and if we want to return any more than that from the

function then we have to pass one or more parameters by reference. For most function

in the Windows API that deal with strings, there are actually two versions. One has an

"A" appended and the other has a "W" appended. When calling Windows functions

from VEE, we'll almost always be calling the "A" functions.

Shawn Fessenden

Copyright © 2005 [Black Cat Software]. All rights reserved.

Revised:

